
(1)

GAUHATI UNIVERSITY
Centre for Distance and Online Education

Third Semester
(Under CBCS)

M.Sc.-IT
Paper: INF 3026

DISTRIBUTED SYSTEM

Contents: Page No.
Block- I :
Unit 1: Introduction to Distributed Systems 1-23
Unit 2: Hardware Concepts and System Models 24-42
Unit 3: System Architectures 43-57
Unit 4: Clock Synchronization and Logical Clocks 58-79
Unit 5: Message Ordering and Causal Order 80-104
Unit 6: Distributed Snapshot and Termination Detection 105-127
Block- II :
Unit 1: Introduction to Mutual Exclusion and Performance Metrics 128-142

Unit 2: Token-Based and Non-Token-Based Mutual 143-149
 Exclusion Algorithms
Unit 3: Election Algorithms 150-160
Unit 4: Distributed Scheduling and Load Distribution 161-175
Unit 5: Deadlocks in Distributed Systems 176-195
Unit 6: Deadlock Detection and Resolution Algorithms 196-217
Block- III :
Unit 1: Agreement Problems and Protocols 218-238
Unit 2: IPC and Communication Protocols 239-257
Unit 3: Remote Object Invocation and Distributed Objects 258-291
Unit 4: Naming Entities and Domain Name System (DNS) 292-330
Unit 5: Distributed Transactions 331-352
Unit 6: Replication and Consistency in Distributed Systems 353-381
Unit 7: Distributed File Systems 382-435

INF-3026

(2)

SLM Development Team:
HoD, Department of Computer Science, GU
Programme Coordinator, M.Sc.-IT, GUCDOE
Prof. Shikhar Kr. Sarma, Department of IT, GU
Dr. Khurshid Alam Borbora, Assistant Professor, GUCDOE
Dr. Swapnanil Gogoi, Assistant Professor, GUCDOE
Mrs. Pallavi Saikia, Assistant Professor, GUCDOE
Dr. Rita Chakraborty, Assistant Professor, GUCDOE
Mr. Hemanta Kalita, Assistant Professor, GUCDOE

Contributors:
Dr. Khurhid Alam Borbora (Block 1 : Units- 1,2,4,5 & 6)
Asstt. Prof., GUCDOE (Block 2 : Units- 1,2,3 & 4), (Block 3 : Unit- 6)
Mrs. Pinky Saikia Dutta (Block 1 : Unit- 3)
Asstt. Prof., Dept. of Comp. & Engineering, G.C.U.
Dr. Swapnanil Gogoi (Block 2 : Units- 5 & 6)
Asstt. Prof., GUCDOE (Block 3 : Unit- 5)
Dr. Nabanita Choudhury (Block 3 : Unit- 1)
Asstt. Prof., Assam Down Town University
Dr. Kshirod Sarmah (Block 3 : Units- 2 & 4)
Asstt. Prof., PDUAM
Dr. Dulumoni Das (Block 3 : Unit- 3)
Asstt. Prof., Assam Down Town University
Mr. Gunikhan Sonowal (Block 3 : Unit- 7)
Asstt. Prof., Assam Down Town University

Course Coordination:
Dr. Debahari Talukdar Director, GUCDOE
Prof. Anjana Kakoti Mahanta Programme Coordinator, GUCDOE

Dept. of Computer Science, G.U.
Dr. Khurshid Alam Borbora Assistant Professor, GUCDOE
Dr. Swapnanil Giogoi Assistant Professor, GUCDOE
Mrs. Pallavi Saikia Assistant Professor, GUCDOE
Dr. Rita Chakraborty Assistant Professor, GUCDOE
Mr. Hemanta Kalita Assistant Professor, GUCDOE
Mr. Dipankar Saikia Editor SLM, GUCDOE

Content Editor:
Dr. Utpal Barman Dean & Professor, Faculty of Computer Technology

Assam Down Town University

Cover Page Designing:
Bhaskar Jyoti Goswami GUCDOE
Nishanta Das GUCDOE

ISBN: 978-81-982028-4-0
October, 2024

© Copyright by GUCDOE. All rights reserved. No part of this work may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, or otherwise.
Published on behalf of Gauhati University Centre for Distance and Online Education by
the Director, and printed at Gauhati University Press, Guwahati-781014.

(3)

BLOCK- I

Unit 1: Introduction to Distributed Systems

Unit 2: Hardware Concepts and System Models

Unit 3: System Architectures

Unit 4: Clock Synchronization and Logical Clocks

Unit 5: Message Ordering and Causal Order

Unit 6: Distributed Snapshot and Termination Detection

1

UNIT: 1

INTRODUCTION TO DISTRIBUTED

SYSTEMS

Unit Structure:

1.1 Introduction

1.2 Unit Objectives

1.3 What is Distributed System?

1.4 Characteristicsof Distributed Systems

1.5 Benefits of Distributed Systems

1.6 Differences between Centralized and Distributed Systems

1.7 Challenges in Distributed Systems

1.8 Transparency in Distributed Systems

1.9 Inherent Limitations of Distributed Systems

1.10 Summing Up

1.11 Answers to Check Your Progress

1.12 Possible Questions

1.13 References and Suggested Readings

1.1 INTRODUCTION

Distributed systems are collections of independent computers that

appear to users as a single coherent system. These systems are

designed to share resources, facilitate communication, and provide

services seamlessly across multiple locations. They play a crucial

role in various applications, from cloud computing to large-scale

data processing.

Distributed systems are integral to modern computing, offering

scalability, flexibility, and resilience. However, they also present

unique challenges that require careful design and management to

ensure effective operation. This unit will delve into these concepts,

exploring the characteristics, challenges, and inherent limitations of

distributed systems.

2

1.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 understand the Fundamentals of Distributed Systems.

 understand the characteristics of Distributed Systems.

 analyse Design Issues and Challenges.

 understand the various types of transparency in distributed

systems.

 identify the Inherent Limitations.

1.3 WHAT IS DISTRIBUTED SYSTEM?

A distributed system is a collection of independent computers that

communicate with each other over a network, and work together to

accomplish a common task. In a distributed system, each computer

node has its own processing power, memory, and storage, and the

nodes communicate with each other to exchange data and coordinate

their activities.

Distributed systems can be used to build large-scale applications

that can handle a high volume of requests and provide high

availability and fault tolerance. Examples of distributed systems

include cloud computing platforms, peer-to-peer networks, and

distributed databases.

One of the key challenges of building a distributed system is

coordinating the activities of the individual nodes to ensure that they

work together effectively. This can be accomplished through various

techniques, such as distributed consensus algorithms, distributed

locking, and distributed task scheduling. Additionally, designing a

distributed system that is scalable, fault-tolerant, and secure requires

careful planning and architecture.

1.4 CHARACTERISTICS OF DISTRIBUTED SYSTEMS

Distributed systems have several key characteristics that

differentiate them from traditional centralized systems. Here are

some of the most important characteristics:

3

 Concurrency: In a distributed system, multiple processes or

nodes can execute simultaneously and independently of each

other, which allows for increased processing power and

efficiency.

 Scalability: Distributed systems can scale horizontally by adding

more nodes to the network, which can handle increased traffic

and load.

 Fault tolerance: Distributed systems can be designed to tolerate

failures in individual nodes, ensuring that the system remains

operational even if some nodes fail.

 Decentralization: Unlike centralized systems, where a single

node or entity controls the system, distributed systems are

decentralized, meaning that no single node has complete control

over the system.

 Heterogeneity: Distributed systems can be composed of nodes

with different hardware, software, and operating systems,

allowing for flexibility and interoperability.

 Autonomy: Each node in a distributed system is autonomous,

meaning that it can make independent decisions and act on its

own behalf.

 Communication: Communication between nodes in a distributed

system is typically done through messages or remote procedure

calls, which can introduce additional latency and overhead

compared to local communication.

Overall, the characteristics of distributed systems enable them to

handle large volumes of data, support complex applications, and

provide high availability and fault tolerance. However, designing

and managing a distributed system can be challenging due to the

complexity and potential for communication issues and other

sources of failure.

1.5 BENEFITS OF DISTRIBUTED SYSTEMS

Scalability: ability to handle large amounts of data and users

Scalability is a crucial benefit of distributed systems, referring to the

ability of a system to handle increasing amounts of work or data

without sacrificing performance. There are several ways in which

distributed systems provide scalability benefits:

Horizontal scalability: Distributed systems can be scaled

horizontally by adding more machines to the system. This approach

4

is also known as "scaling out." By adding more machines to the

system, the workload can be distributed across multiple machines,

allowing the system to handle more traffic or data.

Vertical scalability: Distributed systems can also be scaled vertically

by adding more resources to each machine in the system. This

approach is also known as "scaling up." By adding more CPU,

memory, or storage to each machine, the system can handle more

traffic or data.

Geographic scalability: Distributed systems can be deployed across

multiple geographic locations, allowing the system to serve users in

different regions. By distributing the workload across different

geographic locations, the system can reduce latency and improve

performance for users in different parts of the world.

Functional scalability: Distributed systems can be designed to scale

horizontally or vertically for specific functions within the system.

For example, a distributed database system might scale horizontally

by adding more nodes to the cluster, while a distributed caching

system might scale vertically by adding more memory to each node.

Fault-tolerance: ability to continue functioning even when parts

of the system fail

Fault-tolerance is another key benefit of distributed systems,

referring to the ability of a system to continue functioning even in

the face of failures or errors. Distributed systems achieve fault-

tolerance by using redundant components and data across multiple

machines, so that if one machine fails, the system can continue to

function without interruption. Here are some ways that distributed

systems provide fault-tolerance benefits:

Redundancy: Distributed systems can replicate data across multiple

machines, so that if one machine fails, the data can still be accessed

from another machine. This approach is also known as "replication"

or "mirroring." By replicating data, distributed systems can ensure

that data is always available, even if one or more machines fail.

Load balancing: Distributed systems can distribute workloads across

multiple machines, so that if one machine fails, the workload can be

transferred to another machine. This approach is also known as

"load balancing." By load balancing, distributed systems can ensure

that workloads are always processed, even if one or more machines

fail.

5

Self-healing: Distributed systems can be designed to detect and

respond to failures automatically. For example, if a machine fails,

the system can automatically transfer its workload to another

machine and replicate its data. This approach is also known as "self-

healing." By self-healing, distributed systems can ensure that they

continue to function even in the face of failures.

Flexibility: ability to adapt to changing requirements and

environments

Flexibility is another key benefit of distributed systems, referring to

the ability of a system to adapt to changing requirements or

environments. Distributed systems achieve flexibility by using

modular components that can be deployed and scaled independently,

allowing the system to be easily modified or extended. Here are

some ways that distributed systems provide flexibility benefits:

Modularity: Distributed systems can be designed using modular

components that can be deployed and scaled independently. This

approach is also known as "micro services architecture." By using

modular components, distributed systems can be easily modified or

extended without impacting the entire system.

Interoperability: Distributed systems can be designed to support

different programming languages, platforms, and protocols,

allowing them to communicate with a wide variety of other systems.

This approach is also known as "interoperability." By supporting

interoperability, distributed systems can be integrated with other

systems to provide additional functionality or data sources.

Adaptability: Distributed systems can be designed to dynamically

adapt to changes in the environment. For example, if the system

detects an increase in traffic, it can automatically scale up resources

to handle the additional load. This approach is also known as

"elasticity." By being adaptable, distributed systems can respond to

changing requirements or conditions without requiring manual

intervention.

Performance: ability to process requests quickly and efficiently

Performance is another key benefit of distributed systems, referring

to the ability of a system to process large amounts of data or traffic

quickly and efficiently. Distributed systems achieve high

performance by using multiple machines to process workloads in

parallel, allowing the system to scale up to handle large volumes of

6

data or traffic. Here are some ways that distributed systems provide

performance benefits:

Parallelism: Distributed systems can distribute workloads across

multiple machines, allowing them to process workloads in parallel.

This approach is also known as "parallelism." By using parallelism,

distributed systems can process workloads faster and more

efficiently than single machines.

Caching: Distributed systems can use caching to store frequently

accessed data in memory, allowing it to be accessed quickly without

needing to be retrieved from disk or network. This approach is also

known as "caching." By using caching, distributed systems can

reduce latency and improve performance.

Data partitioning: Distributed systems can partition data across

multiple machines, allowing each machine to process a subset of the

data. This approach is also known as "data partitioning." By using

data partitioning, distributed systems can process large volumes of

data quickly and efficiently.

Overall, performance is critical for ensuring that distributed systems

can handle large volumes of data or traffic quickly and efficiently.

By using parallelism, caching, and data partitioning techniques,

distributed systems can provide a high-performance architecture that

can scale up to meet the needs of modern applications.

Cost-effectiveness: ability to utilize resources more efficiently

Cost-effectiveness is another key benefit of distributed systems,

referring to the ability of a system to provide high performance and

fault-tolerance at a lower cost than traditional monolithic systems.

Distributed systems achieve cost-effectiveness by using commodity

hardware, which is less expensive than specialized hardware, and by

allowing organizations to pay only for the resources they need,

rather than investing in large, fixed infrastructure. Here are some

ways that distributed systems provide cost-effectiveness benefits:

Commodity hardware: Distributed systems can use commodity

hardware, such as off-the-shelf servers, instead of expensive

specialized hardware. This approach is also known as "commodity

hardware." By using commodity hardware, distributed systems can

reduce the cost of infrastructure.

Pay-as-you-go pricing: Distributed systems can use pay-as-you-go

pricing models, allowing organizations to pay only for the resources

7

e) Performance in distributed systems is improved through

parallelism and caching

2. Fill in the Blanks:

a)In distributed systems, __________ allows multiple nodes to

execute simultaneously and independently.

b)__________ scalability involves adding more machines to

handle increased load in a distributed system.

c)__________ refers to the ability of a system to continue

functioning even when parts of it fail.

d)The ability to serve users in different regions by deploying

distributed systems across multiple locations is known as

__________ scalability.

e)The approach of only paying for the resources used in

distributed systems is known as __________ pricing.

they need. This approach is also known as "pay-as-you-go" pricing.

By using pay-as-you-go pricing, organizations can avoid investing

in large, fixed infrastructure and can instead pay only for the

resources they actually use.

Efficient resource utilization: Distributed systems can use resource

allocation algorithms, such as load balancing and resource pooling,

to efficiently allocate resources across multiple machines. This

approach is also known as "efficient resource utilization." By using

efficient resource utilization, distributed systems can minimize

waste and optimize resource usage, reducing overall costs.

CHECK YOUR PROGRESS-I

1. State True or False:

a) In a distributed system, all nodes must share the same

hardware and operating system.

b) Distributed systems can continue to function even if some

nodes fail.

c) Distributed systems cannot be deployed across multiple

geographic locations.

d) Fault tolerance in distributed systems is achieved through

redundancy and load balancing.

8

1.6 DIFFERENCES BETWEEN CENTRALIZED AND

DISTRIBUTED SYSTEMS

Centralized and distributed systems are two fundamentally different

approaches to designing computing systems. Here are some of the

key differences between centralized and distributed systems:

Control: In a centralized system, all control and decision-making

authority is concentrated in a single central unit, whereas in a

distributed system, control is distributed across multiple nodes that

communicate and coordinate with each other.

Scalability: Centralized systems have limited scalability, as they are

dependent on the capacity and processing power of the central unit,

whereas distributed systems can be scaled up or down by adding or

removing nodes.

Fault tolerance: Centralized systems are vulnerable to failures in the

central unit, which can cause the entire system to fail, whereas

distributed systems are designed to be resilient to failures in

individual nodes or components.

Communication: Communication between nodes in a distributed

system is typically done through messages or remote procedure

calls, which can introduce additional latency and overhead

compared to local communication in a centralized system.

Heterogeneity: Distributed systems can be composed of nodes with

different hardware, software, and operating systems, whereas

centralized systems typically have a uniform hardware and software

architecture.

Complexity: Distributed systems are generally more complex to

design and manage than centralized systems, due to the need to

coordinate and manage communication between multiple nodes.

1.7 CHALLENGES IN DISTRIBUTED SYSTEMS

Distributed systems can present numerous challenges, including:

 Network failures

 Security

 Scalability

9

 Complexity

 Consistency

 Fault tolerance

 Interoperability

Network Failures:

Network failures are one of the most common and challenging

issues in distributed systems. A distributed system is a collection of

autonomous computers that work together to achieve a common

goal. These systems rely on the network to communicate and share

data between different nodes in the system. When the network fails,

it can cause a range of problems that can impact the performance,

availability, and consistency of the system.

Here are some ways network failures can pose challenges to

distributed systems:

Communication failure: Distributed systems rely on communication

between nodes to function. When a network failure occurs, nodes

may not be able to communicate with each other, causing

communication failure. This can result in data loss, inconsistent

data, or even system crashes.

Increased latency: Network failures can cause delays in

communication between nodes. Increased latency can slow down

the system and cause delays in processing tasks, resulting in reduced

system performance.

Partitioning: Network failures can result in the system being

partitioned into separate segments, each of which is isolated from

the others. This can cause issues such as data inconsistency,

duplicate data, and lost data, which can lead to data corruption.

Reconfiguration: Network failures can also cause the system to

reconfigure itself to adapt to the new network conditions. This can

be a time-consuming process that can impact system performance

and availability.

To overcome these challenges, distributed systems must be designed

to be resilient to network failures. This can be achieved through the

use of redundancy, fault tolerance, and load balancing mechanisms.

These mechanisms can help ensure that the system continues to

function even in the presence of network failures. Additionally,

10

distributed systems should be designed to detect network failures

and take appropriate actions to mitigate their impact.

Security:

Security is a critical challenge in distributed systems as they are

often exposed to various types of attacks. A distributed system is a

collection of interconnected nodes, and an attacker who gains

control of one or more nodes can potentially compromise the entire

system. In addition, distributed systems are often deployed across

different geographic locations and networks, making them more

vulnerable to attacks.

Here are some ways security can pose challenges to distributed

systems:

Authentication and Authorization: Distributed systems must ensure

that only authorized users can access the system and its resources.

Authentication and authorization mechanisms must be implemented

to verify the identity of users and enforce access control policies.

Confidentiality and Integrity: Distributed systems must ensure that

data exchanged between nodes is kept confidential and not modified

in transit. Encryption and digital signatures can be used to ensure

data confidentiality and integrity.

Denial of Service (DoS) attacks: Distributed systems are vulnerable

to DoS attacks that can overwhelm the system and make it

unavailable to legitimate users. Distributed DoS attacks are

particularly challenging as they involve multiple nodes, making it

difficult to detect and mitigate the attack.

Malware and viruses: Distributed systems are vulnerable to malware

and viruses that can infect one or more nodes and spread to other

nodes. Such attacks can cause data loss, system downtime, and even

complete system failure.

To address these security challenges, distributed systems must be

designed with security in mind. This can be achieved through the

use of secure communication protocols, strong authentication and

authorization mechanisms, encryption, and digital signatures. In

addition, distributed systems must be continuously monitored and

updated to detect and mitigate security threats. Finally, education

and training for system users can also help reduce the risk of

security breaches caused by human error or social engineering

attacks.

11

Scalability:

Scalability is a significant challenge in distributed systems as they

are designed to handle a large number of users, transactions, and

data. Scalability is the ability of the system to handle an increasing

workload without sacrificing performance or stability. As the

number of users or data grows, the system must be able to handle

the load without becoming overloaded or crashing.

Here are some ways scalability can pose challenges to distributed

systems:

Network bandwidth: Distributed systems must be designed to

handle large amounts of data transferred over the network. As the

number of users or data grows, the network bandwidth required to

handle the load can become a bottleneck. This can cause delays,

slow down the system, and impact system performance.

Load balancing: Distributed systems must be designed to distribute

the workload evenly across nodes in the system. Load balancing

mechanisms can be used to ensure that each node handles an equal

share of the workload. As the number of users or data grows, load

balancing can become a challenge, and the system may require

additional resources to handle the load.

Data storage: Distributed systems must be designed to handle large

amounts of data. As the amount of data grows, the system must be

able to store and retrieve data efficiently. This can be challenging,

and the system may require additional storage resources or more

efficient data storage mechanisms.

System complexity: Distributed systems are often complex, with

multiple nodes and components working together to achieve a

common goal. As the system grows, the complexity of the system

can increase, making it more challenging to manage and maintain.

To address these scalability challenges, distributed systems must be

designed to scale horizontally and vertically. Horizontal scalability

involves adding more nodes to the system to handle the increased

workload, while vertical scalability involves adding more resources

to existing nodes. Additionally, distributed systems must be

designed to use resources efficiently, with load balancing

mechanisms to distribute the workload evenly across nodes. Finally,

distributed systems must be designed to be modular and scalable,

12

with each component designed to work independently and

communicate with other components in the system.

Complexity:

Complexity is a significant challenge in distributed systems due to

the large number of components, nodes, and interactions involved in

the system. Distributed systems are made up of multiple

independent components that work together to achieve a common

goal. Each component may have different requirements, interfaces,

and communication protocols, making the system complex and

challenging to design, test, and maintain.

Here are some ways complexity can pose challenges to distributed

systems:

Interoperability: Distributed systems must be designed to work with

other systems, including legacy systems, third-party components,

and other distributed systems. Interoperability can be challenging, as

different systems may have different interfaces, protocols, and data

formats.

Integration: Distributed systems must be designed to integrate

multiple components into a cohesive system. Integration can be

challenging, as each component may have different requirements

and interfaces, and the system must be able to handle failures and

errors in individual components.

Testing: Distributed systems must be tested to ensure that each

component works correctly and that the system as a whole performs

as expected. Testing distributed systems can be challenging, as it

involves testing interactions between components and nodes across

different networks and geographic locations.

Maintenance: Distributed systems require ongoing maintenance to

ensure that they remain secure, reliable, and performant.

Maintenance can be challenging, as it involves updating

components, managing configurations, and resolving issues that

arise from the interaction between components.

To address these complexity challenges, distributed systems must be

designed to be modular and loosely coupled, with each component

designed to work independently and communicate with other

components in the system. Standardized interfaces, protocols, and

data formats can help facilitate interoperability and integration.

Additionally, distributed systems should be designed to be testable,

13

with automated testing mechanisms in place to test interactions

between components and nodes. Finally, distributed systems should

be designed to be maintainable, with tools and processes in place to

manage configurations, update components, and resolve issues.

Consistency:

Consistency is a significant challenge in distributed systems due to

the difficulty of ensuring that all nodes in the system have the same

view of the data at any given time. Distributed systems are designed

to handle large amounts of data across multiple nodes, and

maintaining consistency across all nodes can be challenging.

Here are some ways consistency can pose challenges to distributed

systems:

Data replication: Distributed systems often replicate data across

multiple nodes for redundancy and improved performance.

However, ensuring consistency across all nodes can be challenging,

as each node may have a different view of the data at any given

time.

Network delays: Distributed systems rely on network

communication to maintain consistency between nodes. Network

delays can cause inconsistencies, as nodes may receive updates at

different times or in different orders.

Partitioning: Distributed systems must be designed to handle

network partitions, where some nodes in the system are unable to

communicate with each other. Partitioning can cause

inconsistencies, as each partition may have a different view of the

data.

Conflict resolution: Distributed systems must be designed to handle

conflicts that arise when multiple nodes update the same data

simultaneously. Conflict resolution can be challenging, as different

nodes may have different views of the data and may have

conflicting updates.

To address these consistency challenges, distributed systems must

be designed to ensure that all nodes have the same view of the data

at any given time. Techniques such as distributed consensus

algorithms, two-phase commit, and vector clocks can be used to

ensure consistency across nodes. Additionally, distributed systems

should be designed to handle network delays and partitions, with

mechanisms in place to detect and recover from failures. Finally,

14

conflict resolution mechanisms should be in place to handle

conflicting updates and ensure that the data remains consistent

across all nodes.

Fault tolerance:

Fault tolerance is a significant challenge in distributed systems due

to the high likelihood of component failures and network

disruptions. Distributed systems rely on multiple independent

components working together, and any failure in any of these

components can cause the entire system to fail.

Here are some ways that fault tolerance can pose challenges to

distributed systems:

Component failures: Distributed systems rely on multiple

components, including nodes, databases, and network infrastructure.

Any failure in any of these components can cause the entire system

to fail.

Network disruptions: Distributed systems rely on network

communication to exchange data and updates between nodes.

Network disruptions, such as network outages, can cause nodes to

become isolated from each other, leading to system failures.

Cascading failures: Faults in one component can cause failures in

other components, leading to a cascading failure that affects the

entire system.

Recovery time: Distributed systems must be able to recover from

failures quickly to minimize downtime and maintain system

availability. Recovery time can be challenging, as it may require

complex coordination between components and may involve data

loss or inconsistencies.

To address these fault tolerance challenges, distributed systems must

be designed to be fault-tolerant, with mechanisms in place to detect

and recover from failures. Redundancy and replication can be used

to ensure that components and data are available even in the event

of failures. Additionally, distributed systems should be designed to

handle network disruptions, with mechanisms in place to detect and

recover from network failures. Finally, recovery mechanisms should

be in place to ensure that the system can recover from failures

quickly and with minimal data loss or inconsistencies.

15

Interoperability:

Interoperability is a significant challenge in distributed systems due

to the need for different components to communicate and work

together seamlessly. Distributed systems typically consist of

multiple independent components that need to interact with each

other to achieve the system's overall objectives.

Here are some ways interoperability can pose challenges to

distributed systems:

Heterogeneity: Distributed systems often consist of different

components that use different hardware, software, and

communication protocols. Ensuring that these components can work

together seamlessly can be challenging, as each component may

have its own requirements and interfaces.

Legacy systems: Distributed systems may need to integrate with

legacy systems, which may have outdated hardware, software, and

communication protocols. Integrating with legacy systems can be

challenging, as these systems may not be designed with modern

interoperability standards in mind.

Standardization: Distributed systems need to adhere to

interoperability standards to ensure that different components can

communicate with each other. However, there may be different

standards for different components, and ensuring that all

components adhere to the same standards can be challenging.

Scalability: Interoperability challenges can become more significant

as the size and complexity of the distributed system increase. As the

number of components and interactions between them grows,

ensuring interoperability becomes increasingly challenging.

To address these interoperability challenges, distributed systems

must be designed with interoperability in mind. Standardization of

interfaces, protocols, and data formats can help ensure that different

components can communicate with each other. Additionally,

compatibility testing and certification programs can be put in place

to ensure that components from different vendors work together

seamlessly. Finally, distributed systems should be designed to be

scalable, with mechanisms in place to handle the growing

complexity and heterogeneity of the system as it expands.

16

1.8 TRANSPARENCY IN DISTRIBUTED SYSTEMS

Transparency is an essential characteristic of distributed systems

that refers to the ability of the system to hide its distributed nature

from users and applications, providing the illusion of a single,

coherent system. Transparency issues arise when the distributed

nature of the system becomes visible to users or applications,

causing confusion or inconsistencies.

Here are some transparency issues that can arise in distributed

systems:

Location transparency: Location transparency refers to the ability of

users and applications to access resources without needing to know

their physical location. If a distributed system is not location-

transparent, users and applications may need to know the location of

resources, leading to confusion and inconsistencies.

Access transparency: Access transparency refers to the ability of

users and applications to access resources without needing to know

how they are implemented or managed. If a distributed system is not

access-transparent, users and applications may need to know the

implementation details of resources, leading to confusion and

inconsistencies.

Failure transparency: Failure transparency refers to the ability of

users and applications to continue using the system in the event of

failures or disruptions. If a distributed system is not failure-

transparent, users and applications may need to be aware of failures

or disruptions, leading to confusion and inconsistencies.

Performance transparency: Performance transparency refers to the

ability of users and applications to access resources without needing

to know their performance characteristics. If a distributed system is

not performance-transparent, users and applications may need to

know the performance characteristics of resources, leading to

confusion and inconsistencies.

To address transparency issues, distributed systems must be

designed to be transparent, with mechanisms in place to hide the

distributed nature of the system from users and applications.

Techniques such as virtualization, load balancing, and failover can

be used to ensure that resources are location-transparent, access-

17

transparent, and failure-transparent. Additionally, distributed

systems should be designed to be scalable, with mechanisms in

place to handle performance transparency issues as the system

grows in complexity and size.

1.9 INHERENT LIMITATIONS OF DISTRIBUTED

SYSTEMS

Distributed systems offer many benefits, but they also face several

inherent limitations that pose challenges to their design and

implementation:

 Network Latency: It refers to the delay in data transmission

across the network. This can significantly affect performance,

especially in applications requiring real-time data processing.

Latency can lead to slower response times and decreased user

satisfaction.

 Partial Failures:Unlike centralized systems, components in

distributed systems can fail independently. And thus making

failure detection and recovery more complex. Ensuring that the

system continues to operate correctly despite partial failures

requires robust fault tolerance mechanisms.

 Concurrency and Synchronization: It refers multiple

processes may access shared resources simultaneously. But can

lead to data inconsistency or race conditions if not managed

properly. Synchronization mechanisms like locks or consensus

algorithms are necessary but can introduce complexity and

performance bottlenecks.

 Data Consistency: It refers maintaining a uniform view of data

across distributed nodes is challenging.Inconsistencies can arise

due to network delays, node failures, or concurrent updates.

18

Achieving strong consistency may require trade-offs with

system availability and partition tolerance (as per the CAP

theorem).

 Complexity:Distributed systems inherently involve multiple

components, each potentially running on different hardware and

software platforms.And thus Increases the complexity of system

design, implementation, and maintenance. Debugging and

troubleshooting distributed systems can be particularly

challenging.

 Scalability Challenges:While distributed systems are designed

to scale, there are limits to scalability due to bottlenecks in

communication, resource contention, or centralized components.

But beyond a certain point, adding more resources may not lead

to proportional improvements in performance, requiring careful

architectural planning.

 Security Issues:Ensuring security in a distributed system is

more challenging due to multiple points of potential

vulnerability.Threats such as data interception, unauthorized

access, and distributed denial-of-service (DDoS) attacks must be

mitigated with comprehensive security measures, including

encryption, authentication, and access control.

 Lack of a Global Clock:There is no single, authoritative time

source in a distributed system. This makes event ordering

difficult, affecting the ability to maintain consistency and

synchronization. Techniques like logical clocks or vector clocks

are used, but they add complexity.

 Difficulty in Guaranteeing QoS:Quality of Service (QoS)

guarantees can be hard to maintain across diverse network

conditions and varying workloads.Service reliability and

19

performance can fluctuate, impacting user experience. Adaptive

resource management and monitoring are essential.

Understanding these limitations is crucial for designing robust and

efficient distributed systems. By anticipating these challenges,

architects can implement strategies to mitigate their impact,

ensuring that distributed systems meet their performance, reliability,

and scalability requirements.

CHECK YOUR PROGRESS-II

3. State True or False:

a) In a centralized system, all control is concentrated in a single

unit.

b) Distributed systems are less fault-tolerant than centralized

systems.

c) Network latency can significantly impact the performance of

distributed systems.

d) Distributed systems are easier to design and manage

compared to centralized systems.

e) Scalability is not a challenge in distributed systems.

4. Fill in the Blanks:

a) In distributed systems, __________ mechanisms are

necessary to prevent data inconsistency due to concurrent

updates.

b) __________ transparency refers to the system's ability to

hide failures from users.

c) A significant challenge in distributed systems is maintaining

data __________ across all nodes.

d) __________ and __________ are essential for ensuring

security in distributed systems.

e) The lack of a __________ clock makes event ordering

difficult in distributed systems.

20

1.10 SUMMING UP

 A distributed system consists of independent computers

connected via a network, collaborating to achieve common tasks

with each node possessing its processing power, memory, and

storage.

 The Characteristics of Distributed Systems are:

o Concurrency: It allows multiple nodes to execute

independently, enhancing processing efficiency.

o Scalability: Scaling horizontally (adding nodes) or

vertically (increasing resources) to handle increased

workload.

o Fault Tolerance: Distributed Systems are designed to

tolerate failures in nodes, ensuring system continuity.

o Decentralization: There is No single controlling node;

control and data are distributed.

o Heterogeneity: Here, nodes can differ in hardware,

software, and OS, promoting flexibility.

o Autonomy: Each node can operate independently, making

decisions locally.

o Communication: Nodes communicate via messages or

remote procedure calls, with added latency compared to

local systems.

 The Benefits of Distributed Systems are:

o Scalability: Handles large data volumes and user traffic

effectively.

o Fault Tolerance: Continues functioning despite component

failures.

o Flexibility: Adapts to changing requirements and

environments.

o Performance: Processes requests quickly through

parallelism, caching, and data partitioning.

o Cost-effectiveness: Uses commodity hardware and pay-as-

you-go pricing, optimizing resource utilization and

reducing costs.

21

 Transparency in Distributed Systems mean:

o Location Transparency: Users access resources without

knowing physical locations.

o Access Transparency: Users access resources without

knowing implementation details.

o Failure Transparency: Continues operation during failures

without user awareness.

o Performance Transparency: Users access resources without

knowing performance characteristics.

1.11 ANSWERS TO CHECK YOUR PROGRESS

1. a) False b) True c) False d) True e) True

2. a) concurrency b) Horizontal c) Fault tolerance

 d) geographic e) pay-as-you-go

3. a) True b) False c) True d) False e) False

4. a) synchronization b) Failure c) consistency

 d) Authentication, encryption e) global

1.12 POSSIBLE QUESTIONS

Short Answer Type Questions:

1. What is a distributed system?

2. Give two examples of distributed systems.

3. What is concurrency in a distributed system?

4. What is meant by the term 'horizontal scalability'?

5. Define 'fault tolerance' in the context of distributed systems.

6. What is the role of redundancy in a distributed system?

7. Explain the term 'decentralization' in distributed systems.

8. What is the significance of heterogeneity in distributed systems?

9. How does a distributed system achieve fault tolerance through

load balancing?

10. What is the benefit of modularity in distributed systems?

22

11. Explain the concept of network latency in distributed systems.

12. What does location transparency mean in distributed systems?

13. List two challenges in maintaining consistency in distributed

systems.

14. Why is security a significant concern in distributed systems?

15. What are partial failures in distributed systems?

16. What is meant by the lack of a global clock in distributed

systems?

Long Answer Type Questions:

17. Explain the concept of a distributed system and discuss its

primary characteristics.

18. Discuss the various ways in which distributed systems can scale,

and explain how each method contributes to the system's

performance and efficiency.

19. How do distributed systems ensure fault tolerance? Provide

examples of techniques used to achieve fault tolerance.

20. What are the benefits of using distributed systems in terms of

flexibility and adaptability? Provide detailed examples.

21. Describe the performance benefits of distributed systems. How

do parallelism, caching, and data partitioning contribute to these

benefits?

22. Discuss the cost-effectiveness of distributed systems. How do

commodity hardware and pay-as-you-go pricing models reduce

overall costs?

23. What are some of the challenges involved in designing and

managing distributed systems? How can these challenges be

addressed?

24. Explain the concept of interoperability in distributed systems

and its importance in modern applications.

25. How do distributed systems utilize efficient resource allocation

to enhance cost-effectiveness? Provide detailed examples of

resource allocation techniques.

26. What are the key differences between centralized and

decentralized systems, and what advantages do decentralized

systems offer over centralized ones?

23

27. Compare and contrast centralized and distributed systems,

highlighting their main differences.

28. Describe the inherent limitations of distributed systems and

discuss how they impact system design and implementation.

29. Explain the various types of transparency in distributed systems

and why they are important for system design.

30. What are the main challenges in achieving fault tolerance in

distributed systems? Provide examples of mechanisms used to

address these challenges.

31. Discuss the issues of network failures in distributed systems and

how they can be mitigated.

32. Explain the complexity challenges in distributed systems and

suggest design principles to manage this complexity.

33. What is data consistency in distributed systems, and why is it

challenging to achieve? Discuss the CAP theorem in this

context.

34. Describe the challenges and strategies for ensuring scalability in

distributed systems.

35. Analyze the security issues specific to distributed systems and

propose measures to enhance security.

36. How do concurrency and synchronization issues arise in

distributed systems, and what are the common strategies to

address them?

37. Discuss the difficulties in guaranteeing Quality of Service (QoS)

in distributed systems and suggest ways to manage them.

1.13REFERENCES AND SUGGESTED READINGS

1. "Distributed Systems: Concepts and Design" by George

Coulouris

2. “Designing Data-Intensive Applications" by Martin

Kleppmann

3. “Distributed Systems: Principles and Paradigms" by Andrew

Tanenbaum and Maarten Van Steen

×××

24

UNIT: 2

HARDWARE CONCEPTS AND SYSTEM MODELS

Unit Structure:

2.1 Introduction

2.2 Unit Objectives

2.3 What is Multiprocessor?

2.4 Tightly-Coupled Multiprocessor Systems

2.5 Loosely-Coupled Multiprocessor Systems

2.6 Homogeneous Multiprocessor Systems

2.7 Heterogeneous Multiprocessor Systems

2.8 What is Middleware?

2.8.1Types of Middleware

2.8.2 Benefits and Limitations of Middleware

2.9 System Models in Distributed Systems

2.10Types of System Models

2.11 Summing Up

2.12 Answers to Check Your Progress

2.13 Possible Questions

2.14 References and Suggested Readings

2.1 INTRODUCTION

In modern computing, distributed systems and multiprocessor

architectures have become integral to achieving high performance,

scalability, and reliability. This unit discusses the fundamental

concepts of multiprocessors, exploring both homogeneous and

heterogeneous systems, and examines the role of middleware in

distributed systems. Furthermore, we will explore fundamental

system models that underpin the design and analysis of distributed

systems, alongside architectural system models that provide

25

blueprints for building and organizing distributed computing

environments.

2.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 define and differentiate between homogeneous and

heterogeneous multiprocessor system.

 describe the concept of middleware and its role in facilitating

communication and resource management in distributed

systems.

 identify different types of middleware and their specific

applications in distributed environments.

 explore fundamental System Models.

2.3 WHAT IS MULTIPROCESSOR?

Multiprocessors, also known as parallel processing systems, are

computer systems that use multiple processors or central processing

units (CPUs) to perform tasks simultaneously. Multiprocessor

systems are designed to improve performance by increasing

processing power and reducing the time needed to complete a task.

There are two main types of multiprocessor systems: symmetric

multiprocessing (SMP) and asymmetric multiprocessing (AMP).

Symmetric Multiprocessing (SMP):

In SMP systems, all processors have equal access to the system's

resources and are considered to be homogeneous, meaning they

have the same instruction sets and architectures. The processors

communicate with each other through a shared memory, allowing

them to work together to complete a task. SMP systems are

designed for use in applications that require high processing power,

such as scientific simulations and data processing. The advantages

of SMP systems are:

 SMP systems can execute multiple processes simultaneously,

which improves the system's processing power and speed.

26

 SMP systems can be cost-effective compared to single-processor

systems because they use multiple processors on a single

system.

 SMP systems can be easily scaled by adding more processors to

the system, allowing for an increase in processing power.

Asymmetric Multiprocessing (AMP):

In AMP systems, different processors have different instruction sets

and architectures, and each processor is assigned a specific task.

These processors may communicate with each other through a

network, rather than a shared memory, and are considered to be

heterogeneous. AMP systems are designed for use in applications

that require specialized processing power, such as graphics

processing or artificial intelligence. The advantages of AMP

systems are:

 AMP systems can be designed to perform specific tasks, such as

graphics processing or artificial intelligence.

 AMP systems can be easily scaled by adding more processors to

the system, allowing for an increase in processing power.

There are issues in multiprocessor systems, and they are:

Load balancing: Ensuring that tasks are distributed evenly among

processors to optimize system performance.

Data consistency: Ensuring that shared data is consistent and

accurate across all processors.

Communication overhead: The additional time and resources

required for processors to communicate with each other in a

multiprocessor system.

Multiprocessors can be further classified into two types: tightly-

coupled and loosely-coupled systems. Tightly-coupled systems are

characterized by having processors that share a common memory

and I/O system, whereas loosely-coupled systems have processors

that communicate with each other over a network.

27

2.4 TIGHTLY-COUPLED MULTIPROCESSOR SYSTEMS

Tightly-coupled multiprocessor systems are computer systems that

use multiple processors or central processing units (CPUs) that share

a common memory and I/O system. The processors are tightly-

coupled because they are physically close to each other and

communicate with each other through a shared bus, making it easier

and faster for them to share data and resources. Tightly-coupled

multiprocessor systems are commonly used in applications that

require high performance and reliability, such as scientific

simulations, real-time systems, and high-end servers.

Tightly-coupled multiprocessor systems offer several advantages

over single-processor systems which include:

Increased Processing Power: Tightly-coupled multiprocessor

systems can perform multiple tasks simultaneously, which improves

the system's processing power and speed.

Improved Reliability: Tightly-coupled multiprocessor systems can

continue to function even if one or more processors fail, making

them more reliable than single-processor systems.

Scalability: Tightly-coupled multiprocessor systems can be easily

scaled by adding more processors to the system, allowing for an

increase in processing power.

Tightly-coupled multiprocessor systems also have some limitations

and challenges and they are:

Increased Complexity: Tightly-coupled multiprocessor systems are

more complex than single-processor systems, which can make them

more difficult to design, implement, and maintain.

Memory Contention: Tightly-coupled multiprocessor systems may

experience memory contention, where multiple processors try to

access the same memory location simultaneously, leading to

conflicts and delays.

Communication Overhead: The additional time and resources

required for processors to communicate with each other in a tightly-

coupled multiprocessor system can create communication overhead,

which can reduce system performance.

28

2.5 LOOSELY-COUPLED MULTIPROCESSOR SYSTEMS

Loosely-coupled multiprocessor systems, also known as distributed

systems, consist of a collection of independent computers

interconnected by a network. Each computer in the system has its

own memory and operates independently, communicating with

other computers in the system through message passing.

In a loosely-coupled multiprocessor system, the communication

between processors is slower than in tightly-coupled systems, due to

the presence of the network. The network can introduce latency,

bandwidth limitations, and other communication overheads that can

impact the performance of the system.

Loosely-coupled systems are commonly used in distributed

computing environments, such as cloud computing and grid

computing, where a large number of independent computers are

connected to provide a shared computing resource. In such

environments, the use of message-passing interfaces and other

distributed computing frameworks can help to manage the

complexity of the system and minimize the impact of

communication overheads.

Loosely-coupled multiprocessor systems offer several advantages

over single-processor systems which include:

Flexibility: Loosely-coupled systems are highly flexible as nodes

can be added or removed from the system without affecting the

system's overall operation. This feature makes them highly scalable

and ideal for use in dynamic computing environments where the

size of the system may change over time.

Cost-Effective: Loosely-coupled systems are cost-effective, as each

node can be a commodity computer, rather than a specialized

processor. This approach makes it more affordable to build large-

scale systems, which can offer significant computational power.

Fault Tolerance: Loosely-coupled systems are highly fault-tolerant,

as the failure of one node does not necessarily impact the operation

of the entire system. This feature is critical in systems where high

reliability is necessary.

Loosely-coupled multiprocessor systems also have some limitations

and challenges and they are:

29

Communication Overhead: Communication between nodes in a

loosely-coupled system is slower than in a tightly-coupled system

due to the presence of a network. This limitation can significantly

impact the overall performance of the system.

Software Complexity: Designing software for loosely-coupled

systems is more complicated than for tightly-coupled systems. It

requires a more distributed computing framework, which can

increase the complexity of the system.

Security: Loosely-coupled systems can be more vulnerable to

security threats, as the network provides an attack surface for

hackers. This challenge can be addressed by using security measures

such as firewalls and encryption.

2.6 HOMOGENOUS MULTIPROCESSOR SYSTEMS

Homogenous systems are a type of multiprocessor system where all

the processors are identical in terms of hardware and software. In

other words, all processors in a homogeneous system have the same

architecture and instruction set, and they operate under the same

operating system.

In a homogenous system, processors share the same memory, and

they communicate through shared memory or inter-processor

communication mechanisms. Typically, the memory is organized in

a way that each processor has its own local memory, and a shared

memory space accessible to all processors.

One of the main advantages of homogeneous systems is that they

are easier to program since all processors are identical. The

programming model is relatively simple, and parallelism can be

achieved by dividing a single task into smaller sub-tasks that can be

executed simultaneously on different processors.

Homogeneous systems offer several benefits which include:

Improved Performance: Homogeneous systems can provide

significant performance improvements over single-processor

systems. By distributing tasks among multiple processors, the

system can execute tasks in parallel, reducing the overall processing

time.

Scalability: Homogeneous systems are highly scalable, as new

processors can be added to the system as the workload increases.

30

This scalability allows the system to grow as demand increases,

providing increased performance and capacity.

Fault Tolerance: Homogeneous systems are highly fault-tolerant, as

they can continue to operate even if one or more processors fail.

This is because tasks can be re-allocated to other processors,

ensuring that the system continues to function.

2.7 HETEROGENOUS MULTIPROCESSOR SYSTEMS

Heterogeneous systems are a type of multiprocessor system where

the processors are not identical in terms of hardware and software.

In other words, processors in a heterogeneous system can have

different architectures, instruction sets, and operating systems.

In a heterogeneous system, processors may communicate through

shared memory, but they may also use other mechanisms such as

message passing or remote procedure calls (RPCs). Each processor

may have its own memory, and a shared memory space may be used

to facilitate communication and data sharing among processors.

One of the main advantages of heterogeneous systems is that they

can be optimized for specific workloads. Different processors can be

chosen based on their strengths, such as high-performance graphics

processing or specialized hardware for machine learning. This

allows for the system to achieve better overall performance than a

homogeneous system.

Heterogeneous systems offer several benefits which include:

Improved Performance: Heterogeneous systems can provide

significant performance improvements over homogeneous systems

since processors can be chosen for specific workloads. This allows

for better utilization of the available hardware and can result in

faster processing times.

Flexibility: Heterogeneous systems can be designed to meet specific

requirements, such as high-performance computing or machine

learning. This flexibility allows for better customization of the

system and can lead to better performance and cost-effectiveness.

Energy Efficiency: Heterogeneous systems can be designed to be

more energy-efficient than homogeneous systems. By using

processors optimized for specific tasks, the system can consume less

energy and reduce overall operating costs.

31

However, heterogeneous systems also have some limitations:

Complexity: Heterogeneous systems can be more complex to

program and manage than homogeneous systems. The programming

model must be carefully designed to ensure that tasks are distributed

appropriately among processors, and that communication is efficient

and reliable.

Hardware Compatibility: Heterogeneous systems can require

specialized hardware, which can be expensive and difficult to

acquire. Additionally, different processors may have different

memory architectures or other requirements, which can complicate

system design.

Interoperability: Heterogeneous systems may require specialized

software to facilitate communication and data sharing among

processors. Ensuring that different components of the system can

work together seamlessly can be a challenge.

2.8 WHAT IS MIDDLEWARE?

Middleware is a layer of software that provides a bridge between

different applications or software components in a distributed

computing environment. It acts as a communication layer that

enables applications to exchange data and communicate with each

other, regardless of the programming languages, operating systems,

or hardware platforms they are running on.

Middleware provides a set of standardized services and protocols

that enable applications to communicate with each other and share

data. These services can include message queuing, remote procedure

calls (RPCs), transaction processing, object request brokers (ORBs),

and web services.

One of the primary benefits of middleware is that it allows different

applications to work together seamlessly without requiring them to

be tightly coupled. Middleware enables applications to

communicate with each other using standard protocols and

interfaces, which simplifies the development and integration

process.

32

2.8.1Types of Middleware

There are several types of middleware, including:

Message-oriented middleware (MOM): This type of middleware

enables applications to communicate by exchanging messages.

MOM provides a reliable messaging service that ensures messages

are delivered in the correct order and without loss or duplication.

Object middleware: Object middleware provides an object-oriented

approach to middleware. It enables objects to communicate with

each other by passing messages using standard protocols such as

CORBA or Java RMI.

Transaction middleware: Transaction middleware provides a set of

services that enable multiple applications to participate in

distributed transactions. These services ensure that transactions are

executed in a reliable and consistent manner.

Web middleware: Web middleware provides a set of services that

enable web applications to communicate with each other. These

services include web services, XML, and REST.

2.8.2 Benefits and Limitations of Middleware

Middleware has several benefits which include:

Interoperability: Middleware enables applications to communicate

with each other regardless of the programming languages, operating

systems, or hardware platforms they are running on.

Scalability: Middleware can help to distribute the workload across

multiple servers or nodes in a distributed computing environment,

which can improve performance and scalability.

Flexibility: Middleware can help to simplify the development and

integration process by providing a set of standardized services and

protocols that enable applications to communicate with each other.

However, middleware can also have some limitations including:

Complexity: Middleware can be complex to design and implement,

and can require specialized knowledge and skills.

Performance: Middleware can introduce additional overhead and

latency, which can affect performance and throughput.

33

Cost: Middleware can be expensive to license and deploy, especially

if specialized hardware or software is required.

2.9 SYSTEM MODELS IN DISTRIBUTED SYSTEMS

System models in distributed systems are crucial for understanding,

designing, and analyzing the behavior of distributed applications.

They help ensure that the systems are robust, reliable, scalable,

secure, and performant, while also simplifying the inherent

complexity of distributed computing.

Why System Models?

System models in distributed systems are important for several

reasons:

 System models provide a structured framework that guides the

design and development of distributed systems.

 System models help in analyzing the behavior and performance

of distributed systems.

 System models aid in designing systems that can handle

different types of failures gracefully..

 System models provide the foundation for implementing robust

security measures.

 Standardized models enable different components and systems

to work together seamlessly etc.

2.10 TYPES OF SYSTEM MODELS

There are three types of System Models in Distributed Systems.

They are:

 Physical Model

 Architectural Model

 Fundamental Model

2.10.1 Physical Model

A physical model represents the hardware components of a

distributed system. It shows how computers and devices are

34

connected and helps in designing, managing, and improving the

system's performance.

A physical model includes the following key parts:

Nodes:

 Nodes are devices that process data, run tasks, and

communicate with each other. They can be user computers,

servers, workstations, etc.

 Nodes provide an interface for users to interact with other

backend devices for tasks like storage, processing, and web

browsing.

 Each node has an operating system, execution environment,

and middleware that enable communication and other

essential tasks.

Links:

 Links are the communication channels between nodes and

devices. They can be wired (using copper wires, fiber optic

cables) or wireless.

 The choice of link depends on the environment and

requirements. High-performance and real-time computing

often need physical links.

 Types of connections include:

o Point-to-point links: Connect two nodes directly.

o Broadcast links: Allow one node to send data to

multiple nodes at once.

o Multi-access links: Multiple nodes share the same

channel and need protocols to prevent interference.

Middleware:

 Middleware is software running on nodes, providing

decentralized control and decision-making.

 It handles communication, resource management, fault

tolerance, synchronization, and security.

Network Topology:

 This describes how nodes and links are arranged. Common

topologies are bus, star, mesh, ring, and hybrid.

35

 The choice of topology depends on the specific needs and

requirements.

Communication Protocols:

 Protocols are rules for transmitting data through links.

Examples include TCP, UDP, HTTPS, and MQTT.

 They ensure nodes can communicate and understand each

other.

2.10.2Architectural Model

An architectural model in a distributed computing system is the

overall design and structure of the system. It shows how different

components are organized to interact and provide the desired

functions. This model gives an overview of development,

deployment, and operations, ensuring efficient cost usage and

improved scalability. There are different aspects of an architectural

model. These are as follows:

Client-Server Model:

 A centralized approach where clients request services and

servers provide them.

 Works on a request-response basis: the client sends a

request, the server processes it, and then responds.

 Uses protocols like TCP/IP and HTTP.

 Commonly used in web services, cloud computing, and

database management systems.

Peer-to-Peer Model:

 A decentralized approach where all nodes (peers) have equal

capabilities and can request and provide services.

 Highly scalable as peers can join and leave dynamically,

creating an ad-hoc network.

 Resources are distributed, and peers find them as needed.

 Direct communication between peers without intermediaries,

following set rules.

36

Layered Model:

 Organizes the system into multiple layers, each providing a

specific service.

 Each layer communicates with adjacent layers using defined

protocols without affecting the overall system.

 Creates a hierarchical structure where each layer hides the

complexity of the lower layers.

Microservices Model:

 Breaks a complex application into multiple independent

services, each running on different servers.

 Each service performs a single function focused on a specific

business capability.

 Makes the system more maintainable, scalable, and easier to

understand.

 Services can be independently developed, deployed, and

scaled without affecting other services.

2.10.3 Fundamental Model

A fundamental model in a distributed computing system is a basic

framework that helps understand the key aspects of these systems.

These models describe common properties in all architectural

models and are essential to understand how a distributed system

behaves. There are three fundamental models:

Interaction Model:

Distributed systems involve many processes interacting in complex

ways. The interaction model helps us understand how these

processes communicate and coordinate.

 Message passing sending messages that contain data,

instructions, service requests, or process synchronization

between computing nodes. This can be synchronous

(immediate) or asynchronous (delayed).

 In this model, a process can publish a message on a topic,

and other processes that subscribe to that topic can receive

37

and act on the message. This is common in event-driven

architectures.

Failure Model:

This model deals with the faults and failures that can occur in a

distributed system. It helps identify and fix faults using mechanisms

like replication and error detection and recovery.

 Crash Failures: When a process or node stops working

unexpectedly.

 Omission Failures: When a message is lost, leading to

missed communication.

 Timing Failures: When a process takes longer than

expected, causing delays or unsynchronized responses.

 Byzantine Failures: When a process sends malicious or

unexpected messages that disrupt the system.

Security Model:

Distributed systems are vulnerable to attacks, unauthorized access,

and data breaches. The security model helps understand security

requirements, threats, vulnerabilities, and protection mechanisms.

 Authentication: Verifies the identity of users accessing the

system to ensure only authorized and trusted entities can

access it.

 Encryption: Converts data into a format that is unreadable

without a decryption key, protecting sensitive information

from unauthorized access.

 Data Integrity: Ensures data is not altered during storage,

transmission, or processing, protecting it from unauthorized

modifications or tampering.

38

2.11 SUMMING UP

 Modern computing relies heavily on distributed systems and

multiprocessor architectures to achieve high performance,

scalability, and reliability.

CHECK YOUR PROGRESS-I

1. State True or False:

a) In modern computing, distributed systems and

multiprocessor architectures are essential for achieving

high performance, scalability, and reliability.

b) Symmetric multiprocessing (SMP) systems have

processors with different instruction sets and architectures.

c) In asymmetric multiprocessing (AMP) systems, all

processors share a common memory.

d) Tightly-coupled multiprocessor systems use multiple

processors that share a common memory and I/O system.

e) Loosely-coupled multiprocessor systems consist of

independent computers interconnected by a network.

2. Fill in the blanks:

a) Tightly-coupled multiprocessor systems are commonly

used in applications that require high performance and

reliability, such as __________ simulations and real-time

systems.

b) In loosely-coupled multiprocessor systems, each computer

in the system has its own __________ and operates

independently.

c) One of the advantages of loosely-coupled multiprocessor

systems is their high __________, as nodes can be added or

removed without affecting the overall operation.

d) Designing software for loosely-coupled systems requires a

more distributed computing __________, which can

increase the complexity of the system.

e) Loosely-coupled systems can be more vulnerable to

security threats, as the __________ provides an attack

surface for hackers.

39

 Multiprocessor systems use multiple CPUs to perform tasks

simultaneously, enhancing processing power and efficiency.

They are classified into:

 Symmetric Multiprocessing (SMP): All processors share

memory and have equal access to system resources, suitable

for high-performance applications like scientific simulations.

 Asymmetric Multiprocessing (AMP): Processors have

different architectures and are assigned specific tasks, often

used in specialized applications such as graphics processing.

 Tightly-Coupled Multiprocessor Systems: Multiple processors

share a common memory and I/O system, communicating via

shared buses for faster data exchange.

 Advantages: Increased processing power, improved

reliability (even with processor failures), and scalability

through easy addition of processors.

 Challenges: Increased system complexity, potential for

memory contention, and communication overhead affecting

performance.

 Loosely-Coupled Multiprocessor Systems: Independent

computers interconnected via networks, each with its own

memory, communicating through message passing.

 Advantages: Flexibility to add or remove nodes without

system disruption, cost-effectiveness with commodity

computers, and high fault tolerance.

 Challenges: Slower communication due to network latency,

complexity in software design, and increased vulnerability to

security threats.

 In Homogeneous Multiprocessor Systems

 All processors are identical in hardware and software.

 Share memory and communicate through shared memory or

inter-processor mechanisms.

 Advantages: Improved performance, scalability, and fault

tolerance.

 In Heterogeneous Multiprocessor Systems

 Processors differ in hardware, software, and architecture.

 Communicate via shared memory or other mechanisms like

message passing.

 Advantages: Optimized for specific tasks, improved

performance, and energy efficiency.

40

 Challenges: Complexity in programming, hardware

compatibility, and interoperability.

 Physical Model:

 Represents hardware components, nodes, links, middleware,

and network topology.

 Describes how computers and devices are interconnected

and communicate.

 Architectural Model:

 Defines overall structure and interaction of system

components.

 Types include client-server, peer-to-peer, layered, and

microservices models.

 Fundamental Model:

 Describes essential properties common to all architectural

models.

 Includes interaction model, failure model, and security

model.

2.12 ANSWERS TO CHECK YOUR PROGRESS

1. a) True b) False c) False d) True e) True

2. a) scientific b) memory c) flexibility d) framework

 e) network

2.13 POSSIBLE QUESTIONS

Short Answer Type Questions:

1. What are multiprocessors in modern computing?

2. Differentiate between symmetric multiprocessing (SMP) and

asymmetric multiprocessing (AMP).

3. What is middleware, and what role does it play in distributed

systems?

4. Explain the concept of load balancing in multiprocessor systems.

5. What are the advantages of loosely-coupled multiprocessor

systems?

41

6. What is middleware and what role does it play in distributed

systems?

7. Name and briefly explain two types of middleware.

8. What are the fundamental system models in distributed systems?

Long Answer Type Questions:

9. Describe the role of multiprocessor systems in achieving high

performance, scalability, and reliability in modern computing.

Discuss both homogeneous and heterogeneous systems.

10. Explain symmetric multiprocessing (SMP) and asymmetric

multiprocessing (AMP) in detail. Compare their architectures,

advantages, and applications in computing.

11. Discuss the concept of middleware in distributed systems. How

does middleware facilitate communication and resource

management among distributed computing nodes? Provide

examples of different types of middleware and their

applications.

12. Compare and contrast tightly-coupled and loosely-coupled

multiprocessor systems. Discuss their architectures, advantages,

limitations, and applications in various computing environments.

13. Examine the challenges and advantages of using loosely-coupled

multiprocessor systems in distributed computing environments.

Discuss factors such as communication overhead, scalability,

fault tolerance, and security concerns.

14. Discuss the different types of system models in distributed

systems. Explain each type and its significance in designing and

analyzing distributed applications.

15. Explain the architectural model in distributed computing

systems. Provide examples of different architectural models and

their characteristics.

16. What are the key aspects of the fundamental system models in

distributed systems? Discuss the interaction model, failure

model, and security model in detail.

42

2.14 REFERENCES AND SUGGESTED READINGS

1. "Distributed Systems: Concepts and Design" by George

Coulouris

2. “Designing Data-Intensive Applications" by Martin

Kleppmann

3. “Distributed Systems: Principles and Paradigms" by Andrew

Tanenbaum and Maarten Van Steen

×××

43

UNIT- 3

SYSTEM ARCHITECTURES

Unit Structure:

3.1 Introduction

3.2 Objectives

3.3Concept of Client Server Model

3.4 Client Server Model

3.4.1 1-Tier Model

3.4.2 2- Tier Model

3.4.3 3- Tier Model

3.4.4 N-Tier Model

3.5Variations in Client Server Model

3.5.1 Multiple Server Model

3.5.2 Proxy Server Model

3.5.3 Network Computer Model

3.6 Architectural Model

3.6.1 Client Server Model

3.6.2 Peer-to-Peer Model

3.7 Application Layer in Distributed System

3.7.1 Functions of Application layer

3.7.2 Services of Application layer

3.8 Distributed operating system and its issues

3.8.1 Types of Distributed OperatingSystems

3.8.1.1 Middleware

3.8.1.2 Client-server

3.8.1.3 Peer-to-Peer

3.8.2 Advantages and Disadvantages of Distributed

OperatingSystem(DOS)

3.8.2.1 Advantages of DOS

3.8.2.2 Disadvantages of DOS

3.9 Summing Up

44

3.10 References and suggested reading

3.11 Model Questions

3.12 Answer to check your progress

3.1 INTRODUCTION

 Web is a Service that allows computers to share and

exchange data.

 Data can be images, video, audio, text, and documents,

and that’s why the web is referred to as Client-Server

communication.

 A Client can be a machine or a program. A Client

program is a program that allows the user to request the

web. For example, the web browser is a user program

that can make requests through the browser.

 A client, whether it is a machine or a program, is an

appliance and a way to make requests through the web.

 A server is a computer program, NOT A DEVICE.

 High-performance computers are called servers because

they run server programs.

 Servers provide functionality and serve other programs

called clients.

3.2 OBJECTIVES

After going through this unit students will be able to learn

 The concept of Client and Server

 Variations in Client Server Model

 Client Server Architecture and Peer to Peer Architecture

 Application layering in a Distributed System

 Distributed operating system and its issues.

3.3 BASIC CONCEPT OF CLIENT SERVER MODEL

Server: A single server can serve multiple clients at the same time.

Also, we can run multiple servers on one single machine, they are

called virtual servers. There are several types of servers.

45

1.Web servers such as Apache that serve HTTP requests.

2.Database servers such as MYSQL that run database management

systems.

A server can contain web resources, host web applications, store

user and program data etc. It is used to serve hundreds or thousands

of clients.

A server always listens for requests and as soon as it receives, it

responds with a message.

3.4 CLIENT-SERVER MODEL

Now that we came to know what is client and what is server,we can

define the client-server model in one sentence. Is an architecture on

the web that splits computers into two sections, computers that

require services are called clients, and computers that serveclients

are called servers.The client-server model works through a request-

response cycle through HTTP. The client-server model is just one

way for the computers to communicate via the web.

3.4.1 1-Tier Architecture

The 1-Tier architecture is also known as single-tier architecture.

Here both client and server reside in one computer. This type of

architecture is not suitable for web applications as data required by

the application is available on the same computer or server. That

means all the components required to run an application reside on

the same computer.

3.4.2 2-Tier Architecture

In 2-tier architecture client request for services and the server

responds. In the server side, both logic and data resides. Since some

requests may need logical manipulation so after processing server

responds. In this case client is called thin client since most of the

processing done on server side. Client does not have many

responsibilities in thin client. Eg. Hotstar, Netflix, E commerce

sites, streaming applications.

It not necessary that logic always sit on the server side. In some

cases like Gaming app, Microsoft outlook, and video editing

software where majority of the processing takes place in client side

are called thick client.2 tier architecture mostly use in light weight

websites or small businesses.

46

3.4.3 3-Tier Architecture

In some cases where large number of data is available, the load of

server is very heavy. In that case extra layer is introduce. Client has

presentation layer, the middle layer is application layer where logic

resides and the third layer ,database layer where data resides. This is

called 3 tier architecture. Example of 3 tier is Basic library

management for school.

3.4.4 N-Tier Architecture

This above 3-Tier may not serve the purpose for a large

complication application. In that case extra layer introduced

between the client and logic layer such as the Load balancer and

another layer cache layer between logic and data layer.Thus this

type of architecture is known as N-tier architecture.

47

3.5 VARIATIONS IN CLIENT SERVER MODEL

3.5.1 Multiple Server Model

 Services may be provided by multiple server.

Server distribute resources among themselves. Thus communication

among the servers takes place

STOP TO CONSIDER

1 tier architecture where client server database all resides in one

machine.2 tier architecture where presentation layer run on

client machine and database is store on server. In 2 tier if the

number of client increases than the performance of the server

degrades.3 tier architecture has three tiers, first tier contains

client, second tier contains application layer and third tier

contains database server. Application layer is also called

business logic.

SELF ASKING QUESTIONS

1. How 1 tier is different from 2-tier and 3 –tier?

2. What is the concept of N-tier?

CHECK YOUR PROGRESS

1. What is the advantage of the three-tier client-server

database architecture against the two-tier alternative?

2. What are the limitations of two-tier architecture?

48

 In the above figure, Client1 requesting for a

service to server1, that service may not available

in server1,thus it request to server2. Server2 gives

reply to server1 and thus to client1.

3.5.2 Proxy Server Model

 Proxy server provides copies(replication) of

resources which are managed by other server.It

acts as intermediate system between client and the

server.

 Eg, Maintaining web resources cache. If client

request resources ,then first it checks in the

cache(proxy server) ,if not available then cache

request to the server.

 When a client makes a request, the request goes to

the proxy server first, if the resources is available

with the proxy server, itsends the response else it

49

requests it to server1 or server2. Basically proxy

server sits between client and the server. One

advantage is that the load of the server reduces as it

sits between client and server and also it enhances

security as the proxy handles the request before

going to the server so if there is any problem occurs

it will affect the proxy server rather than the actual

server.

3.5.3 Network Computers

 In network computers all the code is loaded from

server and run locally.

 All files are stored and managed remotedly.

 Thus it is very simple and easy to managed.

 In the above figure, PC can access CPU, printer, scanner

using network computer.

STOP TOCONSIDER

A proxy server is an intermediary between the client and the server. It

acts as a load balancing, caching resources and anonymizing requests.

CHECK TO PROGRESS

3. What is the difference between a proxy server and a server?

4. Why do we need multiple servers?

50

3.6 ARCHITECTURE MODEL

3.6.1 Client Server Model

Two processes are available in client server architecture. Client has

its own process and request for services or resources. Thus called

requesting service. On the other hand, server has its own process

,provide the services requested by client. Thus it works on

request/reply protocol. Remote Procodure calls or Remote method

invocation(RMI) is used to invoke process for different computing

device. Server can also request a service from another server.

In client server architecture, the server may act as a client also. For

example, in the above, client1 asks requesting services from server1.

Server1 may not have that particular information to reply back. In

that case, it ask for information from another server say server2.

Thus in that case server1 acts as a client. Whatever the information

will be replied back by server2 to server1 and server1 response back

to client1.

3.6.2 Peer-to-Peer Architecture

It composed of number of distributed, heterogenous, autonomous,

dynamic peers in which participants share part of their own

resources. Resources may be processing power, storage memory,

software, files. All process/nodes play the same role.

In Peer-to-Peer model, there is no client and no server. Both

computers act as requestors and response providers. In other words,

each one can be a client and server. Each one is able to send and

receive data with one another.

51

.

3.7 APPLICATION LAYER IN DISTRIBUTED SYSTEM

It is the topmost layer of the internet model. Application

layer programs are based on a client-server model. We can

say that the application layer allows the user to use the

internet. The application layer lies between the user and

transport layer. The application layer provides security,

different application programs, and addressing. The client

cannot access the data or application directly, it is possible

through the server only. Whenever a client requests services

from the server, it has to include the address of the server, its

own address as a source address.

STOP TO CONSIDER

Architectural Model:

 It gives abstract view of distributed sysem

 .It helps in simplifying reasoning of system.

CHECK YOUR PROGRESS

5. Write advantages and disadvantages of Client server and

Peer to Peer architecture.

6. What is the problem with peer-to-peer networks?

7. Why peer-to-peer is not safe?

52

3.7.1 Functions of Application Layer

a) Identifying communication partners: It identifies

the availability of communication partners for an

application with data to transmit.

b) Determining resource availability: It identifies

whether sufficient network resources are available for

the requested communication.

c) Synchronizing communication: All the

communications that occur between the applications

require cooperation which is managed by an

application layer

3.7.2 Services of the application layer

a. Electronic mail

b. net news(Usenet)

c. WWW(world wide web)

d. Multimedia

e. Remote file transfer and access

3.8 DISTRIBUTED OPERATING SYSTEM(DOS) AND ITS ISSUES

 A distributed operating system is a system in which a number

of computers are connected to perform real-time applications. This

multiple computers are connected by communication lines. Each of

the system are said to be loosely connected as each of the system

has its own applications, data and operating system. It allows to

perform together as if there exists a big system. We can increase the

STOP TO CONSIDER

 The application layer and the end user can interact

directly with the software application

CHECK TO PROGRESS

8. What is the main responsibility of the application layer?

9. What is the need of application layer?

10. What is the position of application layer?

53

performance of a real-time application by using distributed

operating system.

3.8.1 Types of Distributed Operating system

3.8.1.1 Middleware

Also called message-oriented middle ware. It performed real-time

applications by connecting two or more operating systems. It allows

access of real-time information among the different systems by

passing messages. It maintains data integrity among different

systems. It helps to increase the growth of organizational efficiency

and also streamlines business processes.

3.8.1.2 Client-server

Already discussed about client server model, where client requests

for service and server response by replying with the required

information.

3.8.1.3 Peer-to-Peer

 Peer to Peer where there is no client and the server. Each

one act as a client and the server.

54

3.8.2 Advantages and Disadvantages

3.8.2.1 Advantages

 It is very easy to share resources and to perform real-time

applications in distributed operating systems as system are

connected to each other via a network.

 Distributed operating system meet the needs of the

business, making it more flexible and efficient.

 It is easier to control and monitor since the system can be

managed centrally.

 Due to the rise of big data and the need for real-time

applications, distributed operating systems became very

popular

3.8.2.2 Disadvantages

 It is very difficult to administer and manage.

 Due to the increased number of systems, there is a

greater possibility of risk of failure of the system.

 The cost of maintaining a distributed operating system

is very high.

STOP TO CONSIDER

Distributed operating system in which several computers are

connected through a common communication channel. Each one

has its own individual processor and memory.

55

3.9 SUMMING UP

This unit tells us about the Client-server model and its variations.

How the client-server model is organized and how the organization

is different from the Peer-to-Peer model. It describes the concept of

the distributed operating system, its advantages and disadvantages.

It tells about the application layer, how it works, its types and

advantages and disadvantages.

3.10 REFERENCES AND SUGGESTED READING

1. https://unacademy.com/content/bank-exam/study-

material/computer-knowledge/distributed-operating-system/

2. https://www.youtube.com/watch?v=ePvqvXEkVIk

3. Distributed System By Andrew Tanenbaum and Maarten van Steen

3.11 MODEL QUESTIONS

1. What are the challenges of the client-server model?

2. What is required by the client-server model?

3. Why is peer-to-peer network bad?

4. What are the limitations of client-server?

5. What are the features of peer to peer network?

6. What is the working principle of peer-to-peer networks?

7. What are the responsibilities of middleware?

8.What is a middleware issue?

