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UNIT: 1 
INTRODUCTION TO COMPILER 

 
Unit Structure 

1.0 Introduction 
1.1 Unit Objective 
1.2 Basic Terms and Their Definitions 
1.3 Analysis - Synthesis Model of Compilation 
1.4 Phases of a Compiler 
1.5 Sub-Phases of Compiler 
1.6 Summing Up 
1.7 Answer to Check Your Progress 
1.8 Possible Questions 
1.9 References and Suggested Readings   
 

1.0 INTRODUCTION 

In this unit, you will learn the basic concepts of compilers. A 

compiler is the system software that translates a program written in 

a source language into an equivalent target language. The source 

languages may be any high level language like C, C++ or Java. The 

target language may be any programming language or the machine 

language. Therefore, compiler is basically a translator that accepts 

programs written in high level language and translates them into 

machine language equivalent programs so that they can be executed. 

The output code produced by the compiler is termed as the object 

code. Apart from translation, compiler also produces error messages 

if the program does not abide by the language specification. You 

must have learnt to write programs in high level languages. Do you 

know what actually happens inside the computer, when you execute 

these programs? Here, the role of a compiler comes into play. It 

passes through different phases and finally it generates codes 

equivalent to what you have written. This is what the machine 

equivalent object code is. This code is machine dependent and 
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carries out the intended instructions in order to produce results of 

computation. Further, you will get to learn how different phases 

work together, what their functionalities are and how they combine 

form the desired output. 

1.1 UNIT OBJECTIVE 

After going through this unit, you will be able to: 

 Define complier 

 Understand the different types of compilers 

 Know some basic concepts of compilers 

 Know how each phases of a compiler work 

1.2 BASIC TERMS AND THEIR DEFINITIONS 

1. Pass of a compiler: Compilation is a complex process broken 
into different chunks or phases. These chunks are called passes of 
compiler. This process involves not only producing the executable 
codes but also include several other stages like preprocessing, 
assembling, linking and loading etc. 

2. Single-pass compiler: When the compiler passes through each 
compilation unit or chunk exactly once, it is termed as the single 
pass compiler. The programming languages C, Pascal, FORTRAN 
etc fall into this category. Single pass compilers have the advantage 
of producing machine code faster, being efficient in case of short 
programs and memory requirement. 

 

Fig. 1.1: Single-pass compiler 
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3. Multi-pass compiler: When the compiler passes the source code 
through several intermediate passes during compilation process is 
called multi-pass compiler. Each pass takes the output of its 
previous pass as input and produces some intermediate output. 
Programming language like C++, Java, Lisp etc use multi-pass 
compiler. It works well with complex programming languages. 
Since multiple passes produce more optimized code, code 
generation is better than single-pass. 

 

Fig. 1.2: A 4-pass compiler 

4. Interpreter: It is also a kind of compiler which translates a 
program written in high level language into corresponding machine 
code. The only difference is that compiler converts a source code 
into equivalent target code. However, interpreter scans the program 
statement wise and then generates the machine executable format of 
the source. Programming languages like Python, Ruby, and 
JavaScript use interpreters. 

5. Assembler: An assembler is system software that interprets a 
program written in assembly language into relocatable machine 
language. An assembly language is a low level program contains 
symbolically coded instructions. Assembler works by converting 
assembly language instructions into object code. An assembler may 
also be single-pass or multi-pass.  

 

 

 

CHECK YOUR PROGRESS- I 

1. A compiler is basically a _____________. 
2. Apart from translation, compiler also produces ___ ______. 
3. When does a compiler produce error messages? 
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4. Compilation is a complex process broken into different____. 
5. Write down some advantages of a single pass compiler. 
6. An _______ scans the program statement wise. 
7. An assembler interprets a program written in assembly  
language into __ machine language. 

 

1.3 ANALYSIS - SYNTHESIS MODEL OF COMPILATION 

The process of compilation is mainly divided into two major parts-
Analysis and Synthesis.  

1.3.1 Analysis Phase: The analysis phase of a compiler mainly 
deals with analyzing codes of a program. The analysis phase 
performs the scanning of code, checks whether the codes conform to 
the rules or syntax of the language. This phase is important because 
accurate and efficient intermediate and target code will be generated 
once analysis phase correctly performs its task. Codes are scanned 
and checked if there is any lexical error. Once scanning is 
successful, codes are checked for syntactical representations. If they 
conform, successful generation of parse trees happen. Else error 
messages are generated. Successful syntactic representation may 
also lead to performing the semantic representation of codes. In 
semantic representation, mainly type checking is performed. Apart 
from these, this phase is mainly responsible for creating the symbol 
table. It is that part which mainly deals with performing the initial 
phases of compilation. 

1.3.2 Synthesis Phase: The synthesis part is responsible for 
processing the target code. The output of analysis phase is captured 
by this phase. Generally, this portion does not depend on source 
language and mainly deals with efficient optimization of codes. 
Finally, generation of target codes is also a responsibility of this 
phase. Synthesis phase mainly deals with producing the target code. 

1.4 PHASES OF A COMPILER 

As already mentioned, a compiler operates in phases, each phase 
transforms a source program from one representation into another. 
Each phase does unique operations on the program, transforming 
into some intermediate representation. Each output representation 
goes to the next phase and again the transformation happens. Two 
other sub-phases also occur during compilation- symbol-table 
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management and error handling. These two sub-phases interact with 
all the phases of the compiler. 

The process of compilation mainly is divided into six major phases. 
They are- lexical analysis, syntax analysis, semantic analysis, 
intermediate code generation, code optimization and code 
generation. 

1.4.1 Lexical Analysis or scanning:  

Lexical analysis or scanning is the first phase of a compiler. This 
phase reads the sequence of characters of the source program and 
finds the meaningful strings of characters. These strings are called 
lexemes and based. Based on its meaning, lexemes can be grouped 
into some categories. Thus, a lexeme can be identified as a keyword, 
identifier, number, operator, punctuation character, strings, 
comments or white spaces. Identifiers are the arbitrary sequences of 
letters, numbers or some special characters. Integers, floating point 
values, fractions and binary, octal or hexadecimal values fall under 
the numbers.  

Each lexeme is represented using a token of form <token-name, 
attribute-value>. Here, token-name is an abstract symbol 
representing the lexeme and attribute-value is used to provide 
additional information about the lexeme. This attribute-value is 
optional.  Also, suppose, there are two lexemes < and <= . Both 
lexemes are falls in the category operator. Now, tokens for the 
lexemes < and <= can be <OP, LT> and <OP, LE> respectively. For 
both the token token-name is same i.e. OP, because both the 
lexemes falls into same category operator and it is represented using 
abstract symbol OP. But for both the tokens, the attributes values 
are not same, because < and <= are different operator. Thus, LT 
denotes attribute value for the operator < (i.e. less than) and LE 
denotes attribute value for the operator <= (i.e. less than equal). 
Again, suppose, there are another two lexemes named as add and 
pos, which represents identifiers. Then the tokens for add and pos 
can be <id, 1> and <id, 2>. Here, id represents abstract symbol for 
identifier and attribute-values 1 and 2 represent the corresponding 
symbol table entries for the identifiers add and pos respectively. 
These symbol table entries hold the information about the identifiers 
i.e. type, size, scope etc. In case of operator, this symbol table entry 
is not required as the operator has no other attributes other than its 



 

category. Thus, its category is put directly in the place of 
value. 

 

 

 

 

 

 

For instance, consider the following C code:

 
 
 
 
 

This code contains the 
‘void’, 
‘printf’, 
 
Here,  
          void, main, int, printf 
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category. Thus, its category is put directly in the place of 

 

 

 

 

Fig. 1.3: Phases of compilation 

For instance, consider the following C code: 

  void main() 
  { 
  int a, b; 
  a=10; 
  printf(“The value of a is== %d”,a); 

} 
This code contains the following lexemes:  

, ‘main’, ‘(’ , ‘)’, ‘{’,’ int’, ‘a’, ‘,’, ‘b’, ‘;’, ‘
, ‘(’, “The value of a is== %d”, ‘,’, ‘a’, ‘)’, ‘;’

  
void, main, int, printf   -----> Keyword

 (, ), {, }, =     -----> Special character
 int, printf    -----> Keyword
 a, b      -----> Identifier
 10      -----> Number 
 ,, ;      -----> Separator
 “The value of a is== %d” -----> Literal 

category. Thus, its category is put directly in the place of attribute-

‘a’, ‘=’, ‘10’, ‘;’, 
’, ‘;’, ‘}’. 

> Keyword 
> Special character 
> Keyword 
> Identifier 

  
> Separator 
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The lexer program i.e. lexical analyzer tries to detect the lexemes 
from the input code and for each lexeme corresponding token is also 
generated. These tokens are passed to the parsing phase in order to 
generate the grammatical structure from the code. Non-token 
elements like white spaces are eliminated during scanning and are 
excluded from the token count. Similarly, the string literals inside 
double inverted comma are always considered as a single token. 

1.4.2 Syntax Analysis or Parsing:  

One of the most important phases of compilation which performs all 
the syntax related analysis of the code. It checks whether the 
statements and expressions conform to the rules or syntax defined 
for the language as well as whether they are correctly formed. 
Parsing can begin once scanning is successful and there is no lexical 
error. It takes the tokens from the lexical analysis phase, groups 
them and tries to construct grammatical phrases. These grammatical 
phrases are later represented in terms of graphical structures called 
the parse trees. Parsing is used to determine if a string of tokens can 
be generated by a set of grammar rules. The grammar rules are 
represented in terms of Context Free Grammars (CFG). Parsing is 
successful if the string is accepted by CFG; else we may encounter a 
syntax error. Parsing falls into two classes- top-down and bottom-
up. When parsing begins from the root and proceeds towards the 
leaves; it is termed as top-down parsing. Alternatively, in bottom-up 
parsing, construction begins at the leaves and proceeds towards the 
root. 

1.4.3 Semantic Analysis:  

Once a program is successfully parsed, it is checked for generation 
of semantic errors and gathering of type information. This is 
necessary for subsequent phases of code-generation. It uses the 
hierarchical structure generated by syntax analysis phase and 
identifies the operators and operands of expressions and statements. 
The function of semantic analysis phase is type checking. It finds 
out the type of each identifier and also checks whether each operator 
has operands permitted by the source language specification. Like 
for example, an array in C language cannot contain a real number as 
its index. Sometimes, situation may happen when a binary operator 
adds an integer and a floating point number. The compiler 
sometimes converts the integer into floating point equivalent and 
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then performs the arithmetic. During type checking, the type of each 
identifier must be determined. Each variable may refer to a local 
storage, a global variable or a function parameter. Each variable 
definition is stored in symbol table. Name resolution attempts to 
solve the problem of variable referencing with the help of symbol 
table. Semantic analysis also deals with examining limits of arrays 
or bad pointer traversal.  

For example, consider the following C-code 

  void main() 
   { 
   float a, b; 
   a= b * 10; 
   printf(“The value of a is== %f”,a); 

} 
The semantic analyzer will find a type mismatch in the expression 
a= b * 10. Both a and b are floating point numbers and 10 is an 
integer. There is a difference between them in terms of storage 
allocation as integers require less space than floats. Representing 10 
by 10.0 can compensate this mismatch. Therefore, the expression 
would be a= b * 10.0. 

1.4.4 Intermediate Code Generator:  

Some compilers generate an explicit intermediate representation of 
the source program. This representation must be easy to produce and 
easy to translate into target code. It is like the abstract structure of 
the source language which facilitates efficient optimization and 
target code generation. Sometimes, the intermediate code is 
generated in terms of “three-address code”. The three-address code 
is a sequence of instructions which is like the assembly language 
with every memory location working like a register.  

Consider the statement a= b * 10. In three-address code 
representation, it will be represented as- 

  t1 = float (10) 
  t2 = id2 * t1 
  id1 = t2 
There are different approaches to intermediate representation-  
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 An Abstract Syntax Tree (AST), which is simply a tree-
like structure without much of the optimization done. A 
post-order traversal of the AST at each node can help 
generating the assembly level code.  

 A Directed Acyclic Graph (DAG) is a simplified version of 
AST. Nodes are greatly simplified by eliminating the 
common sub expression. The values of DAGs do not change 
as common sub-expressions can be evaluated in any order. 
However, this assumption does not hold in case of 
conditional structures (like if or switch) or loop structures 
(like for, while) as repeated statements may modify some of 
the values.  

1.4.5 Code Optimization:  

One of the most important phases of compilation is code 
optimization. This phase attempts to improve the intermediate code. 
A considerable amount of compiler time is spent in generating a 
faster-running machine code. The transformation must take place in 
such a manner that it preserves the meaning of the program. Code 
improvisation also speeds up the program by a considerable amount; 
which in turn improves the running time of the program. 
Optimization may occur with or without flow control. Sometimes, 
optimization may happen in a straight line sequence, within a single 
block. This technique where no flow control is required is known as 
local optimization. Sometimes, changes may take place in the entire 
body of a function or procedure. This is global optimization where 
flow control is a must. Here, the optimization is complicated to 
some extent.  

For instance, optimized code statement of the three-address code 
mentioned in Section 1.4.4 would be as follows: 

  id1 = id2 * 10.0 

This representation is considered to be efficient in terms of memory 
requirement as well as CPU execution time.  

1.4.6 Code Generation:  

The final phase of compilation is code generation. It accepts the 
optimized code from the previous stage and produces executable 
machine code. The target code consists of absolute machine code, 
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relocatable machine code or assembly code. The task of this phase 
includes translation of intermediate codes into machine codes. 
Absolute machine code has the advantage of being placed at its 
fixed location in memory. They can be executed immediately after 
they are produced. The relocatable machine codes of sub-programs 
need to be linked together and then loaded for execution. Though a 
considerable amount of time is consumed while linking and loading 
the sub-programs; they have the advantage of being compiled 
separately. This provides a great deal of flexibility to the process.  

The benefit of assembly code is easy generation of symbolic 
instructions. Based on these symbolic notations, the assembler 
generates corresponding machine codes. The code generated in 
optimization phase can be represented as follows: 

  MOVF id2, R1 
  MULF 10.0, R1 
  MOVF R1, id1 
F signifies that the statements deal with floating point numbers. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

CHECK YOUR PROGRESS- II 

4. The compilation process is mainly divided into _____ and 
_______ phases. 

5. During semantic analysis _________ ____ is performed. 
6. Target code is produced during _____________phase. 
7. Two other sub-phases also occur during compilation are- 

_______and ______. 
8. What is lexeme? 
9. ______ are passed to the parsing phase in order to generate 

the grammatical structure form the code. 
10. The graphical structure represented during syntax analysis 

phase is called ______. 
11. The grammar rules are represented in terms of 

____________. 
12. In bottom-up parsing, construction begins at the ______and 

proceeds towards the________. 
13. Rules have ________________at its left side and a 

combination of ____________ ____________at its right. 
14. During ___________ ______________, the type of each 

identifier must be determined. 
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16. What are the approaches to intermediate representation? 
17. Code optimization phase attempts to improve the 

intermediate code. State whether true or false. 
18. Optimization may occur with or without flow control. State 

whether true or false. 
19. What is the advantage of absolute machine code? 

 

1.5 SUB-PHASES OF COMPILER 

It is already mentioned in Section 1.4, Fig. 1.3, that each phase of 
compilation interacts with two sub-phases namely- symbol table 
management and error handler.  

1.5.1 Symbol Table Management:  

During program development, variable, function names are 
declared. These are called identifiers. Keeping track of the names as 
well as the attributes of these identifiers is very important. These 
attributes may include the type and size of the identifiers, their 
scope and in case of procedure calls, their names, the number and 
types of arguments and also their return type. These attributes need 
to be recorded somewhere so that their information may be retrieved 
when compilation proceeds. A symbol-table is a data structure 
which stores the records of each identifier declared in a program. 
During lexical analysis or scanning phase, the lexer (lexical 
analyzer) determines the identifiers. These identifiers are included 
into the symbol-table. However, the attributes are not yet 
determined. The remaining phases enter information about these 
identifiers into the symbol table. Like for example, the semantic 
analysis phase requires type information of the identifiers. Symbol 
table is indexed by the name of the identifier as its key field. It 
should be present inside the main memory throughout the 
compilation process because it is accessed every time an identifier is 
referenced. For example, the C statements 

  int x=10; 
  float y=15.2; 
  char z=’a’; 
During tokenization, the lexical analyzer detects the variable names 
x, y and z as identifiers. The information about them is put into the 
symbol table as follows: 
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Table 1: Instance of a symbol table for variable  
Symbol_Name Kind Type Scope 

x var int Local 
y var float Local 
z var char Local 

 
Again, consider the following statement- 
   void sum(int x, int y); 
This statement has the function name sum as the identifier and 
which has two integer arguments x and y respectively. The symbol 
table contains the information of the function and the arguments in 
the following manner: 

 
Table 2: Instance of a symbol table for function  
Symbol_Name Kind Type 

sum func int -> void 
 

Table 3: Instance of a symbol table for arguments 
Symbol_Name Kind Type 

x arg int 
y arg int 

 
This way symbol tables are constructed for variables and function 
declarations. 
 
1.5.2 Error Handler:  
An integral part of compilation process is the handling of errors. 
Each phase may encounter errors. It must be able to deal with the 
error so that compilation can proceed. Lexical errors may happen if 
the scanner is unable to determine tokens in a program. Similarly, 
errors do not happen if a string of tokens can be generated by the 
grammar. If they violate the syntax rules, syntactic errors take place. 
Most of the errors are handled in syntax and semantic analysis 
phases. An Error handler must be able to detect error first. Once 
detected, reporting should be done and finally recovery mechanisms 
are employed. We shall discuss about error recovery techniques 
later on. Errors may be detected during the time when compilation 
occurs. Errors of such kind may be syntax errors or referring to non-
existent file etc. They prevent the program form being compiled. 
Such errors are called compile-time error. Similarly, errors may be 
detected when the program is executed. Sometimes, reference to 
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invalid data inputs or non-existent memory may be provided to a 
program. Sometimes, the program may experience lack of sufficient 
memory to run a program. Such errors are termed as run-time errors. 
Errors may be logical, which may occur when the codes are written. 
The program produces undesired output if errors happen in program 
logic development. 
 

1.6 SUMMING UP 

 A compiler is the system software that translates a program 
written in a source language into an equivalent target 
language. The output code produced by the compiler is 
termed as the object code. 

 Compilation is a complex process broken into different 
chunks or phases. These chunks are called passes of 
compiler. 

 When the compiler passes through each compilation unit or 
chunk exactly once, it is termed as the single pass compiler. 
When the compiler passes the source code through several 
intermediate passes during compilation process is called 
multi-pass compiler. 

 The compiler converts a source code into equivalent target 
code. An interpreter scans the program statement wise and 
then generates the machine executable format of the source. 
An assembler interprets a program written in assembly 
language into relocatable machine language. 

 The analysis phase of a compiler mainly deals with 
analyzing codes in terms of scanning or doing parsing of a 
program. The synthesis part is responsible for processing the 
target code. 

 The process of compilation mainly is divided into six major 
phases. They are- lexical analysis, syntax analysis, semantic 
analysis, intermediate code generation, code optimization 
and code generation. 

 The lexical analysis phase reads the characters of the source 
program and groups them into tokens. A token may be a 
keyword, identifier, numbers, operators, punctuation 
character, strings, comments or white spaces. The sequence 
of characters forming a token is called as lexeme or lexical 
item. 
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 Syntax analysis phase checks whether the codes conform to 
the rules or syntax defined for the language. It takes the 
tokens from the lexical analysis phase, groups them and tries 
to construct grammatical phrases. 

 During semantic analysis, a program is checked for 
generation of semantic errors and gathering of type 
information.  

 Some compilers generate an explicit intermediate, easy to 
produce and easy to translate representation of the source 
program. It is like the abstract structure of the source 
language which facilitates efficient optimization and target 
code generation. Sometimes, intermediate code is generated 
in terms of “three-address code”. 

 Code Optimization phase attempts to improve the 
intermediate code. A considerable amount of compiler time 
is spent in generating a faster-running machine code. Code 
Optimization may be local or global. 

 Code generation phase accepts the optimized code from the 
previous stage and produces executable machine code. The 
target code consists of absolute machine code, relocatable 
machine code or assembly code. 

 A symbol-table is a data structure which stores the records of 
each identifier declared in a program. Their attributes may 
include the type and size of the identifiers, their scope and in 
case of procedure calls, their names, the number and types of 
arguments and also their return type. 

 Each phase of compilation must be able to deal with errors. 
Errors may be compile-time, run-time or logical error.  

1.7 ANSWER TO CHECK YOUR PROGRESS 

1. translator 
2. error messages 
3. A compiler produces an error messages when it does not 

abide by the specification of the language. 
4. Chunks or phases 
5. Single pass compilers have the advantage of  

i. producing machine code faster 
ii. being efficient in case of short programs and memory 

requirement. 
6. Interpreter 
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7. Relocatable 
8. Analysis, synthesis 
9. type checking 
10. synthesis 
11. symbol-table management, error handling 
12. The sequence of characters forming a token is called as 

lexeme or lexical item. 
13. Tokens 
14. parse tree 
15. Context Free Grammars (CFG) 
16. leaves, root 
17. non-terminal, terminal or non-terminal 
18. type checking 
19. There are two approaches to intermediate representation-  

1. An Abstract Syntax Tree (AST), which is simply a tree-
like structure without much of the optimization done.  
2. A Directed Acyclic Graph (DAG) is a simplified version 
of AST. 

20. True 
21. True 
22. Absolute machine code has the advantage of being placed at 

its fixed location in memory. They can be executed 
immediately after they are produced. 
 
 

1.8 POSSIBLE QUESTIONS 
 

A. Short answer type questions. 
1. What is a compiler? Answer in brief. 
2. Why do we call a compiler a translator? Justify. 
3. What do you understand by an interpreter? 
4. What do you understand by an assembler? 
5. Describe the functionality of synthesis phase. 
6. What do you understand by tokens? 
7. What do you understand mean by scanning in compiler? 
8. What is lexical analyzer? 
9. What is parsing? What is role of a parser? 
10. What is parse tree? Describe in brief. 
11. What do you mean by Context Free Grammar? 
12. What is production rule? Discuss in brief. 
13. What do you mean by syntax error? 
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14. What are the two major functions of semantic analysis 
phase? 

15. What is three-address code? Explain in brief. 
16. What are the different forms of intermediate representation? 
17. What does the code optimization phase attempt to do? 
18. What is absolute machine code? Discuss. 

 
 

B. Long answer type questions. 
1. What do you understand by pass of a compiler? What are its 

types? Explain each of them. 
2. Explain the architectural framework of a typical 4-pass 

compiler. 
3. How many major phases is the compilation process divided 

into? Explain each of them. 
4. What are the two classes of parsing? Explain each of them 

with example. 
5. What do you mean by type checking? Explain. 
6. Explain each phases of compilation elaborately. 
7. What are the two major sub phases of a compiler? Explain 

each of them. 
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UNIT: 2 
 COMPILER OVERVIEW 

 

Unit Structure 

2.0 Introduction 

2.1 Unit Objectives 

2.2 Language Processors 

2.3 Phases of a Compiler 

 2.3.1 Lexical Analysis or Scanner or Tokenizer 

 2.3.2 Syntax Analysis or Parser 

 2.3.3 Semantic Analysis 

 2.3.4 Intermediate Code Generation 

 2.3.5 Code Optimization 

 2.3.6 Code Generation 

2.4 Summing Up 

2.5 Answers to Check Your Progress 

2.6 Possible Questions 

2.7 References and Suggested Readings 

 

2.0 INTRODUCTION 

The function of a compiler is to accept statements written in high 
level language and translate them into equivalent sequences of 
machine level instructions. For example, during the processing of 
statement a= b * c + d, the compiler does not directly perform the 
operations. Rather, issues a sequence of instructions that perform 
multiplication and addition operations. In broader sense, a compiler 
is a program that accepts as input a program written in high level 
language and produces an equivalent program in machine language. 
The input program is called as the source program and the machine 
level program is known as the target program. In this unit, we shall 



18 
 

learn how a source program passes through different phases in order 
to generate an equivalent target program. There are six major phases 
and two sub-phases which we shall try to learn by considering some 
examples. 

 

2.1 UNIT OBJECTIVES 

After going through this unit, you will be able to: 

 Know the features of a language processor 
 Differentiate between the functionalities between major and 

widely used language processors 
 Understand the differences between high level language and 

machine level language 
 Explain how each major phases of a compiler works 

 

2.2 LANGUAGE PROCESSORS 

A language processor is a program that translates a high level 
language source program into an equivalent target program. Apart 
from this, an important role of the compiler is to report error 
messages detected during translation process. The target program 
may be an executable machine language program. An interpreter is a 
language processor that executes the statements specified in the 
source program instead of producing the target code as a program. 
Therefore unlike compiler, an interpreter does not produce the 
whole program, rather produces the source program’s output. The 
target program produced by the compiler is much faster than that of 
an interpreter. Moreover, interpreter gives better diagnostics to 
errors than a compiler. This happens because; the source program is 
executed statement by statement. 

We have mentioned earlier that in a compiler, a large program may 
be chunked into pieces and relocatable machine codes are produced 
corresponding to these pieces. These codes are linked together with 
linkers and other library routines to produce codes that actually run 
on the machine. Finally, the loader loads all the executable object 
files into memory for execution.  

Here, you might want to learn about high level language and 
machine level language. Unlike machine level languages, high level 
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languages are easier to work with and maintain. They have much 
higher degree of machine independence and portability. They 
support data abstraction and program abstraction. But, using high 
level language may have some drawbacks. The compiler may 
generate inefficient machine codes. This in turn may require some 
additional software. Additionally, the programmer does not have 
control over machine resources such as registers, buffers or 
interrupts.  

 

 

 

 

 

 

 

 

 

 

 

 

2.3 PHASES OF A COMPILER 

Now, let us see how the phases and sub-phases of a compiler 
(already discussed in previous unit) work together in order to 
produce an object code. As mentioned earlier a compiler passes 
through six major phases: lexical analysis, syntax analysis, semantic 
analysis, intermediate code generation, code optimization and final 
code generation. Two additional sub-phases symbol table 
management and error handler interact with these phases in order to 
produce an efficient machine code. A high level language program 
forms input to the first phase of the compiler, that is, lexical 
analysis. The output produced by this phase goes as the input to the 
next. Each phase produces a unique output and fed as an input to the 

CHECK YOUR PROGRESS – I 

1. A _____ translates a high level language source program 

into an equivalent target program.  

2. The target program produced by the compiler is much 

_____than that of an interpreter. 

3. ____________ loads all the executable object files into 

memory for execution.  

4. High level languages have much higher degree of 

________and ___________. 

5. There are __________________ phases of a compiler. 

6. The two sub-phases of a compiler are __________ and 

______________. 
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next. In the following subsections we will discuss how each phase 
of the compiler converts the input it received into desired output. 

2.3.1 Lexical Analysis  

This is the first phase of a compiler. In this phase the lexical 
analyzer or scanner or tokenizer attempts to generate tokens from an 
input string. It does so by scanning the input from left to right one 
character at a time. A valid token is passed to the next phase of a 
compiler. As mentioned earlier, tokens are the other names of 
words. A word is a string of characters taken as a unit. Technically, 
a word is known as a lexeme or lexical item. There are some 
patterns defined in this phase against which each generated word is 
matched. If there is a match in the input, the token corresponding to 
the pattern is generated as output.  

For example, in the statement: 

  sum = a + b * 24 + d 

Lexemes are- 

1. sum 
2. = 
3. a 
4. + 
5. b 
6. * 
7. 24 
8. + 
9. d 

The corresponding tokens for the lexemes are- 

1. <id, pointer to the symbol table entry for sum> 
2. <=> 
3. <id, pointer to the symbol table entry for a> 
4. <+> 
5. <id, pointer to the symbol table entry for b> 
6. <*> 
7. <Number, integer value 24> 
8. <+> 
9. <id, pointer to the symbol table entry for d> 
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Attribute values for the identifiers sum, a, b and d are entered into 
the symbol table in records 1, 2, 3 and 4 respectively and these 
attributes include identifier name, its type, size and scope. Similarly, 
token for the number 24 requires its type and value. Operators =, * 
and + do not require any additional attribute value. 

2.3.2 Syntax Analysis or Parser 

Tokens of lexical analysis phase are fed to the syntax analysis 
phase. This phase transforms these tokens into graphical structure 
termed as parse tree. But prior to doing so, this phase tries to check 
the syntax of the language structure. If the statements conform to the 
underlying grammatical structure of the language, it is treated as 
correct. Otherwise, the parser recognizes it as error and reports it. 
The graphical structure is termed as the syntax tree in which each 
interior node represents an operation and its child nodes represent 
the arguments or operands. Like for example, the interior node 
labeled * has <id, 3> as its left child and integer 24 as its right child. 
This node is identified by the value b. During execution of this 
statement, precedence rules for the language are followed. 
Therefore, multiplication is executed prior to addition. The tokens 
passed to this stage would be: 

  <id, 1> <=> <id, 2> <+> <id, 3> <*> <24> <+> <id, 
4> 

The grammatical structure is specified by context-free grammar and 
subsequent phases of the compiler use these structure. The graphical 
structure for the above set of tokens would be: 

 

 

 

 

 

 

 

Fig 2.1: Syntax Tree of the statement sum = a + b * 24 + d 
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There are parsing algorithms which make the parsing decisions by 
analyzing the program and construct the graphical structure. 

2.3.3 Semantic Analysis 

The semantic analysis phase uses the syntax tree generated in the 
previous phase. It basically gathers the type information present in 
the source program statements. It saves this information in the 
symbol table.  This phase checks to see whether the source program 
is semantically consistent with the language definition.  

Semantic analysis mainly deals with type checking. This means the 
compiler checks whether each operator contains matching operands. 
For example, an array index is always required to be integers rather 
than real numbers. The compiler sees if the indices are integers or 
not. If it found to other than integers, an error should be reported. In 
our example statement, number 24 is multiplied with variable b. 
Here, if b is a floating point number, operator * is applied between 
an integer and a floating point number. Now, obviously digit 24 also 
has to be converted into floating point number. In C, the type 
casting method does this conversion explicitly. Thus, digit 24 
becomes 24.0. The language specification which permits such type 
conversion is called coercions. In our example, we shall consider the 
variables as integers. 

2.3.4 Intermediate Code Generation 

The source program construct is translated into one or more 
intermediate representations. These representations may be syntax 
tree, Directed Acyclic Graph (DAG) or three-address codes. 
Intermediate codes must be easy to produce and easy to translate 
into target code. Syntax tree is a form of intermediate representation 
that is generated during syntax and semantic analysis phases. DAGs 
are the intermediate representations which may be thought of as the 
condensed form of syntax trees. Both syntax trees and DAGs are the 
graphical representations. In contrast to this, three-address codes are 
linear representations. Each statement contains three operands and at 
most one operator on the right side. Each operand act like a register. 
These instructions specify the order in which the operations are to 
be performed. Therefore, the sequence of three-address codes would 
be: 
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  t1 =  24 

  t2  =  id3 * t1 

  t3  =  t2 + id4 

  t4  = id2 + t3 

  id1=  t4 

The first three address instruction assigns integer 24 to t1. If 
identifiers sum, a,  b or d are floating point numbers, then an 
explicit type conversion function inttofloat() will do the task. Thus, 
the statement would be: 

   t1 =  inttofloat(24) 

As multiplication has more priority over addition, the intermediate 
code generator would first multiply 24 and b and then add d to it. 
Adding a to the output gives the final result of the statement. Now, 
assigning this result to the identifier id1 completes the statement. 

2.3.5 Code Optimization 

This phase attempts to improve the intermediate code generated in 
the previous phase. The generated code is machine-independent and 
gives faster target code. But better target code requires some other 
objectives to be fulfilled. These may include generation of target 
code that consumes less power or shorter code that consumes less 
memory. Now, referring to our example, this phase directly replaces 
number 24 by 24.0 if need arises. Also it tries to improve the 
intermediate code by eliminating unnecessary instructions and 
replacing them with one. 

  t1  =  id3 * 24 

  t2  =  t1 + id4 

  id1  = id2 + t2 

Such representation saves a significant amount of time as well as 
space. This in turn significantly improves the running time required 
to execute the target code. Compilers which do such optimization 
are known as the Optimizing Compilers. 

2.3.6 Code Generation 
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The optimized codes are fed into the code generation phase and later 
transformed into target code. The intermediate codes are translated 
into sequences of machine instructions. These sequences perform a 
specific task. Therefore, such instructions require memory locations 
or registers to store the variables. Here, the role of registers comes 
into play and crucial to decide which register will hold which 
variable. The equivalent set of machine codes for our example 
statement would be: 

  LD  R2,  id3 

  MUL R2,  R2, #24 

LD R1,  id4 

ADD R1,  R1, R2 

LD R0,  id2 

ADD R0,  R0, R1 

ST id1, R0 

The above code statement requires three registers to perform the 
translation. The first operand specifies the destination. The first 
instruction specifies that the contents of id3 are loaded in register 
R2. Then the multiplication operation multiplies R2 with integer 24. 
The result is stored back to R2. Similarly, contents of id4 is loaded 
into register R1 followed by addition between R1 and R2. The result 
is stored back to R1. Finally, id2 is loaded to R0 which is added 
with R1 so as to get the final result of the statement. Lastly, R0 is 
stored on id1, completing the execution of the whole statement. If 
the statement deals with floating point operations, an F must follow 
each instruction code; that is, LDF, MULF have to be used to 
specify the operation codes. A # used prior to 24 signifies that 24 is 
treated as immediate constant. 

 

 

 

 

 

CHECK YOUR PROGRESS – II 

7. A lexeme is a string of ______________________ taken 

as a unit.  

8. Lexical analyzer puts the records of each identifier in a 

table called as _______________. 

9. The internal nodes of a syntax tree represent an 

___________________.  
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10. ____________________________ mainly deals with type 

checking. 

11. Intermediate codes must be easy to ___________ and 

__________into target code. 

12. Three-address codes are ________________________. 

13. The code optimization phase generates 

_________________ running target code. 

14. Variables are stored on registers or memory locations 

during _______________phase. 

15. _____________are the fastest memory. 

 

2.4 SUMMING UP 

 A language processor is a program that translates a high 
level language source program into an equivalent target 
program. The target program may be an executable machine 
language program. 

 Apart from this, an important role of the compiler is to report 
error messages detected during translation process. 

 An interpreter is a language processor that executes the 
statements specified in the source program instead of 
producing the output as a program. Therefore unlike 
compiler, an interpreter does not produce whole program, 
rather produces the source program’s output. 

 A compiler passes through six major phases: lexical analysis, 
syntax analysis, semantic analysis, intermediate code 
generation, code optimization and final code generation. 
Two additional sub-phases symbol table management and 
error handler interact with these phases in order to produce 
an efficient machine code. 

 Lexical analyzer or scanner attempts to generate tokens from 
an input string by scanning the string from left to right. It 
does so by scanning the input from left to right one character 
at a time. 

 Syntax analysis phase transforms these tokens into graphical 
structure termed as parse tree. But prior to doing so, this 
phase tries to check the syntax of the language structure. If 
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the statements do not conform to the underlying grammatical 
structure of the language, error is reported. 

 Semantic analysis basically gathers the type information 
present in the source program statements. It saves this 
information in the symbol table.  This phase checks to see 
whether the source program is semantically consistent with 
the language definition.  

 The source program construct is translated into one or more 
intermediate representations. These representations may be 
syntax tree, Directed Acyclic Graph (DAG) or three-address 
codes. Intermediate codes must be easy to produce and easy 
to translate into target code. 

 Code optimization phase attempts to improve the 
intermediate code. The generated code is machine-
independent and gives faster target code. But better target 
code requires some other objectives to be fulfilled. These 
may include generation of target code that consumes less 
power or shorter code that consumes less memory. 

 The intermediate codes are translated into sequences of 
machine instructions. These sequences perform a specific 
task. Therefore, such instructions require memory locations 
or registers to store the variables. 

 

2.5 ANSWERS TO CHECK YOUR PROGRESS 

1. language processor 
2. faster 
3. Loader 
4. machine independence, portability 
5. 6 
6. symbol table management and error handler 
7. characters 
8. symbol table 
9. operation 
10. Semantic analysis 
11. produce, translate 
12. linear representations 
13. faster 
14. code generation 
15. Registers 
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2.6 POSSIBLE QUESTIONS 

A. Short answer type questions. 

1. What is language processor? 
2. How does a language processor play a significant role in 

programming? 
3. What is compiler? 
4. What is interpreter? 
5. Differentiate between compiler and interpreter. 
6. Write down functions of linker and loader. 
7. What are high level languages? How do they differ from 

machine level language?  
8. What do you mean by tokenization? Give example. 
9. What is parser? Discuss. 
10. What do you mean by optimizing compiler? 
11. What is syntax tree? Explain with example. 

B. Long answer type questions. 

1. What is language processor? Explain. 
2. Give some characteristic overviews on compiler and 

interpreter. 
3. What are the major phases of a compiler? Consider an 

example of your own and explain how each phase functions 
in order to produce the target code? 

 

2.7 REFERENCES AND SUGGESTED READINGS 

 Bergmann, S. D. (2017). Compiler design: theory, tools, and 
examples. 

 Thain, D. (2016). Introduction to compilers and language 
design. Lulu. com. 

 Holub, A. I. (1990). Compiler design in C (pp. I-XVIII). 
Englewood Cliffs, NJ: Prentice Hall. 

 Aho, A. V., Lam, M. S., Sethi, R., &amp; Ullman, J. D. (2007). 
Compilers: principles, techniques, and tools Second Edition. 

 

××× 



28 
 

UNIT: 3 
FINITE STATE AUTOMATON AND REGULAR 

LANGUAGE 
 

Unit Structure 

3.0 Introduction 
3.1 Unit Objectives 
3.2 Specification of Tokens 
3.3 Finite State Automaton and its Basic Concepts 
 3.3.1 Types of Finite State Automaton  
 3.3.2 Transition Diagram 
 3.3.3 Transition Table 
3.4 Construction of Finite Automaton 

3.4.1 Construction of DFA 
 3.4.2 Construction of NFA 
 3.4.3 Construction of NFA with ϵ Transitions 
3.5 Regular Expression 
3.6 Conversion of NFA to DFA 
3.7 Minimization of DFA 
3.8 Summing Up 
3.9 Answers to Check Your Progress 
3.10 Possible Questions 
3.11 References and Suggested Readings 
 

3.0 INTRODUCTION 

In the previous units, you have learnt compiler and its basic 
properties. You have also learnt definitions of some basic 
terminologies as well as functional characteristics of each phase and 
sub-phase of a compiler. The second unit covers a detailed 
discussion on overall functions and behavior of each phase of the 
compiler. Now, you all know that the process of compilation begins 
with lexical analysis. The lexical analyzer scans a string of 
characters to find the tokens. It employs finite state automaton to 
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recognize the tokens. Therefore, a recognizer is a program that 
returns yes once a string is recognized and no otherwise. A finite 
state automaton (FSA) or a finite state machine (FSM) is an abstract 
machine which follows a pre-determined sequence of states to 
recognize a token. This unit mainly focuses on understanding how 
the finite state automaton works. It also discusses the various types 
of FSMs as well as their functionalities. Later in this block, we shall 
have in-depth discussion of some very essential topics related to 
lexical analysis. 

 

3.1 UNIT OBJECTIVES 

After going through this unit, you will be able to: 

 Define finite state automaton 
 Understand basic concepts behind finite state automaton 
 Know the different types of finite state automaton and their 

properties 
 Know how to construct a finite state machine 
 Understand the conversion process of NFA to DFA 
 Know the minimization of DFAs 

 

3.2 SPECIFICATION OF TOKENS 

The lexical analysis phase is responsible for generating tokens from 
of a string of characters. We already have discussed in the previous 
unit that a pattern represents rule to identify a token. These patterns 
are specified using the regular expressions. Let’s start our discussion 
with some formal definition of some keywords used to specify the 
tokens. 

1. String: The term alphabet denotes a finite set of symbols 
which may be either numbers or characters. For example, the 
set of alphabet may be denoted as {0, 1} or {a, b}.  
A string over an alphabet is a finite sequence of symbols 
generated from the alphabet. For e.g., a set of strings over 
the alphabet {0, 1} may be 0, 1, 00, 11, 01, 001, 011, 111, 
1010, 1110010, 1110111 etc. The terms sentence or words 
are the synonyms of string. Number of operations can 
performed on strings. We can calculate its length, perform 
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concatenation on it. Some of the common terms used in 
strings along with their corresponding definitions are 
discussed below. We consider the string s= “Builder” here. 
 
 Length of s :  Length of a string is obtained by  

counting the symbols of the string. 
For e.g. |s| is of length 7  

 Prefix of s :  Prefix is obtained by removing zero  
or more trailing symbols from s. 
For e.g. Build is a prefix of Builder 

 Suffix of s :  Suffix is formed by removing zero  
or more leading symbols of s. For 
e.g. er is a suffix of Builder 

 Substring of s : A string formed by removing a  
prefix and a suffix from s. For e.g. 
ild is a substring of Builder 

 Proper prefix, suffix : A non-empty string x is a prefix,  
    suffix or or substring of s  
    substring of s, such that s ≠x 

 Subsequence of s :  A string generated by removing  
zero or more contiguous or non-
contiguous symbols from s is a 
subsequence of s. For e.g. uild is a 
subsequence of Builder 

Apart from these, there is one more term, called concatenation of 
strings. Consider string r = “String”. The concatenation os derived 
by appending s to r. Therefore, we have the concatenated string r.s = 
String Builder. A string of length 0 is termed as an empty string and 
is denoted by the symbol €.  

2. Language: A set of strings formed over an alphabet is 
termed as language. A language may also contain an empty 
string or the set {€}. We already have mentioned that 
patterns are recognized by the regular expressions. Each 
pattern matches a set of strings and regular expressions give 
names to these set.  

There are several operations that can be performed on languages. 
Table 1 showcases some of the permissible operations on languages. 
Upon application of these operations create new languages. We 
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consider two languages L and D. L is the alphabet consisting of the 
set of letters {A, B, ………, Z, a, b, ………., z} and D is the 
alphabet consisting of the set of digits {0, 1, 2, ……, 9}. 

Table 3.1 : Operations on languages 
Operations Definition 

L ∪ D (union of L and D) L ∪ D = {s | s is in L or s is in M} 
LD (concatenation of L 
and D) 

LD = {st | s is in L and t is in D} 

L* (Kleene closure of L)              ∞ 
L* = ∪ Li 
            i=0 
It denotes “zero or more 
concatenations of” L 
 

L+ (Positive closure of L)          ∞ 
L+ = ∪ Li 
            i=1 
It denotes “one or more 
concatenations of” L 

 
 L ∪ D is the set of letters and digits. 
 LD is the set of strings consisting of a letter and a digit 
 L* is the set of zero or more occurrences of letters 
 L(L ∪ D)* is the set of all strings of letters and digits 

beginning with a letter 
 D+ is the set of one or more occurrences of digits 

Operations union and concatenation are binary operations; however 
Kleene and positive closure are unary. For a language L over 
alphabet {0, 1},  

 L0 is {€} 
 L1 is {0, 1}  
 L2 is {00, 01, 10, 11} 
 L3 is {000, 001, 010, 011, 100, 101, 110, 111} 
 L* is {€, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 

110, 111, 0000, 0001, 0010, ………..} 
3. Regular Expressions: A regular expression is simply a 

sequence of letters that match with the same sequence of 
input letters. However, complex structures can also be 
generated through inclusion of special characters. The 
operations defined in point 2 are also expressed using some 
well-formed formula or notation. There are some lexical 
rules to form the regular expressions over any alphabet ∑. A 
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regular expression denotes a language. Therefore, if the 
expression is denoted by the symbol r, the language is 
expressed by L(r). 

 If € is a regular expression, it denotes {€}, i.e., the set 
containing empty string. 

 A symbol ‘a’ belonging to the set ∑, but not a meta character 
is a regular expression. It represents a regular expression 
containing only a single character. Therefore, a is the regular 
expression that denotes {a}, i.e. the set containing the string 
a. 

 If r and s are the regular expressions; corresponding 
languages are L(r) and L(s). Then, 
a. (r) is the regular expression which denotes L(r). 
b. (r)(s) is the regular expression which denotes L(r).L(s). 
c. (r) | (s) is the regular expression which denotes L(r) ∪ 
L(s). 
d. (r)* is the regular expression which denotes L(r)*. 

The language denoted by a regular expression is termed as regular 
set. 

Let us make this concept clearer considering an example. Let the 
alphabet set ∑ = {a, b}. 

a) The regular expression a | b represents the set {a, b}. 
b) The regular expression (a | b) (a | b) or aa | ab | ba | bb 

represents the set {aa, ab, ba, bb}. It is the set of all strings 
of a’s and b’s having length two. 

c) The regular expression a* denotes the set of all strings 
having zero or more occurrences of a. It represents the set 
{€, a, aa, aaa, aaaa,…………..}. 

d) The regular expression (a | b)* represents the set of all 
strings containing zero or more occurrences of a or b. 
Therefore, it denotes the set of all strings of a’s and b’s and 
the corresponding regular expression is (a*b*)*. 

e) The regular expression a | a*b denotes the set containing the 
string “a” and all strings consisting of zero or more instances 
a’s followed by a b. 

Let us see few examples considering these basic rules. 

 



33 
 

Regular Expression (r)   Language L(r) 
hello      { hello } 
ro(s|p)e     { rose, rope } 
abb*      { ab, abb, abbb, 
…….. } 
(abb)*      { €, abb, 
abbabb, abbabbabb, ………. } 
a(a|b)*a     { aa, aaa, aba, 
aaaa, aaba, abaa, …….. } 
 

4. Regular definition: Regular expressions may be given 
names. It is represented more in a rule-like structure which 
inclines towards a grammatical approach. It is the other 
means of describing tokens. If ∑ is a set of alphabets, then 
the regular definition is of the form 
 

d1   r1 

d2   r2 
d3   r3 

Each di being the distinct name of the definition and ri being 
the regular expression. Each ri is a symbol of ∑ and 
previously defined names. The definition itself shows that it 
follows production-like specifiers with left side consisting of 
the symbols ∑ ∪ { d1, d2, d3 }. For instance,  

   keyword   long | int | double | 
while | for | if | then 
   digit   0 | 1 | 2 |……….|9 
   digit _sequence  digit+ 
   sign  + | -  
   relop    < | <= | = | <> | > | >= 
   id    letter (letter | number)* 
Names are written in boldface to distinguish from symbols. 
The lexical analyzer recognizes the keywords as well as 
lexemes denoted by relop, id, sign, digit _sequence etc.  

Let us have an elaborate discussion on how the LEX program 
works in order to generate a token. 
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3.3 FINITE STATE AUTOMATON AND ITS BASIC 
CONCEPTS 
A finite state automaton is a recognizer program that recognizes a 
certain string of tokens. It accepts a string x as input and answers 
“yes” if x is a sentence of the language and “no” otherwise. 
Regular expressions represent the lexemes. These regular 
expressions are translated into finite state automaton (FSA) or 
finite state machine (FSM). In other words, a finite state machine 
recognizes the regular expressions. We shall now try to understand 
different FSMs. 
 

3.3.1 Types of Finite State Automaton  

A finite automaton can be deterministic or non-deterministic. In 
Deterministic Finite Automata (DFA), on an input symbol, only one 
transition is possible from a given state. On the other hand, a Non-
deterministic Finite Automaton (NFA) has more than one transition 
on the same input symbol. Another important feature of this 
automaton is here €-transition is possible. That is, a transition from 
one state to another is possible with no input symbol.  

Therefore, an NFA mainly consists of 5-tuple (Q, ∑, δ, q0, F): 

 A finite set of states Q 
 A set of input alphabets or symbols ∑ 

CHECK YOUR PROGRESS – I 

1. Compilation begins with __________analysis. 

2. The lexical analyzer scans a string of characters to find 

_____.  

3. A _____________over an alphabet is a finite sequence of 

symbols generated from the alphabet. 

4. A set of strings formed over an alphabet is termed as 

______.  

5. An empty string is denoted as _______. 

6. The language denoted by a regular expression is termed as 
____________. 
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 A transition function (δ) that maps from one 
state to more than one state on an input symbol 

 An initial/start state denoted by q0 
 A set of final states denoted by F 

The transition always begins at initial state q0. On reading an input 
symbol from the set ∑, the transition function δ moves from q0 to 
another state, say q1. In this way, all symbols of the input string are 
read and transition happens on each input until the final state is 
reached.  

A DFA is a faster recognizer than NFA; but much bigger than an 
equivalent NFA. It is easy to implement in software or hardware. 
Both can recognize regular expressions. However, DFAs are 
difficult to construct than NFAs. DFA is also a special case of NFA 
in which  

1. There is no €-transition, that is no transition on 
input €. 

2. For each input ‘a’ and state S, there is at most one 
edge labeled ‘a’ from S. 

In other words, it can be said that a DFA is unambiguous unlike 
NFAs. It also consists of 5-tuples with a difference in the transition 
function (δ).  

3.3.2 Transition Diagram 

A finite automaton is best described by a graphical construct. This 
diagrammatic representation is capable of recognizing the regular 
expressions. It is a labeled directed graph in which each state is 
represented in terms of labeled circles and each edge connecting the 
circles is represented as labeled arcs. Concatenation of the labels of 
the arcs produces the token to be recognized. A finite automaton 
consists of a finite number of states. The first state from where the 
generation of the automaton begins is called the Start State. It is 
always marked with an arrow pointing towards it. The last state of 
the recognizer is termed as the final or accepting state. In between 
the intermediate states are generated. Each state is represented by a 
circle with the name of the state inside it. The final state is 
represented using double concentric circles. Two adjacent states are 
joined by labeled arrows. This implies that upon encountering an 
input symbol from one state, a transition happens to another state. 
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Transitions take place until the final state is reached. Now, if we 
join the symbols of the arcs from start state to the final state, we get 
the string accepted by the finite automaton. Figure 1.1 gives a 
transition diagram of a finite automaton. 

 

Fig 3.1: Finite automaton which accepts the keyword “for” 

The finite automaton begins with the start state q0. From q0, upon 
encountering input symbol ‘f’, it moves to state q1. A transition from 
q1 to q2 happens on input symbol ‘o’. Finally, on input r, the finite 
automaton transits from q2 to the final state q3. Now, if we join the 
symbols from q0 to q3, we can conclude that the finite automaton 
accepts the string “for”. It is worth mentioning here that a finite 
automaton may have more than one final state. It should also be 
noted that the machine may be either in an accepting or non-
accepting state. If it is in accepting state, it can be concluded that the 
string is accepted by the finite state machine. Otherwise, it is not 
accepted by the machine. The set of all strings accepted by a finite 
state machine is termed as Regular Language.  

The automaton is deterministic as single transition occurs from each 
state. The transition function maps from one state into another upon 
scanning of an input symbol. It works in the following manner. 

 δ (q0, f) = q1 

 δ (q1, o) = q2 

 δ (q2, r) = q3 

 

q3 is in accepting state as end of string is reached. 

3.3.3 Transition Table 

A finite automaton is implemented using a transition table. It is a 
data structure which resembles a transition diagram. Like other 
tables, a transition table is also divided into rows and columns with 
row representing the states and column representing the input 
symbol. A transition function is resembled by a transition table. For 
instance, suppose a transition function from state q0 on input ‘a’ 
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reaches another state q1. The entry for the row in the table is as 
shown in table 2. 

Table 3.2 : Transition table 
State Input symbol 

a 
q0 {q1} 

Transition table provides faster access to the transitions from a state 
on an input character. But, it consumes a lot of space when the size 
of the input string is large. 

Let us consider another example. The finite automaton starts at state 
q0. On input 0, it moves to state q1. On input 1, state q0 is reached. 
From q1, on input 0, the finite automaton loops itself and on input 1, 
moves to the next state q2. State q2 is the accepting state. The 
corresponding transition table would be as follows. 

Table 3.3 : Transition table 

State Input symbol 

a b 
q0 {q1} {q0} 

q1 {q1} {q2} 

*q2 - - 

In a transition table, the initial state is always denoted by an arrow 
preceding it. The final state is represented by a ‘*’ symbol preceding 
it. This way we can construct transition table for any finite 
automaton. 

  

CHECK YOUR PROGRESS – II 

7. Regular expressions represent the_______________. 

8. These regular expressions are translated into __________. 

9. A finite automaton can be ______ or __________.  

10. ______has more than one transition on the same input symbol.  
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11. ________________________ on an input symbol, only one 

transition is possible from a given state. 

12. A DFA is a faster recognizer than NFA. State True or False. 

13. Transition diagram is capable of recognizing the 

____________________. 

14. A finite automaton consists of a finite number of states. State 

True or False. 

15. The final state is represented using 

____________________________. 
16. A ___________________ is also divided into rows and 

columns. 

 

 

3.4 CONSTRUCTION OF FINITE AUTOMATON 

Let us construct some deterministic finite automatons by 
considering regular expressions as examples. 

3.4.1 Construction of DFA 

Example 1: Draw a DFA with alphabet ∑ = {a, b} which accepts 
the string “aabb”. 

 

 

 

Fig 3.2: DFA that accepts the string “aabb” 

The finite automaton begins with state q0. On reading input symbol 
a, it reaches state q1. From q1, on input a, the finite automaton 
reaches q2. On reading input b, q3 is reached. Finally, from q3, on 
reading input b, the accepting state q4 is reached. Therefore, the 
finite automaton accepts the string “aabb”. The transition function 
for the automaton can be defined as: 

  δ (q0, a) = q1 

  δ (q1, a) = q2 
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  δ (q2, b) = q3 

  δ (q3, b) = q4 

And the corresponding transition diagram would be  

Table 3.4 : Transition table accepting string “aabb” 
State Input symbol 

a b 
q0 {q1} - 

q1 {q2} - 

q2 - {q3} 

q3 - {q4} 

*q4 - - 

 

Example 2: Draw a DFA with alphabet ∑ = {a, b} which accepts all 
strings starting with ‘a’. 

 

 

 

 

 

Fig 3.3: DFA that accepts all strings starting with ‘a’ 

The finite automaton starts at state q0. On input ‘a’, it moves to state 
q1, which is an accepting or final state. This automaton accepts the 
string “a”. Now, for any number of a’s and b’s, the q1 loops itself 
resulting in acceptance of any string beginning with ‘a’ and any 
number of a’s and b’s. Therefore, the finite automaton accepts the 
string a(a | b)* with possible strings like a, aa,ab, aab, aba etc.  

The corresponding transition functions would be: 

  δ (q0, a) = q1 

  δ (q1, a) = q1 

  δ (q1, b) = q1 

And the transition table would be: 
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Table 3.5 : Transition table accepting string “a(a | b)*” 
State Input symbol 

a b 
q0 {q1} - 

*q1 {q1} {q1} 

 

As there is no move on input b from q0, you can draw a transition 
starting at q0 with input b. This attains a new state q2, which is a 
dead state. 

Example 3: Draw a DFA with alphabet ∑ = {0, 1} which accepts all 
strings ending with ‘0’. 

The automaton begins with state q0. If the string consists only of the 
string {0}, it reaches the final state q1. The string might also have 
many numbers of 1’s and then finally a ‘0’ (like 1110), state q0 self 
loops on 1’s and then to q1 on ‘0’. The finite automaton may 
encounter 0’s and 1’s in between before ending up with a ‘0’.   

