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UNIT: 1 

INTRODUCTION TO DISTRIBUTED 

SYSTEMS 

 
 

Unit Structure: 

1.1 Introduction 

1.2 Unit Objectives 

1.3 What is Distributed System? 

1.4 Characteristicsof Distributed Systems 

1.5 Benefits of Distributed Systems 

1.6 Differences between Centralized and Distributed Systems 

1.7 Challenges in Distributed Systems 

1.8 Transparency in Distributed Systems 

1.9 Inherent Limitations of Distributed Systems 

1.10 Summing Up 

1.11 Answers to Check Your Progress 

1.12 Possible Questions 

1.13 References and Suggested Readings  

 

1.1   INTRODUCTION 

 

Distributed systems are collections of independent computers that 

appear to users as a single coherent system. These systems are 

designed to share resources, facilitate communication, and provide 

services seamlessly across multiple locations. They play a crucial 

role in various applications, from cloud computing to large-scale 

data processing. 

Distributed systems are integral to modern computing, offering 

scalability, flexibility, and resilience. However, they also present 

unique challenges that require careful design and management to 

ensure effective operation. This unit will delve into these concepts, 

exploring the characteristics, challenges, and inherent limitations of 

distributed systems. 
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1.2 UNIT OBJECTIVES 

After going through this unit, you will be able to: 

 understand the Fundamentals of Distributed Systems. 

 understand the characteristics of Distributed Systems. 

 analyse Design Issues and Challenges. 

 understand the various types of transparency in distributed 

systems. 

 identify the Inherent Limitations. 

 

1.3 WHAT IS DISTRIBUTED SYSTEM? 

A distributed system is a collection of independent computers that 

communicate with each other over a network, and work together to 

accomplish a common task. In a distributed system, each computer 

node has its own processing power, memory, and storage, and the 

nodes communicate with each other to exchange data and coordinate 

their activities. 

Distributed systems can be used to build large-scale applications 

that can handle a high volume of requests and provide high 

availability and fault tolerance. Examples of distributed systems 

include cloud computing platforms, peer-to-peer networks, and 

distributed databases. 

One of the key challenges of building a distributed system is 

coordinating the activities of the individual nodes to ensure that they 

work together effectively. This can be accomplished through various 

techniques, such as distributed consensus algorithms, distributed 

locking, and distributed task scheduling. Additionally, designing a 

distributed system that is scalable, fault-tolerant, and secure requires 

careful planning and architecture. 

 

1.4  CHARACTERISTICS OF DISTRIBUTED SYSTEMS 

Distributed systems have several key characteristics that 

differentiate them from traditional centralized systems. Here are 

some of the most important characteristics: 
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 Concurrency: In a distributed system, multiple processes or 

nodes can execute simultaneously and independently of each 

other, which allows for increased processing power and 

efficiency. 

 Scalability: Distributed systems can scale horizontally by adding 

more nodes to the network, which can handle increased traffic 

and load. 

 Fault tolerance: Distributed systems can be designed to tolerate 

failures in individual nodes, ensuring that the system remains 

operational even if some nodes fail. 

 Decentralization: Unlike centralized systems, where a single 

node or entity controls the system, distributed systems are 

decentralized, meaning that no single node has complete control 

over the system. 

 Heterogeneity: Distributed systems can be composed of nodes 

with different hardware, software, and operating systems, 

allowing for flexibility and interoperability. 

 Autonomy: Each node in a distributed system is autonomous, 

meaning that it can make independent decisions and act on its 

own behalf. 

 Communication: Communication between nodes in a distributed 

system is typically done through messages or remote procedure 

calls, which can introduce additional latency and overhead 

compared to local communication. 

Overall, the characteristics of distributed systems enable them to 

handle large volumes of data, support complex applications, and 

provide high availability and fault tolerance. However, designing 

and managing a distributed system can be challenging due to the 

complexity and potential for communication issues and other 

sources of failure. 

 

1.5 BENEFITS OF DISTRIBUTED SYSTEMS 

Scalability: ability to handle large amounts of data and users 

Scalability is a crucial benefit of distributed systems, referring to the 

ability of a system to handle increasing amounts of work or data 

without sacrificing performance. There are several ways in which 

distributed systems provide scalability benefits: 

Horizontal scalability: Distributed systems can be scaled 

horizontally by adding more machines to the system. This approach 
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is also known as "scaling out." By adding more machines to the 

system, the workload can be distributed across multiple machines, 

allowing the system to handle more traffic or data. 

Vertical scalability: Distributed systems can also be scaled vertically 

by adding more resources to each machine in the system. This 

approach is also known as "scaling up." By adding more CPU, 

memory, or storage to each machine, the system can handle more 

traffic or data. 

Geographic scalability: Distributed systems can be deployed across 

multiple geographic locations, allowing the system to serve users in 

different regions. By distributing the workload across different 

geographic locations, the system can reduce latency and improve 

performance for users in different parts of the world. 

Functional scalability: Distributed systems can be designed to scale 

horizontally or vertically for specific functions within the system. 

For example, a distributed database system might scale horizontally 

by adding more nodes to the cluster, while a distributed caching 

system might scale vertically by adding more memory to each node. 

Fault-tolerance: ability to continue functioning even when parts 

of the system fail 

Fault-tolerance is another key benefit of distributed systems, 

referring to the ability of a system to continue functioning even in 

the face of failures or errors. Distributed systems achieve fault-

tolerance by using redundant components and data across multiple 

machines, so that if one machine fails, the system can continue to 

function without interruption. Here are some ways that distributed 

systems provide fault-tolerance benefits: 

Redundancy: Distributed systems can replicate data across multiple 

machines, so that if one machine fails, the data can still be accessed 

from another machine. This approach is also known as "replication" 

or "mirroring." By replicating data, distributed systems can ensure 

that data is always available, even if one or more machines fail. 

Load balancing: Distributed systems can distribute workloads across 

multiple machines, so that if one machine fails, the workload can be 

transferred to another machine. This approach is also known as 

"load balancing." By load balancing, distributed systems can ensure 

that workloads are always processed, even if one or more machines 

fail. 
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Self-healing: Distributed systems can be designed to detect and 

respond to failures automatically. For example, if a machine fails, 

the system can automatically transfer its workload to another 

machine and replicate its data. This approach is also known as "self-

healing." By self-healing, distributed systems can ensure that they 

continue to function even in the face of failures. 

Flexibility: ability to adapt to changing requirements and 

environments 

Flexibility is another key benefit of distributed systems, referring to 

the ability of a system to adapt to changing requirements or 

environments. Distributed systems achieve flexibility by using 

modular components that can be deployed and scaled independently, 

allowing the system to be easily modified or extended. Here are 

some ways that distributed systems provide flexibility benefits: 

Modularity: Distributed systems can be designed using modular 

components that can be deployed and scaled independently. This 

approach is also known as "micro services architecture." By using 

modular components, distributed systems can be easily modified or 

extended without impacting the entire system. 

Interoperability: Distributed systems can be designed to support 

different programming languages, platforms, and protocols, 

allowing them to communicate with a wide variety of other systems. 

This approach is also known as "interoperability." By supporting 

interoperability, distributed systems can be integrated with other 

systems to provide additional functionality or data sources. 

Adaptability: Distributed systems can be designed to dynamically 

adapt to changes in the environment. For example, if the system 

detects an increase in traffic, it can automatically scale up resources 

to handle the additional load. This approach is also known as 

"elasticity." By being adaptable, distributed systems can respond to 

changing requirements or conditions without requiring manual 

intervention. 

Performance: ability to process requests quickly and efficiently 

Performance is another key benefit of distributed systems, referring 

to the ability of a system to process large amounts of data or traffic 

quickly and efficiently. Distributed systems achieve high 

performance by using multiple machines to process workloads in 

parallel, allowing the system to scale up to handle large volumes of 
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data or traffic. Here are some ways that distributed systems provide 

performance benefits: 

Parallelism: Distributed systems can distribute workloads across 

multiple machines, allowing them to process workloads in parallel. 

This approach is also known as "parallelism." By using parallelism, 

distributed systems can process workloads faster and more 

efficiently than single machines. 

Caching: Distributed systems can use caching to store frequently 

accessed data in memory, allowing it to be accessed quickly without 

needing to be retrieved from disk or network. This approach is also 

known as "caching." By using caching, distributed systems can 

reduce latency and improve performance. 

Data partitioning: Distributed systems can partition data across 

multiple machines, allowing each machine to process a subset of the 

data. This approach is also known as "data partitioning." By using 

data partitioning, distributed systems can process large volumes of 

data quickly and efficiently. 