SELF ASKING QUESTION

1. What is the main purpose of middleware in distributed

systems?

2. What are the functions of a middleware system?

56

9. What application layer protocol is commonly used?

10.What are the key challenges in building distributed systems?

3.12 ANSWER TO CHECK YOUR PROGRESS

ANSWER 1. Each tier can be worked separately by the

development team and can be updated without impacting other tier

.Each tier runs on its own infrastructure

ANSWER 2. In 2-tier performance decreases as the number of

users increases. It is difficult to implement reliable security as users

need to have login information for every database server.

ANSWER3. A user access websites by sending request to the

server via web browser and the web server returns back the

required information to the user. But the proxy server sits

between the user and the web server that act as an intermediary.

ANSWER 4. Multiple server are used for balancing the load.

Instead of allocating a single server for a specific function, we can

allocate different servers for various functions. Thus reducing the

load on a single server. Hence utilization of memory, CPU ,RAM

and storage takes place efficiently.

ANSWER 5.ADVANTAGES OF CLIENT SERVER

a) If one system stops working ,it will not affect the other.

b) The size of the system can be set according to the

requirement.

DISADVANTAGE:

a. Cost of set up is more.

b. If the central system fails,it will affect the whole system.

57

ADVANTAGES OF PEER-TO-PEER

a. No extra investment in server hardware and software

b. Easy setup then server-based network.

 DISADVANTAGES OF PEER TO PEER

a) Additional load on the computer because of resource

sharing.

b) Lack of central organization.

ANSWER 6. Lack of centralized control: Managing and

coordinating network activities is difficult as the absence of a

centralized network in peer-to-peer networks. Also difficult to

coordinate complex activities, ensure data integrity and also difficult

to enforce consistent policies.

ANSWER 7. Since in P2P, both acts a client and the server, so they

are more easy for the attackers to gain access to each machine in

the network.

ANSWER8. From the cloud-based storage or from a database, the

user can access data using the application layer only. Within the

same network or different network the transfer of files takes place

using application layer. Also transfer of file from each other takes

place using the application layer only.

ANSWER9.Web browsers and email clients are the end-user

software that uses the application layer. It provides protocols that

allow software to send and receive information and present

meaningful data to users.

ANSWER 10.It is the topmost layer in the Open Systems

Interconnection (OSI) model. It acts as the interface between the

network and the end-user applications, and allows communication

between software applications and lower-level network services.

×××

58

UNIT: 4

CLOCK SYNCHRONIZATION AND LOGICAL

CLOCKS

Unit Structure:

4.1 Introduction

4.2 Unit Objectives

4.3 What is Synchronization?

 4.3.1 Clock Synchronization

 4.3.2 Need of Clock Synchronization

4.4 External Clock Synchronization

 4.4.1 Network Time Protocol (NTP)

 4.4.2 GPS Based Synchronization

4.5 Internal Clock Synchronization

4.5.1 Cristian's Algorithm

4.5.2 Berkeley Algorithm

4.6 Logical Clocks in Distributed System

4.6.1 Lamport Clock

4.6.2 Vector Clock

4.7 Challenges and Trade-Offs In Clock Synchronization

4.8 Summing Up

4.9 Answers to Check Your Progress

4.10 Possible Questions

4.11 References and Suggested Readings

59

4.1 INTRODUCTION

In distributed systems, multiple processes operate on different

machines, each with its own local clock. These clocks often differ

due to variations in hardware, environmental conditions, and

inherent clock drift. Accurate and consistent timekeeping across

these distributed components is crucial for ensuring the correct

sequence of events, maintaining consistency, and coordinating

actions among processes. This is where clock synchronization

comes into play.

4.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 understand the importance of clock synchronization in

distributed systems and explain why accurate timekeeping is

essential for the coordination and consistency of operations.

 describe the concepts of external clock synchronization and

the methods used to achieve it.

 explain internal clock synchronization techniques.

 discuss logical clocks and their role in distributed systems.

 identify and analyze the challenges and trade-offs involved

in clock synchronization in distributed systems.

4.3 WHAT IS SYNCHRONIZATION?

In general, synchronization refers to the coordination or alignment

of actions or events in time. In the context of computing,

synchronization refers to the techniques and mechanisms used to

coordinate the execution of multiple threads or processes in a way

that ensures correctness and consistency.

When multiple threads or processes are running concurrently, they

may access shared resources or data structures, and if their access is

not properly coordinated, it can lead to various problems such as

race conditions, deadlocks, and data corruption. Synchronization

techniques provide a way to avoid such problems by ensuring that

threads or processes access shared resources in a mutually exclusive

and orderly manner.

60

Some common synchronization mechanisms include locks,

semaphores, monitors, and barriers. Locks are used to enforce

mutual exclusion, which means that only one thread or process can

access a shared resource at a time. Semaphores are similar to locks,

but they allow multiple threads or processes to access a shared

resource with a specified limit. Monitors provide a higher-level

abstraction for synchronization by combining locks with condition

variables that allow threads or processes to wait for certain events to

occur. Barriers are used to synchronize a group of threads or

processes by ensuring that they all reach a certain point in their

execution before continuing.

Overall, synchronization is an essential concept in concurrent

programming, and it is crucial to ensure that shared resources and

data structures are accessed in a coordinated and consistent manner

to avoid problems and ensure correct program behavior.

4.3.1 Clock Synchronization

Clock synchronization is the process of ensuring that the clocks of

different devices in a distributed system are aligned with each other.

In a distributed system, devices may have their own clocks, which

can drift over time due to factors such as temperature changes, aging

of components, or differences in clock frequencies. If the clocks of

different devices are not synchronized, it can lead to various

problems such as incorrect time stamping of events, data

inconsistencies, and even security vulnerabilities.

There are several approaches to clock synchronization in distributed

systems, and some of the most common ones are:

NTP (Network Time Protocol): NTP is a protocol used to

synchronize the clocks of devices over a network.

PTP (Precision Time Protocol): PTP is a protocol similar to NTP,

but it is designed for high-precision clock synchronization in

industrial and scientific applications.

GPS (Global Positioning System): GPS is a satellite-based

navigation system that can be used to synchronize clocks in

distributed systems.

There are several algorithms that can be used to synchronize clocks

in a distributed system without relying on external time sources.

One of the most common algorithms is the Cristian's algorithm,

61

which uses a time server to estimate the clock offset between a

client and the server. Another algorithm is the Berkeley algorithm,

which uses a centralized server to synchronize the clocks of multiple

devices in a LAN.

Clock synchronization is an important aspect of distributed systems,

and it can have significant impacts on the correctness and

performance of applications. Proper clock synchronization ensures

that events are timestamped correctly, data is consistent across

devices, and security protocols are effective. Different clock

synchronization approaches have their own strengths and

limitations, and the choice of approach depends on factors such as

accuracy requirements, network topology, and available resources.

4.3.2 Need of Clock Synchronization

In a distributed system, multiple devices or processes may

communicate with each other over a network. Each device or

process has its own local clock, which can drift over time due to

various factors such as temperature changes, aging of components,

and differences in clock frequencies. This can result in time

discrepancies between different devices, which can cause a range of

problems such as:

Inconsistent data: If different devices record timestamps for the

same event, but their clocks are not synchronized, it can be difficult

to determine the order in which the events occurred. This can lead to

inconsistencies in the data, making it difficult to analyze and

process.

Incorrect results: In some applications, such as financial

transactions or scientific experiments, accurate timing is critical. If

the clocks of different devices are not synchronized, it can lead to

incorrect results or even failures.

Security vulnerabilities: In many security protocols, accurate

timing is critical for preventing attacks such as replay attacks or

denial-of-service attacks. If the clocks of different devices are not

synchronized, it can create vulnerabilities in the security protocols.

Coordination problems: In a distributed system, multiple devices

may need to coordinate their actions or synchronize their operations.

If the clocks of different devices are not synchronized, it can be

62

difficult to ensure that they execute their operations in the correct

order and at the correct time.

To address these problems, clock synchronization is needed in

distributed systems. Clock synchronization ensures that the clocks

of different devices are aligned with each other, reducing the time

discrepancies between them. This enables consistent data recording,

accurate timing, secure communication, and better coordination

between devices. Clock synchronization is an essential aspect of

distributed systems, and it is critical for ensuring correct and reliable

operation of applications.

Example:

One example of the need for clock synchronization can be seen in a

financial transaction system. Suppose that a financial institution

operates a distributed system consisting of multiple servers that

handle transactions from clients. Each server has its own clock, and

transactions are recorded with timestamps based on the local clock

of the server.

If the clocks of the servers are not synchronized, it can lead to

discrepancies in the recorded timestamps. For example, suppose a

client initiates a transaction at server A, and the transaction is

recorded with a timestamp of 10:00:00 AM based on the local clock

of server A. If the transaction is then forwarded to server B for

processing, but the clock of server B is 5 minutes ahead of the clock

of server A, the transaction will be recorded at server B with a

timestamp of 10:05:00 AM. This can create confusion and errors

when analyzing the transaction records, and it can also affect the

correctness of financial reports and audits.

To avoid such problems, clock synchronization is necessary in a

financial transaction system. The clocks of the servers need to be

synchronized with each other to ensure that transactions are

recorded with consistent and accurate timestamps, regardless of

which server they are processed on. This enables the financial

institution to maintain the integrity of its transaction records, ensure

accurate billing and auditing, and provide reliable services to its

clients.

This example illustrates how clock synchronization is crucial in

distributed systems, especially in applications where accurate timing

is critical. Without proper clock synchronization, inconsistencies

63

and errors can arise, leading to incorrect results, security

vulnerabilities, and coordination problems.

4.4 EXTERNAL CLOCK SYNCHRONIZATION

External clock synchronization refers to the process of

synchronizing the clock of a device or system with an external

reference clock. The reference clock is typically a highly accurate

time source that is accessible over a network or through a dedicated

hardware interface.

External clock synchronization is crucial in distributed systems for

several reasons:

 Event Ordering: Ensures that events are recorded in the

correct sequence.

 Consistency: Maintains data consistency across distributed

databases.

 Coordination: Facilitates coordinated actions among

distributed processes.

 Security: Enhances security protocols that rely on time-

based authentication mechanisms

4.4.1 Network Time Protocol (NTP)

The Network Time Protocol (NTP) is a widely used protocol

designed to synchronize the clocks of computers over a network.

Developed by David L. Mills in 1985, NTP is essential for ensuring

that all devices in a distributed system maintain a consistent and

accurate time. It operates over the User Datagram Protocol (UDP)

and is capable of synchronizing clocks to within a few milliseconds

over the public Internet and even better over local area networks

(LANs).

NTP plays a key role in achieving these objectives by providing a

reliable method to synchronize the system clocks of devices within a

network to a common reference time.

How NTP Works?

NTP operates in a hierarchical system of time sources. The

hierarchy is organized into strata, where each stratum level indicates

the distance from the reference clock:

64

 Stratum 0: High-precision timekeeping devices such as

atomic clocks or GPS clocks.

 Stratum 1: Servers directly connected to Stratum 0 devices,

serving as primary time servers.

 Stratum 2 and below: Servers that synchronize with servers

in higher strata, creating a cascading effect of time

synchronization.

NTP uses a client-server model where clients periodically query

NTP servers to adjust their local clocks. The protocol involves

exchanging timestamps between the client and the server, allowing

the client to calculate the round-trip delay and offset.

Synchronization Process

1. Timestamp Exchange: NTP clients send requests to NTP

servers, and servers respond with packets containing

timestamps indicating when the request was received and

when the response was sent.

2. Delay and Offset Calculation: The client uses the

timestamps to calculate the round-trip delay and clock offset.

This involves four key timestamps:

o T1: Time when the client sends the request.

o T2: Time when the server receives the request.

o T3: Time when the server sends the response.

o T4: Time when the client receives the response.

The round-trip delay (d) and offset (θ) are calculated using

the following formulas:

3. Clock Adjustment: The client adjusts its clock by the

calculated offset (θ) to align with the server's time.

Features and Benefits of NTP:

 Accuracy: NTP can achieve synchronization accuracy

within milliseconds over the Internet and microseconds in

LAN environments.

65

 Fault Tolerance: NTP supports multiple servers for

redundancy, improving reliability in case one or more

servers fail.

 Scalability: The hierarchical structure of NTP allows it to

scale efficiently across large networks.

 Security: NTP includes cryptographic mechanisms to

prevent malicious attacks and ensure the integrity of the time

synchronization process.

Challenges and Limitations:

 Network Latency: Variations in network latency can affect

the accuracy of time synchronization.

 Asymmetric Delays: Differences in delay times between the

client-server and server-client paths can introduce errors.

 Server Load: Heavy load on NTP servers can lead to delays

and less accurate synchronization.

It is a robust and widely adopted protocol for external clock

synchronization in distributed systems. By aligning the clocks of

distributed devices to a common reference time, NTP ensures

accurate event ordering, consistency, and coordination, which are

essential for the correct functioning of distributed systems. Despite

some challenges, the benefits of NTP in maintaining synchronized

clocks far outweigh its limitations, making it a critical component in

modern networked environments.

4.4.2 GPS Based Synchronization

Global Positioning System (GPS) is a satellite-based navigation

system that provides highly accurate time and location information

to GPS receivers on Earth. While GPS is primarily known for its

navigation capabilities, it also plays a crucial role in providing

precise time synchronization for various applications, including

distributed systems. GPS-based synchronization is one of the most

accurate methods for achieving external clock synchronization,

offering time precision within nanoseconds.

66

How GPS-Based Synchronization Works?

GPS-based synchronization leverages the precise atomic clocks on

GPS satellites to provide accurate time information to receivers on

Earth. The process involves several key steps:

 Satellite Signal Reception: GPS receivers on the ground

receive signals from multiple GPS satellites. Each satellite

broadcasts its current time and position.

 Time Calculation: The receiver calculates the travel time of

signals from each satellite by comparing the broadcast time with

the reception time.

 Position and Time Solution: By receiving signals from at least

four satellites, the GPS receiver can calculate its precise location

and correct its internal clock. This process is known as

trilateration.

 Clock Adjustment: The GPS receiver adjusts its local clock

based on the highly accurate time information received from the

satellites. This time information is typically derived from atomic

clocks onboard the satellites, ensuring high precision.

Features and Benefits of GPS-Based Synchronization:

 High Accuracy: GPS provides time synchronization accuracy

within nanoseconds, making it one of the most precise methods

available.

 Global Availability: GPS signals are available worldwide,

making it suitable for synchronization in geographically

dispersed systems.

 Independence from Network Conditions: Unlike network-

based protocols such as NTP, GPS-based synchronization is not

affected by network latency or asymmetric delays.

 Redundancy: Multiple satellites ensure redundancy, enhancing

the reliability of the synchronization process.

Applications of GPS-Based Synchronization:

 Telecommunications: Synchronizing base stations in cellular

networks to ensure seamless handoffs and efficient spectrum

usage.

 Power Grids: Coordinating operations of power plants and

substations to maintain grid stability and prevent blackouts.

67

 Financial Systems: Ensuring accurate timestamps for financial

transactions to meet regulatory requirements and prevent fraud.

 Scientific Research: Providing precise timing for experiments

and data collection in fields such as astronomy and particle

physics.

Challenges and Limitations

 Signal Obstruction: GPS signals can be obstructed by

buildings, mountains, or other structures, limiting their

effectiveness in certain environments.

 Multipath Interference: Reflections of GPS signals from

surfaces like buildings and water can cause errors in time

calculation.

 Atmospheric Conditions: Variations in the ionosphere and

troposphere can affect signal travel time, introducing slight

inaccuracies.

 Dependency on Satellite Constellation: The accuracy of GPS-

based synchronization depends on the number of visible

satellites and their positions relative to the receiver.

This technique is a very effective way to keep clocks accurate in

distributed systems. By using the precise time from GPS satellites,

devices in a network can stay in sync. This is important for keeping

the order of events correct, ensuring data is consistent, coordinating

actions, and maintaining security. Even though there are challenges

like signal blockage and weather conditions, the benefits make GPS-

based synchronization essential for many high-precision and time-

sensitive tasks.

4.5 INTERNAL CLOCK SYNCHRONIZATION

Internal clock synchronization refers to the process of ensuring that

all the clocks within a distributed system are synchronized with each

other. Unlike external clock synchronization, which relies on an

external time source (such as GPS or NTP), internal clock

synchronization focuses on achieving consistency and agreement

among the clocks of different nodes within the system itself. This is

crucial because, in a distributed system, each node typically has its

own clock, and these clocks can drift apart over time due to various

68

factors, such as differences in clock hardware and environmental

conditions.

The importance of Internal clock synchronization are as follows:

1. Event Ordering Consistency: Internal clock

synchronization is essential for maintaining a consistent

order of events across different nodes.

2. Data Consistency: Ensuring that all nodes have

synchronized clocks helps maintain data consistency.

3. Coordinated Actions: Many applications in distributed

systems require coordinated actions between nodes. For

instance, in distributed control systems, synchronized clocks

ensure that actions are taken at the correct time, allowing the

system to function smoothly and predictably.

4. Fault Tolerance: Synchronized clocks can enhance fault

tolerance in distributed systems.

5. Security: Time synchronization is crucial for security

mechanisms such as authentication and authorization.

Internal clock synchronization is crucial for making sure distributed

systems run accurately, efficiently, and safely. It helps solve

problems caused by clocks getting out of sync and ensures that

events happen in the right order, data stays consistent, actions are

well-coordinated, system failures are handled better, performance is

improved, and security is strong.

4.5.1 Cristian's Algorithm

Cristian's Algorithm is a method used in distributed systems to

synchronize the clocks of different nodes with a time server. The

goal is to minimize the difference between the server's clock and the

clocks of the client nodes.

Steps of Cristian's Algorithm:

1. Client Request: A client node sends a request to the time server

asking for the current time.

2. Server Response: The server receives the request and

immediately sends back the current time (T_server) to the client.

3. Client Adjustment: Upon receiving the server's time, the client

adjusts its own clock by considering the network delay.

69

To account for the network delay, the client measures the round-trip

time (RTT) of the message and adjusts the server's time accordingly.

The estimated time when the server sent its response can be

calculated as:

where, RTT is the round-trip time measured by the client.

Example:

Let's consider an example to understand Cristian's Algorithm in

action.

1. Client Sends Request:

o At time T1=10 (according to the client's clock), the client

sends a request to the server.

2. Server Responds:

o The server receives the request and immediately sends

the time Tserver=15.

3. Client Receives Response:

o The client receives the server's response at time T2=18

(according to the client's clock).

4. Calculate RTT:

o The client calculates the round-trip time as:

RTT=T2−T1=18−10=8

5. Adjust Client's Clock:

o The client adjusts its clock based on the server's time and

the estimated network delay:

So, the client sets its clock to 19, aligning it closer to the server's

time while accounting for the network delay.

Cristian's Algorithm is a popular method for clock synchronization

in distributed systems for several reasons:

70

 Simplicity and Ease of Implementation: The algorithm is

simple to understand and implement. It involves basic message

exchanges between the client and the server, making it

accessible for systems with limited resources.

Here, the only requirement is a reliable time server and basic

network communication capabilities, making it suitable for a

wide range of environments.

 Improved Accuracy over Simple Synchronization:Unlike

simple synchronization methods, Cristian's Algorithm accounts

for network delay by measuring the round-trip time (RTT) of

messages. This helps in reducing the synchronization error.

The client adjusts its clock based on the server's time and the

measured network delay, leading to more accurate

synchronization.

 Reduced Synchronization Error:By calculating the RTT and

adjusting the time accordingly, Cristian's Algorithm

compensates for the delay in message transmission, which helps

in achieving closer synchronization between client and server

clocks.

 Suitability for Various Network Conditions:The algorithm is

particularly effective in networks with relatively low delay and

jitter. It can provide accurate synchronization in environments

where network conditions are stable and predictable.

 Wide Applicability:Cristian's Algorithm can be applied in

various distributed systems, such as distributed databases, real-

time systems, and networked applications where synchronized

time is crucial for operations.

Also, there are limitations this algorithm and they are:

 Single Point of Failure: The algorithm relies on a single time

server, which can be a single point of failure. If the server

becomes unavailable, clients cannot synchronize their clocks.

 Network Delay Variability: High variability in network delays

can affect the accuracy of synchronization. The algorithm

assumes a relatively stable network condition for accurate time

adjustments.

Cristian's Algorithm is a practical and effective solution for clock

synchronization in many distributed systems. Its simplicity, ease of

71

implementation, and ability to reduce synchronization errors by

accounting for network delays make it a valuable tool for achieving

accurate time synchronization across networked devices.

4.5.2 Berkeley Algorithm

The Berkeley Algorithm is a way to synchronize clocks in

distributed systems when there is no single, highly accurate time

server. It works by choosing one node to act as the coordinator. This

coordinator collects the current times from all the nodes, calculates

the average time, and then tells each node how to adjust their clock

to match this average. This method is particularly useful when no

single node has a very accurate clock.

Steps of Berkeley Algorithm:

 Coordinator Selection: Choose one node to act as the

coordinator.

 Polling: The coordinator asks all other nodes for their current

time.

 Time Collection: Each node sends its current time back to the

coordinator.

 Average Calculation: The coordinator calculates the average

time from all the collected times, including its own.

 Adjustment Calculation: The coordinator figures out how

much each node's time needs to change to match the average.

 Time Adjustment: The coordinator tells each node how much

to adjust their clocks to sync with the average time.

Example:

Consider a distributed system with four nodes (A, B, C, and D).

Node A is selected as the coordinator. The current times on each

node are as follows:

 Node A: 10:00

 Node B: 10:05

 Node C: 09:58

 Node D: 10:02

72

Here’s how the Berkeley Algorithm would synchronize these

clocks:

1. Coordinator Polling: Node A (the coordinator) polls nodes B,

C, and D, asking for their current time.

2. Time Collection:

 Node B reports 10:05

 Node C reports 09:58

 Node D reports 10:02

3. Average Calculation:

 Node A collects these times: 10:00, 10:05, 09:58, and 10:02.

 It calculates the average time:

(10:00+10:05+09:58+10:02)/4=10:01.25

1. Adjustment Calculation:

 Node A determines the difference from the average:

o Node A 10:00−10:01.25=−1.25 minutes

o Node B: 10:05−10:01.25=+3.75 minutes

o Node C: 09:58−10:01.25=−3.25 minutes

o Node D: 10:02−10:01.25=+0.75 minutes

2. Time Adjustment:

 Node A sends each node the amount of time to adjust:

o Node A adjusts by −1.25-1.25−1.25 minutes to match

the average.

o Node B adjusts by −3.75-3.75−3.75 minutes to match

the average.

o Node C adjusts by +3.25+3.25+3.25 minutes to

match the average.

o Node D adjusts by −0.75-0.75−0.75 minutes to match

the average.

After these adjustments, all nodes will have their clocks

synchronized to 10:01.25.

The benefits of using Berkeley algorithm for clock synchronization

in distributed systems are:

73

 Single Clock Independence: Unlike some synchronization

methods that rely on a single highly accurate time server, the

Berkeley Algorithm does not require any node to have an

extremely accurate clock. This makes it suitable for

environments where no node can be guaranteed to have a

perfectly accurate time source.

 Fault Tolerance: By using the average time from multiple

nodes, the algorithm reduces the impact of any one node having

an inaccurate clock. This approach increases the overall

robustness and reliability of the system.

 Coordinated Adjustments: The Berkeley Algorithm ensures

that all nodes adjust their clocks in a coordinated manner,

preventing any significant time discrepancies between them.

This is crucial for applications that require synchronized actions

and consistent data states.

Also, there are limitations this algorithm and they are:

 Coordinator Dependency: The algorithm depends on the

coordinator to compute the average time and distribute

adjustments.

 Communication Overhead: Requires polling and

communication with all nodes, which can introduce delays in

large systems.

 Synchronization Accuracy: The accuracy depends on the

stability of the network and the precision of the nodes' clocks.

The Berkeley Algorithm is a practical and efficient way to keep

clocks synchronized in a distributed system without needing an

external accurate time source.

74

4.6 LOGICAL CLOCKS IN DISTRIBUTED SYSTEM

Logical clocks help organize events in distributed systems by

assigning them logical times, which is useful when physical clocks

are not perfectly in sync due to issues like network delays and clock

drift.

In a distributed system, events can happen at the same time on

different nodes, making it hard to determine the exact order of

events. Logical clocks solve this problem by giving each event a

CHECK YOUR PROGRESS-I

1. State True or False:

a) NTP stands for Network Time Protocol and is used for clock

synchronization across computers over a network.

b) GPS-based synchronization can achieve time precision

within microseconds.

c) The Berkeley Algorithm requires a highly accurate external

time source for synchronization.

d) Clock synchronization is not important for financial

transaction systems.

e) In NTP, the hierarchical structure is organized into strata,

with Stratum 0 representing servers directly connected to

atomic clocks.

2. Fill in the blanks:

a)______ is a satellite-based navigation system used for time

synchronization.

b)Cristian's Algorithm estimates the clock ______ between a

client and server.

c) In NTP, the client adjusts its clock based on the calculated

______ and offset.

d)GPS-based synchronization provides accuracy within

______.

e) Clock synchronization helps in achieving correct ______

and coordinated actions in distributed systems.

75

logical time based on how it relates to other events, without

depending on the actual time they occurred.

4.6.1 Lamport Clock

One example of a logical clock is the Lamport clock, which is a

simple algorithm that assigns a unique timestamp to each event

based on the timestamp of the preceding event and the messages

exchanged between nodes. The Lamport clock algorithm operates as

follows:

 Each node maintains a local counter that is incremented by 1 for

each event.

 When an event occurs, the node assigns a timestamp to the event

by appending the local counter value to the node's unique

identifier.

 When a node sends a message to another node, it includes its

own timestamp in the message.

 When a node receives a message from another node, it updates

its own timestamp to the maximum of its current timestamp and

the timestamp received in the message.

The Lamport clock algorithm ensures that events that are causally

related, such as a message being sent and received, are assigned

timestamps that reflect their causal ordering. However, events that

are not causally related may be assigned the same timestamp or

different timestamps, depending on the order in which they occur on

different nodes.

4.6.2 Vector Clock

Another example of a logical clock is the vector clock, which

extends the Lamport clock algorithm by maintaining a vector of

counters instead of a single counter. Each entry in the vector

corresponds to a node in the distributed system, and the value of

each entry is the local counter value of the corresponding node.

When an event occurs, the node increments its own counter and

sends its vector clock along with the message. When a node receives

a message, it updates its own vector clock by taking the maximum

of its current vector and the vector received in the message.

76

Logical clocks are useful for various distributed system applications

such as event ordering, synchronization, and debugging. By

assigning logical timestamps to events, distributed systems can

reason about the ordering of events and ensure that processes are

executing consistently despite delays and failures in the network.

4.7 CHALLENGES AND TRADE-OFFS IN CLOCK

SYNCHRONIZATION

The challenges in Clock Synchronization in distributed systems are

as follows:

 Clock Drift: The Clocks in distributed systems drift due to

factors such as temperature variations, aging components, and

differences in oscillator frequencies. This drifting clocks lead to

time discrepancies among nodes, affecting the correctness of

event ordering and synchronization.

 Network Latency: Variations in network latency can affect the

accuracy of time synchronization protocols like NTP or PTP.

Higher latency can lead to synchronization errors and reduce the

precision of synchronized clocks.

 Fault Tolerance: Synchronization protocols must be resilient to

failures in network connectivity, hardware failures, or server

downtime. Failure to handle faults can disrupt synchronization,

leading to inconsistencies and potential system failures.

 Security: Ensuring the integrity and authenticity of time

synchronization messages is crucial, especially in security-

sensitive applications. Insecure synchronization can lead to

vulnerabilities such as replay attacks or unauthorized access.

 Scalability: Synchronizing clocks in large-scale distributed

systems with thousands of nodes poses scalability

challenges.Scalability issues can affect synchronization accuracy

and performance, especially as the network size increases.

The trade-offs in Clock Synchronization in distributed systems are

as follows:

 Accuracy vs. Overhead: Increasing synchronization accuracy

often requires more frequent clock updates and higher

computational overhead.

77

Balancing accuracy with system performance is essential to

meet application requirements without excessive resource

consumption.

 Centralized vs. Decentralized Approaches: Centralized

synchronization approaches (e.g., NTP) provide high accuracy

but can introduce single points of failure.

Decentralized approaches (e.g., PTP) distribute synchronization

responsibility but require more complex coordination and

management.

 Real-time vs. Eventual Consistency: Real-time consistency

ensures immediate synchronization, whereas eventual

consistency allows for gradual convergence over time.

Choosing between these depends on application needs, such as

real-time data processing or eventual data consistency in

distributed databases.

 Precision vs. Network Load: Achieving higher precision in

synchronization may increase network traffic and load.

Optimizing synchronization protocols to minimize network

overhead while maintaining acceptable precision is crucial,

especially in bandwidth-constrained environments.

 Security vs. Performance: Implementing robust security

measures (e.g., cryptographic authentication) adds overhead to

synchronization protocols.

Balancing security requirements with performance constraints

ensures that clock synchronization does not compromise system

responsiveness or scalability.

4.8 SUMMING UP

 Synchronization ensures coordinated actions or events in

computing. It prevents issues like race conditions, deadlocks,

and data corruption in concurrent processes.

 Clock Synchronization isEssential for aligning clocks in

distributed systems to avoid time discrepancies.Common

methods include NTP, PTP, and GPS-based

synchronization.Algorithms like Cristian's and Berkeley's handle

internal synchronization without external sources.

78

 Clock Synchronization is necessary Ensures consistent data,

accurate timing, and secure communication.

 NTP is ahierarchical system with strata for time sources.

 NTP utilizes UDP for clock adjustment based on round-trip

delay and offset calculations. It provides fault tolerance,

scalability, and security features.

 GPS-Based Synchronization relies on satellite signals for

precise time and location data. It offers high accuracy and global

coverage, ideal for telecommunications, power grids, and

financial systems.

4.9 ANSWERS TO CHECK YOUR PROGRESS

1. a) True b) False c) False d) False e) True

2. a) GPS b) offset c) delayd) nanoseconds

 e) event ordering

4.10 POSSIBLE QUESTIONS

Short Answer Type Questions:

1. What is clock synchronization in distributed systems?

2. Name two common protocols used for external clock

synchronization.

3. What are the primary challenges in achieving accurate clock

synchronization?

4. Explain the role of NTP in networked environments.

5. Why is GPS-based synchronization highly accurate?

6. Describe Lamport's Logical Clock and its fundamental principle.

7. What problem do Vector Clocks solve that Lamport's Logical

Clocks cannot?

8. What are the key challenges in achieving accurate clock

synchronization in distributed systems?

9. Explain one advantage and one limitation of using Cristian's

Algorithm for clock synchronization.

79

Long Answer Type Questions:

10. Describe the process of internal clock synchronization in

distributed systems. Why is it necessary?

11. Discuss the steps involved in Cristian's Algorithm for clock

synchronization. Provide an example to illustrate its operation.

12. Explain how the Berkeley Algorithm works for clock

synchronization in distributed systems. Provide an example

scenario where the algorithm would be beneficial.

13. Compare and contrast Cristian's Algorithm and the Berkeley

Algorithm in terms of their approach to clock synchronization,

advantages, and limitations.

14. Discuss the challenges and considerations involved in achieving

accurate internal clock synchronization in distributed systems.

How do algorithms like Cristian's and Berkeley's address these

challenges?

15. Discuss the operational principle of Lamport's Logical Clock

with a step-by-step example involving two processes

communicating through messages.

16. Explain the significance of logical clocks in ensuring causality

tracking and event ordering in distributed systems. Provide

examples of scenarios where this is crucial.

17. Describe the Berkeley Algorithm for clock synchronization in

distributed systems. Include its steps, advantages, and

limitations.

18. Discuss the challenges involved in achieving fault-tolerant clock

synchronization in large-scale distributed systems. What

strategies can be employed to mitigate these challenges?

4.11 REFERENCES AND SUGGESTED READINGS

1. "Distributed Systems: Concepts and Design" by George

Coulouris

2. “Designing Data-Intensive Applications" by Martin

Kleppmann

3. “Distributed Systems: Principles and Paradigms" by Andrew

Tanenbaum and Maarten Van Steen

80

UNIT 5:

MESSAGE ORDERING AND CAUSAL ORDER

Unit Structure:

5.1 Introduction

5.2 Unit Objectives

5.3 Message Ordering and Its Importance

5.4 Message Ordering: Lamport’s Logical Clock

5.5 Message Ordering: Vector Clock

5.6 Causal Order of Messages

5.6.1 Lamport's “Happened-Before” Relation

5.7 Birman-Schiper-Stephenson (BSS) Protocol

5.7.1 Key Features

5.7.2 How BSS Protocol Works?

5.7.3 Advantages of BSS Protocol

5.8 Schiper-Eggli-Sandoz (SES) Protocol

5.8.1 Key Features

5.8.2 How SES Protocol Works?

5.8.3 Advantages of SES Protocol

5.9 Summing Up

5.10 Answers to Check Your Progress

5.11 Possible Questions

5.12 References and Suggested Readings

81

5.1 INTRODUCTION

Message ordering is a fundamental aspect of distributed systems,

ensuring that messages exchanged between different components

are processed in a consistent and predictable manner. Proper

message ordering is crucial for maintaining system correctness,

consistency, and reliability, especially in environments where

components are geographically dispersed and operate concurrently.

5.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 understand the Concept of Message Ordering.

 understand how Lamport's Logical Clock is used to establish

a partial order of events in distributed systems.

 analyze the use of Vector Clocks in relation with causal

order of messages.

 discuss the concept of causal ordering of messages and its

significance in maintaining consistency in distributed

systems.

5.3 MESSAGE ORDERING AND ITS IMPORTANCE

In a distributed system, multiple processes or nodes operate

concurrently and communicate by sending and receiving messages.

These processes may execute at different speeds and may not have

access to a global clock, leading to challenges in determining the

correct sequence in which messages should be processed. Message

ordering refers to the rules or protocols that determine the sequence

in which messages are delivered and processed by the receiving

nodes.

The following points emphasize the importance of Message

Ordering in Distributed Systems.

 Consistency and Correctness

Making sure that messages are processed in the right order is

essential for keeping a distributed system consistent.Correct

message ordering prevents anomalies, such as processing a response

82

before the corresponding request or applying updates out of

sequence.

 Synchronization of Operations

In distributed systems, many tasks need to be coordinated across

different nodes. Message ordering makes sure that these tasks,

especially those that depend on each other, are carried out in the

right order, keeping the system running smoothly and logically.

 Causal Relationships

In distributed systems, some events can influence others. Message

ordering methods like causal ordering make sure these connections

are respected, so that an effect isn't processed before its cause. This

is crucial in systems where tasks rely on the outcomes of earlier

actions.

 Fault Tolerance and Recovery

If the network breaks down or a node fails, message ordering

protocols make sure that messages are delivered and processed in

the right order once the system is back up. This keeps the system

consistent and reliable even after failures. Having messages in the

right order also helps with undoing operations correctly if something

goes wrong, by reversing the actions in the order they happened.

 Coordination and Consensus

In distributed systems where nodes must agree on a shared state or

make a group decision, message ordering is vital. Making sure all

nodes process messages in the same order prevents situations where

the system gets divided, ensuring everything stays consistent and

unified.

 Performance Optimization

Well-planned message ordering can make distributed systems run

more efficiently by cutting down on the need for extra

synchronization and coordination. For instance, if some tasks can

happen at the same time without needing strict order, the system can

work faster and with less delay. However, it's important to balance

this with the need for consistency, as being too relaxed with the

order can cause problems with data accuracy.

83

5.4 MESSAGE ORDERING: LAMPORT’S LOGIAL CLOCK

In the previous unit, we talked about Lamport’s Logical Clock in

simple terms. Now, let’s try to get the detail about it. The Lamport

Logical Clock is a mechanism developed by Leslie Lamport in 1978

to order events in a distributed system where a global clock is not

available. In distributed systems, different processes or nodes may

operate independently and communicate through message passing,

making it difficult to determine the order of events accurately.

5.4.1 How Lamport’s Logical Clock Works?

Now, let’s discuss how Lamport Logical Clock Ensures Message

Ordering.

1. Event Timestamps

In a distributed system, each process maintains its own logical

clock. Whenever an event occurs, the logical clock is incremented,

and the event is tagged with the updated timestamp. This timestamp

helps the system to track the order of events across multiple

processes.

There are three types of events that Lamport's Logical Clock

handles:

 Internal events (actions within a process)

 Send events (when a process sends a message to another

process)

 Receive events (when a process receives a message from

another process)

2. Message Send and Receive

 Sending Messages: When a process sends a message, it

increments its logical clock and attaches the clock value to

the message. This ensures that the timestamp reflects the

order of the event when it was sent.

 Receiving Messages: When a process receives a message, it

compares its own logical clock with the timestamp of the

message. The receiving process sets its logical clock to be

the higher of its current value or the message's timestamp,

84

and then increments it. This ensures that events are ordered

properly, even if they occurred on different processes.

For example:

 Process A sends a message with timestamp 10 to Process B.

 Process B has a logical clock of 8 when it receives the

message.

 Process B updates its clock to 11 (the max of its clock and

the message timestamp, plus 1) before processing the

message.

3. The "Happened-Before" Relation (→)

One of the key concepts of Lamport Logical Clock is the

"happened-before" relation (denoted →), which helps define the

order in which events should be processed.

 Internal Order: If an event A happens in the same process

before event B, then A → B.

 Message Ordering: If an event A involves sending a message,

and event B involves receiving that message, then A → B.

 Transitivity: If A → B and B → C, then it follows that A → C.

These rules ensure that messages which are causally related are

processed in the correct order. For example, if Process A sends a

message to Process B, the sending event should be ordered before

the receiving event, preserving the logical sequence of events.

4. Partial Order vs. Total Order

Lamport Logical Clock provides a partial order of events. This

means that it can order events that are causally related (i.e., where

one event influences another), but it cannot definitively order events

that are independent of each other.

For example, if Process A sends a message to Process B, those two

events are causally linked and can be ordered. However, if Process

C performs an action independently of A and B, its events are not

directly related, and the clock may not provide a strict order

between events on A, B, and C.

To obtain a total order of events (which is sometimes required in

systems like distributed databases or consensus algorithms),

additional mechanisms, such as attaching process IDs to

timestamps, are needed.

85

Let’s walk through an example:

Step 1: Initial Setup

o Process A and Process B both start with a logical clock

value of 0.

Step 2: Process A sends a message to Process B

o Process A increments its logical clock to 1, sends the

message, and attaches the timestamp 1 to the message.

Step 3: Process B receives the message

o Process B receives the message when its clock is still 0.

It compares the message timestamp (1) with its own

clock (0), sets its clock to 2 (the higher value + 1), and

then processes the message.

Now, the events have been ordered correctly:

 Process A’s send event has timestamp 1.

 Process B’s receive event has timestamp 2.

This ensures that B processes the message after it was sent,

preserving the correct order of events.

5.4.2 Applications of Lamport’s Logical Clock in Message

Ordering

Now let’s discuss the applications of Lamport’s Logical Clock in

Message Ordering. Following are some of the application areas of

Lamport’s Clock.

Distributed Databases:

 Ensures that updates to the database are applied in the

correct order, even when they are processed by different

nodes in the system. This maintains data consistency across

the distributed system.

Event Logging and Debugging:

 Helps in tracking the sequence of events that occur across

different processes, making it easier to debug and analyze

system behavior.

86

Mutual Exclusion Algorithms:

 Used in algorithms that require processes to access shared

resources without conflicts, ensuring that requests are

ordered and processed correctly.

Consensus Protocols:

In distributed systems where nodes must agree on a particular state,

Lamport Logical Clocks help maintain an agreed-upon order for

decision-making.

5.5 MESSAGE ORDERING: VECTOR CLOCK

Vector clocks are an extension of Lamport's logical clocks, designed

to overcome the limitations of partial ordering and better capture the

causal relationships between events in distributed systems. While

Lamport's clock can order events that are causally related, it can't

detect independent events that happen simultaneously in different

processes. Vector clocks provide a more detailed mechanism,

allowing for the detection of concurrency, which is crucial in

maintaining consistency and ordering in distributed systems.

5.5.1 How Vector Clock Works?

A vector clock is an array of logical clocks, one for each process in

the system. Each process maintains its own vector clock, which

keeps track of both its own events and the events of other processes

it has communicated with.

Components of a Vector Clock:

 Vector Array: Each process maintains a vector (an array of

integers), where each element in the array corresponds to a

logical clock value of a particular process.

o For example, in a system with three processes A, B, and

C, process A's vector clock would be something like [Va,

Vb, Vc], where Va is A's local clock, Vb is what A

knows about B’s clock, and Vc is what A knows about

C’s clock.

 Clock Updates:

o Internal Events: When a process performs an internal

action, it increments its own entry in the vector.

87

o Send Events: When a process sends a message, it

increments its own clock entry in the vector and attaches

the entire vector to the message.

o Receive Events: When a process receives a message, it

compares its vector with the vector attached to the

message. It updates each entry in its vector clock to be

the maximum of its own value and the value in the

received vector.

Vector clocks can ensure that messages are ordered correctly by

comparing the vector timestamps of two events. The comparison

works as follows:

Causal Order: If every entry in vector clock VC1 of event A is less

than or equal to the corresponding entry in vector clock VC2 of

event B, and at least one entry in VC1 is strictly less than VC2, then

event A causally happened before event B. This is denoted as A →

B.

Concurrent Events: If two events’ vector clocks have entries that

are neither completely less than nor greater than each other (i.e.,

some entries are greater and others are less), then the events are

considered concurrent (independent of each other).

Equal Events: If two events have identical vector clocks, they are

considered to have occurred at the same logical point in time.

Example of Message Ordering with Vector Clocks:

Let's consider a system with three processes, P1, P2, and P3, each

maintaining a vector clock.

1. Initial Setup:

o P1: [0, 0, 0]

o P2: [0, 0, 0]

o P3: [0, 0, 0]

2. Internal Event at P1:

o P1 increments its own clock, so the new vector clock at

P1 is [1, 0, 0].

3. P1 Sends a Message to P2:

o P1 increments its clock before sending the message,

making the vector [2, 0, 0].

88

o P1 sends the message to P2 with the attached vector [2,

0, 0].

4. P2 Receives the Message:

o P2 compares its vector [0, 0, 0] with the received vector

[2, 0, 0].

o P2 updates its clock to the maximum of the two vectors

and increments its own clock: [2, 1, 0].

5. P2 Sends a Message to P3:

o P2 increments its own clock to [2, 2, 0] and sends this

vector to P3.

6. P3 Receives the Message:

o P3 updates its vector clock to [2, 2, 1] after receiving the

message.

5.5.2 Applications of Vector Clock in Message Ordering

Now let’s discuss the applications of Vector Clock in Message

Ordering. Following are some of the application areas of Vector

Clock.

Causal Consistency in Distributed Databases:

Causal consistency is a type of rule used in distributed databases to

make sure that actions that depend on each other are done in the

right order. It ensures that if one action affects another, the system

will keep that order across all parts of the network. However,

actions that are not related or happen at the same time can be done

in any order, giving the system more flexibility and better

performance compared to stricter rules like sequential or linear

consistency.

Version Control Systems:

In distributed databases, version control is essential for managing

different versions of data that may be updated by multiple users at

different locations. Since multiple copies of the same data can be

updated simultaneously across nodes, vector clocks help track these

updates, ensuring that versions are handled correctly and conflicts

are resolved in a consistent manner.

89

Concurrency Control:

In distributed databases, concurrency control ensures that multiple

operations, often happening simultaneously across different nodes,

are executed in a manner that preserves consistency. Vector clocks

are an essential tool in managing concurrency by tracking the causal

relationships between events and maintaining the correct order of

operations across distributed systems.

Event Logging and Debugging:

In distributed databases, event logging and debugging are crucial for

tracking operations and identifying issues that may arise during the

execution of distributed processes. Vector clocks are an effective

tool for ordering events and identifying causal relationships, making

them highly valuable for both logging and debugging in such

systems.

5.6 CAUSAL ORDER OF MESSAGES

In distributed systems, different processes communicate by sending

messages to each other. To keep the system working correctly, it's

important that these messages are delivered in the right order.

Causal message ordering is a method that ensures messages are

delivered in the correct sequence when one message affects another.

This is crucial in systems where actions on one node can impact

actions on another. By respecting the order of events, causal

message ordering helps maintain the proper flow and consistency of

operations across the system.

5.6.1 Lamport's “Happened-Before” Relation

In the section 5.4.1, we discussed the “Happened-Before” Relation

in a very brief manner. Now, let’s discuss the same in detail.

The "Happened-Before" relation is a foundational concept in

distributed systems, introduced by Leslie Lamport in his seminal

1978 paper "Time, Clocks, and the Ordering of Events in a

Distributed System." This relation is critical for understanding the

causal ordering of events in systems where multiple processes or

nodes execute concurrently and independently.

In distributed systems, there is no global clock, and events may

occur at different times across different processes. The "Happened-

90

Before" relation, often denoted as A → B, allows the system to infer

causal relationships between events based on the notion of causality,

rather than relying on absolute physical time.

The Key Concepts related to “happened-before” relation are:

 Causal Ordering of Events: The "Happened-Before" relation

helps define the causal relationship between events in a

distributed system. If an event A causally affects event B, we

say that A happened before B, or A → B.

 Partial Ordering: The "Happened-Before" relation creates a

partial order of events in the system. It ensures that events that

are causally related are ordered, but it does not impose any

ordering on events that are independent of each other (i.e.,

events that occur concurrently).

The "Happened-Before" relation (denoted →) is defined by the

following three rules:

1. Within a Single Process:

If two events occur within the same process, the event that occurs

earlier is said to have happened before the later event.

For example, let A and B be two events in a process. If A occurs

before B in the same process, then A → B.

This is a simple linear ordering of events within a single process,

which reflects the natural flow of time.

2. Message Passing Between Processes:

If one process sends a message to another process, the sending event

happens before the receiving event.

For example, let A be the event of sending a message from Process

1 to Process 2, and let B be the event of receiving the message in

Process 2. In this case, A → B, since sending a message must

logically occur before the message can be received.

This rule captures the causal relationship between message-sending

and message-receiving events in distributed systems.

3. Transitivity:

The "Happened-Before" relation is transitive, meaning that if A →

B and B → C, then A → C.

91

For example, if A is an event in Process 1 that happened before B,

and B is an event in Process 2 that happened before C, then A → C.

Transitivity allows the system to infer causal relationships across

multiple events and processes. This property is crucial for

maintaining consistency in distributed systems, as it ensures that all

events that are causally related are ordered correctly.

Now, let’s understand the “happened-before” relation with the help

of an example, Consider three processes in a distributed system: P1,

P2, and P3. Events occur in each process, and some processes send

messages to each other. Below is an illustration of how the

"Happened-Before" relation works:

Fig. 5.1

 A → D because A happens before D in Process P1 (Rule 1).

 A → B because A sends a message to B in Process P2, meaning

A happened before B (Rule 2).

 B → E because B happens before E in Process P2 (Rule 1).

 C → F because C happens before F in Process P3 (Rule 1).

 A → E by transitivity, because A → B and B → E (Rule 3).

This partial ordering only captures events that have a causal

relationship. Events D and F, for example, are concurrent and do not

have a defined causal order because there is no message exchanged

between them and no direct happened-before relationship.

The limitations of this relation are as follows:

 Partial Order: The "Happened-Before" relation only defines a

partial order of events. Events that are concurrent are not

ordered, which means that the relation cannot capture a total

order of events in the system.

P1:

P2:

P3:

A

B

C

D

E

F

92

 Performance Overhead: Tracking causal relationships using

vector clocks or other mechanisms introduces additional

overhead in terms of communication and storage. Each process

must maintain and exchange timestamp information, which can

be costly in large-scale systems.

5.7 BIRMAN-SCHIPER-STEPHENSON (BSS) PROTOCOL

The Birman-Schiper-Stephenson (BSS) protocol is a method used

in distributed systems to ensure causal message ordering. In

distributed systems, messages are exchanged between different

nodes or processes, and it is important to ensure that messages that

are causally related are delivered in the correct order. The BSS

protocol is designed to maintain this order.

5.7.1 Key Features

The key features of the BSS protocol are as follows:

 Causal Message Ordering: The BSS protocol guarantees that if

one message causally affects another, the first message is

delivered before the second. This ensures that messages are

delivered in a sequence that respects their causal relationships,

preventing inconsistencies in the system.

 Vector Clocks for Tracking Causality: Each process in the

system maintains a vector clock that tracks the logical time of

events. When a message is sent, it includes the sender’s current

vector clock value. The receiving process uses this information

to determine the causal relationship between the received

message and other events.

 Decentralized Approach: The BSS protocol operates without

relying on a global clock. Instead, it uses a decentralized method

where each process maintains its own vector clock to track

causality. This is important in distributed systems, where a

global clock is often not feasible due to network delays and

system failures.

 Concurrency Support: The BSS protocol allows independent

or concurrent messages (those without a causal relationship) to

be delivered in any order. This flexibility improves system

93

performance by not imposing unnecessary ordering on messages

that are not causally linked.

 Message Buffering: If a message arrives out of causal order

(e.g., its causal predecessors haven't been received yet), it is

temporarily buffered. The system delivers the message only after

all causally preceding messages have been processed. This

mechanism helps maintain causal consistency in the system.

 Avoids Overhead of Total Ordering: The BSS protocol

imposes partial ordering of messages based on causality, which

is more efficient than total ordering (where all messages must

be ordered). This reduces overhead, especially in systems where

messages are independent or occur concurrently.

5.7.2 How BSS Protocol Works?

Let’s discuss a step-by-step explanation of how the BSS protocol

works:

1. Initialization of Vector Clocks

 Each process in the system maintains a vector clock.

 For a system with N processes, each process P_i keeps a vector

clock VC_i of size N (where i is the process ID).

 Initially, all entries in the vector clock are set to zero: VC_i = [0,

0, 0, ..., 0].

2. Sending a Message

When a process sends a message, it needs to update its vector clock

and attach it to the message.

Step 1: Before sending the message, the process increments its own

entry in the vector clock. For example, if P_1 is sending a message,

it increments VC_1[1] by 1.

o VC_1 = [current values] → VC_1[1] = VC_1[1] + 1.

Step 2: The updated vector clock is attached to the message and

then sent to the receiving process.

o Message M is sent with the timestamp VC_1 attached.

3. Receiving a Message

When a process receives a message, it checks the vector clock

attached to the message and compares it with its own vector clock to

94

decide whether the message can be delivered immediately or must

be delayed.

Step 1: The receiving process compares the vector clock from the

message with its own vector clock. Specifically, it checks if the

message respects the causal ordering by comparing each entry of the

vector clocks.

Step 2: The message can be delivered only if all previous events

that causally affect this message have been delivered. This is

determined by checking the following condition:

o For each P_j (any other process), VC_received[j] ≤

VC_receiver[j].

o This ensures that the process has received all necessary

messages from other processes before processing the current

message.

Step 3: If the condition holds, the message is delivered and

processed. The process then updates its own vector clock by setting

each entry to the maximum of its own vector clock and the received

vector clock:

o VC_receiver[k] = max(VC_receiver[k], VC_received[k]),

for each k.

Step 4: The process then increments its own vector clock entry to

reflect the new event.

4. Message Buffering

If the condition from Step 2 fails (meaning that some previous

causally related messages have not yet been received), the process

cannot deliver the message immediately.

Step 1: The message is buffered (temporarily stored) until the

missing causally related messages are received.

Step 2: The process periodically checks whether the buffered

messages can now be delivered based on updated vector clocks.

5. Message Delivery and Causal Order

 The BSS protocol ensures that messages are delivered in a way

that respects causal dependencies. This is crucial in distributed

systems where the order in which events occur matters for

system consistency.

95

 By maintaining and updating vector clocks and comparing them

with incoming messages' timestamps, the protocol enforces

causal message ordering without requiring a global clock.

6. Concurrency and Independent Messages

 If two messages are causally independent (i.e., they are not

related by the "happened-before" relation), they can be delivered

in any order.

 The BSS protocol does not impose strict ordering on messages

that are not causally linked, improving system performance by

allowing concurrency.

5.7.3 Advantages of BSS Protocol

The BSS Protocol is used in distributed systems to ensure causal

message ordering. It provides several advantages in maintaining

causal consistency across nodes. Here are the key advantages:

1. Causal Message Ordering: The BSS protocol ensures that

messages are delivered in the order of their causal relationships. If

one message causally affects another, it ensures that the first

message is delivered before the dependent one, preserving the

system's logical consistency.

2. Efficient Message Communication: The BSS protocol is

designed to work efficiently in distributed systems where processes

communicate via message passing. It ensures that messages are

delivered in the correct order without excessive overhead,

contributing to more reliable and organized communication across

nodes.

3. Decentralized Control: BSS operates without the need for a

centralized coordinator, which reduces the bottleneck that can be

introduced by centralized systems. Instead, each process

independently ensures that it respects the causal order of messages,

leading to improved system scalability.

4. Handling of Concurrent Messages: The protocol allows for the

concurrent delivery of messages that are not causally related. This

means that independent messages can be processed in any order,

which improves efficiency and throughput by allowing more

parallelism in message processing.

96

5. Message Tagging with Timestamps: The BSS protocol uses

timestamps to track causal dependencies. These timestamps are

included with each message, enabling receiving processes to

determine the correct order for processing. This approach is

relatively simple to implement and ensures consistent ordering

without requiring complex data structures.

6. Fault Tolerance: In the event of failures, the BSS protocol

ensures that causal dependencies are respected once the system

recovers. Messages are not processed until all causally related

messages have been delivered, helping to maintain consistency even

in the presence of failures or network delays.

7. Scalability: Due to its decentralized nature and the use of

timestamps for causal ordering, the BSS protocol is scalable and can

be applied to large distributed systems with many nodes. The lack of

a centralized control mechanism helps it perform efficiently as the

system grows.

8. Supports Asynchronous Systems: The BSS protocol works well

in asynchronous environments where messages can arrive at

different times. It ensures that causal relationships are preserved

even when there is no global clock or synchronization between

processes.

5.8 SCHIPER-EGGLI-SANDOZ (SES) PROTOCOL

The Schiper-Eggli-Sandoz (SES) protocol is a protocol used in

distributed systems to ensure causal message delivery. Like the

Birman-Schiper-Stephenson (BSS) protocol, the SES protocol

ensures that messages are delivered in the correct causal order.

However, it differs in its approach, as it is designed to work in fully

asynchronous systems where there is no assumption about the speed

or synchronization of message delivery between processes.

5.8.1 Key Features

Here are the key features of SES Protocol:

 Causal Message Ordering: The SES protocol ensures that if a

message causally influences another, it is delivered before the

dependent message. This preserves the causal relationships

97

between events across different processes in the distributed

system.

 No Message Buffering: Unlike other protocols like the BSS, the

SES protocol does not rely on buffering undelivered messages.

Instead, the system ensures that causally dependent messages are

always sent in the correct order, so there is no need to delay

message processing.

 Piggybacking of Causal Information: Causal information is

piggybacked on every message sent between processes. Each

message contains metadata (causal information) that informs the

receiver about the causal dependencies of the message.

 Reduced Overhead: The SES protocol is designed to reduce the

overhead associated with ensuring causal ordering. By

eliminating message buffering and managing causal

dependencies through metadata attached to messages, it

simplifies the communication process between distributed

nodes.

 Causal History Tracking: The SES protocol uses causal

histories to track the causal relationships between messages.

Instead of relying on vector clocks, it records the history of past

messages that have been sent, allowing the receiving process to

reconstruct the causal order.

5.8.2 How SES Protocol Works?

Let’s discuss a step-by-step explanation of how the SESprotocol

works. Here’s a step-by-step explanation of how the SES protocol

works:

1. Initialization of Causal History

 Each process in the distributed system maintains a causal

history of the messages it has sent and received.

 This causal history contains information about the dependencies

between messages, i.e., which messages must precede others to

maintain causal order.

2. Sending a Message

When a process sends a message to another process, it attaches its

causal history to the message.

98

Step 1: The process updates its causal history to reflect the current

message being sent.

o The causal history is a record of all previous messages sent or

received by this process that causally affect the current

message.

Step 2: The updated causal history is piggybacked onto the

message. This history provides the receiver with the information it

needs to determine the causal dependencies of the message.

Step 3: The message is sent along with the piggybacked causal

information to the recipient process.

3. Receiving a Message

When a process receives a message, it must check the causal history

attached to the message to decide whether it can deliver the message

immediately or if it must wait for any missing dependencies.

Step 1: The receiving process inspects the causal history

piggybacked on the message. This history lists the messages that

must have been delivered before the current message can be

processed.

Step 2: The process verifies whether it has already received all the

messages that are part of the causal history. If all messages from the

causal history have already been delivered, the message can be

processed immediately.

Step 3: If there are any missing causal dependencies (i.e., messages

listed in the causal history that the receiving process has not yet

received), the message is not processed immediately. Instead, the

process waits until the missing causal messages are received.

4. Message Delivery

Once the receiving process has determined that all necessary causal

messages have been received, it can proceed to deliver the message.

Step 1: The message is delivered to the application layer, and the

process updates its own causal history to reflect the delivery of the

message.

Step 2: The process updates its record of delivered messages,

ensuring that future messages are delivered in the correct causal

order.

99

5. Direct Message Delivery (No Buffering)

Unlike other protocols that use message buffering when a message

arrives out of order, the SES protocol ensures that the sender only

sends messages when the causal order can be respected. This

eliminates the need for buffering at the receiver.

Step 1: Since the causal history is attached to every message, and

each message is sent only when it can be delivered in the correct

order, the receiver does not need to buffer undelivered messages.

Step 2: Messages are delivered immediately as soon as all necessary

causal dependencies are met, improving efficiency.

6. Concurrency and Independent Messages

Concurrent messages (messages that are independent of each other

and have no causal relationship) can be delivered in any order. The

SES protocol does not enforce ordering on messages that are not

causally related, which allows for greater concurrency and

efficiency in distributed systems.

5.8.3 Advantages of SES Protocol

The SES Protocol offers several advantages in distributed systems,

particularly in environments that require causal message ordering.

Here are the key benefits:

1. No Message Buffering: Unlike some other protocols that require

messages to be buffered until all causal dependencies are satisfied,

the SES protocol avoids buffering altogether. This simplifies the

implementation and reduces memory overhead, as messages are

delivered directly when received.

2. Efficient Causal Message Ordering: The SES protocol ensures

that messages are delivered in the correct causal order by

piggybacking causal information on each message. This guarantees

100

that messages with dependencies are processed in the proper

sequence, ensuring system consistency without the need for

complex reordering.

3. Designed for Asynchronous Systems: The SES protocol is

particularly suited for fully asynchronous systems where there is

no assumption about the speed or timing of message delivery. It

ensures causal consistency even in environments where messages

may arrive unpredictably or out of order.

4. Reduced Communication Overhead: By piggybacking causal

information directly onto messages, the SES protocol minimizes the

need for additional control messages or synchronization steps. This

reduces the communication overhead compared to protocols that

require constant coordination or acknowledgment messages.

5. Concurrency Support: The SES protocol allows for concurrent

message delivery when messages are independent or have no causal

relationships. This improves system performance by enabling more

parallelism in message processing.

6. Simpler Causal Dependency Management: The use of causal

history (attached to messages) simplifies the tracking and

management of dependencies between messages. Processes can

easily determine the causal order by examining the history attached

to incoming messages, without needing to maintain complex data

structures like vector clocks.

7. Improved Scalability: The protocol’s efficient handling of

causal relationships and its ability to eliminate message buffering

make it well-suited for large-scale distributed systems. By reducing

the need for centralized control or excessive synchronization, the

SES protocol can scale more easily across multiple nodes.

101

5.9 SUMMING UP

 The importance of Message Ordering in Distributed Systems

are:

o Consistency and Correctness: Ensures correct processing

order to prevent anomalies.

o Synchronization of Operations: Coordinates dependent

tasks across nodes.

CHECK YOUR PROGRESS-I

1. State True or False:

a) Causal consistency ensures that only causally related

operations are executed in the correct order.

b) Lamport's Logical Clock can establish a total order of events

in a distributed system.

c) Vector clocks can detect concurrent events that occur in

different processes.

d) In distributed systems, message ordering is only necessary

in fault-tolerant environments.

e) A message sent with a lower timestamp must always be

received before a message with a higher timestamp.

2. Fill in the blanks:

a) In a distributed system, ensuring that messages are delivered

in the correct order is important for maintaining _______ and

_______.

b) The Lamport Logical Clock is used to order _______ in a

distributed system where a global clock is not available.

c) Vector clocks provide more detailed mechanisms than

Lamport’s clock by allowing for the detection of _______.

d) Causal consistency ensures that actions that are causally

related are executed in the _______ order across all nodes.

e) Vector clocks are commonly used in distributed databases to

manage different _______ of data and ensure consistency.

102

o Causal Relationships: Preserves the cause-effect

sequence of events.

o Fault Tolerance and Recovery: Maintains order after

network or node failures.

o Coordination and Consensus: Helps achieve agreement

on shared states.

o Performance Optimization: Improves efficiency by

balancing consistency and flexibility.

 The mechanism of Lamport’s Logical Clock is as follows:

o Event Timestamps: Processes increment clocks for

internal, send, and receive events.

o Message Send/Receive: Sender increments and attaches

the timestamp; receiver updates its clock to ensure

proper ordering.

o Happened-Before Relation (→): Defines causal

relationships using internal order, message ordering, and

transitivity.

o Partial vs. Total Order: LLC provides partial ordering,

and additional mechanisms are needed for total order.

 The mechanism of Vector Clock is as follows:

o Vector Array: Each process maintains a vector clock

tracking events of itself and others.

o Clock Updates: Internal events, send, and receive events

update the vector clock.

o Causal Order: Events are ordered by comparing vector

entries.

o Concurrency Detection: VC detects concurrent

(independent) events.

 The operation of BSS Protocol is as follows:

o Vector Clocks: Each process maintains a vector clock to

track events.

o Message Sending: A process increments its vector clock

and attaches it to the message.

103

o Message Receiving: The receiver checks vector clocks to

determine if the message can be delivered or should be

delayed.

o Message Buffering: If causality is violated, messages are

buffered until dependencies are resolved.

o Concurrency: Independent messages are delivered in any

order.

 The operation of BSS Protocol is as follows:

o Causal History: Each process maintains a causal history

of past messages.

o Message Sending: Causal history is attached to the

message.

o Message Receiving: The receiver checks causal history

to ensure all dependencies are met before delivery.

o Direct Delivery: Messages are delivered immediately

when causal dependencies are satisfied.

o Concurrency: Independent messages are delivered

without enforcing an order.

5.10 ANSWERS TO CHECK YOUR PROGRESS

1. a) True b) False c) True d) False e) False

2. a) consistency, correctness b) events c) concurrency

d) correct e) versions

5.11 POSSIBLE QUESTIONS

Short Answer Type Questions:

1. What role does Lamport's Logical Clock play in distributed

systems?

2. How are causal relationships between events maintained in

distributed systems?

3. How does vector clock differ from Lamport's Logical Clock?

4. Why is causal consistency important in distributed databases?

104

5. What does the "happened-before" relation mean in Lamport's

Logical Clock?

6. How do vector clocks help in version control systems?

7. What is the main limitation of Lamport's Logical Clock?

Long Answer Type Questions:

8. Discuss the importance of message ordering in distributed

systems.

9. Discuss how Lamport’s Logical Clock ensures message ordering

in distributed systems.

10. Explain how vector clocks improve over Lamport's Logical

Clock in detecting concurrent events.

11. Explain how vector clocks are used in event logging and

debugging in distributed systems.

12. What are the trade-offs between using total order and partial

order message delivery in distributed systems?

5.12 REFERENCES AND SUGGESTED READINGS

1. "Distributed Systems: Concepts and Design" by George

Coulouris

2. “Designing Data-Intensive Applications" by Martin Kleppmann

3. “Distributed Systems: Principles and Paradigms" by Andrew

Tanenbaum and Maarten Van Steen

×××

105

UNIT: 6

DISTRIBUTED SNAPSHOT AND TERMINATION

DETECTION

Unit Structure:

6.1 Introduction

6.2 Unit Objectives

6.3 Global State in Distributed Systems

6.3.1 Importance of Capturing Global State in Distributed

Systems

6.3.2 Challenges in Capturing Global State in Asynchronous

Systems

6.4 Chandy-Lamport Snapshot Algorithm

6.4.1 Assumptions and Prerequisites for Chandy-Lamport

Algorithm

6.4.2 Steps Involved in Chandy-Lamport Algorithm

6.5 Termination Detection in DistributedSystems

6.5.1 Importance of Termination Detection in Distributed

Systems

6.5.2 Challenges in Termination Detection in Distributed

Systems

6.6 Dijkstra-Scholten Algorithm

6.6.1 Assumptions and Prerequisites for Dijkstra-Scholten

Algorithm

6.6.2 Steps Involved in Dijkstra-Scholten Algorithm

6.7 Huang's Algorithm for Termination Detection

6.7.1 Steps Involved in Huang's Algorithm

6.8 Summing Up

6.9 Answers to Check Your Progress

6.10 Possible Questions

6.11 References and Suggested Readings

106

6.1 INTRODUCTION

A Distributed Snapshot is a way to take a picture of the global state

of a distributed system without stopping it. It helps record the status

of all processes and the messages being sent between them, allowing

us to understand the system's behavior or detect problems.

While Termination Detection is used to figure out when all the

processes in a distributed system have finished their work and no

more messages are being sent. This is important to know when the

entire system has completed its tasks, especially when processes are

waiting for messages.

6.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 understand the Concept of Global State in Distributed

Systems.

 study the Chandy-Lamport Snapshot Algorithm.

 explore the Message-Driven Approach.

 understand how the Dijkstra-Scholten algorithm detects

termination in distributed computations.

 understand Termination Detection in Distributed Systems.

6.3 GLOBAL STATE IN DISTRIBUTED SYSTEMS

Global State in Distributed Systems refers to the collective state of

all processes and communication channels at a particular instant in

time across a distributed system. Since distributed systems consist

of multiple, independent processes that run concurrently and

communicate through messages, capturing a consistent global state

is a complex task.

6.3.1 Importance of Capturing Global State in Distributed

Systems

Capturing the Global State in Distributed Systems is important for

several reasons, as it plays a crucial role in ensuring correct and

efficient operation in scenarios where distributed systems need

107

coordination, consistency, or failure detection. Below are the key

reasons why capturing global state is important:

1. Consistency and Correctness:

 Capturing a consistent global state helps in recovering from

failures. By recording the global state, the system can

resume operation from a known, valid checkpoint in case of

failures (check pointing).

 Debugging a distributed system is challenging due to the

concurrent and independent execution of processes.

Capturing global states helps in analysing the behavior of the

system and identifying bugs or abnormal behaviours.

 A consistent global state is needed to detect deadlocks in

distributed systems, where two or more processes are

waiting on each other indefinitely.

2. Snapshot Algorithms:

 Global states are used in algorithms like the Chandy-

Lamport snapshot algorithm to capture a "snapshot" of the

system’s state without stopping the distributed computation.

This snapshot can be used for monitoring, checkpointing,

and rollback recovery.

 Some algorithms for detecting global termination rely on

capturing the global state to determine when all processes

have finished their tasks and no messages are in transit.

3. Distributed Consistency and Coordination:

 To make meaningful decisions in distributed systems, it is

important to capture a consistent cut of the system’s global

state. This is essential for ensuring that actions taken on the

basis of the global state are correct.

 Capturing global states is crucial in coordination protocols

like distributed transactions, where the consistency of the

system state needs to be guaranteed across multiple

processes.

4. Performance Monitoring and Optimization:

 Capturing global states allows for performance monitoring

by providing insights into the load distribution, resource

utilization, and bottlenecks across the distributed system.

108

This information can be used to optimize resource allocation

and system efficiency.

 Understanding the global state can help in dynamically

adjusting the distribution of tasks across nodes to ensure

even load and prevent some nodes from becoming

overwhelmed.

5. Event Ordering and Causal Consistency:

 In distributed systems, understanding the cause-and-effect

relationships between events is important. Capturing the

global state helps in determining which events are causally

related and ensures that these relationships are respected

when reasoning about system behavior.

 Global state information is essential for implementing

different consistency models in distributed databases and

systems where processes operate on shared data.

6. Failure Detection and Recovery:

 By capturing a consistent global state, the system can

"rollback" to a previous state if an error or inconsistency is

detected, ensuring that the system can continue operating

correctly.

 State Synchronization: Global state capture helps in

synchronizing the system’s state after failures or partitions,

ensuring that all processes eventually converge to a

consistent view of the system.

7. Security and Fault Diagnosis:

 Capturing a global state can assist in detecting security

breaches or anomalous behavior, allowing for quick

identification of compromised processes.

 It helps in diagnosing faults or abnormal states in the system,

leading to faster resolution and preventing widespread

system failures.

109

6.3.2 Challenges in Capturing Global State In Asynchronous

Systems

Capturing the Global State in asynchronous distributed systems

presents several challenges due to the nature of these systems, where

processes operate independently, communicate by message passing,

and do not share a global clock. Unlike synchronous systems, where

processes can assume certain timing guarantees, asynchronous

systems have no such assumptions. This makes it difficult to capture

a consistent global state at a single point in time.

The key challenges in capturing global state in asynchronous

systems are as follows:

 Lack of a Global Clock: In asynchronous systems, there is no

global clock or a shared notion of time across processes. As a

result, each process maintains its own local clock, and messages

between processes can experience arbitrary delays. This lack of

synchronized time makes it impossible to capture a snapshot of

the entire system at the same physical moment.

Due to the absence of a global clock, determining the causal

relationship between events across different processes is

complex. It’s difficult to establish a consistent global view

where events are properly ordered according to cause and effect.

 Concurrent Message Passing: At any given time, there may be

messages in transit between processes. These messages have

been sent but not yet received, creating ambiguity about whether

they should be included in the global state. If a message is in

flight, the sender considers it part of its past state, while the

receiver may not yet be aware of it.