 

 

 

 

 

Fig 3.4: DFA that accepts all strings ending with ‘0’ 

The corresponding transition functions would be: 

  δ (q0, 0) = q1 
δ (q0, 1) = q0 

δ (q1, 0) = q1 

  δ (q1, 1) = q0 

And the transition table would be: 
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Table 3.6 : Transition table accepting string which ends with ‘0’ 
State Input symbol 

0 1 
q0 {q1} {q0} 

*q1 {q1} {q0} 

 

Example 4: Draw a DFA for the language accepting strings ending 
with ‘00’ over input alphabets ∑={0, 1}. 

The string may contain only {00}. From the initial state, on two 
consecutive 0’s, the final state is reached. However, the string might 
begin with 1’s. Intermediate 1’s may also exist.  

 

 

 

 

 

Fig 3.5: DFA that accepts all strings ending with ‘00’ 

The initial state for the DFA is q0 and the final state is q2. Figure 1.5 
depicts the transition diagram for the given string.  

Accordingly, the transition functions would be: 

  δ (q0, 0) = q1 
δ (q0, 1) = q0 

δ (q1, 0) = q2 

  δ (q1, 1) = q0 

δ (q2, 0) = q2 

  δ (q2, 1) = q0 

And the transition table would be: 
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Table 3.7 : Transition table accepting string which ends with 
‘00’ 

State Input symbol 

0 1 
q0 {q1} {q0} 

q1 {q2} {q0} 

*q2 {q2} {q0} 

 

Example 5: Draw a DFA with alphabet ∑ = {a, b} which accepts all 
strings starting with ‘a’ and ending with ‘b’. 

The finite automaton starts with state q0 and on input ‘a’, it reaches 
state q1. The next input might be ‘b’. On this input, the finite 
automaton moves to the final or accepting state q2. This is 
applicable for the input string “ab”. But, situation might arise when 
numbers of a’s and b’s might appear in between ‘a’ and ‘b’. 
Therefore, the finite automaton might be of the following form. 

 
Fig 3.6: DFA that accepts strings starting with ‘a’ and ending 

with ‘b’ 

The transition function would be given by 

  δ (q0, a) = q1 

  δ (q1, a) = q1 

  δ (q1, b) = q2 

  δ (q2, a) = q1 

  δ (q2, b) = q2 

And the corresponding transition table would be  
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Table 3.8 : Transition table accepting strings starting with ‘a’ 
and ending with ‘b’ 

State Input symbol 

a b 
q0 {q1} - 

q1 {q1} {q2} 

*q2 {q1} {q2} 

 

Example 6: Draw a DFA with alphabet ∑ = {a, b} which accepts all 
strings having three consecutive a’s.  

 

 

 

 

Fig 3.7: DFA that accepts all strings having three consecutive a’s 

The DFA begins with state q0 which produces next state q1 on input 
a. From q1, the DFA eventually moves to states q2 and q3 on two 
consecutive a’s. Therefore, the DFA accepts 000. However, strings 
might be of the form baaa, bbaaa, baaab, bbaaabbb, baaabbaaa……. 
State q0 self loops on any number of b’s. Then after encountering 
three consecutive a’s, any number of b’s may take place. For that q3 
self loops. There is another possibility of encountering three or more 
numbers of 0’s again. Transition q3 to q1 fulfills that.  

The transition function would be given by 

  δ (q0, a) = q1 

  δ (q0, b) = q0 

  δ (q1, a) = q2 

  δ (q2, a) = q3 

  δ (q3, a) = q1 

  δ (q3, b) = q3 

 

And the corresponding transition table would be: 
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Table 3.9 : Transition table accepting strings with three 
consecutive a’s  

State Input symbol 

a b 
q0 {q1} {q0} 

q1 {q2} - 

q2 {q3} - 

*q3 {q1} {q3} 

 

Example 7: Draw a DFA which accepts all strings starting with ‘0’ 
over alphabet ∑ = {0, 1}.  

If the string contains only a {0}, it immediately reaches the final 
state on input 0. If any other character comes after 0, the final state 
will self loop. The finite automaton would encounter a dead end if 
any other symbol is read from q0.  

Figure 1.8 depicts the finite automaton for the string. 

 

 

 

 

Fig 3.8: DFA that accepts all strings starting with a 

Similarly, the transition function for the DFA would be as follows: 

  δ (q0, 0) = q1 
δ (q1, 0) = q1 

  δ (q1, 1) = q1 

And the corresponding transition diagram would be: 
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Table 3.10 : Transition table accepting strings starting with ‘0’  
 

State Input symbol 

a b 
q0 {q1} - 

*q1 {q1} {q1} 

 

3.4.2 Construction of NFA 

An NFA may attain more than one state on reading an input symbol. 
Let us again draw some non-deterministic finite automatons by 
considering regular expressions as examples. 

Example 1: Design an NFA with ∑ = {a, b} which accepts all 
strings ending with ab. 

The finite automaton begins with state q0. It attains the final state on 
reading the string {ab}. If {ab} is preceded by any number of a’s 
and b’s, q0 loops itself. The automaton reaches two states on input 
‘a’.  

 

 

 

 

Fig 3.9: NFA that accepts all strings ending with ab 

The corresponding transition functions would be given by: 

  δ (q0, a) = q0, q1 
  δ (q0, b) = q1 

  δ (q1, b) = q2 

And, finally the transition table would be: 
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Table 3.11 : Transition table accepting strings ending with ‘ab’  
State Input symbol 

a b 
q0 { q0, q1} {q0} 

q1 - {q2} 

*q2 - - 

 

Example 2: Design an NFA in which all the string containing a 
substring 1110 over the alphabet. 

 

 

 

 

Fig 3.9: NFA that accepts all strings containing substring 1110 

With the initial state q0, the NFA goes through three intermediate 
states by reading three consecutive 1’s. Finally, the NFA reaches the 
final state q4, on input 0. For any consecutive 0’s and 1’s coming 
prior to the substring 1110, a self-loop occurs at state q0. Similarly, 
sequences of 0’s and 1’s may appear following the string. Therefore, 
at state q4 a self-loop occurs.  

The corresponding transition functions would be given by: 

  δ (q0, 0) = {q0} 
  δ (q0, 1) = {q0, q1} 
  δ (q1, 1) = {q2} 
  δ (q2, 1) = {q3} 
   δ (q3, 0) = {q4} 
  δ (q4, 0) = {q4} 
  δ (q4, 1) = {q4} 

The transition table for the finite automaton would be: 
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Table 3.12 : Transition table accepting strings containing 
substring 1110  

State Input symbol 

0 1 
q0 {q0} {q0, q1} 

q1 - {q2} 

q2 - {q3} 

q3 {q4} - 

*q4 {q4} {q4} 

 

Example 3: Design an NFA with ∑ = {a, b} which accepts all 
strings of length 2. 

 

 

 

  

 

Fig 3.10: NFA that accepts all strings of length 2 

 

Starting with state q0, the NFA goes to state q1 on input symbol a or 
b. The automaton reaches the final state q2 from q1 on input a or b. 
The corresponding transition functions for the NFA would be: 

  δ (q0, a) = {q1} 
  δ (q0, b) = {q1} 
  δ (q1, a) = {q2} 
  δ (q1, b) = {q2} 
 

And the transition table would be: 
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Table 3.13 : Transition table accepting strings of length 2 
State Input symbol 

a b 
q0 {q1} {q1} 

q1 {q2} {q2} 

*q2 - - 

 

Example 4: Design an NFA with ∑ = {0, 1} which accepts all 
strings having second last element 1. 

The probable set of strings accepted by the language  

  L= {01, 11, 110, 010, 011, 0010, 
00110, 11010……….} 

Therefore, the finite automaton would be 

 

 

 

 

 

Fig 3.11: NFA that accepts all strings having second last element 
1 

The transition functions would be given by: 

  δ (q0, 0) = {q0} 
  δ (q0, 1) = {q0, q1} 
  δ (q1, 0) = {q2} 
  δ (q1, 1) = {q2} 
    

The transition table for the finite automaton would be: 
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Table 3.14 : Transition table accepting strings having second 
last element 1 

State Input symbol 

0 1 
q0 {q0} { q0, q1} 

q1 {q2} {q2} 

*q2 - - 

 

The finite automaton starts with the initial state q0 and reaches the 
final state q2.  

Example 5: Design an NFA with ∑ = {0, 1} which accepts all 
strings having either 01 or 10 as substring. 

The finite automaton begins with q0 as the initial state. It contains 
two final states; one for accepting 01 as substring and another for 10 
as substring. The finite automaton would be: 

 

 

 

 

 

 

 

Fig 3.12: NFA that accepts all strings having substring either 01 
or 10 

The corresponding transition functions would be: 

  δ (q0, 0) = {q0, q1} 

  δ (q0, 1) = {q0, q3} 
  δ (q1, 1) = {q2} 
  δ (q2, 0) = {q2} 
  δ (q2, 1) = {q2} 
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   δ (q3, 0) = {q4} 
  δ (q4, 0) = {q4} 
  δ (q4, 1) = {q4} 

Finally, the transition table for the finite automaton would be: 

 
Table 3.15 : Transition table accepting strings having either 01 

or 10 as substring 
State Input symbol 

0 1 
q0 { q0, q1} {q0, q3} 

q1 - {q2} 

q2 {q2} {q2} 

q3 {q4} - 

*q4 {q4} {q4} 

 

Example 6: Construct an NFA with ∑ = {0, 1} in which each string 
starts with “1” and ends with “0” to reach a final state. 

The NFA starts with state q0. The set of possible strings accepted by 
the language would be : 

  L= {10, 100, 110, 1110, 1100, 1010, 1111010, 
1001110, 1001100…..} 

The corresponding finite state automata would be: 

 

 

 

 

 

Fig 3.13: NFA that accepts strings starting with “1” and ending 
with “0” 
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The transition functions would be 

  δ (q0, 1) = {q1} 
  δ (q1, 0) = {q2} 
  δ (q1, 1) = {q1} 
  δ (q2, 0) = {q2} 
   δ (q2, 1) = {q1} 
 
And the transition table would be: 
 
 

Table 3.16 : Transition table accepting strings starting with “1” 
and ending with “0” 

 

 

 

 

 

 

Example 7: Construct an NFA with ∑ = {0, 1} for the language L = 
{0m1n | m ≥0 and n≥1}. 

 

 

 

 

 

Fig 3.14: NFA that accepts the language L = {0m1n | m ≥0 and 
n≥1 } 

The finite automaton has 0 or more occurrences of 0’s and at least 
one 1 (Since n>=1).  
The set of possible strings accepted by the language would be : 
  L= {1, 01, 011, 111, 001, 0111, 0011, 0001111…..} 

State Input symbol 

0 1 
q0 - { q1} 

q1 {q2} {q1} 

*q2 {q2} {q1} 



52 
 

Therefore, on any 0 input, state q0 self loops. With input 1, q0 moves 
to q1. Then, for all other 1’s, state q1 self loops. The transition 
functions for the finite automaton would be: 

  δ (q0, 0) = {q0} 
  δ (q0, 1) = {q1} 
  δ (q1, 1) = {q1} 
And the transition table would be: 
 

Table 3.17 : Transition table accepting language L = {0m1n | 
m ≥0 and n≥1 } 

 

 

 

 

 

Example 8: Construct an NFA with ∑ = {a, b} for the language L = 
{(ab)n | n≥1}. 

The NFA begins with state q0. The set of possible strings accepted 
by the language is: 

  L={ab, abab, ababab,……} 

The transition diagram for the language would be: 

 

 

 

 

Fig 3.15: NFA that accepts the language L = {{(ab)n | n≥1} 

The transition functions corresponding to this finite automaton 
would be: 

  δ (q0, a) = {q1} 
  δ (q1, b) = {q2} 
  δ (q2, a) = {q1} 

State Input symbol 

0 1 
q0 { q0} { q1} 

q1 - {q1} 
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And the transition table would be: 
 

Table 3.18 : Transition table accepting language L = {0m1n | 
m ≥0 and n≥1 } 

 

 

 

 

 

 

 

3.4.3 Construction of NFA with ϵ-transitions 

NFA can change its state without reading an input symbol. Such 
transition is depicted by labeling the appropriate arc with ϵ. ϵ does 
not belong to any input alphabet. Both NFA and ϵ-NFA recognize 
the same language. ϵ-transition does not extend the capability of the 
language. ϵ-closure of a state X consists of a set of states which are 
reachable from X with only null move including X. In other words, 
ϵ-closure for a state can be obtained by union operation of the states 
which can be reached from that state including the state itself. 

Example 1: Draw a Non-deterministic Finite Automata which 
accepts the string “ab”. 

The finite automaton starts at state q0. On input ‘a’, it moves to state 
q1. From q1, the finite automaton moves to state q2 with no input; i.e. 
on ϵ-transition. Then from q2, on input symbol ‘b’, the NFA moves 
to the final state q3. 

 

 
 

 

Fig 3.16: NFA with ϵ-transition that accepts the string ‘ab’ 
 

State Input symbol 

a b 
q0 {q1} - 

q1 - {q2} 

q2 {q1} - 
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Example 2: Draw a Non-deterministic Finite Automata which 
accepts the string “a | b”. 

The NFA begins with state q0. Then, on ϵ-move, it moves to two 
different states q1 and q3. From q1 and q3, the NFA moves to q2 and 
q4 respectively on reading input symbols ‘a’ and ‘b’. Then from q2 
and q4, on ϵ-transition, it moves to final state q5. 

 

 

 

 

 
 

Fig 3.17: NFA with ϵ-transition that accepts the string ‘a | b’ 
 
 

Example 3: Draw a Non-deterministic Finite Automata which 
accepts the string “a | b | c”. 

 

 

 

 

 
 

Fig 3.18: NFA with ϵ-transition that accepts the string ‘a | b | c’ 
 
The NFA begins with state q0. On input ‘a’, the automaton self 
loops. Then from q0, the automaton moves to state q1. Then on input 
‘b’, q1 self loops. Again, q1 moves to q2 on ϵ-transition. State q2 is 
the final state which self loops on input ‘c’. 

Example 4: Draw a Non-deterministic Finite Automata which 
accepts the string “aa* | bb*”. 
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Fig 3.19: NFA with ϵ-transition that accepts the string ‘aa* | bb*’ 
 

The NFA starts with state q0. With ϵ-transition, the NFA moves to 
states q1 and q3. From q1, on input symbol ‘a’, a transition to the 
final state q2 is made. Here, for any number of a’s, state q2 self-
loops. Similarly, from state q3, on input symbol ‘b’, a transition to 
the final state q4 takes place. Here also, for any number of b’s, state 
q4 self-loops. 

 

3.5 REGULAR EXPRESSION 

Regular expression (or regex) is a pattern or a sequence of 
characters and meta characters that describes a set of strings. These 
strings match this pattern. A regex accepts certain set of strings and 
rejects the rest. A regular expression may compose of simple 
characters or a combination of simple and special characters. 
Patterns are written by enclosing between slashes. Therefore, a 
regex is constructed by combining simpler sub-expressions. Such 
patterns are matched to find the exact sequence of characters in 
strings. By default, matching is case sensitive. For example, the 
pattern /student/ matches the character combinations in strings only 
when the exact sequence “student” occurs. Special characters have 
special meanings in a regular expression. Such characters may 
include: dot (.), bracket [ ], parenthesis ( ), or (|), backslash (\), 
occurrence indicators (+, *, ?, { }), position anchors (^, $) etc.  

The dot (.) operator matches any special character except new line. 
For instance, “….” matches four characters from a set of strings.  

Just to recall, a finite automaton (FA) is an abstract machine that can 
be used to represent certain computations. A FA consists of a 
number of states and edges connecting these states. With each input 
symbol, the finite automaton moves to another state. An edge with 
the input label marks this transition. If the finite automaton reaches 
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a final state after scanning all its inputs, it is said that the finite 
automaton accepts the string. Otherwise, it rejects the string. 

A regular expression is defined by regular languages. There are 
some operations performed on these languages. 

 Union of two sets includes all the elements of the sets. For 
example, the union of sets {ab, bc, ca} and {ca, cb, abc} is 
defined by the set {ab, bc, ca, cb, abc}.  

 The concatenation of two sets can be defined by using “.” 
operator between the sets. For example, the sets {ab, bc, ca} 
and {abc, €} is defined by as follows. 

{ab, bc, ca}.{abc, €} = {ab.abc, ab. €, bc.abc, bc. €, ca.abc, 
ca. €} 

 = {ababc, ab, bcabc, bc, caabc, ca} 

 The Kleene * operation is a unary operation and sometimes 
termed as closure. This operation generates zero or more 
concatenations of strings. Like, if L is language,  
L0 = {€} 
L1 = L 
L2 = L.L 
L3 = L. L2 
. 
. 
Ln = L.Ln-1 
L* = L0 + L1 + L2 + L3 +…… 
For instance, let the language be L = {0, 1}. Therefore, 
L0 = {€} 
L1 = {0, 1} 
L2 = {0, 1}.{0, 1} = {00, 01, 10, 11} 
L3 = L. L2 = {0, 1}.{00, 01, 10, 11} 
      = {000, 001, 010, 011, 100, 101, 110, 111} 
……. 
L* = {€, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 
110, 111} 

This is the set of all strings of zeros and ones.  

Regular languages and finite automaton are related to each other. 
For every regular language, there is a finite automata and vice versa.  
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Now, we shall try to convert regular expressions into their 
corresponding NFAs. There are certain rules to convert a regular 
expression into an NFA. 

1. For the regular expression €, the NFA would have a start 
state. With input €, the start state moves to the final state. 
The NFA would be 
 

 
 
 
 
 
 
 

2. For the regular expression having only symbol a, the NFA 
would have a start state. With input €, the start state moves 
to the final state. The NFA would be 

 
 
 
 
 
 
 
 

3. Let’s consider another regular expression a.b which is a 
concatenation of two regular expressions a and b. Two 
separate NFAs are constructed for the inputs a and b and 
connected through €tart transition. The start state of NFA for 
a will be the start state of the combined NFA. The final state 
of NFA for b will be the final state of the combined NFA. 
Therefore, the NFA would be 
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4. Similarly, for the regular expression a + b or a | b can be 
expressed in terms of two automata. They are combined 
through a common start state and a final state.  
 

 
 
 
 
 
 
 
 

5. For the regular expression a*, the corresponding NFA would 
be as follows. 

 

Now, we shall try to construct some NFAs using these rules. Let us 
consider some regular expressions. 

1. For the regular expression a(a + b)*ab, the NFA has an 
initial state 0. On input ‘a’, it moves to state 1. From 1, the 
NFA accepting (a+b)* is constructed according to rule 5. It 
reaches state 8. From 8, the NFA reaches the accepting state 
10 on inputs ‘a’ and then ‘b’. The final NFA would be as 
given in the following figure. 

 

 

 

 

 

Fig 3.20: NFA accepting string a(a + b)*ab 
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2. Similarly, let us consider another regular expression a + b + 
ab and try to draw the NFA for the same.  

 

 

 

 

 

 

 

Fig 3.21: NFA accepting string a + b + ab 

 

3.6 CONVERSION OF NFA TO DFA 

NFAs are multivalued; that is, more than one transition may occur 
on reading one input symbol. However, computer simulation of such 
an NFA is really very hard. In other way, it can be said that multiple 
paths may exist from start state to an accepting state which defies 
the definition of acceptance. In order to find exactly one, we have to 
consider all that are available and then generate one leading to 
accepting state.  

If an NFA is converted into its corresponding DFA, both will 
recognize the same language. Each entry of the transition table of an 
NFA contains a set of states; however, each entry of a DFA 
transition table is just a single state. An NFA to DFA conversion 
represents each DFA state corresponding to a set of NFA states. The 
DFA uses its state to keep track of all possible NFA states upon 
reading an input symbol. The algorithm that constructs a DFA from 
an NFA is termed as Subset construction. 

Prior to going into the conversion process, let’s understand some 
basic operations. Here, we consider s as an NFA state and T as a set 
of NFA states. 

ϵ-closure(s): This set represents the NFA states reachable from a 
given state s on ϵ-transitions. For the NFA in figure 1.18, the ϵ-
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closure(q0) represents the set of all states reachable from q0. 
Therefore,  ϵ-closure(q0)= { q0, q1, q2}. 

Similarly, let’s derive the ϵ-closure set for figure 1.17. 

       ϵ-closure(q0)= { q1, q3 } 
       ϵ-closure(q2)= { q5 } 
       ϵ-closure(q4)= { q5 } 

ϵ-closure(T): The set of NFA states reachable from some state s in 
T on ϵ-transition alone. 

Move(T, a): The set of NFA states to which there is a transition 
from some state s in T on an input symbol ‘a’.  

We consider an NFA N to convert into corresponding DFA D. For 
that purpose, a transition table Dtran is constructed for D. Each 
DFA set corresponds to a set of NFA states. Let’s construct the DFA 
for the NFA in figure 1.19. Here, the set of alphabet is {a, b}. A 
state in DFA is an accepting state if it is a set of NFA states 
containing at least one accepting state of the NFA. 

 

 

 

 

 

Fig 3.22: NFA accepting string ‘a | b’ 

Step 1: At first, the set ϵ-closure(q0) is computed; q0 being the start 
state of the NFA. This set represents the start state of the DFA. We 
mark this set as A. 

  ϵ-closure(q0)= { q0, q1, q3 } = A 

Step 2: We now compute ϵ-closure(move(A,a)) set and move to 
state B. Then, we compute ϵ-closure(move(A,b)) and name it state 
C. 

The set, move(A,a) contains the states having transitions from the 
states of A on input ‘a’. In this case, only q1 has transition on ‘a’. 
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Then, move(A,b) is computed; which contains the set of states 
having transitions from the states of A on input ‘b’. In this case, 
only q3 has transition on ‘b’. 

  ϵ-closure(move(A, a)) = ϵ-closure({q2})= { q2, q5 } 
 Thus, Dtran[A, a]= B 
  ϵ-closure(move(A, b)) = ϵ-closure({q4})= { q4, q5 } 
 Therefore, Dtran[A, b]= C 
 
Step 3: This process continues with the new unmarked sets of B and 
C. Finally, we reach a point where all the states of the set are 
marked. 

Therefore, we shall continue by trying to deduce ϵ-closure(move(B, 
a)) and ϵ-closure(move(B, b)). We can see that both sets do not 
have any transition from { q2, q5 } either input ‘a’ or ‘b’. 

Similarly, we have to find the ϵ-closure(move(C, a)) and ϵ-
closure(move(C, b)). We can see that both sets do not have any 
transition from { q4, q5 } either input ‘a’ or ‘b’. 

We have found three different states for the corresponding DFA. 

Thus, the transition table for the DFA would be: 

 Table 3.20: Transition table Dtran for DFA 
 

  

 

 

 

And the corresponding DFA would be: 

 

 

 

 

  Fig 3.23: DFA accepting string ‘a | b’ 

State Input symbol 

a b 
A B C 

B - - 

C - - 
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The DFA has two accepting states; one from the initial state A to the 
final state B on input ‘a’ and the other from A to the final state C on 
input ‘b’. 

 

3.7 MINIMIZATION OF DFA 

A regular expression is always recognized by a minimum-state 
DFA. This section will try to discuss on how to construct a 
minimum-state DFA by reducing the number of states in a given 
DFA. Reduction to minimum-state DFA should occur in such a way 
that it does not affect the language being recognized. We have a 
DFA M, a set of states S and a set of input symbols ∑. It starts in 
state s and accepts string w. Our algorithm follows the strategy for 
minimizing the DFA states by finding all groups of states 
distinguished by some input string. The group of states which 
cannot be distinguished is merged into a single state. Each set of 
states is partitioned with each partition consisting of a set of states 
that have not been distinguished from one another and any pair of 
states chosen from different groups has been found distinguishable 
by some input.  

Initially, there are two groups in a partition: the accepting states and 
non-accepting states. A group of states, say A={s1, s2, …., sk} is 
considered. On some input symbol a, we shall look at what 
transitions states s1, s2, …., sk will make. If these transitions fall in 
two or more different groups of the current partition, then A has to 
be split up. Suppose, on input a, states s1 and s2 move to states t1 and 
t2 of two different groups of the partition. Then A is splitted up into 
two subsets; one with s1 and other with s2. 

This process of splitting groups is repeated until no more groups 
need to be split. Below we present the algorithm for minimizing the 
number of states of a DFA. 

Algorithm: Minimizing the number of states of a DFA. 

Input: A DFA M with a set of states S, set of input alphabets ∑. A 
set of transitions for all states, input symbol, a start set s0 and a set of 
accepting states F.  

Output: A DFA M/ with minimum number of states accepting the 
same language as M. 
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Method:  

1. An initial partition ∏ of the set of states is constructed 
having two groups: the accepting states F and the non-
accepting states S-F. 

2. for each group G of ∏ do begin 
Partition G into subgroups such that two states s and t 

of G are 
        in the same subgroup if and only if for all input 
symbols a, 
        states s and t have transitions on a to states in the 
same group ∏ 
      replace G in ∏new by the set of all subgroups formed 
end 

3. If ∏new = ∏, let ∏final = ∏ and then continue with the 
next step. Else, repeat step 2. with ∏: = ∏new 

4. Choose one state in each group of the partition ∏final as 
the representative for that group. The representatives will 
be the states of the reduced DFA M/

. Let S be a 
representative state and suppose on input a, there is a 
transition of M from s to t. Let r be the representative of 
t’s group (r may be t). Then M/

 has a transition from s to 
r on a. Let the start state of M/ be the representative of 
the group containing the start state s0 of M and let the 
accepting states of M/ be the representatives that are in F. 
Each group of ∏final either consists of only states in F or 
has no states in F. 

5. If M/ has a dead state, that is a state d that is not 
accepting and that has transitions to itself on all input 
symbols, then remove d from M/. Also remove any states 
not reachable from the start state. Any transitions to d 
from other states become undefined. 

 

 

 

 

 

 

CHECK YOUR PROGRESS – III 

11. NFA cannot change its state without reading an input 

symbol. State True or False. 

12. A regular expression is always recognized by a 

__________________________. 

13. Both NFA and ϵ-NFA recognize the same language. State 

True or False. 
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3.8 SUMMING UP 

 A finite state automaton (FSA) or a finite state machine 
(FSM) is an abstract machine which follows a pre-
determined sequence of states to recognize a token. 

 A finite state automaton is a recognizer program that 
recognizes a certain string of tokens. It accepts a string x as 
input and answers “yes” if x is a sentence of the language 
and “no” otherwise. Regular expressions represent the 
lexemes. These regular expressions are translated into finite 
state automaton (FSA) or finite state machine (FSM). 

 The lexical analysis phase is responsible for generating 
tokens from of a string of characters. A pattern represents 
rules to identify a token. These patterns are specified using 
the regular expressions. 

 The term alphabet denotes a finite set of symbols which may 
be either numbers or characters. A string over an alphabet is 
a finite sequence of symbols generated from the alphabet. 

 A set of strings formed over an alphabet is termed as 
language. A language may also contain an empty string or 
the set {€}. 

 A regular expression is defined by regular languages. 
 A regular expression is simply a sequence of letters that 

match with the same sequence of input letters. There are 
some lexical rules to form the regular expressions over any 
alphabet ∑. 

 Regular expressions may be given names. It is represented 
more in a rule-like structure which inclines towards a 
grammatical approach. It is the other means of describing 
tokens. 

 Finite state automaton is of two types- Non-deterministic 
Finite Automaton (NFA) and Deterministic Finite 
Automaton (DFA). 

 In Deterministic Finite Automata (DFA), on an input 
symbol, only one transition is possible from a given state. 
On the other hand, a Non-deterministic Finite Automaton 
(NFA) has more than one transition on the same input 
symbol. Another important feature of this automaton is here 
€-transition is possible. That is, an NFA can change its state 
without reading an input symbol. 
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 A finite automaton is best described by a graphical construct. 
This diagrammatic representation is capable of recognizing 
the regular expressions. 

 A finite automaton consists of a finite number of states. It 
begins with the Start State. The last state of the recognizer is 
termed as the final or accepting state. In between the 
intermediate states are generated. 

 A finite automaton is implemented using a transition table. It 
is a data structure which resembles a transition diagram. 

 NFAs are multivalued; that is, more than one transition may 
occur on reading one input symbol. An NFA to DFA 
conversion represents each DFA state corresponding to a set 
of NFA states. If an NFA is converted into its corresponding 
DFA, both will recognize the same language. 

 A regular expression is always recognized by a minimum-
state DFA. 

 

3.9 ANSWERS TO CHECK YOUR PROGRESS 

1. lexical 
2. Tokens 
3. String 
4. Language 
5. € 
6. regular set 
7. lexemes 
8. finite state automaton 
9. deterministic, non-deterministic 
10. Non-deterministic Finite Automaton 
11. Deterministic Finite Automata 
12. True 
13. regular expressions 
14. True 
15. double concentric circles 
16. transition table 
17. False 
18. minimum-state DFA 
19. True 
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3.10 POSSIBLE QUESTIONS 

A. Short answer type questions. 

1. What is a Finite State Machine? Explain in brief. 
2. What is finite automaton? Explain in brief. 
3. What do you mean by string of alphabets? 
4. What do you understand by string of language? Describe. 
5. What is regular expression? Explain in brief. 
6. Explain the functionalities of NFA. 
7. Explain the functionalities of DFA. 
8. Give a detailed discussion of transition diagram. 
9. Explain transition table in detail. 
10. What is NFA with ϵ-transition? 

 

B. Long answer type questions. 

1. Describe how tokens are specified. 
2. Describe some of the operations performed on languages. 
3. Give a detailed discussion of regular expression and regular 

definition. 
4. What are the different types of finite automatons available? 

Explain each of them. 
5. What are transition table and transition diagram? How are 

they related with each other? 
6. Explain the process of constructing a DFA with an example. 
7. Explain the process of constructing an NFA with an 

example. 
8. Explain the rules for constructing NFAs with proper 

diagrams. 
9. How do you convert an NFA into its corresponding DFA? 

Explain. 
10. What do you understand by minimization of DFA? 
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UNIT: 4 
LEX 

 
Unit Structure: 

4.0 Introduction 

4.1 Unit Objectives 

4.2 Lexical-Analyzer Generator 

 4.2.1 Lexical Errors 

4.3 Lex-The Lexical Analyzer Generator 

 4.3.1 How Lex Works 

 4.3.2 Structure of Lex Program 

4.4 Summing Up 

4.5 Answers to Check Your Progress 

4.6 Possible Questions 

4.7 References and Suggested Readings 

 

4.0 INTRODUCTION 

Lexical analysis is the first phase of a compiler. It takes the source 
program as input and breaks it into a stream of tokens. These tokens 
are later passed into the syntax analysis phase in order check 
whether it conforms to grammar or syntax of the language. 
Subsequent phases of compiler also generate intermediate forms of 
these inputs. Therefore, generation of accurate tokens play the most 
crucial role for successful compilation to proceed. In the previous 
units, we have got some basic ideas regarding different phases of a 
compiler and their functionalities. In this unit, we shall study how 
lexical analyzer functions in order to accurately generate tokens 
from a source program. We shall also study about lexical-analyzer 
generator simply known as lex or flex. 

 

4.1 UNIT OBJECTIVES 

After going through this unit, you will be able to 
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 Understand the functional characteristics of a lexical 
analyzer. 

 Know the different types of lexical errors. 
 Describe how the Lex-tool functions. 
 Know the structure of a Lex program 
 Conceptualize the ideas of writing a Lex program 

 

4.2 LEXICAL-ANALYZER GENERATOR 

As already discussed, a lexical analyzer is a program which reads 
stream of input characters from a source program and groups them 
into lexemes and produce a sequence tokens for each lexeme. These 
tokens are sent to the syntax analysis phase. A symbol table contains 
records of each identifier occurring in a program. When the lexical 
analyzer detects a lexeme representing an identifier, that lexeme is 
entered into the symbol table. The interaction between the lexical 
analyzer and the parser can be represented in terms of the following 
figure 4.1. 

 

 

 

 

 

Fig 4.1: Interaction between the lexical analyzer and parser 
Source: Compilers- Principles, Techniques & Tools by Aho, 

Lam, Sethi, Ullman 
 

While generating the tokens, the lexical analyzer does striping off 
comments and white spaces such as blank spaces, tabs, new lines 
etc. The lexical analyzer generates error messages when there is a 
violation of lexical rules in the source program. Some compilers 
may insert error messages at the positions where the error has 
occurred. While doing this, it makes an exact copy of the source 
program. Alternatively, the lexical analyzer may keep track of the 
new lines of the program so that they can be associated with the 
error messages. Expansion of macros is also a function of the lexical 
analyzer if it exists in the program.  
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During generation of tokens, the input program is scanned and 
checked whether the string being scanned conforms to some 
patterns. If the sequence of characters matches with the patterns, 
that sequence is considered as token. Therefore, patters can be 
thought of some lexical rules which are matched against the string. 
Like for each keyword, the pattern is the keyword itself. Now, if a 
sequence of characters matches with a pattern, then it is termed as 
lexeme. Lexemes can be termed as the instance of tokens. Finally, 
token consists of a token name and an optional attribute value. It can 
be regarded as the abstract symbol representing the lexicon. For 
example, any numeric constant 4.12, 5 or 3.23e2 can be represented 
by the token number. Similarly, any valid variable name can be 
recognized by id. For keywords, the tokens are specified by the 
corresponding keyword itself. For instance, the keyword “if” is 
identified by lexeme if and the corresponding token becomes if. 
Therefore, for each keyword, a corresponding token exists with 
pattern being the same with the keyword. Similarly, for operators 
like ‘+’, ‘-’, ‘/’, ‘*’ and ‘%’, the token can be termed as op. And for 
the relational operators like ‘<’, ‘>’, ‘<=’, ‘>=’ or ‘!=’, the 
corresponding token can be relop. A valid variable declaration with 
letters followed by letters and digits may be considered as token id. 
Therefore, for all identifiers, there is one corresponding token. On 
the other hand, there is one token corresponding tom each 
punctuation mark such as comma, semicolon or left/right 
parenthesis.  

The above descriptions can be defined in terms of some regular 
definitions. These definitions are important to specify/recognize the 
tokens. They define the patterns for tokens which the lexical 
analyzer would eventually find out during scanning of inputs.  

 

 

 

 

 

Fig 4.2: Regular definitions for specifying tokens 
Source: Compilers- Principles, Techniques & Tools by Aho, 

Lam, Sethi, Ullman 
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In addition, the white space may be recognized as the following 
definition: 

  ws → (blank | tab | newline)+ 

The lexical analyzer strips out the white spaces occurring in the 
source program to find out the valid tokens 

Sometimes, it becomes necessary to provide additional information 
to the subsequent compiler phases about which lexeme being 
matched; i.e. the value of the lexeme. This happens because more 
than one lexeme matches a particular pattern. For instance, the token 
number may match more than one number in the source code. This 
information is required for further processing as the code generator 
require this information about the lexeme being found. Therefore, 
the lexical analyzer sends this additional information about the 
attribute value along with the token being encountered to the parser 
of the compiler.  

 

4.2.1 Lexical Errors 

Errors can be detected during lexical analysis. The lexical analyzer 
must be able to report errors which occur when it is unable to find 
any valid token. Misspelling of tokens is a major issue which occurs 
frequently in a program and must be reported when detected. For 
instance, when characters of a keyword swap, the lexical analyzer 
must be able to detect it and report. Consider an example of the 
keyword if. When characters interchange, it becomes fi. The 
generator cannot detect it as an error; rather, it detects it as a valid 
variable declaration. Apart from this, in some programming 
languages, such declaration may be treated as a valid function name. 
Such kinds of problems occur during lexical analysis; but it is 
unaware of the fact, it treats the declaration as an identifier. 
Therefore, the subsequent phases may require detecting and 
reporting such errors. 

Another error recovery strategy may be termed as the ‘panic mode’ 
recovery technique. This situation happens when the lexical 
analyzer cannot proceed because the prefix of the input does not 
match any of the patterns for tokens. The recovery strategy employs 
the technique of deleting the successive characters from the 
remaining input characters until a good token is found from the 
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input being considered. The input may be repaired using some other 
actions. Some of these may include: 

 Delete one character from remaining input 
 Insert a missing character into the remaining input 
 Replace one character by another 
 Transposition of two adjacent characters 

The purpose of such mechanism is to recognize the prefix of any 
input as valid lexeme which can later be transformed into well-
formed token.  

 

 

 

 

 

 

 

 

 

 

4.3 Lex-THE LEXICAL ANALYZER GENERATOR 

Lex is a tool that allows specifying a lexical analyzer. It does so by 
describing regular expressions that represent patterns for tokens. 
The tool itself is known as the Lex Compiler. The Lex compiler 
transforms the input patterns into transition diagrams. The generated 
code simulating the transition diagram is known as the lex.yy.c. The 
input file to the Lex tool is referred to as Lex language. We already 
have discussed the translation of regular expressions into 
corresponding transition diagram. 

4.3.1 How Lex Works 

It is already mentioned previously that the input file to Lex is 
written in Lex language and is termed as lex.l. This file is fed into 

CHECK YOUR PROGRESS – I 

1. _________ phase breaks the source program into a stream 

of tokens.  

2. The lexical analyzer reads stream of input characters from 

a source program and groups them into __________.  

3. When the lexical analyzer detects a lexeme representing an 

identifier, that lexeme is entered into the __________.  

4. The lexical analyzer generates __________when there is a 

violation of lexical rules in the source program.  

5. Expansion of ______ is a function of the lexical analyzer. 
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the Lex compiler which later transforms it into a C-file lex.yy.c. In 
the next phase, this C-program forms the input to a C-compiler that 
produces the output file a.out. This output file functions as the 
lexical analyzer which accepts input streams and produces its 
corresponding stream of tokens. This whole functionality of a Lex 
can be depicted using the following figure 

 

 

 

 

 

 

Fig 4.3: Work flow of a Lex 
Source: Compilers- Principles, Techniques & Tools by Aho, 

Lam, Sethi, Ullman 
 

The compiled C-program a.out functions as a subroutine of the 
parser. This C-function returns an integer representing code for 
token names. And the attribute value is stored in the variable yylval. 
The attribute value may correspond to a numeric code, a pointer to 
the symbol table or it may contain no values. Variable yylval is 
shared between the lexical analyzer and the parser.  

4.3.2 Structure of Lex Program 

A typical Lex program is divided into sections. It consists of the 
following form: 

   declarations 
   %% 
   translation rules 
   %% 
   auxiliary functions 
 

Declarations of variables, constants or regular definitions are 
included in the declarations section. Constants resemble the values 
of variables or tokens.  
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Translation rules include patterns and their corresponding actions. 
Patterns represent regular expressions and may use the regular 
definitions used in the declaration section. Actions are the codes 
written using C. It consists of the following form: 

   Pattern  {Action}  

Auxiliary function includes the additional functions used in the 
actions part of the second section. They are compiled separately and 
loaded into the lexical analyzer. 

Lex behaves in the following manner. When parser calls the lexical 
analyzer for a token, the lexical analyzer starts reading the input, 
one character at a time. When the longest prefix matches with a 
particular pattern, the corresponding action is performed. Now, this 
action returns the name of the token to the parser. But if it does not 
due to the presence of white spaces, then the lexical analyzer would 
search for additional lexemes until an action returns the name of a 
token to the parser. The returned value is stored in the variable yyval 
which is shared between the lexical analyzer and the parser. Now, 
consider the following program to understand the different code 
segments of a lexical analyzer. 

   %{ 
    /* Declarations that manifest constants 
    LT, GT, LE, GE, EQ, NQ, IF, ELSE, 
NUM, ID, RELOP */ 
   }% 
    /* regular definitions */ 

delim   [ \t\n] 

ws   {delim}+ 

letter   [A-Za-z] 

digit   [0-9] 

id  
 {letter}({letter}|{digit})* 

number 
 {digit}+(\.{digit}+)?(E[+-]?{digit}+)? 

   %% 
{ws}   {/* no action and no 

return */} 
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if   {return(IF);} 

else   {return(ELSE);} 

{id}   {yylval = (int) 
installID(); return(ID);} 

{number}  {yylval = (int) 
installNum(); return(NUM);} 

"<"   {yylval = LT; 
return(RELOP);} 

"<="   {yylval = LE; 
return(RELOP);} 

"="   {yylval = EQ; 
return(RELOP);} 

"<>"   {yylval = NQ; 
return(RELOP);} 

">"   {yylval = GT; 
return(RELOP);} 

">="   {yylval = GE; 
return(RELOP);} 

%% 
   int installID()  

{ 
/* function to install a lexeme into the 

symbol table and return a pointer 
thereto. The first character of the 
lexeme is pointed to by yytext, and its 
length is returned to yyleng */ 
} 

   int installNum()  
{ 
/* It is similar to installID, but it puts 
numerical constants into a separate 
table */ 
} 
 

Fig 3.4: Lex program describing a simple form of branching 
statements and conditional expressions 

Source: Compilers- Principles, Techniques & Tools by Aho, 
Lam, Sethi, Ullman 

 



76 
 

The declaration section includes a pair of brackets %{ and }%. The 
definitions that manifest constants are used here. Each constant is 
associated with a unique integer through a C #define statement. 
These declarations are directly copied to lex.yy.c. These are not 
treated as regular definitions. 

Regular definitions are later used in the translation section to define 
the patterns and are surrounded by curly brackets. The translation 
rules for keywords return the keyword itself. White spaces require 
no actions to perform.  

The auxiliary function section includes two functions: installID() 
and installNum(). Like declaration, anything within auxiliary 
function section is directly copied to lex.yy.c. The action taken 
when a pattern for id is matched is as follows: 

1. First, function installID() places the lexeme into the symbol 
table. 

2. This function also returns a pointer to the symbol table and 
places it in the variable yylval which can later be used by the 
parser. Additionally, two variables are generated by the 
function: yytext is function which is a pointer to the 
beginning of the lexeme and yyleng which contains the 
length of the lexeme. 

3. The token name ID is returned to the parser. 

Similarly, the action for number is performed by the auxiliary 
function installNum(). 

In a Lex program, during matching procedure, it is always 
preferable to consider a longer prefix to a smaller one. And if the 
longest prefix matches more than one pattern, it is desirable to 
consider the first pattern listed in the Lex program.  

 

 

 

 

 

 

CHECK YOUR PROGRESS – II 

6. _______ is a tool that allows specifying a lexical analyzer.  

7. The Lex compiler transforms the input patterns 

into_________.  

8. The input file to the Lex tool is referred to as___________. 

9. Lex compiler transforms a lex file into a C-file termed 

as____. 
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10. The attribute value of a token is stored in the variable 
____________. 

11. Translation rules in Lex program include ______________ 
and their corresponding ______________. 

12. The variable yyval which is shared between 
___________________and___________. 

13. The declaration section includes a pair of brackets 
____________. 

14. The function ___________ places the lexeme into the symbol 
table. 

15. The function _________ contains the length of the lexeme. 
 

Now, let us see some examples of simple Lex programs and try to 
conceptualize how they function. 

1. Program to convert keywords into uppercase. 

 

 

 

 

 

Fig 3.5: Lex program to convert keywords into uppercase. 
 

2. Program to count the number of vowels and consonants in a 
given string. 

 
 
 
 
 
 
 

 
 

Fig 3.6: Lex program to count the number of vowels and 
consonants in a given string. 
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3. Program to count the number of characters, words, spaces, 
end of lines in a given input file. 

 

 

 

 

 

 

 

Fig 3.7: Lex program to count the number of characters, words, spaces, end 
of lines in a given input file 

 
4. Program to count no of:  

a) +ve and –ve integers  
b) +ve and –ve fractions 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig 3.8: Lex program to count the number of +ve and –ve integers/+ve and –
ve fractions 

 
5. Program to count the number of comment line in a given C 

program. Also eliminate them and copy that program into 
separate file. 
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Fig 3.9: Lex program to count the number of comment line in a given C 
program 

 
6. Program to recognize whether a given sentence is simple or 

compound. 
 
 
 

 

 

 

 

Fig 3.9: Lex program to recognize whether a given sentence is simple or 
compound 

 
7. Program to recognize and count the number of identifiers in 

a given input file. 
 
 
 
 
 
 
 
 
 

 
Fig 3.10: Lex program to recognize and count the number of 

identifiers in a given input file 
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It is already discussed in figure 3.4 that a Lex file always has the 
extension .l. Therefore, each file is saved as file_name.l. The 
corresponding C-source code is generated through the command lex. 
Therefore, the file lex.yy.c is produced which in turn is compiled 
using the Lex compiler. This function creates an executable file 
a.out which can directly run the program. These whole tasks can be 
grouped into the following commands. 

   lex <pgm_name.l>  

cc lex.yy.c –ll  

./a.out 

The Lex library is invoked using –ll option in command cc lex.yy.c. 
The above commands do tokenization of a source code. 

 

4.4 SUMMING UP 

 Lexical analyzer is a program which reads stream of input 
characters from a source program and groups them into 
lexemes and produce a sequence tokens for each lexeme. 

 During generation of tokens, the input program is scanned 
and checked whether the string being scanned conforms to 
some patterns. If the sequence of characters matches with the 
patterns, that sequence is considered as tokens. Therefore, 
patters can be thought of some lexical rules which are 
matched against the string. 

 While generating the tokens, the lexical analyzer does 
striping off comments and white spaces such as blank 
spaces, tabs, new lines etc. The lexical analyzer generates 
error messages when there is a violation of lexical rules in 
the source program. 

 Lex is a tool that allows specifying a lexical analyzer. The 
tool is known as the Lex Compiler. The Lex compiler 
transforms the input patterns into transition diagrams. The 
generated code simulating the transition diagram is known as 
the lex.yy.c. The input file to the Lex tool is referred to as 
Lex language. 

 A Lex-program is divided into three sections- declarations, 
translation rules and auxiliary functions. 
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 Declarations of variables, constants or regular definitions are 
included in the declarations section. Translation rules 
include patterns and their corresponding actions. Patterns 
represent regular expressions and may use the regular 
definitions used in the declaration section. Auxiliary 
function includes the additional functions used in the actions 
part of the second section.  

 Each Lex file is saved as file_name.l. The corresponding C-
source code is generated through the command lex. 
Therefore, the file lex.yy.c is produced which in turn is 
compiled using the Lex compiler. This function creates an 
executable file a.out which can directly run the program. 
 
 

4.5 ANSWERS TO CHECK YOUR PROGRESS 

1. Lexical analysis 
2. Lexemes 
3. symbol table 
4. error messages 
5. macros 
6. Lex 
7. transition diagrams 
8. Lex language 
9. lex.yy.c 
10. yylval 
11. patterns, actions 
12. lexical analyzer, parser 
13. %{ and }% 
14. installID() 
15. yyleng 

 

4.6 POSSIBLE QUESTIONS 

A. Short answer type questions. 

1. Why does generation of tokens play important role during 
compilation? 

2. What is lexical-analyzer generator? Discuss in brief. 
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3. How does the lexical-analyzer generator derive tokens from 
a stream of characters? 

4. How do the lexical analyzer and the parser interact with each 
other? Describe in brief. 

5. What is Lex? Discuss in brief. 
 

B. Long answer type questions. 

1. Give a detailed discussion on lexical-analyzer generator. 
2. Explain the process of generation of tokens from a stream of 

characters. 
3. What are lexical errors? How is recovery from errors done 

during lexical analysis? Explain. 
4. What is Lex? How does it work? Describe. 
5. Describe the structure of a Lex program. 

 
 

4.7 REFERENCES AND SUGGESTED READINGS 

 Bergmann, S. D. (2017). Compiler design: theory, tools, and 
examples. 

 Thain, D. (2016). Introduction to compilers and language 
design. Lulu. com. 

 Holub, A. I. (1990). Compiler design in C (pp. I-XVIII). 
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UNIT: 5 
 CONTEXT FREE GRAMMARS 

 

Unit Structure: 

5.1 Introduction 

5.2 Unit Objectives 

5.3 Context Free Grammars 

5.4 LL Grammar 

5.5 LR Grammar 

5.6 Summing Up  

5.7 Answers to Check Your Progress 

5.8 Possible Questions 

5.9 References and Suggested Readings 

 

5.1 INTRODUCTION 

In the previous unit, we have studied some basic understandings of 
lexical analysis phase. We also have got ideas related to how lex 
programs are developed using C programming language. The lexical 
analysis phase of a compiler is responsible for breaking the program 
into constituent pieces of stream of characters and generates tokens 
for the same. These tokens are passed to the parsing phase in order 
to construct the grammatical structure of the language. These 
grammatical structures describe the syntax of the language. For 
specifying the syntax, a widely accepted notation termed as 
Context-Free Grammar (CFG) or Backus Naur Form (BNF) is used. 
Besides specifying the syntax of the language, CFGs also guide in a 
grammar oriented compiling technique called Syntax Directed 
Translation. During this phase, a hierarchical structure called syntax 
tree is constructed. In this usit, we will study how CFGs are formed. 
We shall also study how they take part in forming parse trees of 
different classes of grammars. 
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5.2 UNIT OBJECTIVES 

After going through this unit, you will be able to: 

 Learn the basic concepts of Context-Free Grammar. 

 

5.3 CONTEXT FREE GRAMMARS 

To specify the rules or syntax of a language, grammars are used. We 
use language to communicate. While communicating we use some 
naturally occurring languages. And when we talk to each other via 
the language, knowingly or unknowingly we follow some language 
rules. Communication follows from these rules which human beings 
develop from childhood. Therefore, in other words, we gather 
knowledge of a language and accordingly we apply this knowledge 
to communicate. In other words, syntax can be regarded as the 
grammar of a language. Similar is the case with computer 
languages. There are some language specific rules which are 
incorporated into the language itself. And when the programmer 
writes codes, he/she has to write according to these rules or syntax. 
If a statement does not conform to the syntax of the language, the 
compiler shows a syntax error message. Therefore, syntax plays a 
crucial role in a programming language. 

Grammar describes the structure of a language i.e., syntax of a 
language is specified by the grammar. The grammar or syntax of a 
programming language is described in terms of production rules.  

A context Free Grammar G is a 4-tuple (V, T, P, S) which consists 
of the followings: 

 V is a set of non-terminals or variables. A non-terminal 
always forms the left side of the production rule and the right 
side of the same may consist of a combination of terminals 
and non-terminals. 

 T is a set of terminals, which are referred to as tokens. 
 P is the set of production rules of the language. A production 

mainly consists of two parts. They are separated by an arrow 
“→” mark. Like for example, a production may be of the 
form A → aBC, where A is the left side or head of the 
production and aBC is the right side or body of the 
production. The left side always consists of non-terminals 
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and right side may have only terminals, only non-terminals 
or the combination of both. It needs special mention here 
that the body of a production may contain an empty string or 
ϵ. 

 S is the start symbol of the grammar from where derivation 
of strings takes place. 

There are some other notational conventions also exist through 
which these terminals and non-terminals can be distinguished. 

Terminals: 

 Lowercase letters of the alphabet like a, b, c etc. 
 Operators such as +, * etc. 
 Digits such as 0, 1, 2, …….., 9. 
 Punctuation markers such as parenthesis, comma and so on. 
 Keywords such as if, while, for etc. 

Non-terminals: 

 Uppercase letters of the alphabet such as A, B, C etc. 
 Lowercase but italicized names such as expr or stmt. 
 Letter S, which is treated as the start symbol of the grammar. 
 While defining grammar of a language in terms of 

production rules, uppercase letters such as E, T etc may 
appear. These are also treated as non-terminals. 

 Generally, the head of the first production of a grammar is 
always the start symbol. 

Again, a set of productions may have same non-terminal on the left. 
For example, consider the productions  

 E → E + T 

 E → E * T  

Here, the heads of these two productions consist of same non-
terminal E. Therefore, the two productions can be grouped together 
by incorporating a vertical bar in between the bodies of the 
productions. Thus, the two productions can be rewritten as  

            E → E + T | E * T 
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Context free grammars are capable of describing most of the syntax 
of the programming languages, which makes it suitable for used in 
parsing. There are two major types of parsing techniques available- 
top-down and bottom-up. Top-down parsing begins at the start 
symbol or root and it proceeds until the leaf nodes contain terminal 
symbols. Conversely, bottom–up parsing starts at the leaf nodes and 
it proceeds till we get the start symbol. We shall study these two 
techniques in later chapters. Parser which is used in top down 
parsing is called LL parser and parser which is used in bottom up 
parsing is called LR parser. 

 

5.4 LL PARSER 

In the previous section, we got to know that during parsing, 
scanning of input symbols takes place from left to right. Once a 
symbol is read, corresponding production rule is applied so that 
parsing happens efficiently. The LL(1) class is a predictive parsing 
grammar. The first “L” stands for scanning the input from left to 
right and the second “L” is for doing the leftmost derivation. During 
each parsing step, the look ahead symbol is one input symbol and it 

CHECK YOUR PROGRESS – I 

1. The lexical analysis phase of a compiler is responsible 
for producing __________. 

2. For specifying the syntax of a language, the notation 
used is termed as _________. 

3. The grammar oriented compiling technique is called 
_________. 

4. Syntax can be regarded as the _________of a language. 
5. If a statement does not conform to the syntax of the 

language, the compiler shows a _______message. 
6. The left side of a production is termed as ____ and the 

right side is termed as ____. 
7. Terminals are written using ________ letters. 
8. Non-terminals are written using ________ letters. 
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is designated as 1. LL(1) is a strong class of grammar which can 
represent most of the programming language constructs. No left 
recursive or ambiguous grammar can be LL(1).  

We have two distinct productions A → α | β of grammar G. G is 
termed as LL(1) if the following conditions hold. 

1. For no terminal a, both α and β derive strings beginning with 
a. 

2. At most one of α and β can derive an empty string. 
3. If β ⇒ €, then α does not derive any string beginning with a 

terminal in FOLLOW(A). Similarly, if α ⇒ €, then β does 
not derive any string beginning with a terminal in 
FOLLOW(A). 

Predictive parsers can be constructed using LL(1) grammar. By 
looking at the current input symbol, the appropriate production rule 
for a non-terminal has to be applied.  For instance, the flow-of-
control constructs can satisfy LL(1) conditions. For an LL(1) 
grammar, a parsing table is constructed. Each entry of the parsing 
table uniquely determines which production rule has to be applied 
on the current input symbol. Otherwise, it signals an error. 
Sometimes, the parse table can have multiple entries for the same 
input. This happens when the grammar is ambiguous or left 
recursive. However, some grammar can never be LL(1) although 
ambiguity and left recursion are eliminated. We shall study about 
this elaborately later.  

5.5 LR PARSER 

Unlike LL parser, LR parser is a bottom-up parser. This class of 
grammar is termed as LR(k) where L stands for “L” stands for left to 
right scanning of the input and “R” stands for rightmost derivation 
in reverse and k is the number of lookahead input symbols. The 
default value of k is 1. This is a simple and efficient approach to 
constructing shift-reduce parser and is termed as the Simple LR 
parser. Apart from this, there are two complex structures: Canonical 
LR and LALR. Like the non-recursive LL parsers, LR parsers are 
also table-driven parsers. An LR parser must be able recognize the 
handles appearing at the top of the stack. LR parsing possesses some 
important characteristics which make the parser attractive as well as 
efficient. 
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 LR parsers can recognize virtually most of the programming 
language constructs for which context free grammars can be 
defined. 

 It is the most general non-backtracking shift-reduce parsing 
method. 

 As it scans inputs from left to right, it is possible to early 
detect the syntax error by the parser. 

 The LR grammar can recognize more programming 
constructs than the LL grammar. Therefore, the class of 
grammars parsed by the LR grammar class is a proper 
superset of the class of grammars parsed by the predictive or 
LL grammars. The parser must be able to recognize the right 
hand side of a production occurring in a right sentential form 
with k-lookahead symbols. And therefore, the requirement 
for a parser to be LR is less strict compared to that of an 
LL(1) grammar. 