Overall, performance is critical for ensuring that distributed systems 

can handle large volumes of data or traffic quickly and efficiently. 

By using parallelism, caching, and data partitioning techniques, 

distributed systems can provide a high-performance architecture that 

can scale up to meet the needs of modern applications. 

Cost-effectiveness: ability to utilize resources more efficiently 

Cost-effectiveness is another key benefit of distributed systems, 

referring to the ability of a system to provide high performance and 

fault-tolerance at a lower cost than traditional monolithic systems. 

Distributed systems achieve cost-effectiveness by using commodity 

hardware, which is less expensive than specialized hardware, and by 

allowing organizations to pay only for the resources they need, 

rather than investing in large, fixed infrastructure. Here are some 

ways that distributed systems provide cost-effectiveness benefits: 

Commodity hardware: Distributed systems can use commodity 

hardware, such as off-the-shelf servers, instead of expensive 

specialized hardware. This approach is also known as "commodity 

hardware." By using commodity hardware, distributed systems can 

reduce the cost of infrastructure. 

Pay-as-you-go pricing: Distributed systems can use pay-as-you-go 

pricing models, allowing organizations to pay only for the resources 
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e) Performance in distributed systems is improved through 

parallelism and caching 

2. Fill in the Blanks: 

a)In distributed systems, __________ allows multiple nodes to 

execute simultaneously and independently. 

b)__________ scalability involves adding more machines to 

handle increased load in a distributed system. 

c)__________ refers to the ability of a system to continue 

functioning even when parts of it fail. 

d)The ability to serve users in different regions by deploying 

distributed systems across multiple locations is known as 

__________ scalability. 

e)The approach of only paying for the resources used in 

distributed systems is known as __________ pricing. 

they need. This approach is also known as "pay-as-you-go" pricing. 

By using pay-as-you-go pricing, organizations can avoid investing 

in large, fixed infrastructure and can instead pay only for the 

resources they actually use. 

Efficient resource utilization: Distributed systems can use resource 

allocation algorithms, such as load balancing and resource pooling, 

to efficiently allocate resources across multiple machines. This 

approach is also known as "efficient resource utilization." By using 

efficient resource utilization, distributed systems can minimize 

waste and optimize resource usage, reducing overall costs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHECK YOUR PROGRESS-I 

1. State True or False: 

a) In a distributed system, all nodes must share the same 

hardware and operating system. 

b) Distributed systems can continue to function even if some 

nodes fail. 

c) Distributed systems cannot be deployed across multiple 

geographic locations. 

d) Fault tolerance in distributed systems is achieved through 

redundancy and load balancing. 
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1.6 DIFFERENCES BETWEEN CENTRALIZED AND 

DISTRIBUTED SYSTEMS 

Centralized and distributed systems are two fundamentally different 

approaches to designing computing systems. Here are some of the 

key differences between centralized and distributed systems: 

Control: In a centralized system, all control and decision-making 

authority is concentrated in a single central unit, whereas in a 

distributed system, control is distributed across multiple nodes that 

communicate and coordinate with each other. 

Scalability: Centralized systems have limited scalability, as they are 

dependent on the capacity and processing power of the central unit, 

whereas distributed systems can be scaled up or down by adding or 

removing nodes. 

Fault tolerance: Centralized systems are vulnerable to failures in the 

central unit, which can cause the entire system to fail, whereas 

distributed systems are designed to be resilient to failures in 

individual nodes or components. 

Communication: Communication between nodes in a distributed 

system is typically done through messages or remote procedure 

calls, which can introduce additional latency and overhead 

compared to local communication in a centralized system. 

Heterogeneity: Distributed systems can be composed of nodes with 

different hardware, software, and operating systems, whereas 

centralized systems typically have a uniform hardware and software 

architecture. 

Complexity: Distributed systems are generally more complex to 

design and manage than centralized systems, due to the need to 

coordinate and manage communication between multiple nodes. 

 

1.7 CHALLENGES IN DISTRIBUTED SYSTEMS 

Distributed systems can present numerous challenges, including: 

 Network failures 

 Security 

 Scalability 
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 Complexity 

 Consistency 

 Fault tolerance 

 Interoperability 

Network Failures: 

Network failures are one of the most common and challenging 

issues in distributed systems. A distributed system is a collection of 

autonomous computers that work together to achieve a common 

goal. These systems rely on the network to communicate and share 

data between different nodes in the system. When the network fails, 

it can cause a range of problems that can impact the performance, 

availability, and consistency of the system. 

Here are some ways network failures can pose challenges to 

distributed systems: 

Communication failure: Distributed systems rely on communication 

between nodes to function. When a network failure occurs, nodes 

may not be able to communicate with each other, causing 

communication failure. This can result in data loss, inconsistent 

data, or even system crashes. 

Increased latency: Network failures can cause delays in 

communication between nodes. Increased latency can slow down 

the system and cause delays in processing tasks, resulting in reduced 

system performance. 

Partitioning: Network failures can result in the system being 

partitioned into separate segments, each of which is isolated from 

the others. This can cause issues such as data inconsistency, 

duplicate data, and lost data, which can lead to data corruption. 

Reconfiguration: Network failures can also cause the system to 

reconfigure itself to adapt to the new network conditions. This can 

be a time-consuming process that can impact system performance 

and availability. 

To overcome these challenges, distributed systems must be designed 

to be resilient to network failures. This can be achieved through the 

use of redundancy, fault tolerance, and load balancing mechanisms. 

These mechanisms can help ensure that the system continues to 

function even in the presence of network failures. Additionally, 
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distributed systems should be designed to detect network failures 

and take appropriate actions to mitigate their impact. 

Security: 

Security is a critical challenge in distributed systems as they are 

often exposed to various types of attacks. A distributed system is a 

collection of interconnected nodes, and an attacker who gains 

control of one or more nodes can potentially compromise the entire 

system. In addition, distributed systems are often deployed across 

different geographic locations and networks, making them more 

vulnerable to attacks. 

Here are some ways security can pose challenges to distributed 

systems: 

Authentication and Authorization: Distributed systems must ensure 

that only authorized users can access the system and its resources. 

Authentication and authorization mechanisms must be implemented 

to verify the identity of users and enforce access control policies. 

Confidentiality and Integrity: Distributed systems must ensure that 

data exchanged between nodes is kept confidential and not modified 

in transit. Encryption and digital signatures can be used to ensure 

data confidentiality and integrity. 

Denial of Service (DoS) attacks: Distributed systems are vulnerable 

to DoS attacks that can overwhelm the system and make it 

unavailable to legitimate users. Distributed DoS attacks are 

particularly challenging as they involve multiple nodes, making it 

difficult to detect and mitigate the attack. 

Malware and viruses: Distributed systems are vulnerable to malware 

and viruses that can infect one or more nodes and spread to other 

nodes. Such attacks can cause data loss, system downtime, and even 

complete system failure. 

To address these security challenges, distributed systems must be 

designed with security in mind. This can be achieved through the 

use of secure communication protocols, strong authentication and 

authorization mechanisms, encryption, and digital signatures. In 

addition, distributed systems must be continuously monitored and 

updated to detect and mitigate security threats. Finally, education 

and training for system users can also help reduce the risk of 

security breaches caused by human error or social engineering 

attacks. 
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Scalability: 

Scalability is a significant challenge in distributed systems as they 

are designed to handle a large number of users, transactions, and 

data. Scalability is the ability of the system to handle an increasing 

workload without sacrificing performance or stability. As the 

number of users or data grows, the system must be able to handle 

the load without becoming overloaded or crashing. 

Here are some ways scalability can pose challenges to distributed 

systems: 

Network bandwidth: Distributed systems must be designed to 

handle large amounts of data transferred over the network. As the 

number of users or data grows, the network bandwidth required to 

handle the load can become a bottleneck. This can cause delays, 

slow down the system, and impact system performance. 

Load balancing: Distributed systems must be designed to distribute 

the workload evenly across nodes in the system. Load balancing 

mechanisms can be used to ensure that each node handles an equal 

share of the workload. As the number of users or data grows, load 

balancing can become a challenge, and the system may require 

additional resources to handle the load. 

Data storage: Distributed systems must be designed to handle large 

amounts of data. As the amount of data grows, the system must be 

able to store and retrieve data efficiently. This can be challenging, 

and the system may require additional storage resources or more 

efficient data storage mechanisms. 

System complexity: Distributed systems are often complex, with 

multiple nodes and components working together to achieve a 

common goal. As the system grows, the complexity of the system 

can increase, making it more challenging to manage and maintain. 