Message delivery is unpredictable in asynchronous systems. A

message might take a long time to reach its destination or arrive

out of order. This variability complicates the process of

determining a consistent global state, as messages may arrive

after the snapshot has been initiated, introducing inconsistencies.

 Inconsistent Local States: Each process in a distributed system

maintains its own local state, which evolves independently of

other processes. Since processes execute concurrently, their

local states may not be consistent with each other when captured

at arbitrary points in time. Capturing the local state of each

110

process does not automatically yield a consistent global state due

to these differences.

In an asynchronous system, there’s no guarantee that the

snapshot will be initiated at the same time across all processes.

As a result, processes may capture their local states at different

points in their execution, leading to inconsistencies when

combining the snapshots into a global state.

 Difficulty in Ensuring Consistency: To ensure a consistent

global state, it is necessary to capture the state of processes and

the messages in transit in a way that reflects a coherent and

meaningful snapshot of the system. A global state is considered

consistent if it reflects a valid "cut" of the system’s execution,

where no messages are counted both in the sender’s past state

and in the receiver’s future state. However, achieving such

consistency is difficult in an asynchronous system.

An inconsistent cut occurs when part of the snapshot reflects

events from the future and another part from the past (e.g., the

sender thinks a message has been sent, but the receiver hasn’t

received it yet). Handling such inconsistent cuts is challenging

and requires special mechanisms like marking channels or

delaying snapshot collection until certain conditions are met.

 State Coordination Among Processes: Asynchronous systems

are typically decentralized, meaning that there is no global

controller to coordinate when and how snapshots should be

taken. Processes need to coordinate among themselves to agree

on capturing a consistent global state, but in an asynchronous

environment, coordinating this activity is difficult without

introducing further delays or inconsistencies.

Ensuring that processes capture their states at roughly the same

logical point in time without halting the entire system is

complex. Processes must be able to continue their normal

operations while capturing snapshots, making it harder to

coordinate the snapshot process.

 Overhead and Performance Costs:Capturing global states,

especially in large-scale systems, can incur significant

performance overhead. The communication required to

propagate control messages (like snapshot initiation markers)

and the delays introduced to ensure consistency can reduce

111

system performance. Balancing the frequency and efficiency of

snapshot capture with system throughput is a key challenge.

Storing and managing the state of all processes and channels,

particularly for large systems with many components, can

consume a lot of memory and computational resources. This can

limit the feasibility of frequent snapshot captures in resource-

constrained environments.

 Handling Non-Deterministic Events:In distributed systems,

non-deterministic events such as message loss, message

duplication, or variable message delays introduce further

uncertainty when capturing a global state. Processes might

behave differently based on these events, and replicating a

consistent global state becomes difficult if such non-

deterministic events are not properly accounted for.

If a global state is captured inconsistently due to non-

deterministic behavior, rolling back to such a state after a failure

can lead to further inconsistencies or even system corruption.

 Capturing Channel State:In asynchronous systems, capturing

the state of communication channels (i.e., the messages in

transit) is especially challenging. Since messages may be

delayed, it is difficult to determine which messages should be

considered part of the snapshot. Including or excluding

messages in transit may lead to inconsistencies if not handled

properly.

Techniques like channel marking (used in the Chandy-

Lamport snapshot algorithm) are required to capture the state

of communication channels. However, the process of marking

channels and ensuring that all processes adhere to the snapshot

protocol adds complexity to the global state capture process.

 Dynamic System Changes:Asynchronous systems are often

dynamic, where processes or nodes can join or leave the system,

and failures can occur at any time. Capturing a global state in the

presence of failures is difficult, as the system topology can

change during the snapshot process, leading to incomplete or

outdated snapshots.

If new processes are created or existing processes terminate

during the snapshot process, the global state must account for

112

these changes. This dynamic behavior complicates the process

of capturing a coherent global state.

6.4 CHANDY-LAMPORT SNAPSHOT ALGORITHM

This algorithm is widely used for capturing consistent global

snapshots in asynchronous systems. It solves many of the challenges

by introducing control messages (markers) that propagate through

the system to help capture both the local states of processes and the

state of communication channels.

6.4.1 Assumptions and Prerequisites for Chandy-Lamport

Algorithm

The assumptions and prerequisites those ensures the Chandy-

Lamport algorithm works effectively in asynchronous distributed

systems, by allowing a consistent global snapshot to be captured

without halting the system, are as follows:

 The algorithm assumes that the system is asynchronous.

Messages sent between processes can have arbitrary delays, but

they will eventually be delivered.

 Messages are reliably delivered, but the delivery may be

delayed.

 The algorithm assumes that communication channels between

processes are reliable and that messages sent between processes

will eventually arrive, although the order of arrival may be

unpredictable.

 Channels are FIFO (First-In-First-Out). This assumption

ensures that messages from a process arrive at their destination

in the same order they were sent, simplifying the tracking of

message states.

 Every communication link (channel) between two processes is

unidirectional, meaning each channel allows messages to flow in

only one direction. If two processes need to communicate both

ways, there are two channels: one for each direction.

 Processes can continue their normal operations while the

snapshot is being captured. There is no requirement for

processes to pause or synchronize with others during the

snapshot collection.

113

 Each process can send and receive messages as usual during the

snapshot algorithm execution.

 The algorithm is typically initiated by a single process known as

the initiator. The initiator process triggers the snapshot

procedure by sending marker messages to all other processes

with which it shares a communication channel.

 Once a process receives a marker message for the first time, it

records its local state and begins the snapshot procedure for its

outgoing channels.

 The algorithm assumes that no process fails during the execution

of the snapshot. All processes are expected to remain functional

and participate fully in the snapshot-taking procedure.

 If a process crashes or fails during the snapshot process, the

global state capture could be incomplete or inconsistent.

 Each process knows the set of processes with which it directly

communicates and the channels connecting them.

6.4.2 Steps Involved in Chandy-Lamport Algorithm

Following is the step-by-step explanation of Chandy-Lamport

Algorithm.

1. Initiation by a Process:

o A process (called the initiator) begins the snapshot process.

o The initiator records its local state (this includes process

variables, resources, etc.).

o The initiator sends a marker message to all processes with

which it has outgoing communication channels.

2. Receiving a Marker Message for the First Time:

o When a process receives a marker for the first time from any

incoming channel, it:

o Records its local state immediately.

o Marks the incoming channel on which the marker was

received as empty (no messages are in transit on that

channel).

o Sends a marker message to all its neighbouring processes

with outgoing channels.

114

o Starts recording the messages arriving on its other

incoming channels (those where it has not yet received a

marker).

3. Receiving Subsequent Markers on Other Channels:

o When a process receives a marker on an incoming channel

after recording its local state, it:

o Stops recording the state of that incoming channel.

o The messages received on that channel after the local

state was recorded but before the marker arrived are

considered part of the channel's state (i.e., in-transit

messages).

4. Propagation of Marker Messages:

o After a process records its local state, it propagates marker

messages to all its neighbouring processes (i.e., processes

with which it shares an outgoing communication channel).

o The propagation continues until all processes receive marker

messages on all their incoming channels.

5. Completion of Snapshot:

o The snapshot is complete for a process when:

o The process has recorded its local state.

o It has received a marker on all its incoming channels and

recorded the state of each channel.

o The global snapshot is complete when all processes in the

system have completed this process.

6. Collecting the Global State:

o Once the snapshot is complete, the global state consists of:

o The local state of each process.

o The state of all communication channels, which includes

messages that were in transit when the snapshot was

initiated.

Now, let’s understand the above steps with the help of an example.

Suppose three processes: P1, P2, and P3, connected by

communication channels. P1 initiates the snapshot.

1. P1 initiates the snapshot:

o P1 records its local state.

o P1 sends a marker message to P2 and P3.

115

2. P2 receives the marker from P1:

o P2 records its local state.

o P2 records the channel state from P1 to P2 as empty, as the

marker indicates that no new messages are in transit on that

channel.

o P2 sends marker messages to its outgoing neighbours (for

simplicity, assume P2 sends a marker back to P1 or to other

processes, if connected).

o P2 continues to record any incoming messages from

channels where it hasn’t received a marker.

3. P3 receives the marker from P1:

o P3 records its local state.

o P3 records the channel state from P1 to P3 as empty.

o P3 sends marker messages to any outgoing channels (for

example, it may send a marker to P2).

o P3 also starts recording incoming messages from other

channels, such as messages from P2 to P3, until it receives a

marker from P2.

4. P2 receives the marker from P3:

o P2 stops recording the state of the channel from P3 to P2.

Any messages that arrived before the marker was received

are recorded as part of the channel state.

Once every process has received markers on all its incoming

channels and recorded its local state, the snapshot is complete.

6.5 TERMINATION DETECTION IN DISTRIBUTED

SYSTEMS

Termination detection in distributed systems refers to the process

of determining whether a distributed computation or algorithm has

completed its execution, meaning that all processes have finished

their tasks and no messages are in transit. In distributed

environments, where processes operate independently and

communicate through message-passing, it can be challenging to

know when the entire system has terminated because there is no

centralized control or global clock.

116

6.5.1 Importance of Termination Detection in Distributed

Systems

Termination detection in distributed systems is crucial because it

allows the system to determine when a distributed computation has

completed, ensuring that all processes have finished their tasks and

no messages are in transit.

Below are the key reasons why Termination Detection is important

in Distributed Systems.

 Efficient Resource Utilization: Termination detection allows

for the timely release of resources (e.g., CPU, memory, network

bandwidth). Once the computation is complete, system resources

can be reallocated or freed, preventing resource wastage and

improving system efficiency.

 Synchronization in Distributed Algorithms: Many distributed

algorithms require a well-defined point of termination before

moving to the next stage. Detecting when all tasks are finished

ensures that distributed processes remain synchronized, which is

crucial for algorithms like distributed consensus, leader election,

and distributed sorting.

 Fault Tolerance and Recovery: In systems designed for fault

tolerance, termination detection helps identify when a

computation has finished, allowing the system to enter a

recovery or check pointing phase. It prevents premature check

pointing or incorrect fault recovery when processes are still

active.

 Task Completion in Distributed Systems: Distributed

computations often involve multiple processes running

concurrently across different machines. Without termination

detection, it is difficult to determine when all tasks have

finished, especially in asynchronous systems where messages

may be delayed or lost. Termination detection provides a clear

signal that the distributed task has completed.

 Consistency in Results: Correct termination detection ensures

that no part of the distributed system is prematurely stopped or

ignored, leading to consistent and correct results. This is

especially important in critical applications like financial

transactions, distributed databases, and scientific computations.

117

 Coordination for System Maintenance: In environments such

as cloud or cluster computing, it is necessary to know when a

distributed task is complete so that maintenance activities like

system upgrades, backups, or scaling can be performed without

disrupting active computations.

 Deadlock and Livelock Detection: Termination detection can

also be used as a tool to detect deadlocks or livelocks in

distributed systems. If processes remain active indefinitely

without making progress, the termination detection mechanism

can identify potential issues with the computation or

communication patterns.

6.5.2 Challenges in Termination Detection in Distributed

Systems

Termination detection in distributed systems is challenging due to

asynchrony, lack of global visibility, the presence of in-transit

messages, and potential network failures. These factors make it

difficult to determine when all processes have completed their tasks

and no messages are pending, necessitating sophisticated algorithms

to ensure accurate detection and coordination.

The key challenges in Termination Detection in distributed systems

are as follows:

 Asynchrony: In distributed systems, processes and message

passing are typically asynchronous, meaning that there is no

global clock to coordinate actions. Processes may execute at

different speeds, and messages may be delayed or arrive out of

order, making it difficult to determine when all processes have

become idle and no messages are in transit.

 No Global State Visibility:Sincedistributed systems are

decentralized, no single entity has a complete view of the entire

system. Each process only knows about its own state and its

direct interactions with other processes. This makes it hard to

detect when all processes have finished their tasks and when the

system as a whole has terminated.

 Messages in Transit:Even if all processes are in a passive state

(i.e., not performing any tasks), there could still be messages in

transit between processes. These in-transit messages can activate

a passive process, meaning the system hasn’t truly terminated.

118

Accurately detecting and accounting for in-transit messages is a

major challenge.

 False Termination Detection:If termination is detected

prematurely (e.g., assuming no messages are in transit when

some still are), the system may conclude that the computation

has finished when in fact, some tasks remain. This can lead to

incorrect results or unfinished tasks.

 Distributed Coordination:Detecting termination requires

coordination across multiple processes. Ensuring that all

processes correctly communicate their state without errors or

delays, while accounting for network latency and failures, adds

complexity to termination detection protocols.

 Network Failures and Partitions:Distributed systems are

prone to network failures, including message loss, delays, and

network partitions (where parts of the system become

disconnected). These failures can make it difficult to detect the

termination of processes or to ensure that all processes have

been accounted for in the detection process.

 Scalability:As the number of processes and communication

channels in the system increases, the complexity of termination

detection also grows. More processes mean more

communication and coordination, which increases the likelihood

of delays, miscommunication, or failures in detecting

termination accurately.

 Process and Message State Changes:Processes may switch

between active and passive states multiple times during

computation, making it challenging to track the exact state of all

processes. Additionally, if a process is falsely assumed to be

passive, any remaining activity could cause an incorrect

termination signal.

6.6 DIJKSTRA-SCHOLTEN ALGORITHM

The Dijkstra-Scholten Algorithm is a method used in distributed

systems to check when all processes have finished their work and no

messages are being sent between them. This algorithm is important

because it helps determine when everything is done without needing

a central authority to oversee the process. It ensures that the

detection of completion is done efficiently and correctly.

119

6.6.1 Assumptions and Prerequisites for Dijkstra-Scholten

Algorithm

The Dijkstra-Scholten Algorithm relies on certain assumptions and

prerequisites for its correct functioning in a distributed system.

These conditions are necessary to ensure that the algorithm can

effectively detect when the system has terminated.

The assumptions for the algorithm are:

 Reliable Communication Channels: The algorithm assumes

that the communication between processes is reliable. Messages

must be delivered without being lost, duplicated, or corrupted.

Each message should eventually reach its destination.

 Asynchronous System: The system is asynchronous, meaning

processes do not operate in lockstep or have synchronized

clocks. Each process can execute at its own pace, and message

delivery times can vary, but no process waits for a global clock.

 Spanning Tree Structure: A spanning tree exists over the

distributed system. This structure is necessary because the

algorithm passes tokens (or markers) up the tree to detect

termination. The root of the tree (initiator) can then decide when

the system has finished.

 Processes Have Two States:Each process can be either active

(performing some task or waiting for a message) or passive (idle

or waiting). A passive process can only become active again

upon receiving a message from another process.

 Finite Number of Messages:The algorithm assumes that the

system will eventually stop sending messages. If messages are

continually exchanged without termination, the algorithm won't

work as there would always be messages in transit.

 No Failure during Execution:The algorithm assumes that no

process or communication channel fails during its execution. It

does not handle situations where processes crash or the network

breaks down.

The prerequisites for the algorithm are:

 Initiator Process:A specific process, known as the initiator,

must start the termination detection procedure. It is responsible

120

for triggering the detection by passing tokens down the spanning

tree to other processes.

 Tracking of Messages:Each process must track the messages it

sends and receives. This tracking is necessary to ensure that it

knows when it has finished sending all of its messages and can

safely declare itself passive.

 Knowledge of Parent and Children in the Tree:Each process

in the system must know its parent and children in the spanning

tree structure. This information is vital for propagating the

termination signals correctly.

 Passive Process Sends Termination Signal:Once a process

becomes passive and has no pending messages, it should be

capable of sending a signal (marker) to its parent, indicating that

it is done.

6.6.2 Steps Involved in Dijkstra-Scholten Algorithm

The algorithm works by organizing processes into a spanning tree

and using a token-passing mechanism to signal the completion of

work. Below is a step-by-step explanation of how the algorithm

works:

1. Initialization:

o One process (known as the initiator) begins the termination

detection process.

o The system is represented as a spanning tree, with the

initiator as the root.

2. Process States:

o Each process can be in one of two states:

 Active: The process is doing some work or waiting for a

message.

 Passive: The process is idle and has no work to do.

3. Sending a Message (Establish Dependency):

o When an active process sends a message to another process,

it marks that process as its child (dependent) and itself as the

parent.

121

o The sender process keeps track of how many messages it has

sent to each child.

4. Becoming Passive:

o When a process finishes its work and has no more messages

to send, it transitions to a passive state.

o It does not immediately inform its parent; instead, it waits

until it receives acknowledgments from all its children (i.e.,

all processes it has sent messages to must become passive

first).

5. Receiving a Termination Signal (Marker):

o Once a process receives a termination signal from all its

children, it knows that all its dependents have finished.

o The process can now send a termination signal (marker) to

its own parent, indicating that it has finished, and all its

dependents are passive.

6. Sending Termination Signals to Parent:

o When a passive process has sent termination signals to all its

parents and received acknowledgments from all children, it

forwards the termination signal to its own parent.

o This signal propagation continues until it reaches the

initiator.

7. Termination Detection at the Initiator:

o The initiator (root process) collects termination signals from

all its children.

o When the initiator has received confirmation from all its

children that they are passive, it concludes that the entire

system has terminated (i.e., all processes are passive, and no

messages are in transit).

8. Global Termination:

o Once the initiator determines that all processes are done, the

termination is declared, and the distributed system can move

on to other tasks, release resources, or shut down.

Let’s understand the workflow with the help of an example:

1. Active Process A sends messages to processes B and C, making

them its children.

122

2. Process A then becomes passive after finishing its work and

receiving acknowledgments from B and C.

3. B and C finish their work, become passive, and send termination

signals to A.

4. Once A receives termination signals from B and C, it sends its

own termination signal to its parent (say, Process D).

5. The termination signal propagates up the tree until it reaches the

root (initiator), which then declares that the system has

terminated.

6.7 HUANG'S ALGORITHM FOR TERMINATION

DETECTION

Huang's Algorithm is a popular method for detecting when all

processes in a distributed system have finished their tasks and no

messages are still being exchanged. It works by using a system of

credit distribution and collection, where credits are passed along

with messages. This algorithm is especially useful in asynchronous

systems, where processes don't have to run in sync with each other.

The Concepts of Huang's Algorithm are as follows:

 A process (initiator) starts with an initial amount of credit (often

set to 1). As it sends messages to other processes, it distributes

fractions of its credit along with the messages.

 Each process can be either active (performing computations) or

passive (idle, with no pending tasks).

 A process collects credit as it receives messages and completes

tasks. When a process becomes passive, it passes its

accumulated credit back to the initiator.

 Termination is detected when the initiator regains its original

amount of credit, and all processes are in a passive state.

6.7.1 Steps Involved in Huang's Algorithm

Huang’s Algorithm uses a credit distribution and collection system

to track the state of processes. When the initiator process regains all

of its original credit and all processes are passive, the system can

safely declare that termination has occurred.Below is a step-by-step

explanation of how the algorithm works:

123

1. Initialization:

o One process is designated as the initiator and starts the

algorithm with 1 unit of credit.

o All other processes start with zero credit.

2. Message Sending with Credit:

o When an active process sends a message to another process,

it divides its current credit and sends a fraction of the credit

along with the message.

o For example, if Process A sends a message to Process B, it

might send 0.5 units of credit to B and keep the remaining

0.5 units for itself.

3. Receiving a Message:

o When a process receives a message, it adds the credit that

came with the message to its own credit.

o If the receiving process was passive and now has some

credit, it becomes active and begins performing its task.

4. Becoming Passive:

o Once a process finishes its task and has no more messages to

send, it becomes passive.

o A passive process sends any remaining credit back to the

initiator or its parent (if a parent-child structure is used).

5. Credit Collection:

o As processes finish and become passive, they return their

remaining credit (if any) to the initiator.

o Credit flows back along the path through which it was

originally distributed.

6. Termination Detection:

o The initiator continuously collects credit from passive

processes.

o Termination is detected when the initiator has regained the

full 1 unit of credit, and all processes in the system are

passive.

o This signals that all tasks are completed, and there are no

messages left in transit.

124

6.8 SUMMING UP

 Global State refers to the collective state of all processes and

communication channels at a particular point in time in a

distributed system.

 Capturing a consistent global state is complex due to the

concurrent and independent execution of processes.

CHECK YOUR PROGRESS-I

1. State True or False:

a) The FIFO property of communication channels is not

required for the Chandy-Lamport algorithm to work.

b) The global state snapshot can be used for rollback recovery

in case of system failure.

c) The lack of causal relationships between events makes

capturing global state easier in asynchronous systems.

d) Capturing global state is essential for debugging distributed

systems.

e) In asynchronous distributed systems, all processes share a

common global clock.

2. Fill in the blanks:

a) The Chandy-Lamport Algorithm is used to capture a

consistent __________ in asynchronous distributed systems.

b) In distributed systems, the lack of a __________ makes

capturing a global state more complex.

c) A process becomes aware of an incoming message in the

Chandy-Lamport algorithm after receiving a __________

message.

d) In the Chandy-Lamport algorithm, once a process records its

local state, it sends a __________ to all neighbouring

processes.

e) The global state of a system includes the state of all

processes and __________ between them.

125

 Capturing global state helps in failure recovery and check

pointing.

 Global State helps to detect deadlocks in distributed systems.

 Global State used in algorithms like Chandy-Lamport for

capturing system states without halting.

 Global State helps determine causal relationships between

events.

 Few of the challenges in Capturing Global State in

Asynchronous Systems are:

o Difficult to capture a snapshot across processes with no

synchronized time.

o Messages in transit create ambiguity in the global state.

o Achieving a coherent global state that reflects a valid

system cut is complex.

o Coordinating state capture without halting processes is

difficult.

o Difficult to track messages in transit accurately.

o Changes like process failures make capturing global

states challenging etc.

 Chandy-Lamport Algorithm is widely used for capturing

consistent global snapshots in asynchronous systems.

 Control messages (markers) help capture local states and

communication channel states without stopping the system.

 Termination detection ensures that all processes in a distributed

system have completed their tasks and no messages are in

transit.

 Importance of Termination Detection are:

o Frees up system resources once tasks are completed.

o Allows correct progression to the next phase in

algorithms like consensus and leader election.

o Ensures accurate recovery or check-pointing.

o Provides a clear signal when distributed computations

finish.

126

o Prevents premature termination, ensuring accurate

results.

o Helps schedule tasks like upgrades once all work is done.

o Identifies potential issues like deadlocks or livelocks.

 Dijkstra-Scholten Algorithm is a distributed termination

detection algorithm using a spanning tree to track process

dependencies.

 Huang's Algorithm uses credit distribution and collection to

detect termination.

6.9 ANSWERS TO CHECK YOUR PROGRESS

1.a) False b) True c) False d) True e) False

2.a) global state b) global clock c) marker

d) markere) communication channels

6.10 POSSIBLE QUESTIONS

Short Answer Type Questions:

1. What is the purpose of the Chandy-Lamport algorithm in

distributed systems?

2. How do marker messages work in the Chandy-Lamport

algorithm?

3. What are the two main components of the global state in a

distributed system?

4. Why is capturing a global state in asynchronous systems more

challenging than in synchronous systems?

5. What role does a global state play in detecting deadlocks in

distributed systems?

Long Answer Type Questions:

6. Explain the significance of termination detection in distributed

systems.

7. What are the primary challenges in termination detection in

distributed systems?

127

8. How does the Dijkstra-Scholten algorithm detect termination in

a distributed system?

9. What are the key challenges that Huang's algorithm addresses in

asynchronous systems, and how does it solve them?

10. Discuss the importance of resource utilization in distributed

systems in the context of termination detection.

6.11REFERENCES AND SUGGESTED READINGS

1. "Distributed Systems: Concepts and Design" by George

Coulouris

2. “Designing Data-Intensive Applications" by Martin Kleppmann

3. “Distributed Systems: Principles and Paradigms" by Andrew

Tanenbaum and Maarten Van Steen

×××

(4)

BLOCK- II

Unit 1: Introduction to Mutual Exclusion and Performance

 Metrics

Unit 2: Token-Based and Non-Token-Based Mutual

 Exclusion Algorithms

Unit 3: Election Algorithms

Unit 4: Distributed Scheduling and Load Distribution

Unit 5: Deadlocks in Distributed Systems

Unit 6: Deadlock Detection and Resolution Algorithms

128

UNIT: 1

INTRODUCTION TO MUTUAL EXCLUSION AND

PERFORMANCE METRICS

Unit Structure:

1.1 Introduction

1.2 Unit Objectives

1.3 Mutual Exclusion in Distributed Systems

1.3.1 Importance of Mutual Exclusion in Distributed

Systems

1.4 Requirements of Mutual Exclusion Algorithms

1.5 Performance Measurement Metrics in Distributed Systems

1.6 Classification of Mutual Exclusion Algorithms

 1.6.1 Centralized Algorithms

 1.6.2 Distributed/Decentralized Algorithms

1.7 Summing Up

1.8 Answers to Check Your Progress

1.9 Possible Questions

1.10 References and Suggested Readings

1.1 INTRODUCTION

In distributed systems, multiple processes often need to access

shared resources like files, data structures, or devices. To avoid

conflicts and ensure data consistency, it is important to manage

access to these resources. This management is done through mutual

exclusion, which makes sure that only one process can use a shared

resource at a time. Mutual exclusion is a key part of distributed

computing, helping with synchronization and maintaining

consistency between processes in a network.

In this unit, we will cover the basics of mutual exclusion, the

requirements of mutual exclusion algorithms, and the metrics used

to measure their performance. Understanding these topics is crucial

129

for designing distributed systems that can efficiently handle shared

resources and maintain stability.

1.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 define mutual exclusion and explain its significance in

distributed systems;

 understand the requirements that must be met by mutual

exclusion algorithms;

 describe the various performance measurement metrics used

to evaluate mutual exclusion in distributed systems;

 identify and explain different classifications of mutual

exclusion algorithms.

1.3 MUTUAL EXCLUSION IN DISTRIBUTED SYSTEMS

Mutual exclusion in distributed systems is a way to ensure that only

one process can access a shared resource at a time. This is important

to prevent issues like inconsistencies or conflicts when multiple

processes try to modify the same resource at once. Mutual exclusion

guarantees that if a process is in the critical section (the part of the

code that accesses the shared resource), no other process can enter

this section until the first process is done.

Achieving mutual exclusion in distributed systems is harder than in

centralized systems because there is no global clock, there are

communication delays, and we have to consider network partitions

and failures. Ensuring effective mutual exclusion is vital for keeping

data consistent and synchronized in distributed applications like

databases, file systems, and network services.

1.3.1 Importance of Mutual Exclusion in Distributed Systems

Mutual exclusion is a fundamental requirement in distributed

systems to ensure proper coordination among processes and to

maintain data consistency and integrity. The following points

highlight the importance of mutual exclusion in distributed systems:

130

 Ensuring Access to Shared Resources: In distributed systems,

different processes on various nodes may need to use shared

resources like databases, files, or hardware. Without mutual

exclusion, these processes might try to access the same resource

at the same time, leading to problems like data corruption or

loss. Mutual exclusion ensures that only one process can access

the shared resource at a time, helping to keep everything

consistent.

 Preventing Race Conditions: A race condition happens when

the outcome of a process depends on the timing or order of other

processes' actions. This issue is more common in distributed

environments, where processes run in parallel on different

nodes. Mutual exclusion helps prevent race conditions by

controlling access to critical sections, making sure that

operations happen in a predictable order.

 Maintaining Data Integrity: Distributed systems often use

databases with data replicated across multiple nodes. To keep

data integrity during updates, it’s essential to enforce mutual

exclusion. If several processes try to change the same data at the

same time without proper control, it can lead to conflicting

updates and inconsistencies, which are hard to fix in a

distributed setting.

 Avoiding Deadlocks and Starvation: When multiple processes

or nodes coordinate in distributed systems, improper

management of shared resource access can cause deadlocks or

starvation. Deadlocks happen when processes wait for each

other endlessly, while starvation occurs when a process can't

access a resource despite trying repeatedly. Mutual exclusion

mechanisms help prevent these problems by ensuring fair and

controlled resource allocation.

 Supporting Consistent State of Distributed Applications:

Many distributed applications, like databases or banking

systems, require a consistent state across various nodes. Mutual

exclusion is vital in making sure that updates are done in order,

keeping a consistent overall state. Without mutual exclusion,

simultaneous updates could lead to inconsistencies that might

disrupt the entire application.

 Coordination and Synchronization: In distributed systems,

processes often need to work together to ensure correct results.

131

Mutual exclusion acts as a coordination tool, enforcing a

sequence for how processes execute. This is particularly

important in situations like leader elections, distributed

transactions, and consensus algorithms, where the order and

timing of actions are crucial for system stability.

 Facilitating Fault Tolerance: Mutual exclusion mechanisms

also help make distributed systems more fault-tolerant. By

properly managing access to critical sections, the system can

handle issues like node failures, lost messages, or network

problems more effectively. For example, quorum-based

algorithms ensure that even if some nodes fail, the system can

still maintain mutual exclusion.

1.4 REQUIREMENTS OF MUTUAL EXCLUSION

ALGORITHMS

Mutual exclusion algorithms must satisfy several requirements to

ensure the proper functioning of the distributed system. They are:

 Safety Requirement:The safety requirement ensures that only

one process can be in the critical section at any given time. This

is the primary condition of mutual exclusion. If multiple

processes access the shared resource simultaneously, data

inconsistencies and race conditions can occur, leading to

unpredictable and erroneous system behavior.

The key aspects of the safety requirement are:

 Mutual Exclusion Property: At most one process is

allowed to enter the critical section at any point in time.

 Resource Consistency: Safety guarantees the integrity and

consistency of shared data, as concurrent access is strictly

regulated.

 Avoidance of Conflict: By ensuring that only one process

can access a shared resource, the safety requirement prevents

conflicts between processes.

 Liveness Requirement:The liveness requirement focuses on the

ability of the system to make progress. It ensures that every

process requesting access to the critical section will eventually be

able to enter it, thereby preventing the system from getting stuck

in an inactive state.

132

Liveness requirements are defined by:

 No Deadlock: Deadlock occurs when two or more processes

are indefinitely waiting for each other to release resources,

leading to a system standstill. Mutual exclusion algorithms

must ensure that no group of processes remains permanently

blocked.

 No Starvation: Starvation occurs when a process is

indefinitely denied access to the critical section while other

processes continue to enter and exit it. The liveness

requirement ensures fairness, making sure that each process

eventually gets its turn to access the resource.

 Progress: The system must guarantee that processes

requesting the critical section will be granted access within a

finite amount of time, allowing the system to make progress

without unnecessary delays.

 Performance Requirement:Performance considerations involve

evaluating the efficiency of the mutual exclusion algorithm in a

distributed system. A well-designed algorithm should minimize

communication overhead, reduce delays, and be scalable to

handle an increasing number of processes or nodes.

Performance considerations include:

 Message Complexity: The number of messages exchanged

between processes to achieve mutual exclusion is a critical

factor. The lower the number of messages, the more efficient

the algorithm is. Minimizing message overhead helps to

reduce network congestion and enhances system

responsiveness.

 Synchronization Delay: This refers to the time required for

a process to enter the critical section after the previous

process has exited. Lower synchronization delay improves

the throughput of the system, allowing more efficient use of

resources.

 Scalability: Distributed systems can involve a large number

of processes or nodes, and the mutual exclusion algorithm

must be scalable to accommodate this. The performance of

the algorithm should not degrade significantly as the number

of processes grows.

133

 Fault Tolerance: Distributed systems are prone to failures,

such as process crashes or network partitions. A mutual

exclusion algorithm should handle these failures gracefully

to ensure that the system can continue functioning without

violating mutual exclusion properties.

 Load Balancing: If the algorithm involves centralized

control, such as in a coordinator-based approach, the

performance can suffer due to the single point of control

becoming a bottleneck. Therefore, mutual exclusion

algorithms should aim to distribute the load effectively

across multiple nodes to avoid such bottlenecks.

1.5 PERFORMANCE MEASUREMENT METRICS IN

DISTRIBUTED SYSTEMS

In distributed systems, performance measurement metrics are used

to evaluate how efficiently the system functions under different

conditions and workloads. These metrics are essential for comparing

different system designs, identifying bottlenecks, and optimizing

performance. The key performance metrics in distributed systems

include response time, throughput, scalability, resource utilization,

availability, fault tolerance, and consistency.

1. Response Time

Response time is the time interval between a user request and the

system’s response to that request. It is one of the most critical

performance metrics, particularly for time-sensitive applications.

Response time includes:

 Request Propagation Delay: Time taken for a request to

reach the server or resource.

 Processing Time: Time spent by the server in executing the

request.

 Response Propagation Delay: Time taken for the response

to return to the requester.

Minimizing response time is important for providing better user

experience, especially in real-time applications like video

conferencing or online gaming.

134

2. Throughput

Throughput refers to the number of requests or tasks processed by

the distributed system within a given time frame. It indicates the

system's ability to handle workload and is usually expressed as the

number of operations per second or transactions per second.

Factors affecting throughput include:

 Network Bandwidth: Higher bandwidth allows more data

to be transferred, improving throughput.

 System Bottlenecks: Bottlenecks like slow processors,

limited memory, or overloaded nodes reduce throughput.

 Task Scheduling Efficiency: Proper load balancing and

efficient task scheduling can enhance system throughput.

3. Scalability

Scalability is the ability of a distributed system to maintain its

performance levels when additional resources (such as nodes or

servers) are added to handle increased workload. A well-designed

distributed system should be able to scale horizontally (by adding

more nodes) or vertically (by upgrading the capacity of existing

nodes).

Scalability can be assessed through:

 Horizontal Scaling: Adding more nodes to the system

without significantly affecting performance.

 Vertical Scaling: Upgrading hardware components of

existing nodes.

 Elasticity: The ability of a system to handle workload spikes

by dynamically scaling resources up or down.

4. Resource Utilization

Resource utilization measures how effectively the distributed system

utilizes its hardware and software resources. It includes CPU usage,

memory utilization, disk space, and network bandwidth usage. The

goal is to achieve high utilization without overloading the system.

135

 CPU Utilization: Percentage of CPU resources used by

processes. Efficient scheduling is essential for optimal CPU

utilization.

 Memory Utilization: Memory allocation must be managed

to avoid underutilization or excessive swapping, which can

degrade performance.

 Network Utilization: Measures bandwidth usage and is

crucial in determining the efficiency of data transfer between

nodes.

5. Availability

Availability measures the proportion of time that the distributed

system is operational and accessible to users. High availability is

crucial for distributed systems that provide critical services, such as

online banking or cloud computing.

 Mean Time to Failure (MTTF): The average time between

system failures.

 Mean Time to Repair (MTTR): The average time required

to repair the system and bring it back online.

 Redundancy: Use of redundant nodes and data replication

to improve availability.

High availability can be achieved through techniques like

replication, failover mechanisms, and redundancy in infrastructure.

6. Fault Tolerance

Fault tolerance is the ability of a distributed system to continue

functioning correctly even in the presence of faults or failures. A

fault-tolerant system can detect, isolate, and recover from faults

without significantly affecting performance.

Fault tolerance is measured by:

 Reliability: Probability that a system will function correctly

over a specified time.

136

 Redundancy: Adding redundant components to prevent

failure.

 Recovery Time: Time taken to detect and recover from a

fault.

Techniques such as data replication, consensus protocols, and check

pointing can be employed to enhance fault tolerance.

7. Consistency

Consistency ensures that all nodes in a distributed system have the

same view of data at any given point in time. It is an essential metric

for systems that rely on data replication, as inconsistencies can lead

to erroneous operations.

Consistency metrics include:

 Latency of Consistency: The time taken to propagate

changes across replicas to achieve a consistent state.

 Consistency Level: Different levels of consistency, such as

strong, eventual, or causal consistency, depending on the

application's requirements.

 Staleness: The difference between the actual state of data

and the last-known consistent state, indicating how out-of-

date a copy might be.

Consistency must be balanced with availability and partition

tolerance, often involving trade-offs governed by the CAP theorem.

8. Latency

Latency is the delay experienced in the communication between

nodes in a distributed system. It can be caused by several factors,

such as network congestion, physical distance between nodes, and

processing overhead. Latency directly affects the responsiveness of

the system and is critical for real-time applications.

 Propagation Delay: Time taken for data to travel from the

sender to the receiver.

137

 Queuing Delay: Time spent waiting in queues at the

network interface due to congestion.

 Processing Delay: Time taken by a node to process the data

packet before forwarding or responding.

Reducing latency often involves optimizing communication

protocols, efficient routing, and minimizing the number of hops

between nodes.

9. Load Balancing Efficiency

Load balancing refers to distributing the workload evenly across

nodes to ensure that no single node becomes a bottleneck. Load

balancing efficiency is measured by how well the system distributes

tasks and maintains uniform resource utilization.

 Uniform Task Distribution: Even distribution of tasks

ensures that no node is overloaded.

 Node Utilization Metrics: Measuring the utilization of

individual nodes can help identify imbalances in workload

distribution.

 Task Migration Cost: The cost of migrating tasks between

nodes for balancing purposes, which should be minimized

for efficient load balancing.

10. Network Bandwidth Utilization

Network bandwidth utilization measures how effectively the

available bandwidth is used by the distributed system. It is important

for applications with heavy data transfers, such as video streaming

or data analytics.

 Effective Utilization: The proportion of the total available

bandwidth that is effectively used for productive

communication.

 Congestion Control: Mechanisms to avoid overloading the

network, which can degrade performance.

 Minimizing Overhead: Efficient communication protocols

to reduce message overhead and improve bandwidth usage.

138

1.6 CLASSIFICATION OF MUTUAL EXCLUSION

ALGORITHMS

Mutual exclusion algorithms are fundamental in distributed systems

to ensure that shared resources are accessed in a mutually exclusive

manner, preventing race conditions and data inconsistencies.

Various algorithms have been proposed for achieving mutual

exclusion, and they can be broadly classified into several categories

based on different factors, such as the type of communication, the

coordination strategy, or whether they require a central coordinator.

There are two main classifications of mutual exclusion algorithms

and they are - Centralized Algorithms and

Distributed/Decentralized Algorithms.

1.6.1 Centralized Algorithms

Centralized algorithms are one of the primary classifications of

mutual exclusion algorithms in distributed systems. In a centralized

approach, a designated coordinator (a single central node or server)

is responsible for managing access to the shared resource. This

coordinator acts as an authority that decides which process can enter

the critical section, ensuring that only one process has access to the

resource at a time. Now, let’s discuss how a centralized algorithm

works:

 In a centralized mutual exclusion algorithm, all processes that

need access to a critical section must send a request to the

coordinator.

 The coordinator maintains a queue of incoming requests for the

critical section.

 When a process sends a request, the coordinator decides if the

critical section is available. If it is available, the coordinator

grants permission to the requesting process. Otherwise, the

request is queued until the critical section is free.

 Once the process finishes its execution in the critical section, it

sends a release message to the coordinator, allowing the next

process in the queue to be granted access.

139

Advantages of Centralized Algorithms:

Simplicity: Centralized algorithms are relatively simple to

implement because only one node needs to handle all the

coordination.

Guaranteed Mutual Exclusion: The use of a central coordinator

ensures that only one process can access the critical section at a

time, making mutual exclusion straightforward.

Low Message Overhead: Compared to distributed algorithms,

centralized algorithms usually require fewer messages to manage

access. A request, a grant, and a release message are all that is

needed for each access, resulting in a total of 3 messages per critical

section entry.

Disadvantages of Centralized Algorithms:

Single Point of Failure: The coordinator is a single point of failure.

If the coordinator crashes, no process can enter the critical section

until a new coordinator is chosen, this can disrupt the system.

Scalability Issues: As the number of processes grows, the

coordinator can become a bottleneck, leading to longer waiting

times for processes and degraded performance. This approach is not

suitable for systems that require high scalability.

Coordinator Overload: All requests are handled by the central

coordinator, which can lead to overload and reduced efficiency if

the number of requests is very high.

1.6.2 Distributed/Decentralized Algorithms

Decentralized algorithms are a type of mutual exclusion algorithms

used in distributed systems. Unlike centralized algorithms, where

one node manages access to shared resources, decentralized

algorithms spread this responsibility across multiple nodes. This

approach helps prevent problems like having a single point of

failure or a bottleneck, which are common issues with centralized

methods. The decentralized algorithms are of two types and they are

namely – Token-Based Algorithms and Non Token-Based

Algorithms (or Permission-Based Algorithms). The two types of

the decentralized algorithms will be discussed in the next Unit.

140

1.7 SUMMING UP

 Mutual Exclusion ensures that only one process accesses a

shared resource at a time to prevent inconsistencies and

conflicts.

 The challenges for Mutual Exclusion in Distributed Systems

include the lack of a global clock, communication delays, and

network failures.

 Importance of Mutual Exclusion:

o Prevents data corruption by ensuring exclusive access,

o Controls access to prevent outcomes dependent on

timing,

CHECK YOUR PROGRESS-I

1. State True or False:

a) Mutual exclusion in distributed systems ensures that only

one process can access a shared resource at a time.

b) In a centralized mutual exclusion algorithm, a single

coordinator manages access to shared resources.

c) Liveness requirements ensure that a process requesting

access to the critical section may remain blocked indefinitely.

2. Fill in the blanks:

a) The __________ requirement focuses on the ability of the

system to make progress.

b) The main communication method used in permission-based

algorithms is __________ passing.

c) A race condition occurs when the outcome of a process

depends on the __________ of other processes' actions.

d) __________ algorithms are designed to ensure that every

process requesting access will eventually be able to enter the

critical section.

e) In distributed systems, __________ measures the proportion

of time that the system is operational and accessible to users.

141

o Essential for ensuring data consistency during updates,

o Ensures fair and controlled resource allocation,

o Ensures ordered updates for a consistent system state,

o Helps in coordination for leader elections, transactions,

etc.,

o Improves system resilience in case of failures.

 Performance Measurement Metrics in Distributed Systems are:

Response Time, Throughput, Scalability, Resource Utilization,

Availability, Fault Tolerance, Consistency, Latency, Load

Balancing Efficiency andNetwork Bandwidth Utilization.

 In Centralized Algorithms, single coordinator manages access to

shared resources.

 Simplicity, guaranteed mutual exclusion, low message overhead

are the advantages of Centralized Algorithms.

1.8 ANSWERS TO CHECK YOUR PROGRESS

1.a) True b) True c) False

2.a) liveness b) message c) timing or order

d) Liveness e) availability

1.9 POSSIBLE QUESTIONS

Short Answer Type Questions:

1. What is mutual exclusion in distributed systems?

2. What is the main function of a coordinator in centralized mutual

exclusion algorithms?

3. What does scalability mean in the context of mutual exclusion

algorithms?

Long Answer Type Questions:

4. Discuss the importance of mutual exclusion in distributed

systems.

5. Explain the safety and liveness requirements of mutual

exclusion algorithms.

142

6. Compare centralized and decentralized mutual exclusion

algorithms.

7. How does mutual exclusion contribute to maintaining data

integrity in distributed systems?

1.10 REFERENCES AND SUGGESTED READINGS

1. "Distributed Systems: Concepts and Design" by George

Coulouris

2. “Designing Data-Intensive Applications" by Martin Kleppmann

3. “Distributed Systems: Principles and Paradigms" by Andrew

Tanenbaum and Maarten Van Steen

×××

143

UNIT: 2

TOKEN-BASED AND NON-TOKEN-BASED

MUTUAL EXCLUSION ALGORITHMS

Unit Structure:

2.1 Introduction

2.2 Unit Objectives

2.3 Token-Based Decentralized Mutual Exclusion Algorithms

2.3.1 How Token-Based Algorithms Work?

2.3.2Advantages of Token-Based Algorithms

2.3.3 Disadvantages of Token-Based Algorithms

2.4 Non Token-Based Decentralized Mutual Exclusion

Algorithms

2.4.1 How Non Token-Based Algorithms Work?

2.4.2 Advantages of Non Token-Based Algorithms

2.4.3 Disadvantages of Non Token-Based Algorithms

2.5 Summing Up

2.6 Answers to Check Your Progress

2.7 Possible Questions

2.8 References and Suggested Readings

2.1 INTRODUCTION

In distributed systems, Mutual Exclusion is a key part of distributed

computing, helping with synchronization and maintaining

consistency between processes in a network. As discussed in the

previous unit, the algorithms for mutual exclusion are classified

under two categories namely - Centralized Algorithms and

Distributed/Decentralized Algorithms.In this unit, we will cover the

Distributed/Decentralized Algorithms in detail.

144

2.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 understand token-based decentralized algorithms.

 understandnon token-based decentralized algorithms.

2.3 TOKEN-BASED DECENTRALIZED MUTUAL

EXCLUSION ALGORITHMS

A classification of decentralized mutual exclusion algorithms in

distributed systems where a special token is used to manage access

to shared resources. The token acts as a unique key, and only the

process holding the token is allowed to enter the critical section and

access the shared resource. This approach ensures mutual exclusion

since there is only one token, preventing multiple processes from

accessing the resource simultaneously.

2.3.1 How Token-Based Algorithms Work?

In this approach, all the processes are arranged in a logical ring, and

the token is passed around the ring in one direction. Each process

knows the identity of the next process to which it must send the

token. If a process needs to enter the critical section, it waits for the

token to arrive, and once done, it passes the token to the next

process. If the process does not need the critical section, it simply

forwards the token. This method is straightforward, but if the token

is lost or a process fails, additional mechanisms are required for

token.

2.3.2 Advantages of Token-Based Algorithms

Following are the advantages of token-based mutual exclusion

algorithms:

 Guaranteed Mutual Exclusion: Since only the process holding

the token can access the critical section, mutual exclusion is

guaranteed.

145

 Fairness: Token-based algorithms ensure fairness as the token is

passed in a predefined sequence, giving all processes an equal

chance to access the critical section.

 Avoidance of Deadlock: These algorithms avoid deadlocks

because only one process holds the token at any time, and others

simply wait for it to be passed.

2.3.3 Disadvantages of Token-Based Algorithms

Following are the disadvantages of token-based mutual exclusion

algorithms:

 Loss of Token: If the token is lost or a process holding the token

fails, the entire system might be blocked. Extra mechanisms are

required to regenerate the lost token.

 Token Circulation Delay: In large systems, the time taken for

the token to circulate among all processes can lead to delays,

especially if only a few processes require the critical section.

 Fault Tolerance: Token-based systems are susceptible to node

failures. If a node fails while holding the token, other nodes

cannot access the critical section until the token is regenerated.

2.4 NON TOKEN-BASED DECENTRALIZED MUTUAL

EXCLUSION ALGORITHMS

Non-token-based or permission-based algorithms are a type of

decentralized classification mutual exclusion algorithm used in

distributed systems where access to a critical section is managed

without using a token. Instead, these algorithms use message

exchanges between processes to control access to shared resources.

2.4.1 How Non Token-Based Algorithms Work?

The core idea is to get permission from other processes before

entering the critical section, ensuring that no two processes can

access it simultaneously. This coordination is done through request

and reply messages, often using logical clocks, timestamps, or

voting mechanisms. While these algorithms solve the challenges

related to token management, they come with their own issues, such

146

as higher communication overhead, vulnerability to deadlocks, and

reliance on all processes responding properly. Choosing a

permission-based algorithm depends on factors like scalability, fault

tolerance, and overall system efficiency.

The main characteristics of Non Token-Based/ Permission-Based

Algorithms are:

 Message Passing: Processes request permission from other

processes and wait for replies before entering the critical section.

 Logical Clocks: Requests are often times-tamped to determine

the order of access, helping to prevent conflicts.

 Decentralization: There is no central coordinator or token;

instead, multiple nodes are involved in granting permissions.

2.4.2 Advantages of Non Token-Based Algorithms

Following are the advantages of non token-based mutual exclusion

algorithms:

 There is no single point of failure since permission is obtained

from multiple nodes.

 Most permission-based algorithms use timestamps to ensure fair

access to the critical section, preventing starvation.

 Since no token is used, problems like token loss, duplication, or

token regeneration are avoided.

2.4.3 Disadvantages of Non Token-Based Algorithms

Following are the disadvantages of non token-based mutual

exclusion algorithms:

 In systems with a large number of processes, the number of

messages required to obtain permission can become significant.

 The algorithms are sensitive to process failures, as a process

may need replies from all other processes (or quorum members).

A failure may lead to indefinite waiting.

 Some permission-based algorithms can suffer from deadlock if

multiple processes are waiting for each other’s replies, or

147

starvation if some processes are unable to get permission due to

repeated denials.

2.5 SUMMING UP

 In token-based algorithms, a unique token is used to grant access

to shared resources, ensuring mutual exclusion as only the

token-holder can access the critical section.

 In token-based algorithms, Processes are arranged in a logical

ring.

CHECK YOUR PROGRESS-I

1. State True or False:

a)In token-based algorithms, processes request permission

from other processes to enter the critical section.

b)Token-based algorithms guarantee mutual exclusion because

only one token exists in the system.

c) Token-based algorithms do not require message passing

between processes.

d)One disadvantage of non-token-based algorithms is that they

are insensitive to process failures.

2. Fill in the blanks:

a)In token-based decentralized mutual exclusion algorithms, a

special ______ is used to manage access to shared resources.

b) Token-based algorithms avoid ______ because only one

process can hold the token at any time.

c)Non-token-based algorithms often rely on ______ clocks or

timestamps to determine the order of access.

d)In token-based systems, if the ______ is lost, mechanisms

are required to regenerate it.

148

 Disadvantages of token-based algorithms are:

o Lost tokens block the system; regeneration mechanisms are

needed.

o Inefficiency in large systems when token circulates

unnecessarily.

o Node failures disrupt token passing, requiring recovery

protocols.

 In non token-based algorithms, access to the critical section is

managed through permission-based mechanisms, avoiding token

dependency.

 Characteristics of non token-based algorithms are:

o Message Passing: Processes exchange request and reply

messages.

o Logical Clocks: Timestamps ensure proper access order.

o Decentralization: No single point of control.

 Disadvantages of non token-based algorithms are:

o Requires many messages, especially in large systems.

o Node failures or missing replies can cause indefinite waiting.

o Deadlocks can occur due to waiting cycles; starvation may

happen with repeated denials.

2.6 ANSWERS TO CHECK YOUR PROGRESS

1.a) False b) True c) False d) False

2.a) token b) deadlocks c) logicald) token

2.7 POSSIBLE QUESTIONS

Short Answer Type Questions:

1. What is Token-Based Decentralized Mutual Exclusion

Algorithm?

2. What is token in Non Token-Based Decentralized Mutual

Exclusion Algorithm?

3. How do decentralized algorithms avoid single points of failure?

149

Long Answer Type Questions:

4. What are the advantages and disadvantages of Token-Based

Decentralized Mutual Exclusion Algorithms in Distributed

Systems?

5. What are the advantages and disadvantages of Non Token-Based

Decentralized Mutual Exclusion Algorithms in Distributed

Systems?

6. Discuss the characteristics of Non Token-Based Decentralized

Mutual Exclusion Algorithms.

2.8 REFERENCES AND SUGGESTED READINGS

1. "Distributed Systems: Concepts and Design" by George

Coulouris

2. “Designing Data-Intensive Applications" by Martin Kleppmann

3. “Distributed Systems: Principles and Paradigms" by Andrew

Tanenbaum and Maarten Van Steen

×××

150

UNIT: 3

ELECTION ALGORITHMS

Unit Structure:

3.1 Introduction

3.2 Unit Objectives

3.3 Election Algorithm and its Role

3.4 Bully Algorithm

3.5 Ring Algorithm

3.6 Bully vs Ring Algorithm

3.7 Summing Up

3.8 Answers to Check Your Progress

3.9 Possible Questions

3.10 References and Suggested Readings

3.1 INTRODUCTION

Distributed algorithms are specialized algorithms designed to

operate in a distributed system, where a collection of independent

computers, each with its own memory, work collaboratively without

sharing memory. Communication between these computers occurs

over a network, where processes running on different machines

exchange information to achieve a common goal. In many

distributed algorithms, the presence of a coordinator is essential, as

it takes on specific roles like managing resources or coordinating the

tasks of other processes. Election algorithms play a key role in this

context, as they are used to select such a coordinator or leader to

manage tasks centrally.

Election algorithms are vital in distributed systems to determine

which process among several should assume the role of a leader or

coordinator. These algorithms aim to elect a process that can take on

centralized responsibilities, such as managing access to shared

resources or making important decisions for the entire system.

151

3.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 understand the purpose and importance of election

algorithms in distributed systems.

 describe how the Bully Algorithm and Ring Algorithm

operate to elect a coordinator.

 compare the Bully and Ring Algorithms in terms of

efficiency, complexity, and use cases.

 identify the advantages and limitations of different election

algorithms.

 explain the role of election algorithms in ensuring the

reliability and coordination of distributed systems.

3.3 ELECTION ALGORITHM AND ITS ROLE

Election algorithms play a crucial role in distributed systems by

providing a mechanism to elect a coordinator or leader among

distributed processes. In a distributed system, multiple processes

operate independently, and the absence of shared memory

necessitates coordinated decision-making to avoid conflicts and

maintain consistency. A coordinator often needs to be selected to

centralize decision-making, assign responsibilities, or facilitate

efficient task execution. Election algorithms are used to determine

which process should act as the coordinator when the system starts

or when the existing coordinator fails.

The importance of election algorithms lies in their ability to

dynamically manage the system in cases where processes may fail

and recover unpredictably. The election process ensures that there is

always a unique, active coordinator, which is crucial for maintaining

control over shared resources and ensuring system reliability. Two

popular election algorithms are the Bully Algorithm and the Ring

Algorithm, each of which addresses the leader selection problem in

different configurations of distributed systems.

152

Role of Election Algorithms:

Election algorithms play an important role in distributed systems by

ensuring that all independent processes work together smoothly and

reliably. In a distributed system, different processes run on separate

nodes, each with its own memory, and they need to coordinate to

achieve common goals. Since there is no shared memory, and nodes

can fail unexpectedly, a central point of control is needed for

decision-making and efficient management of tasks. Election

algorithms solve this problem by selecting a leader or coordinator

among the processes. This coordinator manages resources,

maintains consistency, and helps the system recover from failures.

By electing a leader, election algorithms make it easier to coordinate

actions, reduce conflicts, and keep the system running smoothly,

even when problems arise.

Leader Selection isthe primary roles of election algorithms is to

select a leader or coordinator among the processes. The coordinator

is responsible for managing specific tasks, such as resource

allocation, synchronization, or decision-making. The leader is

chosen based on specific criteria, such as process priority or unique

identifier, ensuring that only one process is responsible for

coordinating activities at any given time. By designating a leader,

election algorithms prevent conflicts, as processes no longer need to

compete for control over shared tasks.

Assumptions for Election Algorithms:

The assumptions are:

Assumption 1: Each process in the system has a unique identifier,

such as a network address (assuming one process per machine for

simplicity). Generally, election algorithms aim to identify the

process with the highest identifier and designate it as the

coordinator.

Assumption 2: Every process is aware of the identifiers of all other

processes in the system.

Assumption 3: Processes do not have information about which

other processes are currently active (up) or inactive (down).

Examples of election algorithms include the Bully Algorithm and

the Ring Algorithm, each with unique approaches to selecting a

leader.

153

3.4 BULLY ALGORITHM

The Bully Algorithm is a popular election algorithm in distributed

systems, designed to select a coordinator among multiple processes.

Its primary objective is to choose the process with the highest

unique identifier (ID) as the coordinator, ensuring that there is

always a designated leader to manage coordination tasks effectively.

This algorithm is particularly beneficial in environments where

processes may fail and recover, as it helps maintain stability by

always electing a new leader when needed. The Bully Algorithm

assumes reliable communication between processes and requires

that each process can directly communicate with others. When a

process detects that the current coordinator has failed, it initiates an

election, thereby ensuring that the system continues to operate

efficiently.The algorithm is initiated when a process detects that the

current coordinator has failed or is not responding. The process that

initiates the election is called the “initiator”.

STEPS INVOLVED IN BULLY ALGORITHM:

1. Election Initiation:

 When a process detects that the current coordinator has

failed, it starts an election process by sending “election”

messages to all processes with higher IDs.

 If no process responds, the initiator assumes itself to be the

new coordinator and broadcasts a “coordinator” message to

all other processes.

2. Response to Election:

 When a process with a higher ID receives the “election”

message, it responds with an “OK” message to indicate that

it is alive and capable of becoming the coordinator.

 The higher-ID process then starts its own election process by

sending “election” messages to processes with even higher

IDs.

3. Coordination Announcement:

 Eventually, the process with the highest ID among those

participating in the election will not receive any response to

its “election” messages. This process declares itself the new

154

coordinator by sending a “coordinator” message to all other

processes.

 All other processes update their records to recognize the new

coordinator.

4. Failure Handling:

 If the new coordinator fails, the election process is restarted

by the next process that detects the failure.

Advantages of Bully Algorithm:

 The Bully Algorithm ensures that the process with the highest

ID always becomes the coordinator, providing a clear and

deterministic outcome.

 It is simple to implement and works well in systems where

processes have unique identifiers and can directly communicate

with each other.

Disadvantages of Bully Algorithm:

 The algorithm generates a significant amount of message traffic,

especially if multiple processes initiate elections simultaneously.

 It can be inefficient in large systems, as the number of messages

grows rapidly with the number of processes.

 The failure of multiple processes during the election process can

lead to delays in selecting a new coordinator.

3.5 RING ALGORITHM

The Ring Algorithm is an election algorithm used in distributed

systems to select a coordinator among multiple processes arranged

in a logical ring. The main goal of this algorithm is to ensure that a

single process is elected as the coordinator to manage coordination

tasks and shared resources. In this algorithm, the processes are

organized in a ring structure, where each process has a direct

communication link with its successor in the ring. The algorithm

ensures that the process with the highest unique identifier (ID)

becomes the coordinator.

In addition to the other assumptions mentioned earlier, the Ring

Algorithm assumes that the processes are arranged in a specific

order, either physically or logically, so that each process knows who

155

comes next in the sequence.The Ring Algorithm is well-suited for

systems where processes are naturally organized in a circular

structure and communication overhead must be minimized by using

only local interactions.

STEPS INVOLVED IN RING ALGORITHM:

1. Logical Ring Formation:

All processes in the system are arranged in a logical ring. Each

process knows the identity of the process that comes right after it,

allowing communication to flow around the ring.

2. Election Initiation:

When a process, say P, notices that the current coordinator has

failed, it starts an election. It sends an election message with its own

ID to the next process in the ring.

3. Message Passing:

The election message moves around the ring. Each process that

receives the message compares its ID with the one in the message:

 If its ID is higher, it replaces the ID in the message with its own

and sends it to the next process.

 If its ID is lower, it simply passes the message along without

changing it.

4. Election Completion:

Eventually, the election message returns to the process that started

it, carrying the highest ID found among all the processes in the ring.

The process with this highest ID becomes the new coordinator.

5. Coordinator Announcement:

Once the new coordinator is chosen, a message is sent around the

ring to let all processes know who the new coordinator is.

Advantages of Ring Algorithm:

 The Ring Algorithm is simple to implement and requires only

local communication between neighbours in the ring.

 It guarantees that a coordinator is eventually elected, even if

multiple processes initiate elections simultaneously.

156

Disadvantages of Ring Algorithm:

 The algorithm can be slow, especially in large systems, since

messages must traverse the entire ring.

 If the ring is disrupted (e.g., due to a process or communication

link failure), the election process can be delayed.

3.6 BULLYVS RING ALGORITHM

Let’s try to analyze the Bully and Ring algorithm in terms of

different aspects.

Basic Approach:

 Bully algorithm selects the process with the highest ID as the

coordinator through direct communication among processes.

 Ring Algorithm organizes processes in a logical ring, with each

process passing an election message around the ring to

determine the coordinator.

Assumptions:

 In Bully Algorithm it is assumed that each process knows the ID

of every other process and can communicate directly with them.

 In Ring Algorithm it is assumed that processes are arranged in a

logical ring and each process knows its immediate successor.

Communication Complexity:

 In Bully Algorithm, the complexity is High. Involves direct

communication between all active processes, resulting in O(n²)

messages in the worst case (for n processes).

 In Ring Algorithm, the complexity is Moderate. Only involves

communication along the ring, resulting in O(n) messages for an

election.

Coordinator Selection:

 In Bully Algorithm, the process with the highest ID is elected as

the coordinator.

 In Ring Algorithm, the process with the highest ID among those

that receive the election message is elected as the coordinator.

157

Initiation of Election:

 In Bully Algorithm, any process can initiate an election when it

detects that the coordinator has failed.

 In Ring Algorithm, any process can initiate an election when it

detects a failure. The message travels along the ring to find a

new coordinator.

Failure Handling:

 In Bully Algorithm, when a process detects a coordinator failure,

it starts an election by sending messages to all higher-numbered

processes.

 In Ring Algorithm, when a coordinator failure is detected, an

election message is passed around the ring to find the new

coordinator.

Scalability:

 In Bully Algorithm, Scalability is limited due to high

communication costs for larger networks.

 In Ring Algorithm, Scalability is better since each process only

communicates with its immediate successor.

Overall, he Bully Algorithm works well for small systems where

processes can easily communicate directly with each other, but it

becomes less efficient in larger systems because of the high number

of messages involved. On the other hand, the Ring Algorithm is

more efficient in terms of the number of messages and can handle

larger systems better, but it may take longer to elect a new

coordinator since the message has to pass through every process in

the ring.

158

3.7 SUMMING UP

 Election Algorithms provide a mechanism to elect a coordinator

or leader among distributed processes and Ensure coordinated

decision-making in the absence of shared memory.

 The Role of election algorithm is select a leader to manage tasks,

allocate resources, and handle failures.

 The assumptions for election algorithms are as follows:

o Each process has a unique identifier,

CHECK YOUR PROGRESS-I

1. State True or False:

a) Election algorithms select a coordinator among distributed

processes.

b) Election algorithms are only used when the system starts,

not during coordinator failure.

c) The Bully Algorithm requires each process to know the ID

of every other process.

d) In the Ring Algorithm, processes are organized in a logical

ring.

e) The Ring Algorithm involves communication along the ring

to determine the new coordinator.

2. Fill in the blanks:

a) In the Ring Algorithm, each process knows the identity of its

immediate _______.

b) The Bully Algorithm has a high communication complexity

of ______ in the worst case.

c) The process that initiates an election in the Bully Algorithm

is called the _______.

d) In the Ring Algorithm, the process with the ______ ID in

the ring becomes the new coordinator.

e) The ______ Algorithm is more suitable for large systems

due to better scalability.

159

o Every process knows the identifiers of other processes,

o Processes do not know which others are active or inactive.

 Bully Algorithm

o Chooses the process with the highest unique identifier as

coordinator.

o Works in environments where processes may fail and

recover.

o Initiates election when a process detects coordinator failure.

 Ring Algorithm

o Arranges processes in a logical ring; each knows its

successor.

o Elects a coordinator through message passing along the ring.

3.8 ANSWERS TO CHECK YOUR PROGRESS

1. a) True b) False c) True d) Truee) True

2. a) successor b) O(n²) c) initiatord) higheste) Ring

3.9 POSSIBLE QUESTIONS

Short Answer Type Questions:

1. What is the primary purpose of election algorithms in distributed

systems?

2. How does the Ring Algorithm arrange processes?

3. What happens when a coordinator fails in the Bully Algorithm?

4. What type of communication does the Ring Algorithm rely on?

5. How does the Bully Algorithm determine the new coordinator?

Long Answer Type Questions:

6. Explain the importance of election algorithms in distributed

systems.

7. Describe the steps involved in the Bully Algorithm.

8. Discuss the advantages and disadvantages of the Ring

Algorithm.

160

9. Compare the Bully Algorithm and the Ring Algorithm in terms

of scalability and efficiency.

10. Describe the assumptions made by the Bully and Ring

Algorithms.

3.10 REFERENCES AND SUGGESTED READINGS

1. "Distributed Systems: Concepts and Design" by George

Coulouris

2. “Designing Data-Intensive Applications" by Martin

Kleppmann

3. “Distributed Systems: Principles and Paradigms" by Andrew

Tanenbaum and Maarten Van Steen

×××

161

UNIT: 4

DISTRIBUTED SCHEDULING AND LOAD

DISTRIBUTION

Unit Structure:

4.1 Introduction

4.2 Unit Objectives

4.3 Distributed Scheduling

4.4 Load Distribution

4.5 Load Distribution Algorithms

4.6 Task Migration

4.7 Summing Up

4.8 Answers to Check Your Progress

4.9 Possible Questions

4.10 References and Suggested Readings

4.1 INTRODUCTION

Distributed Scheduling involves deciding which node in a

distributed system should execute a particular task, with the aim of

achieving optimal system performance, load balancing, and

minimizing response time. It requires making decisions about job

assignments based on factors such as resource availability, task

priority, and current system load.

Load Distribution focuses on dividing the workload evenly across

all nodes in the system to prevent some nodes from being

overloaded while others are underutilized. It involves transferring

tasks from heavily loaded nodes to lightly loaded ones, which can

improve overall system performance and ensure fairness in resource

usage.

162

4.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 understand the concept of distributed scheduling and its

significance in distributed systems.

 identify the challenges and issues involved in distributed

load distribution.

 describe the components of load distribution algorithms.

 explain various task migration strategies used in load

distribution.

 analyze the factors that affect the stability of distributed

scheduling.

4.3 DISTRIBUTED SCHEDULING

Distributed Scheduling means organizing and managing tasks across

multiple independent computers in a distributed system. In a

distributed environment, tasks are spread across different computers

(nodes) to make the best use of resources, improve system

performance, and increase fault tolerance. The main goal of

distributed scheduling is to decide which tasks should be handled by

which nodes, considering factors like load balancing,

communication delays, and available resources.

In distributed systems, each node works independently, but they

cooperate to complete shared tasks. Scheduling in these systems not

only involves assigning tasks to nodes but also considering the

network structure, communication between nodes, and the changing

state of nodes (e.g., availability and load levels).

Let’s discuss the importance of Distributed Scheduling. Below are

some key reasons why distributed scheduling is important:

 Distributed scheduling makes sure that all nodes in the system

are used effectively by balancing the workload among them.

This prevents some nodes from being idle while others are

overloaded, leading to better resource utilization.

 By distributing tasks intelligently, distributed scheduling reduces

the processing time, leading to faster execution of tasks and

improved performance. It helps ensure that no single node

163

becomes a bottleneck, allowing the system to handle larger

workloads more efficiently.

 Distributed scheduling is essential for scaling distributed

systems. As the number of nodes or tasks grows, scheduling

helps distribute the increased workload without compromising

system performance, making it easier to expand the system.

 In distributed systems, nodes can fail unpredictably. Distributed

scheduling provides a mechanism to reassign tasks from failed

nodes to active ones, thus maintaining system reliability and

ensuring that the system can continue to function smoothly even

if some nodes fail.

 Distributed systems are often dynamic, with nodes joining or

leaving the network and workloads fluctuating over time.

Distributed scheduling helps adapt to these changes in real time,

ensuring that tasks are reassigned efficiently based on the

current state of the system.

 Effective distributed scheduling ensures that the workload is

evenly distributed across all nodes, preventing any single node

from being overwhelmed. This leads to improved system

stability and prevents performance degradation due to

overloading.

Also, Distributed scheduling faces several challenges, including:

 Heterogeneity: Nodes may have different processing power and

available resources. Scheduling needs to adjust according to the

capabilities of each node.

 Communication Overhead: Assigning and moving tasks between

nodes requires communication over a network, which can cause

delays and increase overhead.

 Dynamic Nature: Distributed systems are always changing, with

nodes joining or leaving the network and their load levels

varying. Scheduling algorithms must adapt to these changes in

real time.

 Load Balancing: Ensuring tasks are evenly distributed among

nodes is essential to prevent any one node from becoming

overloaded and to maximize efficiency. In the next section, we

will discuss it in detail.

164

Distributed scheduling algorithms can be broadly categorized into

three types:

1. Static Scheduling: The tasks are assigned to nodes before

execution begins, based on predefined criteria. This approach is

simpler but less flexible in adapting to dynamic changes in the

system.

2. Dynamic Scheduling: The assignment of tasks is done during

runtime, allowing the system to adapt to changes in workload

and resource availability.

3. Hybrid Scheduling: Combines features of both static and

dynamic scheduling to achieve a balance between simplicity and

adaptability.

4.4 LOAD DISTRIBUTION

Load Distribution in distributed scheduling is about assigning tasks

or workloads to different nodes (computers) in a distributed system.

The main goal of load distribution is to use resources effectively,

improve system performance, and make sure no single node gets too

much work while others are underused. The key concepts related to

Load Distribution are:

1. Load Balancing: This means distributing the workload among

nodes so that each one gets a fair share of tasks, based on its

ability to handle them. Load balancing prevents any one node

from being overloaded, which keeps the system working

smoothly.

2. Load Monitoring: To distribute tasks effectively, the system

needs to monitor how busy each node is. This includes checking

things like CPU usage, memory usage, and the number of tasks

each node is handling. Based on this information, tasks can be

assigned to keep the workload balanced.

3. Task Assignment:

o Centralized Approach: One central scheduler decides which

tasks go to which nodes based on their current load. This is

easy to implement but can become a problem if the scheduler

fails.

o Distributed Approach: Each node decides for itself whether

to take on new tasks or pass tasks to others. This prevents a

165

single point of failure but requires good communication

between nodes to avoid conflicts.

4. Task Migration: If one node gets too much work, tasks can be

moved to nodes with less work. This helps keep the workload

evenly distributed.

Now, let’s discuss the why of load distribution is important in

distributed systems. Following are the importance of load

distribution:

 Load distribution ensures that all nodes are being used, so no

node is idle while others are overloaded.

 By distributing tasks evenly, they get done faster, reducing the

total time and improving system responsiveness.

 Load distribution helps the system grow more easily as new

nodes are added, allowing it to handle more work without

slowing down.

 If a node fails, its tasks can be reassigned to other nodes. This

backup ensures the system keeps running smoothly even if there

are failures.

 Without good load distribution, some nodes might become

bottlenecks and slow everything down. Load distribution

prevents this by spreading tasks evenly.

4.5 LOAD DISTRIBUTION ALGORITHMS

Load distribution algorithms are methods used in distributed

systems to assign tasks or workloads to different computers or

servers. The main aim of these algorithms is to make sure that all

computers are used effectively, so that no single machine gets

overloaded while others are not fully used. This helps improve how

well the system performs, makes better use of resources, increases

reliability, and allows the system to grow.