However, this method has a serious drawback of involving much 
more work when it comes to the costruction of parser. There are two 
major operations involved in this parser: Shift and Reduce. The 
parser has to take a decision on when to shift and when to reduce. 
The parser also maintains states in order to represent the halting 
positions in which the parser might be in. The states represent a set 
of items that the parser generated during parsing. An item in LR(0) 
is derived by placing a dot at some position of a production’s body. 
Thus, the set of items of a production X → ABC would be: 

  X → .ABC 

X → A.BC 

X → AB.C 

X → ABC. 

And if the production is of the form X → €, then the item would be 
X → .  . The item X → .ABC indicates that we would to get a string 
derivable from ABC next on input. Similarly, the item X → A.BC 
indicates that we already have seen a string derivable from A and 
expect to see another derivable from BC. Item X → ABC. indicates 
that ABC exists in the body and it can be reduced to X. Such 
collection of set of items is called as canonical LR(0) items. These 
items are later used to form a Deterministic Finite Automaton 
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(DFA) and the automaton is termed as LR(0) automaton. Each state 
of the automaton represents a set of items in the canonical LR(0)  
collection of items. The collection is constructed using two 
functions: CLOSURE and GOTO. A detailed discussion of the 
construction of Simple LR (SLR) or LR(0) parser will be done later 
in a chapter.  

Two more powerful LR parsers are Canonical LR and LALR 
parsers. The Canonical LR method works on a large set of items and 
it is termed as LR(1) parser. On the other hand, the LALR or 
Lookahead LR method contains fewer states than the LR(1) parsers. 
It is based on LR(0) items and can handle more grammars.  

 

 

 

 

 

 

 

 

 

 

5.6 SUMMING UP  

 The lexical analysis phase of a compiler is responsible for 
breaking the program into constituent pieces of stream of 
characters and generates tokens for the same. 

 Tokens are passed to the parsing phase in order to construct 
the grammatical structure or syntax of a language. For 
specifying the syntax, a widely accepted notation termed as 
Context-Free Grammar (CFG) or Backus Naur Form (BNF) 
is used. 

 A context Free Grammar G is a 4-tuple (V, T, P, S), V is the 
set of variables or non-terminals, T is the set of terminals, P 

CHECK YOUR PROGRESS – IV 

9. The LL(1) class is a __________________ grammar.    
10. No left recursive or ambiguous grammar can be 

___________. 
11. LR parser is a ________________ parser. 
12. LR parser is an efficient approach to constructing a 

________ parser. 
13. Both LL and LR parsers are __________ parsers. 
14. The canonical LR(0) items form a ________________. 
15. The canonical LR(0) items are constructed using two 

functions: ______ and ______. 
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states the set of production rules and S is the start symbol of 
G. 

 Terminals include lowercase letters, operators, digits, 
punctuation marks and keywords. Non-terminals are 
designated in terms of uppercase letters. 

 A grammar derives strings of terminals. The strings are 
derived by beginning with the start symbol. At each 
derivation step, each non-terminal is repeatedly replaced by 
the body of the production. Derivation stops when the string 
of terminals is finally generated.  

 The set of all strings generated by a grammar is called the 
language of the grammar. A language L for the set of 
grammars G is denoted as L(G).  

 Grammars are more powerful notation than regular 
expression. They describe a language more precisely. A 
programming language construct that is described by a 
regular expression can also be described by a grammar. 
However, the reverse is not possible. Therefore, every 
regular expression is a context free grammar but not vice-
versa.  

 There are two major types of parsing techniques available- 
top-down and bottom-up. Top-down parsing begins at the 
start symbol or root and it proceeds until the leaf nodes 
contain terminal symbols. Conversely, bottom–up parsing 
starts at the leaf nodes and it proceeds till we get the start 
symbol. 

 The LL(1) class is a predictive parsing grammar. The first 
“L” stands for scanning the input from left to right and the 
second “L” is for doing the leftmost derivation. During each 
parsing step, the look ahead symbol is one input symbol and 
it is designated as 1. No left recursive or ambiguous 
grammar can be LL(1). 

 Unlike LL parser, LR parser is a bottom-up parser. This 
class of grammar is termed as LR(k) where L stands for “L” 
stands for left to right scanning of the input and “R” stands 
for rightmost derivation in reverse and k is the number of 
look ahead input symbols. The default value of k is 1. This is 
a simple and efficient approach to constructing shift-reduce 
parser and is termed as the Simple LR parser. 

 There are two complex and powerful structures of LR 
parsing: Canonical LR and LALR. Like the non-recursive 
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LL parsers, LR parsers are also table-driven parsers. LR 
grammar can recognize more programming constructs than 
the LL grammar. 

 There are two major operations involved in this parser: Shift 
and Reduce. The parser has to take a decision on when to 
shift and when to reduce. 

 An item in LR(0) is derived by placing a dot at some 
position of a production’s body. Such collection of set of 
items is called as canonical LR(0) items. These items are 
later used to form a Deterministic Finite Automaton (DFA) 
and the automaton is termed as LR(0) automaton. 

 

5.7 ANSWERS TO CHECK YOUR PROGRESS 

1. Tokens 
2. Context-Free Grammar (CFG) 
3. Syntax Directed Translation 
4. Grammar 
5. syntax error 
6. head, body 
7. lowercase 
8. uppercase 
9. predictive parsing 
10. LL(1) 
11. bottom-up 
12. shift-reduce 
13. table driven 
14. Deterministic Finite Automaton (DFA) 
15. CLOSURE, GOTO. 

 

5.8 POSSIBLE QUESTIONS 

A. Short answer type questions. 

1. What is Context-Free Grammar? 
2. Write down the functions of syntax analysis phase? 
3. What is grammar? Define. 
4. What do you mean by language of a grammar? 
5. How language and syntax are related? 
6. What is production? Describe in brief. 
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7. Describe the notational conventions of terminals and non-
terminals. 

8. What is look ahead symbol? Discuss in brief. 
9. What is LR(0) parsing technique? Discuss. 
10. What is item in LR(0) parsing technique? 

B. Long answer type questions. 

1. Give some characteristic overview of the LL(1) parser. 
2. Give some characteristic overview of the LR parser. 
3. Why are LR parsers considered to be an efficient parser? 
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UNIT: 6 
PARSE TREE AND AMBIGUITY 

 

Unit Structure: 

6.0 Introduction 

6.1 Unit Objective 

6.2 Derivation 

6.3 Parsing  

6.4 Ambiguity 

6.5 Parsing 

     6.5.1 Top down parsing 

    6.5.2 Bottom up parsing 

6.6 Summing Up 

6.7 Answers to Check Your Progress 

6.8 Possible Questions 

6.9  References and Suggested Readings   

 

6.0 INTRODUCTION 
The task of parsing or syntax analysis phase is to obtain a stream of 

tokens generated by the lexical analyzer. A parser tries to verify 

whether a string of tokens can be generated by the grammar of the 

language. The parser also reports any syntax errors if the string of 

tokens do not conform to the grammar or the language rules. During 

parsing, a tree is constructed. It is a graphical representation that 

shows how a start symbol of the grammar derives a string of the 

language. This tree is termed as parse tree. The syntax of the 

language is specified using the notation called Context Free 

Grammar (CFG) or simply grammars. They are basically 

represented in terms of production rules. We already have discussed 

production rules and their structures have been discussed in the last 

chapter. In this chapter, we shall discuss the derivation of strings 
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using production rules defined for the language. Later, we shall 

discuss how parse trees are constructed and also various issues 

pertaining to the derivation of strings and construction of parse 

trees. 

 

6.1 UNIT OBJECTIVE 
After going through this unit, you will be able to 

 Define derivation of strings 

 Understand different types of derivations 

 Know the concepts of parsing and its types 

 Know how parse trees are constructed 

 Explain the relation between derivation and parse tree 

 Describe the ambiguity of grammars 

 Know what is parsing 

6.2 DERIVATIONS 

The set of all strings generated by a grammar is called the language 
of the grammar. A language L for the set of grammars G is denoted 
as L(G).  

Now, let us see how grammars take part in derivation of strings.  

Production rules of a grammar are applied to derive strings of 
terminals. The strings are derived by beginning with the start 
symbol. At each derivation step, each non-terminal is repeatedly 
replaced by the body of the production. Derivation stops when the 
string of terminals is finally generated.  

Consider two productions of the form B → αAβ and A → γ. Now, 
in one step derivation, the right side of the production can be 
rewritten as αAβ ⇒ αγβ where α and β are the grammar symbols. 
The symbol ⇒ means derivation in one step. Sometimes, derivation 
takes place in zero or more steps. It is denoted as ⇒. Likewise the 
notation ⇒ derives strings in one or more steps. Suppose, a string is 
derived from the start symbol in zero or more steps, we write it as 



95 
 

S⇒α; α is called the sentential form, which is a combination of 
grammar symbols like terminals and non-terminals.  

During the process of derivation, the input symbols of the string to 
be parsed are scanned from left to right. Then a decision has to be 
taken about which production rule has to be applied based on the 
symbol read. Once a symbol is read, accordingly a production to be 
applied has to be decided. It should be based on the condition that 
the scanned symbol must exist at the first position of the right side 
production. But sometimes, situation may arise when more than one 
production may have that scanned symbol at the right side. Then, a 
firm decision has to be made which production would best fit that 
situation. 

We shall now try to derive a simple string 8 + 7 – 5 using the 
following grammar. 

  list → list – digit 

list → list + digit 

  list → digit 

  digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 + 

The derivation steps would be: 

  list ⇒ list – digit 

        ⇒ list + digit – digit 

        ⇒ digit + digit – digit 

        ⇒ 8 + digit – digit 

        ⇒ 8 + 7 – digit 

        ⇒ 8 + 7 – 5 

Derivation begins by applying the production with the start symbol. 
Here, the production         list → list – digit is applied. In the next 
step, variable list is substituted by list + digit by using the right side 
of the production list →list + digit and finally the production list → 
digit is applied. Now, the right side contains digit + digit – digit and 
the production with head digit is applied. Therefore, digits are 
replaced and finally we get the desired string of terminals.  
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Let us again take another set of production rules and try to derive a 
string (id + id * id). 

  E → E + E | E * E | (E) | -E | id 

  E ⇒ (E) 

      ⇒ (E * E) 

      ⇒ (E + E * E) 

      ⇒ (id + id * id) 

But, sometimes the grammar or the productions may not be able to 
produce the string. This in turn deduces the fact that the string does 
not belong to the language. 

Derivation takes place in two different techniques: leftmost 
derivation and rightmost derivation. Sometimes, the leftmost non-
terminal is expanded in each step. In the previous example, the 
leftmost E is expanded to generate the string (id + id * id). This is 
termed as leftmost derivation. During the first derivation step, E is 
the only non-terminal. It is expanded by its right side E * E. In the 
next step, the leftmost E is expanded with the body E + E. Now, let 
us reconsider the same example and see how leftmost derivation 
derives the desired string of terminals. 

  E ⇒ (E)  

      ⇒ (E * E) 

      ⇒ (E + E * E)  

      ⇒ (id + E * E) 

      ⇒ (id + id * E) 

      ⇒ (id + id * id) 

Finally, E → id is applied to each leftmost E.  

On the other hand, the rightmost derivation is another form of 
derivation. In each derivation step, the rightmost non-terminal is 
expanded. The same example can be used to do rightmost 
derivation.  

  E ⇒ (E)   
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      ⇒ (E + E) 

      ⇒ (E + E * E)  

      ⇒ (E + E * id)  

      ⇒ (E + id * id) 

      ⇒ (id + id * id) 

This is similar to leftmost derivation except the fact that in every 
derivation step, the rightmost non-terminal gets expanded. During 
the first step, the only non-terminal E is replaced with the right side; 
that is E + E. In the next step, the rightmost E is again expanded and 
gets replaced by E * E. Again, the production E → id is applied on 
the rightmost E and the sentential form becomes (E + E * id). 
Eventually, all the rightmost non-terminals are expanded and finally 
we get the string (id + id * id). 

In both the cases, choice of production to be applied becomes 
crucial aspect because it has to be correctly decided which 
production rule has to be applied in a particular derivation step. 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHECK YOUR PROGRESS – I 

1. Strings are derived by beginning with _______________ 
symbol.  

2. A language L for the set of grammars G is denoted as 
__________. 

3. The symbol _________ means derivation in one step. 
4. The notation ________ derives strings in one or more 

steps. 
5. The notation _______ derives strings in one or more 

steps. 
6. A ________form is a combination of terminals and non-

terminals.  
7. Derivation takes place in two different techniques: 

____and ____derivations. 



 

6.3 PARSE TREE

It is worth to mention here that each derivation step represents 
corresponding level of a parse tree. Therefore, each step of string 
derivation can be represented during construction of a parse tree. 
Just like derivation, parse tree construction also begin
symbol. Therefore, production 
in terms of parse tree nodes as follows.

 

 

 

Fig 6

 

In parse tree, the start symbol of the grammar is termed as the root 
of the tree. Root has no parents. The parse tree consists of one or 
more nodes. The head and the body of a production represent the 
parent and children respectively. Each grammar symbol o
of a node appears as the child node of the tree. Edges come out of 
the parent to its children. Nodes 
children of 
left to right. If a node has no children, 
An interior node can have child node(s). A descendant of a node is 
the node itself, its child node, child of child node and so on. If a 
node has a descendant node, then it is termed as the ancestor of the 
descendant. A specia
labeled with A and has a single child 

The derivat
be represented in terms of parse trees as follows
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6.3 PARSE TREE 

It is worth to mention here that each derivation step represents 
corresponding level of a parse tree. Therefore, each step of string 
derivation can be represented during construction of a parse tree. 
Just like derivation, parse tree construction also begin
symbol. Therefore, production list → list – digit can be represented 
in terms of parse tree nodes as follows. 

 

 

 

 

Fig 6.1: Parse tree representation of a derivation step

In parse tree, the start symbol of the grammar is termed as the root 
of the tree. Root has no parents. The parse tree consists of one or 
more nodes. The head and the body of a production represent the 
parent and children respectively. Each grammar symbol o
of a node appears as the child node of the tree. Edges come out of 
the parent to its children. Nodes list, - and digit
children of list and are also called as siblings. They are drawn from 
left to right. If a node has no children, it is called as terminal node. 
An interior node can have child node(s). A descendant of a node is 
the node itself, its child node, child of child node and so on. If a 
node has a descendant node, then it is termed as the ancestor of the 
descendant. A special case of production A→ ϵ, then a node is 
labeled with A and has a single child ϵ.  

The derivation steps shown in Section 6.2 for the string 8+7
be represented in terms of parse trees as follows- 

It is worth to mention here that each derivation step represents 
corresponding level of a parse tree. Therefore, each step of string 
derivation can be represented during construction of a parse tree. 
Just like derivation, parse tree construction also begins at the start 

can be represented 

.1: Parse tree representation of a derivation step 

In parse tree, the start symbol of the grammar is termed as the root 
of the tree. Root has no parents. The parse tree consists of one or 
more nodes. The head and the body of a production represent the 
parent and children respectively. Each grammar symbol of the body 
of a node appears as the child node of the tree. Edges come out of 

digit appear as the 
and are also called as siblings. They are drawn from 

it is called as terminal node. 
An interior node can have child node(s). A descendant of a node is 
the node itself, its child node, child of child node and so on. If a 
node has a descendant node, then it is termed as the ancestor of the 

ϵ, then a node is 

for the string 8+7-5 can 



 

 

 

 

 

 

Fig 6.2: Parse tree corresponding to 

 

6.4 AMBIGUITY 
During parsing, parse trees are generated. These parse trees are 

constructed to see if a string of tokens can be generated using a set 

of grammatical constructs. Now, sometimes situation may arise 

when the same grammar may produce more than one parse tree for 

the same string. Such grammar is termed as the ambiguous 

grammar. An ambiguous grammar can produce more than one 

leftmost derivation or more than one rightmost derivation for the 

same string of tokens. Such

cannot decide which parse tree to select for a sentence. Therefore, it 

is desirable to eliminate the ambiguity of grammars. There are 

disambiguating rules which discard or reject the undesirable parse 

trees and keeps only one. 

Now, let us see with an example how ambiguous parse trees are 

produced. We consider the following set of grammars which will 

produce more than one parse tree. 

  E  E + E

  E (E) 

  E id | €

Let us try to derive the string “id+(id)+id+id” 

productions. 
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.2: Parse tree corresponding to derivation of string 8 + 7 – 5 

During parsing, parse trees are generated. These parse trees are 

constructed to see if a string of tokens can be generated using a set 

of grammatical constructs. Now, sometimes situation may arise 

grammar may produce more than one parse tree for 

the same string. Such grammar is termed as the ambiguous 

grammar. An ambiguous grammar can produce more than one 

leftmost derivation or more than one rightmost derivation for the 

same string of tokens. Such kind of situation is undesirable as we 

cannot decide which parse tree to select for a sentence. Therefore, it 

is desirable to eliminate the ambiguity of grammars. There are 

disambiguating rules which discard or reject the undesirable parse 

Now, let us see with an example how ambiguous parse trees are 

produced. We consider the following set of grammars which will 

produce more than one parse tree.  

E + E 

€ 

Let us try to derive the string “id+(id)+id+id” using this set of 



 

 
 

 

 

 

 

Fig 6.3: Parse tree for string “id+(id)+id+id”

 

Figures 6.3 and 6.4

different. Therefore, this grammar can be termed as an ambiguous 

grammar. 

Figure 6.3

 

Figure 6.4

 

There is no particular algorithm to eliminate the ambiguity of 

grammar. Rather, we can rewrite the grammar such that only one 

derivation or parse tree for the string can be produced. 

recursive and right recursive grammar can be 

discuss recursive grammars and elimination of recursive grammars 

in the later chapter. 
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: Parse tree for string “id+(id)+id+id” Fig 6.4: Parse tree for string 
“id+(id)+id+id”

Figures 6.3 and 6.4 derive the same string. But the parse trees are 

different. Therefore, this grammar can be termed as an ambiguous 

grammar.  

Figure 6.3 involves the following leftmost derivation steps:

  E => E + E 
=> E + E + E 
=> id + E + E 
=> id + E + E + E 
=> id + (E) + E + E 
=> id + (id) + E + E 
=> id + (id) + id + E 
=> id + (id) + id + id 

Figure 6.4 involves the following leftmost derivation steps:

  E => E + E 
=> id + E 
=> id + E + E 
=> id + E + E + E 
=> id + (E) + E + E 
=> id + (id) + E + E 
=> id + (id) + id + E 
=> id + (id) + id + id 

There is no particular algorithm to eliminate the ambiguity of 

grammar. Rather, we can rewrite the grammar such that only one 

derivation or parse tree for the string can be produced. 

recursive and right recursive grammar can be ambiguous. We shall 

discuss recursive grammars and elimination of recursive grammars 

in the later chapter.  

: Parse tree for string 
“id+(id)+id+id” 

derive the same string. But the parse trees are 

different. Therefore, this grammar can be termed as an ambiguous 

involves the following leftmost derivation steps: 

involves the following leftmost derivation steps: 

There is no particular algorithm to eliminate the ambiguity of 

grammar. Rather, we can rewrite the grammar such that only one 

derivation or parse tree for the string can be produced.  A left 

ambiguous. We shall 

discuss recursive grammars and elimination of recursive grammars 



 

 

One very common form of ambiguity in programming language is 

conditional statement. An example of such kind might be the 

following “if-else” gramma

  Stmt     IfStmt

  IfStmt       If (Expr) Stmt

  IfStmt         If (Expr) Stmt else Stmt

Now, let’s start deriving the string “If (Expr) If (Expr) Stmt else 

Stmt”. Derivation begins with the non

statement which includes another statement with If. The expression 

Expr evaluates to either true or false. 

 

 

 

 

6.5: Derivation of two parse trees for the string If (Expr) If (Expr) Stmt else 

Source: Compiler Design_ Theory Tools and Examples by Seth D. Bergmann

 

This problem can be resoved by associating ‘elses’ with the closest 

previous unmatched ‘ifs’. Therefore, the second tree corresponds to 

the correct interpretation. The grammar can be rewritten so as   get 

an equivalent as well as unambiguous grammar.

  Stmt     IfStmt

  IfStmt      Matched

  IfStmt      Unmatched

  Matched        If (Expr) Matched else Matched

  Matched        Other
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One very common form of ambiguity in programming language is 

conditional statement. An example of such kind might be the 

else” grammar: 

IfStmt 

If (Expr) Stmt 

If (Expr) Stmt else Stmt 

Now, let’s start deriving the string “If (Expr) If (Expr) Stmt else 

Stmt”. Derivation begins with the non-terminal Stmt as root. It is a 

s another statement with If. The expression 

Expr evaluates to either true or false.  

  

: Derivation of two parse trees for the string If (Expr) If (Expr) Stmt else 
Stmt 

Source: Compiler Design_ Theory Tools and Examples by Seth D. Bergmann 

problem can be resoved by associating ‘elses’ with the closest 

previous unmatched ‘ifs’. Therefore, the second tree corresponds to 

the correct interpretation. The grammar can be rewritten so as   get 

an equivalent as well as unambiguous grammar. 

IfStmt 

Matched 

Unmatched 

Matched        If (Expr) Matched else Matched 

Matched        Other 
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  Unmatched    If (Expr) Stmt 

  Unmatched    If (Expr) Matched else Unmatched 

Now, this grammar generates the same string but allows only one 
parsing. 

There is a correspondence between context free grammars and 
regular expressions. Grammars are more powerful notation than 
regular expression. They describe a language more precisely. A 
programming language construct that is described by a regular 
expression can also be described by a grammar. However, the 
reverse is not possible. Therefore, every regular expression is a 
context free grammar but not vice-versa.  

 

 

 

 

 

 

 

 

 

 

 

 

 

6.5 PARSING  

During syntax analysis or parsing, characters or tokens are grouped 

into hierarchical format. This hierarchical format is represented in 

terms of tree structure. This tree structure is called as the parse tree. 

Parsing involves grouping the tokens of the source program into 

CHECK YOUR PROGRESS – II 

8. Parse tree construction begins at the ________symbol.   
9. _____ has no parents. 
10. A ________ node has no children. 
11. An _________node can have child node(s). 
12. Every regular expression is a _________. 
13. __________is the process of generating a string of 

terminals by applying a set of production rules. 
14. Derivation and __________ ________are interrelated. 
15. An ambiguous grammar can produce more than one 

_________ derivation or _______ derivation for the same 
string of tokens. 

16. Each interior nodes of a parse tree is labeled with 
some__________. 

17. It is desirable to eliminate the _________of grammars. 

 



 

grammatical structure. Parsing begins with the start state as its root. 

Production rules are applied to each node if it is a non

However, during parsing, 

production rule will produce the required string. Sometime

happen that there are more than one production rules available

the same non-terminal. Exactly which production rule will give the 

desired string of terminals 

construction step. Let us see the generation of a parse tree by 

considering the following production rules.

 

Fig 6.6: Production rules for generation of parse tree
The string to be derived is :  

node E. As the string begins with the symbol ‘

production is E → -E. During each generation step, the next input 

symbol is read and accordingly, productions are applied. This time, 

it is ‘(’; therefore, production E 

applying productions and expanding the parse tree untill we get a 

string consisting of all leaf nodes as terminal nodes. Here, we stop 

the parse tree construction. Finally, we will concatenate all the leaf 

nodes in order to generate the string of terminals.

interior nodes are non-terminals and all leaf nodes are ter
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Parsing begins with the start state as its root. 

roduction rules are applied to each node if it is a non-terminal. 

However, during parsing, it has to be decided exactly which 

production rule will produce the required string. Sometimes, it may 

happen that there are more than one production rules available with 

terminal. Exactly which production rule will give the 

desired string of terminals must be decided during each parse tree 

Let us see the generation of a parse tree by 

considering the following production rules. 

 
 

: Production rules for generation of parse tree 
The string to be derived is :  - ( id + id ). Construction begins at root 

node E. As the string begins with the symbol ‘–’, the only applicable 

During each generation step, the next input 

symbol is read and accordingly, productions are applied. This time, 

it is ‘(’; therefore, production E → (E). This way we keep on 

applying productions and expanding the parse tree untill we get a 

g of all leaf nodes as terminal nodes. Here, we stop 

the parse tree construction. Finally, we will concatenate all the leaf 

nodes in order to generate the string of terminals. In a parse tree, all 

terminals and all leaf nodes are terminals. 

 



 

 

 

Most commonly, parsing falls in two 

parsing and bottom

manner 

 
 

6.5.1 Top
Sometimes, the order of derivation of parse tree begins at the root. 

Construction proceeds by applying production at the root node of 

the tree. Subsequently, rules are applied to the non

appearing at the nodes of the 

and at one point of time, we shall have leaf nodes consisting only of 

terminals. Finally, we will concatenate the leaf nodes in order to 

generate the string of terminals.

of production rules and try to derive the string “

 

The parse tree generation becomes as follows:
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Fig 6.7: Parse tree for string ‘- ( id + id )’

Most commonly, parsing falls in two major categories 

parsing and bottom-up parsing. These categories are based on 

manner or order in which nodes of the parse tree are constructed. 

Top-down parsing 
Sometimes, the order of derivation of parse tree begins at the root. 

Construction proceeds by applying production at the root node of 

the tree. Subsequently, rules are applied to the non

appearing at the nodes of the tree. This way, the tree gets

and at one point of time, we shall have leaf nodes consisting only of 

terminals. Finally, we will concatenate the leaf nodes in order to 

generate the string of terminals. We shall consider the 

of production rules and try to derive the string “aabbcbbaa

S → aSa 

S→ bSb 

S→ c   

The parse tree generation becomes as follows: 

( id + id )’ 

major categories – top-down 

up parsing. These categories are based on the 

in which nodes of the parse tree are constructed.  

Sometimes, the order of derivation of parse tree begins at the root. 

Construction proceeds by applying production at the root node of 

the tree. Subsequently, rules are applied to the non-terminals 

tree. This way, the tree gets expanded 

and at one point of time, we shall have leaf nodes consisting only of 

terminals. Finally, we will concatenate the leaf nodes in order to 

We shall consider the following set 

aabbcbbaa”. 



 

 

 

 

 

 

Fig 6.8: Top-down parsing for generation of string “aabbcbbaa”

The parser begins by scanning the string from

character at a time. The first character 

only one production which starts with

from the start state S. Next input symbol is ‘a’

lookahead symbol of the string

applied. Now the lookahead symbol

→ bSb is applied as it is the only production which starts with ‘b’. 

For the next character, again the sa

string that we have got is “aabbSbbaa”. Finally, we apply S

order to generate the string “aabbcbbaa”. 

It is worth mentioning here that sometimes more than one 

production may match the lookahead symbol. We may try to ap

such production. However, such application may not eventually lead 

to derive the string that we desire

case, we may need to backtrack and try to apply other productions. 

This eventually leads to consume much time. Ther

case of top-down parsing has been 

predictive parsing.  

A recursive descent parsing is a top

a set of recursive procedures are executed. A procedure is associated 

with each non-terminal of a grammar. A special case of recursive
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down parsing for generation of string “aabbcbbaa” 
 

The parser begins by scanning the string from left with one 

The first character of the string is ‘a’ and there is 

only one production which starts with ‘a’, S → aSa. So, it is applied 

from the start state S. Next input symbol is ‘a’ which is also the 

lookahead symbol of the string. Therefore, the same production is 

Now the lookahead symbol is ‘b’. Therefore, production S 

bSb is applied as it is the only production which starts with ‘b’. 

For the next character, again the same production is applied. The 

string that we have got is “aabbSbbaa”. Finally, we apply S → c in 

order to generate the string “aabbcbbaa”.  

It is worth mentioning here that sometimes more than one 

production may match the lookahead symbol. We may try to apply 

such production. However, such application may not eventually lead 

to derive the string that we desire or parsing is incomplete. In that 

case, we may need to backtrack and try to apply other productions. 

This eventually leads to consume much time. Therefore, a special 

has been introduced which is termed as the 

A recursive descent parsing is a top-down parsing method in which 

a set of recursive procedures are executed. A procedure is associated 

terminal of a grammar. A special case of recursive-



106 
 

descent parsing is predictive parsing. Here, each lookahead symbol 

can determine exactly which production has to be applied in every 

step of parsing. Here, a matching procedure unambiguously 

deteremine the procedure to be selected for each non-terminal. 

Let us consider the following set of rules which derives the same 

string “aabbcbbaa”. 

  S → aSa | Sa 

  S → bSb| Sb 

  S → c 

The lookahead symbol is initially set to ‘a’. Parsing begins with a 

call to the procedure for the starting non-terminal S. There are two 

productions starting with S. The code is executed as follows: 

  match(a); S; match(a)   --------------(1) 

and  S; match(a)    -------------- (2) 

Each terminal in the right side of the production is matched against 

the lookahead symbol. Each non-terminal again calls its procedure. 

2 does not match the lookahead. However, 1 does. Next, S is 

expanded. The next looahead is ‘a’. Accordingly, production S with 

right side aSa is applied. Therefore, the same code like 1 is 

executed. Next time again S is expanded with the following code 

and the lookahead symbol is ‘b’.  

  match(b); S; match(b)   -------------- (3) 

Once ‘b’ is matched, again the procedure for S is to be executed. 

The same set of codes like 3 will be executed. Therefore, the next 

lookahead symbol ‘b’ is matched against match(b) procedure and 

finally code for S is again executed. This time the code to be 

executed is  

  match(c)    -------------- (4) 
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This time, the lookahead symbol is ‘c’. This matches with the 

matching procedure 4. The lookahead symbol guides the selection 

of production to be used. The succeeding lookahead symbols are 

already generated and no more non-terminals are to be expanded.   

 

 

6.5.2 Bottom-up parsing 

Bottom-up parsing is the reverse of top-down parsing. Here, parsing 

begins at the leaf nodes. At every derivation step, grammar rules are 

applied and ultimately we reach a point where only the start state is 

attained. Bottom up parsing always begins with an empty stack. One 

or more input symbols are pushed onto the stack. Now, according to 

the grammar rules, these symbols are replaced by non-terminals. 

Parsing terminates when all the input symbols have been read and 

we get the start symbol that is, the root node left in the stack. This 

whole process can be thought as reducing a string to the start 

symbol of the grammar. At every reduction step, a particular 

substring matching the right side of a production is replaced by the 

left side of the production. It can be observed here that at every step, 

the rightmost derivation occurs in reverse. The substring of the 

string which matches the right side of a production is also termed 

“handle” of the string. The handle is reduced to the non-terminal at 

the left side of the production. This represents one step along the 

reverse of a rightmost derivation. Bottom-up parsing is also termed 

as shift-reduce parsing.  



 

Now, let us 

same string “aabbcbbaa”.

 

 

 

 

 

 

Fig 6.9

 

The derivation step proceeds as follows:

aabbcbbaa
aabbSbbaa
aabSbaa
aaSaa 
aSa 
S 
The stack contains a $ 

finally parsed, the stack will contain $S

and the input string will contain $.

each move of the parser and shows how the shift

behaves during p

Table 1 : Shift
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Now, let us see how bottom-up parsing happens while parsing the 

same string “aabbcbbaa”.  

Fig 6.9: Bottom-up parsing for generation of string 
“aabbcbbaa” 

The derivation step proceeds as follows: 

aabbcbbaa 
aabbSbbaa 
aabSbaa 

The stack contains a $ and the input string is aabbcbbaa$. When 

finally parsed, the stack will contain $S (S being the start symbol)

and the input string will contain $. The following table represents 

each move of the parser and shows how the shift

behaves during parsing. 

Table 1 : Shift-reduce parsing on input “aabbcbbaa”

Step Stack Input Action

1 $ aabbcbbaa$ Shift 

2 $a abbcbbaa$ Shift 

3 $aa bbcbbaa$ Shift 

4 $aab bcbbaa$ Shift 

up parsing happens while parsing the 

up parsing for generation of string 

and the input string is aabbcbbaa$. When 

(S being the start symbol) 

The following table represents 

each move of the parser and shows how the shift-reduce parser 

reduce parsing on input “aabbcbbaa” 

Action 
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5 $aabb cbbaa$ Shift 

6 $aabbc bbaa$ Reduce to S   c 

7 $aabbS bbaa$ Shift 

8 $aabbSb baa$ Reduce to S  bSb 

9 $aabS baa$ Shift 

10 $aabSb aa$ Reduce to S  bSb 

11 $aaS aa$ Shift 

12 $aaSa a$ Reduce to S  aSa 

13 $aS a$ Shift 

14 $aSa $ Reduce to S    aSa 

15 $S $ Accept  

 
The shift-reduce parser involves four possible actions: 1. Shift   2. 
Reduce   3. Accept   4. Error 

1. In Shift action, the next input symbol is shifted to the top of 

the stack 

2. In Reduce action, the parser identifies the top of the stack as 

the right end of the handle. The handle is then replaced with 

the non-terminal at the right. 

3. In Accept action, the parser announces successful 

completion of parsing. 

4. In Error action, the parser discovers that a syntax error has 

occurred and calls an error recovery routine. 

As already mentioned, a “handle” of a string is the substring that 

matches the right side of a production. The handle is reduced to the 

non-terminal on the left side of the production. During step 6, “c” is 

the handle and is reduced to S. During steps 8 and 10, “bsb” is the 

handle generated and is reduced to S. Similarly, steps 12 and 14 

reduce handle “aSa” to the non-terminal S. 
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6.6 SUMMING UP 

 A grammar derives strings of terminals. The strings are 
derived by beginning with the start symbol. At each 

STOP TO CONSIDER 

A handle of a string is a substring that matches the right side of a 
production. During shift-reduce parsing, reduction to the non-
terminal on the left side of a production takes place. This happens 
when we have a right sentential form α and a production A → β, 
with β matching a substring at a particular position of α. In that 
case, β is replaced by A and eventually the whole string reduces to 
the start symbol of the grammar. β is termed as the handle of the 
string and each reduction represents one step along the reverse of a 
rightmost derivation.  

Reducing β to A in α can be regarded as handle pruning. This is 
another way of removing the children of A from the parse tree. 

CHECK YOUR PROGRESS- III 

18. Parsing involves grouping the tokens of the source program 
into __________. 

19. The hierarchical structure created during parsing is called 
___________. 

20. During top-down parsing, construction begins at the 
___________ of the tree. 

21. A top-down parsing method in which a set of recursive 
procedures are to be executed is termed as __________ 
___________ ____________. 

22. What is predictive parsing? 
23. __________ ____ parsing begins at the leaf nodes and ends 

at _________. 
24. What do you understand by handle of a string? 
25. Bottom-up parsing is also termed as ________________.  
26. What are the actions involved in Shift-Reduce parsing? 
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derivation step, each non-terminal is repeatedly replaced by 
the body of the production. Derivation stops when the string 
of terminals is finally generated.  

 The set of all strings generated by a grammar is called the 
language of the grammar. A language L for the set of 
grammars G is denoted as L(G).  

 Derivation may take place in zero or more steps or in one or 
more steps. A sentential form is a combination of grammar 
symbols like terminals and non-terminals. During the 
process of derivation, the input symbols of the string to be 
parsed are scanned from left to right. 

 Each step of string derivation can be represented during 
construction of a parse tree. Just like derivation, parse tree 
construction also begins at the start symbol or root. Root has 
no parents.  

 A tree consists of one or more nodes. The head and the body 
of a production represent the parent and children 
respectively. Edges come out of the parent to its children. 

 Grammars are more powerful notation than regular 
expression. They describe a language more precisely. A 
programming language construct that is described by a 
regular expression can also be described by a grammar. 
However, the reverse is not possible. Therefore, every 
regular expression is a context free grammar but not vice-
versa.  

 Each derivation step can be represented as a parse tree level 
in top-down fashion. Parse tree is a depiction of derivation. 

 An ambiguous grammar can produce more than one leftmost 
derivation or more than one rightmost derivation for the 
same string of tokens.  

 Durng ambiguity, we cannot decide which parse tree to 
select for a sentence. There are disambiguating rules which 
rewrite the grammar and discard the undesirable parse trees 
and keeps only one 

 Parsing falls in two major categories – top-down parsing and 

bottom-up parsing. 

 In top-down parsing, construction begins at the root node of 
the tree. Subsequently, rules are applied to the non-terminals 
appearing at the nodes of the tree. Construction stops when 
leaf nodes consisting only of terminals are generated. 
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 Bottom-up parsing is the reverse of top-down parsing. 
Parsing begins at the leaf nodes. At every derivation step, 
grammar rules are applied by shifting and reducing and 
parsing stops when only the start state is attained. 

 Bottom up parsing always begins with an empty stack. 
Symbols are pushed onto the stack. These are reduced by 
non-terminals according to the grammar rules. 

 At every reduction step, a particular substring matching the 
right side of a production is replaced by the left side of the 
production. The substring of the string which matches the 
right side of a production is also termed “handle” of the 
string. The handle is reduced to the non-terminal at the left 
side of the production. 
. 

 
6.7 ANSWERS TO CHECK YOUR PROGRESS 

1. Start 
2. L(G) 
3. ⇒ 
4. ⇒ 
5. ⇒ 
6. sentential form 
7. leftmost, rightmost 
8. start 
9. Root 
10. terminal 
11. interior 
12. context free grammar 
13. Derivation 
14. parse trees 
15. leftmost, rightmost 
16. non-terminals 
17. ambiguity 
18. grammatical structure. 
19. parse tree 
20. root 
21. recursive descent parsing 
22. A special case of recursive-descent parsing is called the 

predictive parsing. Here, each look ahead symbol can 
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determine exactly which production has to be applied 
inat every step of parsing. 

23. Bottom-up, root 
24. The substring of the string which matches the right side 

of a production is termed as “handle” of the string. The 
handle is reduced to the non-terminal at the left side of 
the production. 

25. shift-reduce parsing 
26. The shift-reduce parser involves four possible actions: 1. 

Shift   2. Reduce   3. Accept   4. Error 
 
 

6.9  POSSIBLE QUESTIONS 

A. Short answer type questions. 
1. What are the roles of a parser? 
2. What is parse tree? Discuss. 
3. How are the production rules represented? 
4. What is leftmost derivation? Discuss. 
5. What is rightmost derivation? Discuss. 
6. Show with an example, the ambiguity in conditional 

statements? 
7. What is recursive descent parsing? 
8. What is predictive parsing? 
9. How are derivations and parse trees related? 

 
B. Long answer type questions. 

1. What is derivation? Explain with examples. 
2. What are the two approaches of derivations? Explain each of 

them elaborately. 
3. What is ambiguity? Explain with example. 
4. Explain the process of parsing with examples. 
5. What is parsing? What are its types? Explain each of them 

elaborately. 
6. Describe predictive parsing in detail. 
7. What is Shift-Reduce parsing? Explain with example. 
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UNIT: 7 
DERIVING FIRST & FOLLOW SETS 

 

Unit Structure 

7.0 Introduction 

7.1 Unit Objective 

7.2 Elimination of Left Recursion 

7.4 Left Factoring 

7.5 Derive the First and Follow sets 

7.6 Summing Up 

7.7 Answers to Check Your Progress 

7.8 Possible Questions 

7.9 References and Suggested Readings   

 

7.0 INTRODUCTION 

Grammars describe the syntax of programming languages. In the 
last unit, we discussed that an ambiguous grammar can produce 
more than one parse tree for the same set of grammar rules. In this 
unit we shall discuss how left recursive grammars are eliminated for 
effective handling of top-down parsing. Another important grammar 
transformation termed as left factoring is suitable for predictive 
parsing. We shall discuss left factoring of grammars in this unit. 

 

7.1 UNIT OBJECTIVE 

After going through this unit, you will be able to 

 Understand left recursion and its possible elimination 
 Know how to do left factoring of grammars 
 Derive FISRT and FOLLOW sets 

 
7.2 ELIMINATION OF LEFT RECURSION 

Context Free Grammars (CFG) describe the syntax of a language. 
They are the set of recursive rules used to generate patterns of 
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strings of the language. In the language theory, an LL grammar is a 
context free grammar which parses the input from left to right and 
constructs the leftmost derivation of the sentence. When scanning 
happens from left to right with one input symbol as look ahead at 
each step of parsing, it is termed as the LL(1) grammar. An LL(1) 
grammar has to be unambiguous. It must not contain any common 
left prefixes with no left-recursion. Later, the LL(1) parsing table is 
constructed by generating the FIRST and FOLLOW sets of the 
grammar. We already have had some idea regarding what ambiguity 
is. Now, let us talk about left recursion. A grammar is said to be left 
recursive if it is of the following form: 

  A → Aα      --------------- (1) 

Apart from this, any grammar rule of the form A → Bβ   -
--------------- (2)            such that B ⇒ Aγ by some sequences of 
derivations.  The leftmost non-terminal appears as the first symbol 
on the right side of the production. It can create infinite loop, 
creating errors as well as leading significant decrease in 
performance. 

A production rule of the form Expr → Expr + Term can be 
considered as a left recursive grammar as non-terminal Expr repeats 
at the first place of the right side. We can resolve this problem 
simply by rewriting the production as Expr  → Term + Expr. But 
this may create a new problem of common left prefix. This would 
also result in the right associative plus operator.  

More formally, a grammar of the form 

A Aα1 | Aα2 | Aα3 |……| β1 | β2 | β3 |…..  ----------- (3) 

Can be termed as the left recursive grammar and can be rewritten by 
introducing a new variable or non-terminal A′ in the following 
manner: 

  A β1A′ | β2A′ | β3A′ |….. 

  A′ α1A′ | α2A′ | α3A′ |….. | € 

Let us understand left recursion with an example. Consider the 
following grammar and eliminate left recursion from it.  
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  E         E + T | T 

  T         T * F | F 

  F         (E) | id 

Productions E         E + T and T      T * F are left recursive and need 
to be resolved. We introduce two new variables E′ and T′ and 
rewrite the productions as follows: 

  E T E′ 

  E′ + T E′ | € 

  T F T′ 

  T′ * F T′ | € 

  F         (E) | id 

We shall see another left recursive grammar and rewrite it by 
eliminating the same. 

A  ABd / Aa / a 

B  Be / b 

The new grammar would be as follows: 

  A a A′ 

  A′  BdA′ | AA′ | € 

  B bB′ 

  B′ eB′ | € 

Similarly, another set of productions 

  S         Aa | b 

  A        Ac | Sd | € 

Non-terminal S is left-recursive because S ⇒ Aa ⇒ Sda. However, it 
is not immediately left recursive. 

Considering another example which is indirectly left recursive and 
try to eliminate left recursion from it.  

  S Aα | β  
   
  A   Sd 
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Now, the grammar can be transformed into the following left 
recursive form: 

  S        Aα | β 

  A       Aαd | βd 

Now, eliminating left recursion will produce the following 
productions: 

  S        Aα | β 

   A        βdA′ 

  A′        αdA′ | € 

 

7.3 LEFT FACTORING 

Sometimes, we might have multiple grammars with the same non-
terminal at left side. The right side contains a common prefix of 
tokens. We simply rewrite these productions and replace them with 
another production. Transformation of such kind is useful for 
producing a grammar suitable for predictive parsing. Formally, the 
productions of the form: 

A  α β1 | α β2 | ……… | α βn | γ  ------------ (4) 

are n-productions with a common prefix α. γ represents all kinds of 
productions which do not begin with α . We introduce a new 
variable A′ and rewrite the productions as follows: 

A  α A′ | γ 

A′ β1 | β2 | ………. | βn 

Such equivalent representations are termed as left factoring of 
grammars. 

Let us explain left factoring with a suitable example. 

  S  iEtS | iEtSeS′ | b 

  E  a 

Here, i, t and e stand for if, then and else. E and S both stand for 
expression and statement. Now, the left factored grammar would be: 
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  S   iEtSS′ | b 

  S′  eS′ | € 

  E  a 

S′ be the new variable used during transformation. Left factorization 
eliminates common prefixes from a set of productions.  

 

 

 

 

 

 

 

7.4 DERIVE THE FIRST AND FOLLOW SETS 

In the following section, we shall try to derive the FIRST and 
FOLLOW sets for any LL grammar G, which will be used for 
construction of effective predictive parsing table. Construction of 
predictive parsing table has been discussed in next chapter. Note 
that, the grammar G should be left factored as well as left recursion 
should be eliminated from the productions which are left recursive.  

FIRST(α), for a string of grammar symbols α, is a set of terminals 
that begin the strings derived from α. If α ⇒ €, then € is in 
FIRST(α). 

To derive the FOLLOW(A) for a non-terminal A, the set of 
terminals appearing immediately to the right of A must be found 
out. For a derivation of the form S ⇒ αAbβ, where αAbβ be a 
sentential form, FOLLOW(A) is derived by the set of terminals b. If 
A is the rightmost symbol of the sentential form, then FOLLOW(A) 
consists of only of $. 

Now, let us understand the rules for computing the set FIRST(A) for 
the grammar symbol A. We apply these rules untill no more 
terminals or € can be added to the FIRST set. 

CHECK YOUR PROGRESS- I 

1. An LL(1) grammar has to be ______________. 

2. LL(1) parsing table is constructed by generating the 
____________ and __________ sets of the grammar.  

3. A left recursive grammar creates ______________. 
4. In a ____________ ______________ grammar, it is 

desirable to eliminate the  common prefix of tokens. 
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1. If A is the terminal, then FIRST(A) consists only of the 
set {A}. 

2. If A       € is a production, then FIRST(A) contains the 
element €.  

3. Let X       Y1Y2Y3….Yn be a production for the non-
terminal X, then a is in FIRST(X) if for some i, a is in 
FIRST(Yi) and € is in all FIRST(Y1),…….., FIRST(Yi-1). 
If € is in FIRST(Yj) for all j=1,2,….,n, then add € to 
FIRST(X). If Y1 does not derive €, then FIRST(X) 
consists of the set FIRST(Y1). But if Y1⇒ €, then 
FIRST(Y2) is added to FIRST(X) and so on. 

Now, the FIRST for a string Y1Y2Y3….Yn is computed by adding 
all non-€ symbols of FIRST(Y1). If € is in FIRST(Y1), then the non-
€ symbols of FIRST(Y2) is added. Similarly, if FIRST(Y2) contains 
€, then the non-€ symbols of FIRST(Y3) will be added to the FIRST 
set. Finally, for all i, if FIRST(Yi) contains €. 

Now, to compute the FOLLOW(A) set for a non-terminal A, we 
must apply the following rules: 

1. Place $ to the FOLLOW(A), where A is the start 
symbol and $ is the right endmarker. 

2. If there is a production A  αBβ, then everything in 
FIRST(β) except € is placed in FOLLOW(B). 

3. If there is a production A  αB or a production A   
αBβ, where FIRST(β) contains €, then everything in 
FOLLOW(A) is in FOLLOW(B). 

Example 1: Consider the following grammar and find the FIRST 
and FOLLOW sets. 

E T E′ 

  E′ + T E′ | € 

  T F T′ 

  T′ * F T′ | € 

  F         (E) | id 

We know that, 

  FIRST (E)=FIRST(T)=FIRST(F)={ (, id } 

  FIRST (E′)={ +, € } 
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  FIRST (T′)={ *, € } 

  FOLLOW (E)= FOLLOW(E′)={ ), $ } 

  FOLLOW (T)= FOLLOW(T′)={ +, ), $ } 

  FOLLOW (F)= { *, +, ), $ } 

 

As per rule 3 of derivation of FIRST set, FIRST (E), FIRST (T) and 

FIRST (F) are equal. We can derive FIRST (F) set having terminals 

{ (, id }. Similarly, FIRST (E′) will contain the set { +, € } as per the 

production E′ → + T E′ | €. And FIRST (T′) will be derived by the 

set { *, € } as per the production T′ → * F T′ | €.  

Now, derivation of FOLLOW (A) sets require $ to be placed in the 

set where A is the start symbol. Here, the start symbol is E. 

Therefore, FOLLOW (E) will contain $ in the set. Apart from this, 

the FOLLOW (E) also contains ‘)’ in the set as it is the terminal 

which follows E. Now, according to rule 3 everything in FOLLOW 

(E) is in FOLLOW (E′). Therefore, FOLLOW (E′) will contain the 

same set. Derivation of FOLLOW (T) require the set FIRST (E′)={ 

+, € }. Therefore, ‘+’ is in the set. Since, E′ => €, therefore 

according to rule 2 everything in FOLLOW(E′) is in FOLLOW(T). 

Thus, FOLLOW (T) is in { +, ), $ }. Rule 3 implies FOLLOW (T′) 

will contain the same elements that FOLLOW (T) contains. In the 

same way, FOLLOW (F) will be derived by the set FIRST (T′) 

which is { *, € }. Now, FOLLOW (F) will contain the element ‘*’ in 

the set. Since, E′ => €, everything in FOLLOW (T′) is in FOLLOW 

(F). Therefore, FOLLOW (F) will have the set { *, +, ), $ }.  

FIRST and FOLLOW sets are essential for construction of 

predictive parsing table. Any grammar can derive these sets in order 

to produce its corresponding parsing table. However, if the grammar 

is left-recusrive or ambiguous, the table will have multiple entries. 
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We shall see how to construct predictive parsing tables based on 

these sets in the next unit.  

 

 

 

 

 

 

 

 

7.5 SUMMING UP 

 Context Free Grammars (CFG) describe the syntax of a 
language. They are the set of recursive rules used to generate 
patterns of strings of the language. An LL grammar is a 
context free grammar which parses the input from left to 
right and constructs the leftmost derivation of the sentence. 

 When scanning happens from left to right with one input 
symbol as look ahead at each step of parsing, it is termed as 
the LL(1) grammar. An LL(1) grammar has to be 
unambiguous. LL(1) parsing table is constructed by 
generating the FIRST and FOLLOW sets of the grammar. 

 Sometimes, we might have multiple grammars with the same 
non-terminal at left side. The right side contains a common 
prefix of tokens. We simply rewrite these productions and 
replace them with another production in order to make it 
suitable for predictive parsing. 

 Construction of predictive parsing involves two functions- 
construction of FIRST and FOLLOW sets. They fill entries 
of the parse table. 
 

7.6 ANSWERS TO CHECK YOUR PROGRESS 
1. Unambiguous 
2. FIRST and FOLLOW 

CHECK YOUR PROGRESS- II 

5. The top-down parser which involves backtracking is called 
the __________ __________ parser. 

6. A special form of top down parser which does not involve 

backtracking is termed as _________ parsing. 

7. ________ parsers can be constructed using a class of LL(1) 

grammars.  

8. A predictive parser program consists of procedures for 

each __________. 
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3. infinite loops 
4. left factored 
5. recursive descent 
6. predictive 
7. Predictive 
8. non-terminal 

 
7.7 POSSIBLE QUESTIONS 

A. Short answer type questions. 
1. Why is it required to eliminate left recursion from a 

grammar? Discuss. 
2. What is left recursive grammar? Describe. 
3. What are the tasks performed by a predictive parser 

program? 
4. Why is it necessary to derive the FIRST and FOLLOW sets 

of a grammar? 
 

B. Long answer type questions. 
1. Describe how left recursion is eliminated from a grammar? 
2. What is left factoring of grammar? Explain with an example. 
3. Describe the rules for deriving the FIRST and FOLLOW sets 

of a grammar. 
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UNIT: 8 
TOP DOWN PARSING 

 
Unit Structure 

8.0 Introduction 

8.1 Unit Objective 

8.2 Top Down Parsing 

 8.2.1 Ll(1) Grammar 

8.3 Recursive Descent Parsing 

8.4 Predictive Parsing 

 8.4.1 Non-Recursive Predictive Parsing 

8.5 Summing Up 

8.6 Answers to Check Your Progress 

8.7 Possible Questions 

8.8 References and Suggested Readings   

 

8.0 INTRODUCTION 

We already have understood what parsing is. We also know that 

parsing is of two types- top down and bottom up. In top down 

parsing, construction of parse tree begins at the root and it expands 

until the leaf nodes generate a string of terminals. Parsing of such 

kind may or may not require backtracking. Backtracking parsers 

need repeated scanning of the input during parse tree construction. 

And when a grammar has more than one production with the same 

left hand side, then it may be required to backtrack to the previous 

input once application of a production does not lead to generate the 

desired string of terminals. Another form of top down parser which 

does not require backtracking is the predictive parsing. In this 

technique, from the set of productions mentioned above, the parser 

is able to select the most eligible one, which leads to generation of 

desired string of terminals. In the last unit, we had tried to generate 
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the FIRST and FOLLOW sets; the two major functions of the 

predictive parsing table. In this unit, we shall discuss the different 

types of top down parsers. We shall also discuss how to generate 

parsing tables for all these grammars. We shall learn to implement 

these two sets in order to unambiguously determine which 

production rule to be applied in every generation step. 

 

8.1 UNIT OBJECTIVE 

After going through this unit, you will be able to: 

 Define top down parsing 

 Understand the working of a top-down parsing 

 Explain the functionality of an LL(1) parser 

 Know the working principle of a recursive descent parser 

 Explain the working of Non-recursive Predictive Parsing  

 

8.2 TOP DOWN PARSING 

The parsing problem can be defined as: given a grammar and a 
string, we need to determine whether the string belongs to the 
language of the grammar. Parsing algorithms define the structure in 
which the derivation tree is built or traversed. Based on this, parsing 
algorithms are classified into top down and bottom up parsing. Top 
down parsing corresponds to application of rules in a general top 
down fashion. The algorithm scans one symbol at a time and applies 
production rules and decides whether the string can be derived. 
Parsing always begins with the starting non-terminal. It tries to 
decide which production rule to be applied at every derivation step. 
The first symbol on the right side of rules is compared with the 
scanned input symbol. If they match, the rule is applied. Top down 
parsing attempts to find the leftmost derivation of an input string. 
Eventually, the parse tree is constructed from the root and nodes are 
generated in preorder fashion. 
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Methods are written for each non-terminal of the grammar. The 
allowable format of the grammar is A → α; where α is a string of 
terminals and non-terminals.  

 

8.2.1 LL(1) Grammar 

We have got a brief overview on LL(1) grammars in the previous 
unit. Language structures must be expressed in order ensure that it 
belongs to the LL(1) community. However, not all languages can be 
expressed in terms of LL(1) grammar. They are the subset of 
Context Free Grammars (CFGs) that can be parsed with any simple 
parsing algorithm. It can be parsed by considering only one non-
terminal and the next token in the input stream. However, it must be 
remembered that an ambiguous grammar can never be an LL(1) 
grammar. Therefore, ambiguity must be removed from it. Apart 
from this, a left recursive grammar cannot be LL(1) also. Same is 
the case with grammars with common left prefixes. Elimination of 
left recursion is must for ensuring a grammar to be LL(1). Similarly, 
common left prefixes must also be removed. Once these three are 
done, we can go for generating the FIRST and FOLLOW sets of the 
transformed grammar anf finally construct the LL(1) parsing table. 
We already have learnt to eliminate ambiguity of grammar in the 
last unit. We also have learnt to eliminate left recursion as well as 
common left prefixes.  

Scanning happens from left to right and produces the leftmost 
derivation of the input with one lookahead symbol at each step of 
parsing. LL(1) grammars can also be parsed with tables. The parsing 
table has two entries rows and columns- non-terminals and terminals 
respectively. A table-driven parser requires a grammar, a parse table 
and a stack to represent the non-terminals of the grammar. During 
each step, the top of the stack and the next input token are 
considered. If they match, stack is popped and the token is accepted. 
If they do not, the parse table is consulted and the next rule is 
applied. This process continues until the end of string is reached and 
parser successfully halts. The FIRST and FOLLOW sets are 
considered to play the crucial role in this parsing method. 
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8.3 RECURSIVE DESCENT PARSING 

A general approach to top down parsing is the recursive descent 
parsing. It involves backtracking which eventually leads to repeated 
scan of the input. A simple function is associated with each non-
terminal of the grammar. The definition of the function corresponds 
to the right side of the grammar rule. When a non-terminal is 
contained in the right side, again the function corresponding to the 
non-terminal is called. And if terminals are encountered; then the 
next token is considered. The first terminal of each rule works as a 
catalyst to decide which rule must be used for parsing. Each 
succeeding symbol of the rule must be handled separately; terminals 
for reading the next input symbol and non-terminals by calling to 
the function or procedure associated with that terminal. 