To address these scalability challenges, distributed systems must be 

designed to scale horizontally and vertically. Horizontal scalability 

involves adding more nodes to the system to handle the increased 

workload, while vertical scalability involves adding more resources 

to existing nodes. Additionally, distributed systems must be 

designed to use resources efficiently, with load balancing 

mechanisms to distribute the workload evenly across nodes. Finally, 

distributed systems must be designed to be modular and scalable, 
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with each component designed to work independently and 

communicate with other components in the system. 

Complexity: 

Complexity is a significant challenge in distributed systems due to 

the large number of components, nodes, and interactions involved in 

the system. Distributed systems are made up of multiple 

independent components that work together to achieve a common 

goal. Each component may have different requirements, interfaces, 

and communication protocols, making the system complex and 

challenging to design, test, and maintain. 

Here are some ways complexity can pose challenges to distributed 

systems: 

Interoperability: Distributed systems must be designed to work with 

other systems, including legacy systems, third-party components, 

and other distributed systems. Interoperability can be challenging, as 

different systems may have different interfaces, protocols, and data 

formats. 

Integration: Distributed systems must be designed to integrate 

multiple components into a cohesive system. Integration can be 

challenging, as each component may have different requirements 

and interfaces, and the system must be able to handle failures and 

errors in individual components. 

Testing: Distributed systems must be tested to ensure that each 

component works correctly and that the system as a whole performs 

as expected. Testing distributed systems can be challenging, as it 

involves testing interactions between components and nodes across 

different networks and geographic locations. 

Maintenance: Distributed systems require ongoing maintenance to 

ensure that they remain secure, reliable, and performant. 

Maintenance can be challenging, as it involves updating 

components, managing configurations, and resolving issues that 

arise from the interaction between components. 

To address these complexity challenges, distributed systems must be 

designed to be modular and loosely coupled, with each component 

designed to work independently and communicate with other 

components in the system. Standardized interfaces, protocols, and 

data formats can help facilitate interoperability and integration. 

Additionally, distributed systems should be designed to be testable, 
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with automated testing mechanisms in place to test interactions 

between components and nodes. Finally, distributed systems should 

be designed to be maintainable, with tools and processes in place to 

manage configurations, update components, and resolve issues. 

Consistency: 

Consistency is a significant challenge in distributed systems due to 

the difficulty of ensuring that all nodes in the system have the same 

view of the data at any given time. Distributed systems are designed 

to handle large amounts of data across multiple nodes, and 

maintaining consistency across all nodes can be challenging. 

Here are some ways consistency can pose challenges to distributed 

systems: 

Data replication: Distributed systems often replicate data across 

multiple nodes for redundancy and improved performance. 

However, ensuring consistency across all nodes can be challenging, 

as each node may have a different view of the data at any given 

time. 

Network delays: Distributed systems rely on network 

communication to maintain consistency between nodes. Network 

delays can cause inconsistencies, as nodes may receive updates at 

different times or in different orders. 

Partitioning: Distributed systems must be designed to handle 

network partitions, where some nodes in the system are unable to 

communicate with each other. Partitioning can cause 

inconsistencies, as each partition may have a different view of the 

data. 

Conflict resolution: Distributed systems must be designed to handle 

conflicts that arise when multiple nodes update the same data 

simultaneously. Conflict resolution can be challenging, as different 

nodes may have different views of the data and may have 

conflicting updates. 

To address these consistency challenges, distributed systems must 

be designed to ensure that all nodes have the same view of the data 

at any given time. Techniques such as distributed consensus 

algorithms, two-phase commit, and vector clocks can be used to 

ensure consistency across nodes. Additionally, distributed systems 

should be designed to handle network delays and partitions, with 

mechanisms in place to detect and recover from failures. Finally, 
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conflict resolution mechanisms should be in place to handle 

conflicting updates and ensure that the data remains consistent 

across all nodes. 

Fault tolerance: 

Fault tolerance is a significant challenge in distributed systems due 

to the high likelihood of component failures and network 

disruptions. Distributed systems rely on multiple independent 

components working together, and any failure in any of these 

components can cause the entire system to fail. 

Here are some ways that fault tolerance can pose challenges to 

distributed systems: 

Component failures: Distributed systems rely on multiple 

components, including nodes, databases, and network infrastructure. 

Any failure in any of these components can cause the entire system 

to fail. 

Network disruptions: Distributed systems rely on network 

communication to exchange data and updates between nodes. 

Network disruptions, such as network outages, can cause nodes to 

become isolated from each other, leading to system failures. 

Cascading failures: Faults in one component can cause failures in 

other components, leading to a cascading failure that affects the 

entire system. 

Recovery time: Distributed systems must be able to recover from 

failures quickly to minimize downtime and maintain system 

availability. Recovery time can be challenging, as it may require 

complex coordination between components and may involve data 

loss or inconsistencies. 

To address these fault tolerance challenges, distributed systems must 

be designed to be fault-tolerant, with mechanisms in place to detect 

and recover from failures. Redundancy and replication can be used 

to ensure that components and data are available even in the event 

of failures. Additionally, distributed systems should be designed to 

handle network disruptions, with mechanisms in place to detect and 

recover from network failures. Finally, recovery mechanisms should 

be in place to ensure that the system can recover from failures 

quickly and with minimal data loss or inconsistencies. 
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Interoperability: 

Interoperability is a significant challenge in distributed systems due 

to the need for different components to communicate and work 

together seamlessly. Distributed systems typically consist of 

multiple independent components that need to interact with each 

other to achieve the system's overall objectives. 

Here are some ways interoperability can pose challenges to 

distributed systems: 

Heterogeneity: Distributed systems often consist of different 

components that use different hardware, software, and 

communication protocols. Ensuring that these components can work 

together seamlessly can be challenging, as each component may 

have its own requirements and interfaces. 

Legacy systems: Distributed systems may need to integrate with 

legacy systems, which may have outdated hardware, software, and 

communication protocols. Integrating with legacy systems can be 

challenging, as these systems may not be designed with modern 

interoperability standards in mind. 

Standardization: Distributed systems need to adhere to 

interoperability standards to ensure that different components can 

communicate with each other. However, there may be different 

standards for different components, and ensuring that all 

components adhere to the same standards can be challenging. 

Scalability: Interoperability challenges can become more significant 

as the size and complexity of the distributed system increase. As the 

number of components and interactions between them grows, 

ensuring interoperability becomes increasingly challenging. 

To address these interoperability challenges, distributed systems 

must be designed with interoperability in mind. Standardization of 

interfaces, protocols, and data formats can help ensure that different 

components can communicate with each other. Additionally, 

compatibility testing and certification programs can be put in place 

to ensure that components from different vendors work together 

seamlessly. Finally, distributed systems should be designed to be 

scalable, with mechanisms in place to handle the growing 

complexity and heterogeneity of the system as it expands. 
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1.8 TRANSPARENCY IN DISTRIBUTED SYSTEMS 

Transparency is an essential characteristic of distributed systems 

that refers to the ability of the system to hide its distributed nature 

from users and applications, providing the illusion of a single, 

coherent system. Transparency issues arise when the distributed 

nature of the system becomes visible to users or applications, 

causing confusion or inconsistencies. 

Here are some transparency issues that can arise in distributed 

systems: 

Location transparency: Location transparency refers to the ability of 

users and applications to access resources without needing to know 

their physical location. If a distributed system is not location-

transparent, users and applications may need to know the location of 

resources, leading to confusion and inconsistencies. 

Access transparency: Access transparency refers to the ability of 

users and applications to access resources without needing to know 

how they are implemented or managed. If a distributed system is not 

access-transparent, users and applications may need to know the 

implementation details of resources, leading to confusion and 

inconsistencies. 

Failure transparency: Failure transparency refers to the ability of 

users and applications to continue using the system in the event of 

failures or disruptions. If a distributed system is not failure-

transparent, users and applications may need to be aware of failures 

or disruptions, leading to confusion and inconsistencies. 

Performance transparency: Performance transparency refers to the 

ability of users and applications to access resources without needing 

to know their performance characteristics. If a distributed system is 

not performance-transparent, users and applications may need to 

know the performance characteristics of resources, leading to 

confusion and inconsistencies. 

To address transparency issues, distributed systems must be 

designed to be transparent, with mechanisms in place to hide the 

distributed nature of the system from users and applications. 

Techniques such as virtualization, load balancing, and failover can 

be used to ensure that resources are location-transparent, access-



 

17 

 

transparent, and failure-transparent. Additionally, distributed 

systems should be designed to be scalable, with mechanisms in 

place to handle performance transparency issues as the system 

grows in complexity and size. 