In distributed systems, tasks can be assigned either dynamically

(adjusting in real-time) or statically (based on fixed rules),

depending on factors like the processing power of each computer,

network conditions, current workloads, and the need to complete

tasks efficiently.

166

4.5.1 Challenges of Load Distribution Algorithms

Load distribution algorithms in distributed systems face several

challenges that can affect their efficiency and performance. Some of

the key challenges include:

Heterogeneity of Nodes:Distributed systems often consist of nodes

with different hardware configurations, processing power, memory,

and network capabilities. Designing a load distribution algorithm

that takes these differences into account can be difficult, as tasks

may need to be allocated in a way that suits each node's capacity.

Dynamic Workload and Resource Availability:The workload in

distributed systems is not constant; it can fluctuate over time as

tasks are added or completed. Similarly, nodes may join or leave the

system, and their resource availability can change (e.g., due to

failures or resource contention). Load distribution algorithms must

adapt in real time to these changes to prevent system overloads or

underutilization.

Communication Overhead:Effective load distribution often

requires frequent communication between nodes to monitor system

states and transfer tasks. This communication introduces network

overhead, which can reduce system performance, especially in large

distributed systems.

Task Migration Complexity: Moving tasks from one node to

another (task migration) is crucial for dynamic load balancing, but it

can be complex. The task’s state, including data, memory, and

dependencies, must be transferred without errors. Migration also

incurs overhead in terms of time and network bandwidth, which can

impact the overall system's efficiency if not handled properly.

4.5.2 Types of Load Distribution Algorithms

Load distribution algorithms can be broadly classified into two main

types: Static load distribution, Dynamic load distributionand

Adaptive load distribution. Each type has its own set of strategies

and characteristics, which are outlined below.

STATIC LOAD DISTRIBUTION ALGORITHMS

In static load distribution, tasks are assigned to nodes based on pre-

defined rules or policies that do not change during runtime. The

allocation is determined before the system starts executing tasks,

167

and it remains fixed regardless of any changes in the system’s state,

such as node failures or load variations. The key characteristics of

this type of algorithms are:

 Tasks are assigned to nodes based on fixed parameters like node

capacity, number of tasks, or historical performance.

 Since task assignments are made in advance, there is no need for

continuous monitoring or real-time adjustments, leading to

lower communication overhead.

 Static algorithms are not responsive to dynamic changes, such as

node failures or fluctuating workloads, which can result in poor

load balancing if the system's state changes.

DYNAMIC LOAD DISTRIBUTION ALGORITHMS

In dynamic load distribution, task assignment is made in real-time

based on the current state of the system. The algorithm continuously

monitors the status of nodes (e.g., CPU utilization, memory

availability, network load) and adjusts the distribution of tasks

accordingly. The key characteristics of this type of algorithms are:

 Decisions about which node should handle a task are made

during runtime, based on current system conditions.

 Dynamic algorithms can adapt to changes in the system, such as

varying workloads, node failures, or resource availability.

 Dynamic load distribution requires continuous monitoring and

communication between nodes, which can increase system

overhead.

ADAPTIVE LOAD DISTRIBUTION ALGORITHMS

Adaptive Load Distribution Algorithms in distributed systems are

dynamic strategies that adjust to changing system conditions in real-

time to distribute the workload efficiently among multiple nodes.

These algorithms continuously monitor system resources and

workload distribution and adapt to fluctuations in load, node

availability, or network performance. The goal is to achieve optimal

system performance, prevent bottlenecks, and ensure the fair

utilization of resources across the network. The key characteristics

of this type of algorithms are:

 Adaptive algorithms respond to changes in system conditions

such as node failures, varying workloads, and new nodes joining

168

the network. These algorithms make real-time decisions on how

to assign or migrate tasks to maintain a balanced load.

 The system regularly monitors each node's resource utilization

(e.g., CPU, memory, task queue length) to determine if nodes

are overloaded or underutilized. Based on this information, the

algorithm can redistribute tasks to balance the load across all

nodes.

 These algorithms make decisions on-the-fly, meaning they

analyze system conditions and adjust task allocations in real-

time to maintain efficiency. As workloads change dynamically,

so does the task allocation strategy.

There are different types of Adaptive load distribution algorithms.

They are:

Sender-Initiated Adaptive Algorithms: In this approach, nodes

that are heavily loaded initiate the process of distributing tasks.

When a node's workload exceeds a certain threshold, it looks for

underloaded nodes to transfer tasks to.

Receiver-Initiated Adaptive Algorithms: n this strategy,

underloaded nodes initiate the process. They request tasks from

overloaded nodes or the central system to balance their workload.

Symmetric Adaptive Algorithms: This is a combination of sender-

initiated and receiver-initiated approaches. Both heavily loaded and

underutilized nodes can initiate load balancing by communicating

with each other.

Centralized Adaptive Algorithms: A central node or controller

monitors the system and decides how to distribute the workload

among the nodes. It dynamically adjusts allocations based on real-

time system conditions.

Decentralized Adaptive Algorithms:In a decentralized approach,

individual nodes collaborate and make decisions locally about

workload distribution. Nodes exchange information with

neighboring nodes and adjust their tasks accordingly.

4.6 TASK MIGRATION

Task migration is a process in distributed systems where a task (or a

process) that is already running on one node is transferred to another

node. This transfer occurs to balance the system load, improve

169

performance, or handle system changes like node failures or

resource unavailability.

The main goal of task migration is to ensure that workloads are

distributed more efficiently across the nodes in a distributed system.

By moving tasks from overloaded nodes to underloaded ones, the

system can avoid performance bottlenecks, reduce response times,

and optimize resource utilization.Below are the key concepts that

form the foundation of task migration:

Load Balancing: The main reason for task migration is to balance

the load. This means making sure that no computer or node is

overwhelmed with too many tasks while others are underused. By

moving tasks from overloaded nodes to less busy ones, the system

works more efficiently and performs better. The goal is to:

 Prevent any node from becoming a bottleneck.

 Improve the speed at which tasks are completed.

 Ensure tasks are shared fairly among all nodes based on their

abilities.

Resource Optimization:In distributed systems, different nodes

have different capacities, like CPU power and memory. Task

migration helps make the best use of resources by moving tasks to

the nodes that have more available power. This prevents powerful

nodes from being idle while weaker ones struggle with a heavy load,

ensuring that resources are used as efficiently as possible.

Fault Tolerance:Task migration helps keep the system running

smoothly, even when something goes wrong. If a node fails or its

performance drops, the tasks on that node can be moved to other

active nodes. This ensures that tasks keep running without

interruption, helping the system recover quickly from problems.

Dynamic Adaptation:Distributed systems are constantly

changing—nodes may join or leave, and workloads may shift. Task

migration allows the system to adapt to these changes by regularly

monitoring the state of the system and moving tasks as needed. It

adjusts tasks in real time based on the availability and workload of

each node to keep the system balanced.

Task State Transfer:When a task is moved to another node, its

current state (like memory usage, open files, and active connections)

must also be transferred. The task should be able to continue on the

new node without losing progress. This can be complicated,

170

especially if the task is connected to other processes, but it’s

important to transfer all relevant data correctly and efficiently.

Network Overhead:Moving tasks between nodes requires

communication over the network, which can slow things down. This

extra communication is called network overhead. The goal of task

migration is to keep this overhead as low as possible so that the

benefits of moving the task outweigh the cost of transferring it.

Consistency:Maintaining consistency during task migration is

crucial. If a task interacts with other processes or services, the

system needs to make sure no errors or inconsistencies occur due to

the migration. Consistency management ensures that everything

runs smoothly and all interactions are handled correctly, so the task

can continue without issues after the move.

TYPES OF TASK MIGRATION IN DISTRIBUTED

SYSTEMS

There are different types of task migration strategies, each designed

to address specific challenges and scenarios in distributed systems.

These types can be categorized based on the timing of migration, the

approach taken, and the triggering conditions.

Static Task Migration:

Static task migration refers to a fixed, predefined migration strategy

that does not consider the real-time state of the system. Once tasks

are assigned to nodes, they do not change, regardless of variations in

load or node status. The key characteristics of this kind are:

 Static migration is easy to implement but lacks flexibility, as it

does not adapt to changes in the system’s state.

 This approach works well in environments with predictable

workloads where tasks do not need to be reallocated

dynamically.

Dynamic Task Migration:

In contrast to static task migration, dynamic task migration

continuously monitors the system's state and redistributes tasks

based on real-time conditions such as node load, resource

availability, or network conditions. Tasks can be migrated

dynamically as needed. The key characteristics of this kind are:

 Dynamic migration responds to changing conditions in the

system, making it more flexible and efficient.

171

 The system must constantly monitor resource usage and task

status, which adds complexity.

 This is the most suitable approach for highly dynamic

distributed systems where workloads and resources change

frequently.

Preemptive Task Migration:

Preemptive migration involves transferring a task from one node to

another while it is still in progress. This type of migration is more

complex because the task's current state, including variables,

memory, and other resources, must be preserved during the transfer

to ensure that it can resume execution seamlessly on the new node.

The key characteristics of this kind are:

 The system must transfer the entire state of the task, including

data and intermediate results.

 Preemptive migration incurs higher overhead due to the

complexity of transferring the task’s state across nodes.

 Preemptive migration is useful in dynamic systems where

workloads change frequently and tasks need to be moved in real-

time to prevent overloads on certain nodes.

Non-Preemptive Task Migration:

Non-preemptive migration involves moving a task only after it has

completed execution or when it is in a waiting state (e.g., when

waiting for input/output operations to finish). Unlike preemptive

migration, there is no need to transfer the task's state during

execution, making it simpler and less resource-intensive. The key

characteristics of this kind are:

 The task is either finished or paused, so there is no need to

transfer its current state.

172

 Since no active state needs to be transferred, non-preemptive

migration incurs less overhead.

 Non-preemptive migration is suitable for systems where tasks

have relatively short execution times or can be deferred to

migrate at natural points in the workflow.

Incremental Task Migration:

In Incremental Task Migration only the incremental changes or

updates in a task’s state are transferred from one node to another,

rather than migrating the entire task’s state at once. This approach is

used to reduce the overhead and downtime typically associated with

migrating a task, allowing the system to maintain high performance

and minimize service interruptions. The key characteristics of this

kind are:

 Only the changes or deltas in the task's state (e.g., modified

memory, variables, or file handles) are transferred instead of

migrating the entire task state. This helps in reducing the amount

of data that needs to be sent across the network.

 Task state is transferred in small increments over time, which

reduces network load and minimizes the performance impact on

the system. This prevents bottlenecks and ensures a smoother

migration process.

 Distributed systems often experience changes in workload or

resource availability. Incremental migration allows tasks to

move between nodes efficiently while adapting to these changes

in real time.

173

4.7 SUMMING UP

 Distributed scheduling decides which node in a distributed

system should execute tasks for load balancing, system

performance, and minimized response time.

 The factors related to distributed scheduling are resource

availability, task priority, system load, communication delays,

and node states.

CHECK YOUR PROGRESS-I

1. State True or False:

a) Distributed Scheduling aims to balance the workload evenly

across nodes.

b) Static scheduling can easily adapt to dynamic changes in the

system.

c) Dynamic load distribution assigns tasks based on the real-

time state of the system.

d) Task migration involves moving completed tasks from one

node to another.

e) Heterogeneity of nodes is a challenge in load distribution

algorithms.

2. Fill in the blanks:

a) The goal of ____________________ is to decide which

tasks should be handled by which nodes.

b) ____________________ ensures that each node gets a fair

share of tasks based on its capabilities.

c) ____________________allows the system to adapt to

changes in workload and resource availability in real-time.

d) ________________________ transfers only the changes or

updates in a task’s state.

e) ____________________ task migration occurs after a task

has finished or is in a waiting state.

174

 Types of distributed scheduling are namely – Static, Dynamic

and Hybrid.

 Importance of Distributed Scheduling are:

o Ensures efficient resource utilization by preventing node

overloading.

o Improves task execution time and system scalability.

o Increases fault tolerance by reassigning tasks from failed

nodes.

o Adapts to system changes (e.g., node availability, workload

fluctuations).

 Load Distribution is to distribute workload evenly across nodes

to prevent overloading and underutilization.

 Load Balancing snsures fair task distribution based on each

node's capacity.

 Load Monitoring tracks node resource usage (CPU, memory) to

guide task assignment.

 Task Migration transfers tasks between nodes to balance load,

optimize resources, and improve fault tolerance.

 Types of Task Migration are namely – Static, Dynamic,

Preemptive, Non-preemptive and Incremental.

 Challenges related to Load Distribution Algorithms are:

o Heterogeneity: Nodes with different capabilities require

tailored task assignments.

o Dynamic Workloads: System load fluctuates, requiring real-

time adaptation.

o Communication Overhead: Task migration and monitoring

introduce network load.

o Task Migration Complexity: Transferring task state without

disrupting execution.

4.8 ANSWERS TO CHECK YOUR PROGRESS

1. a) True b) False c) True d) Falsee) True

2. a) distributed scheduling b) Load balancing c) Dynamic

schedulingd) Incremental task migratione) Non-preemptive

175

4.9 POSSIBLE QUESTIONS

Short Answer Type Questions:

1. What is the primary goal of distributed scheduling?

2. What is load balancing in distributed systems?

3. Why is task migration important in distributed systems?

4. What is a centralized task assignment approach?

5. What is heterogeneity in distributed systems?

Long Answer Type Questions:

6. Explain the key components of load distribution in distributed

systems.

7. Discuss the challenges of load distribution algorithms in

distributed systems.

8. Describe different types of task migration in distributed systems.

9. Discuss the significance of adaptive load distribution algorithms

in distributed systems.

10. What are the challenges of task migration in distributed systems,

and how can they be addressed?

4.10 REFERENCES AND SUGGESTED READINGS

1. "Distributed Systems: Concepts and Design" by George

Coulouris

2. “Designing Data-Intensive Applications" by Martin

Kleppmann

3. “Distributed Systems: Principles and Paradigms" by Andrew

Tanenbaum and Maarten Van Steen

×××

176

UNIT: 5

DEADLOCKS IN DISTRIBUTED SYSTEMS

Unit Structure:

5.1 Introduction

5.2 Objectives

5.3 Basic Conditions of Deadlocks

5.4 Deadlock Handling

 5.4.1 Deadlock Prevention

 5.4.2 Deadlock Avoidance

 5.4.3 Deadlock Detection and Resolution

 5.4.3.1 Issues in Deadlock Detection and Resolution

5.5 Resource Deadlocks Versus Communication Deadlocks

 5.5.1 Communication Deadlock Handling

5.6 Summing Up

5.7 Answers to Check Your Progress

5.8 Possible Questions

5.9 References and Suggested Readings

5.1 INTRODUCTION

In one of the earlier unit, we have learnt about the use of locks to

prevent race conditions, maintain data integrity and implement an

efficient concurrency control mechanism for accessing shared

resources in case of distributed systems. So, use of lock is very

significant in distributed systems. But deadlock may occur due to

the use of locks in distributed systems. Deadlock can be defined as a

state where a set of transactions is unable to complete as each

transaction is waiting for a resource which is currently allocated to

another transaction available in that set. For example, consider A

and B are two transactions and R and S are two resources. Currently

R is allocated to A and A is waiting for S. On the other hand S is

allocated to B and B is waiting for R. At this point, A is waiting for

B to release a lock on S and B is waiting for A to release a lock on

177

R. In such a situation, both transactions will be in waiting mode

indefinitely and this type of state is called a deadlock. In distributed

system, due to deadlock, the system may become unresponsive. In

this chapter we will learn about different conditions to occur

deadlock and different ways to handle it.

5.2 OBJECTIVES

After going through this chapter, we will be able to learn:

 About the basic conditions to occur deadlocks in

distributed systems.

 How to prevent deadlock?

 How to avoid deadlock?

 About Deadlock Detection and Resolution.

 About different issues in Deadlock Detection and

Resolution.

 About Deadlock Detection Algorithms.

 What is Communication deadlock?

 About the differences between Resource deadlock

and Communication deadlock.

5.3 BASIC CONDITIONS OF DEADLOCKS

We have already learnt that deadlock is a situationin which a set of

transactions are not able to complete or proceed as they are

indefinitely waiting for resources.Now there are four basic

conditions that must be presentall together so that deadlocks may

occur. These conditions are presented as follows.

 Mutual exclusion condition: In Mutual exclusion

condition, each resource can be allocated by only one

process or transaction at a time. For example, if a database

table is being accessed by a transaction, T, then no other

transaction is allowed to access it until the transaction, T

releases it.

178

 Hold and wait condition:In the Hold and Wait condition, if

a transaction is already accessing a resource then it can

request for more resources to complete its job. For example,

if a transaction is currently accessing a database table and it

requires the access of another database table to complete its

job then it can request for that table.

 No-Preemption condition: In the No-Preemption condition,

if a transaction is accessing a resource then the resource

cannot be released forcibly from that transaction before

completion of its job with that resource. For example, if a

transaction is accessing a database table then the table cannot

be forcibly released from the transaction for any other

transaction that is waiting for that resource. Only the

transaction can release the table allocated to it.

 Circular Wait condition:In the Circular Wait condition, a

circular chain is formed among two or more transactionsin

such a way that each transaction is waiting for a resource

that is allocated to the next transaction in the chain. For

example, let us consider that transaction T1 is waiting for a

resource that is allocated to the transaction T2,transaction T2

is waiting for a resource that is allocated to the transaction

T3 and finally transaction T3 is waiting for a resource that is

allocated to the transaction T1. As a result, a circular chain

of transactions(T1→T2→T3→T1) is created.

5.4 DEADLOCK HANDLING

In general, deadlocks can be handled by using three

approaches that areDeadlock Prevention, Deadlock Avoidance,

Deadlock Detection and Resolution.

5.4.1 Deadlock Prevention

Earlier, we have learned about four basic conditions that must be

fulfilled all together for a deadlock occurrence in a system. So,

deadlocks can be prevented by providing a mechanism to stop from

satisfying at least any one of these conditions. But it is not possible

to stop from satisfying Mutual Exclusion condition and No-

Preemption condition in case of all kind of resources. For example,

we have already learnt in earlier chapters that Mutual Exclusion

condition can be prevented by allowing read operation on a file by

179

multiple processes simultaneously but in case of write operation, it

cannot be allowed. Similarly, if a process is performing write

operation on a file then it cannot be taken away forcibly from the

process so that another waiting process can perform write operation

on that file. Now, possible strategies to stop from satisfying, Hold

and Wait Condition andCircular Wait Condition, are discussed in

the following points.

 The first possible strategy to break Hold and Wait condition

is to allow all the processes or transactions to lock all the

required resourcesbefore beginning of their executions.This

locking process must be performed as one atomic step. If a

transaction cannot lock all its required resources as one or

more of them are currently locked by other transactions then

the transaction will not lock any resources and it will be in

waiting mode until the availability of all the required

resources.As a result, each transaction will complete its job

without waiting for any resource and deadlock will never

occur in the system.But two issues are observed in this

strategy as presented in the following points.

 In case of some transactions, it is impossible to

determine all the resources required for their job

before beginning of their execution.

 In this approach, efficient utilization of shared

resources cannot be achieved.

 The second possible strategy to break Hold and Wait

condition is related to the temporary release of resources.In

this strategy, if a transaction requires more resources which

are currently allocated to the other transactions then the

transaction must temporarily unlock all the resources

currently allocated to it before requesting other required

resources.After that, it will attempt to allocate all the

necessary resources together.

180

 The first possible strategy to break Circular Wait condition is

to apply a restriction on all the transactions or processes such

that each transaction or process can allocate only one

resource at a time and if it require another resource then it

must release the allocated one.But practically this approach

cannot be used for all types of transactions because some

transactions may require more than one resource together to

complete their jobs.

 A better approach than the first one is available to break the

Circular Wait condition. In this approach, a global ordering

is assigned to the all resources available in a distributed

system. Now, if a transaction is currently accessing a

resource then it can request only for those resources which

are placed after the already allocated resource in the global

order of resources.If the transaction require a resource which

is placed beforethe already allocated resource in that global

order then at first it must release the already allocated

one.Due to this restriction, Circular Wait condition will

never be satisfied in any situation.So, in this approach,

transactions can request for resources depending upon a

global numerical order. For example, let us consider process

P1 holds resource T and process P2 holds resource U.The

global order of T is n1 and the global order of U is n2.Now if

n1 is greater than n2 then the process P1 cannot be able to

request for the resource U but process P2 can request for the

resource T. On the other hand if n1 is smaller than n2 then

the process P1 can request for the resource U but the process

P2 cannot request for the resource T. In both situations,

Circular Wait condition will never be satisfied.Issues with

this approach are presented in the following points.

 The major issue with this approach is to

implement an efficient global ordering for

resources that will work efficiently in every

condition.

 Due to this approach, resource utilization may

not be efficient as concurrency will be reduced.

5.4.2 Deadlock Avoidance

 We have already learnt how deadlocks can be prevented in

the earlier section and observed some issues in that approach.In this

section, we are going to learn how deadlocks can be avoided

181

without preventing the four basic conditions.Deadlock avoidance is

based on two factors that are careful resource allocation and

maintaining a safe state in the system. In this context,a safe state in a

system means that the system can allocate available resources to

different processes in some order as per their requirements without

causing a deadlock. So, deadlocks can be avoided if a careful

resource allocation strategy is applied so that the system remains in

safe state after each resource allocation process. It means, thesystem

will allow a resource request of a process only if it will not cause a

deadlock situation.On the other hand, if there is a possibility of a

deadlock occurrence in the system after a sequence of resource

allocations to different processes then it means that the system is in

unsafe state.

 Now, to implement Deadlock avoidance approach, the

system must have four important information that are: (a)

information about presently available resources, (b) information

about the resources that are already locked by each process, (c)

information about the resources thatwill be required by different

processes in future, and (d) information about the resources that will

be released by the processes in future.Theseinformation will be

updated after each movement of the system from one safe state to

another safe state.In case of a distributed system, each server must

maintain these information and communicate with each other to

maintain a safe state in the whole system by carefully allocating

resources to different processes.

 In 1965, Edsger Dijkstraproposed a scheduling algorithm to

implement Deadlock avoidance. This algorithm is referred as

Banker’s algorithm because it is based on the idea that a banker

might apply to grant funds to a set of customers.The main concept

of this algorithm is to find out the state of a system if it will allow a

resource request of a process. If the state is a safe state then the

system may allow the resource request. Otherwise, the system will

delay the request. In case of distributed systems, the Banker’s

algorithm for multiple resources is applied to avoid deadlock.

182

The Banker’s algorithm for multiple resources: In case of

distributed systems, multiple types of resources are required by

different processes from different servers to complete their

jobs.Now to apply Banker’s algorithm, the number of resources of

each type must be fixed and the maximum number of resources

required by each process must be stated in advance.Let us consider,

the current number of processes is A and the number of resource

types available in the system is B.The execution of the Banker's

algorithm requires three data structures that are presented in the

following points.

 Resource_Available: Resource_Available is a data structure

that stores the number of available resources of each type in the

system.So, let us consider,Resource_Available[t] stores the

number of available resources of resource type

Rt.‘Resource_Available[t] = N’ means that the number of

available Rt type resources in the system is N. The maximum

value of t can be B as per our assumption.In Figure 11.1(a), an

example of Resource_Available is presented.

 Resource_Allocated: Resource_Allocated is a [A × B] matrix

that stores the number of already allocated resources of each

type to each process in the system.So,

‘Resource_Allocated[s][t] = M’ meansthat M number of

resources of resource type,Rt is currently allocated to the

process,Ps.In Figure 11.1(b), an example of

Resource_Allocated is presented.

 Resource_Required: Resource_Required is also a [A × B]

matrixthat stores the number of resources of each type that is

still required by each process to complete its job. So,

‘Resource_Required[s][t] = M’ means that M number of

resources of resource type,Rt is still required by the

process,Ps.In Figure 11.1(c), an example of

Resource_Required is presented.

183

 R1 R2 R3 R4

1 2 3 4

Resource_Available 3 4 3 2

Figure 11.1(a) Resource_Available

R1 R2 R3 R4

1 2 3 4

P1 1 0 2 1 0

P2 2 1 1 0 1

P3 3 0 2 1 1

P4 4 2 0 1 2

P5 5 2 1 3 0

Figure 11.1(b) Matrix Resource_Allocated

R1 R2 R3 R4

1 2 3 4

P1 1 3 0 1 0

P2 2 3 2 1 0

P3 3 2 0 1 2

184

P4 4 3 1 2 1

P5 5 2 3 1 1

Figure 11.1 (c) Matrix Resource_Required

Now, the Banker’s algorithm to avoid deadlockscan be explained

with the following points.

1. When a process try to request for a resource then before

allowing it, the system must check the possible state of the

system if the process request is allowed. If the state is found

to be safe then only the process request is allowed. In

Banker’s algorithm, a search operation is performed to find a

row, I, in the Resource_Requiredmatrix (figure 11.1

(c))whereResource_Required[I][J] <=

Resource_Available[J] for all values of J. If the search

operation could not finda row with that condition then it

means that the system is in unsafe state. So, due to a process

request, if the state of the system will become unsafe then

the system delays the process request. Otherwise, the system

will allow the process request to allocate a required resource

and update related information in

Resource_Available,Resource_Allocated and

Resource_Required.

For example, let us consider, the process, P1 try to request

for a resource of type R1. Now, if this request is allowed

then information in Resource_Required related to P1 and

information inResource_Available related to R1 will be

changed as shown in figure 11.2(a) and 11.2(b).

R1 R2 R3 R4

1 2 3 4

Resource_Available
2 4 3 2

Figure 11.2(a): Updated Resource_Available If Request of

P1 is Allowed

185

R1 R2 R3 R4

 1 2 3 4

P1 1 2 0 1 0

P2 2 3 2 1 0

P3 3 2 0 1 2

P4 4 3 1 2 1

P5 5 2 3 1 1

Figure 11.2(b): Updated Resource_Required If Request of P1

is Allowed

From figure 11.2(a) and 11.2(b), following statement can be

stated.

 ‘Resource_Required[1][J] <=

Resource_Available[J]’ is true for all values

of J(1 to 4).

From the above statement, it means that the system will be in

safe state if request of the process, P1 for a resource of type,

R1 is allowed by the system. So, at this point, a resource of

type R1 is allocated to the process, P1 and the value in

Resource_Allocated[1][1] is updated to 1. Now, let us

consider, the process, P2 try to request for a resource of type

R1. If this request is allowed then information in

Resource_Available related to R1and information

inResource_Required related to P2will be changed as shown

in figure 11.3(a) and 11.3(b)

 R1 R2 R3 R4

1 2 3 4

Resource_Available 1 4 3 2

Figure 11.3(a): Updated Resource_Available If Request of

P2 is Allowed

186

R1 R2 R3 R4

1 2 3 4

P1 1 2 0 1 0

P2 2 2 2 1 0

P3 3 2 0 1 2

P4 4 3 1 2 1

P5 5 2 3 1 1

Figure 11.3(b): Updated Resource_Required If Request of P2

is Allowed

From figure 11.3(a) and 11.3(b), following statement can be

stated.

 Resource_Required[1][J] <= Resource_Available[J]

is false for J = 1

 Resource_Required[2][J] <= Resource_Available[J]

is false for J = 1

 Resource_Required[3][J] <= Resource_Available[J]

is false for J = 1

 Resource_Required[4][J] <= Resource_Available[J]

is false for J = 1

 Resource_Required[5][J] <= Resource_Available[J]

is false for J = 1

From the above statements, it means that the system will be

in unsafe state if request of the process, P2 for a resource of

type, R1 is allowed by the system. So, the system will delay

the request of the process, P2.

2. If a process is able to allocate all the required resources and

complete its job then the process is marked as finished and

187

all its resources are declared as available resources by

updating corresponding information in Resource_Available.

3. Above steps are repeated until all processes are marked

finished.

Issues associated with Deadlock avoidance approach are stated in

the following points.

 To apply Deadlock avoidance approach, the number of

resources must be fixed in the system and the system must

have the information about the resource requirements for

each processin advance. In a large distributed system, it may

not be possible to fulfill these two requirements of this

approach.

 Another issue of Deadlock avoidance approach is that the

execution of processes may not fulfill the synchronization

requirements to improve system performance.

 Due to this approach, resource utilization may be decreased

as resource requests from processes may be delayed to

maintain safe state in the system although required resources

are available for allocation.

 In case of a large system with a huge number of processes

and resources, this approach may increases computational

overhead considerably in the system to avoid deadlocks.

 Due to this approach, it may be possible that resource

requests of some processes are continuously delayed to

maintain safe state of the system which may degrade the

system performance.

5.4.3 Deadlock Detection and Resolution

From the earlier sections, we can observe that deadlock occurrences

can be stopped by using Deadlock Prevention and Deadlock

Avoidance approaches. In this section, we are going to discuss about

Deadlock Detection and Resolution technique to remove a deadlock

after its occurrence in a distributed system. In this approach, at first

occurrence of a deadlock is detected and after detection of the

188

deadlock, it is removed from the system by using deadlock

resolution strategies.

Detection of deadlocks can be performed by maintaining a wait-for

graph. The wait-for graph is a directed graph that represents which

processis waiting for which processes to release their one or more

resources.Each node in a wait-for graph representsa process or a

transaction. Let us consider, P and Q are two nodes available in the

wait-for graph. Now, if there is a directed edge from P to Q then it

means that process P is waiting for some resource that is currently

allocated to the process Q. If a cycle of processes is formed in the

wait-for graph then it indicates the occurrence of a deadlock.For

example, from the wait-for graph presented in thefigure (11.4), it is

observed that a cycle of processes is formed

(P→R→S→Q→P) and it indicates a possible occurrence of a

deadlock. So, detection of deadlocks can be performed by searching

for cycles in the wait-for graph.

Figure 11.4 : Wait-for Graph

The lock manager of a system contains the software to detect

deadlocks. This software must be able to access a representation of

the wait-for graph so that it can detect deadlocks by searching the

graph for cycles. On the other hand, the wait-for graph is

continuously updated whenever new edges are added to it or old

edges are removed from it depending upon ‘setLock’ and ‘unLock’

operations of the lock manager.

In a distributed system, several servers are accessed by multiple

processes or transactions. As a result, multiple wait-for graphs are

available in a distributed system. At each server, the lock manager

P

T

Q S

R

189

constructs a local wait-for graph. So, to perform deadlock detection

in a distributed system, a global wait-for graph may be created from

the local wait-for graphs associated with the servers of the system.

Detection of a distributed deadlock can be performed by searching

for cycles in the global wait-for graph. In this process,

communication among the servers available in the distributed

system is necessary. In the later sub-section, distributed deadlock

detection algorithms will be discussed.

After detection of a deadlock, a resolution strategy is applied to

remove the deadlock situation from the system.Different deadlock

detection and resolution strategies will be discussed in the next

chapter.

5.4.3.1 Issues in Deadlock Detection and Resolution

 Before implementing Deadlock detection and resolution

strategy to solve deadlock problem in a distributed system, we have

to consider different issues related to this approach. These issues are

presented in the following points.

 In distributed systems, deadlock detection approaches may

require a large amount of transmissions of information

between servers. The cost of these transmissionsmay be very

high and it may degrade the performance of the system.

 It is hard to maintain a consistent global wait-for graph in a

distributed system due to different reasons like server

failures, information losses, network delays etc. As a result,

deadlock detections may be inconsistent.

 In distributed systems, detection of deadlock may require

considerable time as it may require large amount of

information and analysis from multiple servers. As a result,

deadlocks will be active for longer time periods in a system

which will affect the performance of the system.

 The complexity of deadlock detection and resolution is

enhanced when the distributed system becomes greater in

size.

 Sometimes one or more servers in a distributed system may

become inactive or temporarily not reachable.Deadlock

detection and resolution approach must have the ability to

handle such situations so that consistent deadlock detections

can be maintained in the system.

190

 After deadlock detection, it is a difficult to choose

appropriate resolution strategy to break the deadlock

condition from the system.

 In case of distributed systems, resources may be dynamically

allocated and released. In such a dynamic environment, it is

a very complex process in real-time to constantly track and

update different modifications related to dynamic resource

allocations and releases so that the deadlock detections can

be performed consistently by the system.

5.5 RESOURCE DEADLOCKS VERSUS COMMUNICATION

DEADLOCKS

We have already discussed about deadlocks that are occurred when

in a group of transactions, each transaction is holding resources and

waiting for some other resources which are currently acquired by

other transactions. This type of deadlocks is referred as resource

deadlocks in distributed systems.We have already discussed in the

earlier section about the four basic conditions that must be present

all together to occur a Resource deadlock.

Now in this section, we are going to discuss about Communication

deadlock in distributed systems.Communication deadlocks occur in

a situation where two or more than two processes are waiting for

communication through messages from each other.Communication

deadlock is particularly connected to inter-process

communication.Let us consider a situation to understand

Communication deadlock. Let P1, P2 and P3 are three processes in a

distributed system. P1 sends a message to P2 and then it is waiting

for a message from P2. At the same time, P2 sends a message to P3

and then it is waiting for a message from P3. Similarly, P3 sends a

message to P1 and it is waiting for a message from P1. At this point,

a circular wait condition is occurred where each process is waiting

for a message from the next process in this cycle of three

processes.As a result, deadlock occurs and it is termed as

Communication deadlock. So, two conditions must be present

together so that Communication deadlocks may occur and these are

presented as follows.

 Waiting forsend and receive operation: In this condition,

processes are in block state until messages are sent or

received before progressing. So, due to this condition, a

191

process may be waiting for a message from another process

indefinitely as the other process is also waiting for a message

indefinitely.

 Circular wait condition: In this condition, a set of

processes forms a cycle where each process is waiting for a

message from the next process in that cycle.

The differences between Resource deadlock

andCommunicationdeadlock are presented in the following

points:

 Communication deadlock is connected to inter-process

communication but Resource deadlock is associated

withlogical or physical resources of a distributed system.

 Mutual Exclusion, Hold and Wait, No-Preemption and

Circular Wait are the four basic conditionsthat must be

satisfied all together to take place a Resource deadlock. On

the other hand, Waiting for send and receive operation and

Circular Wait are the two conditions that must be satisfied so

that a Communication deadlock may occur.

5.5.1 Communication Deadlock Handling

 Communication deadlocks can be handled in two ways that

are:

 Deadlock Detection and Recovery

 Deadlock Prevention

Deadlock Detection and Recovery: In this approach, at first,

Communication deadlock is detected and then recovery procedure is

applied to remove the deadlock condition. Detection of

Communication deadlock is a difficult job in distributed system. In

general, it can be performed by using the following techniques.

 A Time-out Mechanism can be implemented which can

generate deadlock detection alert if a process is waiting for a

message from a long duration of time.

 Dependency Graphs can be maintained to monitor which

process is waiting for messages from which other

processes.So, if a cycle of processes is formed in this graph

then it means that a Communication deadlock is occurred.

192

 Processes can send Heartbeat Messages at regular intervals

to specify that the processes are in active mode. So, if

Heartbeat Message is not received from a process from

particular duration of time then it means that the process is

not in active mode due to deadlock or failure.

 After successful detection of a Communication deadlock,

recovery from that deadlock can be performed by using the

following approaches.

 One or more than one processes associated with the deadlock

can be terminated and then restarted again to recover from

the deadlock situation. In this approach, most important part

is to find out which process or processes should be

terminated and then restarted first. This decision is

dependent on different conditions. For example, priority

value of the processes and number of messages sent or

received by them can be considered to decide which process

or processes should be terminated and then restarted first.

 Processes involved in a Communication deadlock can be

rollback to their previous safe states so that they can

continue to perform their jobs without having a deadlock

situation. In this approach, states of the processes must be

saved at regular intervals.

 Deadlock Prevention: Communication deadlocks can also

be prevented by using following approaches.

 If processes are not in block state indefinitely while sending

or receiving messages from other processes then

Communication deadlock can be prevented. It means to

prevent Communication deadlock, processes can use non-

blocking send and receive operations and check for

messages from other processes at regular intervals.

 If a process is waiting for a message from another process

and it do not received it within a particular duration of time

then the process can send the request for message again to

the other process or it can rollback to a previous safe state

from where it can continue again. As a result, a possible

Communication deadlock can be prevented.

 Message ordering protocols can be implemented so that a

definite order to send and receive messages by the processes

can be maintained in such a way that no circular wait

condition can be formed. So, if no circular wait condition is

formed then no Communication deadlock will be occurred.

193

5.6 SUMMING UP

 Deadlock can be defined as a state where a set of

transactions is unable to complete as each transaction is

waiting for a resource which is currently allocated to another

transaction available in that set.

 Four basic conditions to occur deadlocks are Mutual

exclusion condition, Hold and wait condition, No-

Preemption condition and Circular Wait condition.

 Deadlocks can be handled by three approaches that are (a)

Deadlock prevention, (b) Deadlock avoidance and (c)

Deadlock detection and resolution.

 If at least any one of the basic conditions to occur deadlocks

is prevented then the occurrence of deadlocks can be

prevented.

 Deadlocks can be avoided by carefully allocating resources

to processes or transactions. Banker’s algorithm is a

scheduling algorithm to implement Deadlock avoidance and

it was proposed by Edsger Dijkstra in 1965.

 Detection of deadlocks can be performed by maintaining a

wait-for graph. The wait-for graph is a directed graph that

represents which process is waiting for which processes to

release their one or more resources. Each node in a wait-for

graph represents a process or a transaction.

 The lock manager of a system contains the software to detect

deadlocks.

 After deadlock detection, resolution strategy is used to break

the deadlock condition in the system.

 Communication deadlocks occur in a situation where two or

more than two processes are waiting for communication

through messages from each other.Communication deadlock

is particularly connected to inter-process communication.

 Communication deadlocks can be handled in two ways that

are: Deadlock detection and recovery and Deadlock

prevention.

194

CHECK YOUR PROGRESS

1. Fill in the blanks

(a) The four basic condition to occur deadlock are ____ ,

_____, ______ and _____.

(b) Communication deadlock is connected to _____.

(c) The ______of a system contains the software to detect

deadlocks.

(d) The _____ is a directed graph that represents which

processis waiting for which processes to release their

one or more resources.

(e) ______is a scheduling algorithm used to avoid

deadlocks.

5.7 ANSWERS TO CHECK YOUR PROGRESS

1. (a) Mutual exclusion condition, Hold and wait condition, No-

Preemption condition, Circular Wait condition

 (b)inter-process communication

 (c) lock manager.

 (d) wait-for graph

 (e) Banker’s algorithm

5.8 POSSIBLE QUESTIONS

1. Define deadlock. Write down the basic conditions to occur

deadlocks.

2. Explain how deadlock can be prevented. Give examples.

3. Explain deadlock avoidance with examples.

4. Explain Banker’s algorithm for multiple resources to

implement Deadlock avoidance.

5. What is Communication deadlock? Write down the

differences between Resource deadlock and Communication

deadlock.

6. Write down the issues associated with Deadlock avoidance

approach.

7. How distributed deadlocks can be detected?

195

8. What are the main issues of Deadlock Detection and

Resolution approach to handle deadlocks?

5.9 REFERENCES AND SUGGESTED READINGS

 Coulouris, George, Jean Dollimore, and Tim Kindberg.

"Distributed Systems: Concepts and Design Edition 4."

(2005).

 Tanenbaum, Andrew S., and Maarten Van

Steen. “Distributed systems:Principles and Paradigms

Edition 2.” (2007).

×××

196

UNIT: 6

DEADLOCK DETECTION AND RESOLUTION

ALGORITHMS

Unit Structure:

6.1 Introduction

6.2 Objectives

6.3 Deadlock Detection Algorithm

6.4 Centralized Deadlock Detection

 6.4.1 Issues in Centralized Deadlock Detection

6.5 Distributed Approach to Detect Deadlocks

 6.5.1 Path-Pushing Algorithm

 6.5.2 Edge Chasing Algorithm

 6.5.3 Issues in Distributed Deadlock Detection

6.6 Hierarchical Deadlock Detection

 6.6.1 Issues in Hierarchical Deadlock Detection

6.7 Comparative Analysis of Deadlock Detection Algorithms

6.8 Deadlock Resolution Approaches

6.9 Summing Up

6.10 Answers to Check Your Progress

6.11 Possible Questions

6.12 References and Suggested Readings

6.1 INTRODUCTION

In the earlier chapter, we have already learnt that deadlock is a

condition that occurs in a system when a set of transactions could

not be able to complete their jobs as each transaction is waiting for

at least one resource that is presently locked by another transaction

197

available in that set. There are four basic conditions that must be

satisfied all together so that deadlock may occur in a system. These

conditions are Mutual exclusion condition, Hold and wait condition,

No-Preemption condition and Circular Wait condition. We have also

learnt that deadlocks can be handled by applying three approaches

that are Deadlock prevention, Deadlock avoidance and Deadlock

detection and resolution. In this unit, we are going to discuss about

different deadlock detection algorithms and their issues. Different

deadlock resolution strategies will also be discussed in this unit.

6.2 OBJECTIVES

 After going through this chapter, we will be able to

learn:

 About Centralized deadlock detection algorithm.

 About Distributed deadlock detection algorithm.

 About Hierarchical deadlock detection algorithm.

 Different deadlock resolution strategies.

6.3 DEADLOCK DETECTION ALGORITHM

We have already learnt in the earlier chapter that a deadlock can be

resolved after its detection. Deadlock detection can be performed by

maintaining a wait-for graph. We already know that if a cycle of

transactions or processes is developed in the wait-for graph then it

represents a deadlock occurrence. So, in a single server system,

deadlock detection can be performed by searching for cycles in the

wait-for-graph. But a distributed system consists of multiple servers

and each of these servers maintains one local wait-for graph. So,

deadlock detection process requires extra effort in distributed

systems. In distributed systems, a global wait-for graph may be

developed for deadlock detections.In general, three approaches are

available that can be used to detect deadlocks in distributed systems.

These are (a) Centralized deadlock detection approach, (b)

198

Distributed Approach to detect deadlocks, and(c) Hierarchical

deadlock detection approach.

6.4 CENTRALIZED DEADLOCK DETECTION

In the centralized deadlock detection approach, one server of a

distributed system is given the responsibility to detect distributed

deadlocks in the system. This server is referred as global deadlock

detector. Each of the other servers available in the system sends

regularly its recently updated local wait-for graph (Figure 12.1(a)

and 12.1(b)) to the global deadlock detector. The global deadlock

detector builds a global wait-for graph (Figure 12.1(c)) by

combining all the information received from the local wait-for

graphs and regularly updates it with any updated information

received at any time from the local wait-for graphs. In the next step,

the global deadlock detector, regularly searches for cycles in the

global wait-for graph and if it discovers any cycle then it informs

the servers about a best possible deadlock resolution strategy. For

example, a cycle (P→A→C→R→P) is detected in the global wait-

for graph as shown in figure 12.1(c).

Figure 12.1(a) : Local Wait-For Graph in Server S1

P

Q S

R T

199

Figure 12.1(b) : Local Wait-For Graph in Server S2

Figure 12.1(c) : Global Wait-For Graph in Global Deadlock

Detector

P

B C

A

R

B

C

A

P

Q S

R T

200

6.4.1 Issues in Centralized Deadlock Detection

Now issues with this approach are presented in the following points.

 Fault tolerance is very poor in this approach as only one

server controls the deadlock detection process. If the global

deadlock detector crashes due to some reason then whole

deadlock detection mechanism will be failed.

 If the local wait-for graphs are sent to the global deadlock

detector very frequently then the cost of these transmissions

will be very high. On the other hand, if the frequency of

these transmissions is reduced then more time will be

required to detect deadlocks and it may degrade the system

performance.

 This approach does not have the capacity to scale.

 Phantom deadlocks may occur in the system due to this

approach. If a deadlock is detected but in reality it is not a

deadlock then that deadlock is referred as a Phantom

deadlock. In case of the Centralized deadlock detection

approach, all updated information from local wait-for graphs

are regularly sent from different servers to the Global

deadlock detector. After receiving updated information, the

Global deadlock detector will detect a deadlock if it finds

any cycle in the Global wait-for graph. This process requires

some time. So, sometimes it may be happened that one

process from the detected cycle releases its resources in that

time duration and as a result the detected deadlock is not

available in the system. But the Global deadlock detector

will not have any idea about it and it will announce deadlock

detection which is not actually available in reality. Lamport's

algorithm can be used to avoid the occurrence of Phantom

deadlocks.

STOP TO CONSIDER

In Lamport's algorithm, a global timing is maintained for distributed systems.

When the Global deadlock detector receives new information from a server

and detects a possible deadlock after updating the global wait-for graph then

according to Lamport's algorithm, it immediately sends a message to all the

servers that it just got a message with a timestamp, T
s
 that leads to a deadlock

and if any server has a message with an timestamp before T
s
 for the global

detector then send it to the detector instantly. After receiving reply from all the

servers, the Global deadlock detector can find out the reality of the detected

deadlock.The issue with this algorithm is that a global timing has to be

maintained for the system which is costly.

201

6.5 DISTRIBUTED APPROACH TO DETECT

DEADLOCKS

In Distributed approach to detect deadlocks, no specific server is

made responsible for deadlock detection by forming a global wait-

for graph. Instead of a global deadlock detector, every server

participates in the process of deadlock detection in this approach.

So, no global wait-for graph is required to form for deadlock

detection by a specific server or node in a distributed system. Each

server maintains a local wait-for graph for deadlock detection. Path-

pushing and Edge-chasing are two important Distributed approaches

for deadlock detection discussed in the following subsections.

6.5.1 Path-Pushing Algorithm

In Path-pushing algorithm, distributed deadlock detection process is

performed by developing a global wait-for graph in each server of

the distributed system. According to this algorithm, each server

maintains a local wait for graph. When a server detects an external

process in its local wait-for graph then it sends the graph to all the

adjacent servers. Then each adjacent server updates its local wait-for

graph with the new information and sends again this updated local

wait-for graph to its adjacent sites. This process is performed

repeatedly till any server receives enough information so that it can

declare deadlock detection or prove that there is no deadlock

available in the system.

Deadlock detection using Obermarck’s Path Pushing deadlock

detection algorithm is explained with the following figures (Figure

12.2(b), 12.2(c), 12.2(d) and 12.2(e)). In figure 12.2(a), a possible

scenario of process dependencies in a distributed system with four

servers (Server1, Server2, Server3 and Server4) is presented. Here,

Server1 has three processes represented by ‘1’, ‘2’ and ‘3’ where ‘3’

is currently dependent on an external process and an external

202

process is dependent on ‘1’. Server2 has two processes represented

by ‘4’ and ‘5’ where ‘5’ is dependent on an external process and an

external process is dependent on ‘4’. Server3 has three processes

represented by ‘6’, ‘7’ and ‘8’ where ‘8’ is dependent on an external

process and an external process is dependent on ‘6’. Finally, Server4

has only one process represented by ‘9’ and ‘9’ is dependent on an

external process and an external process is dependent on ‘9’.

In this example, let us consider that the deadlock detection process

is started in Server1. As shown in Figure 12.2 (b), the first step of

the deadlock detection algorithm is started with Server1 where

Server1 sends the path information from its local wait-for graph to

Server2 through a string, “En 123 En”. En represents external

process. Similarly, Server2 sends the path information from its local

wait-for graph to Server3 through a string “En45 En”. Server3 sends

the path information from its local wait-for graph to Server4 with a

string “En68 En”. Finally, Server4 sends the path information from

its local wait-for graph to Server1 with a string “En9 En”. After

completion of the first step, it is observed that the string received by

Server1 from Server4 does not include the path information of

Server1’s local wait-for graph. It means that at this moment Server1

cannot declare the occurrence of deadlock in the system.

As shown in Figure 12.2 (c), in the second step of the deadlock

detection algorithm, Server2 concatenate the path information

received from Server1 in the first step with its current path

information and the updated path information in Server2 is “En

12345 En”. Server3 concatenate the path information received from

Server2 in the first step with its current path information and the

updated path information in Server3 is “En 4568 En”. Finally,

Server4 concatenate the path information received from Server3 in

the first step with its current path information and the updated path

203

information in Server4 is “En 689 En”. Each server sends its path

information to its adjacent server. After completion of the second

step, it is observed that the string received by Server1 from Server4

does not include the path information of its local wait-for graph. It

means that at this moment Server1 cannot declare the occurrence of

deadlock in the system.

Figure 12.2(d) presents the third step of the deadlock detection

algorithm. In this step, Server3 concatenate the path information

received from Server2 in the second step with its current path

information and the updated path information in Server3 is “En

1234568 En”. Server4 concatenate the path information received

from Server3 in the second step with its current path information

and the updated path information in Server4 is “En 45689 En”. Each

server sends its path information to its adjacent server. After

completion of the third step, it is again observed that the string

received by Server1from Server4 does not include its path

information of its local wait-for graph. It means that at this moment

Server1 cannot declare the occurrence of deadlock in the system.

Figure 12.2(e) presents the fourth step of the deadlock detection

algorithm. In this step, Server4 concatenate the path information

received from Server3 in the third step with its current path

information and the updated path information in Server4 is “En

12345689 En”. Each server sends its path information to its adjacent

server. After completion of the fourth step, it is observed that the

string received by Server1 from Server4 include its path information

of its local wait-for graph. It means that a cycle is formed in the

system. As a result, at this moment Server1 can declare the

occurrence of deadlock in the system.

.

.

Figure

System w

Figure 12

Algorithm

1

9

204

ure 12.2 (a) Example of Process Dependencies in

stem with Four Servers

ure 12.2 (b) First Step of Deadlock Detection usin

gorithm

2

3 4

8

Server

Server

Server

Serv

cies in a Distributed

n using Path-Pushing

5

6

7

erver

Server

Figure 12.2 (c) Second Ste

Pushing Algorithm

Figure 12.2 (d) Third Step

Pushing Algorithm

205

Step of Deadlock Detection using Path-

Step of Deadlock Detection using Path-

Figure 1

Pushing A

6.5.2 Edg

deadlock

approach

distribute

detector,

Each ser

algorithm

forwardin

as probes

b, c) is a

and c ref

Pb is the

means th

indirectly

currently

206

ure 12.2 (e) FourthStep of Deadlock Detectio

shing Algorithm

Edge Chasing Algorithm

Edge chasing is another approach to dete

adlocks where no global wait-for graph is fo

proach, no Global deadlock detector is availa

tributed deadlocks in the system. Instead of a G

tector, each of the servers is involved in the deadl

ch server maintains a local wait-for graph. Acc

orithm, the servers of the distributed system try to

warding messages to other servers. These messag

probes and each probe contains three values. Let u

) is a probe where a refers the process Pa , b refers

d c refers the process Pc . Now, Pa is the generato

is the sender of the probe and Pc is the receiver o

ans that Pb sends the probe (a, b, c) to Pc because

irectly dependent on Pb and Pb is waiting for a r

rrently locked by Pc. When a process or transaction

etection using Path-

o detect distributed

is formed. In this

available to detect

f a Global deadlock

 deadlock detections.

According to this

 try to find cycles by

essages are referred

. Let us consider, (a,

 refers the process Pb

nerator of the probe,

eiver of the probe. It

ause Pa is directly or

for a resource that is

action in a server of a

207

distributed system is waiting for a resource from specific time

duration and still the resource request is not successful then it

indicates a possible deadlock situation in the system. In this

situation, the process generates a probe and forwards it to those

processes which are currently holding the resources that are

currently requested by it. Then each process which receives the

probe will update the probe and again forward it to those processes

which are currently holding the resources that are currently

requested by it. This procedure continues and the probe is forwarded

from one server to another server in the distributed system through

different processes. When a probe is returned back to its generator

process then it indicates the formation of a cycle that means a

deadlock is detected.One important point is that if Pb sends the

probe, (a, b, c) to Pc then Pc can discard the probe if it is currently

not dependent on any other process. This algorithm is also known as

Chandy Misra Haas distributed deadlock detection algorithm.

Figure 12.3 present the working of Chandy Misra Haas distributed

deadlock detection algorithm on the scenario of process

dependencies in a distributed system with four servers (Server1,

Server2, Server3 and Server4) as presented in figure 12.2 (a). Let us

consider, an integer value x refers the process, Px. In this example,

the process, P1 is the generator of the probe and it sends the probe,

(1, 1, 2) to the process, P2. Then the process P2, forward the probe

(1, 2, 3) to the process P3 and P3 send the probe, (1, 3, 4) to P4. This

process continues and finally, the probe is returned back to the

generator process, P1 as (1, 9, 1). It indicates the formation of cycle

in the distributed system that means a deadlock situation is

developed in the system. From this example, it is also observed that

the process, P7 is not dependent on any other process and so, it

discards the probe, (1, 6, 7) which is sent by the process, P6.

Figure 1

6.5.1 Issu

deadlock

208

ure 12.3: Distributed Deadlock Detection using

Haas distributed deadlock detection algo

.1 Issues in Distributed Approach to Detect Dea

Different issues associated with the Distributed

adlock detection are discussed in the following poin

 One of the major issues associated with distrib

to detect deadlocks is its design complexity. I

process to design a distributed approach w

efficient and consistent in every possible situ

be developed in a distributed system.

 Distributed algorithms may require larg

information transfer among different servers

considerable amount of communication ove

observed in case of a large and complex distr

to detect deadlocks efficiently.

 Accuracy of deadlock detection may be affe

Distributed approach due to inconsistent stat

servers available in the system. Inconsisten

servers may be viewed due to different

using Chandy Misra

n algorithm.

Deadlocks

ributed approach for

g points.

 distributed approach

exity. It is a complex

oach which will be

le situation that may

large amount of

servers. As a result,

n overhead may be

distributed systems

be affected by using

nt states of different

nsistent states from

fferent reasons like

209

information loss, network delays, variability in information

delivery, variability in processing power among them etc.

 Due to this approach, false deadlock may be detected and

sometimes the system may fail to detect an actual deadlock.

For example, in case of Edge Chasing algorithm, if deadlock

related probes are discarded then it may be possible that a

deadlock will be occurred but it will not be detected. On the

other hand if outdated probes are forwarded by the processes

then it may be possible that deadlocks are detected that

actually not exist in the system.

 The distributed approach must be able to handle the situation

where one or more servers of the system are crashed due to

some reason so that deadlock detection process can be

continued without significant degradation of its performance.

 In case of Edge Chasing algorithm, probes may be lost or

delayed due to network problems and it will affect the

accuracy of the deadlock detection process. Additionally, in

case of a large and complex distributed system, tracking

probes of different processes may increase the system

overhead.

CHECK YOUR PROGRESS

1. Fill in the blanks

(a) In Centralized deadlock detection approach, the server

responsible for deadlock detection is referred as

________.

(b) If deadlock is detected in a system but actually it is not

currently exist then that deadlock is referred as a

_______.

(c) Path-Pushing algorithm is a ______ approach to detect

deadlocks.

(d) In case of___algorithm, the servers of the distributed

system try to find cycles by forwarding probes to other

servers.

(e) In Edge chasing algorithm, process, Pb sends the probe

(a, b, c) to the process______.

210

6.6 HIERARCHICAL DEADLOCK DETECTION

In the earlier sections, we have discussed the centralized approach

and distributed approach to detect distributed deadlocks. It has been

observed that both approaches are useful to detect distributed

deadlocks but different issues are also associated with both of these

approaches. In this section, we are going to discuss about

Hierarchical approach for distributed deadlock detection.

Hierarchical deadlock detection approach is a hybrid approach

where the concepts of both centralized approach and distributed

approach are combined to detect distributed deadlocks in a

distributed system. In this approach, servers are arranged in a

hierarchical structure where one server is responsible for detection

of deadlocks occurred in a cluster of servers and this server is the

local deadlock detector of that cluster. There may be multiple

clusters of servers in a system and deadlock detection of each cluster

is performed by a local deadlock detector by using centralized or

distributed approach. A global deadlock detector is responsible for

managing the local deadlock detectors and detects deadlocks

associated with multiple clusters. Within a cluster, each server

detects deadlocks that are local to that server by using its local wait-

for graph. Each server also transmits its local wait-for graph to the

local deadlock detector for deadlock detection occurred within its

cluster. Each local deadlock detectors transmit information related

to the path dependencies of its cluster to the global deadlock

detector. The global deadlock detector forms a higher level wait-for

graph with these information and search cycles to detect inter-

cluster deadlocks.

211

6.6.1 Issues in Hierarchical Deadlock Detection

 Issues associated with the Hierarchical deadlock detection

approach are presented in the following points.

 Implementation of Hierarchical deadlock detection approach

is more complex than other deadlock detection approaches

due to its requirement of hierarchical arrangement of servers

and the coordination between different levels of the

hierarchical arrangement.

 Maintenance of a Hierarchical structure in a dynamic

environment is a complex process. So, maintenance

complexity is increased in case of Hierarchical deadlock

detection approach.

 Deadlock detection process may be slower in case of

Hierarchical deadlock detection approach as in this

approach, information are required to be combined and

processed at different levels to detect distributed deadlocks.

 In this approach, failure of a server that is responsible for

deadlock detection of a cluster of servers can have a negative

impact on the deadlock detection process. So, servers

available in the upper layers of the hierarchical arrangement

are very crucial in the deadlock detection process. Failure of

such servers may degrade the performance of the deadlock

detection process significantly.

6.7 COMPARATIVE ANALYSIS OF DEADLOCK

DETECTION ALGORITHMS

We have discussed the three approaches to detect distributed

deadlocks in the earlier sections. Now, the most important point is to

find out the best approach among them to detect distributed

deadlocks. But there is no clear result to this query. It is observed

that selection of an appropriate deadlock detection approach for a

distributed system is dependent upon different factors like size and

complexity of the system, requirement of resources, possible

frequency of deadlock occurrence etc.

Implementation of Centralized deadlock detection is simple as only

one server is responsible for deadlock detection process. Deadlock

detection can be efficiently performed by using this approach in

case of small or medium sized distributed systems with low

212

deadlock occurrences. But in case of large and complex distributed

systems, this approach may not be appropriate one. The global

deadlock detector plays a very crucial role in this approach and

failure of this server may stop the whole deadlock detection process.

We have already discussed other issues associated with this

approach in the earlier section.

Distributed approaches to detect deadlocks are more suitable in case

of large and complex distributed systems where the frequency of

deadlock occurrence is high. In this approach, every server may

participate in the deadlock detection process. As a result, in this

approach, the fault tolerance is better than the Centralized deadlock

detection approach. This approach is more scalable and reliable. But

designing an efficient distributed approach to detect distributed

deadlocks is a complex process. Due to the requirement of large

amount of communications among servers, system overhead may be

increased in this approach.

The concepts of both Centralized deadlock detection and Distributed

deadlock detection approach are used in Hierarchical deadlock

detection approach to detect distributed deadlocks. In this approach,

servers are arranged in a hierarchical structure where upper layer

servers are responsible for deadlock detection associated with its

descendant lower layer servers. Communication overhead can be

reduced in this approach as the system is divided into different

clusters of servers. Deadlock detection in each cluster is controlled

by an upper layer server. If work load can be balanced between local

and global deadlock detectors then this approach may perform better

than the other two approaches. The main drawback of this approach

that its implementation and maintenance is more complex than the

other two approaches. Additionally, deadlock detection process may

be slower in case of Hierarchical deadlock detection approach.

6.8 DEADLOCK RESOLUTION APPROACHES

In the following points, possible resolution strategies are discussed.

 If one or more than one processes associated with a deadlock

are terminated then the cycle of processes as detected in the

wait-for graph may be removed. As a result, the deadlock

situation may be removed from the system. But it is a

213

difficult job to find out which process or transaction

associated in a deadlock should be terminated to resolve the

deadlock situation. To find out a best possible solution for

this problem, different factors may be considered. For

example: priority of the process, age of the process, number

of cycles associated with the process in the wait-for graph,

number of resources allocated to the process etc. When Edge

chasing algorithm is used to detect distributed deadlocks

then it may be possible that multiple transactions associated

with a cycle start deadlock detection process at the same

time by forwarding probes. As a result, detection of a

deadlock may be announced at different servers and it may

be possible that multiple transactions will be terminated to

resolve the same deadlock. To solve this problem,

transactions or processes can be arranged in an order by

assigning each transaction with a priority value. If deadlock

occurs then the transaction with lowest priority and involved

in that deadlock is terminated.

Another problem with this deadlock resolution approach is

that the system may not work efficiently and data

consistency issues may be occurred due to the termination of

processes.

 Rollback one or more processes or transactions to a previous

safe state can be performed instead of terminating processes

to resolve deadlock situation in a system. In this approach,

when a deadlock is detected then one or more processes

involved in that deadlock are rollback to one of their

previous safe state which exist before allocation of resources

to them. As a result, it may break the cycle of processes

available in the deadlock condition and deadlock condition

will be removed from the system. The main challenge in this

approach is that safe state of each process or transaction

must be saved and managed at regular intervals.

 Lock timeouts can also be applied to remove deadlock

condition from a system. In this approach, each lock is

assigned with a certain amount of time. When a resource is

locked then two cases may be observed. The first case is that

no other processes are waiting for that resource and

secondly, one or more processes are waiting for that

resource. If the first case is observed then the resource can

be remain locked even after the time period assigned with it.

214

But if the second case is observed then the resource is

unlocked after the time period assigned with it. It is referred

as the lock timeout. As a result of a lock timeout, a waiting

process can resume its job and it may resolve a deadlock

condition. Different issues observed in this approach are

presented in the following points.

 Sometimes, lock timeout may happen even if there

is no actual deadlock.

 In case of an overloaded system, some processes or

transactions may require long time to perform their

jobs and so, these processes may be badly affected

by lock timeouts.

 It is very difficult to estimate a proper time period

for lock timeouts.

CHECK YOUR PROGRESS

2. Choose the correct option

(a) Which of the following deadlock detection approach is not

suitable for large and complex distributed system?

 (i) Centralized deadlock detection

 (ii) Distributed approach to detect deadlocks

 (iii) Hierarchical deadlock detection

 (iv) Both (i) and (ii)

(b) Which of the following deadlock detection approach is

suitable for large and complex distributed system?

 (i) Centralized deadlock detection

 (ii) Distributed approach to detect deadlocks

 (iii) Hierarchical deadlock detection

 (iv) Both (ii) and (iii)

 (c) Which of the following deadlock detection approach is

suitable for small distributed system?

 (i) Centralized deadlock detection

 (ii) Distributed approach to detect deadlocks

 (iii) Hierarchical deadlock detection

 (iv) None of the above

215

 (d) Which of the following is not a way to resolve deadlocks?

 (i) Terminate one or more processes involved in a deadlock.

 (ii) Using lock timeouts.

 (iii) Prevent any one of the basic conditions to occur

deadlocks.

 (iv) Rollback one or more processes to a previous safe state.

(e) In ______, both the concepts of centralized approach and

distributed approach are used to detect deadlocks.

 (i) Hierarchical deadlock detection approach

 (ii) Edge Chasing algorithm

 (iii) Path-Pushing algorithm

 (iv)None of the above

6.9 SUMMING UP

 The three approaches to detect deadlocks in distributed

systems are (a) Centralized deadlock detection approach,(b)

Distributed Approach to detect deadlocks, and(c)

Hierarchical deadlock detection approach.

 In the centralized deadlock detection approach, one server of

a distributed system is given the responsibility to detect

distributed deadlocks in that system. This server is referred

as global deadlock detector. It detects distributed deadlock

by forming a global wait-for graph.

 If a deadlock is detected in a system but in reality it is not a

deadlock then that deadlock is referred as a Phantom

deadlock.

 In Distributed approach, every server participates in the

process of deadlock detection. Path-pushing and Edge-

chasing are two important Distributed approaches for

deadlock detection in distributed systems.

 In Path-pushing algorithm, distributed deadlock detection

process is performed by developing a global wait-for graph

in each server of the distributed system. When a server

detects an external process in its local wait-for graph then it

sends the graph to all its adjacent servers.

 In Edge chasing algorithm, the servers of the distributed

system try to find cycles by forwarding messages to other

servers. These messages are referred as probes.

216

 In Hierarchical deadlock detection approach, the concepts of

both centralized approach and distributed approach are used

to detect distributed deadlocks. In this approach, servers are

arranged in a hierarchical structure.

 Deadlock detection can be efficiently performed by using

Centralized deadlock detection approach in case of small or

medium sized distributed systems with low deadlock

occurrences.

 Distributed approaches to detect deadlocks are more suitable

in case of large and complex distributed systems where the

frequency of deadlock occurrence is high.

 Deadlock can be resolved by three ways that are (a)

Terminating one or more processes involved in a deadlock

cycle, (b) Rollback one or more processes to a previous safe

state, and (c) Using lock timeouts.

6.10 ANSWERS TO CHECK YOUR PROGRESS

1.

 (a) Global deadlock detector

 (b) Phantom deadlock

 (c) Distributed

 (d) Edge chasing

 (e) Pc

2.

 (a) (i) Centralized deadlock detection

 (b) (iv) Both (ii) and (iii)

 (c) (i) Centralized deadlock detection

 (d) (iii) Prevent any one of the basic conditions to occur

deadlocks.

 (e) (i) Hierarchical deadlock detection approach

6.11 POSSIBLE QUESTIONS

1. Explain Centralized Deadlock Detection approach. Write

down the issues in this approach.

2. Explain Distributed Deadlock Detection approach. Write

down the issues in this approach.

3. Explain Hierarchical Deadlock Detection approach. Write

down the issues in this approach.

217

4. Write down the deadlock resolution strategy that can be

applied without detecting deadlocks.

5. Write down different deadlock resolution strategies that can

be applied after detection of deadlocks.

6.12 REFERENCES AND SUGGESTED READINGS

 Chandy, K. Mani, Jayadev Misra, and Laura M. Haas.

"Distributed deadlock detection." ACM Transactions on

Computer Systems (TOCS) 1.2 (1983): 144-156.

 Tanenbaum, Andrew S. “Distributed Operating

Systems” (1995).

 Coulouris, George, Jean Dollimore, and Tim Kindberg.

"Distributed Systems: Concepts and Design Edition 4."

(2005).

 Tanenbaum, Andrew S., and Maarten Van

Steen. “Distributed systems:Principles and Paradigms

Edition 2.” (2007).

×××

(5)

BLOCK- III

Unit 1: Agreement Problems and Protocols

Unit 2: IPC and Communication Protocols

Unit 3: Remote Object Invocation and Distributed Objects

Unit 4: Naming Entities and Domain Name System (DNS)

Unit 5: Distributed Transactions

Unit 6: Replication and Consistency in Distributed Systems

Unit 7: Distributed File Systems

218

UNIT: 1

AGREEMENT PROBLEMS AND PROTOCOLS

Unit Structure:

1.1 Introduction

1.2 Objectives

1.3 Classification of Agreement Problems

1.4 Solutions to the Byzantine Agreement Problem

1.5 Applications of Agreement Algorithms in Distributed

Systems

1.6 Summing Up

1.7 Reference sand Suggested Readings

1.1 Introduction

Imagine you are working with a group of people, who arebased

at different locations, each member contributing to a project.

How do you ensure that everyone agrees on the project's

direction and maintains consistency, especially when some

team members might face communication issues or

misunderstandings? This scenario is similar to what happens in

distributed computing systems. Agreement problems are the

binding factors that hold these systems together, ensuring that

all nodes, or team members, reach a consensus despite

potential failures or communication delays.

The most crucial task in distributed systems is to achieve

consensus across multiple nodes, that is a must to ensure

consistency, reliability, and coordination (Lamport, Shostak, &

Pease, 1982). Distributed systems are intrinsically complex

because of the lack of a central coordinating entity, the

potential for node failures, and the variability in

communication delays (Coulour is et al., 2011). Agreement

problems and protocols are mechanisms that help these systems

function smoothly by enabling nodes to agree on a common

value or decision despite failures and asynchronous

communication (Castro & Liskov, 1999). This section

219

introduces the fundamental concepts of agreement problems,

highlighting their importance in maintaining the integrity of

distributed systems, and sets the stage for a deeper exploration

of their classifications and solutions.

To start, we will dive into the objectives of understanding these

problems. You will see why grasping these concepts is

essential for designing and operating reliable distributed

systems. Think of it as knowing why having a meeting agenda

is crucial for a productive team meeting. You will explore

various types of agreement problems, learning how each type

addresses specific challenges in distributed environments

(Cachin, Guerraoui, & Rodrigues, 2011).After exploring the

classification of agreement problems, we will examine

solutions to the Byzantine Agreement Problem. Finally, we

will look at real-world applications of agreement algorithms.

You willobserve how these algorithms are used in blockchain

technology to confirm the security and consistency of

distributed ledgers, in distributed databases to maintain data

consistency, in multi-agent systems to facilitate coordination,

and in cloud computing to ensure reliable and consistent

service delivery. These examples will show you the practical

importance of agreement protocols in modern distributed

systems.

By the end of this unit, you will have a comprehensive

understanding of agreement problems and protocols, their

significance, and their applications in real-world distributed

environments. This knowledge will be invaluable in designing

and operating robust distributed systems capable of handling

faults and maintaining consistency, ensuring reliable and

efficient performance.

1.2 Objectives

This unit explores various agreement problems and protocols

in distributed systems. By the end of this unit, you should be

able to -

 understand the fundamental concepts of agreement

problems and why they are crucial in distributed

systems. Think of it as knowing why having a meeting

220

agenda is essential for a productive team meeting.

 explore the different types of agreement problems. This

is like understanding the different ways to ensure

everyone on your team is on the same page.

 analyze the Byzantine Agreement Problem in detail. It

is a bit like dealing with a team member who might

intentionally try to mislead the group.

 examine solutions and protocols like Byzantine Fault

Tolerance (BFT) and Practical Byzantine Fault

Tolerance (PBFT). These are strategies to ensure that

your team can still reach a consensus, even under

challenging conditions.

 identify real-world applications of agreement algorithms

in systems like blockchain and cloud computing.

 gain a comprehensive overview of agreement protocols

and their importance.

1.3 Classification of Agreement Problems

In distributed systems, agreement problems in can be classified

based on the type of the faults they address and the mechanisms

used to achieve consensus. Understanding these classifications

helps in identifying the appropriate protocols and solutions for

different scenarios. Let us explore some of the main types of

agreement problems and their unique characteristics.

1.3.1 Byzantine Agreement

Let us dive into a tricky situation: imagine one of your team

members isn't just misunderstanding but is intentionally trying to

disrupt the project. This is akin to the Byzantine Agreement

Problem in distributed systems. It requires nodes to agree on a

value in the situation where some nodes are behaving arbitrarily or

maliciously. To achieve Byzantine Agreement, certain conditions

must be met:

 Termination: At some point, each working node must

choose a value.