Parsing begins with the first symbol of the input string. Then the 
procedure for the starting non-terminal S is employed. This way the 
entire input string is read with one symbol at a time and the 
corresponding rule defining a non-terminal is applied. When control 
returns to the parse method after reading the entire input string, 
parsing is assumed to be completed. The two states accept and reject 
indicate whether the input string is in the language or not.  

CHECK YOUR PROGRESS- I 

1. What is top-down parsing? 
2. __________parsers need repeated scanning of the input 

during parse tree construction. 
3. Another form of top down parser which does not require 

backtracking is the __________ ________. 

4. _____grammar are the subset of Context Free Grammars. 
5. An _________ and _______________ grammar can never 

be an LL(1) grammar. 
6. What are the three prerequisites for generating an LL(1) 

grammar? 
7. LL(1) grammars can also be parsed with__________. 
8. An LL(1) parsing table contains ___________ as rows 

and __________ as columns. 
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Now, let us apply these rules to derive the string “aaaaaa”.
the production S
there are two pointers: one points to the first symbol of the string; 
i.e. ‘a’. When expanded, the second pointer points to the first 
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for simiality. Since they match, both the pointers move 
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Let us consider the following grammar to understa
 

  S aSa | aS 

  S   a | b 

Now, let us apply these rules to derive the string “aaaaaa”.
the production S → aSa is applied as shown in figure 8.1. Now, 
there are two pointers: one points to the first symbol of the string; 
i.e. ‘a’. When expanded, the second pointer points to the first 
symbol of the right side of the production; i.e. ‘a’. They are matched 
for simiality. Since they match, both the pointers move 

                Fig: (a)  Fig: (b)

Fig 8.1: Steps in a recursive descent parser

one step forward. Pointer 1 moves to the second token of the string
whereas non-terminal S will be expanded. Now, 
called recursively and the same production is applied. The second 
pointer now moves to ‘a’ of the tree. Both the pointers match and 
pointer 1 now moves to the third ‘a’ of the string. S is again 
expanded with the rule S → a. Pointer 2 moves to this ‘a’; 
eventually leading to a match and forwarding Pointer 1 to the fourth 
‘a’ of the string. In the parse tree, pointer 2 moves to the fourth ‘a’ 
and they match again. This forwards both the pointers
fifth ‘a’s of the string as well as the tree. They match again and the 
first pointer moves to the sixth element of the string. But, pointer 2 
halts and parsing is unsuccessful. Here, backtracking occurs to the 
last non-terminal being expanded. So, we will move back to 
try to apply another alternative S → aS. Finally, S is again expanded 
using production S → a. Now, this process produces the string we 

Let us consider the following grammar to understand the process 

Now, let us apply these rules to derive the string “aaaaaa”. Initially, 
aSa is applied as shown in figure 8.1. Now, 

there are two pointers: one points to the first symbol of the string; 
i.e. ‘a’. When expanded, the second pointer points to the first 

They are matched 
for simiality. Since they match, both the pointers move  

Fig: (b) 

Steps in a recursive descent parser 

Pointer 1 moves to the second token of the string 
. Now, procedure S is 

the same production is applied. The second 
of the tree. Both the pointers match and 

pointer 1 now moves to the third ‘a’ of the string. S is again 
a. Pointer 2 moves to this ‘a’; 

eventually leading to a match and forwarding Pointer 1 to the fourth 
tree, pointer 2 moves to the fourth ‘a’ 

and they match again. This forwards both the pointers to refer to the 
They match again and the 

first pointer moves to the sixth element of the string. But, pointer 2 
Here, backtracking occurs to the 

terminal being expanded. So, we will move back to S and 
Finally, S is again expanded 

a. Now, this process produces the string we 



 

want to parse. This is how, recursive descent parsing backtacks
faulty node and tries to decide whether a stri
language or not. 

Recursive descent parser result in inefficiencies as it may involve 
backtracking as well as ambiguit

8.4 PREDICTIVE PARSING

Another form of top down parsing which does not require 
backtracking is the predictive parsing
predict which grammar rule can be unambiguously applied on a 
particular input token. Predictive parsing can be obtained by 
carefully eliminating left recursion from the grammar and also left 
factoring it. The new grammar can be parsed by a recursive descent 
parser with no backtracking.

8.4.1 Non-recursive Predictive Parsing

Predictive parsing can be effectively implemented using a stac
rather than recursive procedure call
predictive parsing is to determine the production to be applied for a 
non-terminal. The non-recursive predictive parser looks for a 
production to be applied in a parsing table.
recursive predictive parser has been shown in the following figure.

 

 

                             

Fig 8.2 : Model of a non

The table driven predictive parser contains an input buffer, a stack, a 
parsing table and an output stream. The bottom of the stack is 
indicated by a $. Similarly, the 
of the input buffer. The parsing program controls th
functioning of the parser. 
and based on this, it determines the rule to be applied to a non

129 

want to parse. This is how, recursive descent parsing backtacks to a 
faulty node and tries to decide whether a string belongs to a 

Recursive descent parser result in inefficiencies as it may involve 
backtracking as well as ambiguities.  

8.4 PREDICTIVE PARSING 

Another form of top down parsing which does not require 
is the predictive parsing. The parser can effectively 

predict which grammar rule can be unambiguously applied on a 
Predictive parsing can be obtained by 

eliminating left recursion from the grammar and also left 
factoring it. The new grammar can be parsed by a recursive descent 
parser with no backtracking. 

recursive Predictive Parsing 

Predictive parsing can be effectively implemented using a stack 
rather than recursive procedure calls. The main problem with 
predictive parsing is to determine the production to be applied for a 

recursive predictive parser looks for a 
production to be applied in a parsing table. The model of a non-
recursive predictive parser has been shown in the following figure. 

 

 

 

Fig 8.2 : Model of a non-recursive predictive parser 

The table driven predictive parser contains an input buffer, a stack, a 
parsing table and an output stream. The bottom of the stack is 
indicated by a $. Similarly, the same indicates the right end marker 

The parsing program controls the overall 
 The program consults the parsing table 

and based on this, it determines the rule to be applied to a non-
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terminal. The parsing program considers the top of the stack X and 
the current input symbol a. The action of the parser depends on 
these two symbols ans is determined by as follows: 

1. If X=a=$, the parser halts with a successful completion 
of parsing. 

2. If X=a≠$, the parser pops X off the stack and advances 
the input pointer to the next input symbol. 

3. If X is non-terminal, the parser program consults entry 
M[X, a] of the parsing table M. The entry will be either 
an X-production or an error entry. If M[X, a] = { X → 
PQR}, the parser replaces X by RQP with P at the top. If 
M[X, a] = error, the parser calls for the error recovery 
routine. 

The algorithm for implementing non-recursive predictive parsing 
has been shown below. 

Algorithm 8.1: Non-recursive predictive parsing 

Input:  A string w and a parsing table M for grammar G. 

Output: If w is in L(G), a leftmost derivation of w; otherwise error. 

Method: The parser is initialized with $S as the only element on the 
stack, where S is the start symbol of G and w$ in the input buffer. It 
utilizes the predictive parsing table M to produce the parse tree for 
the input in the following manner. 

Set ip to point to the first symbol of w$ 

repeat  

let X be at the top of the stack and a be the symbol pointed to by ip 

if X is a terminal or $ then 

if X = a then 

pop X off the stack and advance ip 

else error() 

 else 

 if M[X, a] = X → Y1Y2Y3…..Yk then begin 

 pop X off the stack 

 push YkYk-1 ………Y2Y1 onto the stack with Y1 on the top 
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 output the production X → Y1Y2Y3…..Yk 

  end 

  else error() 

  until X = $  /* stack is empty */ 

Prior to applying the algorithm, we must learn to create the parsing 
table for the grammar. Construction of predictive parsing table 
follows an algorithm which we will discuss now. In the previous 
chapter, we had gained some ideas regarding the derivation of 
FIRST and FOLLOW sets. It is worth to mention at this point that 
these two sets will be applied during the construction of predictive 
parsing table. 

 

Algorithm 8.2: Construction of predictive parsing table 

Input: Grammar G 

Output: Parsing table M 

Method:  

1. For each production A → α of the grammar, do steps 2 
and 3. 

2. For each terminal a in FIRST(α), add A → α to M[A, a]. 
3. If € is in FIRST(α), add A → α to M[A, b] for each 

terminal b in FOLLOW(A). If € is in FIRST(α) and $ is 
in FOLLOW(A), add A → α to M[A, $]. 

4. Make each undefined entry of M be error. 

We shall apply this algorithm to derive the parsing table after 
eliminating left recursion from the grammar and further left 
factoring it.  

Let us again consider the following grammar G derived in section 
7.5 of the previous unit. 

G:  E T E′ 

  E′ + T E′ | € 

  T F T′ 

  T′ * F T′ | € 
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  F         (E) | id 

We know that, 

  FIRST(E)=FIRST(T)=FIRST(F)={ (, id } 

  FIRST(E′)={ +, € } 

  FIRST(T′)={ *, € } 

  FOLLOW(E)= FOLLOW(E′)={ ), $ } 

  FOLLOW(T)= FOLLOW(T′)={ +, ), $ } 

  FOLLOW(F)= { *, +, ), $ } 

Now, let us apply algorithm 8.2 to generate the predictive parsing 
table. The input symbols are id, +, *, (, ) and $. The non-terminals 
are E, E′, T, T′ and F.  

 
Table 8.1: Predictive parsing table M  

Source: Compilers: Principles, techniques and tools by Aho, 
Sethi and Ullman 

Non-
terminal 

Input Symbol 

id + * ( ) $ 

E E→ T 
E′ 

  E→ T 
E′ 

  

E′  E′→ 
+T E′ 

  E′→  € E′→  € 

T T→ F 
T′ 

  T→ F 
T′ 

  

T′  T′→  € T′→ * 
F T′ 

 T′→  € T′→  € 

F F→ id   F→ 
(E) 

  

 

The FIRST sets of non-terminal E, T and F consists of set { (, id }. 
Therefore, the parse table entries M[E, id], M[T, id] and M[F, id] 
will contain the productions E→ T E′, T→ F T′ and F→id 
respectively. Similarly, the FIRST set of E′ consists of { +, € }. So, 
the production E′→ +T E′ will fill the entry M[E′, +] of the parsing 
table M. Now, since the set also contains €, therefore we shall 
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consider the FOLLOW set of E′, which is { ), $ }. The entries M[E′, 
)] and M[E′, $] will be filled up with E′→  €. The FIRST set of T′ 
consists of { *, € }. Therefore, M[T′, *] entry contains the 
production T′→ * F T′. Similarly, for € the FOLLOW(T′) set will be 
used which is {+, ), $ }. So, the entries M[T′, +], M[T′, )] and M[T′, 
$] will be filled up with T′→  €. 

Now, Let’s implement algorithm 8.1 on input string “id + id * id” to 
trace the sequence of moves using this table. Initially, the input 
pointer points to the leftmost symbol of the string. We put a $ as the 
right end marker of the input string. Similarly, the stack will also 
contain $E; where $ indicates the bottom of the stack and E is the 
start symbol of the grammar. 

Table 8.2: Moves made by predictive parsing table M on input 
id + id * id 

Source: Compilers: Principles, techniques and tools by Aho, 
Sethi and Ullman 

Stack Input Output 

$E id + id * id $  

$ E′ T  id + id * id $ E→ T E′ 

$ E′ T′ F id + id * id $ T→ F T′ 

$ E′ T′ id id + id * id $ F→ id 

$ E′ T′ + id * id $  

$ E′ + id * id $ T′→  € 

$ E′ T + + id * id $ E′→ +T E′ 

$ E′ T id * id $  

$ E′ T′ F id * id $ T→ F T′ 

$ E′ T′ id id * id $ F→ id 

$ E′ T′ * id $  

$ E′ T′ F *  * id $ T′→ * F T′ 

$ E′ T′ F id $  

$ E′ T′ id id $ F→ id 

$ E′ T′ $  

$ E′ $ T′→  € 

$ $ E′→  € 
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Parsing begins with E as the top of the stack and the input symbol 
id.  The parser looks up the table to find the entry E→ T E′ and 
replaces E with E′T with T at the top. Next, the parser finds the 
entry M[T, id] as  T→ F T′. T is now replaced with T′ F with F at 
the top of the stack. Now, entry M[F, id] is searched and found to be 
F→ id. The stack now cntains $ E′ T′ id with id at the top. The input 
pointer also points to id. Therefore, according to algorithm 8.1 the 
top of the stack must be popped and the input pointer is advanced to 
‘+’. The stack now contains $ E′ T′. The parser again tries to find 
out the entry M[T′, +] which is T′→  €. This replaces T′ by € leaving 
the stack element $ E′. In this way, the parser makes different moves 
according to the algorithm. If finally we get an empty stack as well 
as input string having the only symbol ‘$’, parsing comes to a halt 
after accepting the string.  

Sometimes, it happens that the predictive parsing table M contains 
multiple entries. If grammar G1 is left recursive or ambiguous, it 
will have at least one multiply-defined entry. Let us consider the 
grammar 

G1:  S → iEtSS′ | a 

  S′ → eS | € 

  E → b 

Now, we derive the FIRST set of G. 

  FIRST(S) = {a, i} 

  FIRST(S′) = {e, €} 

  FIRST(E) = {b} 

Next, we derive the FOLLOW set of G. 

  FOLLOW(S) = {e, $} 

  FOLLOW(S′) = {e, $} 

 

Table 8.3: Predictive parsing table M  
Source: Compilers: Principles, techniques and tools by Aho, 

Sethi and Ullman 
Non-

terminal 
Input Symbol 

a b e i t $ 

S S → a   S →   
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iEtSS′ 

S′   S′ → 
eS 

S′ → € 

  S′ → € 

E  E → b     

 

 

The table rows are represented by non-terminals S, S′ and E and the 
columns are represented by terminals a, b, e, i, t and $. According to 
algorithm 8.2, the parse table entries for S non-terminals correspond 
to FIRST(S). Similarly, for S′, the FIRST(S′) will be considered. 
Accordingly, production S′ → eS will be entered in M[S′, e]. Since, 
FIRST(S′) contains €, FOLLOW(S′) set will be considered, which is 
{e, $}. Therefore, S′ → € will be put in the entries M[S′, e] and 
M[S′, $]. Lastly, the entry M[E, b] will contain the production E → 
b. The entry M[S′, e] contains more than one entry. A grammar 
whose parsing table does not contain multiple-defined entries is 
termed as LL(1) grammar. A grammar G is LL(1) if and only if for 
any two distinct production A → α | β of G: 

1. Both α and β should not derive strings beginning with 
terminal a. 

2. At most one of both α and β derive the empty string €. 

3. If β ⇒ €, then α does not does not derive any string 
beginning with a terminal in FOLLOW(A). 

 

Clearly, G1 is not an LL(1) grammar. Therefore, question arises 
what to do with a parsing table having multiple-entries. Of course, 
one immediate action that should be taken is to eliminate left 
recursion and then left factoring the grammar. However, some 
grammars can never produce an LL(1) parser. In general, there is no 
universal rule which can transform a multiple-defined entry of a 
grammar into a single valued one without affecting the language 
recognized by the parser. 
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8.5 SUMMING UP 

 Derivation may take place in zero or more steps or in one or 
more steps. A sentential form is a combination of grammar 
symbols like terminals and non-terminals. During the 
process of derivation, the input symbols of the string to be 
parsed are scanned from left to right. 

 Each step of string derivation can be represented during 
construction of a parse tree. Just like derivation, parse tree 
construction also begins at the start symbol or root. Root has 
no parents.  

 A tree consists of one or more nodes. The head and the body 
of a production represent the parent and children 
respectively. Edges come out of the parent to its children. 

 Grammars are more powerful notation than regular 
expression. They describe a language more precisely. A 
programming language construct that is described by a 
regular expression can also be described by a grammar. 
However, the reverse is not possible. Therefore, every 
regular expression is a context free grammar but not vice-
versa.  

 In top down parsing, construction of parse tree begins at the 
root and it expands until the leaf nodes generate a string of 
terminals. Parsing always begins with the starting non-

CHECK YOUR PROGRESS- II 

9. Recursive descent parsing is a bottom-up parsing. State 
whether true or false. 

10. Recursive descent parsing does not involve backtracking. 
State whether true or false. 

11. Why does a recursive descent parser result in 
inefficiencies? 

12. A predictive parser involves backtracking. State whether 
true or false. 

13. Predictive parsing can be effectively implemented using a 
________rather than recursive procedure calls. 

14. If grammar G is left recursive or ambiguous, it will have 
at least one ___________ entry. 
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terminal. The parsing algorithm scans one symbol at a time 
and decides which production rules will be applied in order 
to derive a string.  

 Top down parsing may or may not require backtracking. 
Backtracking parsers need repeated scanning of the input 
during parse tree construction. The two states of parsing are 
accept and reject which indicate whether the input string is 
in the language or not.  

 LL(1) grammar is the subset of Context Free Grammars 
(CFGs) that can be parsed with any simple parsing 
algorithm. It can be parsed by considering only one non-
terminal and the next token in the input stream. Scanning 
happens from left to right and produces the leftmost 
derivation of the input with one lookahead symbol at each 
step of parsing. 

 The FIRST and FOLLOW sets are the two major functions 
that play important role in construction of the predictive 
parsing table. Prior to generating the FIRST and FOLLOW 
sets, ambiguities, left recursion and common left prefixes 
must be removed. Then, one can go for generating LL(1) 
parsing table. 

 The recursive descent parsing involves backtracking which 
eventually leads to repeated scan of the input. A simple 
function is associated with each non-terminal of the 
grammar. The definition of the function corresponds to the 
right side of the grammar rule. Recursive descent parser 
results in inefficiencies as it may involve backtracking as 
well as ambiguities.  

 The predictive parser can effectively predict which grammar 
rule can be unambiguously applied on a particular input 
token. Parsing can be obtained by carefully eliminating left 
recursion from the grammar and also left factoring it. 

 Predictive parsing can be effectively implemented using a 
stack rather than recursive procedure calls. The main 
problem with predictive parsing is to determine the 
production to be applied to a non-terminal. 

 A table driven predictive parser contains an input buffer, a 
stack, a parsing table and an output stream. . If a grammar is 
left recursive or ambiguous, it will have at least one 
multiply-defined entry in the table. 
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8.6 ANSWERS TO CHECK YOUR PROGRESS 
1. In top down parsing, construction of parse tree begins at the 

root and it expands until the leaf nodes generate a string of 
terminals. 

2. Backtracking 
3. predictive parsing. 
4. LL(1) 
5. Ambiguous, left recursive 
6. 1. Removal of ambiguity 2. Removal of left recursion and 3. 

Elimination of common left prefixes. 
7. Tables 
8. non-terminals, terminals 
9. False 
10. False 
11. Recursive descent parser result in inefficiencies as it may 

involve backtracking as well as ambiguities.  
12. False 
13. stack 
14. multiply-defined 

 

8.7 POSSIBLE QUESTIONS 

A. Short answer type questions. 
1. What do you mean by parsing? Explain its types in brief. 
2. What is top-down parsing? Explain with an example. 
3. What is LL(1) parsing? Discuss. 
4. How does the recursive descent parser lead to inefficient 

parsing? 
5. What is predictive parsing? Explain in brief. 
6. Why are FIRST and FOLLOW sets required during parsing? 
 

B. Long answer type questions. 
1. Explain how top-down parsing is implemented. 
2. Describe how LL(1) parsing is implemented. 
3. What is recursive descent parsing? Describe how 

backtracking takes place in recursive descent parsing. 
4. Describe the model of non-recursive predictive parsing. 
5. How do you construct a predictive parsing table? Explain 

with an example. 
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6. How do you derive the FIRST and FOLLOW sets from a 
grammar? Also describe the steps to construct parsing table 
using these two sets. 
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UNIT: 9 
BOTTOM UP PARSING 

 
 
Unit Structure 
 
9.0 Introduction 

9.1 Techniques Used in Bottom Up Parsing 

9.2 Introduction to LR Parsing 

9.3 LR (0) Automaton 

9.4 SLR Parsing Table 

9.5 Check Your Progress 

9.6 Answers to Check Your Progress 

9.7 Canonical LR Parsing Table 

9.8 LALR Parsing Table 

9.9 Error Detection and Recovery 

9.10 Check Your Progress 

9.11 Answers to Check Your Progress 

9.12 References and suggested Readings 

9.13 Additional Resources 

 
 
 
9.0 INTRODUCTION 
 
Bottom-up parsing is a strategy used by compilers to analyze the 

structure of programming language statements and construct a parse 

tree from a sequence of input tokens. This parsing technique starts 

from the leaves (the terminal symbols or tokens) and works its way 

up to the root of the parse tree. It builds the parse tree by identifying 

the lowest-level elements first and then applying production rules in 

reverse (from right to left) to integrate these elements into higher-

level structures, until the entire input is reduced to the start symbol 

of the grammar. 
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9.1 TECHNIQUES USED IN BOTTOM UP PARSING  
 
9.1.1 Shift-Reduce Parsing Technique 
One of the most common bottom-up parsing methods is the Shift-

Reduce parsing technique, which uses a stack to hold grammar 

symbols and a buffer for the input tokens. The parser shifts tokens 

from the input buffer to the stack and tries to match the items at the 

top of the stack with the right-hand side of grammar rules. When a 

match is found, the parser performs a reduce operation by replacing 

the items on the stack with the corresponding non-terminal symbol 

from the left-hand side of the rule. 

 
 Example: 

 
Consider a simple grammar for arithmetic expressions: 
 
1. "E → E + T" 
2. "E → T" 
3. "T → T * F" 
4. "T → F" 
5. "F → ( E )" 
6. "F → id" 
 
And an input expression to be parsed: “id + id * id” 
 
The bottom-up parsing process for this expression could look 
something like this: 
 
- Initial State: 
    - Stack: "empty" 
    - Input: "id + id * id$" ($ signifies the end of the input) 
 
- Shift "id": 
    - Stack: "id" 
    - Input: "+ id * id$" 
 
- Reduce by rule 6 (F → id): 
    - Stack: "F" 
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    - Input: "+ id * id$" 
 
-   Reduce by rule 4 (T → F):   
    - Stack: "T" 
    - Input: "+ id * id$" 
 
-   Reduce by rule 2 (E → T):   
    - Stack: "E" 
    - Input: "+ id * id$" 
 
-   Shift "+":   
    - Stack: "E +" 
    - Input: "id * id$" 
 
-   Shift "id":   
    - Stack: "E + id" 
    - Input: "* id$" 
 
-   Reduce by rule 6 (F → id):   
    - Stack: "E + F" 
    - Input: "* id$" 
 
-   Reduce by rule 4 (T → F):   
    - Stack: "E + T" 
    - Input: "* id$" 
 
-   Shift "*":   
    - Stack: "E + T *" 
    - Input: "id$" 
 
-   Shift "id":   
    - Stack: "E + T * id" 
    - Input: "$" 
 
-   Reduce by rule 6 (F → id):   
    - Stack: "E + T * F" 
    - Input: "$" 
 
-   Reduce by rule 3 (T → T * F):   
    - Stack: "E + T" 
    - Input: "$" 
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-   Reduce by rule 1 (E → E + T):   
    - Stack: "E" 
    - Input: "$" 
 
At this point, the entire input has been reduced to the start symbol 

"E", indicating that the input string is syntactically correct according 

to the given grammar. The parser has constructed the parse tree for 

the input expression from bottom to top, confirming its structure 

based on the grammar rules. 

 

9.1.1 Operator Precedence Parsing 
Operator precedence parser is kinds of shift reduce parsing method. 

Thus, Operator Precedence Parsing is a bottom-up parsing technique 

used to parse the input where operators have different precedences. 

Unlike other parsing methods, it doesn’t require a parse tree. 

Instead, it relies on a precedence table to make parsing decisions. 

The table defines the precedence and associativity of operators, 

allowing the parser to decide when to shift (read more input) and 

when to reduce (combine tokens into expressions based on the 

operators" precedence). 

 

The main idea behind Operator Precedence Parsing is to handle 

infix expressions where operators have different levels of 

precedence and may have left-to-right (left associativity) or right-to-

left (right associativity) evaluation order. 

 
 Example: 

Consider a simple expression grammar that includes addition ("+"), 
multiplication ("*"), and parentheses to alter precedence: 
 
a) Operators: +, * 
b) Operands: "id" (identifiers or numbers) 
c) Parentheses: "(", ")" 
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Precedence and associativity rules: 
a) * has higher precedence than +. 
b) Both "*" and "+" are left associative. 
c) Parentheses "(" and ")" can alter the normal precedence. 
 
Let’s parse the expression: "id + id * id" 
 
First, construct the precedence table based on the grammar rules: 
 
| Operator | "<" (less precedence) | "=" (equal precedence) | ">" 
(greater precedence) | 
|------------|---------------------------|------------------------------|-----------
--------------------| 
| "+"         | "id", "("                      | "+"                                 | "*", ")"                             
| 
| "*"         | "id", "(", "+"              | "*"                                  | ")"                                    
| 
| "id"        | "+", "*"                      |                                        | ")", "+", 
"*"                     | 
| "("          | "id", "("                     |                                        | ")"                                    
| 
| ")"          | "+", "*"                     |                                        | ")", "+", 
"*"                     | 
 
Now, let’s parse the expression "id + id * id": 
 
1.   Initial State: Start with an empty stack and the input expression 
in front of you. 
 
2.   Step 1: Shift "id" onto the stack because there’s no precedence 
relation on an empty stack. 
 
3.   Step 2: Upon seeing "+", compare it with "id" on the stack. 
According to the table, "id >  +", so shift "+" onto the stack. 
 
4.   Step 3: Shift the next "id" because "+ < id". 
 
5.    Step 4: Upon seeing "*", compare it with "id" on the stack. 
Since "id < *", shift "*" onto the stack. 
 
6.    Step 5: Shift the last "id". 
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7.  Reduction Steps: Now, you’ll start reducing based on the 

precedence. The top of the stack is "id", which is greater 

in precedence than the operators "+" and "*" below it, 

indicating that these tokens can be combined according 

to the rules of precedence ("id * id" gets combined first 

due to higher precedence of "*" over "+", then the result 

is combined with the leading "id" via "+"). 

 

The process involves looking at the stack and the next input symbol, 

then deciding whether to shift (put the symbol on the stack) or 

reduce (apply a grammar rule to reduce the stack’s top symbols to a 

non-terminal) based on the precedence relations. 

 

This explanation simplifies the actual parsing steps and omits the 

construction of syntax trees or the detailed handling of end-of-input 

scenarios. Operator precedence parsing requires a careful design of 

the precedence table and clear rules for handling each operator and 

operand to ensure correct parsing and evaluation of expressions. 

 
9.2 INTRODUCTION TO LR PARSING 
LR parsing, which stands for Left-to-right, Rightmost derivation 

parsing, is a bottom-up method for analyzing the syntax of a given 

input string against a set of production rules in a context-free 

grammar. It builds a parse tree from the leaves (the input symbols) 

up to the root (the start symbol). This method is particularly 

efficient and widely used for parsing programming languages due to 

its ability to parse a vast class of grammars, known as LR 

grammars, which includes most programming languages. 

 

9.2.1 Importance of LR Parsing 
LR parsers have several key advantages that make them suitable for 

compiler design and syntax analysis in general: 
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1. Efficiency: They can parse many constructs in programming 

languages in linear time relative to the length of the input. 

2. Power: LR parsing techniques can handle a wide range of 

grammars, including those that are not suitable for simpler parsers 

like recursive descent parsers without backtracking. 

3. Detecting Syntax Errors Early: LR parsers can detect syntax 

errors as soon as it is mathematically possible to do so in a left-to-

right scan of the input. 

4. Automatic Parser Generation: Tools like YACC (Yet Another 

Compiler Compiler) and Bison can automatically generate LR 

parsers from a grammar specification, making the development of 

compilers and interpreters easier and less error-prone. 

 
 Example of LR Parsing 

 
Consider a simple grammar for arithmetic expressions: 
E → E + T | T 
T → T * F | F 
F → ( E ) | id 
 
Where "E" is an expression, "T" is a term, "F" is a factor, and "id" 

represents identifiers (like variable names or numbers). 

 

To parse the input string "id + id * id" using LR parsing, we would 

proceed as follows: 

1.   Shift   the first "id" onto the stack. The stack now contains "id". 

2.   Since "id" matches the right side of the production "F → id", we   

reduce   it to "F". The stack now contains "F". 

3. The "F" can be further reduced to "T" ("T → F"), and then to "E" 

("E → T"). Now, the stack contains "E". 

4. Next, we   shift   the "+" and the following "id" onto the stack, 

giving us a stack of "E + id". 
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5. The "id" is reduced to "F", then "T", and since we have "E + T" 

on the stack, we can reduce it to "E" using the rule "E → E + T". 

6. Now, the stack once again contains "E". If this was the entire 

input, we would be done, and the input would be successfully 

parsed. 

 

This process illustrates how an LR parser reads the input, shifts 

symbols onto a stack, and applies reductions according to the 

grammar’s production rules. The parser continues this process until 

the entire input is consumed and reduced to the start symbol, 

indicating that the input conforms to the grammar’s rules. 

 

LR parsing’s ability to efficiently handle complex grammars with a 

systematic approach makes it a cornerstone of modern compiler 

design, allowing for robust, error-resistant parsers that can be 

automatically generated from a language’s grammar. 

 
 
9.3 LR(0) AUTOMATON 
 
LR(0) automaton is a foundational concept in the theory of LR 

parsing, which is used to recognize whether a string belongs to a 

certain grammar. It forms the basis for more complex LR parsing 

strategies, like SLR(1), LALR(1), and LR(1), which are widely used 

in compiler design for syntax analysis. An LR(0) automaton is 

constructed from the grammar of a programming language and is 

used to generate the parsing table that guides the parsing process. 

 

9.3.1 Working of LR(0) Automaton  
The LR(0) automaton is a state machine where each state represents 

a set of "items," and each item represents a possible position in the 

parsing process of a production rule from the grammar. An item in 
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this context is a production rule with a dot indicating how much of 

the rule has been seen (or parsed) at any point in time. 

 

9.3.1.1 Construction of LR(0) Automaton 
 

1. Start Item: Begin with the start symbol of the grammar 

augmented with a new start rule (e.g., "S" → S" for start symbol 

"S") and a dot at the beginning (e.g., "S" → .S"). This constitutes the 

initial state of the automaton. 

2. Closure Operation: For each state, apply the closure operation to 

include all items that could potentially be reached from the current 

items in the state. This means if an item has a dot before a non-

terminal, add new items for each production of that non-terminal, 

with the dot at the beginning. 

3. Transition Operation: For each state and each grammar symbol 

(terminal or non-terminal), create a transition to a new state by 

moving the dot past that symbol in all items where it appears 

directly before the symbol. This represents the parser recognizing 

that symbol and moving forward in the input. 

4. Repeat: Apply the closure and transition operations until no new 

states can be added. 

 
 Example: 

 
Given a simple grammar: 
S → A 
A → aA | b 
 
The LR(0) items would include: 
 
- "S" → .S" (the augmented start rule) 
- "S → .A" 
- "A → .aA" 
- "A → .b" 



149 
 

From these items, you would construct states and transitions based 

on where the dot can move given the input symbols ("a" or "b"). For 

instance, moving the dot over "A" in            "S → .A" would lead to 

a new state with the item "S → A." indicating that an "A" has been 

fully parsed as expected by the rule for "S". 

 

9.3.2 Importance of LR(0) Automaton 
The LR(0) automaton is important because: 

a) It provides a systematic way to construct parsing tables for LR(0) 

parsers, which can then be used to parse languages defined by LR(0) 

grammars. 

b) It helps in understanding how parsers recognize language 

constructs and manage ambiguities or errors in syntax. 

- It lays the groundwork for understanding more complex LR 

parsing methods that deal with a broader range of grammars by 

introducing concepts like lookaheads and merging states to handle 

conflicts. 

However, LR(0) parsers are limited by their inability to handle 

grammars with certain kinds of ambiguity or lookahead 

requirements, which are overcome by SLR(1), LALR(1), and LR(1) 

parsers that build on the concept of the LR(0) automaton with 

additional features. 

 

9.4  SLR PARSING TABLE 
Simple LR (SLR) parsing is an enhancement of LR(0) parsing that 

aims to resolve some of the limitations associated with LR(0) 

parsers, particularly their inability to handle grammars with certain 

conflicts. SLR parsing uses a parsing table constructed from an 

LR(0) automaton but with an added mechanism for deciding when 

to reduce, based on lookahead tokens. This additional lookahead 

information allows SLR parsers to handle a wider range of 
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grammars by reducing the number of conflicts (such as shift/reduce 

and reduce/reduce conflicts) encountered during parsing. 

 
9.4.1 Components of the SLR Parsing Table 
 
An SLR parsing table consists of two main parts: 
 
1. Action Table: Determines the parser’s actions (shift, reduce, 

accept, or error) based on the current state and the lookahead token 

from the input. The actions are: 

   - Shift: Move the parser to a new state, "shifting" the lookahead 

token onto the stack. 

   - Reduce: Apply a grammar rule to replace a sequence of symbols 

on the stack with the      

                  rule’s left-hand side, moving the parser to a state that 

reflects this reduction. 

   - Accept: Indicate that the input string has been successfully 

parsed. 

   - Error: Indicate a syntax error. 

 

2. Goto Table: Used after reductions to determine the next state 

based on the non-terminal that has just been introduced onto the 

stack by a reduction. 

 

9.4.2 Construction of the SLR Parsing Table 
To construct an SLR parsing table, follow these steps: 

1. Construct the LR(0) Automaton: Begin by constructing the 

LR(0) automaton for the given grammar, as described previously. 

2. Identify Follow Sets: For each non-terminal in the grammar, 

compute the "follow set," which is the set of terminals that can 

appear immediately to the right of that non-terminal in some 

"sentential form" of the grammar. The sentential form includes both 
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complete sentences in the language and partial sentences that could 

be completed into full sentences. 

3. Fill in the Action Table:  
   - For each state in the LR(0) automaton, if there is a transition on a 

terminal symbol, add a "shift" action to the corresponding cell in the 

action table. 

   - If a state includes an item indicating a completed rule (e.g., "A 

→ α."), add a "reduce" action for that rule in all cells under 

terminals in the follow set of "A". If the item is for the augmented 

start rule (indicating the entire input has been parsed), add an 

"accept" action for the end-of-input marker. 

4. Fill in the Goto Table: For each state that has a transition on a 

non-terminal, record the resulting state in the goto table. 

 
 Example: 

 
Given a grammar: 
 
1. S → L=R 
2. S → R 
3. L → *R 
4. L → id 
5. R → L 
 
Without delving into the specifics of constructing the entire LR(0) 
automaton and follow sets, the key concept here is how the action 
and goto tables are filled based on the automaton's states and the 
grammar’s follow sets. For instance, if the follow set of "L" includes 
"=", and there’s a state in the automaton with "L → *R.", indicating 
that rule 3 can be reduced, then in the action table, for that state, 
under the "=" column (because "=" is in the follow set of "L"), you 
would add a "reduce by rule 3" action. 
 
9.4.3  Importance of SLR Parsing 
 
SLR parsers are more powerful than LR(0) parsers because they can 

handle a broader class of grammars thanks to their use of follow sets 
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to resolve conflicts. They strike a balance between the simplicity of 

LR(0) parsers and the power of more complex parsers like LALR(1) 

and LR(1), making them suitable for many practical parsing tasks. 

However, SLR parsing still has limitations and can encounter 

conflicts with certain grammars, leading to the development of even 

more sophisticated parsing techniques. 

 
9.5 CHECK YOUR PROGRESS 
 
1. What is bottom-up parsing? 

   - A) A parsing technique that starts from the root of the parse tree 

and works its way down to the leaves. 

   - B) A parsing technique that starts from the leaves of the parse 

tree and works its way up to the root. 

   - C) A parsing technique that only uses recursive descent parsing 

methods. 

   - D) A parsing technique that does not use any stack for parsing. 

 

2. Which of the following is a common bottom-up parsing method? 

   - A) Predictive parsing 

   - B) Recursive descent parsing 

   - C) Shift-Reduce parsing 

   - D) Top-Down parsing 

 

3. In the context of Shift-Reduce parsing, what does the "shift" 

operation do? 

   - A) It replaces items on the stack with a non-terminal symbol. 

   - B) It moves tokens from the input buffer to the stack. 

   - C) It discards tokens from the input without processing. 

   - D) It merges two adjacent non-terminals into a single terminal. 
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4. What is the purpose of the "reduce" operation in Shift-Reduce 

parsing? 

   - A) To add more tokens to the input buffer. 

   - B) To move tokens from the stack back to the input buffer. 

   - C) To replace items on the stack with the corresponding non-

terminal symbol from the left-hand side of the grammar rule. 

   - D) To shift the focus of parsing from left to right in the input. 

 

5. Based on the example given, which rule is applied first in the 

parsing process of the input "id + id * id"? 

   - A) E → E + T 

   - B) E → T 

   - C) T → T * F 

   - D) F → id 

 

6. Which of the following statements best describes the final state of 

the stack when the input "id + id * id" is successfully parsed? 

   - A) The stack contains multiple instances of terminals and non-

terminals mixed together. 

   - B) The stack is empty because all symbols have been processed. 

   - C) The stack contains just the start symbol of the grammar. 

   - D) The stack contains all the input tokens in reverse order. 

 

7. How does bottom-up parsing confirm the syntactic structure of an 

input according to a given grammar? 

   - A) By matching input tokens with grammar rules from left to 

right. 

   - B) By applying grammar rules in reverse to reconstruct the input 

from the start symbol. 

   - C) By predicting which grammar rule to apply next based on 

lookahead tokens. 
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   - D) By eliminating tokens that do not match any grammar rule. 

 

8. What is the main purpose of Operator Precedence Parsing? 

   - A) To evaluate arithmetic expressions based on operator 

precedence and associativity. 

   - B) To directly execute arithmetic operations without parsing. 

   - C) To parse programming languages entirely, including control 

structures. 

   - D) To eliminate the need for a grammar in parsing expressions. 

 

9. Which of the following is true about Operator Precedence 

Parsing? 

   - A) It does not require a precedence table for parsing. 

   - B) It only applies to left-associative operators. 

   - C) It uses a precedence table to resolve conflicts between 

operators. 

   - D) It treats all operators as having equal precedence. 

 

10. In Operator Precedence Parsing, what does a "shift" action 

imply? 

   - A) Immediate execution of an operation based on operator 

precedence. 

   - B) Reading more input to decide the parsing action based on the 

precedence table. 

   - C) Reduction of the current input without considering further 

tokens. 

   - D) Ignoring operator precedence and associativity rules. 

 

11. What role does the precedence table play in Operator 

Precedence Parsing? 

   - A) It specifies the syntax of the programming language. 
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   - B) It determines the order of operations based on the precedence 

and associativity of operators. 

   - C) It eliminates the need for operators in expressions. 

   - D) It provides a way to bypass grammar rules for faster parsing. 

 

12. How does Operator Precedence Parsing handle the expression "a 

+ b * c"? 

   - A) It groups "a + b" together first because addition comes first in 

the expression. 

   - B) It groups "b * c" together first because multiplication has 

higher precedence than addition. 

   - C) It treats addition and multiplication as having equal 

precedence. 

   - D) It requires additional input from the user to decide the order 

of operations. 

 
9.6 ANSWERS TO CHECK YOUR PROGRESS 
 
1. B) A parsing technique that starts from the leaves of the parse tree 

and works its way up to the root. 

2. C) Shift-Reduce parsing 

3. B) It moves tokens from the input buffer to the stack. 

4. C) To replace items on the stack with the corresponding non-

terminal symbol from the left-hand side of the grammar rule. 

5. D) F → id 

6. C) The stack contains just the start symbol of the grammar. 

7. B) By applying grammar rules in reverse to reconstruct the input 

from the start symbol. 

8. A) To evaluate arithmetic expressions based on operator 

precedence and associativity. 

9. C) It uses a precedence table to resolve conflicts between 

operators. 
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10. B) Reading more input to decide the parsing action based on the 

precedence table. 

11. B) It determines the order of operations based on the precedence 

and associativity of operators. 

12. B) It groups "b * c" together first because multiplication has 

higher precedence than addition. 

 
9.7 CANONICAL LR PARSING TABLE 
 
A canonical LR (CLR) table is a tool used in compiler design to 

implement an LR(1) parser. An LR(1) parser is a type of bottom-up 

parser that reads input from left to right and constructs a rightmost 

derivation in reverse. It uses a deterministic finite automaton to 

handle parsing decisions based on lookahead symbols. 

 
The canonical LR table consists of two main parts: 
 
1.    Action Table: Dictates the parsing actions (shift, reduce, 
accept, or error) to be taken. 
2.    Goto Table: Guides the parser on state transitions based on 
non-terminal symbols. 
 
9.7.1 Construction of a Canonical LR Table 
 
1.    Grammar: Begin with context-free grammar. For example: 
        

   S' → S 
   S  → CC 
   C  → cC | d 
        

 
2.    Augmented Grammar: Add an augmented start production `S' 

→ S`. 
3.    Item Sets: Construct the LR(1) item sets (states) and the 

transitions between them. Each item set includes items of the 

form `[A → α•β, a]`, where `•` indicates the current position in 

the production, and `a` is the lookahead symbol. 
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4.    Action and Goto Tables: Based on the item sets and 
transitions, fill in the action and goto tables. 

 
 Example: 

Consider the grammar: 
  

S' → S 
S  → CC 
C  → cC 
C  → d 

 
Step 1: Augmented Grammar 
     

S' → S 
S  → CC 
C  → cC 
C  → d 

 
Step 2: Construct LR(1) Item Sets 
 

 Item Set 0     
S' → •S, $ 
S  → •CC, $ 
C  → •cC, c/d 
C  → •d, c/d 
 
 Item Set 1 (After shift on `S`)     
S' → S•, $ 
 
 Item Set 2 (After shift on `C`)    
S  → C•C, $ 
C  → •cC, $ 
C  → •d, $ 
 
 Item Set 3 (After shift on `c`) 
   
C  → c•C, c/d 
C  → •cC, c/d 
C  → •d, c/d 

     
 Item Set 4 (After shift on `d`) 



158 
 

 C  → d•, c/d 
     
(Additional sets would be constructed similarly.) 
 
   Step 3: Construct Action and Goto Tables 
 
The action table indicates whether to shift, reduce, or accept, based 
on the current state and input symbol. The goto table indicates state 
transitions based on non-terminal symbols. 
 
   Action Table:    
| State |  c   |  d   |  $    | 
|-------|----- |-----|------| 
|   0    | S3  | S4  |        | 
|   1    |       |       | Acc | 
|   2    | S3  | S4  |        | 
|   3    | S3  | S4  |        | 
|   4    | R4  | R4 | R4  | 
 
    
Goto Table:    
| State |  S     |  C | 
|--------|------|-----| 
|   0      |  1    |  2  | 
|   2      |        |  5  | 
|   3      |        |  6  | 
 
In the action table: 
 
- `S` indicates shift followed by the state number. 
- `R` indicates reduction followed by the production number. 
- `Acc` indicates acceptance. 
 
In the goto table: 
- Entries indicate the state to transition to after a reduction. 
 
 Parsing Example 

 
To parse the input string `cd$`: 
 
1.    Initial State   : (State 0, `cd$`) 
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2.    Shift `c`   : (State 0, `cd$`) → Shift to State 3 → (State 3, `d$`) 
3.    Shift `d`   : (State 3, `d$`) → Shift to State 4 → (State 4, `$`) 
4.    Reduce `C → d`   : (State 4, `$`) → Reduce to State 2 (from 0) 
→ (State 2, `$`) 
5.    Shift `C`   : (State 2, `$`) → Shift to State 5 → (State 5, `$`) 
6.    Reduce `C → cC`   : (State 5, `$`) → Reduce to State 0 → 
(State 0, `$`) 
7.    Shift `C`   : (State 0, `$`) → Shift to State 1 → (State 1, `$`) 
8.    Accept   : (State 1, `$`) 
 
By following these steps, the parser determines that `cd` is a valid 

string according to the grammar. 

 

This process illustrates how the canonical LR table guides the parser 

through each decision to construct the parse tree or validate the 

input string. 

 

9.8 LALR PARSING TABLE  
A Look-Ahead LR (LALR) table is a type of parsing table used in 

LALR parsers, which are a simplified form of canonical LR parsers. 

The LALR parser combines states with identical cores (the same 

items without considering lookahead symbols) from the LR(1) 

parsing table, making it more memory efficient while still being 

powerful enough to parse many practical programming languages. 

 

9.8.1 Construction of an LALR Table 
 
Let's consider a simple grammar: 
        

S' → S 
S  → CC 
C  → cC 
C  → d 

  
Step 1: Construct LR(1) Item Sets 
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First, create the LR(1) item sets for the given grammar. This step is 
the same as for constructing a canonical LR table. 
 

●  Item Set 0 
        

S' → •S, $ 
S  → •CC, $ 
C  → •cC, c/d 
C  → •d, c/d 

        
●   Item Set 1 (After shift on `S`) 

        
S' → S•, $ 

        
●  Item Set 2 (After shift on `C`) 

        
S  → C•C, $ 
C  → •cC, $ 
C  → •d, $ 

       
●   Item Set 3 (After shift on `c`) 

        
C  → c•C, c/d 
C  → •cC, c/d 
C  → •d, c/d 
        

 
●   Item Set 4 (After shift on `d`) 

        
C  → d•, c/d 

        
 
 Step 2: Merge LR(1) Item Sets with the Same Core 
 
Combine item sets that have the same core (items without lookahead 
symbols). 
 
  Merged Item Sets 
  -  Core of Set 2 and 3     : 
  - Set 2: {S → C•C, $} 
  - Set 3: {C → c•C, c/d} 
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  - Merged: {S → C•C, $}, {C → c•C, c/d} 
 
 Step 3: Construct the LALR Action and Goto Tables 
 
Based on the merged item sets, construct the action and goto tables. 
 
     Action Table:      
| State |  c   |  d    |  $   | 
|------- |-----|------|-----| 
|   0     | S3  | S4  |        | 
|   1     |       |        |Acc | 
|   2     | S3  | S4  |        | 
|   3     | S3  | S4  |        | 
|   4     | R4  | R4 | R4  | 
|   5     |        |      | R2  | 
 
     Goto Table:      
| State |  S  |  C  | 
|-------|-----|-----| 
|   0     |  1  |  2  | 
|   2     |      |  5  | 
|   3     |      |  6  | 
|   5     |      |  6  | 
 
 Parsing Example 

 
To parse the input string `cd$`: 
 
1.      Initial State     : (State 0, `cd$`) 
2.      Shift `c`     : (State 0, `cd$`) → Shift to State 3 → (State 3, 
`d$`) 
3.      Shift `d`     : (State 3, `d$`) → Shift to State 4 → (State 4, `$`) 
4.      Reduce `C → d`     : (State 4, `$`) → Reduce to State 2 (from 
0) → (State 2, `$`) 
5.      Shift `C`     : (State 2, `$`) → Shift to State 5 → (State 5, `$`) 
6.      Reduce `C → cC`     : (State 5, `$`) → Reduce to State 0 → 
(State 0, `$`) 
7.      Shift `C`     : (State 0, `$`) → Shift to State 1 → (State 1, `$`) 
8.      Accept     : (State 1, `$`) 
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By following these steps, the parser determines that `cd` is a valid 

string according to the grammar. 

 

 9.8.2 Advantages of LALR Parsers 
1.   Efficiency: LALR parsers are more memory-efficient than 

canonical LR parsers because they combine states with 

identical cores. 

2.    Practicality: LALR parsers are used in many parser 

generators (like Yacc and Bison) due to their balance 

between power and efficiency. 

 

  9.8.3    Comparison with LR(1) Parsers 
1) State Count: LALR parsers have fewer states than LR(1) 

parsers because they merge states with the same core. 

2)  Lookahead: Both use lookahead symbols to make parsing 

decisions, but LALR parsers have simplified tables due to 

state merging. 

 

LALR tables thus provide a practical and efficient approach to 

syntax analysis in compilers, making them a popular choice in real-

world applications. 

 

9.9 ERROR DETECTION AND RECOVERY 
Error detection and recovery are crucial aspects of parser design, 

especially in compilers, to ensure that programs can be analysed and 

executed even if they contain syntax errors. Here’s an explanation of 

error detection and recovery in the context of LALR parsers, along 

with various methods and examples. 
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9.9.1 Error Detection 
Error detection involves identifying syntactical mistakes in the input 

string that do not conform to the grammar rules. In an LALR parser, 

errors are typically detected during the parsing process when no 

valid action is defined for a given state and input symbol 

combination. 

 

9.9.2 Error Recovery 
Once an error is detected, error recovery techniques are used to 

handle the error and continue parsing. This helps in providing 

meaningful error messages and allows the parser to process the 

remaining input, which is particularly useful in interactive 

development environments. 

 
  
9.9.3 Methods of Error Recovery 

1. Panic Mode Recovery          
2.     Phrase Level Recovery          
3. Error Productions          
4.  Global Correction          

 
 1. Panic Mode Recovery 
This method involves skipping input symbols until a synchronizing 
token (often a statement terminator like a semicolon) is found. The 
goal is to skip past the error and resume parsing from a known state. 
 
Example: Suppose the grammar expects an assignment statement: 
         
S → id = E ; 
E → id | num 
         
Input: id = num id = num ; 
 
Error detected: After parsing id = num, the parser encounters `id` 
instead of the expected `;`. 
Recovery: Skip tokens until a semicolon is found, then resume 
parsing. 
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Parser might skip `id = num` and start fresh from `;`, resulting in:     

id = num ; (valid statement) 
         
 
2. Phrase Level Recovery 
In this method, the parser attempts to replace or insert a small 

number of tokens to correct the error and continue parsing. This 

involves local corrections and can provide better recovery in some 

cases. 

 
Example: Consider the same grammar: 
         
S → id = E ; 
E → id | num 
         
Input: `id = id num ;` 
 
Error detected: The parser expects a single token after `=`, but 
finds `id num`. 
 
 Recovery:  Insert a semicolon or remove extra tokens to correct the 
input. 
 
Correction could be: 
         
id = id ; num ; 
         
or 
         
id = num ; 
         
3. Error Productions 
This method involves adding special error productions to the 

grammar. When these productions are used, the parser can provide 

specific error messages and attempt to continue parsing. 

 
Example: Extend the grammar with an error production: 
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S → id = E ; 
E → id | num | error 
         
Input: `id = + ;` 
 
Error detected: `+` is not a valid token for `E`. 
 
Recovery: The parser uses the `error` production, outputs an error 

message, and skips to the next statement. 

         

Error: Invalid token `+`. 

Resuming parsing... 

 

4. Global Correction 
This method attempts to make the minimal number of changes 

(insertions, deletions, substitutions) to the entire input to make it 

syntactically correct. It’s more sophisticated and computationally 

expensive, typically used in advanced development environments. 

 
Example: For the grammar: 
         
S → id = E; 
E → id | num 
         
Input: `id = num id = num;` 
Error detected: The sequence `id = num id = num ;` is incorrect 
due to missing semicolons. 
         
 Recovery: The parser suggests the minimal changes: 
         
id = num ; id = num ; 
         
 
9.9.4 Summary 
Error detection and recovery are essential to robust parsing. LALR 

parsers can use several strategies: 
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1.  Panic Mode Recovery: Quickly skip to a synchronising token. 
2.  Phrase Level Recovery: Make local corrections to continue 

parsing. 
3.  Error Productions: Extend the grammar to handle common 

errors. 
4.  Global Correction: Make minimal global changes to correct the 

input. 
 
These techniques allow parsers to handle errors gracefully, 
providing meaningful feedback to developers and allowing the 
continuation of the parsing process even in the presence of syntax 
errors. 
 
9.10 CHECK YOUR PROGRESS 

1. Which part of the canonical LR table dictates the parsing actions to 
be taken?      

A. Goto Table   
B. Action Table   
C. Item Sets   
D. Transition Table   
 
2.  What does the `R` symbol in the Action Table indicate?      
A. Shift   
B. Reduce   
C. Accept   
D. Error   
 
3. In the context of LR parsing, what does the `•` symbol 

represented in an item?      
A. The start of a production   
B. The end of a production   
C. The current position in the production   
D. The lookahead symbol   
 
4. What is the purpose of adding an augmented start production in 

the grammar?      
A. To reduce the complexity of the grammar   
B. To simplify the parsing table   
C. To clearly define the start state for parsing   
D. To remove ambiguities in the grammar   
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5. Consider the grammar: `S → CC`, `C → cC`, `C → d`. Which of 
the following is NOT a valid item set for this grammar?      

A. `S' → •S, $`   
B. `S → C•C, $`   
C. `C → d•, c/d`   
D. `C → c•, $`   
 
6.  In the canonical LR parsing table, what does the `Acc` symbol 

indicate?      
A. Shift   
B. Reduce   
C. Accept   
D. Error   
 
7. What is the lookahead symbol used for in an LR(1) item?      
A. To indicate the current position in the production   
B. To determine the next action in the parsing process   
C. To mark the end of a production   
D. To define state transitions   
 
8. Item Set:        
S' → •S, $ 
S  → •CC, $ 
C  → •cC, c/d 
C  → •d, c/d 

Given the following item set, which transition is NOT possible?      
A. Shift on `c`   
B. Shift on `d`   
C. Reduce on `C`   
D. Accept on `$`   
 
9.  Which of the following states would indicate the final 

acceptance in an LR(1) parser?      
A. State 0   
B. State 1   
C. State 3   
D. State 4   
 
10. In the goto table, which symbols are used to guide state 

transitions?      
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A. Terminal symbols   
B. Non-terminal symbols   
C. Both terminal and non-terminal symbols   
D. Lookahead symbols   
 
 
11. What does LALR stand for in the context of parsers?          
A. Look-Ahead Left-to-Right   
B. Look-Ahead LR   
C. Look-Ahead Right-to-Left   
D. Look-Ahead Recursive   
 
12.  What is the main advantage of LALR parsers compared to 

canonical LR parsers?          
A. They are faster   
B. They have fewer states   
C. They are easier to implement   
D. They support more complex grammars   
 
13.  Which part of the LALR parsing table is used to guide state 

transitions based on non-terminal symbols?          
A. Action Table   
B. Goto Table   
C. Lookahead Symbols   
D. Core Table   
 

14. In an LALR parser, what does the merging of LR(1) item sets 
depend on?          

A. Identical lookahead symbols   
B. Identical core items   
C. Identical action entries   
D. Identical goto entries   
 

15.  Consider the grammar: `S → CC`, `C → cC`, `C → d`. What 
will be the merged item set for the core items `{C → c•C}` and 
`{C → c•C, $}`?          

A. `{C → c•C, c}`   
B. `{C → c•C, d}`   
C. `{C → c•C, c/d}`   
D. `{C → c•C, c/d/$}`   
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16.  Which parser generator commonly uses LALR parsing tables 
due to their balance between power and efficiency?          