 

1.9 INHERENT LIMITATIONS OF DISTRIBUTED 

SYSTEMS 

Distributed systems offer many benefits, but they also face several 

inherent limitations that pose challenges to their design and 

implementation: 

 Network Latency: It refers to the delay in data transmission 

across the network. This can significantly affect performance, 

especially in applications requiring real-time data processing. 

Latency can lead to slower response times and decreased user 

satisfaction. 

 Partial Failures:Unlike centralized systems, components in 

distributed systems can fail independently. And thus making 

failure detection and recovery more complex. Ensuring that the 

system continues to operate correctly despite partial failures 

requires robust fault tolerance mechanisms. 

 Concurrency and Synchronization: It refers multiple 

processes may access shared resources simultaneously. But can 

lead to data inconsistency or race conditions if not managed 

properly. Synchronization mechanisms like locks or consensus 

algorithms are necessary but can introduce complexity and 

performance bottlenecks. 

 Data Consistency: It refers maintaining a uniform view of data 

across distributed nodes is challenging.Inconsistencies can arise 

due to network delays, node failures, or concurrent updates. 
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Achieving strong consistency may require trade-offs with 

system availability and partition tolerance (as per the CAP 

theorem). 

 Complexity:Distributed systems inherently involve multiple 

components, each potentially running on different hardware and 

software platforms.And thus Increases the complexity of system 

design, implementation, and maintenance. Debugging and 

troubleshooting distributed systems can be particularly 

challenging. 

 Scalability Challenges:While distributed systems are designed 

to scale, there are limits to scalability due to bottlenecks in 

communication, resource contention, or centralized components. 

But beyond a certain point, adding more resources may not lead 

to proportional improvements in performance, requiring careful 

architectural planning. 

 Security Issues:Ensuring security in a distributed system is 

more challenging due to multiple points of potential 

vulnerability.Threats such as data interception, unauthorized 

access, and distributed denial-of-service (DDoS) attacks must be 

mitigated with comprehensive security measures, including 

encryption, authentication, and access control. 

 Lack of a Global Clock:There is no single, authoritative time 

source in a distributed system. This makes event ordering 

difficult, affecting the ability to maintain consistency and 

synchronization. Techniques like logical clocks or vector clocks 

are used, but they add complexity. 

 Difficulty in Guaranteeing QoS:Quality of Service (QoS) 

guarantees can be hard to maintain across diverse network 

conditions and varying workloads.Service reliability and 
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performance can fluctuate, impacting user experience. Adaptive 

resource management and monitoring are essential. 

Understanding these limitations is crucial for designing robust and 

efficient distributed systems. By anticipating these challenges, 

architects can implement strategies to mitigate their impact, 

ensuring that distributed systems meet their performance, reliability, 

and scalability requirements. 

 

 

 

CHECK YOUR PROGRESS-II 

3. State True or False: 

a) In a centralized system, all control is concentrated in a single 

unit. 

b) Distributed systems are less fault-tolerant than centralized 

systems. 

c) Network latency can significantly impact the performance of 

distributed systems. 

d) Distributed systems are easier to design and manage 

compared to centralized systems. 

e) Scalability is not a challenge in distributed systems. 

4. Fill in the Blanks: 

a) In distributed systems, __________ mechanisms are 

necessary to prevent data inconsistency due to concurrent 

updates. 

b) __________ transparency refers to the system's ability to 

hide failures from users. 

c) A significant challenge in distributed systems is maintaining 

data __________ across all nodes. 

d) __________ and __________ are essential for ensuring 

security in distributed systems. 

e) The lack of a __________ clock makes event ordering 

difficult in distributed systems. 
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1.10 SUMMING UP 

 A distributed system consists of independent computers 

connected via a network, collaborating to achieve common tasks 

with each node possessing its processing power, memory, and 

storage. 

 The Characteristics of Distributed Systems are: 

o Concurrency: It allows multiple nodes to execute 

independently, enhancing processing efficiency. 

o Scalability: Scaling horizontally (adding nodes) or 

vertically (increasing resources) to handle increased 

workload. 

o Fault Tolerance: Distributed Systems are designed to 

tolerate failures in nodes, ensuring system continuity. 

o Decentralization: There is No single controlling node; 

control and data are distributed. 

o Heterogeneity: Here, nodes can differ in hardware, 

software, and OS, promoting flexibility. 

o Autonomy: Each node can operate independently, making 

decisions locally. 

o Communication: Nodes communicate via messages or 

remote procedure calls, with added latency compared to 

local systems. 

 The Benefits of Distributed Systems are: 

o Scalability: Handles large data volumes and user traffic 

effectively. 

o Fault Tolerance: Continues functioning despite component 

failures. 

o Flexibility: Adapts to changing requirements and 

environments. 

o Performance: Processes requests quickly through 

parallelism, caching, and data partitioning. 

o Cost-effectiveness: Uses commodity hardware and pay-as-

you-go pricing, optimizing resource utilization and 

reducing costs. 
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 Transparency in Distributed Systems mean: 

o Location Transparency: Users access resources without 

knowing physical locations. 

o Access Transparency: Users access resources without 

knowing implementation details. 

o Failure Transparency: Continues operation during failures 

without user awareness. 

o Performance Transparency: Users access resources without 

knowing performance characteristics. 

 

1.11 ANSWERS TO CHECK YOUR PROGRESS 

1. a) False    b) True    c) False    d) True    e) True 

2. a) concurrency    b) Horizontal    c) Fault tolerance 

   d) geographic    e) pay-as-you-go 

3. a) True    b) False    c) True    d) False    e) False 

4. a) synchronization    b) Failure    c) consistency 

   d) Authentication, encryption    e) global 

 

1.12 POSSIBLE QUESTIONS 

Short Answer Type Questions: 

1. What is a distributed system? 

2. Give two examples of distributed systems. 

3. What is concurrency in a distributed system? 

4. What is meant by the term 'horizontal scalability'? 

5. Define 'fault tolerance' in the context of distributed systems. 

6. What is the role of redundancy in a distributed system? 

7. Explain the term 'decentralization' in distributed systems. 

8. What is the significance of heterogeneity in distributed systems? 

9. How does a distributed system achieve fault tolerance through 

load balancing? 

10. What is the benefit of modularity in distributed systems? 
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11. Explain the concept of network latency in distributed systems. 

12. What does location transparency mean in distributed systems? 

13. List two challenges in maintaining consistency in distributed 

systems. 

14. Why is security a significant concern in distributed systems? 

15. What are partial failures in distributed systems? 

16. What is meant by the lack of a global clock in distributed 

systems? 

Long Answer Type Questions: 

17. Explain the concept of a distributed system and discuss its 

primary characteristics. 

18. Discuss the various ways in which distributed systems can scale, 

and explain how each method contributes to the system's 

performance and efficiency. 

19. How do distributed systems ensure fault tolerance? Provide 

examples of techniques used to achieve fault tolerance. 

20. What are the benefits of using distributed systems in terms of 

flexibility and adaptability? Provide detailed examples. 

21. Describe the performance benefits of distributed systems. How 

do parallelism, caching, and data partitioning contribute to these 

benefits? 

22. Discuss the cost-effectiveness of distributed systems. How do 

commodity hardware and pay-as-you-go pricing models reduce 

overall costs? 

23. What are some of the challenges involved in designing and 

managing distributed systems? How can these challenges be 

addressed? 

24. Explain the concept of interoperability in distributed systems 

and its importance in modern applications. 

25. How do distributed systems utilize efficient resource allocation 

to enhance cost-effectiveness? Provide detailed examples of 

resource allocation techniques. 

26. What are the key differences between centralized and 

decentralized systems, and what advantages do decentralized 

systems offer over centralized ones? 
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27. Compare and contrast centralized and distributed systems, 

highlighting their main differences. 

28. Describe the inherent limitations of distributed systems and 

discuss how they impact system design and implementation. 

29. Explain the various types of transparency in distributed systems 

and why they are important for system design. 

30. What are the main challenges in achieving fault tolerance in 

distributed systems? Provide examples of mechanisms used to 

address these challenges. 

31. Discuss the issues of network failures in distributed systems and 

how they can be mitigated. 

32. Explain the complexity challenges in distributed systems and 

suggest design principles to manage this complexity. 

33. What is data consistency in distributed systems, and why is it 

challenging to achieve? Discuss the CAP theorem in this 

context. 

34. Describe the challenges and strategies for ensuring scalability in 

distributed systems. 

35. Analyze the security issues specific to distributed systems and 

propose measures to enhance security. 