 Agreement: The non-faulty nodes must be agreeing on the

same value.

 Validity: The agreed-upon value must be the starting value if

it is shared by all non-faulty nodes.

221

STOP TO CONSIDER

 Why is Byzantine Agreement important?

 It ensures system reliability despite faulty or malicious nodes.

 It is critical for applications like blockchain and secure

communicationsystems.

 What makes achieving Byzantine Agreement challenging?

 Handling arbitrary faults and misleading information.

 High communication overhead and complexity.

The challenge here is filtering out the "noise" from those disruptive

nodes and still reaching a common decision (Lamport, Shostak, &

Pease, 1982).

1.3.2 Consensus Problem

Now, think about a situation where all your team members are

trying to agree on the next step of the project. The consensus

problem in distributed systems is similar. It requires all non-faulty

nodes to agree on a single value, depending on their initial values.

For consensus to be achieved, the following conditions must be

met:

 Termination: At some point, each non-faulty node needs to

choose a value.

 Agreement: At some point, each non-faulty node needs to

choose a value.

 Validity: The agreed-upon value must be the starting value if

it is shared by all non-faulty nodes.

The challenge lies in ensuring that all team members reach the

same decision, even if some face issues (Pass & Shi, 2017).

1.3.3 Interactive Agreement

Imagine an ongoing conversation within your team where each

member shares their thoughts until everyone agrees. This is

similar to Interactive Agreement in distributed systems, which

involves a series of communications between nodes to reach

consensus. For interactive agreement to be achieved:

 Multiple Rounds: Nodes participate in several rounds of

message exchanges.

 Convergence: The system must ensure that the values

222

STOP TO CONSIDER

 Byzantine Agreement deals with arbitrary or malicious

behaviour.

 The goal of the Consensus Problem is for every non-faulty

node to concur on a single value.

 Interactive Agreement involves multiple rounds of

communication to achieve consensus.

 Fault Tolerance: The ability of a system to continue operating

properly in the event of the failure of some of its components.

 Convergence: Ensuring that the proposed values by non-faulty

nodes converge to a single decision.

 Communication Overhead: The extra communication required

to achieve consensus, especially in Byzantine Agreement.

Check Your Progress

CYP1. Define the Byzantine Agreement Problem. What are the
conditions required for achieving Byzantine Agreement?

CYP2. Why is Byzantine Agreement particularly challenging in

distributed systems, and what are some real-world scenarios

where it is essential?

CYP3. What is consensus problem in the context of distributed

systems? Describe the three key conditions that must be

encountered for consensus.

CYP4. Discuss the main challenges in achieving consensus in a

distributed system having potentially faulty nodes.

CYP5. Explain what Interactive Agreement is and how it differs from

the standard Consensus Problem.

CYP6. Identify the unique challenges associated with Interactive

Agreement and how they impact the communication between

nodes.

proposed by non-faulty nodes converge to a single decision.

 Fault Tolerance: The system should tolerate a certain

number of faulty nodes and still reach an agreement.

The complexity here is managing these interactions efficiently

(Cachin, Guerraoui, & Rodrigues, 2011).

1.4 Solutions to the Byzantine Agreement Problem

The Byzantine Agreement Problem is one of the most challenging

issues in distributed systems because of the presence of faulty or

malicious nodes. To address this problem, numerous protocols have

223

been developed. These protocols aim to ensure that non-faulty nodes

can still reach a consensus in situations where some nodes are

behaving arbitrarily or maliciously. In this section, we will explore

two key solutions: Byzantine Fault Tolerance (BFT) and Practical

Byzantine Fault Tolerance (PBFT).

Key Concepts in Byzantine Agreement Solutions

Before exploring specific solutions, it is important to understand

some of the fundamental concepts that are common to these

protocols:

 Fault Models: Different fault models, including crash faults

and Byzantine faults, dictate the complexity of achieving

consensus. Byzantine faults are the most severe, as they include

any arbitrary behaviour by faulty nodes.

 Message Complexity: The number of messages exchanged

between nodes is a critical factor, as high message complexity

can result in inefficiencies.

 Cryptographic Techniques:In order to confirm the integrity

and authenticity of messages, many Byzantine agreement

protocols rely on cryptographic techniques, viz.digital

signatures and hash functions.

 Redundancy and Replication: These techniques are

frequently used to make sure that even if some nodes fail, the

system can still reach consensus.

1.4.1 Byzantine Fault Tolerance

Think of Byzantine Fault Tolerance (BFT) as a strategy to ensure

your team can come to an agreement even if some members are

trying to disrupt the process. BFT protocols use a combination of

message exchanges and cryptographic techniques to filter out the

influence of Byzantine nodes and ensure that non-faulty nodes

can agree on a common value (Castro & Liskov, 1999).BFT

protocols are designed to handle Byzantine faults by ensuring that

non-faulty nodes can arrive at a consensus despite of the faulty

nodes. The fundamental idea is to use redundant computations

and message exchanges to filter out the influence of faulty nodes.

Overview of BFT

The BFT protocol requires nodes to exchange a series of

messages to agree on a value. All nodes are in communication

with one another, and through a process of majority voting and

224

STOP TO CONSIDER

 Byzantine Fault Tolerance (BFT) uses message exchanges

and cryptographic techniques to achieve consensus despite

malicious nodes.

 BFT is highly robust and secure but can face challenges in

terms of communication overhead and scalability.

 Message Exchanges: The communication among nodes

required to achieve consensus.

redundancy, the system can achieve consensus. This protocol

typically tolerates up to
���

�
 faulty nodes, where n is the overall

number of nodes present in the system.

Phases of BFT

1. Pre-Vote Phase: Each node proposes a value based on its

initial state.

2. Vote Phase: Nodes exchange their proposed values with

each other.

3. Commit Phase: Nodes decide on the final value based on the

majority of received votes.

Advantages of BFT

 Robustness: BFT can tolerate a significant number of faulty

nodes, making it extremely robust against a range of failures.

 Security: Cryptographic techniques are used to ensure that

messages cannot be tampered with, providing a high level of

security.

Challenges of BFT

 Communication Overhead: The protocol requires a high

number of message exchanges, leading to substantial

communication overhead.

 Scalability: Due to its high communication complexity, BFT

can become inefficient in large-scale systems.

1.4.2 Practical Byzantine Fault Tolerance

Practical Byzantine Fault Tolerance (PBFT) is designed for

practical applications, making it more efficient and suitable for

real-world scenarios. It uses a three-phase protocol (pre-prepare,

prepare, commit) to achieve consensus with fewer message

225

exchanges. Imagine organizing a team meeting where you

propose an idea, discuss it, and then finalize the decision once

everyone agrees (Castro & Liskov, 1999).

Overview of PBFT

PBFT enhances the traditional BFT approach by organizing the

protocol into three distinct phases: pre-prepare, prepare, and

commit. This structure increases the efficiency of the protocol by

reducing the number of message exchanges needed to reach

consensus.

Phases of PBFT

1. Pre-Prepare Phase: The leader node (or the primary node)

proposes a value and broadcasts it to all the other nodes

(replicas).

2. Prepare Phase: Each replica verifies the proposal and

broadcasts a prepare message to all other replicas if it finds

the proposal valid.

3. Commit Phase: Once a replica receives a majority of

prepare messages, it sends a commit message. When a

majority of commit messages is received, the replica

commits the value.

Advantages of PBFT

 Efficiency: By reducing the number of required message

exchanges, PBFT is more efficient and scalable compared to

traditional BFT protocols.

 Practicality: PBFT is designed for real-world applications,

making it suitable for use in systems like blockchain and

distributed databases.

Challenges of PBFT

 Leader Selection: The protocol relies on a leader to

propose values, making it susceptible to performance

degradation if the leader fails or becomes slow.

 Complexity:Though being more efficient than BFT, PBFT

is still complex to implement and manage.

226

Check Your Progress

CYP7. Describe the Byzantine Fault Tolerance (BFT) protocol. How

does it achieve consensus in the presence of Byzantine faults?

CYP8. What are the strengths and weaknesses of BFT, and in what

scenarios is it most effectively applied?

CYP9. Outline the Practical Byzantine Fault Tolerance (PBFT)

protocol and its three-phase process. What role does each

stage have in reaching a consensus?

CYP10. Compare PBFT to traditional BFT. List the practical

advantages of PBFT in real-world applications?

STOP TO CONSIDER

 Practical Byzantine Fault Tolerance (PBFT) is optimized for

real-world applications, making it more efficient and scalable.

 PBFT reduces message complexity by organizing the protocol

into three phases: pre-prepare, prepare, and commit.

 Leader Selection: The process of choosing a primary node to

propose values.

 Efficiency: The ability of the protocol to achieve consensus

with fewer message exchanges.

1.5 Applications of Agreement Algorithms in Distributed

Systems

Agreement algorithms are fundamental to the operation of

various distributed systems. Their ability to ensure consensus

among nodes, even when faulty nodes are present, makes them

indispensable in many real-world applications. This section

explores how these algorithms are applied in blockchain

technology, distributed databases, multi-agent systems, and cloud

computing.

1.5.1 Blockchain Technology

Blockchain technology relies heavily on agreement algorithms to

maintain the security and integrity of a distributed ledger. In a

blockchain, each block of transactions must be agreed upon by

the network before it is added to the chain. By ensuring that

every node has the same version of the ledger, this agreement

helps to avoid problems like double-spending.

Key Concepts in Blockchain Consensus:

 Proof of Work (PoW): An algorithm where nodes (miners)

227

solve complex cryptographic puzzles to propose a new

block. The first node to solve the puzzle gets to add the

block to the chain and is rewarded. This process, used in

Bitcoin, ensures that adding new blocks requires significant

computational effort, making it difficult for malicious actors

to alter the blockchain (Nakamoto, 2008).

 Proof of Stake (PoS): Instead of mining, nodes are chosen

to propose new blocks depending on the number of coins

they hold and are willing to "stake" as collateral. This

method, used in Ethereum 2.0, lowers energy usage in

comparison to PoW and aligns the incentives of participants

with the network’s security (Buterin, 2014).

 Practical Byzantine Fault Tolerance (PBFT):PBFT is

used in permissioned blockchains, PBFT allows nodes to

reach consensus through a series of message exchanges in

three phases: pre-prepare, prepare, and commit. This method

provides low-latency finality and is efficient in environments

with a known set of participants, such as Hyperledger Fabric

(Castro & Liskov, 1999).

Applications in Blockchain:

 Bitcoin: Uses PoW to secure its network, making it resistant

to tampering and attacks.

 Ethereum: Transitioning from PoW to PoS to improve

scalability and reduce environmental impact.

 Hyperledger Fabric: Employs PBFT for fast and reliable

consensus in enterprise blockchain solutions.

1.5.2 Distributed Databases

Distributed databases ensure the consistency and dependability of

data across several nodes through consensus protocols. These

protocols help maintain a single version of the truth, in situations

when some nodes fail or become unreachable.

Key Concepts in Distributed Database Consensus:

 Two-Phase Commit (2PC): A protocol used to ensure all

nodes present in a distributed database either commit to a

transaction or abort it, preventing partial updates. The

coordinator node sends a prepare message to all participant

nodes and waits for their acknowledgment. If all nodes

228

agree, the coordinator sends a commit message; otherwise, it

sends an abort message (Gray, 1978).

 Three-Phase Commit (3PC): An extension of 2PC that

introduces an additional phase to handle coordinator failures,

reducing the chances of a system-wide deadlock (Skeen,

1981).

 Paxos: A consensus algorithm that is intended to get

distributed nodes agree on a single value. It tolerates node

failures and asynchronous communication, making it

suitable for large-scale distributed databases (Lamport,

1998).

 Raft: Similar to Paxos but designed to be more

understandable and easier to implement. It divides the

consensus process into leader election, log replication, and

safety (Ongaro & Ousterhout, 2014).

Applications in Distributed Databases:

 Google Spanner: Uses Paxos for distributed consensus,

providing strong consistency and global distribution.

 Amazon DynamoDB: Employs a version of Paxos for

eventual consistency and high availability.

 CockroachDB: Implements Raft to ensure consistency and

fault tolerance across distributed nodes.

1.5.3 Multi-Agent Systems

Agreement algorithms help multi-agent systems coordinate and

make decisions. Imagine a team of robots working together, each

relying on consensus protocols to synchronize their actions and

achieve a common goal (Cachin, Guerraoui, & Rodrigues,

2011).In multi-agent systems, agreement algorithms facilitate

coordination and decision-making among autonomous agents.

These systems often involve robots, drones, or software agents

that work together to reach a common goal.

Key Concepts in Multi-Agent Consensus:

 Consensus-Based Control:It makes certain that every agent

in a network is in agreement on a single state or choice. This

is vital for tasks like formation control, where robots must

maintain specific positions relative to each other (Olfati-

Saber, Fax, & Murray, 2007).

229

 Distributed Task Allocation: Assigns tasks to agents in a

way that balances the workload and optimizes performance.

Consensus algorithms help ensuring the agreement of all the

agents on task assignments without central coordination

(Gerkey & Mataric, 2004).

 Swarm Intelligence: Models the collective behaviour of

decentralized, self-organized systems, such as ant colonies or

bird flocks. Consensus algorithms enable swarms to

coordinate their actions so that they can adapt to the changes

in the environment (Beni & Wang, 1993).

Applications in Multi-Agent Systems:

 Robotic Swarms: Use consensus algorithms to coordinate

movements and tasks, enabling applications like search and

rescue or environmental monitoring.

 Autonomous Vehicles: Vehicles communicate with one

another to maintain safe distances and optimize traffic flow,

using consensus protocols to agree on routes and speeds.

 Distributed AI: Multi-agent systems in AI research use

consensus algorithms to combine the outputs of different

models or agents, improving decision-making and

performance.

1.5.4 Cloud Computing

Cloud computing systems rely on agreement algorithms to ensure

reliable and consistent service delivery across distributed

resources. These protocols manage data replication, load

balancing, and fault tolerance in cloud environments.

Key Concepts in Cloud Computing Consensus:

 Data Replication: Ensures that data are kept in many copies

on several nodes, to improve reliability and access speed.

Consensus algorithms help synchronize these copies and

ensure consistency (Birman & Joseph, 1987).

 Load Balancing: Distributes workloads across multiple

servers to optimize resource use and minimize response

times. Consensus protocols help maintain a balanced state

across the cloud infrastructure (Lu et al., 2011).

 Fault Tolerance: Enables cloud services to keep operating

even during the failure of some of the components.

Consensus algorithms guarantee that the system can recover

230

CheckYourProgress

CYP11. Give an example of how agreement algorithms are used in

blockchain technology. What role do these algorithms play in

maintaining a secure and consistent ledger?

CYP12. Describe how consensus protocols are applied in cloud

computing. How do they ensure reliable and consistent

service delivery?

and maintaining consistency despite failures (Cachin et al.,

2011).

Applications in Cloud Computing:

 Kubernetes: Uses consensus protocols to manage container

orchestration, ensuring that applications run reliably across

distributed nodes.

 Amazon Web Services (AWS): Implements consensus

algorithms in its data replication and load balancing services

to provide high availability and fault tolerance.

 Google Cloud Platform (GCP): Uses consensus protocols

in its distributed storage and computing services to ensure

data consistency and service reliability.

1.6 Summing Up

In this unit, we explored the fundamental concepts and importance

of agreement problems and protocols in distributed systems. We

began by comprehendingthe significance of consensus in preserving

consistency, dependability, and coordination among nodes in the

face of malfunctions or communication delays. We then examined

different types of agreement problems, including Byzantine

Agreement, Consensus Problem, and Interactive Agreement,

highlighting their unique challenges and conditions for achieving

consensus.

We delved into solutions for the Byzantine Agreement Problem,

focusing on Byzantine Fault Tolerance and Practical Byzantine

Fault Tolerance. BFT ensures consensus by filtering out the

influence of the nodes that are faulty, through extensive exchanges

of messages and cryptographic techniques. PBFT, optimized for

practical applications, reduces message complexity, and improves

efficiency.

231

Self-AskingQuestions

SAQ1. In what ways do agreement problems shape the overall

reliability and integrity of distributed systems, and how

might different types of faults impact the consensus

process?

SAQ2. How do the Byzantine Agreement and Consensus

Problems differ in terms of their challenges and

solutions, and what practical scenarios can you think of

where each would be applied?

SAQ3. Considering the high communication overhead in

Byzantine Fault Tolerance (BFT), what strategies might

you employ to balance robustness and efficiency in a

large-scale distributed system?

SAQ4. Reflect on how PBFT optimizes the consensus process

for real-world applications. What are the key advantages

of PBFT, and how does it mitigate the limitations of

traditional BFT protocols?

SAQ5. How do consensus algorithms like PBFT and Paxos

enhance the functionality and reliability of systems such

as blockchain, distributed databases, and cloud

computing? Can you identify potential challenges in

implementing these algorithms in different distributed

environments?

Finally, we discussed the real-world applications of agreement

algorithms in blockchain technology, distributed databases, multi-

agent systems, and cloud computing. These applications

demonstrate how consensus protocols enhance security, consistency,

and fault tolerance in various distributed environments.

Understanding and implementing these protocols is essential for

designing robust and resilient distributed systems capable of

withstanding faults and ensuring reliable operation.

1.7 References and Suggested Readings

1. Beni, G., & Wang, J. (1993). Swarm Intelligence in Cellular

Robotic Systems. Proceedings of the NATO Advanced

Workshop on Robots and Biological Systems, 102, 1-8.

2. Birman, K. P., & Joseph, T. A. (1987). Reliable

Communication in the Presence of Failures. ACM Transactions

on Computer Systems (TOCS), 5(1), 47-76.

232

3. Buterin, V. (2014). A Next-Generation Smart Contract and

Decentralized Application Platform. Retrieved from

https://ethereum.org/en/whitepaper/

4. Cachin, C., Guerraoui, R., & Rodrigues, L. (2011). Introduction

to Reliable and Secure Distributed Programming. Springer.

5. Castro, M., & Liskov, B. (1999). Practical Byzantine Fault

Tolerance. Proceedings of the Third Symposium on Operating

Systems Design and Implementation (OSDI).

6. Coulouris, G., Dollimore, J., Kindberg, T., & Blair, G. (2011).

Distributed Systems: Concepts and Design (5th ed.). Addison-

Wesley.

7. Gray, J. (1978). Notes on Data Base Operating Systems. In R.

Bayer, R. M. Graham, & G. Seegmüller (Eds.), Operating

Systems: An Advanced Course (pp. 393-481). Springer-Verlag.

8. Gerkey, B. P., & Mataric, M. J. (2004). A Formal Analysis and

Taxonomy of Task Allocation in Multi-Robot Systems. The

International Journal of Robotics Research, 23(9), 939-954.

9. Lamport, L., Shostak, R., & Pease, M. (1982). The Byzantine

Generals Problem. ACM Transactions on Programming

Languages and Systems (TOPLAS), 4(3), 382-401.

10. Lamport, L. (1998). The Part-Time Parliament. ACM

Transactions on Computer Systems (TOCS), 16(2), 133-169.

11. Lu, R., Lin, X., Zhu, H., Ho, P.-H., & Shen, X. (2011). A Novel

Energy-Efficient Data Gathering Protocol in Wireless Sensor

Networks. IEEE Transactions on Vehicular Technology, 60(7),

3443-3458.

12. Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash

System. Retrieved from https://bitcoin.org/bitcoin.pdf

13. Olfati-Saber, R., Fax, J. A., & Murray, R. M. (2007). Consensus

and Cooperation in Networked Multi-Agent Systems.

Proceedings of the IEEE, 95(1), 215-233.

14. Ongaro, D., & Ousterhout, J. (2014). In Search of an

Understandable Consensus Algorithm (Extended Version).

USENIX Annual Technical Conference, 305-319.

15. Pass, R., & Shi, E. (2017). The Sleepy Model of Consensus.

Advances in Cryptology – ASIACRYPT 2017.

16. Skeen, D. (1981). Nonblocking Commit Protocols. Proceedings

of the 1981 ACM SIGMOD International Conference on

Management of Data, 133-142.

17. https://www.geeksforgeeks.org/what-is-a-distributed-system/

233

1.8 Model Questions

1. Explain the importance of achieving consensus in distributed

systems. How does it affect system reliability and

coordination?

2. Define the Byzantine Agreement Problem. What are the main

conditions that must be satisfied to achieve Byzantine

Agreement?

3. Discuss the main challenges in solving the consensus problem

in distributed systems. How do these challenges impact the

termination, agreement, and validity conditions?

4. Differentiate between Byzantine Agreement and the

Consensus Problem in the context of distributed systems.

Provide examples of scenarios where each is applicable.

5. Describe the Interactive Agreement process. What are the

unique challenges associated with achieving Interactive

Agreement in distributed systems?

6. Outline the mechanism of Byzantine Fault Tolerance (BFT).

How does it ensure consensus in the presence of Byzantine

faults?

7. Explain the Practical Byzantine Fault Tolerance (PBFT)

protocol. Describe its three-phase process and how it

contributes to achieving consensus.

8. Compare and contrast Byzantine Fault Tolerance (BFT) and

Practical Byzantine Fault Tolerance (PBFT). What are the

strengths and weaknesses of each protocol?

9. How do agreement algorithms like PBFT enhance the security

and reliability of blockchain technologies? Provide specific

examples.

10. Discuss the role of consensus protocols in maintaining data

consistency in distributed databases. How do these protocols

ensure reliable transactions?

11. Explain how agreement algorithms facilitate coordination and

decision-making in multi-agent systems. Provide an example

to illustrate your explanation.

12. Describe how consensus protocols are applied in cloud

computing environments. What are the key benefits of using

these protocols in such scenarios?

13. What are the implications of failing to achieve consensus in a

distributed system? Discuss with reference to potential faults

and failures.

234

14. Evaluate the impact of cryptographic techniques on the

effectiveness of Byzantine Fault Tolerance (BFT) protocols.

15. How does the iterative communication process in Interactive

Agreement contribute to achieving consensus in distributed

systems?

16. Discuss the significance of the validity condition in the

context of the Consensus Problem. Why is it crucial for

ensuring correct outcomes?

17. What are the practical challenges of implementing PBFT in

large-scale distributed systems? How can these challenges be

mitigated?

18. In what ways can understanding agreement problems and

protocols influence the design of more resilient distributed

applications?

19. Explain the role of message exchanges in Byzantine Fault

Tolerance. How do they help in filtering out the influence of

Byzantine nodes?

20. Summarize the key takeaways from studying agreement

problems and protocols. How can this knowledge be applied

to future advancements in distributed computing?

1.9 Answer to check your progress questions

CYP1. Define the Byzantine Agreement Problem. What are the

conditions required for achieving Byzantine Agreement?

Answer: The Byzantine Agreement Problem requires nodes in a

distributed system to agree on a single value even if some of the

nodes (Byzantine nodes) exhibit arbitrary or malicious behaviour.

The conditions required for achieving Byzantine Agreement are:

1. Termination:At some point, each non-faulty node needs to

choose a value.

2. Agreement:Every non-faulty node needs to concur on the

same value

3. Validity:The agreed-upon value must be the starting value if

it is shared by all non-faulty nodes.

CYP2. Why is Byzantine Agreement particularly challenging in

distributed systems, and what are some real-world scenarios

where it is essential?

235

Answer: Byzantine Agreement is particularly challenging because it

must account for nodes that can act arbitrarily or maliciously,

sending conflicting or misleading information. This makes it

difficult to achieve consensus as nodes cannot rely on the

trustworthiness of their peers. Real-world scenarios where

Byzantine Agreement is essential include:

 Blockchain Technology: Ensuring all nodes agree on the

state of the distributed ledger despite potential malicious

actors.

 Military Communication Systems: Securing command and

control systems against potential sabotage or

misinformation.

 Financial Systems: Protecting against fraudulent

transactions or data tampering.

CYP3. What is consensus problem in the context of distributed

systems? Describe the three key conditions that must be

encountered for consensus.

Answer: The consensus problem in distributed systems requires all

non-faulty nodes to agree on a single value based on their initial

values. The three key conditions that must be met for consensus are:

1. Termination: Every non-faulty node must eventually agree

on a value.

2. Agreement: All non-faulty nodes must chose the same

value.

3. Validity: If all non-faulty nodes have the same initial value,

the agreed-upon value must be that initial value.

CYP4. Discuss the main challenges in achieving consensus in a

distributed system having potentially faulty nodes.

Answer: The main challenges in achieving consensus in a

distributed system with potentially faulty nodes include:

 Communication Delays: Asynchronous communication can

cause delays, making it difficult to synchronize decisions.

 Faulty Nodes: Nodes may fail or behave maliciously,

sending incorrect or conflicting information.

 Network Partitions: Temporary network failures can isolate

nodes, preventing them from participating in the consensus

process.

236

 Scalability: As the number of nodes increases, the

complexity and overhead of achieving consensus also

increase.

CYP5. Explain what Interactive Agreement is and how it differs

from the standard Consensus Problem.

Answer: Interactive Agreement involves a series of

communications between nodes to reach consensus, often requiring

multiple rounds of message exchanges. It differs from the standard

Consensus Problem in that it typically involves more complex

interactions and iterative communication to ensure convergence and

fault tolerance. While the standard Consensus Problem focuses on a

single decision round, Interactive Agreement uses iterative

processes to refine and validate decisions.

CYP6. Identify the unique challenges in Interactive Agreement

and how they impact the communication between nodes.

Answer: Unique challenges associated with Interactive Agreement

include:

 High Communication Overhead: Multiple rounds of

message exchanges can lead to significant communication

overhead.

 Latency: The iterative process can introduce delays,

impacting the overall speed of reaching agreement.

 Fault Tolerance: Managing faults across multiple rounds of

communication can be complex and resource-intensive.

 Synchronization: Ensuring all nodes participate in each

round of communication and maintain synchronization is

challenging.

CYP7. Describe the Byzantine Fault Tolerance (BFT) protocol.

How does it achieve consensus in the presence of Byzantine

faults?

Answer: The Byzantine Fault Tolerance (BFT) protocol achieves

consensus by using a combination of message exchanges and

cryptographic techniques to filter out the influence of Byzantine

nodes. Each node communicates with every other node, and through

a process of majority voting and redundancy, the system can achieve

237

consensus. BFT typically tolerates up to n−13\frac{n-1}{3}3n−1

faulty nodes, where nnn is the total number of nodes.

CYP8. What are the strengths and weaknesses of BFT, and in

what scenarios is it most effectively applied?

Answer:Strengths:

 Robustness: BFT can tolerate a significant number of faulty

nodes, making it highly robust.

 Security: Cryptographic techniques ensure message integrity

and authenticity.

Weaknesses:

 Communication Overhead: High number of message

exchanges lead to substantial communication overhead.

 Scalability: BFT can become inefficient in large-scale

systems due to high communication complexity.

Scenarios where BFT is most effectively applied:

 Blockchain Technology: Ensuring secure and consistent

ledgers.

 Secure Communication Systems: Protecting against

malicious interference.

 Financial Systems: Ensuring reliable transaction processing.

CYP9. Outline the PBFT protocol and its three-phase process.

How does each phase contribute to achieving consensus?

Answer: The Practical Byzantine Fault Tolerance (PBFT) protocol

is organized into three phases: pre-prepare, prepare, and commit.

1. Pre-Prepare Phase: The leader node proposes a value and

broadcasts it to all other nodes.

2. Prepare Phase: Each node verifies the proposal and

broadcasts a prepare message to all other nodes if the

proposal is valid.

3. Commit Phase: Once a node receives a majority of prepare

messages, it sends a commit message. When a majority of

commit messages is received, the node commits the value.

Each phase helps ensure synchronization among nodes and filters

out any misleading information from faulty nodes, thus achieving

consensus efficiently.

238

CYP10. Compare PBFT to traditional BFT. List the practical

advantages of PBFT in real-world applications?

Answer:Comparison to Traditional BFT:

 Message Complexity: PBFT reduces the number of message

exchanges compared to traditional BFT, making it more

efficient.

 Phases: PBFT uses a structured three-phase process,

whereas traditional BFT involves more complex interactions.

Practical Advantages of PBFT:

 Efficiency: Lower message complexity makes PBFT more

scalable and suitable for real-world applications.

 Latency: PBFT provides faster consensus with lower

latency.

 Applicability: Suitable for permissioned blockchain systems

and distributed databases where node identities are known.

CYP11. Give an example of how agreement algorithms are used

in blockchain technology. What role do these algorithms play in

maintaining a secure and consistent ledger?

Answer: In block chain technology, agreement algorithms like

PBFT are used to ensure that all nodes must come to an agreement

on the state of the distributed ledger. For example, Hyperledger

Fabric employs PBFT to achieve consensus among known

participants. These algorithms maintain a secure and consistent

ledger by making sure that all nodes validate and agree on each

block of transactions before it is added to the chain, preventing

issues like double-spending and tampering.

CYP12. Describe how consensus protocols are applied in cloud

computing. How do they ensure reliable and consistent service

delivery?

Answer: In cloud computing, consensus protocols are used to

manage data replication, load balancing, and fault tolerance through

distributed resources. For example, Kubernetes uses consensus

algorithms to orchestrate container deployment and scaling. These

protocols ensure reliable and consistent service delivery by

synchronizing the state and configuration of all nodes, enabling

seamless scaling, and maintaining service availability even when

node failures exist.

×××

239

UNIT- 2

IPC AND COMMUNICATION PROTOCOLS

Unit Structure:

2.1 Introduction

2.2 Objectives

2.3 Importance of Inter-Process Communication (IPC)

 2.3.1 Characteristics of Inter-Process Communication

2.4 Approaches for Inter-Process Communication

2.5 Some Common IPC mechanisms used in distributed systems

 2.5.1 Message Passing

2.5.2 Remote Procedure Calls (RPC)

2.5.3 Remote Method Invocation (RMI)

2.5.4 Shared Memory

2.5.5 Publish/Subscribe

2.5.6 Socket Programming

2.6 Application Programming Interfaces (API) for UDP and TCP

2.6.1 API for TCP

2.6.2 API for UDP

2.7 The Request-Reply Protocol for Communication in distributed

system

2.7.1 Key characteristics of the Request-Reply Protocol.

2.8 Basics of Remote Procedure Call (RPC) in distributed system

2.9 RPC Operations, Parameter Passing in RPC in distributed

system

 2.9.1 RPC Operations

 2.9.2 Parameter Passing in RPC

240

2.10 Some Examples of RPC Usage

 2.10.1 Client-Server Applications

 2.10.2 Micro services Architecture

2.10.3 Distributed Computing

2.10.4 Inter-process Communication (IPC)

2.10.5 Embedded Systems

2.11 Summing Up

2.12 References and Suggested Readings

2.13 Model Questions

2.14 Answer to check your progress/Possible Answers to SAQ

2.1 Introduction

Inter-Process Communication (IPC) in distributed systems refers to

the mechanisms and techniques used for communication and data

exchange between different processes running on different machines

within a network. In a distributed system, processes are not limited

to a single machine; they can span across multiple machines, which

adds complexity to communication and coordination. It is used for

exchanging data between multiple threads in one or more processes

or programs. The Processes may be running on single or multiple

computers connected by a network. The full form of IPC is Inter-

process communication.

In another words IPC, is set of interfaces, which is usually

programmed in order for the programs to communicate between

series of processes. This allows running programs concurrently in

an Operating System. It is a set of programming interface which

allow a programmer to coordinate activities among various program

processes which can run concurrently in an operating system. This

allows a specific program to handle many user requests at the same

time.

Since every single user request may result in multiple processes

running in the operating system, the process may require to

communicate with each other. Each IPC protocol approach has its

241

own advantage and limitation, so it is not unusual for a single

program to use all of the IPC methods.

2.2 Objectives

After going through this unit you will be able to:

 Understand the basic concepts of Inter-Process

Communication (IPC) in distributed systems

 Know about the importance of IPC.

 Know about different approaches of IPC.

 Know about some Common IPC mechanisms used in

distributed systems

 Understand about Application Programming Interfaces (API)

for UDP and TCP

 Know about the Request-Reply Protocol for Communication

in distributed system

 Idea about basics of Remote Procedure Call (RPC) in

distributed system

 Know about some examples of RPC Usage

2.3 Importance of Inter-Process Communication (IPC)

Here, are the reasons for using the inter-process communication

protocol for information sharing:

 It helps to speedup modularity

 Computational

 Privilege separation

 Convenience

 Helps operating system to communicate with each other and

synchronize their actions.

2.3.1 Characteristics of Inter-Process Communication

There are mainly five characteristics of inter-process

communication in a distributed environment/system.

 Synchronous System Calls: In the synchronous system

calls both sender and receiver use blocking system calls to

transmit the data which means the sender will wait until the

acknowledgment is received from the receiver and receiver

waits until the message arrives.

242

 Asynchronous System Calls: In the asynchronous system

calls, both sender and receiver use non-blocking system

calls to transmit the data which means the sender doesn’t

wait from the receiver acknowledgment.

 Message Destination: A local port is a message destination

within a computer, specified as an integer. Aport has

exactly one receiver but many senders. Processes may use

multiple ports from which to receive messages. Any

process that knows the number of a port can send the

message to it.

 Reliability: It is defined as validity and integrity.

 Integrity: Messages must arrive without corruption and

duplication to the destination.

 Validity: Point to point message services are defined as

reliable, If the messages are guaranteed to be delivered

without being lost is called validity.

 Ordering: It is the process of delivering messages to the

receiver in a particular order. Some applications require

messages to be delivered in the sender order i.e the order in

which they were transmitted by the sender.

2.4 Approaches for Inter-Process Communication

Here, are few important methods for inter-process communication:

Figure 1. Inter-Process Communication Approaches

Pipes

Pipe is widely used for communication between two related

processes. This is a half-duplex method, so the first process

communicates with the second process. However, in order to

achieve a full-duplex, another pipe is needed.

243

Message Passing

It is a mechanism for a process to communicate and synchronize.

Using message passing, the process communicates with each other

without resorting to shared variables.

IPC mechanism provides two operations:

 Send (message)- message size fixed or variable

 Received (message)

Message Queues

A message queue is a linked list of messages stored within

the kernel. It is identified by a message queue identifier. This

method offers communication between single or multiple processes

with full-duplex capacity.

Direct Communication

In this type of inter-process communication process, should name

each other explicitly. In this method, a link is established between

one pair of communicating processes, and between each pair, only

one link exists.

Indirect Communication

Indirect communication establishes like only when processes share a

common mailbox each pair of processes sharing several

communication links. A link can communicate with many

processes. The link may be bi-directional or unidirectional.

Shared Memory

Shared memory is a memory shared between two or more processes

that are established using shared memory between all the processes.

This type of memory requires to protected from each other by

synchronizing access across all the processes.

FIFO

Communication between two unrelated processes. It is a full-duplex

method, which means that the first process can communicate with

the second process, and the opposite can also happen.

The important terms used in IPC are Semaphores and Signals which

are defined below:

244

Semaphores: A semaphore is a signaling mechanism technique.

This Operating System method either allows or disallows access to

the resource, which depends on how it is set up.

Signals: It is a method to communicate between multiple processes

by way of signaling. The source process will send a signal which is

recognized by number, and the destination process will handle it.

2.5 Some Common IPC mechanisms used in distributed systems

2.5.1 Message Passing

This is a fundamental IPC mechanism where processes

communicate by sending and receiving messages. In a distributed

system, messages are typically sent over the network using

protocols like TCP/IP or UDP. Message passing can be synchronous

or asynchronous, and it's often used for communication between

processes running on different machines.

2.5.2 Remote Procedure Calls (RPC)

RPC allows a process to invoke a procedure or function in another

process as if it were a local procedure call. The RPC mechanism

hides the complexities of network communication, making it easier

for developers to build distributed applications. However,

developers need to be mindful of issues like network latency,

failures, and data consistency.

2.5.3 Remote Method Invocation (RMI)

RMI is a Java-specific form of RPC that enables communication

between Java objects across different Java Virtual Machines

(JVMs). RMI allows objects in one JVM to invoke methods on

objects in another JVM, making it easier to build distributed Java

applications.

2.5.4 Shared Memory

Shared memory IPC allows processes to communicate by accessing

shared regions of memory. In a distributed system, shared memory

can be implemented using distributed shared memory (DSM)

techniques, where the memory is distributed across multiple

machines but appears as a single address space to processes.

However, DSM introduces challenges related to consistency,

coherence, and synchronization.

245

2.5.5 Publish/Subscribe

In this model, processes (or components) publish messages to

specific topics or channels, and other processes subscribe to receive

messages from those topics. Publish/subscribe mechanisms are often

used in distributed systems for event-driven architectures, where

components need to react to events generated by other components.

2.5.6 Socket Programming

Sockets provide a low-level IPC mechanism for communication

between processes over a network. In a distributed system,

processes can communicate using sockets by establishing

connections and exchanging data streams. Socket programming

allows for flexibility and customization but requires developers to

manage details like connection establishment, data serialization, and

error handling.

Figure 2. Shared Memory and Message Passing

Each IPC mechanism has its advantages and disadvantages, and the

choice depends on factors such as performance requirements,

programming language, scalability, fault tolerance, and ease of

implementation. In distributed systems, designers often use a

combination of IPC mechanisms to meet the specific needs of the

application.

246

2.6 Application Programming Interfaces (API) for UDP and

TCP

As we know that UDP (User Datagram Protocol) and TCP

(Transmission Control Protocol) are two widely used transport layer

protocols in computer networks. APIs (Application Programming

Interfaces) for UDP and TCP provide programmers with the

necessary functions and methods to create, send, receive, and

manage network communications using these protocols. Below, we

explain the basic concepts of API for UDP and TCP:

2.6.1 API for TCP

Socket Creation: The API provides functions to create a TCP

socket.

Binding and Listening: For server applications, the TCP socket

needs to be bound to a specific IP address and port and set to listen

for incoming connections. The API provides functions for these

purposes.

Connection Establishment: TCP is a connection-oriented protocol,

so before data exchange can occur, a connection needs to be

established between the client and server. The API includes

functions to initiate connections from the client side and accept

connections on the server side.

Data Transmission: Programmers can use the API to send and

receive data over an established TCP connection. Data is transmitted

reliably and in order, and the API provides functions to handle large

data transfers, buffering, and flow control.

Connection Termination: TCP connections need to be properly

terminated once data exchange is complete. The API includes

functions to gracefully close connections from both the client and

server sides.

Error Handling: TCP provides reliable, error-checked delivery of

data, but errors such as connection timeouts or broken connections

can still occur. The API includes mechanisms for error detection and

recovery.

247

2.6.2 API for UDP

Socket Creation: It is similar to TCP. The API provides functions

to create a UDP socket, which is a communication endpoint that

allows data to be sent and received over UDP.

Binding: Before using a socket, it needs to be bound to a specific

network interface and port. The API provides functions to bind a

socket to a particular IP address and port number.

Sending Data: Programmers can use the API to send data over

UDP. This involves specifying the destination IP address, port

number, and the data to be sent.

Receiving Data: The API provides functions to receive data on a

UDP socket. Programmers can specify the maximum size of the data

buffer and retrieve the sender's IP address and port number along

with the received data.

Error Handling: UDP is a connectionless protocol, so errors like

packet loss or duplication may occur. The API includes error-

handling mechanisms to handle such situations.

In summary, the API for UDP and TCP provides programmers with

the necessary tools to implement network communication using

these protocols, including socket creation, data transmission, error

handling, and connection management. Programmers can use these

APIs to develop a wide range of networked applications, from

simple client-server interactions to complex distributed systems.

2.7 The Request-Reply Protocol for Communication in

distributed system

The Request-Reply Protocol is a fundamental communication

pattern used in distributed systems where one component (the client)

sends a request message to another component (the server), and the

server responds with a corresponding reply message. This protocol

is widely used in various distributed systems scenarios, including

client-server architectures, micro services, and remote procedure

calls (RPC).

Here's how the Request-Reply Protocol works:

Request Message: The client initiates communication by sending a

request message to the server. The request message typically

248

contains information about the action the client wants the server to

perform. This could be a query for data, a request to execute a

specific function, or any other operation that the server is capable of

handling.

Server Processing: Upon receiving the request message, the server

processes the request based on its functionality. This may involve

executing the requested operation, accessing data, performing

calculations, or any other task required to fulfill the client's request.

Reply Message: After processing the request, the server generates a

reply message containing the result of the operation or the requested

data. The reply message is then sent back to the client as a response

to the original request.

Client Handling: Upon receiving the reply message, the client

processes the response to extract the information it needs.

Depending on the application logic, the client may take further

actions based on the contents of the reply message, such as

displaying data to the user, performing additional processing, or

sending subsequent requests to the server.

Error Handling: In addition to successful responses, the Request-

Reply Protocol also includes mechanisms for handling errors and

exceptions. If an error occurs during request processing on the

server side, the server can generate an error response indicating the

nature of the problem. The client then needs to handle these error

responses appropriately, which may involve retrying the request,

notifying the user, or taking other corrective actions.

2.7.1 Key characteristics of the Request-Reply Protocol

Synchronous Communication: Request-reply communication is

typically synchronous, meaning that the client waits for a response

from the server before proceeding with further actions. This

synchronous nature simplifies the programming model, as the client

can assume that a response will be received in a predictable manner.

Reliability: The protocol ensures reliable communication between

the client and server by requiring that each request be acknowledged

with a corresponding reply. This ensures that both parties are aware

of the outcome of the communication and can take appropriate

actions based on the response.

249

Statelessness: The Request-Reply Protocol is often designed to be

stateless, meaning that each request-reply interaction is independent

of previous interactions. This simplifies the design and scalability of

distributed systems by allowing servers to handle requests from

multiple clients concurrently without maintaining client-specific

state between requests.

Overall, the Request-Reply Protocol provides a straightforward and

reliable communication mechanism for building distributed systems,

allowing components to interact seamlessly across network

boundaries while ensuring that communication is predictable and

robust.

2.8 Basics of Remote Procedure Call (RPC) in distributed

system

Remote Procedure Call (RPC) is a protocol that enables a program

to execute procedures or functions on a remote system as if they

were local, abstracting away the details of network communication.

It allows distributed applications to communicate and invoke

procedures across different systems transparently, making it appear

as if the remote procedure is a local function call.

Here the basics of Remote Procedure Call (RPC) in a distributed

system are given below:

Invocation: The client program calls a procedure or function on the

remote system as if it were a local function call. From the client's

perspective, there's no distinction between local and remote

procedures. The client specifies the procedure name and provides

the necessary parameters for the remote invocation.

Marshalling: Before the request is sent over the network, the

parameters of the procedure call need to be converted into a format

that can be transmitted. This process is called marshalling or

serialization. Complex data structures and objects are serialized into

a byte stream that can be transmitted over the network.

Communication: The client sends the serialized request message

containing the procedure name and parameters to the server over the

network. This communication typically occurs using a transport

layer protocol such as TCP/IP.

250

Unmarshalling: Upon receiving the request, the server needs to

deserialize or unmarshal the incoming message to extract the

procedure name and parameters. This process reconstructs the

original data structures from the byte stream received over the

network.

Execution: Once the server has extracted the procedure name and

parameters, it invokes the corresponding procedure or function

locally, using the provided parameters. From the server's

perspective, the invocation is a local function call, and it executes

the requested operation as if it were initiated locally.

Result Marshalling: After executing the procedure, the server may

return a result or response to the client. The result, along with any

output parameters, needs to be serialized or marshalled into a format

suitable for transmission over the network.

Response: The server sends the serialized response message back to

the client over the network.

Result Unmarshalling: Upon receiving the response, the client

unmarshals or deserializes the message to extract the result and any

output parameters returned by the remote procedure call.

Completion: Finally, the client receives the result of the remote

procedure call and can continue with its execution based on the

returned values.

RPC frameworks and libraries, such as gRPC, Apache Thrift, and

Java RMI, provide tools and APIs to simplify the implementation of

RPC-based communication in distributed systems. These

frameworks handle many of the underlying details, such as

marshalling, communication, and error handling, allowing

developers to focus on defining the interface and implementing the

procedures to be invoked remotely.

2.9 RPC Operations, Parameter Passing in RPC in distributed

system

Remote Procedure Call (RPC) operations facilitate the seamless

execution of functions or procedures across distributed systems,

abstracting away the complexities of network communication. The

RPC model typically involves several operations and mechanisms

for parameter passing, ensuring smooth interaction between client

251

and server components. Here's a concise explanation of RPC

operations and parameter passing:

2.9.1 RPC Operations

Bind: In the bind operation, the client initiates communication with

the server by establishing a connection. This involves identifying

the server's network address and establishing a communication

channel, often using TCP/IP or another transport protocol. The bind

operation sets up the foundation for subsequent RPC operations.

Call: The call operation is the heart of RPC, where the client

invokes a remote procedure on the server. The client specifies the

name of the procedure to be executed, along with any required

parameters. The RPC runtime system then marshals the procedure

name and parameters into a message format suitable for

transmission over the network.

Execute: Upon receiving the RPC call request, the server executes

the specified procedure locally. The server locates the appropriate

procedure based on the name provided in the RPC call and executes

it with the provided parameters. The execution may involve

complex computations, database queries, or other operations,

depending on the functionality of the remote procedure.

Return: After executing the procedure, the server generates a

response containing the result of the operation, along with any

output parameters. This response message is then sent back to the

client over the network. The return operation completes the remote

procedure call cycle initiated by the client.

Unbind: In the unbind operation, the client or server terminates the

RPC connection, releasing any allocated resources and closing the

communication channel. This operation is typically performed after

all required RPC calls have been completed or when the client or

server no longer requires communication.

2.9.2 Parameter Passing in RPC

Marshalling: Before transmitting parameters over the network, the

RPC system serializes or marshals the parameters into a format

suitable for transmission. This involves converting data structures,

objects, and primitive values into a byte stream that can be

transmitted over the network. Marshalling ensures that parameters

252

are represented consistently across different systems and

programming languages.

Transmission: Once marshalled, the RPC system transmits the

parameter data along with the procedure name to the server over the

network. This transmission may occur using a reliable transport

protocol such as TCP/IP to ensure the integrity and reliability of

data delivery.

Unmarshalling: Upon receiving the RPC call request, the server

unmarshals or deserializes the incoming parameters from the

network message. This process reconstructs the original data

structures and values from the byte stream received over the

network, making the parameters accessible for procedure execution.

Execution: With the parameters unmarshalled, the server executes

the specified procedure locally using the provided parameters. The

execution may involve accessing databases, performing

computations, or interacting with other components, depending on

the functionality of the remote procedure.

Result Marshalling: After executing the procedure, the server

marshals the result and any output parameters into a response

message format suitable for transmission back to the client.

Marshalling ensures that the result data is represented consistently

for transmission over the network.

Result Transmission and Unmarshalling: Finally, the server

transmits the response message containing the result back to the

client over the network. The client then unmarshals the result and

any output parameters from the response message, making them

available for further processing or display.

In summary, RPC operations enable the seamless execution of

remote procedures across distributed systems, while parameter

passing mechanisms ensure the consistent transmission and

representation of data between client and server components. By

abstracting away the complexities of network communication, RPC

facilitates efficient and transparent interaction between distributed

components, enabling the development of robust and scalable

distributed applications.

253

2.10 Some Examples of RPC Usage

RPC is widely used in various distributed systems and networked

applications for seamless communication between client and server

components. Here are some examples of RPC usage in different

domains:

2.10.1 Client-Server Applications

RPC is commonly used in client-server architectures for

communication between client applications and server-side services.

For example:

Web services: A client application can invoke remote procedures

exposed by a web service using RPC, such as retrieving data from a

database or performing authentication.

Remote administration: Systems administrators can use RPC to

remotely execute administrative tasks on servers, such as starting or

stopping services, managing files, or monitoring system health.

2.10.2 Microservices Architecture

In microservices-based systems, RPC is often used for

communication between individual microservices. Each

microservice exposes a set of RPC endpoints, allowing other

microservices to invoke their functionality. For example:

User service: A microservice responsible for managing user

accounts might expose RPC endpoints for operations like user

authentication, profile management, and access control.

Payment service: Another microservice handling payment

processing might provide RPC endpoints for processing payments,

generating invoices, and managing payment methods.

2.10.3 Distributed Computing

RPC is essential for distributed computing environments where

computation is distributed across multiple machines or nodes.

Examples include:

Grid computing: Large-scale scientific or computational tasks can

be parallelized and distributed across a grid of interconnected

254

computers. RPC facilitates communication between grid nodes to

coordinate task execution and data exchange.

Map Reduce frameworks: Distributed data processing frameworks

like Apache Hadoop and Apache Spark utilize RPC for

communication between master and worker nodes. RPC is used to

distribute computation tasks, exchange intermediate results, and

coordinate job execution.

2.10.4 Inter-process Communication (IPC)

Within a single machine or operating system, RPC can be used for

communication between different processes or threads. Examples

include:

Remote method invocation (RMI) in Java: Java applications can use

RMI, a form of RPC, to invoke methods on remote objects running

in different Java Virtual Machines (JVMs) within the same network

or on different machines.

Named pipes on Windows: RPC can be used for inter-process

communication on Windows systems using named pipes, allowing

processes to communicate and exchange data within the same

machine.

2.10.5 Embedded Systems

RPC can also be utilized in embedded systems for communication

between microcontrollers, sensors, and other devices. For example:

IoT applications: Internet of Things (IoT) devices often

communicate with backend servers or cloud services using RPC

protocols like MQTT or CoAP. RPC enables devices to send sensor

data, receive commands, and interact with remote services.

Automotive systems: In-vehicle communication networks use RPC

for communication between electronic control units (ECUs)

responsible for functions such as engine control, braking, and

infotainment.

Overall, RPC is a versatile communication mechanism used in a

wide range of distributed systems and applications to enable

seamless interaction between remote components, services, and

devices.

255

2.11 Summing Up

 Definition: Inter-process communication is used for

exchanging data between multiple threads in one or more

processes or programs.

 Inter-Process Communication (IPC) in distributed systems

refers to the mechanisms and techniques used for

communication and data exchange between different

processes running on different machines within a network.

 Message Passing is a fundamental IPC mechanism where

processes communicate by sending and receiving messages.

In a distributed system, messages are typically sent over the

network using protocols like TCP/IP or UDP. It is a

mechanism for a process to communicate and synchronize.

 Shared memory IPC allows processes to communicate by

accessing shared regions of memory.

 Sockets provide a low-level IPC mechanism for

communication between processes over a network. In a

distributed system, processes can communicate using sockets

by establishing connections and exchanging data streams.

 Pipe is widely used for communication between two related

processes.

 A message queue is a linked list of messages stored within

the kernel.

 Direct process is a type of inter-process communication

process, should name each other explicitly.

 Indirect communication establishes like only when processes

share a common mailbox each pair of processes sharing

several communication links.

 Shared memory is a memory shared between two or more

processes that are established using shared memory between

all the processes.

 Inter Process Communication method helps to speedup

modularity.

 A semaphore is a signaling mechanism technique.

 Signaling is a method to communicate between multiple

processes by way of signaling.

 The Request-Reply Protocol is a fundamental

communication pattern used in distributed systems where

one component (the client) sends a request message to

another component (the server), and the server responds with

a corresponding reply message.

 Remote Procedure Call (RPC) is a protocol that enables a

program to execute procedures or functions on a remote

system as if they were local, abstracting away the details of

network communication.

256

 Like FIFO follows FIFO method whereas Unlike FIFO use

method to pull specific urgent messages before they reach

the front.

2.12 References and Suggested Readings:

 Tanenbaum, A. S., & Van Steen, M. (2006). Distributed

systems: principles and paradigms. Prentice Hall.

 Stallings, William (2009).Computer Communication:

Architecture Protocols and Standards.

 Stallings, William, Tenth Edition, Data and Computer

Communications, Pearson

2.13 Model Questions

1. What do you mean by Inter-Process Communication

(IPC)?Explain its various characteristics.

2. Explain the importance of Inter-Process Communication

(IPC).

3. What are different approaches for Inter-Process

Communication?

4. Explain the basics of Remote Procedure Call (RPC) in

distributed system.

5. Explain RPC Operations, Parameter Passing in RPC in

distributed system.

6. What are the key characteristics of the Request-Reply

Protocol?

7. What do you mean by Distributed Computing?

2.14 Answer to check your progress/Possible Answers to SAQ

 1. Select the correct options of the following questions

(i). IPC Stands for

(a) Inter-Process Communication. (b) Inter-Program

Communication

(c) Interface-Process Communication (d) None of above.

(ii) A fundamental IPC mechanism where processes communicate

by sending and receiving messages is known as

(a) Pipe (b) Message Passing

257

 (c) Shared Memory (d) None of Above

(iii) Which of the following is the Transport Layer Protocol

(a) HTTP (b) FTP

 (c)UDP (d) SMTP

(iv) A low-level IPC mechanism for communication between

processes over a network is provided by

(a) Sockets (b) Pipe

(c)Message (d) None of

above

(v) Which operation is used by the client initiates communication

with the server by establishing a connection.

 (a) call (b) bind

 (c) execute (d) exit

×××

258

UNIT: 3

REMOTE OBJECT INVOCATION AND DISTRIBUTED

OBJECTS

Unit Structure:

3.1 Introduction

3.2 Objectives

3.3 Remote Object Invocation in Distributed Systems

3.3.1 Distributed System

3.3.2 Communication in Distributed System

3.3.3 Distributed Objects

 3.3.4 Remote Method Invocation

3.4 Integrating Clients and Objects in a Distributed Environment

3.4.1 Client-Server Model in Distributed Systems

 3.4.2 Object-Oriented design for Distributed Systems

3.4.3 Distributed Object Naming and Discovery Services

3.4.4 Object Lifecycle Management in Distributed

 Environments

3.5 Static versus Dynamic Remote Method Invocation (RMI)

3.5.1 Static Remote Method Invocation

3.5.2 Dynamic Remote Method Invocation

3.6 Parameter Passing in RMI

3.7 Examples of RMI Usage in Distributed Systems.

3.8 Summing Up

3.9 References and Suggested Readings

3.10 Model Questions

3.11 Answer to Check your Progress/Possible Answers to SAQ

3.1 Introduction

The world of computing is becoming increasingly interconnected.

Gone are the days of standalone applications; today, programs often

collaborate across networks, spanning multiple machines. This is the

realm of distributed systems, where components work together to

achieve a common goal, even if they're physically separated. This

259

chapter introduces you to a powerful concept in distributed systems:

Remote Method Invocation (RMI). But before diving into RMI,

we need to understand its key players i.e. Distributed Objects.

These are special objects that reside on remote machines, yet can be

accessed and interacted with just like local objects. Imagine a

program on your computer seamlessly interacting with a database

residing on a server across the network, that's the magic of

distributed objects. RMI acts as the bridge between clients

(programs initiating requests) and these remote objects. It allows

clients to invoke methods on remote objects as if they were local,

making development for distributed systems much simpler and more

intuitive. This chapter will equip you with the knowledge of RMI

and distributed objects. We'll explore how they work together, delve

into different approaches to RMI, and discover how parameters are

passed between clients and objects. Finally, we'll see how RMI is

used in real-world applications, showcasing its power in building

robust and scalable distributed systems. So, buckle up and get ready

to unlock the potential of a distributed world.

3.2 Objectives

This unit is an attempt to equip you with a solid understanding of

Remote Method Invocation (RMI) and its role in distributed

systems. After going through this unit you will be able to-

 Understand how distributed objects enable resource

sharing, location transparency, and scalability in

distributed systems.

 Discover how RMI bridges this gap by providing a

mechanism for transparent remote method invocation.

 Differentiate between static and dynamic approaches to

RMI.

 Explain how parameters are transmitted during remote

method invocations using RMI.

 Identify real-world applications of RMI in various

distributed system scenarios.

3.3 Remote Object Invocation in Distributed Systems

 3.3.1 Distributed System

Distributed system is a collection of autonomous computers

cooperating to achieve a common goal through message passing. A

distributed system isn't a single giant computer, but rather a network

of independent computers called nodes. These nodes can be

260

anything from laptops and desktops to powerful servers. Each node

has its own CPU, memory, and operating system, and they can run

programs independently. Since nodes are separate; they don't

directly access each other's memory. Instead, they communicate by

sending messages back and forth. These messages contain

information and instructions that allow nodes to work together.

Message passing protocols define how messages are formatted, sent,

received, and handled by different nodes. One of the main benefits

of distributed systems is the ability to share resources across

multiple nodes. This can include hardware resources like storage

and processing power, software resources like databases and

applications, and even data itself. By sharing resources, distributed

systems can handle larger workloads and provide services to more

users. Ideally, a well-designed distributed system appears to the user

as a single, coherent system. Users shouldn't need to be aware of the

underlying complexity of the distributed architecture. They should

be able to interact with the system as if it were a single computer,

accessing resources and services seamlessly. Examples of

distributed systems: World Wide Web, Cloud computing platforms

(Google Cloud, Amazon Web Services), Cluster computing for

scientific simulations, Multiplayer online games etc. Some key

characteristics of distributed system are:

 It is a collection of independent computers (nodes).

 It communicates via message passing.

 Resource sharing across multiple nodes.

 Transparency of distribution (appears as a single

system).

 The nodes are independent of one another and the

failure of one does not impact the others.

The essential components of a distributed system are:

 Nodes: Individual computers or devices.

 Network: The communication backbone connecting

nodes.

 Middleware: Software that facilitates

communication and interaction between nodes.

 Distributed Algorithms: Protocols for coordination

and decision-making.

A distributed system's design describes how several separate

computers work together to accomplish a single objective. It

includes defining how these nodes exchange information,

261

STOP TO CONSIDER

A distributed system is a network of independent computers (nodes)

that work together to appear as a single, unified system to users. These

nodes communicate through message passing, sharing resources like

hardware, software, and data.

Check Your Progress

Question1. What is a distributed system?

Question2. How do nodes communicate in a distributed system?

Question3. What is the significance of resource sharing in distributed

systems?

distribute resources, and deal with errors. The architecture of a

distributed system can be client-server, peer-to-peer and hybrid.

Client-server architecture is a classic model where clients

request services from servers. In peer-to-peer nodes can act as

both clients and servers. Hybrid architecture combines elements

of both client-server and peer-to-peer. Some Challenges of

distributed system are:

 Concurrency: Managing multiple processes

accessing shared resources.

 Consistency: Ensuring data integrity across multiple

nodes.

 Fault Tolerance: Handling node failures and

network partitions.

 Security: Protecting data and systems from

unauthorized access.

 Latency: Dealing with communication delays

between nodes.

3.3.2 Communication in Distributed System

 In order to comprehend the basic components of a distributed

system, two questions must be taken into consideration:

In a distributed system, what are the entities that are

communicating?

 What paradigm of communication is employed, or more

precisely, how do they communicate?

The answers to the two questions above are essential for

understanding distributed systems; the distributed systems

developer has a rich design space to choose from depending on

what entities are communicating and how they communicate

262

with one other. The answer is often extremely clear from a

system perspective for communicating entities because

distributed systems are typically made up of processes that

communicate with one another. This has led to the usual

understanding of distributed systems as processes combined

with suitable inter process communication paradigms. In most

distributed system environments, processes are augmented by

threads; thus, threads are the endpoints of communication. In

some primitive environments, such as sensor networks, the

underlying operating systems may not support process

abstractions, and hence the entities that communicate in such

systems are nodes. This is adequate to describe a distributed

system at a basic level. From the standpoint of programming,

this is insufficient, and further problem-oriented abstractions

have been suggested like objects and components.

Objects, which include both object-oriented design and object-

oriented programming languages, were introduced to facilitate

and promote the application of object-oriented techniques in

distributed systems. A computation in distributed object-based

techniques is made up of several interacting objects that serve

as the problem domain's natural units of decomposition.

Interfaces are used to access objects, and the methods defined

on an object are specified by the interface description language

(IDL) that is associated with the object. Components resemble

objects in that they offer problem-oriented abstractions for

building distributed systems and are also accessed through

interfaces. The key difference is that components specify not

only their interfaces but also the assumptions they make in

terms of other components/interfaces that must be present for a

component to fulfill its function – in other words, making all

dependencies explicit and providing a more complete contract

for system construction.

Communication paradigms, how entities communicate in a

distributed system, commonly we have two types of

communication paradigm: interprocess communication and

remote invocation. Interprocess Communication in a

distributed system is a process of exchanging data between two

or more independent processes in a distributed environment.

263

Some types of interprocess communication (IPC) commonly

used in distributed systems are:

 Message Passing: Message passing involves

processes communicating by sending and

receiving messages. Messages can be structured data

packets containing information or commands. It is a

versatile method suitable for both synchronous and

asynchronous communication. Message passing can

be implemented using various protocols such as

TCP/IP, UDP, or higher-level messaging protocols

like AMQP (Advanced Message Queuing Protocol)

or MQTT (Message Queuing Telemetry Transport).

 Remote Procedure Calls (RPC): RPC allows one

process to invoke a procedure (or function) in

another process, typically located on a different

machine over a network. It abstracts the

communication between processes by making it

appear as if a local procedure call is being made.

RPC frameworks handle details like parameter

marshalling, network communication, and error

handling.

 Sockets: Sockets provide a low-level interface for

network communication between processes running

on different computers. They allow processes to

establish connections, send data streams (TCP) or

datagrams (UDP), and receive responses. Sockets

are fundamental for implementing higher-level

communication protocols.

 Message Queuing Systems: Message queuing

systems facilitate asynchronous communication by

allowing processes to send messages to and receive

messages from queues. They decouple producers

(senders) and consumers (receivers) of messages,

providing fault tolerance, scalability, and persistence

of messages.

Remote invocation represents the most common

communication paradigm in distributed systems, covering a

range of techniques based on a two-way exchange between

communicating entities in a distributed system and resulting in

the calling of a remote operation, procedure or method.

264

STOP TO CONSIDER

Processes are often considered the primary communicating entities in

distributed system along with threads, nodes, objects, and components.

Check Your Progress

Question1. What are the common entities that communicate in a
distributed system?

Question2. Differentiate between interprocess communication and remote
invocation.

Question3. What is the role of an interface in distributed object-based

systems?

3.3.3 Distributed Objects

A distributed object is essentially a software component that resides

on a remote machine but can be accessed and interacted with as if it

were local. This abstraction is crucial for building complex,

scalable, and flexible systems. The principles of encapsulation,

inheritance and polymorphism remain the same as in traditional

object-oriented programming. Data and methods are bundled

together within the object, providing a clear interface and protecting

internal state. However, in a distributed context, encapsulation

becomes even more important as it helps to manage the complexity

of distributed systems. Distributed objects can inherit properties and

methods from other objects, just like their local counterparts. This

promotes code reuse and promotes a hierarchical structure for object

relationships. However, inheritance in distributed systems can

introduce challenges related to object location and network

communication. The ability of objects to take on multiple forms is

equally valuable in distributed systems. It allows for flexible and

dynamic interactions between objects, enabling different

implementations of the same interface to be used interchangeably.

Distribution is the core characteristic of distributed objects. They

can reside on different machines, connected by a network. This

enables load balancing, fault tolerance, and scalability. However, it

also introduces challenges related to communication,

synchronization, and consistency.

Properties of Distributed Object

 Location Transparency: Ideally, a distributed object

should appear to be local to the client, regardless of

its actual location. This simplifies development and

improves system flexibility.

265

STOP TO CONSIDER

Distributed objects are software components that can be accessed

remotely as if they were local. They offer encapsulation,

inheritance, polymorphism, and distribution as core properties

 Concurrency: Distributed objects often need to

handle multiple concurrent requests. This requires

careful synchronization and resource management to

prevent data inconsistencies and race conditions.

 Fault Tolerance: Distributed systems are inherently

prone to failures. Distributed objects should be

designed with fault tolerance in mind, using

techniques like replication, redundancy, and error

handling.

 Security: Protecting distributed objects and their data

is crucial. This involves authentication, authorization,

encryption, and other security measures to prevent

unauthorized access and data breaches.

Role of Distributed Object in Distributed Computing

 Modularity: By breaking down a system into

distributed objects, you create smaller, more

manageable components that can be developed,

tested, and deployed independently. This improves

code maintainability and facilitates collaboration

among development teams.

 Flexibility: Distributed objects can be replaced or

upgraded without affecting the entire system, as long

as they adhere to the same interface. This allows for

incremental improvements and adaptation to

changing requirements.

 Scalability: Distributed objects can be deployed on

multiple machines to handle increasing workloads.

This enables systems to grow gracefully as demand

increases, without compromising performance.

 Reusability: Well-designed distributed objects can

be reused in different applications, reducing

development time and effort. This promotes code

reuse and improves overall system efficiency.

Distributed objects are applicable in a wide range of domains,

including e-commerce, enterprise applications, cloud

computing, real-time systems etc.

Question

Question

Question

3.3.4 Rem

Remote

object on

another

applicatio

systems,

understan

Compute

method t

RMI, Co

a local m

This

the c

prog

on a

clien

com

266

Check Your Progress

estion1. What are the core properties of a distributed ob

estion2. In what domains are distributed objects commo

estion3. What are the challenges in managing distribute

Remote Method Invocation

mote Method Invocation (RMI) is a mechanism

ject on one machine to invoke a method on an ob

other machine. This enables distributed com

plications can be divided into components that ru

tems, communicating and collaborating seam

derstand how RMI works, imagine you have tw

mputer A and Computer B. Computer A has a p

thod that Computer B wants to use as shown in

I, Computer B can call that method on Computer

ocal method.

Figure 1. Request reply communication betwe

This remote call is managed by the RMI system,

the communication details, making the process se

programmer. Essentially, RMI allows methods

on a remote server, and the results are re

client.RMI system architecture typically involves

components:

 Client: The initiating process that ma

method call.

 Stub: A local proxy object on the c

represents the remote object. The c

with the stub as if it were the actual obj

ogress

ted object?

commonly used?

tributed objects?

anism that allows an

 an object located on

 computing, where

hat run on different

 seamlessly. To

ave two computers,

as a program with a

wn in figure 1. With

puter A as if it were

 between B and A

ystem, which handles

cess seamless for the

thods to be executed

are returned to the

volves the following

at makes the remote

 the client side that

The client interacts

ual object.

 Skeleton: A

that receive

parameters, an

object.

 Registry: A s

network addresses

Working of RMI:

In the client side, the

object's stub. The client

the stub marshals (seria

them to the server. On t

request, unmarshals

corresponding method o

executes the method and

skeleton then marshals t

The client side stub

unmarshals it, and return

RMI systems face sig

robust security is param

maintaining system inte

measures for verifying

servers to prevent

controlling access to sp

privileges is crucial. T

network, robust encr

Maintaining data inte

critical aspect, requiri

Fi

267

A local helper object on the server side

eceives incoming requests, unmarshals

ters, and forwards them to the actual remote

A service that maps object names to their

resses.

 client obtains a reference to the remote

 client then invokes a method on the stub and

 (serializes) the method arguments and sends

On the server-side, the skeleton receives the

 the arguments, and invokes the

thod on the remote object. The remote object

od and returns the result to the skeleton. The

shals the result and sends it back to the client.

stub receives the result from the server,

 returns it to the client application.

e significant security challenges. Ensuring

 paramount for protecting sensitive data and

m integrity. This necessitates implementing

ifying the authenticity of both clients and

vent unauthorized access. Additionally,

 to specific system functions based on user

ial. To safeguard data transmitted over the

encryption mechanisms are essential.

 integrity during transmission is another

equiring measures to detect and prevent

Figure 2: Working of RMI

268

STOP TO CONSIDER

Remote Method Invocation (RMI) is a mechanism that allows objects to

communicate and interact across different machines. It involves a client,

stub, skeleton, and registry.

Check Your Progress

Question1. What is the role of a stub in RMI?

Question2. What is the difference between a stub and a skeleton in RMI?

Question3. What are the primary security concerns in RMI?

STOP TO CONSIDER

The client-server model is a fundamental architecture for distributed

systems that divides applications into clients and servers, offering

advantages in task distribution, scalability, and adaptability.

tampering. Finally, non-repudiation mechanisms are necessary

to prevent parties from denying their actions, ensuring

accountability and trust within the system.

3.4 Integrating Clients and Objects in a Distributed

Environment

3.4.1 Client-Server Model in Distributed Systems

The client-server model is the cornerstone of distributed systems,

dividing applications into two distinct roles: clients and servers.

Clients, typically the user interface or application logic, handle user

interaction and initiate requests. Servers, the workhorses of the

system, manage shared data and resources, responding to client

requests and providing services. This distributed processing

approach offers several key advantages. Firstly, tasks are split

between client and server, allowing for efficient resource allocation.

The client focuses on user experience while the server handles

complex calculations and data management. Secondly, network

communication becomes the backbone of interaction. Clients and

servers can reside on separate machines, enabling scalability –

adding more servers can handle increased workloads. Finally, the

model offers flexibility, adapting to diverse application domains.

Whether it's web servers delivering content, email servers managing

communication, or database servers storing data, the client-server

model underpins a vast range of distributed systems.

269

Check Your Progress

Question1. What are the two main components of a client-server
model?

Question2. Give an example of a client-server application.

Question3. What is the role of a server in a client-server model?

Question4. What is the role of a client in a client-server model?

STOP TO CONSIDER

Object-Oriented Design (OOD) is a powerful approach for

building distributed systems. By encapsulating data and behavior,

using inheritance and polymorphism, OOD promotes modularity,

reusability, and flexibility.

3.4.2 Object-Oriented design for Distributed Systems

Object-oriented design (OOD) principles are fundamental to

constructing efficient and adaptable distributed systems. By

encapsulating data and behavior within objects, OOD promotes

modularity, making code more manageable and maintainable.

Inheritance facilitates code reuse, accelerating development and

reducing redundancy. Polymorphism allows objects to take on

various forms, enhancing system flexibility and adaptability to

changing requirements. To achieve seamless integration,

distribution transparency is crucial, masking the complexities of

remote object interaction. OOD also supports concurrency,

enabling objects to handle multiple requests simultaneously,

improving system responsiveness. Furthermore, fault tolerance,

a cornerstone of reliable distributed systems, can be enhanced

through OOD by encapsulating error handling and recovery

mechanisms within objects. However, challenges persist.