A.  ANTLR   
B.  Yacc   
C.  Bison   
D.  Both B and C   
 
17.  In the context of LALR parsers, what does the `Acc` symbol in 

the action table signify?          
A.  Accept the input string   
B.  Shift the input symbol   
C.  Reduce the production   
D. Transition to a new state   
 

18. What is the result of merging LR(1) item sets with identical 
cores?          

A. Increased parsing speed   
B. Simplified grammar rules   
C. Reduced number of states   
D. Enhanced lookahead capability   
 

19.  In the given example, which state in the LALR table indicates a 
reduction by the production `C → d`?          

A. State 0   
B. State 3   
C. State 4   
D. State 5   
 
20.   Which part of the LALR table helps the parser determine the 

next action to take based on the current state and input symbol?          
A. Goto Table   
B. Action Table   
C. Core Table   
D. Lookahead Table   
 
9.11 ANSWERS TO CHECK YOUR PROGRESS 
1. B. Action Table   
2. B. Reduce 
3. C. The current position in the production 
4. C. To clearly define the start state for parsing 
5. D. `C → c•, $` 
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6. C. Accept 
7. B. To determine the next action in the parsing process 
8. D. Accept on `$` 
9. B. State 1 
10. B. Non-terminal symbols 
11. B. Look-Ahead LR 
12. B. They have fewer states 
13. B. Goto Table 
14. B. Identical core items 
15. C. `{C → c•C, c/d}` 
16. D. Both B and C 
17. A. Accept the input string 
18. C. Reduced number of states 
19. C. State 4 
20. B. Action Table 
 
9.12 REFERNCES AND SUGGESTED READINGS 

1. Compilers: Principles, Techniques, and Tools" by Alfred V. 

Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman 

2. "Introduction to Automata Theory, Languages, and 

Computation" by John E. Hopcroft, Rajeev Motwani, and 

Jeffrey D. Ullman 

3. "Parsing Techniques: A Practical Guide" by Dick Grune and 

Ceriel J.H. Jacobs 

 
9.13 ADDITIONAL RESOURCES 

Websites: 
● "Compiler Explorer" 

Compiler Explorer 
An interactive compiler with real-time parsing and code 
generation visualization. 

Tools: 
● JFLAP 

JFLAP - Interactive Learning Tool for Automata Theory and 
Formal Languages 
A tool that helps visualize different parsing algorithms and 
automata. 
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UNIT: 10 
YACC 

 
Unit Structure: 

10.0 Introduction 

10.1 Unit Objectives 

10.2 YACC Basics and Workflow 

10.3 Conclusion 

10.4 Check Your Progress 

10.5 Answers to Check Your Progress 

10.6 Short Answer Type Questions  

10.7 Long Answer Type Questions 

10.8 References and Suggested Readings 

 
10.0 INTRODUCTION 

YACC, which stands for "Yet Another Compiler-Compiler," is a 

powerful tool used for generating parsers, essential components in 

the compiler construction process.It was developed at the beginning 

of the 1970s by Stephen C. Johnson for the Unix operating system. 

A parser is responsible for converting source code into a structure 

that the machine can understand and execute. YACC is particularly 

recognized for generating LALR (1) parsers (Look-Ahead Left-to-

Right parsers with 1 token of look-ahead), which are efficient in 

both memory usage and execution time. These parsers are widely 

used in compiling programming languages due to their balance of 

simplicity and performance. 

 

10.1 UNIT OBJECTIVES 

 Analyze and construct context-free grammars for language 

specifications. 
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 Understand the fundamental concepts of compiler design, 

focusing on lexical analysis and syntax analysis. 

 Learn how to use Lex for lexical analysis and Yacc for syntax 

parsing to build a basic compiler. 

 Explore the process of defining grammar rules and lexical 

patterns for different types of programming constructs. 

 Develop the ability to integrate Lex and Yacc to build a 

functioning compiler that can process input code. 

 

10.2 YACC BASICS AND WORKFLOW 

YACC operates by taking a formal grammar as input, which 

specifies the syntax rules of a given programming language. These 

grammar rules are typically written in Context Free Grammar, a 

notation used to describe the structure of languages. Each rule may 

be associated with small snippets of C code, known as actions. 

When YACC processes the grammar, it generates a C program that 

serves as the parser. This parser reads the source code and analyses 

it based on the grammar, facilitating the translation of code into an 

internal representation. The parser asks the lexical analyzer (often 

generated by a tool like Lex) for the next token, and continues 

parsing based on that token. When a grammar rule is recognized, 

YACC performs a reduction, meaning it replaces a sequence of 

tokens with the corresponding nonterminal and executes the C code 

attached to that rule. 

Before discussing how a YACC and a LEX program works, let us 

discuss a Context-Free Grammar (CFG) for arithmetic expression. A 

Context-Free Grammar for arithmetic expressions is a set of 

production rules that describe the syntax of valid arithmetic 

expressions. In this case, the CFG will be capable of generating 
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expressions involving numbers, addition, subtraction, multiplication, 

division, and parentheses. Below is an example of such a CFG: 

Terminals: These are the basic symbols or tokens in the grammar, 

such as numbers and arithmetic operators. {+, -, *, /, (, ), 

ID,NUMBERS, NL} 

Nonterminal: These are syntactic categories or variables that 

represent different types of expressions. {exp, stmt} 

Start Symbol: The starting point of the grammar. Here, exp is the 

start symbol, representing a complete arithmetic expression. 

Production Rules: These define how each nonterminal can be 

expanded using other terminals or nonterminal. 

stmt->exp NL  

exp->exp + exp | exp–exp | exp * exp | exp / exp | (exp) | ID | 

NUMBER 

Using the above mentioned CFG we can parse an arithmetic 

expression involving numbers, addition, subtraction, multiplication, 

division, and parentheses. Now we can implement the above 

grammar in YACC to parse a given string. To implement the parser 

in YACC we also need a lexical analyzer which should generate 

tokens for the parser. If we notice the CFG we can see that to parse 

a given string (expression) the lexical analyzer (the LEX program) 

should able to return three tokens- NUMBER, ID, and NL which 

represent number, identifier and new lines respectively. 

To understand the working of LEX and YACC let us consider the 

following LEX and YACC program- 

1 
2 
3 
4 

 %token NUMBER ID NL 
%left ‘+’ ‘-‘ 
%left ‘*’ ‘/’ 
%% 
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5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

stmt: exp NL { printf(“Valid Expression”); exit(0);} 
; 
exp: exp ‘+’ exp 
| exp ‘-‘ exp 
| exp ‘*’ exp 
| exp ‘/’ exp 
| ‘(‘ exp ‘)’ 
| ID 
| NUMBER 
; 
%% 
int yyerror(char *msg) 
{ 
printf(“Invalid Expression\n”); 
exit(0); 
} 
main () 
{ 
printf(“Enter the expression\n”); 
yyparse(); 
} 

   
Fig. 10.1: A sample YACC program to heck the syntax of a 

simple expression. 
 

1 
2 
3 
4 
5 
6 
7 
8 
9 

 %{ 
#include “y.tab.h” 
%} 
%% 
[0-9]+    {return NUMBER; } 
[a-zA-Z][a-zA-Z0-9_]*{ return ID; } 
\n{return NL;} 
.{return yytext[0]; } 
%% 

   
Fig. 10.2: The LEX program to to generate tokens for the 

YACC program. 
 

In the above examples the LEX program is the lexical analyzer and 
the YACC program is the syntax analyzer.  

Now let us discuss how these two programs works together- 
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Figure 3: How a YACC program works with a LEX program. 
 

As mention in Figure 3, let us name the YAAC program as bas.y 

and the LEX program as bas.l. YACC processes the grammar 

descriptions provided in bas.y and generates a syntax analyzer 

(parser). A YACC program has three sections. Each section is 

separated by %% symbol. As shown in Fig. 10.1, the declaration 

section (Line number 1, 2 and 3) declares different tokens. Based on 

these declarations the y.tab.h file is created. % left, defines how 

YACC will solve repetition of operators in case you have. i.e. it 

specifies the associativity of an operator. The associativity of an 

operation determines which of two operations of the same 

precedence level is carried out first.The second section of a YACC 

program contains the grammar description. In the above YACC 

program from line number 5 to 14 contains the grammar 

representation. The third section of a YACC program is the routine 

section. 

The default name of the parser is y.tab.c, which is C source file. 

Asshown in Figure 3, it will also generate a header file called y.tab.h 

which contains definitions for tokens declared in bas.y file. In our 

case tokens are NUMBER, ID, and NL (line number 1 of Fig 10. 1). 

LEX includes the y.tab.h file, reads the pattern descriptions (line 

number 5, 6 and 7 in Fig. 10.2) from bas.l,  and generates a lexical 

analyzer, which contains the yylex function, and stores it in another 

C source file lex.yy.c. 
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Afterward, both the lexical analyser and parser are compiled and 

linked to produce the executable file. In the program's main 

function, yyparse() is invoked to run the compiler which is present 

in y.tab.c. During this process, yyparse() automatically calls yylex() 

to retrieve each token. Table 10.1 shows how to compile and 

execute a parser and a lexical analyser written in YACC and LEX. 

Steps Command Action 
Step 
1 

yacc –d bas.y create y.tab.h andy.tab.c 

Step 
2 

lexbas.l create lex.yy.c 

Step 
3 

cc lex.yy.cy.tab.c –o 
exe 

compile/link and create an 
executable file 

Step 
4 

./exe execute 

 
Table 10.1: Steps to execute the parser 

 

10.3 CONCLUSION 

In this unit, we explored the fundamental aspects of compiler design 

with a focus on syntax analysis using YACC programing. We 

learned how to define tokens and grammar rules, builda basic 

parser, and integrate lexical and syntax analysis processes. Through 

this approach, we observed how a compiler translates source code 

into a structured format that a machine can process. This foundation 

provides essential skills for developing more advanced compiler 

components, preparing us for further exploration into semantic 

analysis, code generation, and optimization in subsequent chapters. 

 

10.4 CHECK YOUR PROGRESS 

1. What does YACC stand for? 
 A) Yet Another Compiler-Compiler 
 B) You Always Code Carefully 
 C) Your Algorithm Code Compiler 
 D) Yield And Compute Code 
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2. What is the primary function of YACC in compiler 

construction? 
 A) To perform lexical analysis 
 B) To generate machine code 
 C) To create parsers from grammar specifications 
 D) To optimize assembly code 
  

3. In YACC, what does the yyparse() function do? 
 A) It performs lexical analysis 
 B) It initializes the compiler 
 C) It optimizes the code generated by the parser 
 D) It parses input according to the grammar defined  
  

4. What type of parsers does YACC generate by default? 
 A) LR(1) parsers 
 B) LL(1) parsers 
 C) LALR(1) parsers 
 D) Recursive descent parsers 
  

5. What option is used in YACC to generate a header file with 
token definitions? 

 A) -l 
 B) -o 
 C) -d 
 D) -g 
  

6. In YACC, how are errors handled during parsing? 
 A) Using the yyfail() function 
 B) Using the yyerror() function 
 C) Using the yyexit() function 
 D) Using the yyrecover() function 
  

7. Which of the following is used to define grammar in a YACC 
file? 

 A) Regular Expressions 
 B) Context-Free Grammar (CFG) 
 C) Pushdown Automaton 
 D) None of the above 
  

8. Which of the following file extensions is typically associated 
with YACC grammar files? 

 A) .lex 
 B) .l 
 C) .y 
 D) .c 
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9. In YACC, what are actions associated with a grammar rule 
written in? 

 A) C Code 
 B) Assembly code 
 C) Java code 
 D) Python code 
  

10. Which of the following functions does YACC call to retrieve 
tokens from the lexical analyzer? 

 A) yyparse() 
 B) yylex() 
 C) yyerror() 
 D) main() 

 

10.5 ANSWERS TO CHECK YOUR PROGRESS 

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 
A C D C C B B C A B 

 

10.6 SHORT ANSWER TYPE QUESTIONS 

1. What is YACC, and what does it stand for? 

2. What type of parsers does YACC generate? 

3. Explain the purpose of a yyparse() function in YACC. 

4. Define the yylex() function and its role in YACC programs. 

5. Explain the role of yyerror() in YACC. 

 

10.7 LONG ANSWER TYPE QUESTIONS  

1. Describe the workflow of a YACC program, from grammar 

specification to generating a parser. 

2. Explain the structure of a YACC input file and describe each 

section in detail. 

3. What is the difference between shift and reduce actions in a 

YACC-generated parser? 

4. Discuss the integration of Lex and YACC, highlighting how 

they work together in a compiler. 
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5. Describe a real-world application where YACC could be 

effectively utilized and explain why. 

 

10.8 REFRENCES AND SUGGESTED READINGS 

       1. Das, Vinu V. Compiler Design Using Flex and Yacc. PHI. 

 

 

 

××× 



(4)

BLOCK- II

Unit 11: Symbol Table Management

Unit 12: Syntax Directed Translation

Unit 13: Intermediate Code Generation

Unit 14: Representing Intermediate Code Generator for a Parser

Unit 15: Target Code Generator

Unit 16: Transformation of Basic Blocks

Unit 17: Strategies of Code Optimization

Unit 18: Techniques of Code Optimization



180 
 

UNIT 11:  
SYMBOL TABLE MANAGEMENT 

 
Unit Structure 

11.0 Introduction 

11.1 Unit Objective 

11.2 Symbol Table 

 11.2.1 Symbol Table Requirements 

 11.2.2 Symbol Table Structure 

11.3 Type Checking 

 11.3.1 Overview of Type Systems 

 11.3.2 Designing a Type System 

11.4 B-Minor Type Checker 

11.5 Summing Up 

11.6 Answers to Check Your Progress 

11.7 Possible Questions 

11.8 References and Suggested Readings   

 

 

11.0 INTRODUCTION 

In programming languages, identifiers play an important role as they 

refer to names of the variables, arrays and procedures. It is very 

essential for a compiler to record the information about the 

attributes of an identifier used in a source program. Usually, the 

attributes provide information about the type, scope and storage 

allocated to an identifier. In case of procedure names, the attributes 

may be like number and type of its arguments, method of passing 

each argument and the return type of the procedure. Such 

information is essential for transforming a program written in source 

language construct into a target language equivalent. The analysis 

phase of the compiler collects these information and the later phases 
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will use them to generate the target code. During scanning or lexical 

analysis phase, lexemes forming identifiers are found out and saved 

as symbol table entry. Later phases of the compiler would extract 

more information and add to the table so that proper target code 

corresponding to the source code could be generated.  

 

11.1 UNIT OBJECTIVE 

After going through this unit, you will be able to: 

 Define type checking 

 Understand the basic functionalities of symbol table 

 Know the prerequisite features of symbol table 

 Describe the structure of a symbol table 

 Explain an overview of the type checking system 

 Understand the B-Minor type checker 

11.2 SYMBOL TABLE 

In programming, we frequently perform type checking. This leads to 

the need of identifying the type of the identifier beforehand. A 

variable could be a local one, global one or parameters to functions. 

The problem of identifying the scope of a variable is solved by the 

technique called name resolution. It refers to a table called the 

symbol table which contains the attributes of each variable. 

A symbol table is a large data structure which is indexed by a 

symbol name or lexeme. The lexical analyzer works in a manner 

similar to pattern recognition. It tries to identify the tokens as well 

as their associated lexemes just by scanning the statements. During 

this phase, the symbol table is created. The same identifier may be 

declared in different locations or procedures. All these instances 

must be recorded in the symbol table. This can be accomplished by 
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setting up different symbol tables for each block or by keeping 

pointers to blocks within a single symbol table. A simple way to 

represent symbol table is in terms of array of structures where each 

structure represents a record of an identifier. Type definition and 

declarations of constant may be found in them.  

11.2.1 Symbol Table Requirements 

A computer program basically consists of three major parts: 

declarations, expressions and statements. The output is produced by 

separate logical sections of the input program. Similarly, a 

subroutine is always prefixed by declaration and its parameter list. 

Then the body of the subroutine comes, which contains the 

statements and expressions. And finally, the code to return ends the 

subroutine. 

The symbol table is like a database that contains records of each 

subroutine or variables declared in a program. It is indexed by the 

key field- generally the subroutine or variable name. Apart from 

this, the structure also contains fields like numeric value assigned to 

each symbol as well as symbol’s type or the subroutine’s return 

value. The declaration process enters records in the database and 

also is deleted from the same when the scoping rules determine that 

the object is out of scope and is no longer referenced. For example, 

the local variables declared in C-programs, which are out of scope 

are deleted once the compiler finishes working on it.  

The symbol table communicates with other phases of compiler as 

well. At the very basic, it interacts with the lexical analysis phase 

specially when type definition and constant declarations are 

encountered. A typedef creates a symbol table entry for a new type 

like other variable names. The type definitions are indicated by 

setting a bit in the symbol table entry. There are some characteristics 
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that a symbol table is required to possess for an efficient 

compilation process to proceed. 

a. Speed: Table look-up must be as fast as possible. This is 

because; the symbol table is accessed everytime an identifier is 

referenced. The entire table must be in main memory when 

compilation proceeds. This approach has one major limitation 

on the maximum memory allotted to the symbol table. The 

input size of the program is limited so that the symbol table can 

accommodate records corresponding to each identifier declared 

within the program. 

b. Ease of maintenance: A very basic criteria required in a 

symbol table is that- it should be easy to maintain. The 

functions must be organized in such a manner that anybody 

other than the compiler writer should be able to maintain the 

program. 

c. Flexibility: The symbol table must be able to represent 

variables of arbitrary type. For example, the C-programming 

language does not impose any limitations on variable 

declarations. Moreover, the symbol table must be able to scale; 

i.e., new records must be inserted easily as and when new 

identifiers are encountered.   

d. Support of redundant entries: In most programming 

languages, there is a provision of declaring the same variable 

name at different places of the program. This is possible, when 

the same variable name has different scopes. In-spite of having 

same name, they are treated as different variables. 

Correspondingly, the entries for each of these variables are also 

considered as distinct. Their scopes determine which variable is 

active at one moment. This is termed as shadowing as the active 

variable shadows the inactive one.  
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e. Ease of deletion: The symbol table manager must be able to 

efficiently delete the local variables declared inside a block. The 

deletion must take place in an arbitrary manner without having 

to look each element separately. 

The symbol table must consist of two basic layers. The outer layer 
is termed as the maintenance layer. It deals with functions such as 
creating data structures for specific symbols, inserting such 
structures into the table and managing the table. This layer also 
performs deletion operation in order to delete structures of symbols. 
The insertion and deletion operations can be performed by 
executing low level subroutine call. There is also an inner layer 
which handles the actual table maintenance tasks at the physical 
level; like inserting new entries in the table, searching them as well 
as deleting them.  

 

11.2.2 Symbol Table Structure 

As symbol table contains the information about each and every 
variable or subroutine declared in a program. They must be 
represented in a manner similar to keeping records in a database 
table. For that purpose, structure is used. Each entry in the table is 
represented by the statement struct symbol which creates a 
structure for the symbol or variable. The symbol structure would be 
as follows: 

 struct symbol typedef enum 
{  {    
symbol_t kind;    

 SYMBOL_LOCAL, 
struct type *type;    

 SYMBOL_PARAM, 
char *name;     

 SYMBOL_GLOBAL 
int which; } symbol_t; 
}; 

(Source: Introduction to Compilers and Language Design by 
Prof. Douglas Thain) 

 



 

The kind field indicates whether the variable is local, global or 

parameter to a function. The type field is a pointer to the type 

structure indicating the type of the variable. The name of the 

variable is indicated by the name field and 

ordinal positions of the variables and parameters. 

It may be required to  support multiple declarations for the same 

identifier declared in a program. 

how symbol tables can be constructed.

int x;   
void proc(int m)  
{   

     float x, y;   
{   

int a, b;   
}   
}   

int func(int n)   
{   

      bool t;   
}   

The program uses two functions: proc() and fun(), each having own 
parameters. The symbol table representation would be as follows:

 

 

 

 

 

Fig. 11.1: Organization of symbol table
 

A suitable symbol structure is created 

and entered into the symbol table. 

symbol table can be regarded as 
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The kind field indicates whether the variable is local, global or 

parameter to a function. The type field is a pointer to the type 

structure indicating the type of the variable. The name of the 

variable is indicated by the name field and which field indicates the 

ordinal positions of the variables and parameters.  

support multiple declarations for the same 

identifier declared in a program. Let us consider an example and see 

how symbol tables can be constructed. 

unctions: proc() and fun(), each having own 
parameters. The symbol table representation would be as follows: 

11.1: Organization of symbol table 

A suitable symbol structure is created for each variable declaration 

and entered into the symbol table. Therefore, in other words, a 

symbol table can be regarded as the mapping between the variable 
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name and its symbol structure. It is already mentioned that multiple 

declarations with the same variable name is possible in most 

programming languages. But, each declaration must have distinct 

scope. The scopes might be global scope, scope for function 

parameters and local scopes and also nested scopes. These multiple 

definitions are organized as a stack of hash tables. This technique 

allows a variable with multiple scopes to exist by mapping each 

hash table to their corresponding symbols. A push operation enters a 

hash table everytime a new scope is encountered and a pop 

operation deletes the table once its scope is left. 

 

 

 

 

 

 

 

 

 

 

 

 

11.3 TYPE CHECKING 

An important component of compilation process is finding the 

meaning of a program or what the program actually does. This is 

semantic analysis where a tree is constructed to perform efficient 

generation of codes. During semantic analysis phase, a considerable 

amount of time is spent in doing type checking. Different 

CHECK YOUR PROGRESS- I 

1. The problem of identifying the scope of a variable is 
solved by the technique called _________. 

2. A symbol table contains _______ of _______. 
3. A symbol table is a data structure indexed by a ______. 

4. A simple way to represent symbol table is in terms 

of_________. 

5. In a symbol table, each structure represents a record of 
an identifier. State whether true or false. 

6. A symbol table must have the ability to_________. 
7. A computer program basically consists of three major 

parts: ___, ____ and______. 
8. The symbol table must consist of two basic layers: 

________level and _______ level. 
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programming languages have different approaches of doing type 

checking. It is possible to make errors in a language with weaker 

type checking system. This in turn allows error detection at compile 

time. 

Before going into type checking, we must determine the type of 

each identifier of an expression. Here, the role of symbol table 

comes into play. An identifier of an expression may refer to a local 

or global variable or a function parameter. The definition of 

identifiers can be found in symbol table and we refer to the table 

whenever we need to check the correctness of codes. Here, each 

variable is accessed with their corresponding type definitions. This 

process is termed as name resolution. Once name resolution 

completes, we are ready with all information required for doing type 

checking. As the correctness of codes is verified by the semantic 

analysis phase, the syntax tree must be referenced until this phase is 

over. We now have the type information of each identifier. We now 

combine them in order to compute the type information of complex 

expressions. Some standard conversion rules must be followed for 

finding the type information. If the expressions do not conform to 

the standard rules, there is a great chance of occurrence of errors.  

Apart from gathering type information, semantic analysis also 

involves in checking other forms of correctness of codes. These may 

involve checking whether each operator has correct operands. For 

instance, the binary arithmetic operator between an integer and real 

is non-permissible. In that case, there is a need to convert integer 

into real. Similarly, the compiler reports an error every time a real 

number refers to an array index. Examining array limits, bad pointer 

traversal or examining flow of control also fall under the 

functionalities of semantic analysis phase.  
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11.3.1 Overview of Type Systems 

Most programming languages allow codes to be written according to 

the specification defined for the language. They allow variables to 

be defined in terms of types. The type information describes 

whether the variable is an integer, floating point number, boolean, 

string or a pointer. The type information is associated with the 

storage space required to store a variable. These basic building 

blocks form the basis of creating more complex type variants such 

as structures and enumerations. 

There are several purposes that the type system of a language must 

provide: 

 Correctness: The type information of a compiler attempts to 

find errors and warnings occurring in a program. A good 

type system attempts to report errors during compile time 

rather than run time. As already mentioned, an array cannot 

be referenced using real numbers.  

 Performance: Performance is an important component of a 

type system. It attempts to find the type information of a 

variable and tries to handle the code efficiently. Like for 

instance, if the type system finds that the value assigned to a 

variable is a constant, then it can be loaded on a register and 

used multiple times rather than to access it from memory 

every time it is required. This in turn increases the efficiency 

of the compiler. 

 Expressiveness: A programming language is considered to 

be expressive if it can represent a variety of ideas to a greater 

extent. An expressive language can express solutions to 

problems defined in a particular domain. A piece of code is 

expressive if it does not take into account the facts derived 

during type checking. For example, in C-programming 
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language, the printf() function does not require to know 

whether it should print an integer, float, boolean or string. 

Automatically, it prints the value after inferring the type 

information from an expression. 

11.3.2 Designing a Type System 

The type system of a programming language corresponds to 

describing its primitive types, compound types and rules for 

assigning types to variables as well as converting between different 

types. The primitive or atomic data types refer to the simple types 

assigned to the variables. These simple structures may be integers, 

floating point numbers, boolean and so on. As mentioned above, 

these primitive data types also describe the range of values occupied 

by them.  

The primitive data types may be implemented to form new data 

types termed as user defined data types like structure, union, 

enumeration and typedef in C – programming language.  

Structure is the user defined data type that allows us to combine the 

primitive data types in order to generate more complex 

aggregations. It groups together the atomic data types as a single 

unit. Such compositions are useful for presenting the information of 

entities as records of related data items. Each data present in a 

structure is termed as member of the structure. Structures are always 

defined using the keyword struct. For example, let us consider the 

Student structure, which represents the data related to a student 

entity. 

  struct Student 
   { 
   int roll_no; 
   char name[40]; 
   char class[10]; 
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   char section; 
} 

  struct Student S; 
 
We can create variables of Student structure by using the statement 

struct Student S. This creates a variable S of structure Student 

which possesses the same data members that Student has. The items 

are accessed by using a dot (“.”) operator between the structure 

variable and the member. For example, S.roll_no accesses the Roll 

no of a student. The storage space allocated to a structure is derived 

by adding the memory allotted to each member of the structure. 

We can also write a structure declaration using the typedef keyword. 

Therefore, the above declaration can also be written as below: 

 typedef struct Student 
   { 
   int roll_no; 
   char name[40]; 
   char class[10]; 
   char section; 

} S; 
   
Union is similar to a structure. It also can possess elements of 

different data types. Just like structures begin with the keyword 

struct; unions also begin with the keyword union. But, the 

difference between the two can be understood when it comes to 

allocation of storage. In a union, only one member variable can be 

accessed at one time. Every time a new variable initialized, it 

overwrites the older ones. Therefore, the same previous declaration 

of structure can be used to declare using unions also. 

  typedef union Student 
   { 
   int roll_no; 
   char name[40]; 
   char class[10]; 
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   char section; 
} S; 

At one given time, only one member can be accessed. This is 

because; the amount of memory allocated to a union is the amount 

of highest number of bytes required to store one member. Here, the 

string name requires the highest number of storage, i.e. 40 bytes.  

The enum keyword is used to create an enumerated data type. It 

creates of named integral constants. It helps to assign constants to 

names so that the program becomes easier to understand and 

maintain. It is always declared using the keyword enum. If we do 

not assign values explicitly to the members of enum, the compiler 

automatically assigns values that start with 0. For example, let us 

consider the following enumeration code. 

 enum week {Sunday=1, Monday, Tuesday, Wednesday, 
Thursday, Friday, Saturday}; 

int main() 
   { 

        enum  week today; 
       today = Thursday; 
    printf("Day %d",today); 
           } 
The output of this code is 5.  Here, the field Sunday is assigned with 

value 1. Automatically, Tuesday will be having value 2 and so on. 

C has a special keyword typedef which specifies a new type of 

variable. It creates an alias of an already existing data type. This 

allows making assignments between types. Application of typedef 

has been seen in the previous examples of structures and unions, 

where we created variables of the same.  

11.4 B-MINOR TYPE CHECKER 

A language processor does semantic analysis by performing error 

checking. This error checking is typically based on type 

mismatching as well as misuse of reserved keywords. Once 
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scanning and parsing is over, an Abstract Syntax Tree (AST) is 

created. AST is then traversed in order to find and report the type 

errors.   

B- Minor is a static type checker for a simple language like C. It is 

strict type checker which tries to check two major classes of type 

errors: 1. When the type checker cannot determine the type of the 

expression and 2. When an expression’s type does not match with 

the types of the assigned variables. It is a safe as well as explicit 

type checker. These properties have enabled the type checker to 

detect a large number of type errors. B-minor contains the primitive 

data types- integer, char, boolean, string and void. Two compound 

types array and function are also followed by B-Minor. There are 

some type rules that B-Minor follows: 

 Value should be assigned to variables of the same 

type. Similarly, function parameters can only accept 

values of the same type. 

 The return type of a function must be same with the 

return statement. 

 While performing binary operation, the operands 

must be of same type. 

 The equality operators == and != must return 

boolean. Apart from this they may operate on any 

data type except array, function or void. 

 The comparison operators <, >, <= and >= also 

return boolean. But, they must be applied on integers. 

 The operators !, && and | | operate on boolean and 

also return boolean. 

 The arithmetic operators +, -, *, /, %, ++, -- always 

operate on integers and return integer.  
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B-Minor supports static type checking, functions, expressions and 

basic control flow. 

  

CHECK YOUR PROGRESS- II 

9. _________ consumes a considerable amount of time 
during semantic analysis phase. 

10. A language with weaker type checking system is prone 
to make ____________. 

11. The _____________ information describes whether the 

variable is an integer, floating point number, boolean, 

string or a pointer. 

12. The type information is associated with the 

___________required to store a variable. 

13. ______________ increases the efficiency of the 

compiler. 

14. ______________data types describe the range of 

values occupied by them. 

15. ________________is a user defined data type that 

allows combining the primitive data types and 

generates more complex aggregations. 

16. Structures are always defined using the 

keyword_____________. 

17. __________________ is a static type checker. 

Stop to Consider 

Abstract Syntax Tree (AST) or simply Syntax Tree is a form 
of intermediate code generation. It is a hierarchical structure 
of the source code. During syntax analysis, AST is generated. 
In an abstract syntax tree of an expression, each interior node 
represents an operator and its child nodes represent the 
operands of the operator. Syntax trees are similar to parse 
trees except the fact that syntax trees contain operators as 
interior nodes; while parse trees contain non-terminals for the 
same nodes. 
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11.5 SUMMING UP 

 It is very essential for a compiler to record the information 
about the attributes of the identifiers used in the source 
program. Information of such kind is essential for 
transforming a program written in source language construct 
into a target language equivalent. 

 A symbol table is a large data structure which is indexed by 
a symbol name or lexeme. The lexical analyzer works in a 
manner similar to pattern recognition. It tries to find out the 
identifiers occuring in a code. 

 The same identifier may be declared in different locations or 
procedures. All these instances must be recorded in the 
symbol table. By setting up different symbol tables for each 
block or by keeping pointers to blocks within a single 
symbol table these instances are maintained. 

 A simple way to represent symbol table is in terms of array 
of structures where each structure represents a record of an 
identifier. Type definitions are found in them. 

 The symbol table must consist of two basic layers. The outer 
layer is termed as the maintenance layer which deals with 
functions such as creating data structures for specific 
symbols, inserting such structures into the table and 
managing as well as the table. The inner layer handles the 
actual table maintenance tasks at the physical level; like 
inserting new entries in the table, searching them as well as 
deleting them.  

 A symbol table can be implemented using array of 
structures. 

 During semantic analysis phase, a considerable amount of 
time is spent in doing type checking. Different programming 
languages have different approaches of doing type checking. 
This in turn allows error detection at compile time. 

 Before going into type checking, we must determine the type 
of each identifier of an expression. Each variable is accessed 
with their corresponding type definitions. This process is 
termed as name resolution. Once name resolution completes, 
the information required for doing type checking is ready. 

 A programming language is considered to be expressive if it 
can represent a variety of ideas to a greater extent. An 
expressive language can express solutions to problems 
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defined in a particular domain. A piece of code is expressive 
if it does not take into account the facts derived during type 
checking. 

 B- Minor is a static type checker for a simple language like 

C. It is strict type checker which tries to detect a large 

number of type errors. It supports static type checking, 

functions, expressions and basic control flow. This error 

checking is typically based on type mismatching as well as 

misuse of reserved keywords. 

 
11.6 ANSWERS TO CHECK YOUR PROGRESS 

1. name resolution 
2. attributes, identifiers 
3. symbol name 
4. array of structures 
5. True 
6. Scale 
7. declarations, expressions, statements. 
8. Maintenance, physical 
9. Type checking 
10. errors 
11. type 
12. storage space 
13. Performance 
14. Primitive 
15. Structure 
16. Struct 
17. dot (“.”) 
18. union 
19. enum 
20. 0 
21. Abstract Syntax Tree (AST) 
22. B- Minor 

 
11.7 POSSIBLE QUESTIONS 

A. Short answer type questions. 
1. Why is it necessary to store the records of the identifiers 

used in a program? 
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2. What is symbol table? Describe. 
3. What is type checking? Describe. 
4. What do you mean by name resolution? 
5. How are the symbol table represented? 
6. What are the two basic layers of a symbol table? 
7. What is type checking? Describe in brief. 
8. What are the functions performed by the semantic analysis 

phase? 
9. What do you understand by expressiveness of a type system? 
10. What is B-minor type checker? Explain in brief. 
11. What are the two classes of type errors that the B-minor type 

checker can detect? 
 

B. Long answer type questions. 
1. What are the requirements of a good symbol table must 

contain? 
2. Describe the structure of a symbol table. 
3. Describe the organization of a symbol table. 
4. How are the semantic analysis and type checking related 

with each other? Describe. 
5. What is type system? Give an overview of the type system. 
6. How does the primitive data types form new user defined 

data types? 
7. Explain the B-minor type checking system. 
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UNIT 12: 
SYNTAX DIRECTED TRANSLATION 

 
Unit Structure 

12.0 Introduction 

12.1 Unit Objectives 

12.2 Syntax Directed Definitions 

12.2.1 Forms of Syntax Directed Definition 

 12.2.2 Synthesized and Inherited Attributes 

12.3 Syntax Directed Translations 

12.4 Dependency Graph 

12.5 S-Attributed and L-Attributed Definitions 

12.6 Intermediate Codes 

 12.6.1 Abstact Syntax Tree 

 12.6.2 Directed Acyclic Graph 

 12.6.3 Three-Address Code 

  12.6.3.1 Quadruples 

  12.6.3.2 Triples 

  12.6.3.3 Indirect Triples 

12.7 Summing Up 

12.8 Answers to check your progress 

12.9 Possible questions 

12.10 References and suggested readings 

 

12.0 INTRODUCTION 

The language system is guided by context-free grammars. This 

formal grammar is a means of implementing syntax analysis phase 

of the compiler. The grammar symbols are attached with attributes. 

We already know that the programming language constructs are 

always represented by the grammar symbols. The values of 
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attributes are computed by some semantic rules associated with the 

production rules or grammar rules. The semantic rules are 

associated with productions in two ways: 1. Syntax directed 

definition 2. Syntax directed translation. The purpose of syntax 

analysis phase is mainly to produce syntax trees. A syntax tree is a 

data structure in which the interior nodes represent the operations 

and leaf nodes represent its operands. The parser produces syntax 

directed translations apart from finding syntax errors. Throughout 

this unit, we will learn how syntax level analysis is done on the 

programming language constructs. We will also learn the generation 

of syntax trees and association of semantic rules combine to derive 

values of attributes so that the syntax directed translation schemes 

can proceed. 

 

12.1 UNIT OBJECTIVES 

After going through this unit, you will be able to: 

 learn the concepts behind syntax directed definitions 
 understand different forms of syntax directed definitions 
 know the differences between syntax and inherited attributes 
 have knowledge on syntax directed translation scheme 
 learn to construct the dependency graph 
 have basic ideas on S-Attributed and L-Attributed 

Definitions 
 define intermediate codes and its different forms 
 gain knowledge of syntax trees 
 learn to construct the Directed Acyclic Graph 
 know how to form different types of three address codes 

 

12.2 SYNTAX DIRECTED DEFINITIONS 

The analysis phase of a compiler breaks the source code into 

constituent pieces and produces the intermediate code. Then the 
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synthesis phase works on the intermediate code to generate the final 

code. The syntax of a language corresponds to the format in which 

the program has to be written. Syntax differs from semantics in 

which the meaning of the code is represented by the latter. 

Semantics correspond to the meaning of the program and also what 

the program produces when it executes. Syntax is primarily 

specified by the Context Free Grammar (CFG). Apart from 

specifying the syntax of a language, CFG also helps in grammar 

oriented compiling technique called Syntax directed translation. 

However, before going to translation, we must discuss the syntax 

directed definition.  

Syntax directed definition is the generalized form of a context free 

grammar. Each grammar symbol has an associated set of attributes. 

These attributes are further classified into synthesized and inherited 

attributes. Each node of a parse tree represents a grammar symbol. 

An attribute of a parse tree node corresponds to a string, number, 

type or memory location etc. It is regarded as the any quantity 

associated with a programming language construct. Attributes might 

include data types of expressions, location of the first instruction in 

the generated code and the number of instructions in the generated 

code. Therefore, syntax directed definitions are the CFGs together 

with attributes and rules. 

Apart from this, a set of semantic rules is associated with each 

production. This is because; the values of attributes are computed 

from the semantic rules associated with the symbols appearing in 

the productions. In other words, semantic rules associated with the 

production rules on a particular node deduce the attribute values 

associated with that node. The value of a synthesized attribute at a 

parse tree node is computed from the values of the attributes at the 

children of that node. Similarly, the value of an inherited attribute is 



200 
 

computed from the values of the attributes of siblings as well as its 

parents of that node.  

A very important element of syntax directed definition is finding the 

dependencies among attributes. This feature can be represented 

using a graph, known as the dependency graph. The dependency 

graph represents the evaluation order of the semantic rules. This 

evaluation derives from the values of the attributes at parse tree 

nodes of the input string.  

A parse tree which contains the values of attributes at each node of 

the parse tree is termed as annotated parse tree. The process through 

which these attribute values are computed is called annotating or 

decorating the tree. For example, the parse tree of the postfix 

notation  

12.3.1 Forms of Syntax Directed Definition 

In syntax directed definition, the grammar production of the form A 

→ α has associated set of semantic rules of the form b := f(c1, 

c2,….,cn) where f is a function and  

1. b is an inherited attribute of one of the grammar symbols 

belonging to the right side of the production and c1, c2,….,cn 

are the attributes grammar symbols of the production.  

2. b is a synthesized attribute of A and c1, c2,….,cn are the 

attributes of the grammar symbols of the production. This is 

extensively used in compilation.  

The value of attribute b is derived from the attributes c1, c2,….,cn. 

The semantic rules may be written in terms of expressions. It is 

worth mentioning here that a semantic rule may sometimes create 

side-effects like printing a value or updating a global value. In such 

cases, semantic actions are written using procedures or program 

fragments. 



201 
 

12.3.2 Synthesized and Inherited Attributes 

In this unit, we shall discuss two types of attributes associated with 
non-terminals: 

i. Synthesized attribute for a non-terminal at a parse tree 
node can be defined using semantic rule. The semantic 
rule for the parse tree node N is associated with the 
production defined at N. The production must have the 
non-terminal at its head. The synthesized attribute S at a 
parse tree node N is defined in terms of the attribute 
values of the children of N and N itself. Terminals can 
have only synthesized attributes but not inherited 
attributes. The lexical analyzer supplies the lexical 
values of the attributes of the terminals. A syntax 
directed definition that involves synthesized attribute is 
called as S-attributed definition. In such definition, each 
rule computes the attribute of the node present at the 
head from the attribute values present at the body of the 
rule.  

ii. Inherited attribute for a non-terminal at a parse tree node 
is also defined using semantic rules; but this time using 
the parent of the non-terminal. The semantic rule for the 
parse tree node N must be associated with the production 
at the parent of N. The production must have the non-
terminal at its body. An inherited attribute I at a parse 
tree node N is defined in terms of the attribute values of 
the parent of N, N itself and N’s siblings.  

 

 

 

 

 

 

 

 

CHECK YOUR PROGRESS- I 

1. The analysis phase of a compiler produces 
______________________. 

2. The synthesis phase of a compiler generates the _________________. 
3. Attributes of a syntax directed defintion are further classified into 

_______________and ____________ attributes. 
4. Finding the dependencies among attributes is represented using a 

_________________________. 
5. What do you understand by annotating a parse tree? 
6. Synthesized attributes of a parse tree node is computed from the 

_____________ of the node. 
7. Inherited attributes of a parse tree node is computed from itself, its 

_____________ and the siblings of the node. 
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12.4 SYNTAX DIRECTED TRANSLATIONS 

Syntax directed definition attaches a set of attributes to each 
grammar symbol. Apart from this a set of semantic rules are 
attached to each production in order to compute attributes associated 
with each grammar symbols. 

We already know that code fragments are associated with grammar 
rules. One such production rule can be assumed as: 

E → E + T ;  E and T are the 
non-terminal symbols. 
Also stand for 
Expression and 
Terminal  

Now, using this production, we shall derive an annotated parse tree 
for the attribute value t as follows: 

 

 

 

 

 

 

Fig 12.1: Annotated parse tree for the expression 9 - 5 + 2 
(Source: Compilers- Principles, Techniques & Tools by Aho, Lam, Sethi, 

Ullman) 

 

The attribute value at the root of the parse tree derives the postfix 
notation 95-2+ for the expression 9 – 5 + 2. 

A translation scheme is a concept that attaches programming 
constructs to the production rules. The programming constructs are 
executed only when they are assigned with productions. The 
execution order is decided by the syntax analysis phase and 
accordingly these constructs are executed to generate the final 
output. This output finally produces the translation of the program. 
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It is already mentioned that synthesized attributes are most 

commonly used during translation. An attribute at a parse tree node 

N is said to be synthesized if the value of the attribute at N is 

derived from the attributes of N and its children. A single bottom up 

traversal of the tree evaluates the synthesized attribute. An inherited 

attribute is the one whose value at a parse tree node is derived from 

the attribute values of itself, its parents and its siblings. 

The following figure corresponds to the syntax directed definition of 

the parse tree created in Fig. 12.1 

Production Semantic Rule 
E → E + T Expr.t = Expr.t || Term.t || ‘+’ 
E → E – T Expr.t = Expr.t || Term.t || ‘-’ 

E → T Expr.t = Term.t  
T → 0 Term.t = ‘0’ 
T → 1 Term.t = ‘1’ 
……. …….. 
T → 9 Term.t = ‘9’ 

Fig 12.2: Syntax directed definition for the infix expression 9 – 5 + 2 

 

The semantic rules correspond to the syntax directed definitions for 

translating expressions into postfix notation. Symbol || correspond to 

the concatenation operator.  

Syntax directed definition must have the property of being simple. 

The string representing the translation scheme of the non-terminal at 

the head of each production rule is equal to the concatenation of 

translations of the non-terminals of the rule’s body. The order of 

translation is same as the order in which they appear in the body. 

This may in turn require some additional strings to be optionally 

interleaved. The semantic rules defined in figure 12.2 can be 

considered as simple as they are concatenated in the same order as 

they appear in the production’s body. By attaching attributes to the 
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nodes of the parse tree in terms of strings, the translation scheme is 

built up.  

We now consider another translation scheme that is similar to 

syntax directed definition except the fact that the order of evaluation 

of semantic rules is explicitly specified in translation. Sometimes, 

program fragments are needed to be embedded in a production’s 

body. It is termed as semantic action. The position of semantic 

action is shown in between two curly brackets in the production’s 

body. The actions are attached to the parse tree interior node using a 

dashed line. We may consider the action of printing during 

execution of codes.  

 

 

 

 

 

 

Fig. 12.3: Translation for the expression 9 – 5 + 2 
(Source: Compilers- Principles, Techniques & Tools by Aho, Lam, Sethi, 

Ullman) 
 

The grammar generates expression consisting of digits separated by 

plus and minus. A left-to-right depth first traversal of the tree 

executes the print whenever leaf node is visited. Finally, the actions 

translate the expression into postfix notation.  

The root represents the first production to be considered. The next 

action would be to traverse the leftmost subtree of the root and 

perform all the actions. That is, the tree traversal will start from the 

left operand expr. This would produce the action ‘95-’. Next, the 

leaf node ‘+’ will be encountered; but no action will take place. And 
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finally, the right subtree traversal would lead to performing action 

‘2+’.  

Both the schemes presented in Fig. 12.1 and Fig. 12.3 produce the 

same translation; but they are constructed differently. Fig. 12.1 

produces translation simply by attaching attribute values to the 

nodes. But, the other one does the same by printing the translation 

through semantic actions. The semantic actions are performed in the 

same way they appear during postorder traversal.  

As specified, syntax directed definition attaches attributes to the 

grammar symbols simply by associating semantic rules to the 

productions. Let us refer to Table 12.2 and consider a semantic rule 

Expr.code = Expr1.code || Term. code || ‘+’ corresponding to the 

production E → E1 + T. The production has two non-terminals, E1 

and T; E distinguishes from E1 in a fact that E occurs in the 

production head and E1 occurs in production head. They have a 

string valued attribute code and Expr.code is obtained by 

concatenating Expr1.code, Term. code and +. We now again refer to 

figure 12.3 and reconsider the associated semantic action E → E1 + 

T { print ‘+’ }. Semantic actions are represented within curly 

brackets. Here, the action occurs after all grammar symbols. 

However, an action may occur anywhere within the production 

body. 

As already mentioned, the lexical values of the terminals are 

gathered during lexical analysis; there is no semantic rule in the 

syntax directed definition for computing the values of the attributes 

of a terminal. 

We consider another set of syntax directed definitions (SDD) for a 

simple desk calculator. It evaluates expressions terminated by n. The 

non-terminals have a single synthesized attribute val. Apart from 
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this, the terminal digit has a single synthesized attribute lexval 

which is an integer value returned by the lexical analyzer. 

Sl. No. Production Semantic Rule 
1 L →  E n L.val = E.val 
2 E → E1 + T E.val = E1.val + T.val 
3 E → T E.val = T.val 
4 T → T1 * F T.val = T1.val * F.val 
5 T → F T.val = F.val 
6 F → (E) F.val = E.val 
7 F → digit F.val = digit.lexval 

Fig. 12.4: Syntax directed definitions of a simple desk calculator 
(Source: Compilers- Principles, Techniques & Tools by Aho, Lam, Sethi, 

Ullman) 
 

The first production sets the value of L to the numerical value of E. 

The In the second production, the value attribute of E is derived by 

the sums of the value attributes of its child nodes E1 and T. 

Similarly, the value of E is set to the value of T. The fourth 

production sets the value of symbol T as the multiplication of the 

numerical values of its child nodes T1 and F. Productions 5 and 6 

sets the values of T and F to the numerical values of their single 

child nodes F and E respectively. Finally, production 7 sets the val 

attribute of symbol F to the numerical value of the token digit 

returned by the lexical analyzer. The SDD of Fig. 12.4 is an S-

attributed definition.  

Rules are first applied and the parse tree is constructed. Then these 

rules of the SDD would evaluate the values of the attributes of the 

parse tree nodes. Thus, an annotated parse tree is built. However, 

evaluation of attributes of a parse tree nodes require to evaluate the 

attribute values of the nodes upon which it is dependent. For 

example, the synthesized attribute of a particular node in a parse tree 

is derived by evaluating the attributes of its child nodes. Synthesized 

attributes can derive attributes in any bottom-up order like 

postorder, preorder or inorder. 
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In both synthesized and inherited attributes, there is no guarantee 

about the order in which the attributes are evaluated.  

We now construct an annotated parse tree for the input string (2 * 4) 

+ (3 * 5) n using the grammars and rules of Fig. 12.4.  

 

 

 

 

 

 

 

Fig. 12.5: Annotated parse tree for the expression (2 * 4) + (3 * 5) n 

 

Each non-terminal has an associated attribute val which is computed 

in a bottom-up approach. Terminal digit has attribute lexval whose 

value is derived during lexical analysis. During bottom-up approach, 

this value propagates upwards into the parent nodes resulting in 

involving of S-attributed definition. Figure 12.5 represents 

translation process which involves synthesized attributes.  

Let us consider a production rule of the form C → D representing a 

semantic rule D.val = C.val + 5. The attribute value of the child 

node D is computed form the attribute of its parent C.  Therefore, 

val represents an inherited attribute. We may consider another 

inherited attribute type and the semantic rule might be like D.type = 

C.type. We again consider another parse tree for the purpose of 

representing inherited attributes. We consider the following set of 

productions and their corresponding semantic rules.  
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Sl. No. Production Semantic Rule 
1 T → FT' T'.inh = F.val 

T.val = T'.syn  
2 T' → * FT1' T1'.inh = T'.inh X F.val 

T'.syn = T1'.syn 
3 T' → € T'.syn = T'.inh 
4 F → digit F.val = digit.lexval 

Fig. 12.6: SDD involving both inherited and synthesized attribute 
(Source: Compilers- Principles, Techniques & Tools by Aho, Lam, Sethi, 

Ullman) 
 

Non-terminals T and F have the synthesized attribute val. Similarly, 

terminal digit also has a synthesized attribute lexval. T' has two 

attributes: synthesized syn and inherited attribute inh. To generate 

top down parsing which generates the expression 9 * 4 * 7 requires 

the left operand of the operator * is inherited. The following 

annotated parse tree derives the given string using both the 

attributes.  

  

 

 

 

 

 

Fig. 12.7: Annotated parse tree for the expression 9 * 4 * 7 

The leftmost leaf of the parse tree is labeled with the terminal digit 

and had the attribute name lexval= 9 which is supplied by the lexical 

analyzer. The semantic rue associated with this production is F.val = 

digit.lexval. This makes F.val = 9. In the second subtree, production T' 

→ *FT1' is applied. The corresponding semantic rules indicate that 

T'.inh inherits the value of its sibling F.val which is equal to 9. 

Now, production T' → * FT1' is applied at T'. Here, two attributes 

have been introduced having semantic rules T1'.inh = T'.inh X F.val 
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and T'.syn = T1'.syn. This makes T1'.inh = 36. At T1', again 

production T' → * FT1' is applied with the same set of semantic 

rules as the previous one. Now, the same inherited attribute T1'.inh 

derives its value equal to 252. Finally, at T1', T' → € is used and the 

corresponding semantic rule T'.syn = T'.inh evaluates T'.syn = 252. 

This value propagates up to set the synthesized attribute value 

T1'.syn  and T'.syn equal to 252. Finally, at the root, the synthesized 

attribute value T.val is set to T'.syn and is also equal to 252. In this 

way, an expression is evaluated in an annotated parse tree. 

It is important to understand the evaluation order of the attributes of 

a given annotated parse tree. Dependency graph is such a tool which 

determines how these attribute values at each parse tree node is 

evaluated. Once they are determined, they can be shown in the 

annotated tree. 

12.5 DEPENDENCY GRAPH 

Information flows among the attributes of parse tree nodes. A 

dependency graph depicts such flow of information from one 

attribute into another in a parse tree. An edge from one attribute into 

another means that the value of the first is needed to compute the 

second.  

● Corresponding to each parse tree node labeled X, the 

dependency graph also has a node for each attribute 

associated with X. 

● Let us consider that we have a semantic rule associated with 

a production p. The production defines the value of 

synthesized attribute A.b in terms of the value of X.c. 

Therefore, the dependency graph has an edge from X.c to 

A.b. At every node labeled A where p is applied, we create 
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an edge to attribute b from attribute c at the child node 

corresponding to the production body. 

● Let us consider that we have another semantic rule 

associated with a production p. The rule defines the value of 

inherited attribute A.b in terms of the value of X.c. The 

dependency graph has an edge from X.c to A.b. At every 

node labeled A where p is applied, we create an edge to 

attribute b at A from attribute c at the node corresponding to 

X. X could be either the parent or sibling of A. 

Considering the following production and the corresponding 

semantic rule declared in Fig. 12.5. 

Production   Semantic rule 
E = E1 + T  E.val = E1.val + T.val 

Each node N labeled by E at the head is evaluated by adding the 
attribute value val of its children. Therefore, val is a synthesized 
attribute which derives the value of N from the val attributes of its 
body. It can be represented in terms of Fig. 12.7. 

 

 

 

 

 

 

Fig. 12.8: Dependency graph representing synthesized attribute E.val from its 
children 

 

In this way, we can represent any annotated parse tree using 
dependency graph. The annotated parse tree evaluating the 
expression 9 * 4 * 7 is shown in Fig. 12.7. It involves both inherited 
and synthesized attributes. The same has been represented in terms 
of a dependency graph in the next figure. 
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Fig. 12.9: Dependency graph representing annotated parse tree of Fig. 12.7 

 

F.val is a synthesized attribute which gathers its value from the 

attribute value of its child node digit.lexval. The inherited attribute 

T'.inh inherits its value from F.val when production T → FT' is 

applied. The child node T1' inherits values from its parent T' and 

also from F when production T'→ * FT1' is applied. The semantic 

rule T1'.inh = T'.inh X F.val is applied in order to derive the value of 

T1'.inh. Same semantic rule is applied when same production T'→ * 

FT1' is applied on T1'. Finally, production T' → € is applied on T1'. 
This in turn allows us to apply the semantic rule T'.syn = T'.inh. 

This assigns the inherited attribute of T' into the synthesized 

attribute of T'. Now, this synthesized attribute propagates upwards 

and finally gets assigned into the val attribute of the root node of the 

tree T. In this way, the order of evaluation proceeds and finally the 

result gets assigned in the head of the tree. 

A dependency graph represents the possible order of evaluation of 

attributes at various nodes of the parse tree. If the graph has an edge 

from node M to N, then the attribute value of node M must be 

evaluated prior to that of N. It is worth to mention here that 

sometimes ordering embeds a directed graph into a linear order. 

This happens when we have nodes N1, N2, N3, ……., Nk in which 

the graph has an edge of from Ni to Nj where i<j. Such ordering of 
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sequences of nodes is termed as topological sort of the graph. If the 

graph has cycles, then there is no topological sort and there is no 

way to evaluate SDDs.  

 

 

 

 

 

 

 

 

12.6 S-ATTRIBUTED and L-ATTRIBUTED DEFINITIONS 

Sometimes given an SDD, it is very difficult to whether there exists 

any dependency graph that has no cycle. SDDs implement 

translations and also guarantee the evaluation order. This is because; 

they do not permit dependency graphs with cycles. In an SDD, if 

every attribute is synthesized is termed as S-attributed definition. In 

an S-attributed SDD, the attributes of parse tree nodes are evaluated 

in a bottom-up order. By traversing the tree in a postorder format 

evaluates the attributes of the nodes. Bottom-up parse corresponds 

to postorder traversal of nodes. And postorder also corresponds 

exactly to the manner in which an LR parser reduces a production 

body to its head. 

On the other hand, in an L-attributed SDD, the edges of a 

dependency graph can go from left t right but not from right to left. 

Each attribute in an L-attributed definition must be either 

 

CHECK YOUR PROGRESS- II 

8.   Syntax directed definition attaches a set of _____to each 
grammar symbol. 

9. A single bottom up traversal of the tree evaluates the________. 

10.  Information flows among the ______ of parse tree nodes. 

11. The edges of a depeendency graph are always drawn using 
_________. 
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● Synthesized 

● Inherited. Suppose, there is a production A→ X1, X2, X3, 

……., Xk and there is an inherited attribute Xi.a computed by 

a semantic rule. The rule may use only: 

a. Inherited attribute associated with head A. 

b. Either synthesized or inherited attributes associated with 

the occurrence of the symbols X1, X2, X3, ……., Xi-1 

towards the left of Xi. 

c. Inherited or synthesized attributes associated with the 

occurrence of Xi itself with condition that the 

dependency graph must not contain any cycles. 

The SDDs in figure 12.6 are L-attributed. The inherited attributes 

gather values of attributes from above or from the left. However, 

some SDDs of the given definition are synthesized also. Let us 

again define two productions with their corresponding semantic 

definitions. 