36. How do concurrency and synchronization issues arise in 

distributed systems, and what are the common strategies to 

address them? 

37. Discuss the difficulties in guaranteeing Quality of Service (QoS) 

in distributed systems and suggest ways to manage them. 
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UNIT: 2 

HARDWARE CONCEPTS AND SYSTEM MODELS 

 

Unit Structure: 

2.1 Introduction 

2.2 Unit Objectives 

2.3 What is Multiprocessor? 

2.4 Tightly-Coupled Multiprocessor Systems 

2.5 Loosely-Coupled Multiprocessor Systems 

2.6 Homogeneous Multiprocessor Systems 

2.7 Heterogeneous Multiprocessor Systems 

2.8 What is Middleware? 

2.8.1Types of Middleware 

2.8.2 Benefits and Limitations of Middleware 

2.9 System Models in Distributed Systems 

2.10Types of System Models 

2.11 Summing Up 

2.12 Answers to Check Your Progress 

2.13 Possible Questions 

2.14 References and Suggested Readings  

 

2.1   INTRODUCTION 
 

In modern computing, distributed systems and multiprocessor 

architectures have become integral to achieving high performance, 

scalability, and reliability. This unit discusses the fundamental 

concepts of multiprocessors, exploring both homogeneous and 

heterogeneous systems, and examines the role of middleware in 

distributed systems. Furthermore, we will explore fundamental 

system models that underpin the design and analysis of distributed 

systems, alongside architectural system models that provide 
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blueprints for building and organizing distributed computing 

environments. 

 

2.2 UNIT OBJECTIVES 

After going through this unit, you will be able to: 

 define and differentiate between homogeneous and 

heterogeneous multiprocessor system. 

 describe the concept of middleware and its role in facilitating 

communication and resource management in distributed 

systems. 

 identify different types of middleware and their specific 

applications in distributed environments. 

 explore fundamental System Models. 

 

2.3 WHAT IS MULTIPROCESSOR? 

Multiprocessors, also known as parallel processing systems, are 

computer systems that use multiple processors or central processing 

units (CPUs) to perform tasks simultaneously. Multiprocessor 

systems are designed to improve performance by increasing 

processing power and reducing the time needed to complete a task. 

There are two main types of multiprocessor systems: symmetric 

multiprocessing (SMP) and asymmetric multiprocessing (AMP). 

Symmetric Multiprocessing (SMP): 

In SMP systems, all processors have equal access to the system's 

resources and are considered to be homogeneous, meaning they 

have the same instruction sets and architectures. The processors 

communicate with each other through a shared memory, allowing 

them to work together to complete a task. SMP systems are 

designed for use in applications that require high processing power, 

such as scientific simulations and data processing. The advantages 

of SMP systems are: 

 SMP systems can execute multiple processes simultaneously, 

which improves the system's processing power and speed. 
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 SMP systems can be cost-effective compared to single-processor 

systems because they use multiple processors on a single 

system. 

 SMP systems can be easily scaled by adding more processors to 

the system, allowing for an increase in processing power. 

Asymmetric Multiprocessing (AMP): 

In AMP systems, different processors have different instruction sets 

and architectures, and each processor is assigned a specific task. 

These processors may communicate with each other through a 

network, rather than a shared memory, and are considered to be 

heterogeneous. AMP systems are designed for use in applications 

that require specialized processing power, such as graphics 

processing or artificial intelligence. The advantages of AMP 

systems are: 

 AMP systems can be designed to perform specific tasks, such as 

graphics processing or artificial intelligence. 

 AMP systems can be easily scaled by adding more processors to 

the system, allowing for an increase in processing power. 

There are issues in multiprocessor systems, and they are: 

Load balancing: Ensuring that tasks are distributed evenly among 

processors to optimize system performance. 

Data consistency: Ensuring that shared data is consistent and 

accurate across all processors. 

Communication overhead: The additional time and resources 

required for processors to communicate with each other in a 

multiprocessor system. 

Multiprocessors can be further classified into two types: tightly-

coupled and loosely-coupled systems. Tightly-coupled systems are 

characterized by having processors that share a common memory 

and I/O system, whereas loosely-coupled systems have processors 

that communicate with each other over a network. 
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2.4 TIGHTLY-COUPLED MULTIPROCESSOR SYSTEMS 

Tightly-coupled multiprocessor systems are computer systems that 

use multiple processors or central processing units (CPUs) that share 

a common memory and I/O system. The processors are tightly-

coupled because they are physically close to each other and 

communicate with each other through a shared bus, making it easier 

and faster for them to share data and resources. Tightly-coupled 

multiprocessor systems are commonly used in applications that 

require high performance and reliability, such as scientific 

simulations, real-time systems, and high-end servers. 

Tightly-coupled multiprocessor systems offer several advantages 

over single-processor systems which include: 

Increased Processing Power: Tightly-coupled multiprocessor 

systems can perform multiple tasks simultaneously, which improves 

the system's processing power and speed. 

Improved Reliability: Tightly-coupled multiprocessor systems can 

continue to function even if one or more processors fail, making 

them more reliable than single-processor systems. 

Scalability: Tightly-coupled multiprocessor systems can be easily 

scaled by adding more processors to the system, allowing for an 

increase in processing power. 

Tightly-coupled multiprocessor systems also have some limitations 

and challenges and they are: 

Increased Complexity: Tightly-coupled multiprocessor systems are 

more complex than single-processor systems, which can make them 

more difficult to design, implement, and maintain. 

Memory Contention: Tightly-coupled multiprocessor systems may 

experience memory contention, where multiple processors try to 

access the same memory location simultaneously, leading to 

conflicts and delays. 

Communication Overhead: The additional time and resources 

required for processors to communicate with each other in a tightly-

coupled multiprocessor system can create communication overhead, 

which can reduce system performance. 
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2.5 LOOSELY-COUPLED MULTIPROCESSOR SYSTEMS 

Loosely-coupled multiprocessor systems, also known as distributed 

systems, consist of a collection of independent computers 

interconnected by a network. Each computer in the system has its 

own memory and operates independently, communicating with 

other computers in the system through message passing. 

In a loosely-coupled multiprocessor system, the communication 

between processors is slower than in tightly-coupled systems, due to 

the presence of the network. The network can introduce latency, 

bandwidth limitations, and other communication overheads that can 

impact the performance of the system. 

Loosely-coupled systems are commonly used in distributed 

computing environments, such as cloud computing and grid 

computing, where a large number of independent computers are 

connected to provide a shared computing resource. In such 

environments, the use of message-passing interfaces and other 

distributed computing frameworks can help to manage the 

complexity of the system and minimize the impact of 

communication overheads. 

Loosely-coupled multiprocessor systems offer several advantages 

over single-processor systems which include: 

Flexibility: Loosely-coupled systems are highly flexible as nodes 

can be added or removed from the system without affecting the 

system's overall operation. This feature makes them highly scalable 

and ideal for use in dynamic computing environments where the 

size of the system may change over time. 

Cost-Effective: Loosely-coupled systems are cost-effective, as each 

node can be a commodity computer, rather than a specialized 

processor. This approach makes it more affordable to build large-

scale systems, which can offer significant computational power. 

Fault Tolerance: Loosely-coupled systems are highly fault-tolerant, 

as the failure of one node does not necessarily impact the operation 

of the entire system. This feature is critical in systems where high 

reliability is necessary. 

Loosely-coupled multiprocessor systems also have some limitations 

and challenges and they are: 
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Communication Overhead: Communication between nodes in a 

loosely-coupled system is slower than in a tightly-coupled system 

due to the presence of a network. This limitation can significantly 

impact the overall performance of the system. 

Software Complexity: Designing software for loosely-coupled 

systems is more complicated than for tightly-coupled systems. It 

requires a more distributed computing framework, which can 

increase the complexity of the system. 

Security: Loosely-coupled systems can be more vulnerable to 

security threats, as the network provides an attack surface for 

hackers. This challenge can be addressed by using security measures 

such as firewalls and encryption. 

 

2.6 HOMOGENOUS MULTIPROCESSOR SYSTEMS 

Homogenous systems are a type of multiprocessor system where all 

the processors are identical in terms of hardware and software. In 

other words, all processors in a homogeneous system have the same 

architecture and instruction set, and they operate under the same 

operating system. 

In a homogenous system, processors share the same memory, and 

they communicate through shared memory or inter-processor 

communication mechanisms. Typically, the memory is organized in 

a way that each processor has its own local memory, and a shared 

memory space accessible to all processors. 