Managing the distribution of objects, including their location

and state, requires careful consideration to ensure consistency

and availability. Network latency and bandwidth limitations can

impact performance, necessitating efficient communication

protocols and object design. Additionally, robust security

measures are essential to protect sensitive data and prevent

unauthorized access. By effectively addressing these

challenges, developers can leverage OOD to build scalable,

resilient, and secure distributed systems.

270

Check Your Progress

Question1. What are the key OOD principles beneficial for
distributed systems?

Question2. What is the importance of distribution transparency in

OOD for distributed systems?
Question3. What are the primary challenges of applying OOD to

distributed systems?

3.4.3 Distributed Object Naming and Discovery Services

In distributed systems, locating and accessing objects across

different machines is a fundamental challenge. To address this,

naming and discovery services play a crucial role. Naming

services act as a directory or mapping system that associates

human-readable names with the network addresses of objects.

This abstraction layer simplifies the process of referencing

objects, as users can employ meaningful names instead of

complex network locations. Examples of naming services

include the Domain Name System (DNS), which maps domain

names to IP addresses, and the Lightweight Directory Access

Protocol (LDAP), which provides a hierarchical structure for

storing and accessing directory information.

Discovery services go beyond simple name-to-address

mapping by enabling the search for objects based on attributes

or services they provide. This dynamic approach allows for

flexible and adaptable system designs. Unlike naming services,

which rely on predefined names, discovery services facilitate

finding objects based on their characteristics. For instance, a

discovery service might locate all printers available on a

network or identify services that meet specific criteria.

The core functionalities of naming and discovery services

encompass object registration, lookup, and binding. Object

registration involves adding objects to the service's database,

associating them with their respective names or attributes.

Object lookup enables clients to find objects by querying the

service with a name or specific criteria. Once an object is

located, object binding establishes a communication channel

between the client and the object, facilitating interaction and

data exchange. By providing efficient mechanisms for locating

and accessing distributed objects, naming and discovery

services are essential components of modern distributed

271

Self Asking Questions

How does object binding contribute to the overall functionality of

distributed systems? (50 words)

………………………………………………………………………

………………………………………………………………………

………………………………………………………………………

………………………………………………………………………

STOP TO CONSIDER

Naming and discovery services are essential components of

distributed systems that facilitate the location and access of objects

across different machines.

systems. They contribute to system scalability, flexibility, and

ease of management by abstracting away the complexities of

network-based object interactions.

3.4.4 Object Lifecycle Management in Distributed

Environments

Object lifecycle management is a critical aspect of distributed

systems, encompassing the entire journey of an object from

creation to destruction. It involves a complex interplay of

various operations and considerations.

Object Creation and Activation: The lifecycle of a distributed

object begins with its creation. This involves instantiating the

object on a suitable remote machine. However, not all objects

need to be actively running at all times. To optimize resource

utilization, inactive objects can be placed in a suspended state.

When required, these objects can be activated, bringing them

back to a ready state to serve client requests. This process,

known as object activation, involves loading the object's state

from persistent storage and initializing it.

Object Passivation and Persistence: To conserve system

resources and handle failures gracefully, objects can be

passivated. This involves saving the object's state to persistent

storage and temporarily removing it from memory. Passivation

is essential for objects that are infrequently accessed or have

large memory footprints. Object persistence, on the other hand,

272

is concerned with storing object data for extended periods,

independent of the object's runtime state. This is crucial for data

that needs to be preserved even after the system is shut down.

Object Migration: In dynamic distributed environments, it

may be necessary to move objects between different machines.

Object migration involves transferring an object's state and

identity to a new location. This can be done for various reasons,

such as load balancing, fault tolerance, or data locality.

However, migrating objects can be complex and requires

careful coordination to avoid data inconsistencies and

disruptions.

Object Garbage Collection: Similar to traditional

programming languages, distributed systems need mechanisms

to reclaim resources occupied by objects that are no longer in

use. Object garbage collection identifies and removes these

objects to prevent memory leaks and improve performance. In

distributed environments, garbage collection becomes more

challenging due to the distributed nature of objects and the

potential for network partitions.

Managing the lifecycle of distributed objects presents several

challenges. Coordination is crucial to ensure consistency

across multiple nodes. For example, updating an object's state

on one node while other nodes have outdated information can

lead to inconsistencies. Fault tolerance is another critical

aspect. Objects and their associated data must be protected from

failures, and the system should be able to recover from such

events. Performance is also a significant concern. Object

lifecycle operations, such as activation, passivation, and

migration, should be optimized to minimize overhead and

maximize system responsiveness. To address the challenges of

object lifecycle management, several key concepts are

employed. Object persistence ensures that object data survives

system failures and restarts. Object replication creates multiple

copies of an object to enhance availability and performance. By

distributing object data across different nodes, the system can

tolerate failures and provide faster access to data. Object

leasing is a mechanism for controlling object lifetimes. Objects

are granted leases, which specify a time period during which

273

Self Asking Questions

How does object migration impact system performance? (50

words)

………………………………………………………………………

………………………………………………………………………

………………………………………………………………………

………………………………………………………………………

they are considered active. If an object is not renewed before

the lease expires, it can be passivated or garbage collected.

Effective object lifecycle management is essential for building

reliable, scalable, and efficient distributed systems. By carefully

considering the various factors involved and employing

appropriate techniques, developers can manage the complex

lifecycle of distributed objects and optimize system

performance.

3.5 STATIC VERSUS DYNAMIC REMOTE METHOD

INVOCATION

3.5.1 Static Remote Method Invocation

Static Remote Method Invocation, also known as compiled

RMI is the traditional approach where method calls are resolved

at compile time. In this method, the client-side code is aware of

the remote interfaces and the methods they provide. This means

that the method signatures are fixed and checked during the

compilation of the client application. Static RMI is

straightforward and offers performance advantages because the

method calls are resolved at compile time, reducing the

overhead during runtime.

Characteristics of Static RMI:

Compile-Time Binding: In static RMI, method invocations are

bound to their respective implementations during the compile

time. This results in faster execution as the method calls do not

need to be resolved at runtime.

Predictable Performance: Since the method signatures are

known in advance, the performance is more predictable and

274

STOP TO CONSIDER
Static RMI involves pre-compiled method calls, offering performance

benefits but limited flexibility. Dynamic RMI resolves method calls at

runtime, providing greater flexibility but potentially sacrificing

performance. The choice between the two depends on the specific

requirements of the distributed system, such as performance needs,

frequency of interface changes, and development complexity.

generally better compared to dynamic RMI.

Less Flexibility: Static RMI can be less flexible as any change

in method signatures requires recompiling the client

application. This can lead to higher maintenance efforts when

changes are made to the remote interfaces.

3.5.2 Dynamic Remote Method Invocation

Dynamic Remote Method Invocation, on the other hand,

involves resolving method calls at runtime. In this approach, the

client does not have fixed knowledge of the method signatures

in advance. Instead, the method calls are dynamically resolved

using reflection or similar mechanisms. This allows for greater

flexibility as the client application does not need to be

recompiled when remote interfaces change.

Characteristics of Dynamic RMI:

Runtime Binding: Methods are bound at runtime, which

provides flexibility as the client application does not need to be

updated when remote interfaces change. This makes dynamic

RMI suitable for environments where interfaces evolve

frequently.

Increased Overhead: The runtime binding introduces

additional overhead because method calls must be resolved

dynamically, which can affect performance compared to static

RMI.

Greater Flexibility: Dynamic RMI is more adaptable to

changes in the remote interfaces. This can simplify

development and maintenance, especially in complex

distributed systems where interfaces are subject to frequent

changes.

275

Check Your Progress

Question1. What is the primary difference between static and

dynamic RMI?
Question2. How does flexibility differ between static and dynamic

RMI?

Both static and dynamic Remote Method Invocation approaches

have their advantages and trade-offs. Static RMI offers better

performance and simplicity when method signatures are stable,

while dynamic RMI provides flexibility and adaptability in

environments where remote interfaces are frequently updated.

The choice between static and dynamic RMI depends on the

specific requirements of the distributed application and the

nature of the remote interactions.

3.6 Parameter Passing in RMI

Parameter passing is a fundamental aspect of remote method

invocation. It involves transferring data between the client and

server during method calls. Understanding how different data

types are handled and the implications of passing by value or

reference is crucial for effective RMI programming.

RMI supports a wide range of data types for parameter passing,

including:

 Primitive data types: These include basic data types

like int, double, boolean, etc. They are passed by

value, meaning a copy of the value is sent to the

remote method.

 Strings: Strings are treated as immutable objects in

Java and are passed by reference. However, since

strings are immutable, the remote method cannot

modify the original string.

 Arrays: Arrays can be passed as parameters. The

behavior depends on the element type. If the elements

are primitive types, the array is passed by value,

meaning a copy of the array is sent. If the elements

are objects, the array is passed by reference, but the

objects themselves are still passed by value.

276

 Objects: Objects can be passed as parameters, but

they are passed by reference. This means that the

remote method receives a reference to the same

object that exists on the client side. Any changes

made to the object on the server side will be reflected

on the client side.

Passing Primitives and Objects by Value and Reference

Understanding the difference between passing by value and

passing by reference is essential in RMI. In passing by value, a

copy of the data is sent to the remote method. Any

modifications made to the data on the server side do not affect

the original data on the client side. This is the case for primitive

data types and arrays of primitive data types. In case of passing

by reference, a reference to the original object is sent to the

remote method. Any changes made to the object on the server

side will be reflected on the client side. This is the case for

objects and arrays of objects. It's important to note that while

objects are passed by reference in RMI, the object itself is still

serialized and deserialized during the transfer. This means that a

copy of the object's state is sent to the server, but the reference

to the original object is retained on the client side. Object

serialization is the process of converting an object's state into a

byte stream, which can be transmitted over the network.

Deserialization is the reverse process, reconstructing the object

from the byte stream. RMI uses object serialization and

deserialization to transfer objects between the client and server.

For an object to be serializable, it must implement the

Serializable interface. This interface is a marker interface that

indicates that the object's state can be serialized. When an

object is passed as a parameter or returned from a remote

method, it is automatically serialized and sent over the network.

The object is then deserialized on the receiving end to recreate

the object. It's important to consider the performance

implications of object serialization and deserialization. Large

objects can take significant time to serialize and deserialize,

affecting overall RMI performance. Several factors influence

the performance of parameter passing in RMI, Data type;

primitive data types are generally faster to pass than objects.

Object size; larger objects take longer to serialize and

277

STOP TO CONSIDER

Parameter passing in RMI involves transferring data between

client and server. Primitive data types are passed by value, while

objects are passed by reference, though the object itself is serialized

and deserialized.

Check Your Progress

Question1. What is the difference between passing a primitive and an
object as a parameter in RMI?

Question2. Can you modify an object passed by reference in a remote
method?

Self Asking Questions

How does the choice of data types impact the overall efficiency of an

RMI application? (80 words)

………………………………………………………………………

………………………………………………………………………

………………………………………………………………………

………………………………………………………………………

deserialize. Network latency; the time it takes for data to travel

between the client and server affects overall performance.

Serialization/deserialization overhead; the process of

converting objects to byte streams and vice versa adds

overhead. To optimize performance, it's essential to carefully

consider the data types used in parameter passing, minimize

object size, and use efficient serialization techniques.

3.7 Examples of RMI Usage in Distributed Systems.

RMI has found widespread application in various domains due

to its ability to distribute functionalities across multiple

systems. E-commerce; RMI is extensively used in e-commerce

applications for managing product catalogs, processing orders,

and handling inventory management. For instance, a distributed

e-commerce system might have separate servers for product

information, order processing, and payment gateways, all

communicating through RMI. Distributed Databases; RMI

plays a crucial role in distributed database systems by enabling

data access and manipulation across multiple nodes. It can be

278

used for load balancing, data replication, and fault tolerance.

For example, a distributed database system might employ RMI

to distribute query processing among multiple servers. In other

applications such as financial systems; for real-time stock

quotes, trading, and risk management, Collaborative

applications; for sharing documents, whiteboarding, and real-

time communication, Enterprise resource planning (ERP)

systems; for integrating different modules and managing

complex business processes use RMI.

RMI is a form of middleware, which is software that facilitates

communication and interaction between different software

components. It provides a layer of abstraction over underlying

network protocols and operating systems. CORBA (Common

Object Request Broker Architecture) is a more complex and

heavyweight middleware platform compared to RMI, CORBA

offers a broader range of features, including language

interoperability and distributed transaction support. However, it

is also more complex to implement and deploy. DCOM

(Distributed Component Object Model) is a Microsoft-

specific technology, similar to RMI but is tightly integrated

with the Windows operating system. While it offers some

advantages in terms of performance and integration with other

Microsoft technologies, it is less portable than RMI.

RMI, while powerful, faces certain challenges in terms of

performance, security, reliability and complexity. Network

latency and serialization/deserialization overhead can impact

performance. RMI inherently involves network communication,

which introduces latency. This can significantly impact the

perceived performance of applications, especially for operations

that require frequent remote method invocations. The process of

converting objects into byte streams for transmission

(serialization) and reconstructing them at the receiving end

(deserialization) adds overhead. Large objects or complex data

structures can exacerbate this issue. Protecting data and

preventing unauthorized access is crucial in RMI. Verifying the

identity of clients and servers is crucial to prevent unauthorized

access. Weak authentication mechanisms can lead to security

breaches. Controlling access to specific methods or resources

based on user privileges is essential to protect sensitive data.

279

Protecting sensitive data transmitted over the network requires

encryption and other security measures to prevent

eavesdropping. Ensuring that data is not tampered with during

transmission is vital for maintaining data integrity. RMI

systems can be vulnerable to Denial of Service attacks, which

can render the system unresponsive. Ensuring fault tolerance

and recovery is essential for mission-critical applications. RMI

systems must be able to handle failures such as network

outages, server crashes, or unexpected exceptions.

Implementing mechanisms for detecting and recovering from

failures is crucial. Coordinating transactions across multiple

nodes can be complex and error-prone. Ensuring data

consistency and atomicity in distributed environments is

challenging. Developing and managing distributed systems

using RMI can be complex. Developing distributed applications

using RMI can be more complex than traditional monolithic

applications. Debugging issues across multiple machines can be

time-consuming. Deploying and managing distributed systems

requires careful planning and coordination. Scaling and

maintaining RMI-based systems can be challenging.

Example of RMI Usage in Distributed Systems

An example shared whiteboard application to illustrate RMI.

This application allows users to draw shapes on a shared

canvas, with a server maintaining the state of the drawing.

Interfaces:

Shape: Represents a drawable shape on the whiteboard.

ShapeList: Manages a collection of Shape objects.

import java.rmi.*;

import java.util.Vector;

public interface Shape extends Remote {

 int getVersion() throws RemoteException;

 GraphicalObject getAllState() throws RemoteException;

}

public interface ShapeList extends Remote {

 Shape newShape(GraphicalObject g) throws

RemoteException;

 Vector<Shape> allShapes() throws RemoteException;

280

STOP TO CONSIDER

RMI is a powerful tool for building distributed systems, enabling

communication and interaction between objects on different

machines. It has found applications in various domains, such as e-

commerce, distributed databases, and financial systems.

Check Your Progress

Question1. What are the main advantages of using RMI in

distributed systems?

Question2. What are the common performance challenges in
RMI?

Question3. What is the difference between RMI and CORBA?

 int getVersion() throws RemoteException;

}

In this example:

Shape interface has methods to get the version and state of a

shape.

ShapeList interface has methods to add new shapes, retrieve all

shapes, and get version information.

Implementation Details

Serialization: GraphicalObject must implement Serializable to

allow its instances to be passed by value.

Method Invocation: The newShape method in ShapeList

accepts a GraphicalObject and returns a Shape reference. The

getAllState method in Shape returns a GraphicalObject by

value.

Practical Considerations

Concurrency: When designing RMI applications, consider

thread safety and concurrency, as remote objects might be

accessed by multiple clients simultaneously.

Exceptions: Remote method calls must handle Remote

Exception to manage communication failures.

281

3.8 Summing Up

1. Distributed systems involve multiple computers working

together to achieve a common goal.

2. Remote Method Invocation (RMI) enables objects on

different machines to interact as if they were local.

3. Key components of RMI include client, stub, skeleton, and

registry.

4. Distributed objects are the foundation of RMI, allowing for

location transparency and object-oriented programming in

distributed environments.

5. Client-server model is a common architecture for

distributed systems, with clients requesting services from

servers.

6. Object-oriented design (OOD) principles enhance

distributed system development through encapsulation,

inheritance, polymorphism, and distribution transparency.

7. Naming and discovery services help locate distributed

objects.

8. Object lifecycle management includes creation, activation,

passivation, migration, and garbage collection.

9. Static RMI involves compile-time binding, offering

performance but less flexibility.

10. Dynamic RMI uses runtime binding, providing flexibility

but potentially lower performance.

11. Primitive data types are passed by value in RMI.

12. Objects are passed by reference, but the object itself is

serialized and deserialized.

13. RMI faces challenges in performance, security, reliability,

and complexity.

 3.9 References and Suggested Readings

1. Coulouris, G., Dollimore, J., Kindberg, T., Blair,

G., (2012). Distributed Systems Concepts and

Design (Fifth Edition).Pearson.

2. https://www.geeksforgeeks.org/remote-method-

invocation-in-java/

 3.10 Model Questions

1. Define a distributed system.

2. What are the key characteristics of a distributed

system?

282

3. Differentiate between a distributed system and a

parallel system.

4. Explain the concept of transparency in distributed

systems.

5. What are the common challenges in building

distributed systems?

6. Describe the role of middleware in distributed

systems.

7. What is the significance of fault tolerance in

distributed systems?

8. Define Remote Method Invocation (RMI).

9. What are the core components of an RMI system?

10. Explain the role of a stub in RMI.

11. Differentiate between a stub and a skeleton.

12. How does object serialization work in RMI?

13. What are the advantages of using RMI for distributed

computing?

14. What are the performance implications of passing

large objects in RMI?

15. Explain the concept of distributed objects.

16. How does object-oriented design support distributed

systems?

17. What is the role of a naming service in distributed

systems?

18. Describe the client-server model.

19. What are the key components of a client-server

architecture?

20. What are the challenges of managing distributed

objects?

21. How does object replication improve system

availability?

22. Explain the concept of object leasing.

23. What is the role of garbage collection in distributed

systems?

24. What are the common security threats in RMI?

25. How can you ensure data integrity in RMI?

26. Explain the concept of distributed transactions.

27. What are the performance optimization techniques for

RMI?

28. How does RMI compare to other distributed

computing technologies like CORBA and DCOM?

283

29. Discuss the role of middleware in RMI.

30. Differentiate between static and dynamic RMI.

31. When would you choose static RMI over dynamic

RMI?

32. What are the performance implications of static and

dynamic RMI?

33. How does flexibility differ between static and

dynamic RMI?

34. Discuss the use cases for static and dynamic RMI.

35. Explain the difference between passing by value and

passing by reference in RMI.

36. How are primitive data types handled in RMI?

37. What are the performance implications of object

serialization in RMI?

38. How can you optimize parameter passing in RMI?

39. What are the potential security risks associated with

parameter passing in RMI?

 3.11 Answer to check your progress/Possible Answers to SAQ

What is a distributed system?

 A distributed system is a collection of independent

computer systems that communicate and coordinate

their actions to appear as a single, coherent system to the

user. These systems are geographically dispersed and

connected through a network. They work together to

achieve a common goal by sharing resources and

processing tasks.

How do nodes communicate in a distributed system?

 Nodes in a distributed system communicate through

various methods. Nodes exchange data by sending and

receiving messages. Nodes can communicate using

remote procedure calls. One node can invoke a

procedure on another node as if it were a local call.

Sockets, a lower-level mechanism for network

communication, providing direct control over data

transmission. Using message queuing systems also

nodes can communicate for asynchronous

communication.

284

What is the significance of resource sharing in distributed

systems?

 Resource sharing is a cornerstone of distributed systems.

It increases efficiency by distributing workloads across

multiple nodes; systems can handle larger workloads

and improve performance. If one node fails, other nodes

can take over its tasks, preventing system failure.

Systems can grow by adding more nodes, increasing

capacity and handling increased demand. By sharing

resources, organizations can optimize hardware and

software utilization. Data can be replicated across

multiple nodes for improved accessibility and reliability.

What are the common entities that communicate in a

distributed system?

 In distributed systems, the primary entities that

communicate are processes or threads. These are the

fundamental units of execution within a system. While

processes are heavier-weight entities with their own

memory space, threads are lighter-weight and share the

same memory space within a process. Both can serve as

endpoints for communication in a distributed

environment.

Differentiate between interprocess communication and

remote invocation.

 Interprocess Communication (IPC) is a general term

for any mechanism that allows processes to exchange

data and synchronize their actions. It encompasses a

wide range of techniques, including message passing,

shared memory, and pipes. IPC can occur within a

single system or across multiple systems. Remote

Invocation is a specific type of IPC where a process on

one machine invokes a procedure or method on another

machine. It provides a higher-level abstraction than raw

IPC, making it easier to interact with remote

components. Examples include Remote Procedure Calls

(RPC) and Remote Method Invocation (RMI).

285

What is the role of an interface in distributed object-based

systems?

 In distributed object-based systems, an interface defines

the contract between a client and a distributed object. It

specifies the methods that a client can invoke on the

object, along with their parameters and return types. The

interface acts as a blueprint for interaction, promoting

modularity, encapsulation, and code reusability. By

defining the interface separately from the object's

implementation, it allows for different implementations

of the same interface to be used interchangeably,

enhancing flexibility and maintainability.

What are the core properties of a distributed object?

 The core properties of a distributed object are Location

transparency, Concurrency, Fault tolerance and

Security.

In what domains are distributed objects commonly used?

 E-commerce, enterprise applications, cloud computing,

real-time systems etc.

What are the challenges in managing distributed objects?

 Managing distributed objects presents several

challenges:

o Ensuring consistency and synchronization of

object state across multiple nodes.

o Handling failures and recovering object state.

o Optimizing object access and communication to

achieve acceptable performance.

o Protecting distributed objects from unauthorized

access and data breaches.

o Dealing with network partitions and ensuring

system resilience.

o Managing objects on different platforms and

with different programming languages.

What is the role of a stub in RMI?

 A stub is a local proxy object on the client side that

represents a remote object. It acts as a placeholder for

the actual remote object. When a client invokes a

method on the stub, the stub marshals the method

286

arguments and sends them to the server-side skeleton. It

then waits for the response from the server and returns

the result to the client. Essentially, the stub hides the

network communication details from the client, making

it appear as if the method is being invoked locally.

What is the difference between a stub and a skeleton in

RMI?

 Stub Resides on the client side. Acts as a local

representative of the remote object. Marshals method

arguments and sends them to the server. Skeleton

resides on the server side. Receives incoming requests,

unmarshals parameters, and forwards them to the actual

remote object. Returns the result back to the client

through the stub.

What are the primary security concerns in RMI?

 The primary security concerns in RMI includes

o Authentication: Verifying the identity of clients

and servers to prevent unauthorized access.

o Authorization: Controlling access to specific

methods or resources based on user privileges.

o Confidentiality: Protecting sensitive data

transmitted over the network using encryption.

o Integrity: Ensuring data is not tampered with

during transmission.

o Non-repudiation: Preventing parties from

denying their actions.

o Denial of Service (DoS) attacks: Protecting

against malicious attempts to overload the

system.

What are the two main components of a client-server

model?

 Client and server are the two main components of a

client-server model.

Give an example of a client-server application.

 Email is a common example of a client-server

application.

287

What is the role of a server in a client-server model?

 The server in a client-server model is responsible for:

o Managing shared resources and data

o Providing services to clients

o Responding to client requests

o Storing and processing information

What is the role of a client in a client-server model?

 The client in a client-server model is responsible for:

o Initiating requests to the server

o Interacting with the user

o Displaying information received from the server

o Sending data to the server for processing

What are the key OOD principles beneficial for distributed

systems?

 The key OOD principles that are particularly beneficial

for distributed systems are:

o Encapsulation: This helps to create well-

defined, modular components that can be

distributed across different systems.

o Inheritance: Supports code reuse and the

creation of hierarchical relationships between

distributed objects.

o Polymorphism: Enables flexible interactions

between distributed objects, allowing for

different implementations of the same interface.

o Distribution transparency: This principle aims

to hide the complexities of distributed

computing, making remote objects appear as

local ones.

What is the importance of distribution transparency in

OOD for distributed systems?

 Distribution transparency is crucial in OOD for

distributed systems as by making remote objects appear

local, developers can focus on application logic rather

than network communication details. As the system

grows, new components can be added without

significantly impacting existing code. Changes to the

288

underlying distribution infrastructure are less likely to

affect the application which improves maintainability.

What are the primary challenges of applying OOD to

distributed systems?

 The primary challenges of applying OOD to distributed

systems include:

o Tracking object locations, states, and lifecycles

across multiple systems.

o Dealing with network latency, bandwidth

limitations, and potential failures.

o Managing concurrent access to shared objects

and preventing data inconsistencies.

o Protecting distributed objects and their data from

unauthorized access.

o Designing systems that can continue to function

in the face of failures.

o Dealing with different hardware, software, and

network environments.

How does object binding contribute to the overall

functionality of distributed systems?

 Object binding is the crucial step that transforms a

theoretical connection between a client and a remote

object into a functional interaction. It establishes a

communication channel, allowing data and method calls

to be exchanged. Without binding, even if an object is

discovered, it remains inaccessible. This process ensures

seamless interaction between distributed components,

enabling tasks like remote procedure calls, data transfer,

and synchronization. In essence, object binding is the

bridge that connects the dots in distributed systems,

making them operational and effective.

How does object migration impact system performance?

 Object migration can significantly impact both system

performance and consistency. It can improve

performance by moving objects closer to their

frequently accessing clients, reducing network latency.

However, the migration process itself can be resource-

intensive, temporarily impacting system performance.

289

What is the primary difference between static and dynamic

RMI?

 The primary difference between static and dynamic RMI

lies in the timing of method resolution. In static RMI,

method calls are resolved at compile time, while in

dynamic RMI, they are resolved at runtime. This

fundamental difference impacts performance, flexibility,

and development complexity.

How does flexibility differ between static and dynamic

RMI?

 Dynamic RMI offers significantly more flexibility than

static RMI. In static RMI, the structure of remote objects

is fixed at compile time, requiring changes to the client

code if the remote interface evolves. In contrast,

dynamic RMI allows clients to adapt to changes in

remote interfaces at runtime without recompilation,

making it more suitable for systems with frequently

changing requirements.

What is the difference between passing a primitive and an

object as a parameter in RMI?

 Primitives are passed by value, meaning a copy of the

primitive value is sent to the remote method. Any

modifications made to the primitive within the remote

method do not affect the original value on the client

side. Objects are passed by reference, meaning a copy

of the object reference is sent to the remote method.

While this might seem like pass-by-reference behavior,

it's important to note that the object itself is serialized

and sent over the network. Any changes made to the

object's state on the server side will be reflected on the

client side when the object is deserialized back.

Can you modify an object passed by reference in a remote

method?

 When an object is passed by reference in RMI, the

remote method receives a reference to the same object

that exists on the client side. Any changes made to the

object's state within the remote method will be reflected

in the original object on the client side when the method

returns.

290

How does the choice of data types impact the overall

efficiency of an RMI application?

 The choice of data types significantly influences the

efficiency of an RMI application. Primitive Data

Types: Generally more efficient as they are passed by

value, requiring less overhead compared to objects.

Objects: Less efficient due to the overhead of

serialization and deserialization. Larger objects can

significantly impact performance, especially over slower

networks. Complex object hierarchies can further

increase overhead. Arrays: Efficiency depends on the

element type. Primitive arrays are generally more

efficient than object arrays. Large arrays can impact

performance due to their size.

What are the main advantages of using RMI in distributed

systems?

 RMI aligns seamlessly with object-oriented

programming principles, making it natural to distribute

object-based applications. Compared to other distributed

computing technologies, RMI provides a relatively

straightforward approach for developing distributed

applications, especially within the Java ecosystem. RMI

supports communication between Java applications

running on different platforms, enhancing portability.

Automatic garbage collection simplifies memory

management in distributed environments.

What are the common performance challenges in RMI?

 The time taken for data to travel between machines can

significantly impact performance, especially for

frequent interactions. Converting objects to byte streams

and vice versa for network transmission incurs

processing costs. The garbage collection process can

sometimes interfere with application performance,

particularly in high-throughput systems.

What is the difference between RMI and CORBA?

 RMI and CORBA are both middleware technologies for

distributed computing, but they have key differences:

RMI is primarily designed for Java, while CORBA

291

supports multiple programming languages. RMI is

generally simpler to use and implement compared to

CORBA, which offers a more complex and feature-rich

approach. RMI often offers better performance than

CORBA for simpler applications due to its focus on

Java and reduced overhead.

×××

292

UNIT: 4

NAMING ENTITIES AND DOMAIN NAME SYSTEM (DNS)

Unit Structure:

4.1 Introduction

4.2 Objectives

4.3 The Importance of Naming entities and DNS

4.4 Key Components of DNS

4.5 Names, Identifiers, and Addresses and their distinctions

 4.5.1 Names

4.5.2 Identifiers

4.5.3 Addresses

4.6 Distinctions between Names, Identifiers, and Addresses

4.7 Uniform Resource Names (URNs) and its Importance

4.8 The Name Resolution Mechanisms/Strategies

4.8.1 Local Name Resolution

4.8.2 Centralized Name Resolution

4.8.3 Distributed Hash Tables (DHTs)

4.8.4 Hierarchical Name Resolution

4.8.5 Iterative Name Resolution

4.9 Structuring and Organizing Name Spaces

 4.9.1 Flat Name Space

4.9.2 Hierarchical Name Space

4.9.3 Partitioned Name Space

4.9.4 Distributed Name Space

4.10 Directory Services and Distributed Name Services

4.10.1 Directory Services

4.10.2 Distributed Name Services

4.11 Challenges in Naming Entities

293

4.12 Domain Name System (DNS)

4.12.1 Role of Domain Name System (DNS)

4.12.2 DNS Administrative Domains

4.13 Domain Name System (DNS): Architecture, Hierarchy and

Zones

4.13.1 Architecture

4.13.2 Hierarchy

4.13.3 Zones

4.14 Resource Records (RRs) in Domain Name System (DNS)

4.15 Name Resolution Process in the Domain Name System (DNS)

4.16 Caching and Performance Optimization of DNS

4.17 Security and Challenges of DNS

4.18 DNSSEC in Domain Name System (DNS)

4.19 DNS Spoofing, Cache Poisoning and DNS Anycast in Domain

Name System (DNS)

4.19.1 DNS Spoofing

4.19.2 DNS Cache Poisoning

4.19.3 DNS Anycast

4.20 Summing Up

4.21 References and Suggested Readings

4.22 Model Questions

4.23 Answer to check your progress/Possible Answers to SAQ

4.1 Introduction

Naming entities and managing the Domain Name System (DNS) are

crucial aspects of designing and maintaining distributed systems.

This abstract explores the significance of naming entities in

distributed environments and the pivotal role of DNS in translating

human-readable domain names into machine-readable IP addresses.

294

Naming entities in distributed systems involves assigning unique

identifiers to components, services, and resources to facilitate

communication and interaction. With the dynamic nature of

distributed environments, challenges such as scalability,

consistency, and fault tolerance arise. Effective naming schemes

provide a foundation for seamless communication, enabling

components to discover and interact with each other transparently.

Naming entities in distributed systems involves assigning unique

identifiers to various components, services, and resources within the

system. A well-designed naming scheme simplifies communication,

enables resource discovery, and facilitates scalability and flexibility

in distributed environments.

In distributed systems, naming entities involves assigning unique

identifiers to various components, services, and resources.

Challenges such as scalability, consistency, and fault tolerance arise

due to the dynamic nature of distributed environments. Effective

naming schemes simplify communication, enable resource

discovery, and support scalability and flexibility.

The Domain Name System (DNS) serves as the backbone of the

Internet's naming infrastructure, providing a hierarchical naming

structure and facilitating name resolution. DNS operates through a

distributed system of servers, including authoritative name servers

and recursive resolvers, to translate domain names into IP addresses

and vice versa.

Advanced topics in DNS, such as DNS Security (DNSSEC),

Anycast DNS, and Content Delivery Networks (CDNs), enhance the

security, performance, and resilience of distributed systems.

DNSSEC adds cryptographic signatures to DNS records to prevent

tampering and spoofing, while Anycast DNS and CDNs optimize

routing and content delivery.

295

This introduction sets the stage for exploring the intricacies of

naming entities and DNS management in distributed systems.

Throughout this discussion, we will delve into the challenges of

naming entities, the principles of DNS operation, advanced topics in

DNS management, and best practices for designing robust and

scalable distributed systems. By understanding the significance of

naming entities and leveraging DNS effectively, organizations can

build resilient and efficient distributed systems capable of meeting

the demands of modern computing environments.

In a distributed system, naming entities and managing them

efficiently is crucial for seamless communication and interaction

between distributed components. This chapter delves into the

importance of naming entities in distributed systems and explores

the Domain Name System (DNS) as a fundamental component for

translating human-readable names into machine-readable IP

addresses.

4.2 Objectives

After going through this unit you will be able to:

 Understand the basic concepts of Naming entities and

managing the Domain Name System (DNS)

 Know about the importance of Naming entities and DNS.

 Know about Uniform Resource Names (URNs) and its

Importance

 Know about Directory Services and Distributed Name

Services

 Understand about Domain Name System (DNS) and its

Architecture and Hierarchy

 Know about Resource Records (RRs), Name Resolution

Process of DNS

296

 Idea about DNS Spoofing, Cache Poisoning and DNS

Anycast.

4.3 The Importance of Naming entities and DNS

Understanding the principles of naming entities and DNS

management is essential for building robust and efficient distributed

systems. By employing scalable naming schemes and leveraging

DNS effectively, organizations can ensure seamless communication,

resource discovery, and reliable operation in distributed

environments. In distributed systems, where computing resources

are spread across multiple networked machines, efficient

communication and interaction among distributed components are

essential for system functionality and performance. Central to this

communication is the ability to uniquely identify and address

various entities within the distributed environment. This

introduction explores the critical role of naming entities and the

Domain Name System (DNS) in facilitating communication and

resource discovery in distributed systems.

At the heart of the Internet's naming infrastructure lies the Domain

Name System (DNS), a distributed hierarchical naming system that

translates human-readable domain names (e.g., www.example.com)

into machine-readable IP addresses (e.g., 192.0.2.1) and vice versa.

DNS plays a fundamental role in enabling users to access websites

and services using memorable domain names, abstracting away the

complexities of IP address management.

4.4 Key Components of DNS

DNS operates through a distributed system of servers, including

authoritative name servers, recursive resolvers, and caching servers.

These servers work collaboratively to resolve domain names to their

corresponding IP addresses, providing efficient and reliable name

resolution services to clients.

297

4.5 Names, Identifiers, and Addresses and their distinctions

In distributed systems, naming entities involves the assignment of

unique identifiers to various components, services, and resources to

facilitate communication, interaction, and resource management.

This process encompasses names, identifiers, and addresses, each

serving distinct roles in identifying entities within the distributed

environment. Understanding the differences between these concepts

is crucial for designing effective naming schemes and managing

distributed systems efficiently.

4.5.1 Names

Names are human-readable labels used to refer to entities within a

distributed system. They are typically chosen to be meaningful and

intuitive, making it easier for users, developers, and administrators

to identify and reference specific entities. Names are often

hierarchical, allowing for organization and categorization of entities

into logical groupings.

In distributed systems, names can represent a wide range of entities,

including:

Computers and Servers: Hostnames, such as "server.example.com"

or "workstation1.local", identify individual machines within a

network.

Services and Applications: Service names, such as "database-

service" or "payment-gateway", identify specific services or

applications running on distributed systems.

Resources and Objects: Object names, such as "file.txt" or

"user123", identify resources or objects within the system, such as

files, documents, or users.

Names provide a level of abstraction that shields users and

applications from the underlying details of network addressing and

298

topology. However, names alone are not sufficient for

communication and resource access in distributed systems; they

need to be translated into machine-readable identifiers and

addresses.

4.5.2 Identifiers

Identifiers are unique, system-assigned labels used to

unambiguously identify entities within a distributed system. Unlike

names, identifiers are typically not chosen by users or administrators

but are generated or assigned by the system itself. Identifiers are

used internally by the system to reference and manage entities

efficiently.

In distributed systems, identifiers may take various forms,

including:

UUIDs (Universally Unique Identifiers): Globally unique identifiers

generated using algorithms that ensure uniqueness across distributed

systems. UUIDs are commonly used to identify resources,

transactions, or sessions within distributed applications.

Object IDs: Unique identifiers assigned to objects or resources

within a system's data model. Object IDs are used internally by

applications and databases to reference and manipulate data objects.

Process IDs (PIDs): Identifiers assigned to individual processes or

threads within a distributed system. PIDs are used by the operating

system for process management and resource allocation.

Identifiers provide a low-level mechanism for uniquely identifying

entities within a distributed system. They are essential for efficient

resource management, concurrency control, and coordination across

distributed components. However, identifiers are often system-

specific and may not be meaningful or human-readable.

299

4.5.3 Addresses

Addresses are machine-readable labels used to locate entities within

a distributed system. Unlike names and identifiers, which focus on

identification, addresses specify the physical or network location of

entities, enabling communication and data exchange between

distributed components.

In distributed systems, addresses may include:

IP Addresses: Numeric labels assigned to network interfaces and

used to identify and locate devices within a network. IPv4 and IPv6

addresses are commonly used in distributed systems for network

communication.

URLs (Uniform Resource Locators): Uniform resource locators that

specify the protocol, host, and path to access web resources. URLs

enable clients to locate and retrieve web pages, files, and services

from remote servers.

Addresses serve as the foundation for communication and data

transfer in distributed systems. They enable entities to send

messages, access resources, and establish connections across

networks. Addresses are essential for establishing communication

channels, routing data packets, and ensuring reliable delivery within

distributed environments.

4.6 Distinctions between Names, Identifiers, and Addresses

While names, identifiers, and addresses all play important roles in

naming entities within distributed systems, they serve distinct

purposes and have different characteristics:

Names provide human-readable labels for entities and are used for

identification and reference by users and applications.

300

Identifiers are system-assigned labels that uniquely identify entities

within the system and are used for internal management and

manipulation.

Addresses specify the physical or network location of entities and

are used for communication and data exchange between distributed

components.

By understanding the distinctions between names, identifiers, and

addresses, architects and developers can design effective naming

schemes and communication protocols that meet the requirements of

distributed systems, balancing human readability with system

efficiency and scalability.

4.7 Uniform Resource Names (URNs) and its Importance

Uniform Resource Names (URNs) are a type of Uniform Resource

Identifier (URI) used to uniquely identify resources in a persistent

and location-independent manner. Unlike Uniform Resource

Locators (URLs), which specify the location of a resource, URNs

provide a consistent and permanent name for a resource regardless

of its location or access method.

Structure of URNs: URNs follow a specific syntax defined by the

Internet Engineering Task Force (IETF) in RFC 8141. They consist

of three main components:

URN Scheme: The URN scheme specifies the namespace to which

the URN belongs. Common URN schemes include "urn:isbn" for

identifying books by their International Standard Book Number

(ISBN) and "urn:uuid" for universally unique identifiers (UUIDs).

Namespace Identifier (NID): The NID uniquely identifies the

namespace to which the URN belongs. It is typically a hierarchical

string, such as "isbn" or "uuid", that defines the context or type of

resource being identified.

301

Namespace-Specific String (NSS): The NSS is the portion of the

URN that provides the specific identifier within the namespace. It

can vary in format and content depending on the rules and

conventions established by the namespace authority.

Importance of URNs

Persistent Identification: URNs provide a persistent and stable

identifier for resources, even if their location or access method

changes over time. This makes URNs suitable for referencing

resources in scholarly publications, citations, and digital archives,

ensuring that the identifier remains valid and functional indefinitely.

Location Independence: Unlike URLs, which may change if a

resource is moved to a different location or domain, URNs are

location-independent. They do not contain information about the

resource's location, making them suitable for referencing resources

that may be accessed through different protocols or network paths.

Global Uniqueness: URNs are designed to be globally unique

identifiers, ensuring that no two resources within the same

namespace have the same URN. This prevents naming conflicts and

ambiguity, allowing for unambiguous identification and reference to

resources across distributed systems and networks.

Decentralized Naming: URNs support decentralized naming

schemes, allowing different organizations and communities to

define their own namespaces and assign URNs to resources within

those namespaces. This promotes interoperability and flexibility in

naming resources across diverse domains and contexts.

Interoperability: URNs are part of the broader framework of

Uniform Resource Identifiers (URIs), which also includes URLs and

Uniform Resource Characteristics (URCs). This interoperability

enables URNs to be used in conjunction with other URI schemes,

302

facilitating seamless integration with existing web technologies and

protocols.

Overall, URNs play a vital role in providing persistent, location-

independent, and globally unique identifiers for resources in

distributed systems. By offering a standardized mechanism for

naming resources, URNs contribute to improved resource

management, interoperability, and long-term accessibility in digital

environments.

4.8 The Name Resolution Mechanisms and Strategies

Name resolution mechanisms or strategies are techniques used to

translate human-readable names into machine-readable identifiers or

addresses within a distributed system. These mechanisms are

essential for enabling communication and resource access by

resolving names to their corresponding entities. Several name

resolution strategies exist, each with its characteristics and

suitability for different distributed system architectures:

4.8.1 Local Name Resolution

In this approach, each node within the distributed system maintains

a local mapping of names to identifiers or addresses. When a name

resolution request is received, the local node consults its mapping

table to find the corresponding identifier or address. Local name

resolution is simple and efficient but may lack scalability and

consistency in larger distributed systems.

4.8.2 Centralized Name Resolution

 A centralized name resolution system employs a central server or

service responsible for maintaining a global mapping of names to

identifiers or addresses. When a name resolution request is received,

it is forwarded to the central server, which performs the resolution

and returns the result to the requesting node. Centralized name

303

resolution simplifies management and ensures consistency but may

introduce single points of failure and scalability limitations.

4.8.3 Distributed Hash Tables (DHTs)

DHTs distribute the responsibility for name resolution across

multiple nodes in the distributed system using a decentralized

approach. Each node in the DHT is responsible for a portion of the

name space, and name resolution requests are routed through the

network based on a distributed hash function. DHTs provide

scalability, fault tolerance, and load balancing but may suffer from

increased latency and complexity in routing.

4.8.4 Hierarchical Name Resolution

Hierarchical name resolution structures names in a hierarchical

manner, with each level representing a different scope or domain.

Name resolution proceeds recursively through the hierarchy, starting

from the root and descending to the specific entity. Hierarchical

name resolution is commonly used in domain name systems (DNS)

and directory services, providing scalability, organization, and

delegation of naming authority.

4.8.5 Iterative Name Resolution

In iterative name resolution, the name resolution process involves

multiple iterative steps, with each step querying a different node or

service for resolution. The requesting node iteratively contacts

authoritative servers or services until it receives a definitive

resolution. Iterative name resolution is flexible and fault-tolerant but

may incur higher latency and complexity due to multiple round-trip

queries.

4.9 Structuring and Organizing Name Spaces

Name spaces are logical namespaces used to organize and structure

names within a distributed system. Effective organization of name

304

spaces facilitates efficient naming, management, and resolution of

entities. Several approaches are used to structure and organize name

spaces within distributed systems:

4.9.1 Flat Name Space

In a flat name space, all names exist within a single, global

namespace without hierarchical structure. Each name is unique

within the namespace, and resolution is based on exact matching.

Flat name spaces are simple and easy to implement but may suffer

from naming conflicts and scalability limitations in large distributed

systems.

4.9.2 Hierarchical Name Space

Hierarchical name spaces organize names in a hierarchical tree-like

structure, with each level representing a different scope or domain.

Names are composed of multiple components separated by

delimiters, such as dots (.) in DNS. Hierarchical name spaces

support delegation of naming authority, scalability, and efficient

resolution through hierarchical traversal.

4.9.3 Partitioned Name Space

Partitioned name spaces divide the global namespace into smaller

partitions or subdomains, each managed independently. Partitioning

enables distributed management and delegation of naming authority,

allowing different organizations or administrative domains to

control their portion of the namespace. Partitioned name spaces

support scalability, autonomy, and administrative flexibility.

4.9.4 Distributed Name Space

Distributed name spaces distribute naming authority and resolution

across multiple nodes or servers within the distributed system. Each

node is responsible for managing a portion of the namespace, and

resolution requests are routed dynamically based on the distributed

305

structure. Distributed name spaces provide scalability, fault

tolerance, and load balancing but require robust coordination and

synchronization mechanisms.

4.10 Directory Services and Distributed Name Services

Directory services and distributed name services are specialized

components within distributed systems responsible for managing

naming information and facilitating name resolution. These services

provide centralized or distributed repositories for storing and

retrieving naming data, enabling efficient and scalable name

resolution across the distributed environment.

4.10.1 Directory Services

Directory services centralize naming information and provide a

unified directory or database for storing and querying naming data.

They support features such as search, query, and access control,

allowing clients to retrieve information about entities based on

various attributes or criteria. Directory services are commonly used

in enterprise environments for managing user identities, resources,

and access permissions.

4.10.2Distributed Name Services

Distributed name services distribute naming information across

multiple nodes or servers within the distributed system. They

employ distributed data structures, such as DHTs or replicated

databases, to store and replicate naming data across the network.

Distributed name services provide scalability, fault tolerance, and

decentralized management of naming information, suitable for

large-scale distributed systems and peer-to-peer networks.

In summary, effective name resolution mechanisms, structured

name spaces, and specialized directory services are essential

components of distributed systems, enabling efficient naming,

306

resolution, and management of entities across diverse network

environments. By employing appropriate naming strategies and

services, organizations can build robust and scalable distributed

systems capable of meeting the demands of modern computing

environments.

4.11 Challenges in Naming Entities

Scalability: As distributed systems grow in size and complexity,

managing a large number of named entities becomes challenging.

Scalable naming schemes and resolution mechanisms are necessary

to handle the increasing number of entities.

Consistency: Ensuring consistency in naming across distributed

components is essential to avoid ambiguity and confusion.

Distributed naming systems must support mechanisms for name

resolution and synchronization to maintain consistency.

Fault Tolerance: Distributed naming systems should be resilient to

failures and network partitions. Redundancy, replication, and fault-

tolerant algorithms are employed to ensure the availability and

reliability of naming services.

4.12 Domain Name System (DNS)

The Domain Name System (DNS) is a fundamental part of how the

internet works, serving as a distributed directory that translates

human-readable domain names into numerical IP addresses. This

translation process allows users to access websites, send emails, and

utilize various internet services using familiar domain names rather

than having to remember complex IP addresses. One of the most

common and important uses of DNS is connecting your network to

the global Internet. To connect to the Internet, your network IP

address must be registered with whomever is administering your

parent domain.

307

Name-to-Address Resolution

Though it supports the complex, worldwide hierarchy of computers

on the Internet, the basic function of DNS is actually very simple:

providing name-to address resolution for TCP/IP-based networks.

Name-to-address resolution, also referred to as mapping, is the

process of finding the IP address of a computer in a database by

using its host name as an index. Name-to-address mapping occurs

when a program running on your local machine needs to contact a

remote computer. The program most likely will know the host name

of the remote computer but might not know how to locate it,

particularly if the remote machine is in another company, miles

from your site. To get the remote machine's address, the program

requests assistance from the DNS software running on your local

machine, which is considered a DNS client. Your machine sends a

request to a DNS name server, which maintains the distributed DNS

database. The files in the DNS database bear little resemblance to

the NIS+ host or ipnodes Table or even the local /etc/hosts or

/etc/inet/ipnodes file, though they maintain similar information: the

host names, the ipnode names, IPv4 and IPv6 addresses, and other

information about a particular group of computers. The name server

uses the host name your machine sent as part of its request to find or

“resolve” the IP address of the remote machine. It then returns this

IP address to your local machine if the host name is in its DNS

database.

If the host name is not in that name server's DNS database, this

indicates that the machine is outside of its authority, or, to use DNS

terminology, outside the local administrative domain. Thus, each

name server is spoken of as being “authoritative” for its local

administrative domain. Fortunately, the local name server maintains

a list of host names and IP addresses of root domain name servers,

to which it will forward the request from your machine. These root

308

name servers are authoritative for huge organizational domains, as

explained fully in DNS Hierarchy and the Internet. These

hierarchies resemble UNIX file systems, in that they are organized

into an upside down tree structure. Each root name server maintains

the host names and IP addresses of top level domain name servers

for a company, a university, or other large organizations. The root

name server sends your request to the top-level name servers that it

knows about. If one of these servers has the IP address for the host

you requested, it will return the information to your machine. If the

top-level servers do not know about the host you requested, they

pass the request to second level name servers for which they

maintain information. Your request is then passed on down through

the vast organizational tree. Eventually, a name server that has

information about your requested host in its database will return the

IP address back to your machine.

4.12.1 Role of Domain Name System (DNS)

Overview: DNS is a distributed hierarchical naming system used to

translate human-readable domain names (e.g., www.example.com)

into IP addresses (e.g., 192.0.2.1) and vice versa. It plays a crucial

role in the Internet's architecture by enabling users to access

websites and services using memorable domain names.

Hierarchy: DNS organizes domain names into a hierarchical

structure, with the root domain at the top, followed by top-level

domains (TLDs), second-level domains, and sub-domains. This

hierarchical structure allows for efficient name resolution and

delegation of authority.

Name Resolution: DNS operates through a distributed system of

DNS servers, including authoritative name servers, recursive

resolvers, and caching servers. When a client requests the IP address

of a domain name, the DNS resolver recursively queries

309

authoritative name servers until it obtains the corresponding IP

address.

Resource Records: DNS uses resource records (RRs) to store

information about domain names, including mapping records (e.g.,

A records for IPv4 addresses, AAAA records for IPv6 addresses),

alias records (CNAME), mail exchange records (MX), and others.

These records provide essential metadata for resolving domain

names.

4.12.2 DNS Administrative Domains

From a DNS perspective, an administrative domain is a group of

machines which are administered as a unit. Information about this

domain is maintained by at least two name servers, which are

“authoritative” for the domain. The DNS domain is a logical

grouping of machines. The domain groupings could correspond to a

physical grouping of machines, such as all machines attached to the

Ethernet in a small business. Similarly, a local DNS domain could

include all machines on a vast university network that belong to the

computer science department or to university administration. For

example, suppose the Ajax company has two sites, one in San

Francisco and one in Seattle. The Retail.Sales.Ajax.com. domain

might be in Seattle and the Wholesale.Sales.Ajax.com. domain

might be in San Francisco. One part of the Sales.Ajax.com. domain

would be in one city, the other part in the second city. Each

administrative domain must have its own unique sub-domain name.

Moreover, if you want your network to participate in the Internet,

the network must be part of a registered administrative domain. The

section Joining the Internet has full details about domain names and

domain registration.

310

There are three types of DNS name servers which are Master server,

Slave server and Stub server. Each domain must have one master

server and should have at least one slave server to provide backup

4.13 Domain Name System (DNS): Architecture, Hierarchy and

Zones

The Domain Name System (DNS) is like the phonebook of the

internet, translating human-readable domain names (like

google.com) into IP addresses (like 172.217.12.174) that computers

use to communicate with each other. It's a hierarchical decentralized

naming system, organized into a structure of domains and zones.

4.13.1 Architecture

DNS operates on a client-server model. When a user types a domain

name into their web browser, the browser sends a DNS query to a

DNS resolver (typically operated by the user's Internet Service

Provider or ISP). If the resolver already has the IP address for the

domain in its cache, it returns the result immediately. Otherwise, it

forwards the query through a series of DNS servers until it reaches a

server that can provide the IP address for the requested domain.

Once the IP address is obtained, the resolver returns it to the user's

device, allowing the device to establish a connection with the

desired website or service.

At its core, DNS operates on a client-server model, where DNS

servers work together to fulfill requests from clients (such as web

browsers or email clients) to resolve domain names to IP addresses.

This process involves several types of DNS servers:

Root DNS Servers: These are the top-level DNS servers in the DNS

hierarchy, managing the root zone. There are 13 sets of root DNS

servers distributed worldwide, each represented by a letter from A to

M. These servers provide information about the authoritative DNS

servers for top-level domains (TLDs).

311

Top-Level Domain (TLD) Name Servers: These servers are

responsible for managing the DNS records associated with specific

top-level domains (like .com, .org, .net). They maintain information

about domain names registered within their respective TLDs and

direct queries to the authoritative name servers for the next level in

the domain hierarchy.

Authoritative Name Servers: These servers store the authoritative

DNS records for specific domains or zones. They are responsible for

providing authoritative answers to DNS queries related to the

domains they oversee. Authoritative name servers can be operated

by domain registrars, internet service providers (ISPs),

organizations, or hosting providers.

Recursive DNS Resolvers: These are the DNS servers that most

internet users interact with indirectly through their ISPs or network

providers. When a client makes a DNS query, the recursive resolver

handles the request on behalf of the client, recursively querying

other DNS servers until it obtains the IP address associated with the

requested domain name.

4.13.2 Hierarchy

DNS has a hierarchical structure composed of multiple levels, with

each level separated by a dot. The highest level is the root domain,

represented by a dot (.), followed by top-level domains (TLDs) like

.com, .org, .net, and country code top-level domains (ccTLDs) like

.uk, .de, .jp, etc. Below TLDs are second-level domains (SLDs),

such as google.com or wikipedia.org. Subdomains can be further

specified, resulting in a structure like subdomain.example.com.

DNS follows a hierarchical structure that organizes domain names

into a tree-like system. Each level of the hierarchy represents a

different level of specificity in the domain name. The hierarchy

begins with the root domain, represented by a single dot (.),

312

followed by subsequent levels of domains, separated by dots. For

example:

Root Domain: .

Top-Level Domain (TLD): .com, .org, .net

Second-Level Domain (SLD): google.com, wikipedia.org

Subdomains: www.google.com, blog.wikipedia.org

The hierarchical structure allows for efficient and scalable DNS

resolution by dividing the responsibility for managing different parts

of the DNS namespace among various DNS servers.

4.13.3 Zones

Zones are portions of the DNS namespace that are managed by a

single entity, typically an organization or a domain registrar. Each

zone corresponds to a portion of the domain name space and is

administered independently. Zones are delineated by domain

boundaries and are responsible for managing the domain's DNS

records, including mapping domain names to IP addresses (A

records), mapping domain names to mail servers (MX records),

establishing domain aliases (CNAME records), and configuring

DNSSEC security settings.

There are two primary types of zones:

Forward Lookup Zones: These zones translate domain names to IP

addresses. When a user types a domain name into their browser, the

DNS resolver looks up the corresponding IP address in the forward

lookup zone.

Reverse Lookup Zones: These zones perform the opposite function,

translating IP addresses to domain names. They are commonly used

for logging, troubleshooting, and security purposes.

313

Each zone is administered by one or more DNS servers responsible

for hosting and distributing the zone's DNS records. These servers

are often categorized as authoritative servers, which store

authoritative DNS records for specific domains or zones, and

caching servers, which temporarily store DNS records to speed up

subsequent DNS queries.

Each DNS zone contains various types of DNS records, including:

A Records (Address Records): Map domain names to IPv4

addresses.

AAAA Records (IPv6 Address Records): Map domain names to

IPv6 addresses.

MX Records (Mail Exchange Records): Specify mail servers

responsible for receiving email for a domain.

CNAME Records (Canonical Name Records): Alias one domain

name to another (canonical) domain name.

NS Records (Name Server Records): Identify authoritative name

servers for the zone.

By organizing DNS information into zones, DNS administrators can

efficiently manage and update DNS records for specific domains

without affecting the resolution of other domains.

Example:

Let's consider the process of resolving the domain name

"www.google.com" to its corresponding IP address using the DNS

hierarchy:

The user's web browser sends a DNS query to a recursive DNS

resolver, asking for the IP address of "www.google.com."

314

The recursive resolver begins the resolution process by querying the

root DNS servers to find the authoritative name servers for the

".com" TLD.

The root DNS servers respond with the IP addresses of the TLD

name servers responsible for the ".com" TLD.

The recursive resolver then queries one of the ".com" TLD name

servers, asking for the authoritative name servers for the

"google.com" domain.

The ".com" TLD name server responds with the IP addresses of the

authoritative name servers for the "google.com" domain.

The recursive resolver selects one of the authoritative name servers

for "google.com" and sends a query for the IP address of

"www.google.com."

The authoritative name server for "google.com" responds with the

IP address(es) associated with "www.google.com."

The recursive resolver returns the IP address(es) to the user's web

browser, allowing the browser to establish a connection with the

Google website.

In this example, multiple DNS servers work together hierarchically

to resolve the domain name "www.google.com," demonstrating the

distributed nature of the DNS architecture.

In summary, the Domain Name System (DNS) is a hierarchical and

decentralized naming system that translates domain names into IP

addresses, enabling users to access internet resources using human-

readable names. Through its architecture, hierarchy, and zone-based

management, DNS facilitates efficient and scalable resolution of

domain names across the internet.DNS is a crucial component of the

internet's infrastructure, providing a decentralized system for

315

translating domain names into IP addresses. Its hierarchical

architecture and zone-based management enable efficient and

scalable resolution of domain names across the internet.

4.14 Resource Records (RRs) in Domain Name System (DNS)

Resource Records (RRs) are the building blocks of the Domain

Name System (DNS), containing various types of information

associated with domain names. Each RR consists of several fields,

including the domain name it pertains to, a class identifier (usually

IN for internet), a time-to-live (TTL) value indicating how long the

record can be cached, and type-specific data.

Here are some common types of Resource Records and their

purposes:

A Records (Address Records): These records map domain names to

IPv4 addresses. For example, an A record for "example.com" might

contain the IPv4 address "192.0.2.1".

AAAA Records (IPv6 Address Records): Similar to A records but

used for mapping domain names to IPv6 addresses.

MX Records (Mail Exchange Records): MX records specify the

mail servers responsible for receiving email for a domain. Each MX

record has a priority value indicating the order in which mail servers

should be used. For example, an MX record for "example.com"

might specify "mail.example.com" as the mail server with priority

10.

CNAME Records (Canonical Name Records): CNAME records

alias one domain name to another (canonical) domain name. They

are often used to create aliases for existing domains or to implement

load balancing across multiple servers. For example, a CNAME

record for "www.example.com" might point to "example.com".

316

NS Records (Name Server Records): NS records identify the

authoritative name servers for a domain. These records specify

which DNS servers are authoritative for answering queries related to

a particular domain. For example, NS records for "example.com"

might specify "ns1.example.com" and "ns2.example.com" as

authoritative name servers.

PTR Records (Pointer Records): PTR records are used in reverse

DNS lookups to map IP addresses to domain names. They are the

reverse equivalent of A and AAAA records. For example, a PTR

record might map the IP address "192.0.2.1" to the domain name

"example.com".

TXT Records (Text Records): TXT records contain arbitrary text

information associated with a domain. They are often used for

adding human-readable notes, SPF (Sender Policy Framework)

records for email authentication, or other types of metadata. For

example, a TXT record might contain a message like "This domain

is managed by Example Corp".

SOA Records (Start of Authority Records): SOA records are

fundamental to each DNS zone and contain essential information

about the zone, such as the primary name server for the zone, the

email address of the zone administrator, the serial number of the

zone, and various timing parameters (e.g., refresh interval, retry

interval, expiry time, minimum TTL).

These are just a few examples of the many types of Resource

Records used in DNS. Each RR serves a specific purpose in

facilitating the resolution of domain names to IP addresses and

providing essential information about domain configuration and

services. By combining different types of Resource Records, DNS

administrators can configure the behavior of domain names and

manage internet services effectively.

317

4.15 Name Resolution Process in the Domain Name System (DNS)

The name resolution process in the Domain Name System (DNS) is

the mechanism by which domain names are translated into IP

addresses. This process involves multiple steps and components

working together to provide the correct IP address for a given

domain name. Here's a brief overview of the name resolution

process:

DNS Query Initiation: The name resolution process begins when a

user or application requests the IP address associated with a domain

name. For example, when a user enters a domain name into a web

browser, the browser initiates a DNS query to resolve the domain

name.

Local DNS Cache Lookup: The DNS resolver on the user's device

first checks its local cache to see if it has recently resolved the

requested domain name. If the IP address is found in the cache and

has not expired (based on the Time-to-Live or TTL value), the

resolver can immediately return the cached IP address to the user.

Recursive DNS Query: If the IP address is not found in the local

cache or has expired, the resolver initiates a recursive DNS query.

The resolver sends the query to a recursive DNS resolver, typically

operated by the user's Internet Service Provider (ISP) or network

provider.

Root DNS Servers: If the recursive resolver does not have the

requested domain name cached, it starts the resolution process by

querying the root DNS servers. The root servers provide information

about the authoritative name servers for the top-level domains

(TLDs) based on the domain name's TLD (e.g., .com, .org, .net).

318

TLD Name Servers: The recursive resolver then queries one of the

TLD name servers to obtain information about the authoritative

name servers for the specific domain name's TLD. For example, if

the requested domain name is "example.com," the resolver queries

the .com TLD name servers.

Authoritative Name Servers: With the information obtained from

the TLD name servers, the recursive resolver sends a query to one of

the authoritative name servers for the requested domain name.

These authoritative name servers are responsible for storing DNS

records specific to the domain, such as A (Address) records, MX

(Mail Exchange) records, etc.

Response from Authoritative Name Server: The authoritative name

server responds to the recursive resolver's query with the IP address

associated with the requested domain name, along with other

relevant DNS records (such as MX records for email servers).

Response to Client: Finally, the recursive resolver returns the IP

address obtained from the authoritative name server to the client that

initiated the DNS query. The client can then use the IP address to

establish a connection with the desired website, server, or service.

Throughout the name resolution process, DNS queries and

responses are exchanged between different DNS servers, including

recursive resolvers, root servers, TLD name servers, and

authoritative name servers. By following this hierarchical resolution

process, DNS efficiently translates domain names into IP addresses,

allowing users to access internet resources using human-readable

domain names.

4.16 Caching and Performance Optimization of DNS

Caching is a crucial aspect of DNS that significantly improves

performance by reducing the time required to resolve domain names

319

to IP addresses. When a DNS resolver receives a response to a

query, it caches the response for a specified period (TTL)

determined by the authoritative name server. Subsequent queries for

the same domain name can be answered directly from the resolver's

cache, eliminating the need to perform the entire resolution process

again.

Reduced Latency: Caching helps reduce latency by providing faster

responses to DNS queries. Instead of querying authoritative name

servers every time, resolvers can retrieve cached responses locally,

resulting in quicker resolution times.

Improved Scalability: Caching reduces the load on authoritative

name servers by distributing query traffic across various levels of

the DNS hierarchy. This improves the overall scalability of the DNS

infrastructure, ensuring efficient resolution even during periods of

high query volume.

Enhanced User Experience: Faster DNS resolution times lead to a

better user experience, as websites and services can be accessed

more quickly. This is particularly important for web applications

and services that rely on low latency to deliver content and

functionality to users.

To optimize performance further, DNS servers may employ

techniques such as prefetching, which involves proactively caching

DNS records before they expire based on usage patterns or

anticipated queries.

4.17 Security and Challenges of DNS

While DNS plays a critical role in enabling communication on the

internet, it also presents several security challenges that need to be

addressed:

320

DNS Spoofing and Cache Poisoning: Attackers may attempt to

manipulate DNS responses to redirect users to malicious websites or

intercept sensitive information. DNS spoofing involves forging

DNS responses or injecting malicious records into DNS caches to

redirect users to fraudulent websites. Cache poisoning attacks

exploit vulnerabilities in DNS resolvers to corrupt their cache with

false information.

DNS Amplification Attacks: In DNS amplification attacks, attackers

exploit open DNS resolvers to amplify the volume of traffic directed

towards a victim's server. By sending DNS queries with spoofed

source IP addresses to open resolvers, attackers cause the resolvers

to send large amounts of traffic to the victim's server, overwhelming

its network capacity.

DNSSEC (DNS Security Extensions) Implementation: DNSSEC is a

suite of extensions to DNS designed to provide authentication and

data integrity for DNS responses. By digitally signing DNS records,

DNSSEC helps prevent DNS spoofing and cache poisoning attacks.

However, DNSSEC implementation can be complex, and not all

DNS servers support it.

DDoS (Distributed Denial of Service) Attacks: DNS infrastructure

is susceptible to DDoS attacks, which aim to disrupt DNS resolution

by flooding DNS servers with an overwhelming volume of traffic.

DDoS attacks can cause service outages, impacting the availability

of websites and online services.

To mitigate these security challenges, organizations employ various

security measures such as deploying firewalls and intrusion

detection/prevention systems, implementing DNS filtering and

monitoring solutions, regularly updating DNS software to patch

known vulnerabilities, and adopting DNSSEC to enhance DNS

security.

321

In summary, while DNS caching and performance optimization

enhance the efficiency of DNS resolution, security remains a critical

concern. By addressing security challenges and implementing

appropriate safeguards, organizations can ensure the integrity,

availability, and reliability of their DNS infrastructure.

4.18 DNSSEC in Domain Name System (DNS)

DNSSEC, or Domain Name System Security Extensions, is a set of

protocols and cryptographic techniques designed to enhance the

security and integrity of the Domain Name System (DNS).

DNSSEC addresses vulnerabilities in the DNS that can be exploited

by attackers to perform various types of attacks, such as DNS cache

poisoning and DNS spoofing.

How DNSSEC Works:

Digital Signatures: DNSSEC uses digital signatures to verify the

authenticity and integrity of DNS data. Each DNS record is signed

with a digital signature generated using public-key cryptography.

Chain of Trust: DNSSEC establishes a chain of trust, starting from

the root DNS zone and extending down to individual domain names.

The root zone is signed with a root zone signing key (ZSK), and

each subsequent zone signs its zone data using its own zone signing

key (ZSK). DNS resolvers use these cryptographic signatures to

validate DNS responses received from authoritative name servers.

Public-Key Cryptography: DNSSEC relies on public-key

cryptography to generate key pairs consisting of a public key and a

private key. The private key is used to sign DNS records, while the

corresponding public key is published in DNSKEY records as part

of the DNS zone's DNSSEC configuration.

Chain of Delegation: DNSSEC ensures the authenticity of DNS data

throughout the chain of delegation, from the root zone to the

322

authoritative name servers for individual domain names. By

verifying the digital signatures associated with DNS records, DNS

resolvers can validate that the DNS data has not been tampered with

or forged.

Benefits of DNSSEC:

Data Integrity: DNSSEC ensures the integrity of DNS data by

detecting and preventing unauthorized modification or tampering of

DNS records. This helps prevent DNS cache poisoning attacks and

DNS spoofing attacks.

Authentication: DNSSEC provides authentication of DNS

responses, allowing DNS resolvers to verify that the data they

receive originates from legitimate authoritative name servers and

has not been altered in transit.

Trustworthiness: DNSSEC enhances the trustworthiness of DNS

data by enabling DNS resolvers to verify the authenticity of DNS

responses and validate the chain of trust from the root zone down to

individual domain names.

Security: By mitigating DNS-related vulnerabilities, DNSSEC helps

protect against various types of DNS-based attacks, including man-

in-the-middle attacks, DNS redirection attacks, and DNS

amplification attacks.

In summary, DNSSEC is a critical security measure that strengthens

the security and integrity of the Domain Name System. By using

digital signatures and cryptographic techniques, DNSSEC helps

prevent DNS-related attacks and enhances the trustworthiness of

DNS data, contributing to a more secure and reliable internet

infrastructure.

323

4.19 DNS Spoofing, Cache Poisoning and DNS Anycast in Domain

Name System (DNS)

4.19.1 DNS Spoofing

DNS spoofing, also known as DNS cache poisoning, is a type of

attack where an attacker manipulates DNS responses to redirect

users to malicious websites or servers. The goal of DNS spoofing is

to compromise the integrity of the DNS resolution process, leading

users to unwittingly visit fraudulent websites or disclose sensitive

information.

How it works: In a DNS spoofing attack, the attacker sends falsified

DNS responses to DNS resolvers or caches, containing forged or

malicious IP addresses mapped to legitimate domain names. When a

user or application queries the DNS resolver for a particular domain

name, the resolver may cache the falsified response. Subsequent

queries for the same domain name are then redirected to the

malicious IP address specified by the attacker.

Implications: DNS spoofing can lead to various security risks,

including phishing attacks, malware distribution, and data theft. By

redirecting users to counterfeit websites that mimic legitimate ones,

attackers can trick users into entering sensitive information such as

login credentials, credit card numbers, or personal details.

4.19.2 DNS Cache Poisoning

DNS cache poisoning is a specific type of DNS spoofing attack that

targets DNS caches maintained by DNS resolvers. In a cache

poisoning attack, the attacker exploits vulnerabilities in the DNS

resolver's caching mechanism to inject falsified DNS records into its

cache, thereby corrupting the integrity of the DNS data stored in the

cache.

324

How it works: The attacker sends a flood of DNS queries containing

requests for non-existent domain names or legitimate domain names

with spoofed source IP addresses. By overwhelming the DNS

resolver with a large volume of queries, the attacker increases the

likelihood of the resolver accepting and caching falsified DNS

responses containing malicious IP addresses.

Implications: Once the DNS resolver's cache is poisoned with

falsified DNS records, all subsequent DNS queries for the affected

domain names are redirected to the malicious IP addresses specified

by the attacker. This can result in widespread DNS resolution errors,

leading users to unintentionally access malicious websites or

services.

4.19.3 DNS Anycast

DNS Anycast is a networking technique used to improve the

performance, availability, and resilience of DNS infrastructure by

routing DNS queries to the nearest or best-performing DNS server

within a group of geographically distributed servers. With Anycast,

multiple DNS servers advertise the same IP address for a given

domain name, and network routing protocols ensure that DNS

queries are directed to the nearest or most optimal server based on

network conditions.

How it works: DNS Anycast involves deploying multiple DNS

servers in different locations around the world and assigning them

the same IP address for a specific domain name. When a DNS

resolver sends a query to the Anycast IP address, the query is routed

to the nearest DNS server in terms of network latency or routing

distance.

Benefits: DNS Anycast improves DNS resolution performance by

reducing latency and network congestion, as queries are directed to

nearby DNS servers. It also enhances the availability and resilience

325

of DNS infrastructure by distributing query traffic across multiple

redundant servers, minimizing the impact of server failures or

network outages.