  Production    Semantic rule 

  T → FT'    T'.inh = F.val 
T' → * FT1'    T1'.inh = T'.inh  

X F.val 
 
The inherited attribute T'.inh uses the value of F.val where F 

appears towards the left of T'. Similarly, the value of the inherited 

attribute T1'.inh is derived by multiplying the attribute values of its 

parent (T'.inh) and its sibling which appears at its left (F.val). Thus, 

both the SDDs can be regarded as L-attributed definitions. 

We consider another production and also its corresponding SDDs 

and see that the definitions cannot be considered as L-attributed. 
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Production    Semantic rule 

  A → B C    A.a = B.b 
       B.i = A.a X C.c  

 

The first semantic rule corresponds to assignment of the attribute B.b 

into the value A.a. This is synthesized attribute definition where the 

attribute value of the chils node is assigned to the parent. Similarly, 

in the second definition, the attribute value of the child node is 

defined by multiplying the attribute values of both its parent and 

sibling. It is obviously an inherited attribute but node C appears at 

the right side of the production. This defies the basic principle of L-

attributed definition. Therefore, the SDDs cannot be regarded as L-

attributed definitions. 

12.7 INTERMEDIATE CODES 

In the analysis-synthesis model, the front end of the compiler 

analyzes the source program and produces an intermediate 

representation of the same. This representation is required to 

produce the target code of the source program. Therefore, 

intermediate codes play a crucial role during compilation. A 

compiler may create a sequence of intermediate representations 

while translating from source to target representation. Therefore, the 

representation must be easy to produce and also easy to translate 

into target code. High level representations are close to the source 

code and low level representations are close to the target code. One 

form of high level representation might be the syntax tree which 

depicts the hierarchical structure of the source program and also 

does tasks like static type checking. On the other hand, low level 

representations like three-address codes the closer to the machine 

dependent tasks like register allocation and selection of instructions. 

In this unit, we shall see some common forms of intermediate 

representations. 
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● Trees, which includes abstract syntax trees. 

● Linear, which includes three-address code. 

 

12.7.1 Abstract Syntax Tree 

Programming constructs are represented by the abstract syntax trees 

or simply syntax trees. As already studied, during analysis phase of 

compiler, attributes are inserted to the nodes of the tree. Attributes 

are defined by the SDDs. An abstract syntax tree (AST) is a 

hierarchical structure that represents the source program construct. 

An AST for an expression consists of the followings: 

● Each interior node represents an operator. 

● Each child node represents the operand of the operator. 

A syntax tree is a form of intermediate representation that resembles 

a parse tree; however, a syntax tree contains an operator as interior 

nodes, whereas, a parse tree contains a non-terminal for the same. 

We consider the following syntax tree which represents a simple 

arithmetic expression E1 op E2; where op represents the interior 

node and leaf nodes are represented by E1 and E2. Not only 

expressions, a syntax tree can represent any programming construct. 

 

 

Fig. 12.10: An Abstract Syntax Tree 

Apart from this, a syntax tree is also used by the semantic analyzer 

so that it can check whether the code is semantically correct or not. 

We now consider another expression 9-5+2 and try to draw the 

syntax tree for the same. 

 

 

Fig. 12.11: An AST for the expression 9-5+2 
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The root ‘+’ contains two sub expressions (9-5) and 2. Let us 

represent another C statement while ( expr ) stmt using a syntax 

tree. As the while statement consists of an operator, it becomes the 

root of the tree and the syntax trees for expr and stmt form the 

children of while.         

For each statement construct that begin with a keyword, it forms the 

operator of the syntax tree. Thus, for while statement, the operator is 

‘while’ and that of do-while statement, is ‘do’. Conditional 

statement ifelse can have ‘if’ only as an operator in the syntax tree.                

12.7.2 Directed Acyclic Graph 

A Directed Acyclic Graph or DAG in short is a variant of syntax 

tree. Like syntax trees, DAG also contains operator as its interior 

node and operands as leaf nodes. Moreover, it is a tree contains 

common sub expression and it would be replicated as many time as 

the common sub expression appears in the construct. Thus, a DAG 

identifies the common sub expressions occurring in an expression. It 

gives an important clue regarding the generation of efficient code so 

that compilation can proceed firmly. DAGs and syntax trees are 

constructed using the same technique.  

Let us draw a DAG for the expression: a + a * (b - c) + (b - c) * d. 

The expression contains common sub expressions a, (b – c). The 

interior nodes would contain the operators. The leaf nodes would be 

the operands. 

 

 

 

 

Fig. 12.12: DAG for the expression a + a * (b - c) + (b - c) * d  
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Often nodes of a syntax tree are stored as an array of records. Each 

record represents information of a node. The first field of the record 

indicates the operation code which designates the label of the node. 

Leaves have an additional field which holds its lexical value. 

Interior nodes have two fields- one for its left child and the other for 

right.  

Let us consider the expression i = i + 1 and try to draw a DAG and 

also keep records of each node in an array.  

                                                                               

 

 

 

 

 

Table 12.1: Array of nodes for the expression i = i + 1      

 

 

 

 

         

 

           Fig 12.13: DAG for the expression i = i + 1          

(Source: Compilers- Principles, Techniques & Tools by Aho, Lam, Sethi, 
Ullman) 

Each node of the array is referred to by an integer index. In other 

words, the integer, also termed as the value number identifies each 

node and also the expression represented by the node. For instance, 

the node labeled ‘+’ has the value number 3 and also its left and 

right children have value numbers 1 and 2 respectively. Similarly, 

1 id Entry for i 

2 num 10 

3 + 1 2 

4 = 1 3 
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node labeled ‘=’ refer to its left and right children through value 

numbers 1 and 3 respectively. Thus, an interior node is represented 

by the 3-tuple (op, l, r) where op represents the label, l and r are the 

value numbers of the left and right children of the node. When r=0, 

it is assumed to be a unary operator. 

12.7.3 Three-Address Code    

It is already mentioned that once syntax trees are constructed, 

attribute values at the nodes are evaluated and code fragments are 

executed. The tree is traversed in order to generate the three address 

code for the programming construct. A three address code is an 

instruction sequence of the following forms:      

1. An assignment instruction of the form z = x op y; where z, x and 

y are the identifiers, constants or temporaries and op is a binary 

arithmetic or logical operator.  

2. Another assignment instruction of the form z = op y; where op is 

a unary operator. 

3. Copy instructions for copying the value of one operand to 

another is represented by the three address code: y = x 

4. The sequence of three address instructions are executed in a 

linear fashion until it encounters a conditional or unconditional 

jump statement. The following statements represent a control 

flow with a jump to the statements labeled L. 

    
goto L execute instruction with label L 
if x goto L  if x is true, then execute the instruction labeled L. 
if False x goto L   if x is flase, then execute the instruction 
labeled L 

5. Another conditional jump statement such as if x relop y goto L 
applies relational operators such as <, <=,==, >, >=between x 
and y. If the operator evaluates to true, the statements with label 
L will be executed. If not, the instructions next to the statement x 
relop y goto L would be executed. 
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6. Procedure calls are implemented using statements such as 

param x and call p, n or y = call p, n. Similarly, returns are 

implemented using statement return y; y being the return value 

of a procedure. As part of the procedure call  p(x1, x2, ……., xn), 

the following three address codes are executed: 

param x1 

param x2 

….. 
param xn 

call p, n 

where n specifies the number of actual parameters in the procedure 
call. 

7. Another kind of three address code can be the address and 

pointer assignments: x = &y, x = *y and *x = y.  

In three address code, there is at most one operator at the right side 

of an instruction. An instruction of the form a+b*c can be 

represented in terms of the three address code as follows: 

   t1 = b * c 
   t2 = a + t1 
where t1 and t2 are two compiler generated temporaries. A three 

address code is a linear representation of the syntax tree or a DAG.  

We again consider the DAG of Fig. 12.12 and transform it into its 

corresponding three address code.  

   t1 = b – c 
   t2 = a * t1 
   t3 = a + t2 
   t4 = t1 * d 
   t5 = t3 + t4 

Three address codes are primarily based on two major components: 

addresses and instructions. This corresponds to the concept of class 

with the two components being its sub classes. Apart from this, a 

three address code can also be implemented using records with 
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fields for addresses. Records are of various types: triples and 

quadruples. 

An important design issue associated with generation of three 

address codes is the choice of allowable operators. The operator set 

must be rich enough to implement the source language construct. 

Richer the operator set, it is easier to generate the target code for a 

programming language construct. This is because; the optimizer and 

the code generator do not have work hard in order to generate a 

good code structure for these operations. 

12.7.3.1 Quadruples 

Three address instructions have different kinds of representations: 

triples, quadruples and indirect triples. As the name suggests, a 

quadruple consists of four fields: operator, arg1, arg2 and result. The 

op field indicates the internal representation of the operation. The 

two arguments arg1 and arg2 contains the two operands on which 

the binary operation is performed. Finally, the result field contains 

the result after computation.  

However, unary operations or copy instructions do not follow such 

format as they do not use arg2. Similarly, other operators like 

param and jump neither use arg2 nor result. Therefore, these 

operations can be treated as the exceptions to rules quadruples are 

formed. 

Let us take a set of three address codes and try to convert it into an 

equivalent set of quadruples. 

t1 = b – c    
t2 = a * t1 

   t3 = a + t2 
   t4 = t1 * d 
   t5 = t3 + t4 
   res=t5 
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Fig. 12.14: Three address code and corresponding quadruples 

In case of unary operation, the arg2 field corresponding to the 

record will remain blank. Here, we have considered an additional 

statement res=t5 for the sake of understanding so that you get to 

know how quadruples are generated when only one argument is 

involved in a statement. 

12.7.3.2 Triples 

A three address code which consists of three fields: operation, arg1 

and arg2. In quadruples, the result field contains temporary names 

of result of intermediate operations. In triples, result field is 

specified by the position or value numbers of the operation. Thus, 

rather than t1, the triple representation would refer to the position of 

the operation as 0.  

 

 

 

  

 
Fig 12.14: Triples equivalent to quadruples of Fig 12.13 

 
Quadruples are beneficial over triples because they do not require 

instructions to be moved around. For instance, in an optimizing 

compiler, instructions are needed to be moved frequently. With 

quadruples, instructions do not need to be changed whenever they 

 op arg1 arg2 result 
0 minus b c t1 
1 * a t1 t2 
2 + a t2 t3 
3 * t1 d t4 
4 + t3 t4 t5 
5 = t5  res 

 op arg1 arg2 
0 minus B C 
1 * A (0) 
2 + A (1) 
3 * (0) D 
4 + (2) (3) 
5 = (4) Res 
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are moved. But with triples, the operations are referred to by 

positions. Therefore, moving an instruction may require changing 

all references to those operations. This problem of changing of 

references does not occur with indirect triples.   

12.7.3.3 Indirect Triples 

Indirect triple is an enhancement over triple representation. It 

consists of a list of pointers to triples rather than the triples 

themselves. It is basically implemented using an array which points 

to the list of pointers to triples. Therefore, instead of position, 

pointers are used to store results. It is very common for an 

optimizing compiler to move around the instructions. Indirect triples 

do it simply by rearranging the array and without affecting the 

triples themselves. The triples of figure 12.14 can be rewritten using 

indirect triples as follows. 

35 (0) 
36 (1) 
37 (2) 
38 (3) 
39 (4) 
40 (5) 

     

Fig. 12.15: Indirect triples equivalent to triples of Fig 12.14 

 

 

 

 

 

 

 

CHECK YOUR PROGRESS- III 

12. Bottom-up parse corresponds to ______________traversal of nodes. 
13. In an S-attributed SDD, the attributes of parse tree nodes are evaluated in 
a _____order. 
14. Intermediate representation must be easy to produce and also easy to 
translate into________. 
15. High level representations are close to the ____________________. 
16. Low level representations are close to the ____________________. 
17. Syntax tree which depicts the ______________of the source program. 
18. A Directed Acyclic Graph tries to eliminate _________ occurring in an 
expression. 
19. A _______________consists of four fields. 
20. __________consists of a list of pointers to triples rather than the triples 
themselves. 
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12.8 SUMMING UP 

● A syntax tree is a data structure in which the interior nodes 

represent the operations and leaf nodes represent its operands. 

The parser produces syntax directed translations apart from 

finding syntax errors. 

● The semantic rules are associated with productions in two ways: 

1. Syntax directed definition  2. Syntax directed translation. 

● The syntax of a language corresponds to the format in which the 

program has to be written. 

● Syntax is primarily specified by the Context Free Grammar 

(CFG). Apart from specifying the syntax of a language, CFG 

also helps in grammar oriented compiling technique called 

Syntax directed translation. Syntax directed definition is the 

generalized form of a context free grammar. 

● Each grammar symbol has an associated set of attributes. An 

attribute of a parse tree node corresponds to a string, number, 

type or memory location etc. Attributes might include data types 

of expressions, location of the first instruction in the generated 

code and the number of instructions in the generated code. 

Attributes are further classified into synthesized and inherited 

attributes. 

● A parse tree which contains the values of attributes at each node 

of the parse tree is termed as annotated parse tree. The process 

through which these attribute values are computed is called 

annotating or decorating the tree. 

● Synthesized attribute for a non-terminal at a parse tree node can 

be defined by the attribute values of the children of N and N 

itself. Inherited attribute for a non-terminal at a parse tree node 

is defined by the attribute values of itself, its parent and its 

siblings.  
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● Sometimes, program fragments are needed to be embedded in a 

production’s body. It is termed as semantic action. The position 

of semantic action is shown in between two curly brackets in the 

production’s body. The actions are attached to the parse tree 

interior node using a dashed line. Semantic actions are 

represented within curly brackets. 

● A dependency graph depicts such flow of information from one 

attribute into another in a parse tree. An edge from one attribute 

into another means that the value of the first is needed to 

compute the second. A dependency graph represents the possible 

order of evaluation of attributes at various nodes of the parse 

tree. 

● In an SDD, if every attribute is synthesized is termed as S-

attributed definition. In an S-attributed SDD, the attributes of 

parse tree nodes are evaluated in a bottom-up order. On the other 

hand, in an L-attributed SDD, the edges of a dependency graph 

can go from left t right but not from right to left. 

● A compiler may create a sequence of intermediate 

representations while translating from source to target 

representation. Therefore, the representation must be easy to 

produce and also easy to translate into target code. 

● An abstract syntax tree (AST) is a hierarchical structure that 

represents the source program construct. It is a form of high 

level intermediate representation. Here, each interior node 

represents an operator and each child node represents the 

operand of the operator. 

● A Directed Acyclic Graph or DAG in short is a low level 

intermediate representation. It identifies the common sub 

expressions occurring in an expression. 

● A three address code is a linear representation of low level 

intermediate codes.  Three address codes are primarily based on 

two major components: addresses and instructions. Three 
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address codes are of various types: indirect triples, triples and 

quadruples. 

● A quadruple consists of four fields: operator, arg1, arg2 and 

result. The op field indicates the internal representation of the 

operation. The two arguments arg1 and arg2 contains the two 

operands on which the binary operation is performed. Finally, 

result field contains the result after computation.  

● In triple a three address code which consists of three fields: 

operation, arg1 and arg2. The result field is specified by the 

position or value numbers of the operation. 

● Indirect triple is an enhancement over triple representation. It 

consists of a list of pointers to triples rather than the triples 

themselves. It is basically implemented using an array which 

point to the list of pointers to triples.  

 

12.9 ANSWERS TO CHECK YOUR PROGRESS 

1. intermediate code 
2. final code 
3. synthesized, inherited 
4. dependency graph 
5. The process through which the attribute values of a parse 

tree node are computed is called annotating or decorating the 
tree. 

6. Children 
7. Parent 
8. attributes 
9. synthesized attribute 
10. attributes 
11. dotted lines 
12. postorder 
13.  bottom-up 
14. target code 
15. source code 
16. target code 
17. hierarchical structure 
18. common sub expression 



226 
 

19. quadruple 
20. Indirect triples 

 

12.10 POSSIBLE QUESTIONS 

A. Short answer type questions. 

1. What is Context Free Grammar?  
2. What does the semantics of a language represent? 
3. What is syntax directed definition? Explain in brief. 
4. What does the attribute of a node represent? 
5. Discuss the significance of using semantic rules in a syntax 

directed definition. 
6. What do you understand by semantic action? 
7. What is dependency graph? Answer in brief. 
8. Discuss S-attributed and L-attributed definitions. 
9. How does intermediate code play crucial role during 

compilation process? 
10. What is syntax tree? Discuss. 
11. Write down the functions performed by the high level and 

low level intermediate representation of codes. 
12. What is abstract syntax tree? Explain with an example. 
13. What is Directed Acyclic Graph? Explain with an example. 
14. Describe the implementation strategy of quadruples? 
15. Describe the implementation strategy of triples? 
16. Describe the implementation strategy of indirect triples? 
17.  Describe why quaduples are beneficial over triples? 

 

B. Long answer type questions. 

1. What is syntax directed definition? Explain the different 
forms of syntax directed definitions. 

2. Discuss the synthesized and inherited attributes in detail. 
3. What do you understand by syntax directed translation? 

Explain elaborately with example. 
4. Consider your own set of syntax directed definition and 

show how translation of an expression takes place using the 
definition. 

5. What is dependency graph? Describe how edges are formed 
between a pair of attributes. 
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6. What are the prerequisites of deriving attribute values in an 
L-attributed definition? 

7. What are the common forms of intermediate codes? Explain 
each of them. 

8. Describe how Directed Acyclic Graphs are constructed. 
9. What are three address codes? What are the different forms 

of three address codes? Describe. 
10. What are the different types of three address codes? Explain 

each of them. 
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UNIT: 13 
INTERMEDIATE CODE GENERATION 

 
 
Unit Structure: 

13.0 Introduction 

13.1 Unit Objectives 

13.2 Intermediate Representation 

13.2.1 Static Checking and Forms of Intermediate 

Representation 

13.3 Arrays 

 13.3.1 Translation of Array References  

13.4 Flow of Control Statements 

 13.4.1 Boolean Expressions 

13.5 Switch Statement 

13.6 Functions  

13.7 Summing Up 

13.8 Answers to Check Your Progress 

13.9 Possible Questions 

13.10 References and Suggested Readings 

 

13.0 INTRODUCTION 

The analysis-synthesis model of a compiler converts the source 
language program into an intermediate representation. Then this 
representation is fed into the code generator phase in order to 
generate the target code. The front end of a compiler basically 
consists of lexical analysis, syntax analysis, semantic analysis and 
intermediate code generation phases. Similarly, the back end 
consists of code optimization and target code generation phases. 
There are a variety of forms that an intermediate representation 
might be in. We already have got to study about syntax tree which is 
one of such forms. It is commonly used during syntax and semantic 
analysis. Compilers generally produce low-level machine level 
representation. In the previous unit, we had learnt about another low 



 

level form of intermediate 
contains at most three operands. Later, the code optimization phase 
attempts to improve the intermediate codes for producing better 
target codes. These codes are sh
well as machine independent.
the intermediate representations 
language constructs like conditional statements, loops, arrays, 
functions and different expressi

 

13.1 UNIT OBJECTIVES

After going through this unit, you will be able to:

 Know the concepts behind intermediate code 
and its different forms.

 Learn about arrays and its translation schemes
 Know about different flow of 
 Learn the translation schemes of boolean expressions
 Learn the translation schemes of switch
 Learn the translation schemes of procedures

 

13.2 INTERMEDIATE REPRESENTATION

The intermediate representation forms the final phase of the front 
end of the compiler. The source code passes through the lexical 
analysis, syntax analysis and semantic analysis phases respectively.  
The output of semantic analysis is entered into 
generation phase. The intermediate codes are basically of two types
high level and low level. High level codes are close to the source 
code. They are  

 

 

 

Fig 13.1: Types of intermediate codes
(Source: Compilers- Principles, Techniques & 
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form of intermediate representation- Three address code. It 
ontains at most three operands. Later, the code optimization phase 

attempts to improve the intermediate codes for producing better 
These codes are shorter, consumes less resources as 

well as machine independent. In this unit, we shall try to construct 
he intermediate representations of different types of programming 

language constructs like conditional statements, loops, arrays, 
t expressions.   

UNIT OBJECTIVES 

After going through this unit, you will be able to: 

the concepts behind intermediate code representation 
and its different forms. 
Learn about arrays and its translation schemes 
Know about different flow of control statements 
Learn the translation schemes of boolean expressions 
Learn the translation schemes of switch-case statements 
Learn the translation schemes of procedures 

INTERMEDIATE REPRESENTATION  

The intermediate representation forms the final phase of the front 
end of the compiler. The source code passes through the lexical 
analysis, syntax analysis and semantic analysis phases respectively.  

analysis is entered into an intermediate code 
The intermediate codes are basically of two types- 

high level and low level. High level codes are close to the source 

Fig 13.1: Types of intermediate codes 
Principles, Techniques & Tools by Aho, Lam, Sethi, 

Ullman) 
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13.3.1 Static checking And Forms of Intermediate 
Representation 

During analysis phase of a compiler, the Static Checker phase takes 
place between the Parser and Intermediate Code Generator. This 
phase mainly does type checking and checks whether operators are 
compatible with operands. Static checking assures such errors must 
be detected and reported. Static checking checks the consistency of 
the codes. It tries to detect programming errors during compile time 
rather than run time. Static checking is conducted in terms of two 
ways: Syntactic Checking and Type Checking. 

 Syntactic checking attempts to check whether the 
statements of a program follow the syntax of the language. 
This might include rules for declaration of variables, special 
characters allowed during the declaration, their scope, using 
of braces in different control statements as well as 
permissible usage of keywords etc.  

 Type checking ensures that an operator or function is 
applied to the correct operand type as well as right number 
of operands. However, in some languages, type conversion is 
necessary; from integer to real. 

In the previous unit, we learnt about two basic kinds of intermediate 
codes: 

 Trees- which include parse trees or Abstract Syntax Trees or 
simply AST. Syntax trees are the hierarchical structures 
constructed during the parsing phase of a compiler. As the 
phases proceed, information is added to the nodes in the 
form of attributes. A Directed Acyclic Graph (DAG) is a 
variant of the syntax tree which identifies the common sub 
expressions. 
 

 Linear representation- which includes the three-address 
codes. They contain codes having at most three operands. A 
long statement is broken into smaller sequences of three-
address codes. These codes are executed one-after-another. 
However, for looping statements, the codes contain labels 
and jump instructions to represent the flow of control. Three 
address codes are efficient from the fact that they allow 
performing optimization, doing code generation and 
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debugging, translation from one language into another. They 
do not have any hierarchical structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

DAG and three-address codes have been discussed in the previous 
unit. They can be constructed parallely by generating three-address 
codes at each node of the syntax tree. The compiler stores nodes and 
their attributes as well as the data structure used for parsing. This is 
significant from the point that the compiler can retain those parts 
required for constructing syntax tree as well as three-address codes. 

Now, let us try to construct the intermediate representations of some 
vital components of a programming language. 

 

13.3 ARRAYS 

Arrays are the data structures which store data in contiguous set of 
memory locations. They store the similar type of data structure. An 
array A of length n is stored in n-contiguous locations with indices 
starting from 0 to n-1. If the width of each element is w, then the ith 
array element starts from location: 

CHECK YOUR PROGRESS – I 

1. ___________ contains at most three operands. 

2. __________ attempts to improve the intermediate 

codes for producing better target codes.. 

3. What are the two types of intermediate codes? 

4. The final phase of the front end compiler is the 

intermediate code generation. State whether true or 

false. 

5. The ______ phase takes place between the Parser and 

Intermediate Code Generator. 

6. Two ways of static checking: ___________ and 

________. 

7. Tree representation is linear representation. State True 

or False. 
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base + i × w ; base being the relative address of A[0] 

To calculate the relative address of the array element A[i][j], where j 
being element number of ith row; the formula would be: 

base + i × w1 + j × w2 

Here, w1 is the width of the row and w2 is the width of an element in 
the row. 

Therefore, for an n-dimensional array the formula would be: 

base + i1 × w1 + i2 × w2 + i2 × w3 +…..+ in × wn 

Alternatively, the relative address of an array can be calculated in 
terms of the numbers of elements nj along the jth dimension of the 
array and w being the width of each element of the array. Therefore, 
the formula which calculates the relative address of element A[i][j] 
would be: 

base + (i × nj + j) × w 

Similarly, for an n-dimensional array, the formula for calculating the 
array address would be: 

base + ((….((i1 × n2 + i2) × n3 + i3)….) × nn+in) × w 

Addresses of elements of a multidimensional array can be calculated 
during compile time. But for this to happen, the array must be static. 
However, when the array is dynamic, address calculation cannot be 
done during compile time.    

 

13.3.1 Translation of Array References  

Generation of codes for an array reference is a bit complicated as we 
need to associate an array name with a sequence of indices to a non-
terminal L. Therefore, L can be of the following form: 

   L → L [E] | id [E] 

The translation scheme for various expressions using array 
references has been written below. This scheme generates three-
address codes with productions and their corresponding semantic 
actions.  
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S → id = E ;  { gen( top.get (id.lexeme) ‘=’ 
E.addr); } 

     | L = E ; { gen(L.array.base ‘[’ L.addr ‘]’ 
‘=’ E.addr); } 

E → E1 + E2  { E.addr = new Temp (); 

gen(E.addr ‘=’ E1.addr 
‘+’ E2.addr); } 

| id  { E.addr = top.get(id.lexeme); } 

     | L  { E.addr = new Temp (); 

gen(E.addr ‘=’ 
L.array.base ‘[’ L.addr ‘]’); } 

L → id [ E ]  { L.array = top.get(id.lexeme); 

L.type = 
L.array.type.elem; 

L.addr = new Temp (); 

gen(L.addr ‘=’ E.addr 
‘*’ L.type.width); }      

     | L1 [ E ]  { L.array = L1.array; 

L.type = L1.type.elem; 

t = new Temp (); 

L.addr = new Temp (); 

gen(t ‘=’ E.addr ‘*’ 
L.type.width); 

gen(L.addr ‘=’ L1.addr 
‘+’ t); } 

Fig 13.2: Translation rules for Arrays 
Source: Compilers- Principles, Techniques & Tools by Aho, Lam, Sethi, 

Ullman 
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L.array denotes a pointer to the symbol table entry for the array 
name. The base address of the array is denoted by L.array.base. It 
determines the actual l-value of the array reference. L.type 
determines the type of the sub-array generated by L. Type is 
important and used as attribute since it is further used during type 
checking. Associated with each type, there is a width. Further, 
L.addr denotes a temporary that is used while computing the offset 
for the array reference during summation of terms in × wn. 

The production S → id = E does assignment to a non-array variable. 
Production S → L = E creates an indexed copy instruction which 
assigns the value of expression E to the location specified by the 
array reference L. Similarly, the production E → L generates codes 
to copy the value from location L into a new temporary. 

  

13.4 FLOW OF CONTROL STATEMENTS 

Translation of boolean expressions means translation of statements 
such as if, if-else and while. These expressions are used as 
conditional statements that can alter the flow of control. An 
expression is evaluated first and if it evaluates to true, then some set 
of statements are executed. Otherwise, control flow passes to some 
other sequences of instructions. Since, a boolean expression results 
in either true or false, it is analogous to writing these expressions 
using three-address codes with logical operators. An expression 
might have the keyword if preceding it. Such expression transfers 
the flow-of-control to some other point of the program by evaluating 
the expression to some logical value.  

13.4.1 Boolean Expressions 

Boolean expressions are composed of boolean operators such as 
AND (&&), OR (| |) and NOT (!) employed between variables 
called boolean variables or relational expressions. However, NOT is 
considered as unary operator and AND and OR are binary. The 
relational expressions are of the form E1 rel E2 where E1 and E2 are 
arithmetic expressions and rel corresponds to relational operators 
such as <, <=, =, ! =, > or >=. The following grammar generates 
boolean expressions. 

 B → B1 | | B2 | B1 && B2 | ! B | ( B ) | E rel E | true | false 
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It is already known to us that an ‘| |’ operator in the expression B1 | | 
B2 evaluates to true if either B1 or B2 evaluates to true. Similarly, the 
expression B1 && B2 evaluates to false is either of B1 or B2 
evaluates to false. Sometimes, it is possible to evaluate the truth 
value of the whole expression simply by computing the truth value 
of only a portion of the expression. This facility allows the compiler 
to optimize the evaluation of boolean expressions.  

The following grammar generates three address codes for flow-
control statements.  

   S → if ( B ) S1 

   S → if ( B ) S1 else S2 

   S → while ( B ) S1 

B represents a boolean expression and S is a non-terminal.  

There is a synthesized attribute code, defined for both B and S. This 
is required for translation into three-address instructions. Therefore, 
in S → if ( B ) S1, the translation rule consists of B.code followed by 
S.code. If B is true, control passes to the first instruction of S1.code. 
Otherwise, control flows to the instruction which immediately 
follows S1.code. This is depicted as the following figure. 

 

 

 

 

 

 

 
 

Fig. 13.3(a): Control flow using if condition 
(Source: Compilers- Principles, Techniques & Tools by Aho, Lam, Sethi, 

Ullman) 

Fig. 13.3(b) illustrates flow of control of statements using if-else 
condition. There is a label for the jump instruction. Here, two labels: 
B.true and B.false are associated with the boolean expression B. An 
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inherited attribute S.next denotes the label for the instruction which 
immediately follows the code for S.  

 

 
 
 
 
 
 
 
 
 
 
 

Fig. 13.3(b): Control flow using if-else condition 
(Source: Compilers- Principles, Techniques & Tools by Aho, Lam, Sethi, 

Ullman) 

Similarly, figure 13.3(c) showcases the control flow within the 
while statement. There are two labels associated with the boolean 
expression B. If B is true, codes in B.true are executed. Otherwise, 
codes in B.false are executed. There is another label marking the 
beginning of the loop. The loop is executed repeatedly by jumping 
to the label begin. 

 

 

 

 

 

 

 
 

Fig. 13.3(c): Control flow using while 
(Source: Compilers- Principles, Techniques & Tools by Aho, 

Lam, Sethi, Ullman) 

The syntax directed definition for the above three statements has 
been mentioned below. 
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  P → S  S.next = newlabel() 

    P.code = S.code | | label(S.next) 

  S → assign S.code = assign.code 

  S → if ( B ) S1  B.true = newlabel() 

     B.false = S1.next = S.next 

    S.code = B.code | | label(B.true) | | S1.code 

  S → if ( B ) S1 else S2  B.true = newlabel() 

     B.false = newlabel() 

     S1.next = S2.next = S.next 

     S.code = B.code  

 | label(B.true) | | 

S1.code 

| | gen ( ‘goto’ 

S.next ) 

| | label(B.false) | 

| S2.code 

  S → while ( B ) S1  begin = newlabel() 

      B.true = newlabel() 

      B.false = S.next 

      S1.next = begin 

   S.code = label(begin) | | B.code | | label( B.true )  

| | S1.code | | gen( 

‘goto’ begin ) 

  S → S1 S2   S1.next = newlabel() 

      S2.next = S.next 

  S.code = S1.code | | label(S1.next) | | S2.code 
Fig. 13.4: Syntax directed definition for flow-control statements 

(Source: Compilers- Principles, Techniques & Tools by Aho, Lam, Sethi, 
Ullman) 

 

To create a new label, the newlabel() is called. A call to label(L) 
attaches the label L to the next three-address instruction. The 
semantic rule associated with production P → S initializes S.next to a 
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new label. Similarly, P.code consists of S.code followed by label S.next. 
The next production simply assigns the code attribute of token 
assign into S.code.  

The translation of production S → if ( B ) S1 simply creates a label 
B.true. The three-address code attaches it to the first instruction for 
statement S1. The control passes to S.next if B evaluates to false. 

During translation of the statement S → if ( B ) S1 else S2, control 
jumps to the first instruction of the code for S1 if B results in true. 
Otherwise, control passes to the first instruction for code S2. Further, 
control flows from both S1 and S2 to the three-address instruction 
which immediately follows the code for S. 

The code for S → while ( B ) S1 uses a variable begin which is 
actually a new label attached to the first instruction or the first 
instruction of B for while statement. The inherited label S.next marks 
the instruction to which the control flows when B is evaluated to 
false. Therefore, B.false is set to S.next. Label B.true points to the first 
instruction of S1. The statement goto begin causes a jump to the first 
instruction of boolean expression B.  

Finally, the code corresponding to the production S → S1 S2 consists 
of the code for S1 followed by the code for S2. The first instruction 
for code S2 immediately follows the last instruction for S2. The 
instruction after the code for S2 is the instruction after the code for 
S. 

Similarly, boolean expressions can be translated into three-address 
instructions. They are evaluated and accordingly jumps are made 
using two labels based on its truth value: B.true and B.false.  

B → B1 | | B2   B1.true = B.true 

   B1.false = newlabel() 

   B2.true = B.true 

   B2.false = B.false 

   B.code = B1.code | | label( B1.false ) | | B2.code 

B → B1 && B2   B1.true = newlabel() 

    B1.false = B.false 
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 B2.true = B.true 

 B2.false = B.false 

 B.code = B1.code | | label( B1.true ) | | B2.code 

B → ! B1   B1.true = B.false 

   B1.false = B.true 

   B.code = B1.code 

B → E1 rel E2  B.code = E1.code | | E2.code  

| | gen(‘if’ E1.addr rel.op 
E2.addr ‘goto’ B.true)  

| | gen(‘goto’ B.false) 

B → true   B.code = gen(‘goto’ B.true) 

B → false  B.code = gen(‘goto’ B.false) 

Fig. 13.5: Syntax directed definition for boolean statements 
(Source: Compilers- Principles, Techniques & Tools by Aho, Lam, Sethi, 

Ullman) 

The production B → E1 rel E2 is directly translated into a three-
address instruction with comparision operation. If B is of the form 
(a !=b), then it is translated into the following form. 

   if a !=b goto B.true 

      goto B.false 

It is already mentioned that the production of the form B → B1 | | B2 
does not require both B1 and B2 to be evaluated every time in order 
to derive the boolean value of B. Rather, truth value of B1 is 
sometimes sufficient to gather the output of B. If B1 is true, B is 
true. But, if it is false, then a check on B2 has to be made. If B2 is 
true, B is true. Otherwise, B is false.  

The translation of B1 and B2 are similar in the production B → B1 
&& B2. 

The truth value of B depends on B1’s truth value. If B1 is true, B is 
false. Otherwise, B is true. 
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The code to translate the constants true and false is to jump to B.true 
and B.false.   

 
13.5 SWITCH STATEMENT   

The switch-case statement is commonly available in many modern 
languages like C, C++ etc. There is a switch expression which needs 
to be evaluated. The output consists of some constant values or 
cases. However, switch statement includes a default value which 
always does something if no other value or case matches. The 
general structure of a program involving switch-case statement is 
given below. 

   switch( expr ) 
    { 
    case v1: S1 
    case v2: S2 

            …… 

    case vn-1: Sn-1 

    default: Sn 

} 
Fig. 13.6: Structure of a switch-case program 

 
Expression expr is evaluated first. Then the list of cases with their 
respective values for the expression is evaluated. The statement 
against case matching the expression is executed. However, if none 
of the case values match with the expression, the default value is 
chosen for output.  

The program mentioned above can be translated into an intermediate 
form. When the compiler finds the keyword switch, it generates two 
labels test and next as well as a temporary t. Expression expr is 
evaluated and code is generated into t. Then, there is a jump to label 
test. With each case keyword, a new label Li is created and made to 
enter into the symbol table. 

    code to evaluate E into t 
goto test 

L1:  code for S1 

goto next 
L2:  code for S2 

goto next 
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….. 
Ln-1:  code for Sn-1 

goto next 
Ln:  code for Sn 

goto next 
test:  if t = V1 goto L1 

if t = V2 goto L2 
  if t = Vn-1 goto Ln-1 

goto Ln 
next: 

Fig. 13.7: Translation of switch statements 
(Source: Compilers- Principles, Techniques & Tools by Aho, Lam, Sethi, 

Ullman) 

Such translation does n-way branching of code. There is a jump 
using goto next statement to which the control passes upon 
execution of statement(s) Si again label Li. 

 

13.6 FUNCTIONS  

Functions are the set of instructions that are executed at any point of 
call in a program. During translation of procedures, prior to calling 
the function or procedure, its parameters are evaluated. A function 
definition DF consists of keyword define, a return type, name of the 
function, formal parameters in parenthesis and function body written 
within brackets. Non-terminal F generates zero or more formal 
parameters. The non-terminals S and E represent statements and 
expressions respectively. The production for S returns an 
expression. The production for E refers to function calls, with A as 
actual parameters. The actual parameter A returns an expression. 

    DF → define T id ( F ) { S } 
F → € | T id , F 
S → return E ; 
E → id ( A ) 
A → € | E , A 
 

 Fig 13.8: Functions in source language 
Source: Compilers- Principles, Techniques & Tools by Aho, Lam, Sethi, 

Ullman 

The function name is entered into the symbol table. The formal 
parameters of a function are analogous to the field names in a record 
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of a symbol table. Function type resembles the return type and type 
of its formal parameters. Function type is implemented by using the 
constructor fun applied to the return type and ordered list of types 
for parameters. During function calls, the generation of three-
address codes requires evaluation or reduction of its parameters. 
Like during the call to function f (Expr1, Expr2, Expr3, …………, 
Exprn), expression Expr must be evaluated during generation of 
three-address codes. Then, it must be followed by a param 
instruction for each parameter. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13.7 SUMMING UP 

 The analysis-synthesis model of a compiler converts the 
source language program into an intermediate representation. 
Then this representation is fed into the code generator phase 
in order to generate the target code. 

 The front end of a compiler basically consists of lexical 
analysis, syntax analysis, semantic analysis and intermediate 
code generation phases. Similarly, the back end consists of 
code optimization and target code generation phases. 

 The Static Checker phase takes place between the Parser and 
Intermediate Code Generator. This phase mainly does type 
checking and checks whether operators are compatible with 
operands. It attempts to check whether the statements of a 
program follow the syntax of the language. 

CHECK YOUR PROGRESS – II 

8. __________ are the data structures which store data in 

contiguous set of memory locations. 

9. Jumps are associated with the flow of control instructions. 

State whether True or false. 

10. What are the boolean operators? 

11. What are relational operators? 

12. The output of a switch expression consists of 

some___________. 
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 Type checking ensures that an operator or function is applied 
to the correct operand type as well as right number of 
operands. However, in some languages, type conversion is 
necessary; from integer to real. 

 Trees- which include parse trees or Abstract Syntax Trees or 
simply AST. A Directed Acyclic Graph (DAG) is a variant 
of the syntax tree which identifies the common sub 
expressions. In three-address codes, a long statement is 
broken into smaller sequences of three-address codes. 

 An array A of length n is stored in n-contiguous locations 
with indices starting from 0 to n-1. If the width of each 
element is w, then the ith array element starts from location: 

base + i × w ; base being the relative 
address of A[0] 

 Boolean expressions are used as conditional statements that 
can alter the flow of control. They are composed of boolean 
operators such as AND (&&), OR (| |) and NOT (!) 
employed between variables called boolean variables or 
relational expressions. 

 The switch-case statement consists of a switch expression 
which needs to be evaluated. The output consists of some 
constant values or cases. However, switch statement includes 
a default value which always does something if no other 
value or case matches. 

 During translation of procedures, prior to calling the function 
or procedure, its parameters are evaluated. A function 
definition consists of keyword define, a return type, name of 
the function, formal parameters in parenthesis and function 
body written within brackets. 

 

13.8 ANSWERS TO CHECK YOUR PROGRESS 

1. Three address code 
2. Code optimization phase 
3. High level and low level  
4. True 
5. Static Checker 
6. Syntactic Checking and Type Checking 
7. False 
8. Arrays 
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9. True 
10. AND (&&), OR (| |) and NOT (!) 
11. <, <=, =, ! =, > or >=. 
12. Constant cases 

 

13.9 POSSIBLE QUESTIONS 

A. Short answer type questions. 

1. What is intermediate representation of codes? Explain in 
brief. 

2. What is static checking? What does it do? 
3. Discuss syntactic checking and type checking in brief. 
4. What is an array? How do you calculate the relative address 

of a particular element of an array? 
5. What are flow of control statements? Discuss with examples. 
6. What are boolean expressions? Discuss in brief. 
7. Explain the general program structure of the switch-case 

statement. Also explain briefly the workflow of the program. 
8. Explain functions and its associated production rules. 

 

B. Long answer type questions. 

1. Describe the different forms of intermediate representation 
of codes with some suitable examples. 

2. What is array? How do you calculate the relative address of 
array elements? Explain. 

3. Describe the translation of array references in detail. 
4. What do you mean by the flow of control statements? Show 

the control flow of these statements with respect to some 
suitable figures. 

5. How are flow of control statements and boolean expressions 
related? 

6. Describe the translations of flow of control statements into 
syntax directed definition. 

7. Describe the translations of boolean expressions into syntax 
directed definition. 
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UNIT: 14 
REPRESENTING INTERMEDIATE CODE GENERATOR 

FOR A PARSER 
 

 
Unit Structure 

14.0 Introduction 

14.1 Unit Objectives 

14.2 Three-Address Code 

      14.2.1 Quadruples Representation 

      14.2.2 Triples Representation 

      14.2.3 Indirect Triples Representation 

14.3 Directed Acyclic Graph 

      14.3.1 What is DAG 

      14.3.2 Characteristics of Directed Acyclic Graph 

      14.3.3 Algorithm for Construction of DAG 

14.4 Conclusion 

14.5 Check Your Progress 

14.6 Answers to Check Your Progress 

14.7 Model Questions 

14.8 References and Suggested Readings 

 

14.0 INTRODUCTION 

Intermediate code generation is an important phase in compiler 

design.This phage blurs the gap between high-level source code and 

low-level machine code by producing an intermediate representation 

(IR) of the source program.IR is machine-independent. The use of 

machine-independent intermediate code enhances portability by 

providing a standard format for code that is not tied to any specific 

hardware or architecture. By translating source code into an 

intermediate representation, a compiler can then convert this 

intermediate code to run on different target machines without re-

compiling the high-level source code.The IR is typically a sequence 
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of instructions resembling assembly language but simplified to aid 

optimization. Some common forms of IR include three-address 

code, abstract syntax trees, and control flow graphs. By using 

anintermediate code forms, the compiler can optimize program logic 

and structure before translating it into the low-level machine code. 

In a compiler ideally, the front end handles all details of the source 

language, while the back end is responsible for managing specifics 

of the target machine. 

 

 
 

Fig. 14.1: Logical structure of front end and back end of a compiler 
 

14.1 UNIT OBJECTIVES 

 Understand Intermediate Code Representation. 

 Apply Code Optimization Techniques 

 Construct DAGs 

 Implement Intermediate Code Generation 

 Explain Three-Address Code (TAC) Generation 

 

14.2. THREE-ADDRESS CODE 

Three-Address Code (TAC) is an intermediate representation used 

by compilers to simplify code generation. It breaks down complex 

expressions into a sequence of simpler steps, each involving a 

maximum of three addresses: two operands and one result. Results 

in TAC are stored in compiler-generated temporary variables, 

providing a clear order of operations. Due to its simplicity, TAC is 

well-suited for optimization and efficient translation to machine 

code. Representing control flow and data dependencies, TAC serves 
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as a bridge between high-level source code and low-level machine 

instructions, making it a critical phase in compiler design. 

 
  

A standard expression An equivalent TAC 
 

Fig. 14.2: Example of a Three Address Code 

 

 
 

 
 

 
AC code initializing an array using 

for loop 

 
An equivalent TAC 

 
Fig. 14.4: Example of the Three Address Code for loop 

 

There are 3 ways to represent a Three-Address Code:  

i) Quadruples 

ii) Triples 

iii) Indirect Triples 

 

 

 
 
 
 
 

 
 

 
The standard expressionfor roots of a 

quadratic equation 
An equivalent TAC 

 
Fig. 14.3: Example of the Three Address Code for roots of a quadratic 

equation 
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14.2.1 QUADRUPLES REPRESENTATION  

Quadruples are a data structure consisting of four fields: op, arg1, 

arg2, and result. Here, op represents the operator, while arg1 and 

arg2 denote the two operands, and result holds the outcome of the 

expression.It facilitates the rearrangement of code, which is useful 

for global optimization efforts, allowing compilers to reorganize and 

optimize code more efficiently at a larger scope. Additionally, the 

symbol table provides quick access to the values of temporary 

variables, streamlining the retrieval process during compilation. 

However, this representation often generates many temporary 

variables, especially when dealing with complex expressions. This 

results in increased time and space complexity as the compiler must 

manage and process a larger number of temporary variables. 

 
 

 
 

 
 

An expression in high level language 
 

Equivalent TAC 
 

Fig. 14.5: Example ofthe Three Address Code in Quadruple Representation 
 

14.2.2 TRIPLES REPRESENTATION 

Triples Representation is an alternative intermediate code structure 

that avoids creating additional temporary variables for single 

operations. Instead of creating temporary variables, this 

representation uses pointers to reference other triples in the code 

when their values are needed. This structure consists of only three 

fields: op (operator), arg1, and arg2 (operands).The lack of 

temporary variables makes it more efficient in certain cases like 

lesser time and space complexity as the compiler need to manage 

and process a small number of temporary variables. 
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One drawback of this representation is that temporary variables are 

implicit, and therefore code rearrangement is challenging. 

Optimization of code becomes complex because if a triple moves 

from one place to another in the code it requires modification of all 

other triples that refers it. However, pointers enable direct access to 

the corresponding symbol table entries, somewhat easing the 

process of variable management. 

 
 
 

 
 

 
 

An expression in high level language 
 

Equivalent TAC 
 

Fig. 14.6: Example of the Three Address Code in Triple Representation 
 

14.2.3 INDIRECT TRIPLES REPRESENTATION  

Indirect Triples utilize pointers to reference a separate listing of all 

computations, allowing for efficient organization.This 

representation employs pointers to a separate listing of computations 

rather than directly storing the results of operations in temporary 

variables. Each operation consists of a pointer referencing an entry 

in the computation list that includes the operator and its operands. 

This approach keeps temporary variables implicit, making code 

rearrangement easier and more manageable. 
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An expression in high 
level language 

 
Equivalent TAC 

 
Fig. 14.7: Example of the Three Address Code in Indirect Triple 

Representation 
 

14.3 DIRECTED ACYCLIC GRAPH 

In compiler design, a Directed Acyclic Graph (DAG) is essential for 

representing expressions and optimizing code. A DAG consists of 

directed edges without any cycles, ensuring that no path returns to 

the starting node. This structure is particularly effective in 

eliminating redundant computations and identifying common sub-

expressions, thereby enhancing the efficiency of program execution. 

The DAG representationof intermediate code helps in optimizing 

the Intermediate Code of a high level language in compiler. 

14.3.1 WHAT IS DAG? 

DAGs are useful in compiler design because they don't contain 

cycles. A DAG is a directed graph with vertices and edges, where 

each edge is directed from one vertex to another. In DAG following 

the directions of the edges will never form a closed loop. The 

Directed Acyclic Graph serves multiple purposes in representing the 

structure of basic blocks, visualizing the flow of values between 

them, and enabling optimization techniques within these blocks, 

where a basic block is a set of statements that execute one after 

another in sequence. When applying optimization techniques to a 

basic block, a DAG represents the three-address code generated 

during the intermediate code generation phase. 

14.3.2 CHARACTERSTICS OF DIRECTED ACYCLIC 
GRAPH 

 DAG is a Data Structure used to represent the structure of 

basic blocks. 
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 The leaf nodes of the directed acyclic graph represent a 

unique identifier. An identifier can be a variable or a 

constant. 

 The non-leaf nodes represent an operator symbol. 

 Eachnodeis also given a string of identifiers to use as labels 

for the computed value. 

14.3.3 ALGORITHM FOR CONSTRUCTION OF DAG 

For constructing a DAG, basic one basic block is given as input. 

The output will be a DAG where each node of the graph represents a 

label. The label of each leaf node represents an identifier. Label of 

all non-leaf node represents an operator.Each node contains a list of 

attached identifiers to hold the computed value. For any three 

address code there are three possible scenarios on which we can 

construct a DAG. 

Case 1: x = y op z where x, y, and z are operands and op is an 
operator.  

Case 2: x = op ywhere x and y are operands and op is an operator.  

Case 3: x = ywhere x and y are operands. 

Now, we will discuss the following algorithm to draw a DAG which 
can handle the above three cases. 

Step 
1 

 

 If, in any of the three cases, the y operand is not defined, 
then create a node(y). 

 If, in case 1, the z operand is not defined, then create a 
node(z). 

Step 
2 

 

 For case 1, create a node(op) with node(y) as its left child 
and node(z) as its right child. Let the name of this node be 
n. 

 For case 2, check whether there is a node(op) with one child 
node as node(y). If there is no such node, then create a node. 

 For case 3, node n will be node(y). 
Step  



 

3 
 For a node(x), delete x from the list of identifiers. Add x to 

the list of attached identifiers list found in step 2. At last, set 
node(x) to n. 

 

Example: 

Let us consider the expression
TAC as follows. 

 

Fig. 14.8: Basic block in TAC of  “d=a+b+c+a+b”
 
Now let us try to apply the algorithm to generate DAG of Figure 8.
 
Expression 1: 
 If we notice the expression T0=a+b, it can be map to case 1 
and can apply the Step 2 of the algorithm.
can generate the following of the required DAG
 

 
Expression 2: 
 If we notice the expression T1=T0+C, it can be map to case 
1 and can apply the Step 2 of the algorithm. Here since T0 is already 
generated we shall use T0 and apply 
 

 
Expression 3: 
 If we notice the expression d=T0+T1, it can be map to case 1 
and can apply the Step 2 of the algorithm. Here since T0 and T1 are 
already generated we shall use T0 and T1 apply Setp2
following final DAG. 
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For a node(x), delete x from the list of identifiers. Add x to 
the list of attached identifiers list found in step 2. At last, set 

expression “d=a+b+c+a+b” and it basic block in 

 
 

8: Basic block in TAC of  “d=a+b+c+a+b” 

Now let us try to apply the algorithm to generate DAG of Figure 8. 

If we notice the expression T0=a+b, it can be map to case 1 
and can apply the Step 2 of the algorithm. According to Setp2 we 
can generate the following of the required DAG- 

 

If we notice the expression T1=T0+C, it can be map to case 
1 and can apply the Step 2 of the algorithm. Here since T0 is already 
generated we shall use T0 and apply Setp2. 

 

If we notice the expression d=T0+T1, it can be map to case 1 
and can apply the Step 2 of the algorithm. Here since T0 and T1 are 
already generated we shall use T0 and T1 apply Setp2 to get the 



 

 
 

14.4 CONCLUSION

Among various techniques employed in compiler design, the 

Directed Acyclic Graph 

ensure optimized code generation. By observing the computations 

represented in the DAG, 

redundant operations

only smooth 

usage and computational overhead. As a result, DAGs play a critical 

role in the overall optimizati

efficient program execution.

their application in compiler design serves as a foundation for 

developing effective optimization techniques. By 

properties of DAGs, compiler develope

that enhance performance and efficiency

 

14.5 CHECK YOUR PROGRESS

1.

2.
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CONCLUSION 

Among various techniques employed in compiler design, the 

Directed Acyclic Graph is considered as efficient 

ensure optimized code generation. By observing the computations 

represented in the DAG, a compiler can identify and eliminate 

redundant operations. This elimination of redundant operation 

smooth the code but also significantly reduces both memory 

usage and computational overhead. As a result, DAGs play a critical 

role in the overall optimization of code, contributing to more 

efficient program execution. A solid understanding of DAGs and 

their application in compiler design serves as a foundation for 

developing effective optimization techniques. By 

properties of DAGs, compiler developers can implement strategies 

that enhance performance and efficiency of a compiler.

14.5 CHECK YOUR PROGRESS 

1. Which of the following is a common form of 
intermediate code used in compilers? 

 A) Assembly code 
 B) Abstract Syntax Tree (AST) 
 C) Machine code 
 D) Three-Address Code (TAC) 
  

2. In Three-Address Code (TAC), how many operands are 
typically involved in each instruction? 

 A) One 

Among various techniques employed in compiler design, the 

is considered as efficient for its ability to 

ensure optimized code generation. By observing the computations 

can identify and eliminate 

of redundant operation not 

the code but also significantly reduces both memory 

usage and computational overhead. As a result, DAGs play a critical 

on of code, contributing to more 

solid understanding of DAGs and 

their application in compiler design serves as a foundation for 

developing effective optimization techniques. By using the 

rs can implement strategies 

of a compiler. 

Which of the following is a common form of 

Address Code (TAC), how many operands are 
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 B) Two 
 C) Three 
 D) Four 
  

3. What does TAC help in achieving within the compiler 
process? 

 A) Direct machine code generation 
 B) Syntax verification 
 C) Simplification of complex expressions 
 D) Linking external libraries 
  

4. Which representation uses fields such as op, arg1, and 
arg2? 

 A) Quadruples 
 B) Triples 
 C) Syntax Trees 
 D) DAG 
  

5. Which technique is used in DAGs to optimize code? 
 A) Identifying redundant computations 
 B) Parsing syntax rules 
 C) Simplifying tokenization 
 D) Specifying grammar rules 
  

6. Which statement is true about the intermediate code 
generation phase? 

 A) It translates machine code directly to high-level 
code. 

 B) It allows code optimization before machine-
specific translation. 

 C) It translates source code directly to machine 
code. 

 D) It optimizes only the syntax tree structure. 
  

7. What kind of variables are often created in Three-
Address Code to store results? 

 A) Global variables 
 B) Constant variables 
 C) Static variables 
 D) Temporary variables 
  

8. Which of the following is NOT an intermediate 
representation format? 

 A) Abstract Syntax Tree (AST) 
 B) Control Flow Graph (CFG) 
 C) Machine Code 
 D) Directed Acyclic Graph (DAG) 
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9. What is the primary purpose of using an intermediate 

code in compiler design? 
 A) To ensure platform independence 
 B) To enhance code readability 
 C) To increase program execution speed 
 D) To simplify lexical analysis 
  

10. Which representation is known for its efficiency in 
handling the control flow of programs by using pointers 
to references rather than creating temporaries? 

 A) Indirect triples 
 B) Quadruples 
 C) Triples 
 D) Three-address code 

 

14.6 ANSWERS TO CHECK YOUR PROGRESS 

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 
D C C B A B D C A A 

 

14.7 MODEL QUESTIONS 

Short answer type questions 

1. What is intermediate code in compiler design, and why is it 

important? 

2. Explain the role of three-address code (TAC) in intermediate 

code generation. 

3. What are the main differences between triples and indirect 

triples? 

4. How does a Directed Acyclic Graph (DAG) help in code 

optimization? 

5. Why is machine-independent intermediate code beneficial 

for compiler portability? 

Long answer type questions 

1. How does the intermediate code phase bridge the gap 

between the front end and back end of a compiler? 
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2. Discuss Directed Acyclic Graphs (DAGs) and their role in 

representing expressions within a basic block. Explain how 

DAGs help in code optimization by identifying common 

sub-expressions and eliminating redundant operations. 

3. What is the purpose of code optimization at the intermediate 

level? Describe with example. 

4. Explain the structure and purpose of three-address code 

(TAC) in intermediate code generation. How does it 

facilitate optimization? Illustrate with examples. 
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TARGET CODE GENERATION 
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15.0 INTRODUCTION 

The final phase of the compiler is the code generator. It takes input 

from the intermediate representation produced by the front end and 

other information from symbol table. The output produced by the 

compiler is the target program equivalent to the source program. 

The target program must preserve the condition of being 

semantically equivalent to the source program. This means that the 

target code must possess the same meaning with that of the source. 