One of the main advantages of homogeneous systems is that they 

are easier to program since all processors are identical. The 

programming model is relatively simple, and parallelism can be 

achieved by dividing a single task into smaller sub-tasks that can be 

executed simultaneously on different processors. 

Homogeneous systems offer several benefits which include: 

Improved Performance: Homogeneous systems can provide 

significant performance improvements over single-processor 

systems. By distributing tasks among multiple processors, the 

system can execute tasks in parallel, reducing the overall processing 

time. 

Scalability: Homogeneous systems are highly scalable, as new 

processors can be added to the system as the workload increases. 
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This scalability allows the system to grow as demand increases, 

providing increased performance and capacity. 

Fault Tolerance: Homogeneous systems are highly fault-tolerant, as 

they can continue to operate even if one or more processors fail. 

This is because tasks can be re-allocated to other processors, 

ensuring that the system continues to function. 

 

2.7 HETEROGENOUS MULTIPROCESSOR SYSTEMS 

Heterogeneous systems are a type of multiprocessor system where 

the processors are not identical in terms of hardware and software. 

In other words, processors in a heterogeneous system can have 

different architectures, instruction sets, and operating systems. 

In a heterogeneous system, processors may communicate through 

shared memory, but they may also use other mechanisms such as 

message passing or remote procedure calls (RPCs). Each processor 

may have its own memory, and a shared memory space may be used 

to facilitate communication and data sharing among processors. 

One of the main advantages of heterogeneous systems is that they 

can be optimized for specific workloads. Different processors can be 

chosen based on their strengths, such as high-performance graphics 

processing or specialized hardware for machine learning. This 

allows for the system to achieve better overall performance than a 

homogeneous system. 

Heterogeneous systems offer several benefits which include: 

Improved Performance: Heterogeneous systems can provide 

significant performance improvements over homogeneous systems 

since processors can be chosen for specific workloads. This allows 

for better utilization of the available hardware and can result in 

faster processing times. 

Flexibility: Heterogeneous systems can be designed to meet specific 

requirements, such as high-performance computing or machine 

learning. This flexibility allows for better customization of the 

system and can lead to better performance and cost-effectiveness. 

Energy Efficiency: Heterogeneous systems can be designed to be 

more energy-efficient than homogeneous systems. By using 

processors optimized for specific tasks, the system can consume less 

energy and reduce overall operating costs. 
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However, heterogeneous systems also have some limitations: 

Complexity: Heterogeneous systems can be more complex to 

program and manage than homogeneous systems. The programming 

model must be carefully designed to ensure that tasks are distributed 

appropriately among processors, and that communication is efficient 

and reliable. 

Hardware Compatibility: Heterogeneous systems can require 

specialized hardware, which can be expensive and difficult to 

acquire. Additionally, different processors may have different 

memory architectures or other requirements, which can complicate 

system design. 

Interoperability: Heterogeneous systems may require specialized 

software to facilitate communication and data sharing among 

processors. Ensuring that different components of the system can 

work together seamlessly can be a challenge. 

 

2.8 WHAT IS MIDDLEWARE? 

Middleware is a layer of software that provides a bridge between 

different applications or software components in a distributed 

computing environment. It acts as a communication layer that 

enables applications to exchange data and communicate with each 

other, regardless of the programming languages, operating systems, 

or hardware platforms they are running on. 

Middleware provides a set of standardized services and protocols 

that enable applications to communicate with each other and share 

data. These services can include message queuing, remote procedure 

calls (RPCs), transaction processing, object request brokers (ORBs), 

and web services. 

One of the primary benefits of middleware is that it allows different 

applications to work together seamlessly without requiring them to 

be tightly coupled. Middleware enables applications to 

communicate with each other using standard protocols and 

interfaces, which simplifies the development and integration 

process. 
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2.8.1Types of Middleware 

There are several types of middleware, including: 

Message-oriented middleware (MOM): This type of middleware 

enables applications to communicate by exchanging messages. 

MOM provides a reliable messaging service that ensures messages 

are delivered in the correct order and without loss or duplication. 

Object middleware: Object middleware provides an object-oriented 

approach to middleware. It enables objects to communicate with 

each other by passing messages using standard protocols such as 

CORBA or Java RMI. 

Transaction middleware: Transaction middleware provides a set of 

services that enable multiple applications to participate in 

distributed transactions. These services ensure that transactions are 

executed in a reliable and consistent manner. 

Web middleware: Web middleware provides a set of services that 

enable web applications to communicate with each other. These 

services include web services, XML, and REST. 

 

2.8.2 Benefits and Limitations of Middleware 

Middleware has several benefits which include: 

Interoperability: Middleware enables applications to communicate 

with each other regardless of the programming languages, operating 

systems, or hardware platforms they are running on. 

Scalability: Middleware can help to distribute the workload across 

multiple servers or nodes in a distributed computing environment, 

which can improve performance and scalability. 

Flexibility: Middleware can help to simplify the development and 

integration process by providing a set of standardized services and 

protocols that enable applications to communicate with each other. 

However, middleware can also have some limitations including: 

Complexity: Middleware can be complex to design and implement, 

and can require specialized knowledge and skills. 

Performance: Middleware can introduce additional overhead and 

latency, which can affect performance and throughput. 
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Cost: Middleware can be expensive to license and deploy, especially 

if specialized hardware or software is required. 

 

2.9 SYSTEM MODELS IN DISTRIBUTED SYSTEMS 

System models in distributed systems are crucial for understanding, 

designing, and analyzing the behavior of distributed applications. 

They help ensure that the systems are robust, reliable, scalable, 

secure, and performant, while also simplifying the inherent 

complexity of distributed computing. 

Why System Models? 

System models in distributed systems are important for several 

reasons: 

 System models provide a structured framework that guides the 

design and development of distributed systems. 

 System models help in analyzing the behavior and performance 

of distributed systems. 

 System models aid in designing systems that can handle 

different types of failures gracefully.. 

 System models provide the foundation for implementing robust 

security measures. 

 Standardized models enable different components and systems 

to work together seamlessly etc. 

 

2.10 TYPES OF SYSTEM MODELS 

There are three types of System Models in Distributed Systems. 

They are: 

 Physical Model 

 Architectural Model 

 Fundamental Model 

 

2.10.1 Physical Model 

A physical model represents the hardware components of a 

distributed system. It shows how computers and devices are 
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connected and helps in designing, managing, and improving the 

system's performance. 

A physical model includes the following key parts: 

Nodes: 

 Nodes are devices that process data, run tasks, and 

communicate with each other. They can be user computers, 

servers, workstations, etc. 

 Nodes provide an interface for users to interact with other 

backend devices for tasks like storage, processing, and web 

browsing. 

 Each node has an operating system, execution environment, 

and middleware that enable communication and other 

essential tasks. 

Links: 

 Links are the communication channels between nodes and 

devices. They can be wired (using copper wires, fiber optic 

cables) or wireless. 

 The choice of link depends on the environment and 

requirements. High-performance and real-time computing 

often need physical links. 

 Types of connections include: 

o Point-to-point links: Connect two nodes directly. 

o Broadcast links: Allow one node to send data to 

multiple nodes at once. 

o Multi-access links: Multiple nodes share the same 

channel and need protocols to prevent interference. 

Middleware: 

 Middleware is software running on nodes, providing 

decentralized control and decision-making. 

 It handles communication, resource management, fault 

tolerance, synchronization, and security. 

Network Topology: 

 This describes how nodes and links are arranged. Common 

topologies are bus, star, mesh, ring, and hybrid. 
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 The choice of topology depends on the specific needs and 

requirements. 

Communication Protocols: 

 Protocols are rules for transmitting data through links. 

Examples include TCP, UDP, HTTPS, and MQTT. 

 They ensure nodes can communicate and understand each 

other. 

 

2.10.2Architectural Model 

An architectural model in a distributed computing system is the 

overall design and structure of the system. It shows how different 

components are organized to interact and provide the desired 

functions. This model gives an overview of development, 

deployment, and operations, ensuring efficient cost usage and 

improved scalability. There are different aspects of an architectural 

model. These are as follows: 

Client-Server Model: 

 A centralized approach where clients request services and 

servers provide them. 

 Works on a request-response basis: the client sends a 

request, the server processes it, and then responds. 

 Uses protocols like TCP/IP and HTTP. 

 Commonly used in web services, cloud computing, and 

database management systems. 

Peer-to-Peer Model: 

 A decentralized approach where all nodes (peers) have equal 

capabilities and can request and provide services. 

 Highly scalable as peers can join and leave dynamically, 

creating an ad-hoc network. 

 Resources are distributed, and peers find them as needed. 