In summary, DNS spoofing and cache poisoning are malicious

techniques used to manipulate DNS resolution and redirect users to

malicious websites or servers. DNS Anycast, on the other hand, is a

networking technique that enhances the performance, availability,

and resilience of DNS infrastructure by routing queries to the

nearest or best-performing DNS server within a group of

geographically distributed servers.

4.20 Summing Up

 Naming entities in distributed systems involves assigning

unique identifiers to components, services, and resources to

facilitate communication and interaction.

 The Domain Name System (DNS) serves as the backbone of

the Internet's naming infrastructure, providing a hierarchical

naming structure and facilitating name resolution. DNS

operates through a distributed system of servers, including

authoritative name servers and recursive resolvers, to

translate domain names into IP addresses and vice versa.

 DNS operates through a distributed system of servers,

including authoritative name servers, recursive resolvers,

and caching servers.

 Name-to-address resolution, also referred to as mapping, is

the process of finding the IP address of a computer in a

database by using its host name as an index. Name-to-

address mapping occurs when a program running on your

local machine needs to contact a remote computer.

326

 DNS has a hierarchical structure composed of multiple

levels, with each level separated by a dot. The highest level

is the root domain, represented by a dot (.), followed by top-

level domains (TLDs) like .com, .org, .net, and country code

top-level domains (ccTLDs) like .uk, .de, .jp, etc. Below

TLDs are second-level domains (SLDs), such as google.com

or wikipedia.org.

 DNS operates on a client-server model. When a user types a

domain name into their web browser, the browser sends a

DNS query to a DNS resolver (typically operated by the

user's Internet Service Provider or ISP).

 Resource Records (RRs) are the building blocks of the

Domain Name System (DNS), containing various types of

information associated with domain names.

 Uniform Resource Names (URNs) are a type of Uniform

Resource Identifier (URI) used to uniquely identify

resources in a persistent and location-independent manner.

 Caching is a crucial aspect of DNS that significantly

improves performance by reducing the time required to

resolve domain names to IP addresses. When a DNS resolver

receives a response to a query, it caches the response for a

specified period (TTL) determined by the authoritative name

server.

 DNSSEC, or Domain Name System Security Extensions, is

a set of protocols and cryptographic techniques designed to

enhance the security and integrity of the Domain Name

System (DNS).

 DNS spoofing, also known as DNS cache poisoning, is a

type of attack where an attacker manipulates DNS responses

to redirect users to malicious websites or servers. The goal of

DNS spoofing is to compromise the integrity of the DNS

327

resolution process, leading users to unwittingly visit

fraudulent websites or disclose sensitive information.

 DNS cache poisoning is a specific type of DNS spoofing

attack that targets DNS caches maintained by DNS resolvers.

In a cache poisoning attack, the attacker exploits

vulnerabilities in the DNS resolver's caching mechanism to

inject falsified DNS records into its cache, thereby

corrupting the integrity of the DNS data stored in the cache.

 DNS Anycast is a networking technique used to improve the

performance, availability, and resilience of DNS

infrastructure by routing DNS queries to the nearest or best-

performing DNS server within a group of geographically

distributed servers.

4.21 References and Suggested Readings

Tanenbaum, A. S., & Van Steen, M. (2006). Distributed systems:

principles and paradigms. Prentice Hall.

Mockapetris, P. (1987). RFC 1034: Domain names—concepts and

facilities.

RFC 4033, RFC 4034, RFC 4035: DNS Security Introduction and

Requirements, Protocol Modifications, and Threat Analysis of the

Domain Name System.

Albitz, P., & Liu, C. (2017). DNS and BIND (5th ed.). O'Reilly

Media.

4.22 Model Questions

1. Explain the Importance of Naming entities and DNS.

2. What do you means by the terms Names, Identifiers, and

Addresses and their distinctions?

3. How does the chapter "Naming Entities" delve into the

conceptual framework of assigning names to various entities

within a system?

328

4. What are the key principles discussed in the chapter

regarding the naming of entities, and how do they contribute

to system organization and clarity?

5. Could you outline the key components of the Domain Name

System (DNS) as discussed in the chapter, and how they

contribute to the efficient resolution of domain names to IP

addresses?

6. In what ways does the chapter explore the historical

development and evolution of naming conventions,

particularly in relation to the emergence of the internet and

digital communication?

7. How does the chapter address the challenges and

complexities inherent in managing naming systems, both at

the level of individual entities and within the context of

global networks?

8. Could you provide examples from the chapter illustrating the

practical implications of effective naming strategies for

enhancing user experience, system reliability, and security?

9. What insights does the chapter offer into the design

principles underlying the DNS, including considerations

related to scalability, redundancy, and fault tolerance?

10. How does the chapter examine the interplay between human-

readable domain names and their corresponding machine-

readable IP addresses, and the mechanisms by which DNS

resolves this mapping?

11. What discussions or case studies are presented in the chapter

regarding the governance and regulation of naming systems,

particularly within the context of internet governance bodies

and standards organizations?

12. In what ways does the chapter contextualize the significance

of naming entities and the DNS within broader discussions

of digital infrastructure, cybersecurity, and the socio-

technical implications of networked communication?

4.23 Answer to check your progress/Possible Answers to SAQ

Choose the correct option from the following questions

1. Which of the following best describes the function of the Domain

Name System (DNS)?

329

A) A protocol used for transferring files between networked

computers.

B) An encryption standard for securing internet communications.

C) A hierarchical decentralized naming system for computers,

services, or any resource connected to the internet.

D) A method for compressing large data files for efficient storage.

2. What is the primary purpose of the Domain Name System

(DNS)?

A) Encrypting internet traffic for enhanced security. B) Transferring

files between networked computers. C) Resolving domain names to

IP addresses. D) Managing email communication protocols.

3. Which of the following best describes a domain name?

A) A numerical label assigned to each device connected to a

computer network.

B) An alphanumeric string that represents the location of a website

on the internet.

C) A protocol used for transferring files over the internet.

D) An encryption standard for securing online transactions.

4. What is the hierarchical structure used in domain names called?

A) Binary tree B) Directory structure C) Domain tree

 D) Domain hierarchy

5. Which organization oversees the management of the global

Domain Name System?

A) World Wide Web Consortium (W3C)

B) Internet Corporation for Assigned Names and Numbers

(ICANN)

C) Internet Engineering Task Force (IETF)

D) International Organization for Standardization (ISO)

6. What is the purpose of a top-level domain (TLD)?

A) Identifying the geographic location of a website.

B) Designating the type or category of an organization.

C) Encoding sensitive information for secure transmission.

330

D) Optimizing search engine ranking for a website.

7. Which of the following is an example of a generic top-level

domain (gTLD)?

A) .com B) .us C) .gov D) .uk

8. What is the purpose of a DNS resolver?

A) Encrypting DNS queries for privacy protection.

B) Translating domain names into IP addresses.

C) Managing DNS servers for domain registration.

D) Analyzing network traffic for security threats.

9. Which protocol is commonly used for communication between

DNS clients and servers?

A) HTTP B) SMTP C) UDP D) TCP

10. What is the significance of the root DNS servers in the DNS

hierarchy?

A) They store all domain name records.

B) They manage top-level domain registries.

C) They provide the initial point of contact for DNS queries.

D) They regulate access to restricted websites.

11. What is the purpose of DNS caching?

A) Speeding up DNS resolution by storing previously resolved

mappings.

B) Encrypting DNS queries to prevent eavesdropping.

C) Reducing the load on authoritative DNS servers.

D) Blocking access to malicious websites.

Answer Keys

1(C), 2(C), 3(B), 4(C), 5(B), 6(B),7(A),8(B), 9(C), 10(C),11(A)

×××

331

UNIT: 5

DISTRIBUTED TRANSACTIONS

Unit Structure:

5.1 Introduction

5.2 Objectives

5.3 Introduction to Distributed Transactions

 5.3.1 Need for Distributed Transactions

 5.3.2 Characteristics of Distributed Transactions

5.4 ACID Properties in Distributed Environment

 5.4.1 Challenges in Achieving ACID Properties in

Distributed Environment

 5.4.2Techniques for achieving ACID Properties

5.5 Atomic Commit Protocols

5.5.1 Two-Phase Commit (2PC) Protocol

5.5.2 Three-Phase Commit (3PC) Protocol

5.5.3 Trade-offs of Atomic Commit Protocols

5.6 Isolation Levels

5.7 Concurrency Control in Distributed Transactions

5.7.1 Locking Mechanism

5.7.2 Concurrency Control Based on Timestamp Ordering

5.7.3 Optimistic Concurrency Control

5.8 Handling Durability in Distributed System

5.9 Summing Up

5.10 Answers to Check Your Progress

5.11 Possible Questions

5.12 References and Suggested Readings

332

5.1 INTRODUCTION

We have already learnt that a transaction in a system is a single

logical unit of work. It consists of one or more operations that must

be executed in such a way that either all of themare successful to

achieve their completionor none of them is allowed to reach its

completion and in that situation, the transaction is rollback to its

earlier safe state. Transaction management is very important to

maintain data integrity and consistency in a system.Transaction

recovery and concurrency control are the two major parts of

transaction management. In this unit, we are going to discuss about

different concepts related to the transactions that are executed in

distributed environments.

5.2 OBJECTIVES

After going through this chapter, we will be able to learn:

 About the requirements and characteristics of distributed

transactions.

 About ACID properties in distributed environment.

 Different approaches to achieve ACID properties in

distributed environment.

 About Two-phase commit (2PC) protocol.

 About Three-phase commit (3PC) protocol.

 About different Isolation levels.

 About concurrency control in distributed transactions.

 About handling durability in distributed systems.

5.3 INTRODUCTION TO DISTRIBUTED

TRANSACTIONS

In distributed environments, a transaction is associated with multiple

servers located in different physical sites. As a result,a distributed

transaction becomes more complex than a transaction that is local to

a particular server. A distributed transaction consists of multiple

processes where each process is responsible to perform an operation

of the transaction on a particular server in the distributed system. A

distributed transaction can access and update multiple objects that

may be managed by different servers. A distributed system must be

able to identify the processes of a particular transaction.Atomicity of

transactions in distributed environment must be maintained by

333

ensuring that either all the processes of a transaction successfully

complete their jobs in the associated servers or all are aborted by the

associated servers.One of the servers in a distributed system is

responsible for coordinating all other servers to maintain this

atomicity property of distributed transactions.If a coordinator in a

server opens or starts a distributed transaction then it serves as the

coordinator of that transaction. Concurrency control and transaction

recovery in distributed environment requires more effort than in

case of a single server system. Maintaining data integrity and

consistency and handling different system failures are the major

objectives of distributed transactions.

Distributed transactions are prepared either asflat transactions or as

nested transactions.Flat transactions are simple distributed

transaction wheremultiple objects are requested that are managed at

multiple servers. A flat distributed transaction completes only one

request foran object at a time. It means after completing the current

request, the next request will be completed in case of flat

transactions. As a result, a flat transaction accesses objects managed

at multiple serverone after another.

On the other hand, in case of nested distributed transactions, a top-

level transaction is available which can open nested subtransactions.

Again each subtransaction can open the next level of

subtransactions. This process can be continued as per requirement.

Subtransactions available at asimilar level can execute

simultaneously.

5.3.1 Need for Distributed Transactions

Need for distributed transactions are discussed in the following

points.

 Distributed transactions are required to maintain data

consistency and integrity in all servers available in a

distributed system.

 Distributed transactions are crucial when a database is

distributed among several servers in a distributed

system.

 Distributed transactions may improve the fault tolerance

and scalability in a distributed system.

 Distributed transactions offer a way for coordination

among different servers available in the system. It will

334

improve the overall system performance. So, distributed

transactions are very crucial to implement complex

processes in a large and complex distributed system

where large amount of coordination among different

servers are required.

 Error handling mechanism is provided by Distributed

transactions. In case of any system failure, distributed

transactions may play an important role to recover the

system so that the system can again attain a safe state.

5.3.2 Characteristics of Distributed Transactions

Characteristics of distributed transactions are presented in the

following points.

 Operations of a distributed transaction may be executed

in multiple servers and a distributed transaction may

access multiple objects that are managed by different

servers.

 In case of a distributed transaction, either all operations

of the transactioncomplete successfully in different

servers or all operations are aborted by corresponding

servers.

 Execution of each distributed transaction is isolated

from other transactions so that concurrent distributed

transactions in a system don’t interfere with each other’s

operations.

 Successful completion of a distributed transaction

moves the system to a new safe state and it assure that

the changes occurred in the system due to the transaction

will not be lost in any type of system failure.

5.4 ACID PROPERTIES IN DISTRIBUTED

ENVIRONMENT

ACID (Atomic Consistent Isolated Durable) properties are followed

by distributed transactions to maintain consistency and reliability in

a distributed system. It is a set of four properties discussed as

follows.

 Atomicity:According to this property, either all operations

of each distributed transaction complete successfully or the

transaction is aborted and no change will be permitted in the

335

system. The goal of this property is to prevent partial

completion of distributed transactions so that consistency of

the system can be maintained.

 Consistency:According to this property, the system will

move to a consistent state from a consistent state after the

competition of each distributed transaction. The goal of this

property is to maintain the data integrity of the system after

each successful completion of distributed transactions.

 Isolation:According to this property, the execution of each

distributed transaction is isolated from other concurrent

distributed transactions so that concurrent transactions are

executed without interfering each other’s operations. The

goal of this property is to avoid race conditions among

distributed transactions.

 Durability:According to this property, the changes

happened to a distributed system after the successful

completion of a distributed transaction is permanent. These

changes will not be lost even in case of any type of system

failures. The goal of this property is to save the changes that

are happened to the system after each successful completion

of distributed transactions so that these will not be lost in any

situation.

5.4.1 Challenges in Achieving ACID Properties in Distributed

Environment

We have already learnt about the importance of implementing ACID

properties in case of distributed transactions. But several challenges

are also available in distributed environment in achieving ACID

properties.The major challenges are presented in the following

points.

 We have already learnt that a distributed system is a group

of multiple independent servers that are located in different

physical sites but they are connected by a centrally

controlled computer network. Sometimes it may be possible

that one or more servers are disconnected from the

corresponding distributed systemdue to network failures. In

that situation, achieving atomicity and consistency in related

distributed transactions will be difficult.

336

 Achieving durability in distributed transactions require

efficient mechanismsto handle server failures, server

crashes, system errors and data corruption. Complexity in

system design and cost of the system will be increased to

include such mechanisms.

 Achieving isolation in distributed transactions require

efficient concurrency control mechanism. Communication

delay among servers in a distributed system may increase the

difficulty to achievetransaction isolation in distributed

environment.

 Using locks to achieve isolation in distributed transactions

may create distributed deadlocks in the system.

 Difficulty in achieving ACID properties in distributed

transactions may be increased when the corresponding

distributed system try to increase its size by including more

servers and data.

 According to the CAP theorem, distributed systems can

provide two out of three desired features. These features are

consistency, availability, and partition Tolerance.

5.4.2 Techniques for achieving ACID Properties

We have already discussed the challenges in achieving ACID

properties in case of distributed transactions.Different techniques to

achieve ACID properties in distributed transactions are introduced

in the following points.

 Atomic commit protocols are used to maintain atomicity and

consistency in case of distributed transactions. In general,

STOP TO CONSIDER

Availability is a desired feature of distributed system which means

that each active server will receive response forall its requests for

resources even if one or more servers are disconnected or failed due

to some reason.

Partition toleranceis another desired feature of distributed systems

which means that a distributedsystem can be able to perform its

functions even if one or more servers are temporarily disconnected

or failed due to some reason like network failures or any type of

system errors.

337

two types of Atomic commit protocols are available and

these are Two-Phase Commit (2PC) protocol and Three-

Phase Commit (3PC) Protocol. Detailed discussions of these

protocols are provided in the later part of this unit.

 Concurrency control mechanisms are provided to achieve

transaction isolation in case of concurrent distributed

transactions. Locking mechanism, Concurrency control

based on Timestamp ordering and Optimistic concurrency

control are the general concurrency control approaches.

Detailed discussion about concurrency control is provided in

the later part of this unit.

 Recovery mechanisms and permanent storage can be utilized

to maintain durability in distributed transactions.

Check Your Progress

1. Fill in the blanks

(a) ______ transactions provide a top-level transaction to open

sub-transactions.

(b) The four ACID properties are _____, ______, ______, and

______.

(c) Atomicity in distributed transactions can be achieved by

applying _____ protocols.

(d) _____ can be achieved in distributed system by applying

Recovery mechanisms.

(e) _______ transaction completes only one request for an

object at a time.

5.5 ATOMIC COMMIT PROTOCOLS

Atomicity of ACID properties can be achieved by atomic commit in

case of distributed transactions. Atomic commit means either all

operations within each of the distributed transactions will be

successfully committed in different servers or the entire transaction

will be aborted.Atomic commit can be implemented in distributed

systems by using a transaction coordinator and an atomic commit

protocol. A transaction coordinator is a specific server available in a

distributed system. Its job is to coordinate execution of the

distributed transactions and to achieve atomicity property by

following an atomic commit protocol. The simplest atomic commit

338

protocol is the One-Phase commit protocol where the transaction

coordinatorsends the commit or abort request repeatedly to all of the

servers that are involved in a distributed transaction. If all servers

acknowledged that they can commit their parts related to that

transaction then the entire transaction will be committed on all the

corresponding servers. On the other hand if one or more servers are

not able to commit their parts then the entire transaction will be

aborted.The advantage of this protocol is its simplicity. But

practically it cannot be used in case of distributed transactions

because when failure occurs then it may be possible that one or

more servers may not be able to communicate with the coordinator

to acknowledge the commit request.In some situations, one or more

server may not able to perform their parts related to a distributed

transactionbut according to this protocol, it is not possible to send

this information to the coordinator.So, In general, atomic commit

can be implemented in distributed systems by using one of the two

atomic commit protocols that are Two-Phase Commit (2PC)

protocol and Three-Phase Commit (3PC) protocol.

5.5.1 Two-Phase Commit (2PC) Protocol

The Two-phase commit protocol consists of two phases. The first

phase is referred as the Voting phase and in the second phase,

commit or abort transaction is performed depending upon the result

of the Voting phase. Steps of the each phase are presented as

follows.

Phase I:

 Step 1: The transaction coordinator sends a request to all

participating servers of a distributed transaction to vote for

commit or vote for aborttheir parts of the transaction.

 Step 2: When a participating server of the transaction

receive the request from the transaction coordinator then

either it inform the coordinator that it is ready to commit its

part of the transaction or it replies to the coordinator with the

vote for abort the transaction and locally abort the

transaction right away.

Phase II:

 Step 1: The transaction coordinator gathers all the messages

from the participating servers of the transaction. If the

coordinator finds that all participants are ready to commit

339

their parts of the transactions then it decides to commit the

transaction and sends a global commit request to all the

participants. On the other hand if the coordinator finds that

one or more participants are voted for abort the transaction

then it decides to abort the entire transaction and sends

global abort request to all participants.

 Step 2:In this step, all participating servers ready to commit

the transaction wait for the global commit or global abort

request from the coordinator. If they receive global commit

request then they locally commit the transaction and confirm

the coordinator about their commit operation. On the other

hand, if they receive global abort requests then they locally

abort the transaction.

Two-phase atomic commit protocol is a simple and flexible

protocol to implement atomicity property in case of distributed

systems. Communication overhead is increased with the use of

this protocol due to the requirement of communications between

the coordinator and all the participants. A possible situation

during the execution of Two-phase commit protocol is that one

or more participating servers of a transaction may be crashed

during the communications with the coordinator. Such type of

situation can fail the Two-phase atomic protocol. As a solution

to this problem, each of the participants saves all information

related to the Two-phase protocol in permanent storage so that it

can be used to replace crashed participants. It may also be

possible that the communication between a participant and the

coordinator may be lost due to network fail or server crash. As a

result, some processes may be blocked indefinitely. This

situation can be prevented by using timeouts.

The major disadvantage of this protocol is the possible

occurrence of the blocking problem. Let us consider a possible

scenario to understand the blocking problem where a

participating server of a transaction is ready to commit and

waiting for the global commit or global abort request from the

coordinator. At this point, unfortunately the coordinator crashes

and the participant cannot be able to proceed as it is

continuously waiting for the decision (commit or abort) from the

coordinator. Now the participant is in an uncertain state and it

blocks the system. This uncertain state of the participant will be

340

continued till the replacement of the crashed coordinator.This

possible problem is referred as the blocking problem. A possible

solution to this problem is to provide a mechanism so that the

participants can also receive the decision (commit or abort)

cooperatively. But in a possible situation, if all the participants

are in uncertain state then this strategy also fails to solve the

blocking problem.

5.5.2 Three-Phase Commit (3PC) Protocol

Three-phase commit protocol is actually the upgraded version of

Two-phase commit protocol. The blocking problem of Two-phase

commit protocol may be solved by using Three-phase commit

protocol and reliability of the commit operation can be improved.

Three-phase commit protocol consists of three phases that are

presented as follows.

Phase I: Phase I of Three-phase commit protocol is similar

to the phase I of Two-phase commit protocol. So, in

this phase, the transaction coordinator sends a

request to all participating servers of a distributed

transaction to vote for commit or vote for abort their

parts of the transaction.When a participating server

of the transaction receive that request from the

transaction coordinator then either it inform the

coordinator that it is ready to commit its part of the

transaction or it replies to the coordinator with the

vote for abort the transaction and locally abort the

transaction right away.

Phase II: The coordinator gather all votes received from all

the participants. If it finds that all participants vote

for commit operation then it sends a pre-commit

request to all the participants. Otherwise, it aborts

the transaction and send transaction abort request to

all the participants that voted for commit operation.

When a participant receivesthe pre-commit request

from the coordinator then it acknowledges it. On the

other hand, when a participant receivesthe

transaction abort request from the coordinator then

it locally abort its part of the transaction.

341

Phase III: In this phase, the coordinator gathers all the

acknowledgments for the pre-commit request

received from the participants. When the

coordinator receives all the acknowledgments then

it sends a global commit request to all the

participants. All participants wait for the global

commit request from the coordinator. When a

participant receives the global commit request then

it commits its part of the transaction.

In the Three-phase commit protocol, an additional phase (Pre-

commit phase) is included to decrease the possibility of occurrence

of the blocking problem. In this case, this protocol is better than

the Two-phase commit protocol. But on the other hand, due to the

additional phase, the implementation complexity and

communication overhead will be increased in the system when the

Three-phase protocol is used to implement atomic commit

operation.

5.5.3 Trade-offs of Atomic Commit Protocols

We have learnt that atomic commit protocols are very important in

case of distributed transactions to maintain consistency and

reliability in the distributed systems. But these protocols

alsoincludedifferent trade-offs. In general, following trade-offs are

involved in atomic commit protocols.

 Atomic commit protocols ensure system consistency and

reliability but communication overhead is increased in the

system due to these protocols because they require several

communications among the coordinator and the participating

servers. This overhead may impact the overall performance

of the distributed system.

 Atomic commit protocol implement the atomicity property

in case of distributed systems but in this process the system

performance is compromised because sometimes atomic

commit operation of a transaction may have to wait for slow

participating servers or controlling network failures.

342

 Implementation of atomic commit protocolsin a distributed

system may require additional resources like storage media,

computational resources, network facilities etc.

 We have already learnt that the Two-phase commit protocol

is a simple and flexible atomic commit protocol. But the

blocking problem may occur when this approach is used to

perform atomic commit operation in a distributed system.

Now, to deal with the blocking problem, we can use the

Three-phase commit protocol. But this approach is more

complex than the Two-phase commit protocol and due to

this approach; communication overhead is also increasedin

the system.

 Atomic commit protocols can be used to implement

atomicity in case of distributed transactions that involve any

number of participating servers. But if the number of

participating servers of a distributed transaction is increased

then the communication overhead in the system will also be

increased.

5.6 ISOLATION LEVELS

Isolation is one of the ACID properties of distributed transactions.

We have already learnt that according to this property, operations of

a distributed transaction should be performed in isolation from the

operations of other simultaneous distributed transactions. Now, the

degree of this isolation is referred as isolation level. An isolation

level is termed as low when multiple concurrent distributed

transactions can be able to access the same resource at the same

time. As a result, consistency in the system may be lost. On the

other hand, an isolation level is termed as high when only one of the

multiple concurrent transactions can be able to access a resource at a

time. In this case, consistency in the system will be high but the

system requires more number of resources.

There are four basic isolation levels defined in case of transactions

and these are presented in the following points.

 The lowest isolation level is Read Uncommitted. This

isolation level allows multiple concurrent distributed

transactionsto read the uncommitted changes that are

performed by other concurrent transactions. Dirty read,

343

non-repeatable read and phantom read may be occurred due

to this isolation level.

 Read Committed is the next higher isolation level. This

isolation level allows multiple concurrent distributed

transactions to read only committed changes that are

performed by other concurrent transactions. As a result,

dirty read does not occur in case of this isolation level. But

non-repeatable read and phantom read may be occurred due

to this isolation level.

 Repeatable Read is the higher isolation level than Read

Committed.This isolation level allows only one distributed

transaction at a time to readcommitted changes performed

by other concurrent transactions. It means, in this level, a

distributed transaction holds both read and write lock on a

resource. So,both dirty read and non-repeatable read do not

occur due to this isolation level.But phantom read is

possible in case of this isolation level.

 The highest isolation level is serializable. In this isolation

level, the execution of distributed transactions istotally

isolated to each other. All transactions are executed serially

by maintaining an order. So, dirty reads, non-repeatable

reads, and phantom reads can be avoided in case of this

isolation level.

STOP TO CONSIDER

Dirty read: Let us consider a situation where a transaction, R

updates some data but it does not perform the commit

operation till now. Now, another transaction, S is allowed to

read that uncommitted data. At this moment, if the

transaction,R aborts its operations and rollback the

modifications that are performed by its operations then it leads

to a situation where the transaction,Sreadsdata that is not exist

in the system at present. This situation is termed as Dirty read.

Non Repeatable read: It is a situation where a transaction is

allowed to read the same data two times and it obtains

different valuesin each time.

Phantom Read:It is a situation where two identical queries

are executed but the data obtained by the second query is

different from the data retrieved by the first query.

344

5.7 CONCURRENCY CONTROL IN DISTRIBUTED

TRANSACTIONS

Concurrency control in distributed systems is a mechanism that is

utilized to control the execution of multiple concurrent distributed

transactions when they are required to access shared resources so

that consistency and integrity can be maintained in the system.

Isolation property can be achieved by using concurrency control in

case of distributed transactions. In general, following techniques are

used for concurrency control in distributed systems.

5.7.1 Locking Mechanism

Locking mechanism can be used to implement concurrency control

in case of distributed transactions. In this approach, when a

transaction is accessing an object then that object is locked so that

other concurrent transactions cannot be able to access it. In

distributed systems, locks are managed locally. Each server in a

distributed system uses a lock manager to handle locks on its

resources independently. The lock manager is responsible to grant a

lock on an object of the server. If an object required by a transaction

is already locked then the lock manager is responsible to keep the

resource request in waiting mode. In a distributed system, a lock

manager can release the lock from an object only when the

corresponding transaction is committed in all its participating

servers. On the other hand, if the transaction is aborted then the lock

is released after the phase one of atomic commit protocol. Other

concurrent transactions can try to access the object after the release

of lock on it. Due to locking mechanism, distributed deadlock may

be developed in the system.

5.7.2 Concurrency Control Based on Timestamp Ordering

In this approach, each distributed transaction is assigned with a

global unique timestamp. When a transaction begins its execution in

a distributed system then the global timestamp is assigned to it by

the coordinator inthe first server where it is opened. This timestamp

is passed to each coordinator in the participating servers of the

transaction. The distributed transactions are executed serially

depending on their timestamps. It means older transactions are

executed before younger transactions.All participating servers of

different transactions in a distributed system have to work together

345

so that transactions are executed serially depending on their

timestamps.

5.7.3 Optimistic Concurrency Control

In 1981, H. T. Kung and John T. Robinson had proposed the

Optimistic concurrency control approach to control concurrent

transactions so that consistency and integrity can be maintained in a

system.In the Optimistic concurrency control approach,concurrent

distributed transactions within a distributed system are controlled

without using locks on resources. In this approach, when a

transaction started, it is supposed that it will notconflictwith other

concurrent transactions when shared resources will beaccessed by

them. When the transaction completes its operations then the system

checks for any conflict that may occurred duringits operations. If it

is found that a conflict has occurred then some transaction is aborted

to resolve the conflict.The Optimistic concurrency control approach

consists of the following phases.

 Phase I:In the phase I, eachtransaction is provided a

tentative version of each of the resources that it requires to

access.A tentative version of a resource is the latest

committed copy of that resource. At first each transaction

performs read operation on the tentative versions of the

corresponding resources.Then as per requirement write

operations are performed by each transaction to update the

tentative version of the corresponding resources. When

multiple concurrent distributed transactionsare required to

perform write operation on the same resource then in this

phase, multiple tentative values for that same resource may

be created. Two records are maintained for each concurrent

transaction in this phase. One record contains the resources

read by the transaction and the other record contains the

resources updated by the transaction.

 Phase II:The phase II is referred as the validation phase.

The validation phase starts when a transaction completes its

operations and the request to close that transaction is

received.In this phase, the system validated that the

operations of the transaction do not conflict with the

operations of other concurrent transactions when they are

accessing the same resource. When a distributed transaction

enters the validation phase then a global transaction number

346

is assigned to it. So, all the concurrent transactions available

in the validation phase are serialized depending upon the

order of their transaction numbers. In case of distributed

transactions, multiple independent servers are responsible for

the validation of a transaction. The servers whose resources

are accessed by a distributed transaction are responsible for

the validation of that transaction. The validation process at

all the servers of a distributed system is performed during

the phase I of the Two-phase atomic commit protocol.

The validation process is performed by satisfying three read-

write conflict rules. These three rules are based on the

conflicts between the operations of two concurrent

transactions. Let us consider, the validation test will be

performed on the transaction, S and on the other hand, Ti is

one of the concurrent transactions. Then the validation will

be successful for the pair of transactions, (S, Ti) if the

following read-write rules are satisfied.

 If S has performed write operation on some

resources then Ti must not perform read operation

on those resources.

 If Tihas performed write operation on some

resources then S must not perform read operation on

those resources.

 Ti must not perform write operation on the

resources that are written by S and S must not

perform write operation on the resources that are

written by Ti.

If the validation is successful then the transaction goes to the

third phase. Otherwise, a conflict resolution approach is

used. In general, one of the transactions involved in the

conflict is aborted to resolve that conflict.

 Phase III: If the validation of a distributed transaction is

successful then all updated values available in the tentative

versions are permanently written to the original resources.

Then the transaction is committed. A distributed transaction

that performs only read operation is committed immediately

after the validation phase.

Optimistic concurrency control approach can be used instead of

locking mechanism to reduce the overhead that is introduced in the

347

system due to lock maintenance. We already know that the use of

locks may lead to deadlock situations in a system. So, occurrence of

deadlocks may be reduced by using Optimistic concurrency control

approach. Finally, if a few conflicts are possible among transactions

in a distributed system then Optimistic concurrency control

approach can provide better concurrency and performance in the

system.

Implementation of Optimistic concurrency control approach is more

complex than the other concurrency control mechanisms. This

approachmay increase the transaction aborts in a systemwhere a

large number of conflicts among transactions are developed. It can

significantly degrade the system performance.

5.8 HANDLING DURABILITY IN DISTRIBUTED

SYSTEM

We have already learnt about Durability which is one of the ACID

properties. Durability in distributed systems confirms that the

changes generated by a transaction in the system will be permanent

after successful commit operation of the transaction. It means these

changes will not be lost from the system in case of any type of

failures, server crashes and system errors.So, permanent storage

media is required to record objects so that Durability can be

achieved. When a distributed transaction is committed then the

changes made by it are saved in the permanent storage. Durability in

case of distributed transactions is crucial for the maintenance of

accuracy and reliability in the system. Durability can be handled in

distributed system by using different recovery mechanisms. The

recovery mechanisms are used to restore a crashed server or an

erroneous server with the most recent saved versions of its objects

from permanent storage.Two types of recovery approaches are

available in distributed systems that are backward recovery and

forward recovery. In case of backward recovery if the current state

of a system become inconsistent then the recovery process will

bring the system to its previous consistent state. On the other hand,

in case of forward recovery, the recovery approach tries to bring the

system with inconsistent state to a new consistent state from where

the system can continue to perform its tasks.

348

General approaches to maintain Durability in a distributed system

are discussed in the following points.

 Multiple copies of data can be saved in multiple servers so

that data can be protected from server failures or crash

situations. Regularly data backups can also be performed to

prevent data loss from the system.

 To implement backward recovery, a distributed system must

regularly record its consistent global states in permanent

storage. This process is termed as Check pointing. A

consistent global state of a distributed system is termed as a

distributed snapshot. Distributed snapshots are constructed

from the local consistent states recorded in multiple servers

of a distributed system.

 Each server in a distributed system maintains a log that

contains the records of all transactions that are executed by

the server. Record of a transaction in a log consists of

objects’ values, entries of the transaction status and the

references and the values of all the objects that are changed

by the transaction.The order of the records in the log of a

server is dependent upon the order in which the transactions

are executed at the server. When a server is crashed or failed

then recovery of the system to a consistent state can be

performed by utilizing the log of that server. In this process,

all committed transactions can be recovered by using the

records available in the log.

Check Your Progress

2. Choose the correct option

(a) Which of the following is performed at the first phase of the

Two-phase commit protocol?

(i) Participating servers vote for commit or abort operation.

(ii) The transaction coordinator send request to all

participating servers to vote for commit or abort

operation.

(iii) The transaction coordinator vote for commit or abort

operation.

(iv) None of the above

349

(b) Which of the following problem may be solved by using

Three-phase commit protocol?

 (i) The blocking problem.

 (ii) Deadlock.

 (iii) Communication delay.

 (iv) All of the above.

 (c) Which of the following will not occur in case of Repeatable

Read isolation level?

 (i) Dirty read

 (ii) Non-repeatable read

 (iii) Phantom read

 (iv) Both (i) and (ii)

 (d) Which of the following is not used to control concurrency?

 (i) Locking mechanism.

 (ii) Timestamp ordering

 (iii) Transaction recovery

 (iv) All of the above

(e) Multiple copies of data can be saved in multiple servers to

achieve____.

 (i) Atomicity

 (ii) Integrity

 (iii) Efficiency

 (iv) Durability

5.9 SUMMING UP

 A distributed transaction is associated with multiple servers

located in different physical sites. A distributed transaction

may access multiple objects that are managed by different

servers. Either all operations of a distributed transaction

complete successfully in different servers or all operations

are aborted by corresponding servers.

 Flat distributed transactions are simple distributed

transaction where multiple objects are requested that are

managed at multiple servers. A flat distributed transaction

completes only one request for an object at a time.

350

 In case of a Nested distributed transaction, a top-level

transaction is available which can open nested sub-

transactions. Then each sub-transaction can open the next

level of sub-transactions. This process can be continued as

per requirement. Sub-transactions available at a similar level

can execute concurrently.

 According to the Atomicity property, either all operations of

each distributed transaction complete successfully or the

transaction is aborted and no change will be permitted in the

system. Atomic commit protocols are used to maintain

atomicity and consistency in case of distributed transactions.

In general, two types of Atomic commit protocols are

available and these are Two-Phase Commit (2PC) protocol

and Three-Phase Commit (3PC) Protocol.

 According to the Consistency property, the system will move

to a consistent state from a consistent state after the

successful competition of each distributed transaction.

 According to the Isolation, the execution of each distributed

transaction is isolated from other concurrent distributed

transactions so that concurrent transactions are executed

without interfering each other’s operations.

 According to Durability property, the changes happened to a

distributed system after the successful completion of a

distributed transaction is permanent.

 The Two-phase commit protocol consists of two phases. The

first phase is referred as the Voting phase and in the second

phase, commit or abort transaction is performed depending

upon the result of the Voting phase.

 Three-phase commit protocol is actually the upgraded

version of Two-phase commit protocol. The blocking

problem of Two-phase commit protocol may be solved by

using Three-phase commit protocol and reliability of the

commit operation can be improved.

 An isolation level is termed as low when multiple concurrent

distributed transactions can be able to access the same

resource at the same time. On the other hand, an isolation

level is termed as high when only one of the multiple

concurrent transactions can be able to access a resource at a

time.

351

 Four basic isolation levels are Read Uncommitted, Read

Committed, Repeatable Read and Serializable.

 Concurrency control in distributed systems is a mechanism

that is utilized to control the execution of multiple

concurrent distributed transactions when they are required to

access shared resources so that consistency and integrity can

be maintained in the system. Concurrency control

mechanisms are provided to achieve transaction isolation in

case of concurrent distributed transactions. Locking

mechanism, Concurrency control based on Timestamp

ordering and Optimistic concurrency control are the general

concurrency control approaches.

 Durability can be handled in distributed system by using

different recovery mechanisms. The recovery mechanisms

are used to restore a crashed server or an erroneous server

with the most recent saved versions of its objects from

permanent storage.

 In case of any server failure, backward recovery will bring

the system to its previous consistent state.

 In case of forward recovery, the recovery process tries to

bring the system with inconsistent state to a new consistent

state from where the system can continue to perform its

tasks.

5.10 ANSWERS TO CHECK YOUR PROGRESS

1.

(a) Nested distributed

(b) Atomicity, Consistency, Isolation, Durability

(c) Atomic commit

(d) Durability

(e) A flat distributed

2.

 (a)(ii) The transaction coordinator send request to all

participating servers to vote for commit or abort operation.

 (b)(i) The blocking problem.

 (c)(iv) Both (i) and (ii)

 (d)(iii) Transaction recovery

 (e)(iv) Durability

352

5.11 POSSIBLE QUESTIONS

1) Write down the characteristics of distributed transactions.

2) How ACID properties can be achieved in distributed

transactions?

3) Explain Two-phase atomic commit protocol.

4) Write down the difference between Two-phase commit

protocol and Three-phase commit protocol.

5) How concurrency control can be implemented in distributed

systems?

6) Write a short note on Isolation levels in distributed

transactions.

7) How Durability can be handled in distributed systems?

5.12 REFERENCES AND SUGGESTED READINGS

 Tanenbaum, Andrew S. “Distributed Operating

Systems” (1995).

 Coulouris, George, Jean Dollimore, and Tim Kindberg.

"Distributed Systems: Concepts and Design Edition 4."

(2005).

 Tanenbaum, Andrew S., and Maarten Van

Steen. “Distributed systems:Principles and Paradigms

Edition 2.” (2007).

 https://www.ibm.com/topics/cap-theorem. Accessed on: 07-

08-2024

 https://www.eecs.harvard.edu/~htk/publication/1981-tods-

kung-robinson.pdf Accessed on: 18-08-2024

×××

353

UNIT: 6

REPLICATION AND CONSISTENCY IN

DISTRIBUTED SYSTEMS

Unit Structure:

6.1 Introduction

6.2 Unit Objectives

6.3 Data Replication in Distributed Systems

6.3.1 Need for Data Replication

6.3.2 Types of Data Replication

6.4 Object Replication in Distributed Systems

6.4.1 Types of Object Replication

6.4.2 Replication Consistency Models

6.5 Data-Centric vs. Process-Centric Replication

6.5.1 Data-Centric Replication

6.5.2 Process-Centric Replication

6.5.3 Data-Centric vs. Process-Centric Replication

6.6 Consistency Models in Distributed Systems

6.6.1 Strong Consistency

6.6.2 Sequential Consistency

6.6.3 Casual Consistency

6.6.4 Weak Consistency

6.7 Consistency vs. Availability

6.7.1 Trade-offs between Consistency and Availability

6.8 Summing Up

6.9 Answers to Check Your Progress

6.10 Possible Questions

6.11 References and Suggested Readings

354

6.1 INTRODUCTION

Replication in distributed systems means making multiple copies of

data or objects and storing them on different servers or locations.

This helps improve system availability, performance, and fault

tolerance. If some servers fail or go offline, the system can still

work because other servers have the same data.

Consistency in distributed systems means, making sure that all

servers or replicas show the same data at any given time, so users

always see the same information. However, ensuring strong

consistency is tricky because there’s a trade-off with availability,

especially if some servers are temporarily disconnected or the

network has issues (as explained by the CAP theorem).

In short, replication and consistency are key for keeping distributed

systems reliable and efficient, but there's often a balance between

having consistent data and keeping the system running smoothly

when problems arise.

6.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 understand the need for Data Replication.

 identify Types of Replication Strategies.

 explore Object Replication Techniques.

 learn Different Consistency Models.

 understand Trade-offs between Consistency and Availability.

6.3 DATA REPLICATION IN DISTRIBUTED SYSTEMS

Data replication means making and storing copies of data on

different servers or locations in a distributed system. The main

reason for doing this is to make the system more reliable, faster, and

able to keep working even if some servers fail or cannot be reached.

With multiple copies of data, the system can continue running

smoothly. There are different ways to replicate data, like primary-

backup, where one server has the main copy, or multi-master, where

many servers have equal copies and can update them. While

355

replication makes the system more reliable, it can be tricky to make

sure all copies of the data stay the same across servers.

6.3.1 Need for Data Replication

The need for data replication in distributed systems centers around

the following points:

Increased Availability: By keeping multiple copies of data on

different servers, the system can keep running even if some servers

fail. This ensures users can still access their data despite problems

like hardware failures or network issues.

Fault Tolerance: Replication means there are backup copies. If one

server goes down, another copy can take over, lowering the chance

of losing data and keeping the system working.

Better Performance: Having data stored closer to users helps them

get information faster, reducing delays. This is especially useful in

systems spread across large areas.

Load Balancing: Multiple data copies allow the system to share the

workload between different servers. This prevents any one server

from getting overloaded, helping the system run smoothly.

Data Safety: With several copies, there's a lower risk of

permanently losing data. If one copy gets damaged or lost, the

others can still provide the correct information.

6.3.2 Types of Data Replication

In distributed systems, data replication can be implemented in

several ways, depending on how data is synchronized and managed

across different servers. The common types of data replication are:

 Primary-Backup Replication,

 Multi-Master Replication,

 Chain Replication,

 Distributed Replication.

Now, let’s discuss each of the types one by one.

356

6.3.2.1 Primary-Backup Replication

Primary-Backup Replication is a common method used in

distributed systems to make sure the system is always available,

reliable, and consistent with data. In this method, one main server,

called the primary (or leader), stores the main version of the data.

One or more other servers, called backups (or followers), store

copies of this data. The primary server handles all changes or

updates to the data, while the backup servers simply keep their

copies updated. If the primary server stops working, one of the

backups can take over to keep the system running.

The working of Primary-Backup Replication is follows:

 The primary server handles all read and write operations from

clients. Whenever there is a write or update request, it modifies

its local copy of the data and sends the updated information to

all backup servers. It ensures that changes are propagated to

backups to maintain consistent copies across the system.

 Backup servers receive updates from the primary and keep their

copies in sync. They do not handle client write operations

directly; they simply mirror the state of the primary. In the event

of the primary server failing, one of the backups can be

promoted to the new primary, ensuring the system remains

operational.

 If the primary server crashes or becomes unavailable, the system

detects this failure and promotes one of the backups to take over

as the new primary. The new primary continues handling client

requests and updating the remaining backup servers. Thus, it

process ensures that the system remains available even in the

event of failures, but there might be some delay during the

switch from the primary to the backup (failover).

Now, consider a banking application where customer accounts and

transactions are stored across multiple servers to provide fault

tolerance and ensure high availability. In this setup:

 The primary server handles all transaction processing, such as

deposits, withdrawals, and balance updates. It records all the

latest account information and ensures data integrity.

 Multiple backup servers store replicas of the account data, which

are updated by the primary server. These backup servers are

357

passive—they do not process transactions but receive updates

from the primary.

 Now, if the primary server fails (e.g., due to hardware failure or

a network issue), one of the backup servers is promoted to the

new primary. It takes over transaction processing, ensuring that

customers can continue using the banking system without

interruption. The remaining backups continue to receive updates

from the new primary.

Advantages of Primary-Backup Replication:

 The system remains available even when the primary server

fails, as backups can quickly take over.

 Since only the primary handles write operations, the system

ensures a consistent state across all replicas, provided that

synchronous replication is used.

 The primary-backup model is relatively easy to understand and

implement compared to more complex replication schemes like

multi-master.

 Write operations are handled by a single server (primary),

preventing issues like conflicting updates or race conditions

between replicas.

Disadvantages of Primary-Backup Replication:

 In case of a primary server failure, there is a delay while the

system detects the failure and promotes a backup to the new

primary. This failover process, although automatic, can cause a

temporary service outage.

 Since all write operations go through the primary server, it can

become a bottleneck when handling a large number of updates.

This model may not scale well for systems with high write

loads.

 If asynchronous replication is used, backups may lag behind the

primary, meaning they might not have the most up-to-date data.

In the event of a primary failure, the newly promoted primary

could have slightly out-dated information.

 The primary server represents a single point of failure for write

operations. If the primary fails, even though a backup can take

over, there is still a brief interruption in service.

358

6.3.2.2 Multi-Master Replication

Multi-Master Replication is a replication strategy used in distributed

systems where multiple servers, known as masters, can accept write

operations and maintain copies of the same data. This model

enhances availability and performance by allowing updates to occur

on any of the master nodes, rather than relying on a single primary

server. However, it comes with its own set of challenges,

particularly around data consistency and conflict resolution. By

carefully designing the replication strategy and conflict-handling

mechanisms, organizations can leverage the benefits of this model

while mitigating its drawbacks.

The working of Multi-Master Replication is follows:

 In this model, several servers act as masters. Each master can

accept read and write requests from clients. Because of this, the

system can continue to operate and serve requests even if one or

more masters fail.

 When a master server receives a write request, it processes the

update and then replicates this change to other master servers.

This can happen in various ways, such as:

Synchronous Replication: The update is sent to all masters,

and they must acknowledge receipt before the operation is

considered complete. This ensures data consistency but can

increase latency.

Asynchronous Replication: The update is sent to other

masters without waiting for their acknowledgment. This

approach improves performance but may lead to temporary

inconsistencies between replicas.

 Since multiple masters can accept write operations, conflicts

may arise if two or more masters attempt to update the same

piece of data simultaneously. To handle this, the system must

implement a conflict resolution strategy, which could include:

 The most recent write operation takes precedence.

 Each write includes a version number, and the system uses

this number to determine the most recent update.

 The application logic decides how to resolve conflicts based

on specific business rules.

359

Advantages of Multi-Master Replication:

 The system remains operational even if one or more master

servers go down. This redundancy enhances overall system

reliability.

 With multiple masters available to handle requests, the system

can distribute the load more evenly, reducing response times for

users.

 In scenarios where users are spread across different regions,

having multiple masters can bring the data closer to users,

further reducing latency.

Challenges of Multi-Master Replication:

 Complexity: Managing multiple masters and ensuring data

consistency can be complex. This requires sophisticated conflict

resolution and synchronization mechanisms.

 Data Inconsistency: The asynchronous nature of updates may

lead to temporary inconsistencies among the replicas, making it

challenging to guarantee a uniform view of data at all times.

 Overhead: The need for synchronization and conflict resolution

can add overhead to the system, potentially affecting

performance.

6.3.2.3 Chain Replication

Chain replication is a structured method used in distributed systems

to manage the replication of data across multiple nodes, ensuring

strong consistency. It is particularly effective for systems that

require high availability while maintaining strict order and

consistency of data. In chain replication, the nodes are organized in

a sequence or chain, and data is propagated through this chain from

start to end.

The working of Multi-Master Replication is follows:

The Architecture:

 Nodes are arranged in a linear sequence, often referred to as

a chain.

 There is a head node, intermediate nodes, and a tail node.

360

 Write operations always start at the head and move

sequentially through the chain to the tail.

Writing Operations:

 A client that wants to update the data sends a write request to

the head node.

 The head node processes the write and then forwards it to the

next node in the chain.

 This process continues until the tail node is updated.

 Once the tail node is updated, it sends an acknowledgment

back through the chain, confirming that the update has been

fully replicated.

 The acknowledgment to the client is only sent when the tail

has processed the write, ensuring that all nodes in the chain

have consistent data.

Reading Operations:

 Typically, read requests are handled by the tail node.

 This ensures that clients always read the most up-to-date

data because the tail node receives all updates last, after they

have been processed by every other node in the chain.

Handling Failure:

 If a node in the chain fails, the chain is reconfigured to

bypass the failed node.

 The system can add new nodes to the chain to replace the

failed one, maintaining redundancy and ensuring

consistency.

Now, let’s try to understand this with the help of an example.

Consider a distributed system where multiple copies of a data

object, say "X," are maintained across three nodes: Node A as Head

node, Node B as Intermediate Node, and Node C as Tail Node.

Now, the steps are as follows:

 Write Operation:

 A client wants to update the value of "X" to 100.

 The client sends a write request to Node A.

361

 Node A updates "X" to 100 and forwards the update to Node

B.

 Node B updates "X" to 100 and forwards it to Node C.

 Node C updates "X" to 100 and sends an acknowledgment

back to Node B, then to Node A, and finally to the client.

 Only when the update is confirmed at Node C (the tail) is

the operation considered successful, ensuring all nodes have

consistent data.

 Read Operation:

 A client requests to read the value of "X."

 The read request is directed to Node C, which provides the

value 100.

 Since Node C is the last node in the chain to be updated, it

always has the most recent value of "X."

 Failure Handling:

 If Node B fails, the system reconfigures to bypass Node B,

and the chain becomes Node A → Node C.

 A new node, Node D, could be added later, making the new

chain Node A → Node D → Node C.

 This ensures that redundancy is maintained and that the

system can continue functioning even if nodes fail.

Advantages of Chain Replication:

 Since all updates are processed sequentially through the chain,

all nodes have the same version of data once an

acknowledgment is sent, ensuring strong consistency.

 Reads are served from the tail node, ensuring that the most

recent data is always provided to clients.

 The chain can be reconfigured in the event of a node failure, and

new nodes can be added without interrupting the service.

Disadvantages of Chain Replication:

 Since write operations must propagate through each node in the

chain before being acknowledged, the write latency can be

higher compared to other replication methods.

362

 The head and tail nodes can become bottlenecks. The head

handles all incoming writes, while the tail handles all reads.

 If a node fails, the reconfiguration of the chain might take some

time, potentially affecting the availability of the system.

6.3.2.3 Distributed Replication

Distributed replication means keeping multiple copies of data on

different nodes or locations in a distributed system. Replication

helps improve data availability, fault tolerance, reliability, and

performance. By having multiple copies, the system can handle

failures more effectively, provide faster data access, and ensure that

data is still available even if some nodes fail.

There are types of Distributed Replication:

Synchronous Replication:

 All replicas must be updated before a write operation is

considered complete.

 Guarantees that all replicas have consistent data, but may

increase latency because of waiting for acknowledgments from

all replicas.

 Example: A banking system where transaction consistency is

critical.

Asynchronous Replication:

 The primary node acknowledges a write operation immediately,

and the updates are propagated to replicas in the background.

 This approach offers better performance but might lead to

temporary inconsistencies between replicas.

 Example: Social media applications where immediate

consistency is not critical.

Partial Replication:

 Only a subset of the nodes in the distributed system contains

copies of the data.

 Helps reduce storage costs and network overhead.

 Example: In large-scale distributed databases, only frequently

accessed data might be replicated across all nodes, while less

frequently accessed data is only partially replicated.

363

Full Replication:

 Every node in the distributed system contains a copy of the

entire dataset.

 This ensures high availability but comes at the cost of increased

storage and replication overhead.

 Example: Distributed ledger systems like block-chain where

each node contains the entire ledger.

The working of Multi-Master Replication is follows:

Writing Operations:

 When a write request is made, the data must be updated on

all or some of the replicas.

 In synchronous replication, the system waits until all

replicas have been updated before acknowledging the write

to the client.

 In asynchronous replication, the primary replica is updated

first, and then the changes are propagated to secondary

replicas.

Reading Operations:

 Read requests can be handled by any replica, which helps

distribute the load and improves read performance.

 The system may use a load balancer to distribute read

requests among replicas.

Consistency Models:

 Strong Consistency: Guarantees that all reads will return

the latest value.

 Eventual Consistency: Guarantees that, given enough time,

all replicas will eventually become consistent.

 Causal Consistency: Ensures that causally related updates

are seen in the same order by all replicas.

Now, let’s try to understand this with the help of an example.

Consider an online e-commerce platform with users distributed

across the world. The platform wants to ensure that product

information (e.g., availability, price) is accessible with minimal

latency and remains highly available even during a network partition

or failure. The system could use distributed replication as follows:

364

Nodes Setup:

 The system has several nodes: Node A (in North America),

Node B (in Europe), Node C (in Asia).

 Each node contains a replica of the product database.

Write Operation:

 Suppose a seller in North America updates the price of a

product.

 The update is first made to Node A.

 In synchronous replication, the update will then be propagated

to Node B and Node C, and only after all replicas are updated

will the seller receive an acknowledgment.

 In asynchronous replication, the update will be immediately

acknowledged to the seller after it is made to Node A, while

Node B and Node C are updated in the background.

Read Operation:

 If a customer in Asia wants to check the price of the product, the

read request is directed to Node C, which is geographically

closer.

 This reduces latency and ensures a faster response to the

customer.

Advantages of Distributed Replication:

 By having multiple replicas, data remains accessible even if one

or more nodes fail.

 Replication provides redundancy, allowing the system to

continue operating in the event of hardware or network failures.

 Read requests can be distributed among different replicas,

improving system scalability and reducing bottlenecks.

 Users can access the closest replica, reducing the response time

for read operations.

Challenges of Distributed Replication

 Consistency Management: Maintaining consistency across

replicas is challenging, especially in asynchronous replication,

where temporary inconsistencies may occur.

365

 Network Overhead: Replicating data across nodes incurs

additional network traffic, which can be a bottleneck in high-

volume systems.

 Conflict Resolution: When multiple replicas accept write

operations, conflicts can arise those needs to be detected and

resolved.

6.4 OBJECT REPLICATION IN DISTRIBUTED SYSTEMS

Object replication in distributed systems refers to the practice of

creating and maintaining multiple copies (or replicas) of an object

(such as files, databases, or application components) across different

nodes in the network. The main goal of object replication is to

enhance system availability, fault tolerance, scalability, and

performance. Replicating objects allows a distributed system to

continue operating smoothly even in the presence of hardware

failures or network issues.

6.4.1 Types of Object Replication

Object replication in distributed systems can be categorized into the

following types based on how updates to replicas are handled:

Active Replication or Synchronous Replication:

 In active replication, all replicas of an object are kept

identical by processing all requests in parallel.

 Every replica processes the same request, and the system

ensures that they remain consistent with one another.

 This type is generally used in systems that need high

availability and consistency, such as financial services.

 Example: In a distributed online banking application, every

transaction can be processed at all replicas simultaneously to

ensure that account balances are always consistent across

nodes.

Passive Replication or Primary-Backup Replication:

 In passive replication, a primary replica processes all client

requests and updates. After processing, the primary sends

updates to the backup replicas.

366

 If the primary replica fails, one of the backups takes over as

the new primary.

 This approach is often used where lower update latency is

preferred, and it's acceptable for the replicas to be slightly

out-of-date.

 Example: In a distributed file storage system, a primary

server stores user files, and changes are replicated to backup

servers after a write operation. If the primary server fails, a

backup server becomes the new primary.

Lazy or Asynchronous Replication:

 In lazy replication, updates are made to a primary replica and

propagated to other replicas asynchronously, meaning

changes may take some time to reach all replicas.

 This can lead to temporary inconsistencies across replicas,

but it improves system performance since nodes do not need

to wait for acknowledgments from all replicas.

 Example: In content distribution networks (CDNs), when a

new video is uploaded, the update is initially made on one

server and then propagated to other servers gradually. This

may result in some users getting the latest content before

others, but overall system performance is improved.

6.4.2 Replication Consistency Models

Ensuring consistency among replicas is a key challenge in object

replication. The different levels of consistency are:

Strong Consistency:

o All replicas must reflect the latest update immediately.

o This guarantees that any read operation returns the most

recent write.

o Example: A distributed database that ensures every read

returns the latest value, even if it means delaying the read

request until all replicas are updated.

Eventual Consistency:

o Replicas will become consistent over time, but they may be

temporarily out of sync.

367

o This is used when the system favours availability and

partition tolerance over immediate consistency.

o Example: DNS servers use eventual consistency to update

their records. Changes to DNS records might take time to

propagate to all DNS servers.

Causal Consistency:

o Causal relationships between updates are preserved, meaning

that if update A happens before update B, any node that sees

update B must also see update A.

o This allows for a more relaxed consistency model without

sacrificing the logical flow of updates.

o Example: Social media feeds can maintain causal

consistency, ensuring that users see a comment only after

they have seen the original post.

6.5 DATA-CENTRIC VS. PROCESS-CENTRIC

REPLICATION

In distributed systems, replication can be broadly categorized into

two types based on the focus of what is being replicated: data-

centric replication and process-centric replication. Both approaches

aim to improve reliability, availability, and performance, but they

differ in terms of what they replicate and how they handle

replication. Let's discuss both approaches in detail:

6.5.1 Data-Centric Replication

Data-centric replication involves replicating the data across multiple

nodes or servers in a distributed system. The main goal is to ensure

that data is accessible, consistent, and available even if some nodes

fail. The characteristics of data-centric replication are:

 Data-centric replication aims to ensure that the same piece of

data is available in multiple locations, thus enhancing data

availability and fault tolerance.

 This approach may use various consistency models, such as

strong consistency, eventual consistency, or causal consistency.

368

 Guarantees that all replicas have the same value at any point

in time.

 Ensures that replicas eventually converge to the same value,

even if there may be temporary discrepancies.

 Data is replicated in a way that reduces latency and optimizes

read performance. This is especially useful in distributed

databases or content delivery networks (CDNs) to provide fast

access to data for users across different regions.

 Conflicts may arise during concurrent updates to the same data at

different nodes. Conflict resolution mechanisms, such as version

vectors or timestamps, are used to ensure consistency.

For example, in a distributed database, such as Cassandra or

MongoDB, data-centric replication ensures that copies of data are

stored in multiple nodes. When a client requests data, it is served

from the nearest replica, improving response time. If an update is

made, the changes are propagated to all replicas to maintain

consistency.

6.5.2 Process-Centric Replication

Process-centric replication involves replicating the processes or

computations across multiple nodes. In this approach, the main

focus is on ensuring that the processing of requests can continue

even if some nodes or processes fail. The characteristics of process-

centric replication are as follows:

 Process-centric replication is used to enhance fault tolerance

and high availability of services or processes, allowing the

system to continue functioning even when individual processes

fail.

 Active &. Passive Replication:

o Active Replication: All replicas run the same process

and receive the same input, ensuring that they produce

the same output simultaneously. This method is suitable

for achieving strong fault tolerance.

369

o Passive Replication (Primary-Backup): One process

(primary) handles requests, and the state is replicated to

backups. If the primary fails, one of the backups takes

over.

 The replicas of the process need to maintain a synchronized

state. This may involve periodically sending state updates from

the primary process to the backup processes.

 Replicated processes ensure that, if one node handling a request

fails, another replica can take over and continue processing

without interrupting the overall service.

For example, in a distributed web service, a process-centric

replication approach could involve having multiple replicas of a web

server that handle client requests. If one web server fails, another

server can seamlessly take over the requests, ensuring uninterrupted

service.

6.5.3 Data-Centric vs.Process-Centric Replication

The comparison between data-centric and process-centric

replication are presented in table 6.1.

Aspect Data-Centric Replication Process-Centric Replication

Focus
Replicates data across

multiple nodes

Replicates processes or

computations across nodes

Goal
Enhance data availability

and consistency

Improve fault tolerance and

service availability

Consistency

Model

Strong, eventual, or causal

consistency

Typically uses active or

passive replication models

Access
Optimizes data access and

read performance

Ensures that services remain

available in case of failure

Conflict

Resolution

Involves techniques like

timestamps or version

vectors

Ensures state consistency

between replicated

processes

Each approach addresses different aspects of distributed system

design, and choosing between them depends on whether the goal is

370

to provide data availability or service continuity. In practice, a

combination of both types of replication is often used to achieve a

robust and highly available distributed system.

6.6 CONSISTENCY MODELS IN DISTRIBUTED SYSTEMS

In earlier sections we had a very brief introduction to Consistency

Models. Now, let’s try to get a bigger picture.

In distributed systems, consistency models define the rules that

govern how data replicas are kept in sync to maintain a coherent

view across the entire system. These models establish the conditions

under which different parts of the system can communicate, and

determine how changes made by one process become visible to

others. By setting specific guarantees on the visibility and

propagation of updates, consistency models address distributed

computing challenges like network delays, partial failures, and

concurrency. The choice of a consistency model plays a crucial role

in balancing consistency, availability, and performance, ensuring the

system's reliability and predictable behavior even in the presence of

faults.

In distributed systems, there are several types of consistency

models, each suited to different requirements and use cases. Each

model offers a different balance of consistency, availability, and

performance, with its own advantages and limitations. The main

types of consistency models are: Strong Consistency, Sequential

Consistency, Causal Consistency, Weak Consistency etc. The

choice of a specific consistency model depends on the needs of the

system, such as the level of data consistency required and the

tolerance for delays or failures.

6.6.1 Strong Consistency

Strong consistency means that every read operation always returns

the latest value that has been written, no matter which copy of the

data you access. To the user, it looks like there is only one version

of the data, and all the changes are seen instantly. In a system with

strong consistency, all nodes agree on the order of operations,

meaning that everyone sees updates in the same sequence. This

ensures that reads always provide the latest version, and writes are

371

visible to all nodes immediately. However, achieving this level of

consistency can lead to performance and availability challenges.

Let’s discuss the Principles of strong consistency and they are:

Single Copy: To users and applications, the distributed system

behaves as if there is only one copy of the data. This means that any

changes made to the data are immediately visible to all users.

Immediate Visibility: When a write operation is completed, all

subsequent read operations will reflect that change. There is no

delay or inconsistency in seeing the latest data.

Global Ordering: All operations (reads and writes) are executed in

a total order that is agreed upon by all nodes in the system. This

guarantees that all nodes see operations in the same sequence.

Synchronous Operations: Strong consistency often requires that

write operations are completed before subsequent read operations

can proceed, ensuring that all processes are up to date.

Advantages of Strong Consistency:

 Clients can always expect to see the most recent data, which

simplifies application logic and improves user experience.

 Strong consistency helps ensure that the system maintains data

integrity across distributed nodes, preventing issues like stale

reads.

 Developers can write simpler code because they don’t need to

account for inconsistencies that could arise from concurrent

operations.

Disadvantages of Strong Consistency:

 Achieving strong consistency typically requires more

communication between nodes, which can introduce latency and

reduce throughput, particularly in large distributed systems.

 During network partitions or node failures, maintaining strong

consistency can lead to reduced availability. If some nodes are

unreachable, the system may block operations to ensure

consistency.

 The need for synchronization can result in higher response times

for operations, especially in geographically distributed systems

where communication delays are significant.

372

6.6.2 Sequential Consistency

Sequential Consistency is a key concept in distributed systems that

helps maintain a clear and consistent view of operations across

different nodes. This model finds a middle ground between strict

consistency and more relaxed models by ensuring that operations

seem to happen in a specific order, even if they are actually

processed at the same time on different nodes. According to this

model, the results will always look like the operations (both read

and write) were executed one after the other in a sequence,

respecting the order in which each process performed them. It was

introduced by Leslie Lamport and is considered less strict than

stronger consistency models, making it easier to implement while

still providing a reliable framework for understanding how

operations relate to each other in a distributed system.

Let’s discuss the Principles of sequential consistency and they are:

Global Order: The results of operations must be consistent with

some global ordering, meaning that even if operations are performed

in parallel, they can be viewed as part of a single, orderly sequence.

Local Order: The local order of operations for each process must

be preserved. If a process issues a read after a write, any subsequent

reads must see the effects of that write.

Client View: From the client's perspective, the system behaves as if

all operations were executed in some sequential order, which

provides a straightforward understanding of the system's state.

Advantages of Sequential Consistency:

 Sequential consistency is easier for programmers to reason about

than stronger models because it maintains a simple, intuitive

view of the order of operations.

 Compared to strong consistency, sequential consistency allows

for some level of concurrency, potentially improving

performance and throughput.

 It offers a middle ground between strong consistency (which can

be too restrictive) and weaker models (which can lead to

confusion).

373

Disadvantages of Sequential Consistency:

 While it allows some concurrency, maintaining a sequential

order can still introduce latency, especially in systems with high

contention for resources.

 Implementing sequential consistency can be complex, especially

in a distributed environment where nodes may have different

latencies and failure rates.

 In cases of network partitions or failures, achieving sequential

consistency may require delaying some operations, which can

impact system availability.

6.6.3 Casual Consistency

Causal Consistency is an important model in distributed systems

that helps keep track of the logical connections between different

operations. It ensures that if one operation affects another, the first

one will be visible before the second. This model finds a middle

ground between high performance and keeping things coherent,

making it useful for various applications. Introduced by Hutto and

Ahamad in 1990, causal consistency ensures that all processes see

related operations in the same order, but it’s less strict than models

like sequential consistency, which require a complete order of

operations. By focusing on the cause-and-effect relationships, causal

consistency allows systems to run efficiently while still providing a

clear view of the data, making it popular for collaborative and real-

time applications where the order of actions is important.

Let’s discuss the Principles of casual consistency and they are:

Causal Relationship: In causal consistency, operations are seen as

causally related if one operation can influence the outcome of

another. For example, if Process A sends a message to Process B,

any subsequent operations by B that depend on that message must

see the effects of A's operation.

Event Ordering: The model ensures that if an operation O1

causally affects another operation O2, then all processes must see

O1 before they see O2. However, operations that are not causally

related can be seen in different orders by different processes.

Visibility: Each process has its own view of the operations, which

may differ from other processes, but the visibility of operations

374

respects causal relationships. This allows for more flexibility and

improved performance compared to stronger consistency models.

Advantages of Causal Consistency:

 By allowing operations to be executed concurrently as long as

they are not causally related, causal consistency enhances

performance and scalability in distributed systems. This leads to

lower latency and better resource utilization.

 Causal consistency aligns closely with how users typically

reason about dependencies in their operations, making it easier

for developers to build applications that behave predictably.

 Causal consistency provides more flexibility than strict or

sequential consistency, allowing systems to tolerate delays and

network partitions while still maintaining a coherent view of

operations.

Disadvantages of Causal Consistency:

 Implementing causal consistency can be complex due to the

need to track causal relationships and maintain metadata like

vector clocks. This may introduce overhead and increase system

complexity.

 Because operations are not globally ordered, processes may read

stale data if they do not have visibility into all preceding

operations. This can lead to scenarios where users see outdated

information.

 Causal consistency does not guarantee that all operations will be

seen in the same order by all processes, which can be

problematic in certain applications requiring stronger

guarantees.

6.6.4 Weak Consistency

Weak consistency is a model used in distributed systems that allows

changes to data to be visible at different times across different

nodes. Unlike stronger consistency models that require all copies of

data to be in sync right away, weak consistency accepts that there

may be temporary differences between data replicas. This approach

helps improve performance and availability. When creating systems

that use weak consistency, developers need to think carefully about

what the application needs, balancing consistency, availability, and

375

performance to meet user expectations. Applications that can handle

short periods of inconsistency, like social media updates, messaging

apps, and collaboration tools, are a good fit for this model. In

summary, weak consistency is beneficial for distributed systems as

it supports better performance and availability while allowing for

some data differences, even though it can lead to challenges with

data accuracy and complexity in development.

The key features of weak consistency are as follows:

 In weak consistency models, there are no guarantees that all

replicas of data will reflect the most recent updates immediately.

This means that a read operation may return stale data if it occurs

before updates propagate to all nodes.

 Weak consistency allows for operations to be visible in different

orders across different processes. Thus, different nodes may see

the results of operations in varying sequences.

 Although weak consistency permits temporary inconsistencies, it

often includes mechanisms that ensure that all replicas will

converge to the same state eventually, given sufficient time

without new updates.

Advantages of Weak Consistency:

 Weak consistency models typically allow for more efficient use

of resources since they do not require synchronization among all

nodes for every operation, leading to faster read and write

operations.

 By not enforcing strict consistency, distributed systems can

remain operational even during network partitions or failures,

improving overall system availability.

 Weak consistency models are well-suited for large-scale

distributed systems, where strict consistency can be challenging

to maintain due to the sheer volume of data and interactions.

Disadvantages of Weak Consistency:

 Developers must handle the complexities introduced by potential

stale data and ensure that applications can tolerate inconsistency,

which can lead to increased programming effort.

376

 Weak consistency may lead to scenarios where conflicting

updates occur, and resolving these conflicts can be challenging,

especially in collaborative applications.

 Users may experience unexpected results since the data might

not be immediately consistent across nodes, which can affect the

user experience.

6.7 CONSISTENCY VS. AVAILABILITY

In distributed systems, the trade-offs between consistency and

availability are central to system design and operation. These two

concepts often compete with each other, especially in the context of

the CAP theorem, which states that in the presence of a network

partition, a distributed system can only guarantee either consistency

or availability, but not both. Below is a detailed discussion of these

trade-offs, their implications, and examples. But first just refresh

what does consistency and availability means.

In distributed systems, consistency means that all nodes see the

same data at the same time. When a write operation is performed, it

should be visible to all subsequent read operations across the

system. Strong consistency ensures that all replicas reflect the latest

updates immediately, while eventual consistency allows temporary

discrepancies between replicas, with the guarantee that they will

eventually converge.

Availability refers to the system's ability to respond to requests,

even in the face of failures or network partitions. An available

system guarantees that every request receives a response, whether it

is a success or an error, as long as a node is reachable.

6.7.1 Trade-offs between Consistency and Availability

Lets’ discuss the trade-offs between Consistency and Availability.

1) Consistency vs. Availability:

 High Consistency, Low Availability: Systems that

prioritize strong consistency often require coordination

among nodes to ensure that updates are synchronized. This

can lead to reduced availability, especially during network

partitions or node failures. For example, a banking

application that requires all transactions to be immediately

377

reflected across all servers may temporarily deny access if

some nodes are unreachable.

 High Availability, Low Consistency: Conversely, systems

that prioritize availability might allow different nodes to

serve different versions of the data temporarily. For instance,

social media platforms often accept that users may see

outdated information briefly while ensuring that the system

remains operational. Users can still post updates even if

some nodes are behind in syncing.