Apart from this, the code produced must be of high quality so that it 

can make efficient use of the available resources of the destination 

machine. But the target code must be optimal. In other words, the 

code must be efficient in terms of register allocation technique. This 

requires inserting a phase between the intermediate code generator 

and code generator phases of a compiler. The optimizer takes 

intermediate codes as its input. It then maps these intermediate 

codes into some efficient intermediate codes. Finally, code 

generator accepts these codes in order to produce the target code 

they occupy less space as well as run in less time. 

 

15.1 UNIT OBJECTIVES 

After going through this unit, you will be able to: 

● Describe the concepts behind intermediate code generation. 

● Understand code generator in detail. 

● Know about the issues associated with target code 

generation. 

● Learn how the target machine model is implemented. 

● Have the basic concepts on program and instruction costs. 

● Know the various memory allocation techniques.  

● Learn the working of run-time environment 
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● Describe activation records and activation trees in detail. 

● Understand how heap management takes place. 

● Have knowledge and understanding on garbage collection. 

 

15.2 CODE GENERATOR 

The code generator phase represents the back end of a compiler. The 

position of the code generator is shown in the Fig. 15.1 

 

 

 

Fig 15.1 Position of the target code generator in a compiler 
(Source: Compilers- Principles, Techniques & Tools by Aho, Lam, Sethi, 

Ullman) 

We already have mentioned above that the front end produces the 

intermediate representations of the source program codes. 
Commonly they are in three-address format. Then these 

representations are fed to the code optimizer phase to regenerate the 

same set of codes; but this time in terms of optimized codes. These 

codes are efficient from the perspective of consumption of resources 

of the target machine. Finally, the code generator accepts the 

optimized codes and produces the target code of the same. 

The code generator does three major tasks: instruction selection, 

register allocation and assignment and instruction ordering. The 

intermediate representations are needed to be implemented in the 

target machine. Instruction selection involves choosing the 

appropriate instructions to implement the representations. Now, the 

next task is to decide which registers to keep as storage. Finally, the 

instructions are executed in a sequence. Instruction ordering 

involves deciding the schedule as well as the manner in which those 

instructions are executed. Sometimes a sequence of instructions is 
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executed together which are called as “basic block”. The 

intermediate representation has to be partitioned into basic blocks. 

Later, some local transformations convert the basic blocks into 

modified basic blocks.  

15.3 TARGET CODE GENERATION ISSUES 

The ultimate goal of the code generator phase is to produce the 

correct code. We already have mentioned that the target code must 

represent the same meaning that source code does. A design goal of 

an important target code generator involves some important issues 

to be incorporated into it.   

15.3.1 Input to Code Generator 

The code generator phase accepts the intermediate representation of 

the source program produced by the front end of the compiler and 

also the information of the symbol table. The symbol table is 

necessary for determining the run-time address of data of 

intermediate representation.  

The intermediate representation includes three-address codes such 

as quadruple, triple or indirect triple; graphical representation such 

as syntax tree and DAGs. Apart from this, virtual machine 

representations such as byte codes and stack-machine code as well 

as postfix notations also form the input. The codes are low-level 

with values of names represented by the quantities suitable for 

manipulation by the target machine especially in terms of integers or 

real numbers. All the necessary type checking along with type 

conversion takes place prior to generation of such representation.  

15.3.2 Target Program 

The most common instruction set architecture of the target machine 

RISC (Reduced Instruction Set Computer), CISC (Complex 
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Instruction Set Computer) and stack based. RISC has relatively 

simple instruction set architecture, many registers, three-address 

instructions as well as simple addressing modes. CISC machine has 

variable-length instruction set, few registers with different classes, 

two-address instructions, a variety of addressing modes and 

instructions with side effects. In a stack-based machine, operands 

are pushed onto a stack and operations are performed on the 

operands at the top of the stack. In order to achieve high 

performance, the top of the stack is kept as registers. Due to too 

many swaps, the stack organization has become obsolete.  

When the target program is produced in terms of absolute machine 

language program, they are stored in a fixed location in memory and 

can be executed immediately. Compilation is quicker in this 

technique. And when the target program is produced in terms of 

relocatable machine code, allows subprograms to be compiled 

separately. The object codes are linked and loaded for execution by 

a linking loader. The flexibility of being able to compile the 

subroutines separately provides added advantage to the system 

though there is an additional expense of linking and loading 

involved in producing the relocatable object code.  

15.3.3 Instruction Selection 

The intermediate representation must be mapped into a sequence of 

target codes. The factors affecting this mapping are: 

● The level of intermediate representation 

● The instruction set architecture 

● The quality of generated code 

The level of representation may be high level- the code generator 

translates each statement into a sequence of machine instructions. 

Code generation occurs statement by statement. Then optimization 
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takes place on those codes. Instruction selection is strongly 

dependent on the nature of instruction set architecture of the target 

machine. An important factor affecting this is- sometimes the target 

machine does not support each data type in a uniform manner, then 

the exception must be specially handled. One such exception might 

be the handling of floating point numbers, for which special 

registers are used to perform operations on the same. For each three-

address statement, we can design some codes equivalent to the 

target codes. For example, consider the following statements: 

  a = b + c 
  x = a – y 
These statements are converted into equivalent target codes as 
follows: 

  LD  R0, b 
  ADD R0, R0, c 
  ST  a, R0 
  LD R0, a 
  SUB R0, R0, y 
  ST x, R0 
 
This scheme produces redundant load and store instructions. For 

instance, the third statement loads a into R0 and the fourth statement 

again reloads a into R0. This in turn leads to inefficient code by 

compromising with the quality of the code. 

 

15.3.4 Allocation of Registers 

In 15.4.3, we discussed that during target code generation, registers 

are used for allocation and storage. Registers are the fastest memory 

unit of a computer which makes the execution faster. The most 

challenging task in code generation is deciding which register to 

hold what value. Values not held by registers are assigned in 

memory. Execution using registers are more aster than memory 

execution. Register utilization is associated with two concepts: 
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● Register allocation is associated with selection of set of 

variables which will be held in registers at each point in the 

program. 

● Register assignment is the problem of picking a specific 

register into which a variable will be assigned. This 

assignment is crucial and challenging with a single-register 

system.   

15.3.5 Evaluation Order 

Evaluation order plays an important role during generation of target 

code. It is the order in which computations are performed. 

Evaluation order affects the performance of a system and picking 

the best order is quite challenging. 

 

 

 

 

 

 

 

 

 

15.4 TARGET MACHINE MODEL 

A good code generator needs to have understanding of the target 

machine and its instruction set. As mentioned previously, machines 

having three-address codes with load and store instructions, 

conditional and unconditional jump instructions as well as 

computational instructions form the basis of target machines. A 

simple target machine models a byte addressable machine with n 

CHECK YOUR PROGRESS- I 

6. The optimizer takes _______________ as its input. 
7. The linear intermediate representation includes 

___________. 
8. The graphical intermediate representation includes 

___________ and ________. 
9. ________________ is defined as the selection of set of 

variables which will be held in registers at each point in 
the program. 

10. _______________ is the problem of picking a specific 
register into which a variable will be assigned. 
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numbers of general purpose registers. The machine would have a 

simple set of instruction sets with its operands being integers. The 

assembly code consists of an optional label, an operator, followed 

by the target variable and finally followed by a set of source 

operands.  

● The load instruction is of the form LD des,  addr loads the 

contents of location addr into dest. The variable dest is also 

referred to as location. In other words, it is an assignment 

operation of the form dest = addr. Another form of using 

this instruction is LD R, x which loads the contents of x into 

register R. Then the instruction LD R0, R1 copies the 

contents of register R1 into register R0. This is one kind of 

register-to-register transfer instruction.  

● The store instruction is of the form ST x, R stores the 

contents of register R into the variable x. This is an 

assignment instruction of the form x = R. 

● The computation instruction of the form OP dest, src1, 
src2. The operation is identified by OP which might be ADD 

or SUB etc. The operands are specified by scr1 and scr2. 

Finally, the result is stored in location dest. For example, the 

instruction ADD R0, R0, a adds the contents of register R0 

and value of location a and stores the result back to register 

R0. Similarly, the same operation can be implemented using 

registers only. Therefore, the instruction ADD R0, R0, R1 

does the addition of registers R0 and R1 and stores the result 

of addition back to register R0. 

● The unconditional jump instruction jumps to another 

section of the program with a particular label. Jumping may 

occur without any condition. Like the instruction BR L 

branches control to the instruction with label L. 
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● Finally, the conditional jump instruction of the form Bcond 
R, L jumps to the instruction labeled L upon fulfillment of 

condition cond on register R. An example of such kind may 

be BGTZ R, L causes the control to jump to instructions 

with label L if the value of register R is greater than zero. 

Conditional jump occurs when the condition is true. But, if it 

is false, control passes to the instruction following the 

condition. 

We already have mentioned that the target machine contains a 

variety of addressing modes. Some of them are: 

● A location for a variable name x is designated by the 

memory location reserved for x itself. 

● The content of memory location denoted by a(r) is computed 

by adding the l-value of variable a and the value of register r. 

The location is an indexed address and therefore, the load 

instruction LD R1, a(R0) is computed by performing the 

operation R1 = contents(a + contents(R0)), where 

contents(R0) denotes the contents of register R0. Array 

access is efficient using this mode where a represents the 

base address of the array and r denotes the number of bytes 

to move in order to reach a particular position of the array.  

● A memory location can also be indexed by a register. The 

instruction LD R1, 100(R2) derives the value of R1 by 

setting R1 = contents(100 + contents(R2)). That is, the 

value of R1 is set by adding 100 to the contents of register 

R2.  
● Another kind of indirect addressing mode that a target 

machine model allows: *r means the memory location found 

in the location which is represented by the contents of a 

register. Likewise, the value of *100(r) is obtained by 

deriving the contents found the location obtained by adding 
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100 to the contents of register r. In this way, we can take the 

example of an instruction LD R1, *100(R2) which derives 

the contents of R1 by setting R1 = contents(contents(100 + 
contents(R2))). 

● Finally, another form of immediate instruction mode may 

also be allowed; but this time it is constant. Like for 

example, LD R1, #100 is an instruction which loads integer 

into register R1. Similarly, the instruction LD R0, R0, #100 

adds integer 100 into register R0. The constant is always 

preceded by the symbol #. 

Example 1: The three-address code x = x + 1 can be implemented 

using the following machine instructions: 

  LD R0, a 

  ADD R0, R0, #1 

  ST a, R0 

However, if the target machine has the “increment” instruction 
(INC), then the three-address code can be implemented in a single 
instruction INC a more efficiently rather than using load and store 
instructions. 

Example 2: The three-address code x = y – z can be implemented 
using the following machine instructions: 

  LD R1, y 
  LD R2, z 
  SUB R1, R1, R2 
  ST x, R1 
 

Example 3: Suppose, A is an array with elements of 8-byte values. 

The indexing begins with 0. The three-address code x = A[i] can be 

executed using the following machine instructions: 
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  LD R1, i 
  MUL R1, R1, 8 
  LD R2, A(R1) 
  ST b, R2 
The first step loads the value of I into register R1. The second step 

computes 8i and the third step places the value of the ith element of 

A into register R2. Finally, the result is placed in variable b. 

Example 4: Suppose, A is an array with elements of 8-byte values. 

The three-address code A[i] = x can be executed using the following 

machine instructions: 

  LD R1, x 
  LD R2, j 
  MUL R2, R2, 8 
  ST A(R2), R1 
Example 5: The three-address code for the pointer statement x = *y 

can be implemented using the following machine instructions: 

  LD R1, y 
  LD R2, 0(R1) 
  ST x, R2 
Example 6: The three-address code for the pointer statement *y = x 
can be implemented using the following machine instructions: 

  LD R1, y 
  LD R2, x 
  ST 0(R1), R2 
Example 7: The three-address code for the conditional jump 
statement if x < y goto L can be implemented using the following 
machine instructions: 

  LD R1, x 
  LD R2, y 
  SUB R1, R1, R2 
  BLTZ R1, M 
M is the label that represents the first machine instruction of the 
three address code which has label L.  

The target language is also dependent on the cost associated with 
compilation of programs and instructions. 
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15.5 PROGRAM AND INSTRUCTION COSTS 

A very important aspect associated with target code generation is 

the cost of compiling and running a program. It is a complex 

problem and some of the common cost measures are the length of 

compilation time and size, running time taken by the target program 

as well as its power consumption. The cost of an instruction is 

assumed to be one associated with the costs occurring with 

addressing modes of the operands. Addressing modes involving 

registers cost zero. On the other hand, addressing modes involving 

memory location or constant have an additional cost one as such 

operands have to be stored in the words that follow the instruction.  

 The instruction LD R0, R1 copies the contents of register R1 
into register R0. As the instruction does not involve 
additional memory, the instruction incurs a cost of one. 

 The instruction LD R0, a loads the contents of memory 
location a into register R0. The cost of this instruction is two 
since the address of memory location a is in the word that 
follows the instruction. 

 Similarly, the instruction LD R0, *100(R1) loads the value 
contents(contents(100 + contents(R1))) into register R0. The 
cost of this instruction is three because constant 100 is stored 
in the word that follows the instruction. 
 

CHECK YOUR PROGRESS- II  

6. The assembly code consists of an optional ___________. 
7. The load instruction loads the contents of location 

address into __________.  
8. The store instruction stores the contents of ______ into a 

variable.  
9. The unconditional jump may occur without any_______. 
10. Conditional jump occurs when the condition is 

_________. 
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15.6 ADDRESSES IN THE TARGET CODE 

The names in the intermediate representation can be converted into 

corresponding addresses in the target code by means of two 

allocation techniques. The static and stack allocation techniques do 

this generation for simple procedure calls and returns. Each program 

run in its own logical address space and the space is partitioned into 

four code and data areas. 

 The size of the target code is determined during compile 

time. Therefore, the size of this area called Code is fixed and 

it holds the executable target code.  

 The sizes of the global constants and other data used in a 

program are generated by the compiler. It is a statically 

determined area called Static which holds these data. 

 During execution of programs, objects are allocated and 

freed. This makes the area to be expanded or shrinked. This 

dynamically managed area is termed as heap memory 

allocation which holds the data objects. 

 Apart from these, there is a Stack which holds the activation 

records which are created with each procedure call and 

destroyed when the call returns. Stacks are also created 

during run time and hence it is dynamically managed. 

 
15.6.1 Static Allocation Technique 

The following three-address codes must be considered in order to 
generate codes for simple procedure calls and returns. 

 Call callee 
 Return 
 Halt 
 Action 

Symbol table plays an important role during code generation as it 

stores the information of each identifier used in a program. The 
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generator determines the size and layout of the activation record 

using this information. The activation record holds the return 

address on a procedure call and how control returns once the call is 

over.  

The intermediate statement call callee can be implemented using the 

following two target machine instructions. 

  ST  callee.staticArea, #here + 50 

  BR callee.codeArea 

The store instruction saves the return address at the beginning of the 

activation record for callee. The branch instruction transfers control 

to the target code destined for the procedure callee. The attribute 

callee.codeArea is a constant that refers to the address of the first 

instruction of callee and it resides in the Code area of the run-time 

memory. Operand #here + 50 contains the return address with #here 

referring to the address of the current instruction. The procedure call 

ends with a return to the calling procedure. A simple jump 

instruction transfers control to the return address saved at the 

beginning of the activation record for callee. 

  BR *callee.staticArea 

Static allocation is possible when the compiler knows the size of 

data objects during compile time. 

15.6.2  Stack Allocation Technique 

Creation of data objects is done during run-time. These are pushed 

onto the stack using Last-In-First_out (LIFO) technique. The 

position of an activation record for a procedure is not known until 

run-time. The position is usually stored in a register. This technique 

uses relative addresses for storage of activation records. Relative 

addresses can be taken from any known position in the activation 
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record. A special register called Stack Pointer (SP) is used to point 

to the beginning of the activation record on the top of the stack. 

When call to a procedure occurs, the caller increments SP and 

transfers control to the called procedure. After execution is over and 

control returns to the called procedure or caller, SP is again 

decremented. This results in deallocation of activation record of the 

called procedure. The corresponding codes for the same are as 

follows. 

   LD SP, #stackStart 

  HALT 

The first code sets SP to the start of the stack area in memory. A 

procedure first increments SP, saves the return address and transfers 

control to the target code area of the called procedure. 

  ADD SP, SP, #caller.recordSize 

  ST *SP, #here + 20 

  BR callee.codeArea 

The operand #caller.recordSize is a constant that represents the size 

of the activation record. Therefore, ADD instruction makes SP to 

point to the next activation record. The operand #here + 20 in ST 

instruction stores the return address of callee, that is, the address of 

the instruction that follows BR and is saved in the address pointed 

by SP. The called procedure transfers control to the return address 

using the code 

  BR *0(SP) 

The return sequence consists of two parts. Parallely, there are two 

indirections involved: 0(SP) contains the address of the first word in 

the activation record and *0(SP) represents the return address. 

Finally, the value of must be restored to its previous value of SP. 
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For this purpose, a subtraction operation has to be performed so that 

SP points to the beginning of the activation record of the caller. 

  SUB SP, SP, #caller.recordSize 

 

15.6.3 Run-time Addresses for Names 

Names of intermediate representations are determined by storage 

allocation strategy and layout of local data in an activation record 

for a procedure. We already have mentioned that names of three-

address codes are contained as entries in a symbol table. This 

technique has the advantage that the front end need not be changed 

even when the compiler is ported into a different machine requiring 

different run-time organization. Names are accessed by codes to 

access storage locations. A three-address code statement like y = 5 

copies 5 into the location specified by y. Now, assume that the 

symbol table entry for y contains the relative address 20. Further, if 

y resides in a statically allocated area that begins with address base, 

the actual run-time address for y would be base + 20. The compiler 

can eventually determine the value of base + 20 during compile 

time. But, the position of static area may not be known when 

intermediate code to access name is generated. In such situation, the 

three-address code must compute base + 20 during code generation 

phase or during loading phase by the loader or before the program 

runs. Therefore, the statement y = 5 would be translated into  

  static [20] = 5 

If the static area starts with address 200, the target code for the 
statement would be 

  LD 220, #5 
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15.7 RUN-TIME ENVIRONMENT 

The compiler must accurately implement the abstractions prevailing 

in the source language like names, data types, scopes, scopes, 

operators, procedures, parameters and flow-of-control constructs. 

These implementations require using both the operating system and 

other system softwares. For this purpose, the compiler creates and 

manages a run-time environment in which the target programs are 

supposed to be executed. This environment deals with a variety of 

issues such as mechanisms to access variables, allocation and layout 

of storage locations for the source program objects, linkages 

between procedures, mechanisms for passing parameters, interfaces 

to the operating system, input/output devices and other programs. 

It is already mentioned that the target program runs in its own 

logical address space. The operating system maps the logical 

addresses into physical addresses of memory. The management and 

CHECK YOUR PROGRESS- III  

11. The cost of an instruction is assumed to be __________ 
associated with the costs occurring with addressing modes 
of the operands. 

12. Addressing modes involving registers cost __________.  
13. The instruction LD R0, R1 incurs a cost of ___________. 
14. What are the two allocation techniques through which 

names of intermediate representation converted into 
addresses in the target code? 

15. The store instruction saves the return address at the 
beginning of the activation record for ___________. 

16. The ____________instruction transfers control to the 
target code destined for the procedure callee. 

17. Creation of data objects is done during ____________. 
18. A special register called ___________ is used to point to 

the top of the stack. 
19. Names of three-address codes are contained as entries in a 

____________. 
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organization of logical address space is shared among the compiler, 

operating system and target machine. The object code is spread 

across the space in terms of data and program areas. These areas are 

assumed to be represented in terms of blocks of continuous bytes. 

An organization of the same for a C++ compiler has been shown 

below: 

 
Fig. 15.2 Subdivision of run-time memory into code and data areas 

(Source: Compilers- Principles, Techniques & Tools by Aho, Lam, Sethi, 
Ullman) 

The amount of storage required for a name is determined by its type. 

The basic data types, integer, character or float are stored in terms of 

bytes. Composite data types like arrays or structures are allocated 

with aggregate storage of all its component types.  

The size of the generated target code is determined during compile 

time and is placed in a statically determined area called Code which 

we have discussed in the last section. The program may contain 

some data objects such as global constants or compiler generated 

data may also be placed in a statically determined area called as 

Code 

Static 

Heap 

 
 

Free Memory 

Stack 
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Static. Data objects must be statically allocated as much as possible 

since the addresses data objects can be converted into target code 

during compile time. The other two Stack and Heap are dynamic. 

They maximize the utilization of space during run-time and change 

when the program executes. With each procedure call, an activation 

record is generated. These activation records are stored inside the 

stack. It stores information such as the values of program counter 

and other machine registers when a call to the procedure is made. 

When control returns back from the called procedure to the 

activation of the calling procedure, the values of machine registers 

are reloaded and also setting the program counter to the point 

immediately after the call. We shall now study various memory 

management techniques for allocation and deallocation of storage. 

15.7.1 Static vs. Dynamic Storage Allocation 

The allocation of data to memory locations is a major issue in run-

time environment. One such issue includes when the program 

contains variables with the same name in different parts of the 

program. Therefore, they refer to multiple locations at run time. 

When the topic of storing program text comes, the allocation 

strategy is static, that is, the decision takes place during compile 

time. But, when the issue of execution of programs happens, the 

decision has to be dynamic, that is, during run-time, the allocation 

of memory takes place. Stack allocation is a dynamic storage 

strategy which holds the activation records of each procedure 

occurring in a program. The local data declared in a procedure are 

assigned storage in a stack. Another virtual memory area used to 

allocate storage to data objects and other data elements when they 

are created is called as heap storage. When the data are invalidated, 

the allocated storage is returned. Garbage collection is technique 

through which the run-time system detects the useless data elements 
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and reuses their storage. Though complicated, automatic garbage 

collection is much essential today for proper management of heap. 

15.8 STACK ALLOCATION OF SPACE 

We already have mentioned that every time a procedure is called, 

space for local variables is pushed onto the stack and when the 

procedure terminates, the space is released from the stack. Almost 

all programming languages using user-defined procedures, functions 

or methods use a segment of their run-time memory as stack. Stack 

allocation allows space to be shared by procedures called at 

different timestamps. 

15.8.1 Activation Trees 

In any programming language, the concept of nested procedures 

exists. When a procedure calls another, nested procedure comes into 

play at different time. For example, a procedure p may call another 

procedure q. Correspondingly; activations are also nested in time. 

Therefore, activation of q must end before activation of q ends. But, 

termination of activations takes place with three common cases. 

1. Activation q completes its normal execution and terminates. 

In this case, control resumes to the instruction just after the 

point of p at which the call to q was made. 

2. Sometimes, the activation of q or some procedure q called is 

unable to continue its normal execution. In such situation, 

activation q aborts and with q, p also aborts. 

3. Sometimes, activation q terminates because it encounters an 

exception which q cannot handle. Procedure p may handle 

the exception, which results in termination of activation q 

and continuation of activation p. If p is unable to handle, 

then both p and q terminates at the same time. In such 
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situation, the exception would be handled by some other 

activation of the procedure. 

The activations of procedures during execution of a program can be 

represented using a tree, called an activation tree. Each node 

represents an activation and the root designates the activation of the 

main procedure that initiates the execution. Nested activations 

correspond to the children of a node. For example, if procedure p 

calls procedure q, then q becomes the child of p. Activations are 

shown in the order in which they are called from left to right. An 

activation at the child node must finish before the activation to its 

right begins. 

15.8.2 Activation Records 

A control stack is a run-time stack whose primary task is to manage 

the procedure calls and returns. It contains the activation record of 

the procedures being called. The root of the activation tree resides at 

the bottom while the most recently called activation at the top. The 

entire sequence of activation records corresponds to the path of the 

activation tree. The contents of an activation record vary with kinds 

of languages. 

Actual parameters 

Returned values 

Control link 

Access link 

Saved machine status 

Local data 

Temporaries 

Fig 15.3 A common activation record 
Source: Compilers- Principles, Techniques & Tools by Aho, Lam, Sethi, 

Ullman 
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During execution of expressions temporaries are generated. Local 

data refers to those data which belong to the procedure being called. 

The status of the machine just before call to a procedure must be 

saved somewhere. This information typically includes the return 

address and the contents of the registers used by the calling 

procedure. These values must be restored when return from the 

procedure occurs. Activations may be nested within each other. 

Access links represent a chain from the activation record from the 

top of stack to the one at the lowest. Like for instance, if q is a 

procedure which resides within procedure p, then the access link in 

any activation of q points to the most recent activation of p. Nesting 

depth of p is exactly one less than that of q. A control link always 

points to the activation record of the caller. Procedures may return 

value(s). This value is placed in the returned value section. The 

calling function uses the actual parameters. These values are not 

placed in the activation record but rather in registers. 

15.8.3 Calling Sequences  

A calling sequence is a set of codes that allocates an activation 

record onto a stack and accordingly enters information into its 

fields. In other words, procedure calls are implemented using a 

calling sequence. Similarly, a return sequence reloads the machine 

to its previous state from which the procedure was called. The 

calling procedure can continue its normal execution after the return 

sequence is called. If the caller procedure calls another from n 

different positions, then the calling sequence of the caller is 

generated n times. And the calling sequence for the callee is 

generated once only. Calling sequence and layout of activation 

record are different. While designing the both, the following 

principles must be followed. 
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 Values that pass between caller and callee are placed at the 

beginning of the callee’s activation record. This is makes 

them closer to the caller’s activation record. The basic idea 

behind this principle is that the caller can compute the values 

of the actual parameters and place them at the top of its 

activation record. This debars creation of entire activation 

record of the callee.  

 Control link, access link and machine status fields are 

generally fixed-length items. They are mainly placed in the 

middle of the activation record. For each call, if same set of 

components represent the machine status, then the same set 

of code can do saving and restoring of these components. 

This concept is efficient from the perspective of debugging 

of programs because once the machine status information is 

standardized; it is easier for the debugger to check the 

contents of the stack if error occurs. 

 Most local variable’s size is derived simply by looking the 

type of the variable. They are fixed length data and can be 

examined during compile time. However, some local 

variable’s size cannot be derived until it executes. One such 

example includes the dynamic array whose size is 

determined by one of the parameters of the callee procedure. 

Such kind of items whose sizes are not known early are 

placed at the end of the activation record. 

 A general approach to find the top-of-stack is to point to the 

end of fixed length fields of the activation record. Fixed-

length data has already been mentioned previously. They are 

accessed by fixed offsets. The variable length fields of the 

activation record are generally placed above the top-of-stack. 

The caller and callee must cooperate with each other in managing 

the stack. The top-sp is a register that points to the end of the 
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machine status field of the current activation record. The caller 

knows this position of callee’s activation record and caller sets top-

sp before control passes to the callee. The calling sequence between 

the caller and callee are as follows: 

1. Caller evaluates the actual parameters. 
2. Caller stores the return address and the previous value of 

top-sp into the callee’s activation record. Then the caller 
increments top-sp to move it past the caller’s local data and 
temporaries as well as callee’s parameters and status fields. 

3. Register values and other status information of the callee are 
saved. 

4. Local data of the callee are initialized and execution of the 
same begins.  

The return sequence works in the following manner: 

1. The callee places the return value next to the actual 
parameters. 

2. The callee restores top-sp and other registers and branches to 
the return address that the caller had placed. 

3. The caller knows the return address relative to the current 
value of top-sp and uses it. 

15.8.4 Variable length Data on Stack  

A procedure may contain local data objects whose sizes are known 

during run-time and thus may be allocated onto the stack. In modern 

compilers, such objects are allocated space in the heap. To avoid 

garbage collection, it is always preferable to place objects, arrays 

and other structures onto the stack.  

A procedure can have local arrays whose sizes cannot be determined 

at compile time. The activation record stores only a pointer to the 

beginning of each array rather than storing the arrays. The target 

code can access the elements of the array through these pointers. If q 

is a nested procedure of the parent procedure p, then the activation 



 
 

 

record for q begins after the arrays of p and the arrays of q are 

placed beyond

Data accessing on stack can be done through two pointers: top and 

top-sp. The actual top of the stack is 

activation record begins at this position. Similarly, top

locate the local, fixed

already mentioned that top

field of q’s

the position of p’s activation record where top

was on 

link of q’s activation record. And the new value of top is se

sp minus the length of machine, control and access link, return value 

and parameter fields of q’s activation record.

derived during compile time.

(Source: Compilers
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record for q begins after the arrays of p and the arrays of q are 

placed beyond that. 

Data accessing on stack can be done through two pointers: top and 

sp. The actual top of the stack is denoted by top and the next 

activation record begins at this position. Similarly, top

locate the local, fixed-length fields of the top activation record. It is 

already mentioned that top-sp points to the end of the machine status 

field of q’s activation record. The control link field for q leads us to 

the position of p’s activation record where top-sp pointed when p 

 the top. When q returns, top-sp is restored from the control 

link of q’s activation record. And the new value of top is se

sp minus the length of machine, control and access link, return value 

and parameter fields of q’s activation record. This length can be 

derived during compile time. 

Fig 15.4 Allocation of dynamically allocated arrays
(Source: Compilers- Principles, Techniques & Tools by Aho, Lam, Sethi, 

Ullman) 

 

 

record for q begins after the arrays of p and the arrays of q are 

Data accessing on stack can be done through two pointers: top and 

denoted by top and the next 

activation record begins at this position. Similarly, top-sp is used to 

length fields of the top activation record. It is 

sp points to the end of the machine status 

activation record. The control link field for q leads us to 

sp pointed when p 

sp is restored from the control 

link of q’s activation record. And the new value of top is set as top-

sp minus the length of machine, control and access link, return value 

This length can be 

 

Fig 15.4 Allocation of dynamically allocated arrays 
es, Techniques & Tools by Aho, Lam, Sethi, 
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15.9 HEAP MANAGEMENT 

Unlike stack, heap is that portion of memory that stores data 

indefinitely. Data gets erased only when the program explicitly 

deletes it. Sometimes, languages like C++ or Java enable us to 

create data objects through operators like new and also pass from 

one procedure into another. They continue to exist once the 

procedure to which they were local. Such objects are stored in a 

heap.  

A very important aspect of heap management is the allocation and 

deallocation of space within the heap. The memory manager is a 

part of the operating system that allocates and deallocates space 

within heap. It serves as an interface between the application 

program and the operating system. There are some keywords in C or 

C++ which do the removal of chunks from the heap. 

Apart from keeping track of all free spaces of heap storage, memory 

manager performs two basic functions. 

 Allocation: During execution of programs, there is a need 

for storing the variables and objects residing in the program. 

The memory manager finds the continuous chunk of free 

space enough to holds the program in the heap and allocates 

the same to the program. If no such space is available, the 

heap size is increased by getting contiguous bytes of virtual 

memory from the operating system. 

 Deallocation: The allocated space is to be returned to the 

available pool of free spaces when the execution of the 

program is over. The idea behind this is to reuse the space so 

that other programs can be allocated the same. 

Memory management is complicated as the allocation requests for 

programs are not of same size. Apart from this, the storage allocated 
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first is not released first. So, allocation and deallocation is not 

foreseeable. Thus, the memory manager’s major task includes 

allocation of memory of any size to the programs with no prediction 

on when the memory would be released. Memory managers must 

possess some properties as mentioned below: 

 Space Efficient: One purpose of memory manager is to 

minimize the total heap size required by a program. Space 

efficiency is a must in heap memory to avoid fragmentation. 

Space efficiency is concerned in heap as larger programs are 

run in a fixed virtual address space. 

 Program Efficient: The time to execute an instruction is 

widely dependent on where the objects are placed in 

memory. With the better use of space, the program can run 

faster. The time taken to execute an instruction varies with 

respect to the time taken to access various parts of the 

memory. 

15.9.1 Memory Hierarchy of a Computer 

All modern computers arrange their memory system in terms of a 

hierarchy. The hierarchy of memory consists of cascade of storage 

elements. The smaller and faster storage elements remain closer to 

the processor and the larger and slower ones are further away. 

Typically, the smaller and faster memory includes registers. In fact, 

they are the fastest memory. Next, there exist one or more levels of 

cache, usually made of static RAM. The next memory module is the 

physical or main memory, whose size is more than that of cache 

memory. Then the physical memory is followed by virtual memory, 

implemented on disks most commonly. The size of this memory is 

the largest, typically in terabytes. During memory access operation, 

the memory at the lowest level looks for data. If not available there, 



 
 

 

the machine looks for the same in the next higher level.

blocks of data are assigned to the slower level of 

Between main memory and cache, data is tran

between virtual memory and main memory data is transferred in 

terms of blocks of pages. 

A program may contain hundreds of instructions. But many of them 

are seldom executed. With change of requirements, programs evolve 

and some of the codes are never used. Apart from this, the program 

spends most of its time executing innermost loops and recursive 

procedures of the program. Therefore, only a fraction of the code is 

actually executed. To lower the average memory access time of a 

program, the most commonly used instructions and data are placed

 
 
 
 
 
 
 

Fig 15.5: Memory hierarchy of a typical computer
(Source: Compilers- Principles, Techniques & Tools by Aho, Lam, Sethi, 
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the machine looks for the same in the next higher level. Large 

blocks of data are assigned to the slower level of the hierarchy.  

Between main memory and cache, data is transferred in blocks. And 

between virtual memory and main memory data is transferred in 

A program may contain hundreds of instructions. But many of them 

are seldom executed. With change of requirements, programs evolve 

the codes are never used. Apart from this, the program 

spends most of its time executing innermost loops and recursive 

procedures of the program. Therefore, only a fraction of the code is 

actually executed. To lower the average memory access time of a 

ram, the most commonly used instructions and data are placed 
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when programs spend most of their time in executing a small 

fraction of code as well as data. That is, the same locations may be 

accessed repeatedly. If locations accessed are likely to be accessed 

within a short period of time. This is termed as temporal locality of 

the program. In some cases, memory locations closer to the 

locations accessed are likely to be accessed within a short period. 

Locality of such kind is termed as spatial locality. Programs may 

showcase both temporal and spatial locality. We must keep on 

adjusting the contents of the fastest cache dynamically as they might 

be of size bigger than the size of the available storage. However, it 

is not that possible to say which chunk of code will be executed 

heavily simply by looking at the code. 

The locality principle works well when the most recently used 

instructions are placed inside the cache. When an instruction is 

executed, it is highly probable that its immediate instruction will 

also be executed next. This is spatial locality which can further be 

improved by keeping the contiguous instructions in a basic block 

and then loading them on the same page or same cache line if 

possible. Further, we can improve the temporal and spatial locality 

by changing the data layout or the order of computation. 

15.9.2 Reducing Fragmentation 

A heap is basically a continuous memory of free space when no 

program is executing. When allocation and deallocation of storage 

takes place in heap, the free chunks are not contiguous and they 

leave holes in the heap. When an allocation request comes, the 

memory manager looks for the largest hole enough to hold that 

program. Once, the perfect hole of exactly the same size is not 

found, the hole has to be split. This splitting leaves a small hole in 

the heap. Similarly, during each deallocation of memory, the free 

spaces are added to the pool of free space. This process leaves the 
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memory fragmented. This consists of large number of smaller, non 

contiguous holes. The implication of this technique is that it 

involves creating holes not large enough to contain any program in 

future. 

This problem of fragmentation can be reduced effectively by taking 

some good strategies. One strategy might be allocating the requested 

memory to the smallest available hole large enough to hold. This is 

best-fit algorithm which assigns that amount of space required by a 

program. Alternatively, the first-fit strategy places the program to 

the first available storage in which it fits. The advantage of this 

technique is that it takes less amount of time for allocation. 

The free space chunks are separated into bins according to their 

sizes. Each bin is a multiple of 8-byte chunk; that is from 16 bytes to 

512 bytes. The chunks within these bins are arranged in terms of 

their size. The bin that can hold the desired page is found out. Then 

either the best-fit or first-fit strategy is used to find the sufficiently 

large first chunk or the smallest chunk respectively. Sometimes, the 

fit may leave some extra space in the chunk which needs to be 

placed in a bin with smaller sizes. Best-fit strategy tries to improve 

space utilization. 

Management of free space is a very important of memory manager. 

When memory is deallocated manually, it is the task of the memory 

manager must make the free chunk allocated again. It should be 

possible to combine the chunk with the adjacent chunk of the heap 

and form a larger chunk. It is possible to include a larger size 

program into a larger chunk or small chunks of equal size can be run 

in a large chunk The process of combining these small chunks are 

termed as coalesce. 

If chunks of one fixed size is kept in a bin, then it is better not to 

coalesce the adjacent blocks into one big size. Rather, a simple 
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mechanism can be followed by keeping all the chunks of fixed size 

and keep a bitmap of allocation/deallocation scheme. The bit value 1 

indicates that the chunk is occupied; whereas 0 indicate it is free. A 

deallocation of chunk changes bit 1 to 0. Similarly, allocation 

requires finding a chunk with 0 bit and changes it to 1.  

There are two data structures that support coalescing of adjacent 

free blocks. 

 Boundary Tags: Each chunk consists of two ends- low and 

high. The chunk may be free or allocated. This information 

is kept by using free/used bit for each chunk. The total chunk 

size is also kept adjacent to each free/used bit. 

 Doubly Linked, Embedded Free List: Free chunks are 

linked with a doubly linked list. Pointers are maintained to 

keep track of the next adjacent block in the list. The list must 

accommodate two boundary tags and two pointers; though 

the object is a single byte. The list must be ordered so that it 

can implement best-fit placement strategy. 

15.9.3 Manual Deallocation and Associated Problems 

Manual deallocation involves the programmer to explicitly 

deallocate data. Languages such as C or C++ provide such facility. 

The data that is no longer be used should be deleted and accordingly 

the memory must be released. Conversely, any storage that may be 

required to be referenced should not be deleted. However, there are 

some difficulties to enforce these properties.  

There are two common problems that occur during manual 

deallocation of storage: 1. Referencing data which are already 

deleted. This is called dangling-pointer-dereference error. 2. Failing 

to delete data that cannot be referenced. This is called as memory-

leak error.  



 
 

289 
 

Let us discuss the second one first. It is unpredictable that a program 

will never refer to some storage in the future. Therefore, such 

storage should be deleted. The execution speed of the program is 

highly affected by the memory leaks. However, the long-running 

programs such as the operating system or the server may not tolerate 

such leakage. 

There is a way to resolve this problem. Automatic garbage 

collection is a technique through which garbage can be deallocated 

in order to get rid of memory leaks. If an object will never be 

referenced in the future, then those references must be deleted. 

Consequently, the objects can also be deallocated automatically.  

Now, the second common mistake of dangling pointer dereference 

may occur. While deleting storage, it may happen that the 

corresponding data may get referenced. Dangling pointers are the 

pointers which point to the deallocated storage. Once data item is 

reallocated to the storage, any kind of operation can be performed 

through the pointers. Referencing operations such as read, write or 

deallocate via pointer and tries to use the object it points to is termed 

as dereferencing the pointer. Reading through dangling pointer 

return an arbitrary value whereas writing arbitrarily changes the 

value of a variable. Deallocation of dangling pointer’s storage 

means that storage of the new variable can be assigned to another 

one leading to conflict of actions on the old and new variables. After 

reallocation, dereferencing a dangling pointer may create a program 

error. An error may be referencing an illegal address. Errors of such 

kind may include dereferencing null pointers and accessing an out-

of-bounds array element. There are conventions and tools that 

handle such difficulties in managing of memory. 
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15.10 GARBAGE COLLECTION 

Most programming languages provide the facility of automatic 

garbage collection. It is a technique through which the chunks of 

memory holding objects that are no longer be accessed by a program 

can be reclaimed. Objects used in a program have a type and it 

determines the size of the objects. The type information also tells 

which components of an object refer to other objects. References 

include objects are always pointed to the address at the beginning of 

the object. Thus, all references to an object have the same value and 

this makes the object unique. 

A mutator is a user defined program which creates objects by 

acquiring space from the memory manager. References to existing 

CHECK YOUR PROGRESS- IV  

20. The operating system maps the logical addresses into 
________of memory.  

21. The amount of storage required for a name is 
determined by its __________.  

22. Stack allocation strategy holds the ____________of 
each procedure occurring in a program. 

23. A _________ is a set of codes that allocates an 
activation record onto a stack and accordingly enters 
information into its fields. 

24. The portion of memory that stores data indefinitely is 
___________. 

25. The fastest memory is _____________________. 
26. Between main memory and cache, data is transferred 

in________________. 
27. Between virtual memory and main memory data is 

transferred in terms of blocks of _________________ 
28. Referencing data which are already deleted is called 

_________________. 
29. Failing to delete data that cannot be referenced is called 

as ________________ ___________.  
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objects are created and dropped using this program. When mutator 

cannot reach any object, then the object becomes garbage. The 

garbage collector finds such unreachable objects and hands over 

their occupied space to the memory manager.  

Type safety is a basic component needed by an automatic garbage 

collector. This indicates whether a given data element or component 

of a data element could be used as a pointer to a chunk of allocated 

memory space. A type safe language is the one for which the type of 

its data components can be determined during compile time. 

However, there are programming languages like Java whose types 

cannot be determined during run time rather than compile time. 

Such kind of languages is called dynamically typed language. An 

unsafe language is neither statically nor dynamically type safe. 

Unsafe languages are bad candidates for automatic garbage 

collection. A program can refer to any memory location at any time. 

This in turn results in considering each memory location 

manipulated arbitrarily and finally storage can never be safely 

reclaimed. Similarly, arbitrary arithmetic operations on pointers 

create new pointers and arbitrary integers can be casted as pointers. 

Examples of such kind include languages like C or C++. 

There are some performance matrices that must be considered while 

designing a garbage collector.  

 Garbage collection is considered to be slow. Eventually, it 

increases the total execution time of a program. This causes 

a drawback to the system. Therefore, the overall execution 

time is greatly affected the garbage collector takes its 

leverages on the memory subsystem. 

 Space usage plays a vital role in designing a garbage 

collector. One important thing that must be considered while 
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designing a garbage collector is how it can avoid 

fragmentation and makes the best possible use of memory. 

 Since, allocation and deallocation of data objects happens 

through mutators, the garbage collectors cause mutators 

pause suddenly for an extremely long time. It is desirable to 

minimize such pause time. Apart from that, there are some 

sensitive applications which are required to be executed 

during real time must suppress garbage collection so that the 

application or task completes smoothly. Garbage collection 

is less practiced in real-time operations. Therefore, pause 

time is important in the design of garbage collector. 

 The running time cannot solely determine the speed of a 

garbage collector. Data locality, which we had discussed 

section 5.10.1 pertaining to the mutator program, is 

controlled by the garbage collector. The temporal locality of 

the mutator program is improved by space free up and 

reusing the space. Similarly, the mutator’s spatial locality is 

enhanced by data relocation in the same cache or page. 

This is worth mentioning here that allocation of smaller objects 

must not incur large overhead. Moreover, relocation costs more 

when it deals with large objects rather than the smaller ones.  

A vital point that should be understood is referred to as the root 

set. Root set consists of set of all the data that can be accessed 

directly by a program without having to dereference any pointer. 

By traversing the root set, the program may reach any member 

at any time. However, reachability is complex when the program 

is optimized by the compiler. Compilers may keep references 

variables in registers.  And sometimes, the compiler may 

manipulate the memory addresses in order to speed up the code. 

When a program executes, the set of its reachable objects 
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changes. As a new object is created, the set increases and shrinks 

when it becomes unreachable. Once an object is unreachable, it 

never becomes reachable again. To change the set of reachable 

objects, the mutator performs some specific task.  

 Object allocation is something that is returned by the 

memory manager. It returns the reference to a newly 

allocated chunk of memory. This operation in turn adds 

members to the set of reachable objects. 

 References to objects are passed from the actual 

parameters and from the returned result. Such references 

to objects are reachable. 

 Reference assignments involving two references u and v 

of the form u = v have two effects. First, u refers to the 

object referred to by v. Until the time u is reachable, the 

object is refers is also reachable. Second, if the original 

reference to u is lost, the object is unreachable. As long 

as an object is reachable, all objects that are reachable 

only through references contained in that object are also 

reachable. However, the converse is not possible. 

 When a procedure exists, the local variables of the 

procedure also exist in the stack. Whenever, the 

procedure end, the variables are also popped off. If any 

reachable reference was there, the corresponding object 

would become unreachable. Consequently, more object 

references may get lost. 

There are two basic ways to find the unreachable objects. 

Transitions happen to take place when reachable objects become 

unreachable. These transitions are caught in order find such 

unreachable objects. Another way is to periodically keep track of all 

the objects reachable and then find all the objects unreachable. It is 
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termed as Reference counting which keeps a count of the references 

to an object. As mutators change the set of reachable objects, the 

count may go to zero and the object becomes unreachable. The 

reference count is 1when a new object is created. The reference 

transitivity includes the task of labeling the objects that are 

reachable. Initially, all objects in the root are marked as reachable. 

Periodically, the reachable set is computed which gives many 

unreachable objects. This eventually leads to locating some free 

storage. 

 

15.11 SUMMING UP  

 The code generator takes input from the intermediate 

representation produced by the front end and other 

information from symbol table. A good code generator needs 

to have understanding of the target machine and its 

instruction set. 

 The output produced by the compiler is the target program 

equivalent to the source program. The target program must 

preserve the condition of being semantically equivalent to 

the source program. 

 The front end of a compiler produces the intermediate 

representation such as three-address format of the source 

program codes. These representations are fed to the code 

optimizer phase to regenerate the same set of codes; but this 

time in terms of optimized codes. 

 The code generator does three major tasks: instruction 

selection, register allocation and assignment and instruction 

ordering. 
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 The intermediate representation includes three-address codes 

such as quadruple, triple or indirect triple; graphical 

representation such as syntax tree and DAGs. 

 The code generator translates each statement into a sequence 

of machine instructions. Code generation occurs statement 

by statement. 

 Register allocation is associated with selection of set of 

variables which will be held in registers at each point in the 

program. Register assignment is the problem of picking a 

specific register into which a variable will be assigned.  

 The cost of compiling and running a program is a complex 

problem and some of the common cost measures are the 

length of compilation time and size, running time taken by 

the target program as well as its power consumption. 

 Addressing modes involving registers cost zero. On the other 

hand, addressing modes involving memory location or 

constant have an additional cost one as such operands have 

to be stored in the words that follow the instruction.  

 The names in the intermediate representation can be 

converted into corresponding addresses in the target code by 

means of two allocation techniques. The static and stack 

allocation techniques do this generation for simple procedure 

calls and returns. 

 During execution of programs, objects are allocated and 

freed. This makes the area to be expanded or shrinked. This 

dynamically managed area is termed as heap memory 

allocation which holds the data objects. 

 Apart from these, there is a Stack which holds the activation 

records which are created with each procedure call and 

destroyed when the call returns. Stacks are also created 

during run time and hence it is dynamically manged. A 
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special register called Stack Pointer (SP) is used to point to 

the top of the stack. 

 The compiler must accurately implement the abstractions 

prevailing in the source language like names, data types, 

scopes, scopes, operators, procedures, parameters and flow-

of-control constructs.  

 The compiler creates and manages a run-time environment 

in which the target programs are supposed to be executed. 

This environment deals with a variety of issues such as 

mechanisms to access variables, allocation and layout of 

storage locations for the source program objects, linkages 

between procedures, mechanisms for passing parameters, 

interfaces to the operating system, input/output devices and 

other programs. 

 The activations of procedures during execution of a program 

can be represented using a tree, called an activation tree. 

Each node represents an activation and the root designates 

the activation of the main procedure that initiates the 

execution. 

 A control stack is a run-time stack whose primary task is to 

manage the procedure calls and returns. It contains the 

activation record of the procedures being called. The root of 

the activation tree resides at the bottom while the most 

recently called activation at the top. The entire sequence of 

activation records corresponds to the path of the activation 

tree. 

 A calling sequence is a set of codes that allocates an 

activation record onto a stack and accordingly enters 

information into its fields. A calling sequence is a set of 

codes that allocates an activation record onto a stack and 

accordingly enters information into its fields. A return 
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sequence reloads the machine to its previous state from 

which the procedure was called. 

 Heap is that portion of memory that stores data indefinitely. 

Data gets erased only when the program explicitly deletes it. 

The memory manager is a part of the operating system that 

allocates and deallocates space within heap. It serves as an 

interface between the application program and the operating 

system. 

 When allocation and deallocation of storage takes place in 

heap, the free chunks are not contiguous and they leave holes 

in the heap. When an allocation request comes, the memory 

manager looks for the largest hole enough to hold that 

program. 

 The technique through which the chunks of memory holding 

objects that are no longer be accessed by a program can be 

reclaimed is called as garbage collector. 

 A mutator is a user defined program which creates objects 

by acquiring space from the memory manager. References to 

existing objects are created and dropped using this program. 

When mutator cannot reach any object, then the object 

becomes garbage. 

15.12 ANSWERS TO CHECK YOUR PROGRESS 

1. intermediate codes 
2. three-address codes 
3. syntax tree and DAGs 
4. Register allocation 
5. Register assignment 
6. Label 
7. Destination 
8. Registers 
9. Condition 
10. True 
11.  one 
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12. zero 
13. one 
14. static and stack allocation techniques 
15. callee 
16. Branch 
17. Run-time 
18. Stack Pointer (SP) 
19. symbol table 
20. physical addresses 
21. type 
22. activation records  
23. calling sequence 
24. heap 
25. register 
26. blocks 
27. pages 
28. dangling-pointer-dereference error. 
29. memory-leak error 

15.13 POSSIBLE QUESTIONS 

A. Short answer type questions. 

1. What is code generator? Explain in brief. 
2. What are the representations that form inputs to the code 

generator phase? 
3. What do you mean by program and instruction cost? Discuss 

in brief. 
4. Describe how the addresses in the target code are generated. 
5. What do you understand by run-time addresses for names? 
6. What is run-time environment? Discuss. 
7. Differentiate between the Static vs. Dynamic Storage 

Allocation techniques. 
8. What is activation tree? Discuss in brief. 
9. What is activation record? Discuss in brief. 
10. What is heap? Explain in brief. 
11. What is fragmentation? Explain. 
12. What is garbage collection? Describe. 
13. What is mutator? What does it perform? 
14. What are the ways of locating an unreachable object? 
15. What are the functions that a mutator perform to change the 

set of reachable objects? 
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B. Long answer type questions. 

1. Explain the functions performed by the code generator 
phase. 

2. Write down the issues that occur in generation of target 
codes? 

3. Explain the target machine model in detail. 
4. Write down the significance of program and instruction costs 

asociated with target code generation. 
5. Describe the static and stack allocation techniques in detail. 
6. Describe the run-time environment in detail. 
7. Describe the technique of allocation of space using a stack. 
8. What is calling sequence? Describe the design principles of 

calling sequences. 
9. How is it possible to allocate variable length data on a stack? 

Describe. 
10. What is heap management? 
11. Give a detailed discussion on the memory hierarchy of a 

computer. 
12. Explain how is fragmentation reduced in a heap? 
13. Explain the technique of garbage collection in a heap.  
14. What are the matrices considered during the design of a 

garbage collector? 
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UNIT: 16 
TRANSFORMATION OF BASICBLOCKS 

 

Unit Structure 

16.0 Introduction 

16.1 Unit Objective 

16.2 Basic Blocks 

 16.2.1 Next-Use Information 

16.3 Flow Graph 

16.3.1 Loops in Flow Graphs 

16.4 Optimization of Basic Blocks 

16.4.1 Dag Representation of Basic Blocks 

16.5 Summing Up 

16.6 Answers to Check Your Progress 

16.7 Possible Questions 

16.8 References and Suggested Readings 

 

16.0 INTRODUCTION 

In the previous unit, we have learnt that graphical representations 

are constructed from the intermediate codes for efficient code 

generation. We also have learnt that register allocation is necessary 

for better throughput. Such representations are constructed by 

partitioning the intermediate codes into basic blocks which are the 

sequences of consecutive three-address statements. The control flow 

enters the basic block simply through the first instruction of the 

block. Control passes in a sequence within the block without 

branching or halting and finally leaves the block. Once we are ready 

with the basic blocks, we can move towards the construction of flow 

graph. A flow graph is a graphical representation of the basic 

blocks. Each node of the graph is represented by a basic block. In 
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this unit, we shall try to get some idea regarding the generation of 

basic blocks. We shall also discuss how flow graphs are constructed 

using these blocks. 

 

16.1 UNIT OBJECTIVE 

After going through this unit you will be able to: 

 Learn how basic blocks are constructed. 
 Explain the liveness and next-use information of basic 

blocks 
 Know how to construct a flow graph 
 Understand the optimization techniques of basic blocks 
 Learn the DAG representation of basic blocks 

 

16.2 BASIC BLOCKS 

In the previous unit, we have known that the three-address 

instructions are partitioned into sequence of simple codes called the 

basic blocks. To begin with, the first instruction forms the beginning 

of a new basic block. Further, instructions are added to the basic 

block until an unconditional jump, conditional jump or a label 

following an instruction is attained. Control proceeds sequentially 

when there is no jump statement. Let us see the following algorithm 

which partitions the three-address codes into corresponding basic 

blocks. 

Algorithm 16.1: Partitioning three-address codes into basic 
blocks 

Input: Sequence of three-address instructions. 

Output: List of basic blocks for the sequence in which each 

instruction is assigned exactly to one basic block. 
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Method: Leaders are the first instructions of the basic blocks. At 

first, the leaders occurring in the intermediate codes are determined. 

Leader does not include the instruction just past the end of the 

intermediate program. Here are some rules for finding leaders. 

1. The first three-address instruction in the intermediate code is 

a leader. 

2. An instruction that is the target of a conditional or 

unconditional jump is a leader. 

3. An instruction that immediately follows a conditional or 

unconditional jump instruction is a leader. 

For a leader, its basic block consists of itself and all instructions 

upto but not including the next leader or the end of the intermediate 

codes. To get a clear picture of how it forms, let’s consider the 

following set of intermediate codes. 

1. i = 1 
2. j = 0 
3. t1 = 20 * i 
4. t2 = t1 + j 
5. t3 = t2 * 2 - 40 
6. A [t3] = 5 
7. j = j + 1 
8. if j <= 10 goto 3 
9. i = i + 1 
10. if i <= 10 goto 2 
11. t4 = i 
12. a[t4] = 10 
13. i = i + 1 
14. if i <= 10 goto12 

As per rule (1) of the algorithm, instruction 1 forms the leader. Our 

next task is to find the jumps. There are three such instructions; 

which contain conditional jumps; instructions (8), (10) and (14). 

Now, according to rule (2) of the algorithm, the targets of these 

instructions also form leaders. Therefore, instructions (3), (2) and 
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(12) are the targets and they form leaders. Then, rule (3) says that 

the instruction immediately following a jump is also a leader. 

Instructions (9) and (11) are such instructions. The last instruction 

(14) is not followed by any instruction. Therefore, there is no leader 

following this instruction. Finally, we conclude that instructions (1), 

(2), (3), (9), (11) and (12) form the leaders. Each basic block begins 

with a leader and it continues until the instruction just before the 

next leader. The basic block of (1) contains only (1). Like this, 

leader (2) contains basic block only consisting of (2) only. However, 

for leader (3), the corresponding basic block consists of (3) through 

(8). Similarly, instruction (9) has a basic block consisting of (9) and 

(10). The basic block of leader (11) contains of 11 only. Then, 

finally for leader (12), the basic block contains instructions (12) 

through (14).  

16.2.1 Next-Use Information 

The next-use information is essential for keeping track of when the 

value of a variable will be used next so that efficient codes can be 

generated. The subsequent use of a name in a three-address code has 

to be determined. If the value of a variable which is currently in a 

register will never be subsequently referenced, that register can be 

assigned to another variable. The use of a name in a three-address 

statement can be conceptualized by the following set of codes. 