 Direct communication between peers without intermediaries, 

following set rules. 
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Layered Model: 

 Organizes the system into multiple layers, each providing a 

specific service. 

 Each layer communicates with adjacent layers using defined 

protocols without affecting the overall system. 

 Creates a hierarchical structure where each layer hides the 

complexity of the lower layers. 

Microservices Model: 

 Breaks a complex application into multiple independent 

services, each running on different servers. 

 Each service performs a single function focused on a specific 

business capability. 

 Makes the system more maintainable, scalable, and easier to 

understand. 

 Services can be independently developed, deployed, and 

scaled without affecting other services. 

 

2.10.3 Fundamental Model 

A fundamental model in a distributed computing system is a basic 

framework that helps understand the key aspects of these systems. 

These models describe common properties in all architectural 

models and are essential to understand how a distributed system 

behaves. There are three fundamental models: 

Interaction Model: 

Distributed systems involve many processes interacting in complex 

ways. The interaction model helps us understand how these 

processes communicate and coordinate. 

 Message passing sending messages that contain data, 

instructions, service requests, or process synchronization 

between computing nodes. This can be synchronous 

(immediate) or asynchronous (delayed). 

 In this model, a process can publish a message on a topic, 

and other processes that subscribe to that topic can receive 
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and act on the message. This is common in event-driven 

architectures. 

Failure Model: 

This model deals with the faults and failures that can occur in a 

distributed system. It helps identify and fix faults using mechanisms 

like replication and error detection and recovery. 

 Crash Failures: When a process or node stops working 

unexpectedly. 

 Omission Failures: When a message is lost, leading to 

missed communication. 

 Timing Failures: When a process takes longer than 

expected, causing delays or unsynchronized responses. 

 Byzantine Failures: When a process sends malicious or 

unexpected messages that disrupt the system. 

Security Model: 

Distributed systems are vulnerable to attacks, unauthorized access, 

and data breaches. The security model helps understand security 

requirements, threats, vulnerabilities, and protection mechanisms. 

 Authentication: Verifies the identity of users accessing the 

system to ensure only authorized and trusted entities can 

access it. 

 Encryption: Converts data into a format that is unreadable 

without a decryption key, protecting sensitive information 

from unauthorized access. 

 Data Integrity: Ensures data is not altered during storage, 

transmission, or processing, protecting it from unauthorized 

modifications or tampering. 
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2.11 SUMMING UP 

 Modern computing relies heavily on distributed systems and 

multiprocessor architectures to achieve high performance, 

scalability, and reliability. 

CHECK YOUR PROGRESS-I 

1. State True or False: 

a) In modern computing, distributed systems and 

multiprocessor architectures are essential for achieving 

high performance, scalability, and reliability. 

b) Symmetric multiprocessing (SMP) systems have 

processors with different instruction sets and architectures. 

c) In asymmetric multiprocessing (AMP) systems, all 

processors share a common memory. 

d) Tightly-coupled multiprocessor systems use multiple 

processors that share a common memory and I/O system. 

e) Loosely-coupled multiprocessor systems consist of 

independent computers interconnected by a network. 

 

2. Fill in the blanks: 

a) Tightly-coupled multiprocessor systems are commonly 

used in applications that require high performance and 

reliability, such as __________ simulations and real-time 

systems. 

b) In loosely-coupled multiprocessor systems, each computer 

in the system has its own __________ and operates 

independently. 

c) One of the advantages of loosely-coupled multiprocessor 

systems is their high __________, as nodes can be added or 

removed without affecting the overall operation. 

d) Designing software for loosely-coupled systems requires a 

more distributed computing __________, which can 

increase the complexity of the system. 

e) Loosely-coupled systems can be more vulnerable to 

security threats, as the __________ provides an attack 

surface for hackers. 
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 Multiprocessor systems use multiple CPUs to perform tasks 

simultaneously, enhancing processing power and efficiency. 

They are classified into: 

 Symmetric Multiprocessing (SMP): All processors share 

memory and have equal access to system resources, suitable 

for high-performance applications like scientific simulations. 

 Asymmetric Multiprocessing (AMP): Processors have 

different architectures and are assigned specific tasks, often 

used in specialized applications such as graphics processing. 

 Tightly-Coupled Multiprocessor Systems: Multiple processors 

share a common memory and I/O system, communicating via 

shared buses for faster data exchange. 

 Advantages: Increased processing power, improved 

reliability (even with processor failures), and scalability 

through easy addition of processors. 

 Challenges: Increased system complexity, potential for 

memory contention, and communication overhead affecting 

performance. 

 Loosely-Coupled Multiprocessor Systems: Independent 

computers interconnected via networks, each with its own 

memory, communicating through message passing. 

 Advantages: Flexibility to add or remove nodes without 

system disruption, cost-effectiveness with commodity 

computers, and high fault tolerance. 

 Challenges: Slower communication due to network latency, 

complexity in software design, and increased vulnerability to 

security threats. 

 In Homogeneous Multiprocessor Systems 

 All processors are identical in hardware and software. 

 Share memory and communicate through shared memory or 

inter-processor mechanisms. 

 Advantages: Improved performance, scalability, and fault 

tolerance. 

 In Heterogeneous Multiprocessor Systems 

 Processors differ in hardware, software, and architecture. 

 Communicate via shared memory or other mechanisms like 

message passing. 

 Advantages: Optimized for specific tasks, improved 

performance, and energy efficiency. 
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 Challenges: Complexity in programming, hardware 

compatibility, and interoperability. 

 Physical Model: 

 Represents hardware components, nodes, links, middleware, 

and network topology. 

 Describes how computers and devices are interconnected 

and communicate. 

 Architectural Model: 

 Defines overall structure and interaction of system 

components. 

 Types include client-server, peer-to-peer, layered, and 

microservices models. 

 Fundamental Model: 

 Describes essential properties common to all architectural 

models. 

 Includes interaction model, failure model, and security 

model. 

 

2.12 ANSWERS TO CHECK YOUR PROGRESS 

1. a) True    b) False    c) False    d) True    e) True 

2. a) scientific    b) memory    c) flexibility    d) framework 

     e) network 

 

2.13 POSSIBLE QUESTIONS 

Short Answer Type Questions: 

1. What are multiprocessors in modern computing? 

2. Differentiate between symmetric multiprocessing (SMP) and 

asymmetric multiprocessing (AMP). 

3. What is middleware, and what role does it play in distributed 

systems? 

4. Explain the concept of load balancing in multiprocessor systems. 

5. What are the advantages of loosely-coupled multiprocessor 

systems? 
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6. What is middleware and what role does it play in distributed 

systems? 

7. Name and briefly explain two types of middleware. 

8. What are the fundamental system models in distributed systems? 

Long Answer Type Questions: 

9. Describe the role of multiprocessor systems in achieving high 

performance, scalability, and reliability in modern computing. 

Discuss both homogeneous and heterogeneous systems. 

10. Explain symmetric multiprocessing (SMP) and asymmetric 

multiprocessing (AMP) in detail. Compare their architectures, 

advantages, and applications in computing. 

11. Discuss the concept of middleware in distributed systems. How 

does middleware facilitate communication and resource 

management among distributed computing nodes? Provide 

examples of different types of middleware and their 

applications. 

12. Compare and contrast tightly-coupled and loosely-coupled 

multiprocessor systems. Discuss their architectures, advantages, 

limitations, and applications in various computing environments. 

13. Examine the challenges and advantages of using loosely-coupled 

multiprocessor systems in distributed computing environments. 

Discuss factors such as communication overhead, scalability, 

fault tolerance, and security concerns. 

14. Discuss the different types of system models in distributed 

systems. Explain each type and its significance in designing and 

analyzing distributed applications. 

15. Explain the architectural model in distributed computing 

systems. Provide examples of different architectural models and 

their characteristics. 