2) CAP Theorem:

 The CAP theorem asserts that it is impossible for a

distributed data store to simultaneously provide all three

guarantees: Consistency, Availability, and Partition tolerance

(the system's ability to continue operating despite network

partitions). When a partition occurs, systems must choose

between maintaining consistency or availability. For

example, during a partition, a system may either block writes

(ensuring consistency) or allow writes to proceed at the risk

of creating conflicts later (ensuring availability).

3) Implications:

 User Experience: The choice between consistency and

availability can significantly impact user experience. In

applications where immediate accuracy is critical (e.g.,

financial transactions), consistency is essential. However, for

applications where user engagement is a priority (e.g.,

messaging apps), availability may take precedence.

 Conflict Resolution: When prioritizing availability over

consistency, developers need to implement conflict

resolution strategies to handle scenarios where different

nodes have diverging data. For example, in a distributed

database, if two nodes accept updates simultaneously, a

merge process must determine which update is the "correct"

one.

 Latency: Systems that emphasize strong consistency often

experience higher latency because they must wait for all

replicas to acknowledge the update before proceeding. On

the other hand, systems that favor availability may have

378

lower latency, as they do not need to wait for all nodes to

sync.

The trade-offs between consistency and availability in distributed

systems are complex and depend on the situation. Designers need to

carefully consider the specific needs of their applications, balancing

what users expect with what the system can handle. Choosing

between strong consistency and high availability often means

making compromises, and understanding these trade-offs is crucial

for creating effective distributed systems.

CHECK YOUR PROGRESS-I

1. State True or False:

a) Data replication in distributed systems improves availability

and fault tolerance.

b) In Primary-Backup replication, the backup servers can

directly handle client write operations.

d) Multi-Master Replication allows multiple servers to accept

write requests, enhancing performance.

e) Chain replication always ensures the latest data is available

for read requests.

2. Fill in the blanks:

a) In Multi-Master Replication, _________ is required to

handle conflicts that may arise from concurrent updates.

b) _________ replication allows data to be written and read

from any of the master servers.

c) In _________ replication, the update operation is considered

complete only after all nodes have been updated.

d) In chain replication, the _________ node handles write

requests.

e) Distributed replication provides _________ by having

multiple replicas to handle read requests.

379

6.8 SUMMING UP

 Data Replication means Storing data copies across multiple

servers for reliability, speed, and fault tolerance.

 Need for data replication are:

o System remains operational despite server failures,

o Backup copies reduce data loss risk,

o Data closer to users for faster access,

o Distributes workload across servers,

o Reduced risk of permanent data loss.

 The types of Data Replication are namely Primary-Backup

Replication, Multi-Master Replication, Chain Replication and

Distributed Replication.

 Object Replication means maintaining multiple copies of an

object across different nodes to enhance availability, fault

tolerance, scalability, and performance.

 Type of Object Replications are:

o Active Replication: All replicas process requests in

parallel; ensures high availability and consistency.

o Passive Replication: Primary replica processes requests;

backups receive updates and take over on failure.

o Lazy Replication: Updates propagated asynchronously;

temporary inconsistencies allowed improving

performance.

 In case of Strong Consistency, all replicas reflect the latest

update immediately.

 In Weak Consistency, replicas eventually converge to the same

state.

 In Causal Consistency, causal relationships are preserved

between updates.

 In Data-centric Replication, data is replicated across nodes to

improve availability and reduce latency. Uses consistency

models like strong, eventual, or causal.

 In Process-centric Replication, processes are replicated to

enhance fault tolerance. Can use active (all replicas run in

parallel) or passive (primary-backup) replication.

380

 The Consistency Models are namely:

o Strong Consistency: Ensures every read returns the latest

value; high latency and availability challenges.

o Sequential Consistency: Operations are seen in a specific

order, maintaining local order of each process.

o Causal Consistency: Maintains the order of causally

related operations; improves performance and flexibility.

o Weak Consistency: Allows temporary inconsistencies

across nodes; improves performance and availability but

requires applications to handle stale data.

6.9 ANSWERS TO CHECK YOUR PROGRESS

1. a) True b) False c) True d) True

2. a) conflict resolution b) Multi-Master c) synchronous

d) heade) load balancing

6.10 POSSIBLE QUESTIONS

Short Answer Type Questions:

1. What is the primary goal of data replication in distributed

systems?

2. How does Multi-Master replication improve system availability?

3. What is the main advantage of chain replication regarding read

operations?

4. How does synchronous replication differ from asynchronous

replication?

5. What is a key disadvantage of chain replication in terms of write

latency?

Long Answer Type Questions:

6. Explain the difference between active replication and passive

replication in distributed systems.

7. Describe the advantages and disadvantages of strong consistency

in distributed systems.

381

8. How does causal consistency differ from strong consistency and

sequential consistency?

9. Explain how weak consistency can improve system performance

and availability in distributed systems.

10. Compare and contrast data-centric replication and process-

centric replication in distributed systems.

6.11 REFERENCES AND SUGGESTED READINGS

1. "Distributed Systems: Concepts and Design" by George

Coulouris

2. “Designing Data-Intensive Applications" by Martin

Kleppmann

3. “Distributed Systems: Principles and Paradigms" by Andrew

Tanenbaum and Maarten Van Steen

×××

382

UNIT: 7

DISTRIBUTED FILE SYSTEMS

Unit Structure:

7. 1 Introduction

7. 2 Objectives

7. 3 Characteristics and their Key Features

7. 4 Challenges and Requirements

7. 5 Overview of File Service Architecture

7. 6 Distributed File System Requirements

7. 7 File Service Architecture

7. 8 File Accessing Models

7. 9 File Access Protocols

7. 10 Summing Up

7. 11 Model Questions

7.12 References and Suggested Readings

7. 1. Introduction

A Distributed File System (DFS) is a vital infrastructure component

that allows data to be stored and accessed from numerous file

servers and locations. It provides a seamless approach for programs

to handle isolated data as if it were stored locally, while also letting

users to access and exchange files across the network. The primary

goals of DFS are to improve data availability, improve performance,

and ensure data redundancy. This document describes the essential

characteristics, difficulties, and needs of DFS, including scalability,

fault tolerance, security, and access controls. It also provides an

overview of the file service architecture, including the structural

design and component interactions inside a DFS. It also covers

alternative file access models and protocols, such as Server Message

Block (SMB) and Andrew File System (AFS), which are critical for

efficient and safe file sharing in remote contexts. This

comprehensive reference is intended to provide a detailed

383

understanding of DFS, its architectural foundation, and the protocols

that enable its functionality.

7. 2. Objectives

1. Understanding the basic concepts and principles of

distributed file systems.

2. Exploring different architectures and designs of distributed

file systems.

3. Learning about the challenges and trade-offs in designing

and implementing distributed file systems.

4. Studying the various techniques and algorithms used in

distributed file systems for fault tolerance, scalability, and

performance.

5. Analyzing real-world examples of distributed file systems

and their use cases.

6. Discussing future trends and advancements in distributed file

systems technology.

7. 3. Characteristics and their key features

A distributed file system uses multiple servers to store files that

are accessible over networks. A distributed file system's primary

features offer the benefits, and they can be summed up as

follows by using a few example distributed file systems, like

Hadoop, Andrew File System, Coda, GFS, Sun NFS, and many

more. Characteristics and key features of distributed file systems

include
1
:

1. Transparency: This security mechanism conceals details of

one file system from others and from users. There are four

types:

a. Structure Transparency: Users are unaware of the

DFS's actual structure, including the number of file

servers and storage devices.

b. Access Transparency: Users can access their file

resources securely regardless of their location,

following the correct login process.

1
 https://www.techtarget.com/searchstorage/tip/Key-features-of-a-distributed-

file-system

384

c. Replication Transparency: Replicated files in

different nodes are hidden from other nodes within

the system.

d. Naming Transparency: File names do not indicate

their location and remain consistent even when files

move among storage nodes.

2. Performance: This measures the time required to process

user file access requests, including processor time, network

transmission time, and storage access time. The DFS

performance should be comparable to a local file system.

3. Scalability: The DFS should support the addition of storage

resources seamlessly, maintaining performance levels as

storage capacity scales up.

4. High Availability: The DFS must remain operational

despite issues like node failures or drive crashes. It should

quickly reconfigure to alternative storage resources to

maintain uninterrupted operations. Disaster Recovery (DR)

plans must include provisions for backing up and recovering

DFS servers and storage devices.

5. Data Integrity: The DFS must manage multiple access

requests to the same file storage systems without causing

disruptions or damage to file integrity.

6. High Reliability: To ensure data availability and

survivability during disruptions, the DFS should create

backup copies of files. This complements high availability

and ensures that files and databases are accessible when

needed.

7. Security: Data must be protected from unauthorized access

and cyber attacks. Encrypting data at rest and in transit

enhances security and protection.

8. User Mobility: This feature directs a user's file directory to

the node where the user logs in, ensuring seamless access to

their resources.

9. Namespaces: A namespace defines a repository of

commands and variables for specific activities. In DFS,

namespaces collect the necessary commands and actions for

the system's functionality. A single namespace supporting

multiple file systems creates a unified interface, making all

systems appear as a single file system to the user. This

reduces the likelihood of interference with the contents of

other namespaces.

385

STOP TO CONSIDER

Transparency:

 Structure Transparency: Users are unaware of

the DFS's actual structure.

 Access Transparency: Secure access to file

resources regardless of location.

 Replication Transparency: Replicated files in

different nodes are hidden from each other.

 Naming Transparency: File names remain

consistent and do not indicate location.

Performance: Measures time for processing user file

access requests, including processor, network, and storage

access times. Comparable to local file system

performance.

Scalability: Supports seamless addition of storage

resources while maintaining performance levels as

capacity scales up.

High Availability: Remains operational despite node

failures or drive crashes, with quick reconfiguration to

alternative resources. Disaster Recovery (DR) plans must

cover backups and recovery of DFS servers and storage

devices.

Data Integrity: Manages multiple access requests without

causing disruptions or damage to file integrity.

High Reliability: Creates backup copies to ensure data

availability and survivability during disruptions,

complementing high availability.

Security: Protects data from unauthorized access and

cyber attacks through encryption at rest and in transit.

User Mobility: Routes user's file directory to the node

where they log in, ensuring seamless access to resources.

Namespaces: Collects commands and actions for DFS

functionality, creating a unified interface that makes all

systems appear as a single file system to the user, reducing

interference with other namespaces.

386

Check Your Progress

Question 1. What is structure transparency in a distributed

file system, and why is it important?

Question 2. How does access transparency benefit users in a

distributed file system?

Question 3. Explain replication transparency and its

significance in a distributed file system.

Question 4. What is naming transparency, and how does it

maintain file name consistency?

Question 5. List the components that contribute to the

performance of a distributed file system.

Question 6. Describe how scalability is achieved in a

distributed file system.

Question 7. What mechanisms ensure high availability in a

distributed file system during node failures or drive

crashes?

Question 8. How does a distributed file system maintain

data integrity when multiple users access the same files?

Question 9. Explain the role of high reliability and how

backup copies contribute to it in a distributed file system.

Question 10. What security measures are implemented in a

distributed file system to protect data from unauthorized

access and cyber attacks?

Question 11. How does user mobility enhance the user

experience in a distributed file system?

Question 12. Define namespaces in the context of a

distributed file system and their role in providing a unified

user interface.

Question 13. Why is it essential for a distributed file system

to have performance comparable to a local file system?

Question 14. How do disaster recovery plans complement

high availability in a distributed file system?

Question 15. What are the benefits of having a single

namespace support multiple file systems in a distributed

file system?

7. 4. Challenges and Requ

The challenges of a d

Figure 1 The challe

Heterogeneity: Distributed s

and applications that can o

networks accessible over

devices of various types

operating systems (Wind

communicate and exchang

different languages can inte

addressed. Agreed-upon stan

necessary. Middleware, a so

abstraction, helps mask the h

languages, operating system

code that can be relocated an

Java applet.

STOP

 Diverse Environment

and operating systems.

 Middleware: Masks d

hardware. Example: Jav

387

 Requirements

 of a distributed system is shown in Figure 1.

allenges of a distributed system(1)

buted systems encompass a variety of services

can operate across different computers and

over the Internet. This includes hardware

ypes (PCs, tablets, etc.) running different

(Windows, iOS, etc.), which need to

change information. Programs written in

an interact only when these differences are

n standards, similar to Internet protocols, are

e, a software layer that provides programming

k the heterogeneity of networks, programming

ystems, and hardware. An example of mobile

ated and executed on different computers is a

STOP TO CONSIDER

ments: Operates across various hardware

tems.

asks differences in networks, languages, and

le: Java applet.

388

STOP TO CONSIDER

 Core Aspects: Confidentiality, integrity, and availability.

 Protection Measures: Encryption enhances security, but

vulnerabilities like DoS attacks remain.

STOP TO CONSIDER

 Failure Management: Detect, mask, and recover from

failures while maintaining functionality.

 Redundancy: Data replication to prevent loss and ensure

continuous operation.

Security: Security is a critical concern in distributed environments,

especially when using public networks. Security encompasses

confidentiality (protection against unauthorized access), integrity

(protection against data tampering), and availability (protection

against service disruption). Encryption techniques, such as those

used in cryptography, can help address these concerns, but they are

not foolproof. Distributed systems are vulnerable to threats like data

leakage, integrity breaches, denial-of-service (DoS) attacks, and

unauthorized access. DoS attacks, often conducted by botnets,

overwhelm a server with fake requests.

Fault Tolerance and Handling: Distributed systems must be fault-

tolerant, continuing to function normally even when some

components fail. This involves detecting failures (e.g., using

checksums), masking failures (e.g., retransmitting data upon

failure), recovering from failures (e.g., rolling back to a safe state),

and building redundancy (e.g., replicating data to prevent loss).

Failures are inevitable, and the system must be equipped to handle

them without significant disruption.

Concurrency: Concurrency issues arise when multiple clients

request a shared resource simultaneously. The results may depend

on the order of completion, necessitating synchronization.

Distributed systems lack a global clock, making synchronization

essential for the proper functioning of all components.

389

Scalability: Scalability challenges occur when a system cannot

handle a sudden increase in resources or users. Efficient architecture

and algorithms are crucial. Scalability has three primary dimensions:

 Size: The number of users and resources. Overloading can

be a problem.

 Geography: The distance between users and resources.

Communication reliability is a concern.

 Administration: Managing a growing number of nodes.

Administrative chaos can occur.

Openness and Extensibility: Distributed systems should have well-

defined interfaces that are openly available, facilitating easy

addition of new components or features. Openness issues arise when

previously published content is retracted. There is often no central

authority in open distributed systems, with different systems having

their own mediators. For example, platforms like Facebook and

Twitter allow developers to create interactive software through their

APIs.

STOP TO CONSIDER

 Interfaces: Well-defined and openly available for easy

additions.

 API Integration: Enables interactive software development.

STOP TO CONSIDER

 Efficient Growth: Manages increases in resources and

users.

 Key Dimensions:
o Size: Number of users and resources.

o Geography: Distance between users and resources.

o Administration: Managing a growing number of

nodes.

STOP TO CONSIDER

 Synchronization: Essential for managing simultaneous

access to shared resources.

390

STOP TO CONSIDER

 Seamless Migration: Tasks and applications move without

disrupting others.

 Optimal Performance: Balances load across resources.

Check Your Progress

Question 1. What are the challenges associated with heterogeneity

in distributed systems?

Question 2. How does middleware help manage heterogeneity in

distributed systems?

Question 3. What are the three core aspects of security in distributed

systems?

Question 4. How do encryption techniques enhance security in

distributed systems?

Question 5. What methods are used to detect failures in a distributed

system?

Question 6. How does redundancy improve fault tolerance in

distributed systems?

Question 7. What is the importance of having recovery mechanisms

in a distributed system?

Question 8. What role does synchronization play in managing

concurrency?

Question 9. How do distributed systems handle multiple

simultaneous access requests?

Question 10. What are the key dimensions of scalability in distributed

systems?

Question 11. What are common challenges faced when scaling up a

distributed system?

Question 12. How do well-defined interfaces benefit a distributed

system?

Question 13. What are the challenges associated with openness in

distributed systems?

Question 14. What is the significance of task migration in distributed

systems?

Question 15. How do distributed systems ensure load balancing

across resources?

Question 16. What are the benefits of effective load balancing in a

distributed environment?

Question 17. How does middleware function as a bridge in

distributed systems?

Question 18. How do namespaces contribute to the functioning of a

distributed file system?

Migration and Load Balancing: Tasks and applications should

operate independently to allow for seamless migration within the

system without affecting others. To optimize performance, the

system should distribute the load among available resources

effectively.

391

7. 5. Overview of File Service Architecture

In distributed system, File Service Architecture is an essential

component that enables users to access and manipulate files

remotely. It allows multiple users to access a shared file system over

a distributed network. The design of file service architecture is

based on the client server model. The client sends a request to server

and server process request and send back requested data. The client

Server model provides a scalable, fault-tolerance and reliable file

service architecture. Examples of File Service Architecture are

Network File System (NFS), Amazon S3, GlusterFS. The file

service architecture of distributed file system is shown in Figure 2
2
.

Figure 2 File Service Architecture of Distributed File System

The File Service Architecture consist of three primary component

1. Flat File Service: The flat file service is responsible for

implementing the operations on the content of file. A Unique

File Identification (UFIDs) are used to refer all requests for

the flat file service operations. The falt file service

operations includes Read, write, Create, Delete, GetAttribute

and SetAttribute.

2. Directory Service: Directory Service provides mapping

between file names and their UFIDs. Users and client

2
 https://medium.com/@ak_gaur/file-service-architecture-0b85d2051cba

392

STOP TO CONSIDER

 Flat File Service:

 Responsible for file content operations like Read,

Write, Create, Delete, GetAttribute, and SetAttribute.

 Uses Unique File Identifications (UFIDs) to manage

file requests efficiently.

 Directory Service:

 Provides mapping between file names and UFIDs.

 Enables navigation, file searching, and location

determination within the file system.

 Supports operations such as Lookup, AddName,

UnName, and GetName.

 Client Module:

 Software running on user devices that interacts with the

file service architecture.

 Acts as an intermediary between users and file

services.

 Initiates file operations requests, accesses directory

services for file location, and communicates with the

flat file service for data operations.

modules can use the directory service to navigate the file

system, search for files, and determine their location.

Directory service operations include Lookup, AddName,

UnNme and GetName.

3. Client Module: The client module is the software that runs

on user devices and interacts with the file service

architecture. It acts as an intermediary between users the file

services. The client module initiates requests for file

operations, accesses the directory service to locate files, and

communicates with the flat file service to read or write data.

393

Check Your Progress

Question 1. What are the key components of a distributed file

system architecture?

Question 2. How does middleware help in managing

heterogeneity in distributed systems?

Question 3. What are the core security concerns in distributed

systems, and how can they be addressed?

Question 4. Explain the concept of fault tolerance in

distributed systems. What strategies are commonly used?

Question 5. How does concurrency control work in

distributed file systems?

Question 6. What are the scalability challenges in distributed

systems, and how can they be mitigated?

Question 7. Discuss the importance of APIs in enabling

interaction between different components of distributed

systems.

Question 8. What role does synchronization play in ensuring

data consistency across distributed systems?

Question 9. How do distributed systems handle load

balancing and resource allocation?

Question 10. Explain the concept of namespaces in distributed

file systems and their significance.

7. 6. Distributed File System Requirements

Distributed File System Requirements refer to the set of criteria that

a distributed file system must meet in order to effectively store,

manage, and access files across multiple nodes in a network.

7.6.1. Needs and goals

A distributed file system (DFS) must meet several fundamental

needs and goals to effectively manage and provide access to files

across distributed environments. The primary objective is to ensure

efficient and reliable storage and retrieval of data. This involves

enabling seamless access to files from multiple locations while

prioritizing data integrity and security. The goal is to support diverse

applications and user needs by offering a unified and scalable

platform for storing and accessing data across distributed networks.

394

STOP TO CONSIDER

Needs and Goals

 Efficient and Reliable Storage and Retrieval: Ensuring data is

stored and retrieved effectively.

 Seamless Access: Providing smooth access to files from multiple

locations.

 Data Integrity and Security: Prioritizing the safety and

correctness of data.

 Support for Diverse Applications: Catering to various user needs

and applications.

 Unified and Scalable Platform: Offering a cohesive system that

can grow with data demands.

STOP TO CONSIDER

Scalability:

 Horizontal Scalability: Adding nodes or storage resources as

needed.

 Dynamic Scaling: Adjusting resources based on workload

growth.

 Maintaining Performance: Ensuring consistent performance

levels despite increasing data volumes.

 Supporting Growth: Accommodating expanding data storage

requirements over time.

7.6.2. Scalability

Scalability is a critical requirement for distributed file systems to

handle increasing data volumes and user demands effectively. The

system should be able to scale horizontally by adding nodes or

storage resources dynamically as the workload grows. This

scalability ensures that the DFS can accommodate expanding data

storage requirements and maintain performance levels without

disruptions, supporting the growth and evolution of organizational

data needs over time.

395

STOP TO CONSIDER

Fault Tolerance

 System Availability: Keeping the system operational despite

failures.

 Data Integrity: Preserving data accuracy and consistency.

 Redundancy Mechanisms: Implementing data replication and

failover procedures.

 Minimizing Downtime: Ensuring continuous operation of

services and applications.

7.6.3. Fault tolerance

Fault tolerance is essential to maintain system availability and data

integrity in the face of node failures or network issues. The

distributed file system must implement robust redundancy

mechanisms such as data replication and failover procedures. These

mechanisms ensure that data remains accessible and consistent even

if individual nodes fail, thereby minimizing downtime and ensuring

continuous operation of critical services and applications.

7.6.4. Data Consistency

Ensuring data consistency across distributed nodes is another crucial

requirement for a DFS. It involves managing concurrent access and

updates to files across multiple users and locations while

maintaining a consistent and accurate view of data. Distributed

locking mechanisms and transaction protocols are employed to

synchronize data access and updates, preventing conflicts and

maintaining data integrity throughout the distributed file system.

STOP TO CONSIDER

Data Consistency

 Concurrent Access Management: Handling multiple users

and locations accessing and updating files.

 Consistent Data View: Maintaining an accurate view of data

across the system.

 Synchronization: Using distributed locking mechanisms and

transaction protocols.

 Conflict Prevention: Preventing data access and update

conflicts.

396

STOP TO CONSIDER

Security and Access Controls

 Data Protection: Safeguarding against unauthorized access and

breaches.

 Authentication: Verifying user identities.

 Encryption: Protecting data during storage and

transmission.

 Access Control: Enforcing policies to control data access

and manipulation.

 Regulatory Compliance: Ensuring adherence to data

protection regulations.

7.6.5. Security and Access controls

Security is paramount in distributed file systems to protect data from

unauthorized access, tampering, and breaches. Robust

authentication, encryption, and access control mechanisms are

required to enforce data security policies effectively. These

measures ensure that only authorized users and applications can

access and manipulate data within the DFS, safeguarding sensitive

information and maintaining regulatory compliance.

7. 7. File Service Architecture

File Service Architecture in a distributed file system refers to the

way in which the file system is designed and structured to provide

file services across a network of computers. In the previous section,

it has been explained that this architecture typically involves a set of

components that work together to manage and store files in a

distributed manner.

397

7.7.1 Client-server vs. peer-to-peer models

Client-server and peer-to-peer are two common architectural models

used in distributed systems, including file systems. Here is a

comparison of the two models:

Figure 3 Client-server and peer-to-peer Model

(Source: https://systemdesignschool.io/blog/peer-to-peer-

architecture)

Client-Server Model: In the client-server model, there are two

types of entities: clients and servers.

 Clients request services or resources from servers, which

respond to these requests.

 Servers are typically centralized and dedicated to providing

specific services or resources to clients.

 Clients have limited responsibilities and rely on servers for

most tasks.

Examples of client-server architectures include web servers serving

web pages to web browsers, file servers providing file access to

client machines, and database servers handling database queries

from client applications.

398

Peer-to-Peer Model: In the peer-to-peer model, all participating

nodes (peers) in the network have the ability to act as both clients

and servers.

 Peers can directly communicate and share resources with

each other without the need for a centralized server.

 Peers collaborate and contribute resources to the network,

such as files, processing power, or bandwidth.

 The peer-to-peer model is decentralized, allowing for more

scalability and fault tolerance compared to client-server

architectures.

Examples of peer-to-peer architectures include file-sharing networks

like BitTorrent, decentralized cryptocurrency networks like Bitcoin,

and collaborative applications like Skype.

Table 1 Client Server vs. Peer-to-Peer model

Client-Server Model Peer-to-Peer Model

Client-server model is

centralized, with dedicated

servers providing services to

clients,

Peer-to-peer model is

decentralized, with peers sharing

resources directly with each

other.

servers have specialized roles

and responsibilities,

All peers have equal status and

can act as both clients and

servers.

easier to manage and control offers more scalability and fault

tolerance

commonly used for services that

require centralized control and

management

Suitable for distributed

applications that benefit from

decentralization and

collaboration.

Both client-server and peer-to-peer models have their advantages

and limitations, and the choice between them depends on the

specific requirements of the distributed system being designed.

399

Check Your Progress

Question 1. What are the key characteristics of the client-server

model in distributed systems?

Question 2. Describe how clients and servers interact in the

client-server architecture. Provide examples of applications

that use this model.

Question 3. What distinguishes the peer-to-peer model from

the client-server model in distributed file systems?

Question 4. Compare and contrast the centralized nature of the

client-server model with the decentralized nature of the peer-

to-peer model.

Question 5. Explain why the peer-to-peer model offers more

scalability and fault tolerance compared to the client-server

model.

Question 6. Give examples of applications or networks that

utilize the peer-to-peer architecture. How do these

applications benefit from decentralization?

Question 7. Discuss the advantages and disadvantages of using

a client-server architecture in distributed file systems.

Question 8. In what scenarios would you prefer to use a client-

server model over a peer-to-peer model, and vice versa?

Question 9. How does each model handle resource sharing and

management differently?

Question 10. What are the implications of choosing between a

client-server and a peer-to-peer architecture for ensuring

security and data integrity in distributed systems?

400

STOP TO CONSIDER

Function: Store metadata information about files and

directories in a distributed file system.

Metadata Includes: Attributes such as file names, sizes,

timestamps, permissions, file locations, and directory structures.

Responsibilities: Maintain the namespace of the file system.

Track the mapping between logical file names and physical file

locations.

Client Interaction: Clients contact metadata servers to perform

operations like file lookups, file creation, file deletion, and

directory listing.

Coordination: Help coordinate access to data stored across

multiple data servers in the system.

7.7.2 Role of metadata and data servers

Metadata and data servers play crucial roles in distributed file

systems and storage systems.

Metadata Servers:

 Metadata servers store metadata information about files and

directories in a distributed file system.

 Metadata includes attributes such as file names, sizes,

timestamps, permissions, file locations, and directory

structures.

 Metadata servers maintain the namespace of the file system

and track the mapping between logical file names and

physical file locations.

 Clients in the distributed system contact metadata servers to

perform operations like file lookups, file creation, file

deletion, and directory listing.

 Metadata servers help coordinate access to data stored across

multiple data servers in the system.

401

Data Servers:

 Data servers store the actual data contents of files in a distributed

storage system.

 Data servers are responsible for storing and retrieving data blocks

or chunks that make up files.

 Data servers handle read and write requests from clients,

providing access to the data stored on disk or in memory.

 Data servers may replicate data blocks for fault tolerance and

performance optimization.

 Data servers work in conjunction with metadata servers to ensure

data consistency and availability in the distributed system.

Check Your Progress

Question 1. What is the primary function of metadata

servers in a distributed file system?

Question 2. List some key attributes that are typically stored

in metadata by metadata servers. Why are these attributes

important?

Question 3. Explain the role of metadata servers in

maintaining the namespace of a distributed file system.

Why is namespace management crucial?

Question 4. How do clients interact with metadata servers in

a distributed file system? Provide examples of operations

that clients perform via metadata servers.

Question 5. Discuss the coordination role of metadata

servers in accessing data stored across multiple data

servers. Why is coordination necessary in distributed file

systems?

402

Check Your Progress

Question 1. What is the primary role of data servers in a

distributed storage system?

Question 2. Explain how data servers manage the storage

and retrieval of file data in distributed file systems.

Question 3. What are data blocks or chunks, and how do

data servers handle them in distributed storage systems?

Question 4. Discuss the responsibilities of data servers in

handling read and write requests from clients. How do they

ensure data availability and reliability?

Question 5. Why is data replication important for data

servers in distributed file systems? How does replication

contribute to fault tolerance and performance optimization?

Question 6. Describe the collaboration between data servers

and metadata servers in ensuring data consistency across a

distributed system.

Key Roles of Metadata and Data Servers:

1. Namespace Management: Metadata servers manage the

namespace of the file system, while data servers store the

actual data contents of files.

2. Metadata Access: Clients interact with metadata servers to

access file metadata information, while data servers handle

read and write operations for file data.

3. Coordination: Metadata servers coordinate access to data

stored across multiple data servers in the distributed system.

4. Fault Tolerance: Data servers may replicate data blocks for

fault tolerance, while metadata servers help maintain

consistency and availability of metadata information.

5. Performance Optimization: Data servers optimize data

access by storing and retrieving data efficiently, while

metadata servers help optimize file system operations.

In summary, metadata servers handle metadata information

about files and directories in a distributed file system, while data

servers store and manage the actual data contents of files.

403

Together, they play essential roles in ensuring efficient and

reliable access to data in distributed storage systems.

STOP TO CONSIDER

Namespace Management:

 Metadata Servers: Manage the namespace of the file system.

 Data Servers: Store the actual data contents of files.

Metadata Access:

 Metadata Servers: Clients interact with these servers to

access file metadata information.

 Data Servers: Handle read and write operations for file data.

Coordination:

 Metadata Servers: Coordinate access to data stored across

multiple data servers in the distributed system.

Fault Tolerance:

 Data Servers: May replicate data blocks for fault tolerance.

 Metadata Servers: Help maintain consistency and availability

of metadata information.

Performance Optimization:

 Data Servers: Optimize data access by storing and retrieving

data efficiently.

 Metadata Servers: Help optimize file system operations.

404

7.7.3 Communication protocols

A distributed system consists of interconnected computers, known

as nodes, each performing specific tasks and collaborating to

achieve a common objective. Such systems are designed to continue

functioning even if some nodes fail, and these systems are referred

to as fault-tolerant distributed systems. The primary types of faults

in these systems are: crash (a node stops working), omission (a node

fails to perform an expected action or to send/receive data), and

Byzantine failure (a node exhibits malicious behavior). To achieve

their goals, nodes in a distributed system communicate with one

another, exchanging information through methods like messaging or

shared memory, and coordinate their activities based on the shared

information. This communication can be synchronous,

asynchronous, or a hybrid of both
3
.

3
 https://www.linkedin.com/pulse/communication-protocols-distributed-

systems-arthur-sergeyan/

Check Your Progress

Question 1. What is the primary function of metadata servers in

a distributed file system?

Question 2. How do clients interact with metadata servers, and

what type of information do they typically request from them?

Question 3. Explain the role of data servers in fault tolerance

within distributed file systems. How does data replication

contribute to this?

Question 4. What is namespace management, and why is it

important in the context of distributed file systems?

Question 5. Discuss the coordination role of metadata servers in

accessing data across multiple data servers. Why is

coordination necessary?

405

1. Synchronous Communication: In this type of

communication, nodes interact in a tightly coordinated

manner. They wait for each other to send and receive

messages before proceeding. This ensures that all nodes are

always on the same page, but it can be slower due to the

waiting times.

2. Asynchronous Communication: Nodes operate more

independently, sending and receiving messages without

waiting for responses. This can lead to faster overall

performance, but it requires more complex mechanisms to

ensure that all nodes stay synchronized and that the system

remains consistent.

STOP TO CONSIDER

 Nodes operate independently, sending and receiving

messages without waiting for responses.

 Can lead to faster overall performance.

 Requires complex mechanisms to ensure synchronization

and system consistency.

STOP TO CONSIDER

 Nodes interact in a tightly coordinated manner.

 Nodes wait for each other to send and receive

messages before proceeding.

 Ensures all nodes are synchronized, but can be slower

due to waiting times.

STOP TO CONSIDER

Types of Faults:

 Crash: A node stops working.

 Omission: A node fails to perform an expected action or

to send/receive data.

 Byzantine Failure: A node exhibits malicious behavior.

406

3. Hybrid Communication: Many distributed systems use a

mix of synchronous and asynchronous communication to

balance the need for coordination with the need for speed

and efficiency.

7.7.4 Data Transfer Mechanisms

Data transfer mechanisms in distributed file systems (DFS) are

crucial for ensuring efficient, reliable, and scalable access to files

across multiple nodes. These systems distribute data storage and

access across a network of computers, enabling high availability and

performance. Here is some key data transfer mechanisms used in

distributed file systems,

1. Chunk-Based Data Storage and Transfer: Distributed file

systems often break files into fixed-size chunks or blocks. These

chunks are stored on different nodes, and data transfer involves

reading/writing these chunks. Example: Google File System

(GFS)(2).

Check Your Progress

Question 1. What are the primary types of faults that can occur

in fault-tolerant distributed systems? Explain each type

briefly.

Question 2. Describe synchronous communication in

distributed systems. What are the advantages and

disadvantages of this communication model?

Question 3. Explain asynchronous communication in

distributed systems. What are the benefits and challenges

associated with this approach?

Question 4. Why do many distributed systems opt for a hybrid

communication approach? Provide examples of scenarios

where hybrid communication might be advantageous.

Question 5. How do nodes in a distributed system coordinate

their activities through communication protocols?

407

2. Replication: To ensure reliability and fault tolerance, chunks are

often replicated across multiple nodes. The replication

mechanism ensures data availability even if some nodes fail.

Example: Hadoop Distributed File System (HDFS) (3)

3. Data Placement and Balancing: DFS uses algorithms to decide

where to place chunks to optimize for load balancing and

network traffic minimization. Example: Ceph (4).

4. Metadata Management: Efficient metadata management is

crucial for tracking the locations of chunks and ensuring quick

access to files. Metadata servers handle this information and

respond to client queries. Example: Lustre File System, (5)

5. Client Caching: Clients often cache frequently accessed data

locally to reduce network traffic and improve access speed.

STOP TO CONSIDER

 Efficient metadata management is crucial for tracking the

locations of chunks and ensuring quick access to files.

 Metadata servers handle this information and respond to client

queries.

STOP TO CONSIDER

 DFS uses algorithms to decide where to place chunks to

optimize for load balancing and network traffic minimization.

STOP TO CONSIDER

 Chunks are replicated across multiple nodes to ensure

reliability and fault tolerance, maintaining data availability

even if some nodes fail.

STOP TO CONSIDER

 Files are broken into fixed-size chunks or blocks.

 These chunks are stored on different nodes.

 Data transfer involves reading/writing these chunks.

408

Caching mechanisms ensure consistency and coherency of data.

Example: AFS (Andrew File System). (6)

6. Data Striping: Data striping distributes chunks of data across

multiple disks or nodes to improve throughput by parallelizing

read/write operations. Example: IBM GPFS (General Parallel

File System) (7)

7. Consistency Protocols: Ensuring data consistency across replicas

is a key challenge. Distributed file systems implement various

consistency protocols to handle concurrent access and updates.

Example: Coda File System. (8)

8. Erasure Coding: Erasure coding is used to provide fault

tolerance with lower storage overhead compared to replication.

It divides data into fragments, expands it with redundant data

pieces, and stores these pieces across different locations.

Example: Microsoft Azure Storage. (9)

STOP TO CONSIDER

 Ensuring data consistency across replicas is a key challenge.

 Distributed file systems implement various consistency protocols to

handle concurrent access and updates.

STOP TO CONSIDER

 Data striping distributes chunks of data across multiple disks or

nodes to improve throughput by parallelizing read/write

operations.

STOP TO CONSIDER

 Clients often cache frequently accessed data locally to

reduce network traffic and improve access speed.

 Caching mechanisms ensure consistency and coherency of

data.

409

7. 8. File Accessing Models:

File Accessing Models refer to the different methods or approaches

used to control and manage access to files in a file system. These

models define the rules and permissions governing how users or

processes can interact with files, read or write data, and perform

operations on files stored in the file system. The file accessing

model essentially depends on:

 The unit of data access/transfer.

 The method utilized for accessing remote files.

Check Your Progress

Question 1. What are the primary types of faults that can occur

in fault-tolerant distributed systems? Explain each type

briefly.

Question 2. Describe synchronous communication in

distributed systems. What are the advantages and

disadvantages of this communication model?

Question 3. Explain asynchronous communication in

distributed systems. What are the benefits and challenges

associated with this approach?

Question 4. Why do many distributed systems opt for a hybrid

communication approach? Provide examples of scenarios

where hybrid communication might be advantageous.

Question 5. How do nodes in a distributed system coordinate

their activities through communication protocols?

STOP TO CONSIDER

 Erasure coding is used to provide fault tolerance with lower

storage overhead compared to replication.

 It divides data into fragments, expands it with redundant data

pieces, and stores these pieces across different locations.

410

Based on the unit of data access, the following file access models

may be used to access specific files:

1. File-Level Transfer Model: In the file-level transfer model, the

entire file is transferred whenever a specific action requires the

file data. The entire document is sent across the distributed

computing network between the client and server. This model

has better scalability and is efficient.

2. Block-Level Transfer Model: In the block-level transfer model,

file data is transferred between the client and server in units of

file blocks. The unit of data transfer in this model is file blocks.

This model may be utilized in a distributed computing

environment with several diskless workstations.

3. Byte-Level Transfer Model: In the byte-level transfer model, file

data is transferred between the client and server in units of bytes.

The unit of data transfer in this model is bytes. The byte-level

transfer model offers greater flexibility compared to other file

transfer models because it allows the recovery and management

of an inconsistent subset of a file. The major disadvantage of

this model is the complexity in cache management due to

variable-length data for different access requests.

4. Record-Level Transfer Model: The record-level transfer model

is used in scenarios where file contents are organized as records.

In this model, file data is transferred between the client and

server in units of records. The unit of data transfer in the record-

level transfer model is records.

411

Check Your Progress

Question 1. Compare and contrast the file-level transfer model

with the block-level transfer model. What are the advantages

and disadvantages of each?

Question 2. Explain the flexibility offered by the byte-level

transfer model compared to other file transfer models. What

challenges does it pose for cache management?

Question 3. In which scenarios would the record-level transfer

model be most beneficial? Discuss its advantages in specific

use cases.

Question 4. How does the choice of data access unit (file, block,

byte, or record) impact the performance and efficiency of file

access in distributed computing environments?

STOP TO CONSIDER

File-Level Transfer Model: In this model, the entire file is

transferred whenever a specific action requires the file data. The

entire document is sent across the distributed computing network

between the client and server. This model has better scalability and

is efficient.

Block-Level Transfer Model: Here, file data is transferred

between the client and server in units of file blocks. This model

may be utilized in a distributed computing environment with

several diskless workstations.

Byte-Level Transfer Model: In this model, file data is transferred

between the client and server in units of bytes. The byte-level

transfer model offers greater flexibility because it allows the

recovery and management of an inconsistent subset of a file.

However, it has the disadvantage of complexity in cache

management due to variable-length data for different access

requests.

Record-Level Transfer Model: This model is used in scenarios

where file contents are organized as records. File data is

transferred between the client and server in units of records.

412

7.8.1. Remote access

In the remote service model, handling a client’s request is performed

at the server’s hub. The client’s request for file access is passed

across the network as a message to the server. The server machine

performs the access request, and the result is sent back to the client.

Advantages:

1. Simplifies consistency management by keeping a single

authoritative copy at the server.

2. Useful when the client’s main memory is limited.

Disadvantages:

1. Increases server load and network traffic, potentially

compromising performance.

2. Remote access handling across the network is inherently

slower.

3. Transmitting a series of responses to specific requests results

in higher network overhead.

This model is essentially an extension of the local file system

interface across the network, ensuring that the server maintains a

consistent copy of the data.

STOP TO CONSIDER

 In the remote service model, handling a client’s request is performed at the

server’s hub.

 The client’s request for file access is passed across the network as a

message to the server.

 The server machine performs the access request, and the result is sent back

to the client.

 Advantages: Simplifies consistency management by keeping a single

authoritative copy at the server, and is useful when the client’s main

memory is limited.

 Disadvantages: Increases server load and network traffic, potentially

compromising performance; remote access handling across the network is

inherently slower; transmitting a series of responses to specific requests

results in higher network overhead.

 This model is essentially an extension of the local file system interface

across the network, ensuring that the server maintains a consistent copy of

the data.

413

7.8.2. Caching and Sharing

The data-caching model reduces network traffic by caching data

obtained from the server. This exploits the locality aspect observed

in file accesses. A replacement policy, such as Least Recently Used

(LRU), is employed to keep the cache size limited.

Advantages:

1. Remote access can be served locally, making access faster.

2. Reduces network traffic and server load, improving

scalability.

3. Network overhead is less significant when transmitting large

amounts of data compared to the remote service model.

 Disadvantages:

1. Maintaining consistency can be challenging. Performance is

better with fewer writes and worse with more frequent

writes.

2. Caching is more effective for machines with disks or large

main memory.

3. The lower-level machine interface is different from the

upper-level user interface.

Check Your Progress

Question 1. How does the remote service model simplify

consistency management in distributed file systems?

Question 2. What are the primary disadvantages of handling

remote access across a network?

Question 3. Explain the concept of network overhead in the

context of remote service models.

Question 4. What advantages does the remote service model

offer when the client’s main memory is limited?

Question 5. Compare the performance implications of remote

access handling versus local file system operations.

414

Check Your Progress

Question 1. How does the data-caching model reduce network

traffic in distributed systems?

Question 2. What role does the Least Recently Used (LRU)

policy play in caching?

Question 3. List two advantages of using data caching in

distributed systems.

Question 4. What are two challenges associated with

maintaining consistency in a caching system?

Question 5. Explain why caching may be more effective for

machines with disks or large main memory.

STOP TO CONSIDER

 The data-caching model reduces network traffic by caching

data obtained from the server, exploiting the locality aspect

observed in file accesses.

 A replacement policy, such as Least Recently Used (LRU), is

employed to keep the cache size limited.

 Advantages: Remote access can be served locally, making

access faster; reduces network traffic and server load,

improving scalability; and network overhead is less significant

when transmitting large amounts of data compared to the

remote service model.

 Disadvantages: Maintaining consistency can be challenging,

with performance being better with fewer writes and worse

with more frequent writes; caching is more effective for

machines with disks or large main memory; and the lower-

level machine interface is different from the upper-level user

interface.

415

7.8.3. Benefit of Data-Caching Model over the Remote Service

Model

The data-caching model offers the potential for improved

performance and greater system scalability. It reduces network

traffic, contention for the network, and contention for the file

servers. Consequently, almost all distributed file systems implement

some form of caching.

Example: NFS primarily uses the remote service model but adds

caching for better performance.

Check Your Progress

Question 1. What potential advantages does the data-caching

model offer over the remote service model?

Question 2. How does caching reduce network traffic in

distributed file systems?

Question 3. Name one specific benefit of caching mentioned in

the text.

Question 4. Why do almost all distributed file systems implement

some form of caching?

Question 5. Which distributed file system primarily uses the

remote service model but incorporates caching for performance

enhancement?

STOP TO CONSIDER

 The data-caching model offers the potential for improved

performance and greater system scalability.

 It reduces network traffic, contention for the network, and

contention for the file servers.

 Consequently, almost all distributed file systems implement

some form of caching.

 Example: NFS primarily uses the remote service model but

adds caching for better performance.

416

7. 9. File Access Protocols:

File access protocols are essential communication protocols that

define how data is accessed, transferred, and managed between

clients and servers in a networked file system environment. These

protocols enable users to access and manipulate files stored on

remote servers as if they were stored locally. Here are five common

file access protocols used in networking:

7.9.1. Network File System (NFS)

NFS, or Network File System, is a protocol for a distributed file

system developed by Sun Microsystems in 1984. It operates on a

client/server architecture, consisting of a client program, a server

program, and a protocol that facilitates communication between the

client and server.

NFS allows users to access data and files remotely over a network,

making it possible for users to manipulate files as if they were

stored locally. It is an open standard, enabling easy implementation

by any user. The protocol is built on the ONC RPC system.

NFS is particularly useful in computing environments where

centralized management of resources and data is essential. It uses

both the Transmission Control Protocol (TCP) and User Datagram

Protocol (UDP) to access and deliver data and files.

NFS operates on all IP-based networks and is implemented in

client/server applications where the NFS server handles

authorization, authentication, and client management. This protocol

is commonly used with operating systems such as Apple Mac OS,

Unix, and Unix-like systems including Solaris, Linux, FreeBSD,

and AIX.

417

7.9.2. Common Internet File System (CIFS)

The Common Internet File System (CIFS) is a network file-sharing

protocol that provides shared access to files, printers, serial ports,

and various communications between nodes on a network.

Originally developed by IBM and later enhanced by Microsoft,

CIFS is an extension of the Server Message Block (SMB) protocol,

which allows programs to request files and services from servers

over a network. CIFS operates over TCP/IP, making it suitable for

use both over the internet and within local area networks (LANs).

Check Your Progress

Question 1. When was NFS developed, and by whom?

Question 2. What is the basic architecture of NFS?

Question 3. Name two protocols used by NFS for data access

and delivery.

Question 4. What role does the NFS server play in the

client/server setup?

Question 5. Which computing environments find NFS

particularly useful, and why?

Question 6. List two operating systems compatible with NFS.

STOP TO CONSIDER

 NFS, developed by Sun Microsystems in 1984, is a protocol

for distributed file systems operating on a client/server

architecture.

 It allows remote access to data and files over a network,

facilitating manipulation as if stored locally.

 NFS is an open standard built on the ONC RPC system,

supporting both TCP and UDP for data access.

 It's widely used in environments requiring centralized resource

management and is compatible with various operating systems

like Apple Mac OS, Unix, Solaris, Linux, FreeBSD, and AIX.

418

CIFS operates on a client-server model where clients request file

access and other services from servers. It supports essential features

such as file sharing, printer sharing, and named pipes for inter-

process communication. The protocol includes mechanisms for

secure access, including user authentication and permission

management, ensuring data integrity and coherence when multiple

users access and update the same file.

One of the primary advantages of CIFS is its interoperability across

different operating systems, including Windows, Linux, and Unix.

This cross-platform compatibility simplifies resource sharing within

networks. Additionally, CIFS is well-documented and standardized,

supporting a wide range of implementations. However, CIFS can be

slower than some other file-sharing protocols, especially over wide

area networks (WANs), and earlier versions had security

vulnerabilities. Managing permissions and shares can also be

complex in larger environments.

CIFS is widely used in enterprise networks for sharing files and

printers and facilitates cross-platform file sharing between different

operating systems. While CIFS is often used interchangeably with

SMB, it specifically refers to the version of SMB used in Windows

NT 4.0 and later. Modern implementations of SMB, such as SMB2

and SMB3, offer enhanced performance and security features,

improving upon CIFS.

An example implementation of CIFS is mapping a network drive in

Windows, allowing users to access shared folders and files on a

remote server as if they were on their local machine. Another

example is Samba, an open-source implementation of the

SMB/CIFS protocol, enabling Unix and Linux systems to interact

with Windows clients and servers. In summary, CIFS is a robust and

versatile protocol widely used for network file and resource sharing

across different operating systems and network configurations, with

continued evolution and integration into modern SMB versions

ensuring its relevance in today’s networked environments.

419

Table 2. Difference between NFS and CIFS

NFS CIFS

1. NFS is an abbreviation of the

Network File System.

1. CIFS is an abbreviation of the

Common Internet File system.

2. This protocol is used for

sharing the files by Unix and

Linux Operating systems.

2. This protocol is used for

sharing the files by Windows

Operating systems.

3. It is highly scalable. 3. It is low scalable.

4. The speed of communication is

fast.

4. The speed of communication

is medium.

5. The network File system is not

a secure protocol.

5. Common Internet File System

is more secure than the Network

File System.

6. NFS is not a reliable protocol. 6. CIFS is a reliable protocol.

7. This protocol does not provide

the session.

7. This protocol provides the

sessions.

8. This protocol is easy to 8. Its implementation is

STOP TO CONSIDER

 CIFS is a network file-sharing protocol developed by IBM and

enhanced by Microsoft, extending the Server Message Block

(SMB) protocol.

 It enables shared access to files, printers, and other resources

across nodes on a network, operating over TCP/IP for use in

LANs and over the internet.

 CIFS operates on a client-server model, supporting features

like file sharing, printer sharing, and secure access with

authentication and permission management.

 It offers interoperability across Windows, Linux, and Unix

systems, simplifying resource sharing.

 Despite earlier security vulnerabilities and potential

performance issues over WANs, CIFS remains widely used in

enterprise networks for its robust file-sharing capabilities and

cross-platform support.

420

implement and set up. complex.

9. This protocol uses 111 port for

both TCP and UDP.

9. This protocol uses 139 and

445 TCP ports and 137 and 138

UDP ports.

STOP TO CONSIDER

 Name and Purpose: NFS: Network File System, used by Unix

and Linux whereas CIFS: Common Internet File System, used

by Windows.

 Scalability: NFS: Highly scalable whereas CIFS: Low

scalability.

 Speed of Communication: NFS: Fast communication speed.

whereas CIFS: Medium communication speed.

 Security: NFS: Not a secure protocol. whereas CIFS: More

secure than NFS.

 Reliability: NFS: Not considered highly reliable. whereas CIFS:

Considered a reliable protocol.

 Session Support: NFS: Does not provide sessions. whereas

CIFS: Provides sessions.

 Ease of Implementation: NFS: Relatively easy to implement and

set up. whereas CIFS: Implementation can be complex.

 Port Usage: NFS: Uses port 111 for both TCP and UDP.

whereas CIFS: Uses TCP ports 139 and 445, and UDP ports 137

and 138.

421

7.9.3. Server Message Block protocol (SMB protocol)

The Server Message Block (SMB) protocol is a client-server

communication protocol used for sharing access to files, printers,

serial ports, and other resources on a network. It also supports

transaction protocols for interprocess communication. Initially

developed by IBM in the 1980s, SMB has become a widely

implemented solution, particularly in Windows environments, but it

is also supported by Linux and macOS.

SMB allows applications and users to access files on remote servers

and connect to other resources like printers and named pipes. It

provides secure and controlled methods for opening, reading,

moving, creating, and updating files on remote servers. As a

response-request protocol, SMB enables network communications

where the client sends a request and the server responds,

establishing a two-way communication channel.

Originally, SMB ran on top of Network Basic Input/Output System

over TCP/IP (NetBIOS over TCP/IP, or NBT) and used ports 137,

138, and 139. Nowadays, SMB runs directly over TCP/IP using port

445. Systems that do not support SMB directly over TCP/IP require

NetBIOS over a transport protocol like TCP/IP.

Check Your Progress

Question 1. What does CIFS stand for, and what protocol is it an

extension of?

Question 2. Describe the client-server model used by CIFS.

Question 3. What are two primary advantages of CIFS?

Question 4. How does CIFS ensure data integrity and coherence

when multiple users access the same file?

Question 5. Name one disadvantage of CIFS mentioned in the text.

Question 6. Differentiate between NFS and CIFS based on

scalability.

Question 7. Which modern implementations of SMB have enhanced

upon CIFS, and how?

422

List of SMB Protocol Dialects:

Over the years, SMB has evolved through several dialects, each

introducing improvements in capabilities, scalability, security, and

efficiency:

 SMB 1.0 (1984): Introduced by IBM for DOS, featuring

opportunistic locking to reduce network traffic.

 CIFS (1996): Microsoft's SMB dialect introduced in Windows 95,

supporting larger file sizes and direct transport over TCP/IP.

 SMB 2.0 (2006): Released with Windows Vista and Windows

Server 2008, enhancing performance and scalability.

 SMB 2.1 (2010): Introduced with Windows Server 2008 R2 and

Windows 7, featuring improved caching and energy efficiency.

 SMB 3.0 (2012): Came with Windows 8 and Windows Server

2012, adding significant upgrades like SMB Multichannel, SMB

Direct, and SMB Encryption.

 SMB 3.02 (2014): Included performance updates and the option to

disable CIFS/SMB 1.0.

 SMB 3.1.1 (2015): Released with Windows 10 and Windows

Server 2016, featuring advanced encryption and protection against

man-in-the-middle attacks.

Despite its widespread use, SMB has faced security challenges. For

instance, the WannaCry and Petya ransomware attacks in 2017

exploited a vulnerability in SMB 1.0. Microsoft released a patch,

and experts recommended disabling SMB 1.0/CIFS. Newer versions

like SMB 3.0 and 3.1.1 offer enhanced security features such as

end-to-end encryption and pre-authentication integrity.

423

Check Your Progress

Question 1. What is the Server Message Block (SMB) protocol

used for?

Question 2. Which company initially developed SMB, and in

what decade?

Question 3. What is the current port used by SMB over

TCP/IP?

Question 4. Name two improvements introduced in SMB 3.0

over previous versions.

Question 5. What were the security vulnerabilities associated

with SMB 1.0 that led to significant cyberattacks?

Question 6. How does SMB facilitate network communications

between clients and servers?

Question 7. What is the significance of SMB 2.0 in terms of

enhancements?

STOP TO CONSIDER

 The Server Message Block (SMB) protocol is a client-server

communication protocol used for sharing access to files,

printers, and other resources on a network.

 Initially developed by IBM and widely implemented in

Windows environments, SMB also has support in Linux and

macOS.

 It facilitates secure and controlled access to remote resources,

allowing applications to perform operations like opening,

reading, and updating files over a network.

 SMB operates over TCP/IP, primarily using port 445, and has

evolved through various dialects (SMB 1.0 to SMB 3.1.1),

each introducing improvements in capabilities, security, and

efficiency.

424

7.9.4. Andrew File System (AFS)

The Andrew File System (AFS), created by Morris et al. in 1986 at

Carnegie Mellon University (CMU), is a distributed computing

environment designed to facilitate campus-wide computer and

information system usage. AFS allows client workstations in various

locations to access server files easily, providing a consistent and

location-independent file namespace through a network of reliable

servers.

Key Features and Functionality

 Location-Independent Namespace: AFS offers a

homogeneous file namespace that is transparent to the

location, accessible to all client workstations.

 Distributed Computing Infrastructure (DCI): Users log

into workstations within the DCI to share data and

applications.

 Client-Server Communication: AFS reduces the frequency

of client-server communications by transferring entire files

between servers and clients and caching them locally until

updates are available.

 Local Caching: Servers respond to requests by storing data

in the client’s local cache, improving speed and efficiency in

distributed networks.

Architecture of AFS

Vice

 Role: Vice refers to the group of trustworthy servers that

provide the homogeneous, location-transparent file

namespace.

 Implementation: Uses the Berkeley Software Distribution

(BSD) of Unix on both clients and servers.

 Operation: Each workstation’s operating system intercepts

file system calls and redirects them to a user-level process

known as Venus.

425

Venus

 Role: Venus is the mechanism that caches files from Vice

and updates the server with new versions of those files.

 Operation: Venus communicates with Vice only when files

are opened or closed. It reads and writes individual bytes

directly on the cached copy, bypassing Vice for most

operations.

 Scalability: Venus performs most of the work to minimize

the load on Vice, which focuses on maintaining the file

system’s integrity, availability, and security.

Components of AFS Networks

 Clients: Any computer that requests files from AFS servers

on the network.

 Local Cache: Once a server responds to a file request, the

file is saved in the client’s local cache and displayed to the

user.

 Callback Mechanism: The client sends modifications to the

server via callbacks, and frequently accessed files are stored

in the local cache for rapid access.

Implementation of AFS

 Client and Server Communication: Client processes

interact with the UNIX kernel through standard system calls.

The kernel is modified to identify and route requests to Vice

files to the workstation’s Venus client process.

 File Retrieval and Caching: Venus contacts the server for

missing volumes in the cache, retrieves the file or directory,

and caches a copy on the local disk.

 Security and Authentication: Establishing a secure

connection is essential for accessing files. Venus returns the

cached file to the kernel, which then opens it for the client

process.

 Local Directory for Cache: The client cache is a local

directory on the workstation’s disk, containing placeholder

files for cache entries.

Advantages of AFS

 Longevity of Shared Files: Files that are not frequently

updated can be cached for a long time.

426

STOP TO CONSIDER

 Creation and Purpose: Created in 1986 at Carnegie Mellon University

(CMU) to support campus-wide computing and information system usage.

 Location-Independent Namespace: AFS provides a homogeneous file

namespace accessible to client workstations regardless of location.

 Distributed Computing Infrastructure (DCI): Users within the DCI log

into workstations to share data and applications.

 Client-Server Communication: AFS transfers entire files between

servers and clients, minimizing client-server communications and caching

files locally until updates are available.

 Architecture Components:

 Vice: Group of trustworthy servers providing a location-transparent

file namespace.

 Venus: Client-side mechanism caching files from Vice and updating

server copies.

 Components of AFS Networks:

 Clients: Computers requesting files from AFS servers.

 Local Cache: Stores requested files locally for efficient access.

 Callback Mechanism: Ensures server updates for modified files via

callbacks.

 Implementation Details:

 Client and Server Communication: Uses UNIX system calls,

routing requests to Venus client processes.

 File Retrieval and Caching: Venus retrieves files from servers and

caches them locally.

 Security and Authentication: Establishes secure connections for file

access.

 Local Cache Directory: Stores cached files on the workstation's

disk.

 Advantages:

 Longevity of Shared Files: Caches files not frequently updated for

extended periods.

 Ample Caching Storage: Allocates significant storage for file

caching.

 Efficient Working Set: Ensures frequently accessed files remain

cached for quick access.

 Ample Caching Storage: AFS allocates significant storage

for caching files.

 Efficient Working Set: Ensures that a user's frequently

accessed files remain in the cache for quick access.

In summary, the Andrew File System is a scalable and efficient

distributed file system that uses local caching and a transparent file

namespace to streamline file access and reduce network

communication overhead.

427

7. 10. Summing Up

Distributed File Systems (DFS) have emerged as a critical

infrastructure for modern computing environments, enabling

seamless data storage and access across numerous servers and

locations. These systems provide the foundation for programs to

handle isolated data as if it were stored locally while facilitating

secure and efficient file sharing over networks. The primary

objectives of DFS are to enhance data availability, improve

performance, and ensure data redundancy. These goals are achieved

through the system's key characteristics, which include

transparency, high performance, scalability, high availability, data

integrity, reliability, security, user mobility, and unified

namespaces. Transparency in DFS, divided into structure, access,

replication, and naming transparency, hides the complexities of the

underlying system architecture from users, allowing for a more user-

friendly experience. High performance in DFS ensures that the time

taken to process user file access requests remains comparable to that

of local file systems. Scalability is another crucial feature, enabling

the system to seamlessly integrate additional storage resources while

maintaining optimal performance levels. High availability ensures

that the system remains operational despite potential hardware or

software failures, employing disaster recovery plans to back up and

recover servers and storage devices. Data integrity is maintained

through mechanisms that manage multiple access requests without

disrupting or damaging file contents. Reliability is achieved by

creating backup copies of files, ensuring data availability even

during disruptions.

Security in DFS is paramount, involving robust measures to protect

data from unauthorized access and cyber threats. Encryption

techniques, both for data at rest and in transit, enhance this security.

428

User mobility is another essential feature, allowing users to access

their file directories from any node within the network seamlessly.

Unified namespaces provide a single interface for multiple file

systems, making the entire system appear as a single file system to

the user and reducing the risk of interference. However, the

implementation of DFS is not without challenges. Heterogeneity,

which involves the variety of services and applications operating

across different hardware and networks, requires standardized

protocols and middleware to mask differences and facilitate

communication. Security concerns are significant, especially when

using public networks, necessitating encryption and robust access

controls to protect against data breaches, tampering, and denial-of-

service attacks. Fault tolerance is essential to maintain system

functionality in the face of component failures, employing

techniques such as data replication and failover procedures.

Concurrency issues arise from multiple clients accessing shared

resources simultaneously, requiring synchronization to ensure

proper operation. Scalability challenges involve handling increasing

resources and users efficiently, with considerations for size,

geography, and administration. Openness and extensibility are also

critical, allowing easy addition of new components and features

without compromising the system's integrity.

The file service architecture of DFS, typically based on the client-

server model, includes components like the flat file service,

directory service, and client module. The client-server model

provides a scalable, fault-tolerant, and reliable architecture, with

servers processing client requests and managing data. Alternatively,

the peer-to-peer model offers a decentralized approach, allowing

peers to share resources directly, providing greater scalability and

fault tolerance. The architecture must support seamless data access,

robust security measures, and efficient data management across

429

distributed networks. Real-world examples of DFS include Network

File System (NFS), Amazon S3, and GlusterFS. As organizations

continue to generate and rely on vast amounts of data, the

importance of DFS will only grow, necessitating advancements in

scalability, fault tolerance, data consistency, and security to meet

evolving data management needs. Understanding the principles and

challenges of DFS is essential for developing robust, efficient, and

secure distributed systems that can handle the demands of modern

data-driven environments.

The data-caching model enhances performance and scalability in

distributed file systems by locally caching data obtained from

servers. This reduces network traffic, server load, and access times.

Caching exploits data locality, employing policies like Least

Recently Used (LRU) to manage cache size. While it improves read

performance, maintaining consistency can be challenging, especially

with frequent writes. Caching is most effective with machines

having disks or ample memory. In contrast to the remote service

model, which handles requests directly at the server, data-caching

minimizes network overhead and server contention, offering a more

efficient and scalable solution. Example: NFS with added caching.

File access protocols like NFS, CIFS, and SMB facilitate seamless

file sharing across networks. NFS, developed by Sun Microsystems,

offers open standard access primarily used in Unix and Linux

environments. CIFS, an extension of SMB, supports file sharing,

printer access, and inter-process communication across TCP/IP

networks, widely used in Windows environments. SMB, evolving

through versions like SMB 3.0, enhances performance with features

like multichannel support and encryption, supporting Windows,

Linux, and macOS. These protocols ensure secure, efficient, and

430

scalable file access, crucial for collaborative and distributed

computing environments.

7. 11. Model Questions

Question 1. What is the primary function of a distributed file

system (DFS)?

Question 2. Explain the difference between a centralized and

distributed file system.

Question 3. Describe the components typically found in a

distributed file system architecture.

Question 4. How do clients interact with servers in a distributed

file system?

Question 5. What role does metadata play in a distributed file

system?

Question 6. Draw a diagram illustrating the architecture of a

distributed file system and label its components.

Question 7. How does data access differ between a distributed

file system and a traditional file system?

Question 8. List three main objectives of a distributed file system.

Question 9. Explain how a distributed file system addresses the

scalability challenge.

Question 10. Discuss the importance of fault tolerance in

distributed file systems.

Question 11. Why is data consistency critical in distributed file

systems?

Question 12. How does a distributed file system enhance data

availability compared to traditional file systems?

Question 13. What are the security objectives that a distributed file

system aims to achieve?

Question 14. Describe the goals of caching mechanisms in

distributed file systems.

Question 15. Define transparency in the context of distributed file

systems.

Question 16. Discuss the role of concurrency control in distributed

file systems.

Question 17. What scalability challenges might distributed file

systems face as they grow?

431

Question 18. How does fault tolerance contribute to the reliability

of a distributed file system?

Question 19. Explain the concept of metadata management in

distributed file systems.

Question 20. Describe the role of caching in improving

performance in distributed file systems.

Question 21. Compare the performance of read and write

operations in distributed file systems.

Question 22. What are the main challenges in ensuring data

consistency across distributed file systems?

Question 23. How does network latency affect the performance of

distributed file systems?

Question 24. Discuss the security challenges specific to distributed

file systems.

Question 25. Explain the impact of metadata scalability on the

overall performance of a distributed file system.

Question 26. Describe the challenges associated with maintaining

fault tolerance in distributed file systems.

Question 27. What are the requirements for effective load

balancing in distributed file systems?

Question 28. How does data fragmentation impact the efficiency

of distributed file systems?

Question 29. Compare and contrast file-level and block-level

access models in distributed file systems.

Question 30. Explain the benefits of using a record-level transfer

model for specific types of data.

Question 31. Describe the role of access control lists (ACLs) in

managing file access permissions.

Question 32. Discuss the advantages of using erasure coding over

traditional replication in distributed file systems.

Question 33. What is the significance of data striping in improving

throughput in distributed file systems?

Question 34. How do consistency protocols ensure data integrity

across replicas in distributed file systems?

Question 35. Compare NFS and SMB/CIFS protocols in terms of

their design and use cases.

Question 36. Explain how distributed file systems handle file

locking to ensure data consistency.

432

Question 37. Describe the role of caching in improving

performance in distributed file systems.

Question 38. What are the common authentication mechanisms

used in distributed file systems?

Question 39. Explain how encryption is used to secure data in

transit and at rest in distributed file systems.

Question 40. Describe the challenges of implementing secure

access controls in distributed file systems.

Question 41. How does auditing contribute to maintaining security

in distributed file systems?

Question 42. Discuss the role of firewalls in protecting distributed

file system infrastructures.

Question 43. What are the best practices for securing data stored in

distributed file systems?

Question 44. Explain the concept of role-based access control

(RBAC) and its implementation in distributed file systems.

Question 45. Describe the chunk-based data storage and transfer

mechanism used in distributed file systems.

Question 46. How does data replication contribute to fault

tolerance in distributed file systems?

Question 47. Discuss the challenges associated with maintaining

data consistency in systems using data replication.

Question 48. Explain the concept of data placement and balancing

in distributed file systems.

Question 49. Describe the advantages and disadvantages of client-

side caching in distributed file systems.

Question 50. How does data striping improve performance in

distributed file systems?

Question 51. Compare and contrast the use of synchronous and

asynchronous communication in distributed file systems.

Question 52. What is the role of metadata servers in managing file

access in distributed file systems?

Question 53. Explain how distributed file systems manage data

transfer across different network topologies.

Question 54. Describe the scalability challenges that distributed

file systems face as the number of clients increases.

Question 55. How does data partitioning contribute to scalability

in distributed file systems?

433

Question 56. Discuss the trade-offs between strong consistency

and eventual consistency in distributed file systems.

Question 57. Explain the impact of network bandwidth on the

performance of distributed file systems.

Question 58. Describe the mechanisms used to optimize data

access performance in distributed file systems.

Question 59. How does load balancing improve the overall

performance of distributed file systems?

Question 60. Define fault tolerance and explain its importance in

distributed file systems.

Question 61. Describe the role of redundancy in achieving fault

tolerance in distributed file systems.

Question 62. Explain how distributed file systems handle node

failures and maintain data availability.

Question 63. Discuss the challenges of achieving fault tolerance in

geographically distributed file systems.

Question 64. Compare the strategies for handling Byzantine faults

in distributed file systems.

Question 65. What is the role of consensus algorithms in

maintaining data consistency in distributed file systems?

Question 66. Describe the challenges of recovering data after a

catastrophic failure in distributed file systems.

Question 67. Provide examples of industries or applications where

distributed file systems are commonly used.

Question 68. Describe the architecture and features of the Google

File System (GFS) and its impact on distributed computing.

Question 69. How does the Hadoop Distributed File System

(HDFS) address the storage and processing needs of big data

applications?

Question 70. Discuss the evolution of distributed file systems in

cloud computing environments.

Question 71. Describe the use of distributed file systems in

supporting real-time data analytics applications.

Question 72. Explain the role of distributed file systems in

enabling collaborative work environments.

Question 73. What are the emerging trends in distributed file

systems for edge computing applications?

Question 74. Discuss the role of machine learning in optimizing

performance and scalability in distributed file systems.

434

Question 75. How are blockchain technologies influencing the

development of distributed file systems?

Question 76. Describe the potential impact of quantum computing

on distributed file system architectures.

Question 77. What advancements are being made in the area of

metadata management in distributed file systems?

Question 78. Explain how distributed ledger technologies (DLTs)

can enhance security in distributed file systems.

Question 79. Discuss the challenges and opportunities of

integrating distributed file systems with IoT platforms.

Question 80. How does cloud storage differ from traditional

distributed file systems?

Question 81. Explain the concept of hybrid cloud storage and its

benefits for distributed file systems.

Question 82. Describe the role of data migration strategies in

distributed file systems.

Question 83. How does regulatory compliance impact the design

and implementation of distributed file systems?

Question 84. What are the environmental considerations associated

with deploying large-scale distributed file systems?

Question 85. Discuss the challenges of data sovereignty and

localization in distributed file systems.

Question 86. Explain the concept of self-healing architectures and

their relevance to distributed file systems.

7.12 References and Suggested Readings

1. "Cyber‐Security Techniques in Distributed Systems, SLAs and other

Cyber Regulations." Cyber Security in Parallel and Distributed

Computing: Concepts, Techniques, Applications and Case Studies (2.

Ghosh, Soumitra, Anjana Mishra, and Brojo Kishore Mishra.

2. . "The Google File System." . Ghemawat, S., Gobioff, H., & Leung,

S.-T. (). 2003, Proceedings of the 19th ACM Symposium on Operating

Systems Principles, , pp. 29-43.

3. "The Hadoop Distributed File System.". Shvachko, K., Kuang, H.,

Radia, S., & Chansler, R. 2010, Proceedings of the 2010 IEEE 26th

Symposium on Mass Storage Systems and Technologies (MSST), pp. 1-

10.

435

4. "Ceph: A scalable, high-performance distributed file system." .

Weil, S. A., Brandt, S. A., Miller, E. L., Long, D. D. E., &

Maltzahn, C. 2006, Proceedings of the 7th Symposium on

Operating Systems Design and Implementation (OSDI), , pp. 307-

320.

TEXT BOOK

1. Distributed Systems, Concepts and Design, George

Coulouris, J Dollimore and Tim Kindberg,Pearson

Education, Edition. 2009.

REFERENCE BOOKS

1. Distributed Systems, Principles and Paradigms, Andrew S.

Tanenbaum, Maarten Van Steen, 2nd Edition, PHI.

2. Distributed Systems, An Algorithm Approach, Sukumar

Ghosh, Chapman&Hall/CRC, Taylor & Fransis Group, 2007

×××