1. k = 10 
2. x = k + k 
3. m = 1 
4. S = 2 * m * x   

The statement 1 of the above set of codes initializes the value of 

variable k. Now, statement 2 considers the value of k and computes 

x. Then, there is no intervening change to the value of x and finally 

statement 4 computes the value of S simply by using the value of x 

derived by statement 2. In other words, statement 4 uses the value of 



304 
 

x computed by statement 2. It can be further concluded that x is live 

at statement 2. Our next algorithm determines the liveness and next-

use information of a basic block. 

Algorithm 16.2: Determining the liveness and next-use information 
for each statement in a basic block. 

Input: A basic block B of three-address statements. We assume that 
the symbol table initially shows all non-temporary variables in B as 
being live on exit. 

Output:At each statement i: x = y + z in B, we attach to i the 
liveness and next-use information of x, y and z. 

Method: We begin at the last statement of B and scan backwards to 
the first statement of B. At each statement i: x = y + z in B, we do 
the following: 

1. Attach to each statement i, the information currently found 
in the symbol table regarding the next use and liveness of x, 
y and z. 

2. In the symbol table, set x to “not live” and “no next use”. 
3. In the symbol table, set y and z to “live” and the next uses of 

y and z to i. 

If the three-address statement does not include + as an operator 
between operands, statement i may contain codes of the form x = +y 
or x = y. This ignores variable z. 

 

 

 

 

 

 

 

 

 

CHECK YOUR PROGRESS – I 

1. Intermediate codes are partitioned into __________. 

2. A _____________ is a graphical representation of the 

basic blocks. 

3. Each node of the flow graph is represented by a ________. 

4. Control proceeds sequentially when there is no ______ 

statement. 

5. The first instructions of the basic blocks are ________. 



 

16.3 FLOW GRAPH 

We have already discussed that the basic blocks generated from 
intermediate codes can be represented in terms of a graphical 
representation called as flow graph. Therefore, the nodes of a flow 
graph represent the basic blocks. We consider two basic blocks A 
and B. An edge can be formed between A and B
last instruction of block A is immediately followed by the first 
instruction of block B. An edge can be formed in two ways:

1. There is a conditional or unconditional jump from the last 
instruction of A to the beginning of B.

2. B immediately follows A in the original order of the three
address instructions
jump. 

A is termed as the predecessor of B and conversel
successor of A. 

Often, two nodes termed as the entry and exit
graph. They do not correspond to executable intermediate 
instructions. Rather, there is an edge coming from the entry node to 
the first executable node or basic bl
edge to the exit node from that basic block of the flow graph that 
contains the last instruction of the program.
instructions used in the example for finding basic blocks can be 
demonstrated in terms of the following flow graph.

 

 

 

 

 

 

 

 

Fig 16.1: Flow graph representing control flow between nodes 
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We have already discussed that the basic blocks generated from 
intermediate codes can be represented in terms of a graphical 
representation called as flow graph. Therefore, the nodes of a flow 

the basic blocks. We consider two basic blocks A 
and B. An edge can be formed between A and B if and only if the 
last instruction of block A is immediately followed by the first 
instruction of block B. An edge can be formed in two ways: 

onal or unconditional jump from the last 
instruction of A to the beginning of B. 
B immediately follows A in the original order of the three-
address instructions and A is not an end of an unconditional 

A is termed as the predecessor of B and conversely, B is the 

Often, two nodes termed as the entry and exit, are added to the 
graph. They do not correspond to executable intermediate 
instructions. Rather, there is an edge coming from the entry node to 
the first executable node or basic block of the graph. There is an 
edge to the exit node from that basic block of the flow graph that 
contains the last instruction of the program. Therefore, the set of 
instructions used in the example for finding basic blocks can be 

he following flow graph. 

Fig 16.1: Flow graph representing control flow between nodes  
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Flow graphs can be thought of as an ordinary graph consisting of 

both nodes and edges. In basic blocks, a jump to instructions or 

labels took place when conditional or unconditional jump 

instructions were encountered. Accordingly, such jumps can occur 

to basic blocks also. This happens with the flow graph where jumps 

to leaders of basic blocks are replaced by jumps to basic blocks. 

However, the contents of each node or a basic block of a flow graph 

can be represented by some data structures. One way is to keep a 

pointer to point to the leader of an array of three-address instructions 

along with a count of the total number of instructions. A second 

pointer may also be inserted to the last instruction instead of keeping 

the count. However, it would be considered as a good practice to 

create a linked list of instructions for each basic block since, the 

number of instructions in a basic block changes frequently. 

16.3.1 Loops in Flow Graphs 

Loops in programming languages are the constructs for-loop, while-

loop and do-while loop statements. They occur frequently in a 

program and it is the task of the compiler to generate a good code 

for loops. A set of nodes L in a flow graph is a loop if L contains a 

node e called the loop entry such that 

1. e is not ENTRY of the entire flow graph 
2. Except e, no node in L has a predecessor outside L. In other 

words, a path from ENTRY to any node in L goes through e. 
3. Within L, every node in L has a non-empty path to e. 

The above flow graph consists of three loops: 

1. B3 by itself 
2. B6 by itself 
3. {B2, B3, B4} 

B3 and B6 are single nodes with an edge to the nodes itself. They 

form loops with themselves being entries to some non-empty paths. 

But, node B2 cannot be considered as a loop as it does not have an 
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edge to itself. In the third case, B2 is the entry to the loop. Also it 

has a predecessor B1, which is not a part of L. Furthermore, there is 

a non-empty path which leads to B2 within L. 

16.4 OPTIMIZATION OF BASIC BLOCKS 

As already mentioned, it is important to transform codes into some 

form so that efficient codes can be generated. The running time 

required to execute such codes would be less. In such situation, code 

optimization comes into play. Optimization technique can be 

performed on basic blocks also. This can happen in two ways: local 

and global. Local optimization takes place within the block on the 

instructions. And global optimization takes place within the blocks 

and it sees how flow of information occurs among the basic blocks 

of a program. 

16.4.1 DAG Representation of Basic Blocks 

Just like the optimization techniques we studied in a previous unit, 

local optimization technique can be applied on basic blocks too. It 

begins by transforming a basic block into a DAG (Directed Acyclic 

Graph). In a previous unit, we learnt about representation of DAG 

for a single expression. Now, here, the idea has got extended into a 

set of expressions making up a basic block. DAG for basic blocks 

has the advantage of eliminating local common sub-expressions. It 

is necessary to eliminate such instructions which compute values 

which are already computed. Moreover, some instructions compute 

a value that is never used during execution. Such codes, termed as 

dead code must be eliminated from the basic block. Separate and 

independent statements which do not depend on each other for data 

inputs can be reordered. Such reordering reduces the required time 

to store temporary values to be preserved in a register. Such 

reordering also happens on operands of three-address codes. 
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Reordering is performed by applying algebraic laws on the 

instructions. 

1. Finding local common sub-expressions in a basic block is 

important for generating an efficient code. This concept is 

similar to the concept that we introduced for DAG in unit 12. 

Considering a case when a new node N is about to be added. 

Such addition requires checking whether an existing node M 

has the same children in the same order and with the same 

operator. Therefore, M computes the same value as N and 

may be used in its place.Now, let us consider the following 

block of codes. 

1. A = B * C 
2. B = A + E 
3. C = B * C 
4. E = A + E 

This can be represented using the hierarchical structure 

called DAG. Statement 1 computes the value of A using 

operands B and C. the second statement derives the value of 

B simply by adding A and E. Now, this is B’s most recent 

value. The third statement uses this current value of B 

instead of the one in the first statement. Therefore, the value 

of B in the third statement refers to the node with label “+” 

of the second statement. The corresponding DAG structure 

for the above statements would be as follows: 

 

However, statements 2 and 4 have the same operands with 

same operator and no change in values of the operands have 

taken place in between, therefore no extra node need to be 

created. Simply adding an extra label will be sufficient. So, 

B and E will point to the same node. 

Labels B0, C0 and E0 are used to distinguish between 
statements.  



 

 
 
 
 
 
 
 
 
 
 
 
 

Fig 16.2: DAG representation of basic blocks
 
   

2. Dead code elimination plays a vital role in maintaining the 

efficiency of compilation. A dead code is the one which has 

no live variables attached to it. A root having no live 

variables attached to it can be deleted. Such repeated 

application will remove a

corresponding to dead code.

Figure 16.2 contains three non

basic block of three

Therefore, the basic block can be replaced by three 

statements. Here, if 

do not need to compute B and replace it with E in order to 

receive the same value that B computes at the node labeled 

“+”. Therefore, the basic block becomes

 
3. Another optimization technique employed in basic blocks is 

the representation of 

identities can be applied on basic blocks such as 

following to eliminate computations from a basic block.
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Fig 16.2: DAG representation of basic blocks 

Dead code elimination plays a vital role in maintaining the 

efficiency of compilation. A dead code is the one which has 

no live variables attached to it. A root having no live 

variables attached to it can be deleted. Such repeated 

application will remove all the nodes from a DAG 

corresponding to dead code. 

Figure 16.2 contains three non-leaf nodes; whereas our given 

basic block of three-address codes contains four statements. 

Therefore, the basic block can be replaced by three 

if B is not live on exit from the block; we 

do not need to compute B and replace it with E in order to 

receive the same value that B computes at the node labeled 

“+”. Therefore, the basic block becomes 

1. A = B * C 
2. D = A + E 
3. C = D * C 

Another optimization technique employed in basic blocks is 

representation of algebraic identity. The basic arithmetic 

identities can be applied on basic blocks such as the 

following to eliminate computations from a basic block. 
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X + 0 = 0 + X = X 
X * 1 = 1 * X = X 

Another optimization technique includes replacing more 

expensive operators with a cheaper one. This technique is 

termed as reduction in strength. Examples of such kind 

includes 

   X2 =  X * X 

   2 * X  =  X + X 

   X/2 = X * 0.5 

X2is somewhat more expensive than its equivalent statement 

X * X. Similarly, 2 * X can be replaced by X + X, which is 

considered to be comparatively cheaper. 

Constant folding is a class of optimization technique. 

Constant expressions are evaluated during compile time and 

these expressions are replaced by their corresponding values. 

Therefore, 32 can have its value replaced by 9. 

The DAG construction may apply other algebraic 

transformations such as commutativity and associativity. 

Therefore, before creating a new node, a check has to be 

made whether the node already exists. Here, the concept 

associated with commutative property comes into play. Like 

for example, before creating a node labeled * with x as its 

left child and y as its right child, we have to check if the 

same labeled node exists with y as its left child and x as its 

right child. Because, both evaluates the same output since 

they satisfy commutative property. 

4. Array indexing can be represented using a DAG. 

Considering the following set of three-address codes 

accessing array references. 
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   x  =  A[i] 
   A[j]  =  y 
   z = A[i] 
The assignment statement as the first one is represented by 

creating a node with operator =[]. Its children are 

represented by A and index i. The label of this node is given 

by x.  

The second statement A[j] =  y is represented by a new node 

[]= having three child nodes A, j and y. This creation of 

nodes would eventually kill all the nodes which are 

dependent on A for their values. Thus, node labeled x would 

be killed. Now, when node z is created it cannot be referred 

or associated with x. A new node with operands A and i 

would be created. 

 

5. The pointer assignment statement x = *p contains operator 

=* that must take all the nodes that are currently associated 

with identifiers as arguments which is pertinent to dead code 

elimination. On the other hand, the assignment statement *p 

= x has the operator *= which kills all the other nodes 

constructed in the DAG so far. 

Once we are finished with whatever optimizations required for 

manipulating DAG, reassembling may be done on the basic block 

by reconstituting the three-address codes. A three-address statement 

is reconstituted by considering the nodes having one or more 

variables attached to them. The result of computation must be done 

on a variable that is live on exit from the block. If there are more 

than one live on exit variables, their actual values must be deduced. 

Finally, global optimization may eliminate the duplicate copies. 

The reconstruction of DAG basic block requires some rules to be 

followed. The order in which the instructions are sequenced for 
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evaluation is a primary concern. Apart from that, the variables 

whose values must be assigned to the DAG’s nodes must also be 

computed.  Some of such rules may be as follows: 

1. The values of the child nodes of a node must be computed 

prior to computing its parent node’s value. 

2. Assignments may take place in the same order it is there in 

the original basic block. Array assignments are preceded by 

all previous assignments to or evaluated from the same 

array. 

3. As per point number 2. array elements are evaluated after the 

previous assignments to the same array. Two evaluations 

from the same array may be done in either order, as long as 

neither of them crosses over the assignment to that array. 

4. All previous procedure calls or indirect assignments through 

a pointer must precede any use of a variable. 

5. All previous evaluations to any variable must precede all 

previous procedure calls or indirect assignments. 

 

 

 

 

 

 

 

 

 

 

 

CHECK YOUR PROGRESS – II 
6. If control jumps from basic block A to basic block B, A is 

called the ______________ B. 

7. The nodes ______________ and _______________do not 

correspond to executable codes 

8. The running time required to execute the _________ 

________would be less. 

9. ___________ optimization takes place within the block on 

the instructions.  

10. DAG for basic blocks has the advantage of eliminating 

local ___________ _______________. 

11. A _______is the one which has no live variables attached 

to it. 
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16.5 SUMMING UP 

 Basic blocks are the sequences of simple and consecutive 

three-address statements. Control flow enters the basic block 

simply through its first instruction. Leaders are the first 

instructions of the basic blocks. 

 Instructions are added to the basic block until an 

unconditional jump, conditional jump or a label following an 

instruction is attained. Control passes in a sequence within 

the basic block without branching or halting and finally 

leaves the block. 

 The next-use information is essential for keeping track of 

when the value of a variable will be used next so that 

efficient codes can be generated. If the value of a variable 

which is currently in a register will never be subsequently 

referenced, that register can be assigned to another variable. 

 The basic blocks generated from intermediate codes can be 

represented in terms of a graphical representation called as 

flow graph. Therefore, the nodes of a flow graph represent 

the basic blocks. 

 Two nodes termed as the entry and exit, are added to the 

flow graph. They do not correspond to executable 

intermediate instructions. 

 Optimization technique can be performed on basic blocks 

also. This can happen in two ways: local and global. Local 

optimization takes place within the block on the instructions. 

And global optimization takes place within the blocks and it 

sees how flow of information occurs among the basic blocks 

of a program. 

 Local optimization technique can be applied on basic blocks 

too. It begins by transforming a basic block into a DAG 
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(Directed Acyclic Graph). DAG for basic blocks has the 

advantage of eliminating local common sub-expressions. 

 Some instructions compute a value that is never used during 

execution. Such codes, termed as dead code must be 

eliminated from the basic block. Optimization is necessary 

for efficient generation of target codes. 

16.6 ANSWERS TO CHECK YOUR PROGRESS 

1. basic blocks 
2. flow graph 
3. basic block 
4. jump 
5. leaders 
6. predecessor 
7. entry and exit 
8. optimized code 
9. Local 
10. common sub-expressions 
11. dead code 

 

16.7 POSSIBLE QUESTIONS 

A. Short answer type questions. 

1. What is basic block? Explain in brief. 
2. What do you mean by next-use information? Discuss in 

brief. 
3. What is flow graph? What are the two ways that an edge 

between two nodes of a flow graph can be formed? 
4. What do you mean by optimization of basic blocks? 
5. What is dead code elimination of basic blocks? 
6. What do you mean by common sub-expression elimination 

of DAG representation of basic blocks? 
 

B. Long answer type questions. 

1. Explain how the three-address codes are partitioned into 
basic blocks. 
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2. Explain how the liveness and next-use information for each 
three-address statement of a basic block can be determined. 

3. Describe how flow graphs are constructed for a set of three-
address codes. 

4. What do you understand by loops in a flow graph? Describe. 
5. What is DAG representation of basic blocks? Explain 

elaborately. 
6. What are the advantages of DAG representation of basic 

blocks? 
7. Explain the rules for reconstructing DAGs for basic blocks. 
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UNIT: 17 
STRATEGIES OF CODE OPTIMIZATION 
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17.1 Unit Objectives 

17.2 Variable Propagation 

17.3 Code Motion 

17.4 Strength Reduction 

17.5 Elimination of Dead Code 

17.6 Loop Optimization 

17.7 Check Your Progress  

17.8 Answers to Check Your Progress  

17.9 Let Us Sum Up  

17.10 Further Reading  

17.11 Model Questions 

17.12 References and Suggested Readings  

 
17.0    INTRODUCTION 

Code optimization is a crucial phase in the compilation process 

where the compiler transforms the code to improve its efficiency, 

performance, and resource utilization while preserving its 

functionality. The primary goal of code optimization is to produce 

optimized machine code that executes faster, consumes fewer 

resources such as memory and energy, and exhibits better runtime 

behavior. 

Optimization is essential because it directly impacts the 

performance and quality of software systems. Efficiently optimized 

code can lead to faster execution times, reduced memory footprint, 

and improved energy efficiency, resulting in better user experience 

and cost savings. 
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The process of code optimization involves analyzing the source 

code, identifying inefficiencies, and applying transformations to 

eliminate or reduce them. This process requires a deep 

understanding of the target hardware architecture, programming 

language semantics, and optimization techniques. 

Various strategies and techniques are employed during code 

optimization, include Variable Propagation, Code Motion, Strength 

Reduction, Elimination of Dead Code, Loop Optimization 

However, there are trade-offs associated with optimization. 

Aggressive optimization approaches may result in lengthier 

development cycles and possible maintenance issues by increasing 

compilation time and code complexity. To make sure the advantages 

of code optimization outweigh the disadvantages, it is crucial to 

measure its efficacy. Runtime metrics and performance benchmarks 

are frequently used to assess how optimization strategies affect 

program performance and resource usage. 

In summary, code optimization plays a vital role in compiler design 

by improving the efficiency and quality of generated code. By 

understanding the goals, principles, and techniques of code 

optimization, developers can create software systems that deliver 

better performance, scalability, and reliability. 

17.1  UNIT OBJECTIVES 

After going through this unit, you will be able to: 

 Understand the importance of code optimization in 
compiler design. 

 Learn the goals and principles of code optimization. 
 Explore various strategies and techniques used for code 

optimization. 
 Learn how to measure the effectiveness of code 

optimization. 
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17.2   VARIABLE PROPAGATION 
 

Variable propagation, also known as constant propagation or 

constant folding, is a compiler optimization technique aimed at 

replacing variables with their constant values where possible, 

thereby potentially reducing the runtime overhead and improving 

the efficiency of the generated code. This optimization is 

particularly effective in cases where variables hold constant values 

throughout the execution of the program.Benefits of Variable 

Propagation include first reduced memory usage i.e.constants don't 

need to be stored in memory as variables, leading to potential 

memory savings. Secondly performance is improved, as direct use 

of constants instead of variables can reduce the number of memory 

accesses and calculations, improving runtime performance and 

finally simplifies thecode thus eliminating unnecessary variables to 

cleaner and more readable code. 

 
Consider the following Variable Propagation example: 
 
float calculate_area(float radius) { 
    float pi = 3.14159; 
    float area = pi * radius * radius; 
    return area; 
} 
int main() { 
printf("%f\n", calculate_area(5)); 
    return 0; 
} 
In this example, pi is a constant value that doesn't change 

throughout the execution of the program. Variable propagation 

optimization can replace references to pi with its constant value 

3.14159, resulting in more efficient code. 
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After variable propagation optimization, the code will look like this: 
 
float calculate_area(float radius) { 
    float area = 3.14159 * radius * radius; 
    return area; 
} 
 
int main() { 
printf("%f\n", calculate_area(5)); 
    return 0; 
} 
 
17.3 CODE MOTION 

 
Code motion, also known as loop invariant code motion (LICM), is 

a compiler optimization technique used to improve the efficiency of 

code by moving calculations or expressions out of loops when those 

calculations produce the same result for every iteration of the loop. 

This helps reduce redundant computations and can lead to 

significant performance improvements, especially in loops that are 

executed frequently. 

 
Consider the following Code Motion example: 
 
i=0; 
total=500; 
while (sum<= total – 5) // without code motion 
{ 
sum=sum + i; 
i++; 
} 
printf(“%d”, sum); 

The while() loop in the example above determines whether the 

variable "i" is less than "total-5" and whether it should stay in the 

loop or not. Since the while loop's body does not change the 

variable "total," the statement "total-5" will evaluate to the same 

value, indicating that it is a non-motion variable. Since this 
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expression must be calculated each time the while() loop is 

triggered, it is possible to avoid using it. Below are the specifics 

following the implementation of code motion: 

 
i=0; 
total=500; 
test=total – 5; // with code motion 
while (sum<= test) 
{ 
sum=sum + i; 
i++; 
} 
printf(“%d”, sum); 

 

17.4   STRENGTH REDUCTION 
 

Strength reduction is a technique used in code optimization to 

replace expensive operations with cheaper ones. This typically 

involves replacing costly operations like multiplication or division 

with less expensive ones like addition or bit manipulation. The goal 

is to improve the efficiency of the code while maintaining its 

correctness.  

 

Examples of Strength Reduction are: 

 Replacing Multiplication with Addition i.e. instead of 

performing repeated multiplication, we can use addition, which 

is generally faster. 

 
// Original code with multiplication 
int result = 3 * salary; 
 
// After strength reduction 
int result = salary + salary + salary; 
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 Replacing division with multiplication i.e. division operations 

are generally slower than multiplication. If we need to divide by 

a constant, we can replace it with a multiplication by the 

reciprocal of that constant. 

 
// Original code with division 
int result = y / 4; 

 

// After strength reduction 

int result = y * 0.25; // or x >> 2 (for division by powers of 2) 
 Using Bitwise operations for division/multiplication by Powers 

of 2 i.e.division or multiplication by powers of 2 can be replaced 

with bitwise operations (right shift for division, left shift for 

multiplication), which are usually more efficient. 

 
// Original code with division by 2 
int result = x / 2; 

 

// After strength reduction 

int result = x >> 1; 
 
 Replacing expensive operations with cheaper ones i.e. in some 

cases, there are alternate ways to achieve the same result with 

cheaper operations. For example, replacing exponentiation with 

repeated multiplication for integer powers, or using lookup 

tables for expensive computations. 

 
// Original code with exponentiation 
int result = pow(y, 2); 

 
// After strength reduction 
int result = y * y; 
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17.5  ELIMINATION OF DEAD CODE 

Dead code elimination is the process of removing code from a 

program that is never executed, thus reducing the size of the 

executable and potentially improving performance. In C, dead code 

can arise due to conditional statements, unreachable code blocks, or 

unused variables or functions. Below are some examples 

demonstrating dead code elimination in C: 

 Unreachable code: 

#include <stdio.h> 

intmain() { 

int y = 10; 

    if (y>20)  

{ 

printf("y is greater than 20\n"); 

 }  

else  

{ 

printf("y is not greater than 20\n"); 

 } 

    return 0; 

} 

In the above example, the condition y > 20 will always evaluate to 

false because y is initialized to 10. Therefore, the code block within 

the if statement will never execute. Dead code elimination would 

remove the printf statement inside the if block. 

 Unused variables: 

#include <stdio.h> 
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intmain() { 

int x = 15; 

int y = 11; // Unused variable 

printf("x = %d\n", x); 

    return 0; 

} 

In this example, the variable y is declared but never used. Dead code 

elimination would remove the declaration of y. 

 Unused functions: 

#include <stdio.h> 

void test_function() { 

printf("This function is never called\n"); 

} 

intmain() { 

printf("Main function\n"); 

    return 0; 

} 

The test_function is defined but never called from main(). Dead 

code elimination would remove the test_function from the final 

executable. 

 Constant folding: 

#include <stdio.h> 

#define FLAG 0 

intmain() { 

if FLAG 
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printf("FLAG is true\n"); 

else 

printf("FLAG is false\n"); 

    return 0; 

} 

In this example, the macro FLAG is defined as 0. During 

compilation, the preprocessor will evaluate the conditional 

expression if FLAG. Since FLAG is 0, the else block will always be 

executed. Dead code elimination would remove the if FLAG block 

entirely and only keep the else block. 

 
17.6  LOOP OPTIMIZATION 

Loop optimization is a crucial aspect of code optimization, 

especially in performance-critical applications where loops 

constitute a significant portion of execution time. The goal of loop 

optimization is to improve the efficiency of loops by minimizing 

redundant computations, reducing memory access overhead, and 

maximizing parallelism. Here are some common techniques for loop 

optimization along with examples: 

 

 Loop unrolling that involves replicating the loop body multiple 

times to reduce loop overhead. This can be particularly 

beneficial when the loop body contains simple arithmetic 

operations. 

// Original loop 

for (inti = 0; i< 5; i++) { 

    result += x; 

} 
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// After loop unrolling 

result += x; 

result += x; 

result += x; 

result += x; 

 Loop Fusion combines multiple loops that operate on the 

same data into a single loop, reducing memory access 

overhead. 

 
// Separate loops 
for (inti = 0; i< N; i++) { 
    array1[i] = array2[i] + 1; 
} 
for (inti = 0; i< N; i++) { 
    array2[i] = array1[i] * 2; 
} 
 
 
// Fused loop 
for (inti = 0; i< N; i++) { 
    array1[i] = (array2[i] + 1) * 2; 
    array2[i] = array1[i]; 
} 

 
 

 Loop Interchange is the process of switching the two iteration 

variables that a nested loop uses in order is known as loop 

interchange. The outer loop uses the variable that was used in 

the inner loop, and vice versa. In order to improve locality of 

reference, it is frequently done to make sure that the elements of 

a multi-dimensional array are accessed in the order that they are 

stored in memory. 
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for (int j = 0; j < 50; j++) { 
    for (inti = 0; i< 20; i++) { 
        a[i][j] = i + j + 1; 
    } 
} 
 

After loop interchange 
 

for (inti = 0; i< 20; i++) { 
   for (int j = 0; j < 50; j++) { 
        a[i][j] = i + j + 1; 
    } 
} 

 
 Loop blocking, also known as loop tiling, divides a loop into 

smaller blocks that fit into the cache more efficiently, reducing 

cache misses. 

// Original loop 
for (inti = 0; i< N; i++) { 
    array[i] = array[i] * 2; 
} 
 

 
After loop Blocking 
 

// Blocked loop 
for (int block = 0; block < N; block += BLOCK_SIZE) { 
    for (inti = block; i<min(block + BLOCK_SIZE, N); i++) { 
        array[i] = array[i] * 2; 
    } 
} 

 
 
 

17.7  CHECK YOUR PROGRESS  
 

i. What does variable propagation aim to achieve in code 
optimization? 
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a) Removal of unused variables 
b) Propagation of constant values through variables 
c) Dynamically allocating variables 
d) Minimizing variable scope 

 
ii. Which of the following describes code motion in 

optimization? 
a) Moving frequently accessed code into cache memory 
b) Reorganizing code to enhance readability 
c) Moving code segments to reduce redundant calculations 
d) Rewriting code in a different programming language 

 
iii. What is the primary goal of strength reduction in 

optimization? 
a) Decreasing the complexity of algorithms 
b) Transforming expensive operations into cheaper equivalents 
c) Enhancing code readability 
d) Eliminating code duplication 

 
iv. What does dead code elimination involve in code 

optimization? 
a) Removing code that is unreachable or never executed 
b) Minimizing variable declarations 
c) Reusing code across different modules 
d) Enhancing code documentation 

 
v. Which of the following is not a common technique used in 

loop optimization? 
a) Loop unrolling 
b) Loop blocking 
c) Loop inversion 
d) Loop fusion 

 
vi. Which of the following statements is true regarding variable 

propagation? 
a) It is primarily concerned with renaming variables 
b) It focuses on identifying and removing redundant variables 
c) It aims to determine the data type of variables 
d) It ensures variables have global scope 
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vii. In code motion, which type of code segment is typically 
targeted for movement? 

a) Code with minimal complexity 
b) Code with high computational cost 
c) Code with frequent branching 
d) Code with extensive comments 

 
viii. Which of the following is an example of strength reduction? 

a) Replacing division by multiplication with shift operations 
b) Adding more variables to improve code readability 
c) Converting iterative loops into recursive functions 
d) Removing unnecessary type casting 

 
ix. What is dead code? 

a) Code that contains errors and crashes the program 
b) Code that is executed repeatedly in a loop 
c) Code that is no longer reachable or useful 
d) Code that performs mathematical calculations 

 
x. Which loop optimization technique aims to minimize cache 

misses by dividing loops into smaller blocks? 
a) Loop unrolling 
b) Loop fusion 
c) Loop blocking 
d) Loop inversion 

 
xi. What is the purpose of constant propagation in variable 

propagation optimization? 
a) To eliminate unused variables 
b) To identify constant values assigned to variables 
c) To dynamically allocate memory for variables 
d) To redefine the scope of variables 

 
xii. Which of the following is a potential drawback of code 

motion? 
a) Improved cache locality 
b) Increased register pressure 
c) Reduced execution time 
d) Enhanced code modularity 
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xiii. Which arithmetic operation is often replaced in strength 
reduction optimization? 

a) Subtraction with addition 
b) Multiplication with division 
c) Addition with subtraction 
d) Division with multiplication 

xiv. In dead code elimination, what does unreachable code refer 
to? 

a) Code segments that are difficult to understand 
b) Code segments that are executed in every loop iteration 
c) Code segments that are commented out 
d) Code segments that cannot be reached during program 

execution 
 

xv. Which loop optimization technique focuses on reducing the 
number of loop iterations by combining multiple iterations 
into one? 

a) Loop unrolling 
b) Loop fusion 
c) Loop blocking 
d) Loop inversion 
 

17.8  ANSWERS TO CHECK YOUR PROGRESS   

i, b ii, c iii, b iv, a v, c 
vi, b vii, b viii, a ix, c x, c 
xi, b xii, b xiii, b xiv, d xv, a 

 

17.9  LET US SUM UP 
 Variable propagation involves replacing occurrences of 

variables with their values whenever possible, reducing 

the need for memory accesses and potentially improving 

performance. 

 Code motion involves moving computations or 

assignments out of loops when their results do not 

depend on loop iterations. This reduces redundant 

computations and improves efficiency. 
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 Strength reduction is a technique used to replace 

expensive operations with cheaper ones. For example, 

replacing multiplication with addition or shift operations. 

 Dead code elimination involves removing code that has 

no effect on program output or behavior. This can 

include unreachable code or code whose results are never 

used. 

 Loop optimization refers to techniques used to improve 

the efficiency of loops in computer programs. This 

includes loop unrolling, loop fusion, loop blocking, loop 

interchange, loop invariant code motion, and other 

techniques aimed at reducing loop overhead and 

improving cache locality. 

 

17.10   FURTHER READING  

 Modern Compiler Implementation in C by Andrew W. 

Appel, Publisher: Cambridge University Press,Edition: 

2nd Edition 

 Engineering a Compiler by Keith D. Cooper and Linda 

Torczon, Publisher: Morgan Kaufmann,Edition: 2nd 

Edition 

 Compiler Construction: Principles and Practice by 

Kenneth C. Louden, Publisher: Cengage 

Learning,Edition: 1st Edition 

 Principles of Compiler Design" by Aho, Ullman, and 

Sethi, Publisher: Addison-Wesley,Edition: 1st Edition 

 
17.11   MODEL QUESTIONS  

1. Explain variable propagation and its significance in 
optimizing code.Provide an example where variable 
propagation can eliminate redundant computations. 
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2. What is code motion, and why is it important in optimizing 
code? Give an example where moving code outside a loop 
improves performance. 

 
3. Define strength reduction and its role in optimizing 

arithmetic operations. Compare and contrast strength 
reduction with loop unrolling. Illustrate strength reduction 
with an example code snippet. 

 
4. What is dead code, and why is it undesirable in programs? 

Explain the difference between static and dynamic dead code 
elimination. Provide an example demonstrating dead code 
elimination. 

 
5. Describe loop optimization techniques commonly used to 

enhance performance. Explain the significance of loop 
fusion and loop unrolling in optimizing loops. 

 
6. Define loop unrolling and its purpose in loop optimization. 

Discuss the trade-offs associated with loop unrolling. 
Provide an example where loop unrolling improves 
performance. 

 
7. Explain loop fusion and its benefits in optimizing code. 

Compare and contrast loop fusion with loop tiling. Give an 
example demonstrating loop fusion. 

 
8. Define loop blocking and its relevance in optimizing 

memory access patterns. Discuss the impact of loop blocking 
on cache performance. Provide an example where loop 
blocking enhances cache utilization. 

 
9. Describe loop interchange and its purpose in optimizing 

nested loops. Explain how loop interchange can improve 
data locality. 

 
10. Define loop-invariant code motion and its role in reducing 

redundant computations. Discuss the benefits and limitations 
of loop-invariant code motion. 
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17.12 REFERENCES AND SUGGESTED READINGS 

 Compilers: Principles, Techniques, and Tools" by 
Alfred V. Aho, Monica S. Lam, Ravi Sethi, and 
Jeffrey D. Ullman, Publisher: Pearson, Edition: 2nd 
Edition 
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UNIT: 18 
STRATEGIES OF CODE OPTIMIZATION 

 
Unit Structure 

18.0   Introduction 

18.1 Unit Objectives 

18.2 Data Flow Analysis 

18.3 Objects 

18.4 Integrating Clients and Objects 

18.5 Static vs Dynamic RMI 

18.6 Parameter Passing Examples 

18.7 Case Study 

18.8 Check Your Progress  

18.9 Answers to Check Your Progress  

18.10 Let Us Sum Up  

18.11 Further Reading  

18.12 Model Questions  

18.13 References and Suggested Readings 

 
18.0  INTRODUCTION 

Code optimization strategies play a pivotal role in enhancing the 

performance and efficiency of software systems. Leveraging data 

flow analysis, compilers scrutinize the flow of data within programs 

to identify optimization opportunities. Object-oriented principles are 

seamlessly integrated into compiler design, enabling 

modularization, reusability, and flexibility. The choice between 

static and dynamic Remote Method Invocation (RMI) in distributed 

computing impacts the system's performance and dynamism. 

Various parameter passing examples, such as pass by value and pass 

by reference, influence compiler optimizations and runtime 

behavior. A case study exemplifies how a compiler employs a 

multitude of optimization techniques to boost code efficiency, from 
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constant folding to target-specific optimizations, yielding significant 

performance gains across diverse platforms. 

18.1 UNIT OBJECTIVES 

After going through this unit, you will be able to: 

 Understand the basics of data flow analysis and its 

importance in program analysis. 

 Understand the concepts of static and dynamic RMI and 

their differences. 

 Explore the advantages and disadvantages of static and 

dynamic RMI. 

 Understand different parameter passing mechanisms such as 

pass-by-value, pass-by-reference, and pass-by-pointer. 

 Analyze real-world code examples to identify performance 

bottlenecks. 

 
18.2  DATAFLOW ANALYSIS 

 
In compiler design, data flow analysis is a technique used to 

examine the movement of data within a program. It entails 

monitoring the values of expressions and variables as they are 

utilized and computed throughout the program in order to spot 

possible problems and scope for optimization. 

 

Modeling the program as a graph, with program statements as nodes 

and data flow relationships between the statements as edges, is the 

fundamental principle underlying data flow analysis. The data flow 

information is then sent across the graph by computing the values of 

variables and expressions at each stage of the program through the 

use of a set of guidelines and formulas. 
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Compilers often do the following kinds of data flow analysis: 
 

 Reaching definitions monitors the definition of a variable or 

expression throughout the program and identifies the 

instances where the definition influences a specific usage of 

the variable or expression. This data aids in the identification 

of variables that can be safely optimized or eliminated. 

 Live Variable Analysis identifies the segments in the 

program where a variable or expression remains "live," 

indicating that its value is necessary for future computations. 

This insight helps in pinpointing variables that can be safely 

removed or optimized. 

 Available Expressions Analysis identifies points in the 

program where a particular expression is "available," 

indicating that its computed value can be reused. This 

information enables the detection of opportunities for 

common subexpression elimination and other optimization 

techniques. 

 Constant Propagation Analysis monitors constant values and 

determines where they are used within the program. This 

knowledge helps in identifying opportunities for constant 

folding and other optimization techniques. 

Data flow analysis uses the terminologies 

 Definition Point: A definition point within a program is 

where a data item is defined. 

 Reference Point: A reference point within a program is 

where a reference to a data item is found. 

 Evaluation Point: An evaluation point within a program is 

where an expression is present for evaluation. 

The diagram below illustrates an example of a definition point, a 

reference point, and an evaluation point within a program. 
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Data Flow Analysis Equation: The data flow analysis equation 

serves to gather information about a program block. The following 

represents the data flow analysis equation for a statement, denoted 

as 's': 

Out[s] = gen[s] ∪ In[s] - Kill[s] 

Where: 

Out[s] represents the information at the end of statement 's'. 

gen[s] signifies the information generated by statement 's'. 

In[s] stands for the information at the beginning of statement 's'. 

Kill[s] denotes the information eliminated or replaced by statement 
's'. 

The primary objective of data flow analysis is to derive a set of 

constraints on the In[s]'s and Out[s]'s for statement 's'. These 

constraints encompass two types: 

 Transfer Function: The transfer function encapsulates the 

semantics of the statement, defining the constraints for data 

flow values before and after the statement's execution. For 

instance, consider the statements 'x = y' and 'z = x'. After 

execution, both 'x' and 'z' hold the same value, i.e., 'y'. 

b=12 

a=b 

c = x + y 

Definition Point 

 

 

Reference Point 

 

Evaluation Point 
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Therefore, a transfer function illustrates the relationship 

between data flow values pre and post the statement. There 

are two types of transfer functions: 

 Control-Flow Constraints: The second set of constraints 

arises from the control flow. If block 'B' contains statements 

S1, S2, ..., Sn, then the control flow value of Si will be equal 

to the control flow values into Si + 1: 

IN[Si + 1] = OUT[Si], for all i = 1, 2, ..., n – 1. 

 

18.3  OBJECTS 

In compiler design, particularly in the context of code optimization, 

several objects play crucial roles in analyzing and transforming code 

to improve its efficiency, size, and speed. Some of these objects 

include: 

 Intermediate Representation (IR): IR is an abstract 

representation of the source code that facilitates analysis and 

transformation during various stages of compilation. 

Different levels of IR may exist, such as High-Level IR 

(HIR), Middle-Level IR (MIR), and Low-Level IR (LIR), 

each serving specific optimization purposes. 

 Control Flow Graph (CFG): CFG is a graphical 

representation of the flow of control within a program, 

where nodes represent basic blocks and edges denote control 

flow between them.CFG helps in analyzing and optimizing 

control structures, loop optimizations, and identifying code 

paths for transformations. 

 Data Flow Graph (DFG): DFG represents data 

dependencies between operations in a program, helping in 

analyzing and optimizing data-related aspects such as 
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register allocation, data reuse, and parallelization 

opportunities. 

 Symbol Table: Symbol table stores information about 

identifiers (variables, functions, constants) present in the 

program, including their names, types, scope, and memory 

locations. Symbol table is essential for performing scope 

analysis, type checking, and generating optimized code. 

 Optimization Primitives: These are fundamental operations 

applied during optimization, such as constant folding, 

common subexpression elimination, loop unrolling, dead 

code elimination, and code motion. Optimization primitives 

target specific patterns or inefficiencies in the code to 

improve its performance or size. 

 Dependency Analysis: Dependency analysis identifies 

dependencies between different parts of the program, such as 

data dependencies, control dependencies, and memory 

dependencies. Dependency analysis helps in understanding 

the relationships between program elements and guiding 

optimizations like parallelization and pipelining. 

 Transformation Rules: Transformation rules define the 

conditions under which specific optimizations can be applied 

and the actions to be taken to perform those optimizations. 

These rules guide the compiler in selecting appropriate 

optimization techniques based on the characteristics of the 

code being compiled. 

 Register Allocation Table: Register allocation table maps 

variables to processor registers to minimize memory 

accesses an optimize performance. Register allocation 

strategies aim to maximize register usage efficiency while 

satisfying constraints like register availability and register 

interference. 
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18.4  INTEGRATING CLIENTS AND OBJECTS 
 

Integrating clients and objects in compiler design involves 

understanding how object-oriented principles can be applied to 

various components of a compiler, such as its architecture, data 

structures, and optimization techniques. Clients and objects are 

typically integrated in compiler design by: 

 

Architecture Design:  
Object-oriented design principles, such as encapsulation, 

inheritance, and polymorphism, can be applied to the architecture of 

the compiler. Different compiler phases (lexical analysis, syntax 

analysis, semantic analysis, code generation, optimization, etc.) can 

be represented as objects with well-defined interfaces. Each phase 

can encapsulate its specific functionality and interact with other 

phases through well-defined interfaces, promoting modularity and 

maintainability. 

 

Data Structures:  
Data structures used within the compiler can be designed using 

object-oriented principles. For example, abstract syntax trees 

(ASTs), symbol tables, and intermediate representations (IR) can be 

represented as objects. Objects representing AST nodes can 

encapsulate information about program constructs and provide 

methods for traversal and manipulation. Symbol table objects can 

encapsulate information about program symbols (variables, 

functions, types, etc.) and provide methods for lookup and update 

operations. 

 
Optimization Techniques:  
Object-oriented programming (OOP) concepts can be leveraged in 

implementing various optimization techniques. For example, 
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optimization algorithms can be implemented using classes and 

methods that encapsulate specific optimization strategies. 

Object-oriented design patterns, such as the Visitor pattern, can be 

used to implement optimizations that traverse and manipulate ASTs. 

Optimization passes can be implemented as objects that can be 

composed and configured flexibly to apply a sequence of 

optimization transformations. 

 
Compiler Frontend and Backend:  
The compiler frontend (lexical analysis, syntax analysis, semantic 

analysis) and backend (code generation, optimization) can be 

modularized using object-oriented principles. Each phase can be 

implemented as a separate object with well-defined interfaces, 

allowing for easy replacement or extension of individual 

components. Object-oriented design facilitates the development of 

reusable compiler components and promotes code reusability across 

different compiler projects. 

 

Overall, integrating clients and objects in compiler design involves 

applying object-oriented principles to the architecture, data 

structures, optimization techniques, and various components of the 

compiler. This approach promotes modularity, maintainability, and 

flexibility, enabling the development of robust and efficient 

compilers. 

 

18.5  STATIC VS. DYNAMIC RMI 

Remote Method Invocation (RMI) is a mechanism used in 

distributed computing to enable communication between remote 

objects. In the context of compiler design and code optimization, 

both static and dynamic RMI can play significant roles, each 

offering distinct advantages and use cases. 
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Static RMI involves compiling the method calls at compile time, 

meaning that the method calls are bound to specific implementations 

before runtime. This approach offers several benefits in the realm of 

compiler design and code optimization: 

 Early Binding: Static RMI allows for early binding of 

method calls, which can lead to improved performance as 

the method calls are resolved at compile time rather than 

runtime. 

 Compile-Time Optimization: Since the method calls are 

resolved at compile time, compilers can perform various 

optimizations, such as inlining, constant propagation, and 

dead code elimination, to improve the efficiency of the 

generated code. 

 Reduced Overhead: Static RMI typically incurs less 

overhead compared to dynamic RMI because the method 

calls are resolved once at compile time, avoiding the need 

for runtime lookups. 

 Improved Predictability: Since the method calls are bound 

at compile time, developers have more predictability 

regarding the behavior of the program, which can aid in 

debugging and performance tuning. 

Dynamic RMI, on the other hand, involves resolving method calls at 

runtime, allowing for greater flexibility and dynamism. While 

dynamic RMI may not offer the same level of performance 

optimizations as static RMI, it has its own set of advantages: 

 Late Binding: Dynamic RMI allows for late binding of 

method calls, meaning that the method implementations can 

be changed or updated at runtime without requiring 

recompilation of the code. 
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 Dynamism: Dynamic RMI enables dynamic loading and 

unloading of classes and objects at runtime, which can be 

beneficial in scenarios where the code base is expected to 

evolve frequently or where dynamic behavior is required. 

 Remote Method Invocation: Dynamic RMI is well-suited 

for scenarios where method calls need to be invoked across 

network boundaries, as it allows for the discovery and 

invocation of remote methods at runtime. 

 Reflection and Introspection: Dynamic RMI often 

leverages reflection and introspection mechanisms, which 

provide powerful ways to inspect and manipulate objects at 

runtime. 

In compiler design and code optimization, both static and dynamic 

RMI can be valuable tools, each offering distinct advantages 

depending on the requirements of the system. Static RMI excels in 

scenarios where performance and predictability are paramount, 

while dynamic RMI shines in situations requiring flexibility, 

dynamism, and remote method invocation across network 

boundaries. The choice between static and dynamic RMI ultimately 

depends on factors such as performance constraints, system 

requirements, and the desired level of flexibility and dynamism. 

18.6  PARAMETER PASSING EXAMPLES 

Parameter passing refers to the mechanism by which arguments are 

passed to functions or methods in a programming language. 

Different parameter passing methods have implications for code 

optimization in compiler design. Here are some examples of 

parameter passing methods and their impact on optimization: 

Pass by Value: 

 In pass by value, a copy of the argument's value is passed to 
the function. 
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 This method ensures that the original value is not modified 
within the function. 

 Pass by value can simplify optimization because the 
compiler doesn't need to consider potential side effects on 
the original variables. 

 Additionally, if the argument is a constant or immutable, the 
compiler may perform constant folding optimizations. 

Pass by Reference: 

 In pass by reference, a reference to the original variable is 
passed to the function. 

 Any modification to the parameter within the function 
affects the original variable. 

 Pass by reference can complicate optimization because the 
compiler must consider potential side effects on the original 
variables. 

 However, optimizations such as copy propagation and 
common subexpression elimination can still be applied. 

Pass by Pointer: 

 Pass by pointer is similar to pass by reference but more 
explicit, as it passes the memory address of the argument. 

 Like pass by reference, modifications to the parameter 
within the function affect the original variable. 

 Pass by pointer can complicate optimization similarly to pass 
by reference, but it may also enable more fine-grained 
optimizations because of explicit memory address 
manipulation. 

Pass by Value-Result: 

 Pass by value-result is a hybrid approach where the function 
receives a copy of the argument's value but writes back the 
modified value to the original variable upon return. 

 This method can complicate optimization because the 
original variable's value may change, but optimizations such 
as copy propagation can still be applied. 

Understanding the semantics and implications of different parameter 

passing methods is crucial for optimizing code effectively. 
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Depending on the language and context, compilers may apply 

various optimizations to improve code performance while 

preserving the intended behavior of parameter passing. 

18.7 CASE STUDY 
Code optimization is a crucial phase in compiler design aimed at 

improving the efficiency, performance, and quality of generated 

code. In this case study, we'll explore a real-world scenario where 

various strategies of code optimization were applied to enhance the 

performance of a compiler. 

 

Scenario: A software company is developing a new compiler for a 

high-level programming language. The company aims to optimize 

the generated code to improve the execution speed and reduce 

memory consumption. The compiler will target a range of platforms, 

including desktop computers, servers, and embedded systems. 

 
Strategies Employed: 
 

 Constant Folding: The compiler analyzes constant 

expressions during compilation and evaluates them at 

compile time. For example, if the expression 5 + 3 is 

encountered, the compiler computes the result 8 during 

compilation rather than at runtime. This strategy reduces the 

number of runtime computations and improves code 

efficiency. 

 Dead Code Elimination: The compiler identifies and 

removes unreachable or redundant code segments. Unused 

variables, unreachable branches, and redundant assignments 

are eliminated to streamline the code. Dead code elimination 

reduces the size of the generated code and improves runtime 

performance. 
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 Loop Optimization: The compiler applies various 

techniques to optimize loops, such as loop unrolling, loop 

fusion, and loop interchange. Loop unrolling involves 

replicating loop bodies to reduce loop overhead and improve 

instruction-level parallelism. Loop fusion combines adjacent 

loops to reduce loop overhead and memory accesses. Loop 

interchange reorders loop nests to improve data locality and 

cache utilization. 

 Inline Expansion: The compiler selectively replaces 

function calls with the actual function code at the call site. 

Small, frequently called functions are inlined to eliminate the 

overhead of function calls. Inlining reduces the call 

overhead, enables further optimizations across function 

boundaries, and improves overall code performance. 

 Register Allocation: The compiler optimizes register usage 

to minimize memory accesses and maximize CPU register 

utilization. It allocates variables to CPU registers wherever 

possible, reducing memory traffic and improving execution 

speed. Techniques such as register coloring, graph coloring, 

and spilling are employed to efficiently allocate registers. 

 Data Flow Analysis: The compiler performs data flow 

analysis to analyze the flow of data within the program. It 

identifies opportunities for common sub expression 

elimination, constant propagation, and copy propagation. 

Data flow analysis optimizes the use of variables and 

expressions, reducing redundant computations and memory 

accesses. 

 Target-Specific Optimization: The compiler generates 

platform-specific code optimizations tailored to the target 

architecture. Architecture-specific optimizations, such as 

instruction scheduling, vectorization, and CPU-specific code 
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generation, are applied. Target-specific optimization 

maximizes the performance of the generated code on each 

platform. 

 

By implementing the aforementioned strategies of code 

optimization, the compiler achieved significant improvements in 

code efficiency, performance, and memory usage across various 

target platforms. Benchmarks conducted on a range of applications 

demonstrated substantial speedups and reduced resource 

consumption compared to unoptimized code. The optimized 

compiler contributed to the development of faster, more efficient 

software solutions, enhancing the company's competitiveness in the 

market. 

 
Code optimization is a critical aspect of compiler design, enabling 

compilers to generate high-performance, efficient code for diverse 

computing platforms. By employing a combination of optimization 

techniques tailored to the characteristics of the programming 

language and target architecture, compilers can unlock the full 

potential of software applications, delivering superior performance 

and user experience. In today's rapidly evolving technology 

landscape, continuous advancements in code optimization 

techniques are essential to meet the growing demands for faster, 

more efficient software solutions. 

 
18.8  CHECK YOUR PROGRESS  

 
i. In compiler design, what is data flow analysis primarily used 

for? 
a) Identifying syntactical errors in the code 
b) Analyzing the flow of data within a program 
c) Generating optimized machine code 
d) Managing memory allocation 

 



347 
 

ii. Which of the following represents the fundamental principle 
underlying data flow analysis? 

a) Abstract Syntax Trees (AST) 
b) Program statements as nodes and data flow relationships as 

edges 
c) Control Flow Graphs (CFG) 
d) Intermediate Representation (IR) 

 
iii. Which type of data flow analysis identifies points in the 

program where a particular expression is "available" for 
reuse? 

a) Reaching Definitions Analysis 
b) Live Variable Analysis 
c) Available Expressions Analysis 
d) Constant Propagation Analysis 

 
iv. What is a definition point in data flow analysis? 

a) A point where a program is defined 
b) A point where a data item is declared 
c) A point where a data item is defined 
d) A point where a function is defined 

 
v. What does the data flow analysis equation 'Out[s] = gen[s] ∪ 

In[s] - Kill[s]' represent? 
a) Information at the end of a statement 
b) Information generated by a statement 
c) Information at the beginning of a statement 
d) Information eliminated or replaced by a statement 

 
vi. In compiler design, what do objects such as Intermediate 

Representation (IR) and Control Flow Graphs (CFG) 
represent? 

a) Data structures used for runtime memory management 
b) Strategies for data flow analysis 
c) Components of the compiler architecture 
d) Optimized machine code 

 
vii. What distinguishes static Remote Method Invocation (RMI) 

from dynamic RMI? 
a) Static RMI involves resolving method calls at runtime. 
b) Dynamic RMI allows for early binding of method calls. 
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c) Static RMI incurs less overhead compared to dynamic RMI. 
d) Dynamic RMI involves compiling method calls at compile 

time. 
 

viii. Which parameter passing method involves passing a copy of 
the argument's value to the function? 

a) Pass by Reference 
b) Pass by Pointer 
c) Pass by Value 
d) Pass by Value 

 
ix. What is the primary objective of the data flow analysis 

equation? 
a) To derive a set of constraints on the In[s] and Out[s] for a 

statement 
b) To calculate the runtime complexity of a program 
c) To identify syntactical errors in the code 
d) To determine the optimal memory allocation  

 
x. Which strategy of code optimization involves selectively 

replacing function calls with the actual function code at the 
call site? 

a) Constant Folding 
b) Loop Optimization 
c) Inline Expansion 
d) Dead Code Elimination 
 

18.9  ANSWERS TO CHECK YOUR PROGRESS  

i, b ii, b iii, c iv, c v, a 
vi, c vii, c viii, c ix, a x, c 

 

18.10   LET US SUM UP 

 Data flow analysis is a vital technique in compiler design, 

examining data movement within programs to identify 

optimization opportunities and potential issues. 

 It models programs as graphs, with statements as nodes and 

data flow relationships as edges, enabling the analysis of 

variable and expression values across the program. 
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 Data flow analysis includes techniques like reaching 

definitions, live variable analysis, available expressions 

analysis, and constant propagation, aiding in optimization 

and problem detection. 

 The data flow analysis equation captures information flow 

within program blocks, considering generated and killed 

information at each statement. 

 Transfer functions define how data flow values change 

before and after a statement's execution, aiding in 

understanding and optimizing code semantics. 

 Control-flow constraints ensure consistency in data flow 

values across program statements, essential for accurate 

analysis and optimization. 

 In compiler design, objects like intermediate representations, 

control flow graphs, and symbol tables play crucial roles in 

code optimization, facilitating analysis and transformation. 

 Integrating clients and objects in compiler design leverages 

object-oriented principles to enhance modularity, 

maintainability, and flexibility across compiler components. 

 Static and dynamic Remote Method Invocation (RMI) in 

distributed computing offer distinct advantages, impacting 

performance and flexibility in compiler design and 

optimization. 

 Parameter passing examples, such as pass by value and pass 

by reference, influence compiler optimizations and runtime 

behavior, affecting code efficiency and performance. 

 A case study demonstrates how various strategies of code 

optimization, from constant folding to target-specific 

optimizations, yield significant performance gains in a 

compiler, improving efficiency and competitiveness in the 

market. 



350 
 

18.11  FURTHER READING 

 Modern Compiler Implementation in C by Andrew W. 

Appel, Publisher: Cambridge University Press, Edition: 

2nd Edition 

 Engineering a Compiler by Keith D. Cooper and Linda 

Torczon, Publisher: Morgan Kaufmann, Edition: 2nd 

Edition 

 Compiler Construction: Principles and Practice by 

Kenneth C. Louden, Publisher: Cengage Learning, 

Edition: 1st Edition 

 Principles of Compiler Design" by Aho, Ullman, and 

Sethi, Publisher: Addison-Wesley, Edition: 1st Edition 

 

18.12   MODEL QUESTIONS  
1. How does data flow analysis contribute to code optimization 

in compiler design? 

2. What fundamental principle underlies data flow analysis in 

compiler design? 

3. What are the main types of data flow analysis commonly 

performed by compilers? 

4. Define and explain the terminologies used in data flow 

analysis, such as definition point, reference point, and 

evaluation point. 

5. What is the data flow analysis equation, and what 

information does it provide about a program block? 

6. How do transfer functions and control-flow constraints 

contribute to data flow analysis? 

7. Describe the role of objects in compiler design, particularly 

in the context of code optimization. 
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8. How are different objects, such as Intermediate 

Representation (IR) and Symbol Table, utilized in compiler 

optimization? 

9. What are the key principles involved in integrating clients 

and objects in compiler design? 

10. Compare and contrast static and dynamic Remote Method 

Invocation (RMI) in the context of compiler design and code 

optimization. 

11. Provide examples of parameter passing methods and discuss 

their implications for code optimization. 

12. Describe a case study where various strategies of code 

optimization were applied in compiler design, and discuss the 

outcomes and benefits of these optimizations. 

18.13 REFERENCES AND SUGGESTED READINGS 

 Compilers: Principles, Techniques, and Tools" by 

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey 

D. Ullman, Publisher: Pearson, Edition: 2nd Edition 
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