16. What are the key aspects of the fundamental system models in 

distributed systems? Discuss the interaction model, failure 

model, and security model in detail. 
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2.14  REFERENCES AND SUGGESTED READINGS 

1. "Distributed Systems: Concepts and Design" by George 

Coulouris 

2. “Designing Data-Intensive Applications" by Martin 

Kleppmann 

3. “Distributed Systems: Principles and Paradigms" by Andrew 

Tanenbaum and Maarten Van Steen 

 

 

××× 
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UNIT- 3 

SYSTEM ARCHITECTURES 

 

Unit Structure: 

3.1 Introduction 

3.2 Objectives 

3.3Concept of Client Server Model 

3.4 Client Server Model 

3.4.1  1-Tier Model 

3.4.2  2- Tier Model 

3.4.3  3- Tier Model 

3.4.4  N-Tier Model 

3.5Variations in Client Server Model 

3.5.1 Multiple Server Model 

3.5.2 Proxy Server Model 

3.5.3 Network Computer Model 

3.6 Architectural Model 

3.6.1 Client Server Model 

3.6.2 Peer-to-Peer Model 

3.7 Application Layer in Distributed System 

3.7.1 Functions of Application layer 

3.7.2 Services of Application layer 

3.8 Distributed operating system and its issues 

3.8.1 Types of Distributed OperatingSystems 

3.8.1.1 Middleware 

3.8.1.2 Client-server 

3.8.1.3 Peer-to-Peer 

3.8.2 Advantages and Disadvantages of Distributed 

OperatingSystem(DOS) 

3.8.2.1  Advantages of DOS 

3.8.2.2 Disadvantages of DOS  

3.9 Summing Up  
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3.10 References and suggested reading 

3.11 Model Questions 

3.12 Answer to check your progress 

 

3.1 INTRODUCTION 

 Web is a Service that allows computers to share and 

exchange data. 

 Data can be images, video, audio, text, and documents, 

and that’s why the web is referred to as Client-Server 

communication. 

 A Client can be a machine or a program. A Client 

program is a program that allows the user to request the 

web. For example, the web browser is a user program 

that can make requests through the browser. 

 A client, whether it is a machine or a program, is an 

appliance and a way to make requests through the web. 

 A server is a computer program, NOT A DEVICE. 

 High-performance computers are called servers because 

they run server programs. 

 Servers provide functionality and serve other programs 

called clients. 

 

 

3.2 OBJECTIVES 

After going through this unit students will be able to learn 

 The concept of Client and Server 

 Variations in Client Server Model 

 Client Server Architecture and Peer to Peer Architecture 

 Application layering in a Distributed System 

 Distributed operating system and its issues. 

 

3.3 BASIC CONCEPT OF CLIENT SERVER MODEL 

Server: A single server can serve multiple clients at the same time. 

Also, we can run multiple servers on one single machine, they are 

called virtual servers. There are several types of servers. 
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1.Web servers such as Apache that serve HTTP requests. 

2.Database servers such as MYSQL that run database management 

systems. 

A server can contain web resources, host web applications, store 

user and program data etc. It is used to serve hundreds or thousands 

of clients.  

A server always listens for requests and as soon as it receives, it 

responds with a message. 

 

3.4 CLIENT-SERVER MODEL 

Now that we came to know what is client and what is server,we can 

define the client-server model in one sentence. Is an architecture on 

the web that splits computers into two sections, computers that 

require services are called clients, and computers that serveclients 

are called servers.The client-server model works through a request-

response cycle through HTTP. The client-server model is just one 

way for the computers to communicate via the web. 

3.4.1 1-Tier Architecture 

The 1-Tier architecture is also known as single-tier architecture. 

Here both client and server reside in one computer. This type of 

architecture is not suitable for web applications as data required by 

the application is available on the same computer or server. That 

means all the components required to run an application reside on 

the same computer. 

3.4.2 2-Tier Architecture 

In 2-tier architecture client request for services and the server 

responds. In the server side, both logic and data resides. Since some 

requests may need logical manipulation so after processing server 

responds. In this case client is called thin client since most of the 

processing done on server side. Client does not have many 

responsibilities in thin client. Eg. Hotstar, Netflix, E commerce 

sites, streaming applications. 

It not necessary that logic always sit on the server side. In some 

cases like Gaming app, Microsoft outlook, and video editing 

software where majority of the processing takes place in client side 

are called thick client.2 tier architecture mostly use in light weight 

websites or small businesses. 
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3.4.3  3-Tier Architecture 

In some cases where large number of data is available, the load of 

server is very heavy. In that case extra layer is introduce. Client has 

presentation layer, the middle layer is application layer where logic 

resides and the third layer ,database layer where data resides. This is 

called 3 tier architecture. Example of 3 tier is Basic library 

management for school. 

 

 

3.4.4  N-Tier Architecture 

This above 3-Tier may not serve the purpose for a large 

complication application. In that case extra layer introduced 

between the client and logic layer such as the Load balancer and 

another layer cache layer between logic and data layer.Thus this 

type of architecture is known as N-tier architecture. 
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3.5  VARIATIONS IN CLIENT SERVER MODEL 

3.5.1 Multiple Server Model 

 Services may be provided by multiple server. 

Server distribute resources among themselves. Thus communication 

among the servers takes place 

 

STOP TO CONSIDER 

1 tier architecture where client server database all resides in one 

machine.2 tier architecture where presentation layer run on 

client machine and database is store on server. In 2 tier if the 

number of client increases than the performance of the server 

degrades.3 tier architecture has three tiers, first tier contains 

client, second tier contains application layer  and third tier 

contains database server. Application layer is also called 

business logic. 

SELF ASKING QUESTIONS 

1. How 1 tier is different from 2-tier and 3 –tier? 

2. What is the concept of N-tier? 

CHECK YOUR PROGRESS 

1. What is the advantage of the three-tier client-server 

database architecture against the two-tier alternative? 

2. What are the limitations of two-tier architecture? 
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 In the above figure, Client1 requesting for a 

service to server1, that service may not available 

in server1,thus it request to server2. Server2 gives 

reply to server1 and thus to client1. 

 

3.5.2 Proxy Server Model 

 Proxy server provides copies(replication) of 

resources which are managed by other server.It 

acts as intermediate system between client and the 

server. 

 Eg, Maintaining web resources cache. If client 

request resources ,then first it checks in the 

cache(proxy server) ,if not available then cache 

request to the server. 

 

 

 When a client makes a request, the request goes to 

the proxy server first, if the resources is available 

with the proxy server, itsends the response else it 
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requests it to server1 or server2. Basically proxy 

server sits between client and the server. One 

advantage is that the load of the server reduces as it 

sits between client and server and also it enhances 

security as the proxy handles the request before 

going to the server so if there is any problem occurs 

it will affect the proxy server rather than the actual 

server. 

 

3.5.3 Network Computers 

 In network computers all the code is loaded from 

server and run locally. 

 All files are stored and managed remotedly. 

 Thus it is very simple and easy to managed. 

 

 In the above figure, PC can access CPU, printer, scanner  

using network computer. 

 

 

 

 

 

 

 

 

STOP TOCONSIDER 

A proxy server is an intermediary between the client and the server. It 

acts as a load balancing, caching resources and anonymizing requests. 

CHECK TO PROGRESS 

3. What is the difference between a proxy server and a server? 

4. Why do we need multiple servers? 



50 

 

3.6 ARCHITECTURE MODEL 

3.6.1 Client Server Model 

Two processes are available in client server architecture. Client has 

its own process and request for services or resources. Thus called 

requesting service. On the other hand, server has its own process 

,provide the services requested by client. Thus it works on 

request/reply protocol. Remote Procodure calls or Remote method 

invocation(RMI) is used to invoke process for different computing 

device. Server can also request a service from another server. 

 

 

In client server architecture, the server may act as a client also. For 

example, in the above, client1 asks requesting services from server1. 

Server1 may not have that particular information to reply back. In 

that case, it ask for information from another server say server2. 

Thus in that case server1 acts as a client. Whatever the information 

will be replied back by server2 to server1 and server1 response back 

to client1. 

3.6.2  Peer-to-Peer Architecture 

It composed of number of distributed, heterogenous, autonomous, 

dynamic peers in which participants share part of their own 

resources. Resources may be processing power, storage memory, 

software, files. All process/nodes play the same role. 

In Peer-to-Peer model, there is no client and no server. Both 

computers act as requestors and response providers. In other words, 

each one can be a client and server. Each one is able to send and 

receive data with one another. 
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. 

3.7 APPLICATION LAYER IN DISTRIBUTED SYSTEM 

It is the topmost layer of the internet model. Application 

layer programs are based on a client-server model. We can 

say that the application layer allows the user to use the 

internet. The application layer lies between the user and 

transport layer. The application layer provides security, 

different application programs, and addressing. The client 

cannot access the data or application directly, it is possible 

through the server only. Whenever a client requests services 

from the server, it has to include the address of the server, its 

own address as a source address. 

STOP TO CONSIDER 

Architectural Model: 

 It gives abstract view of distributed sysem 

 .It helps in simplifying reasoning of system. 

CHECK YOUR PROGRESS 

5. Write advantages and disadvantages of Client server and 

Peer to Peer architecture. 

6. What is the problem with peer-to-peer networks? 

7. Why peer-to-peer is not safe? 
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3.7.1 Functions of Application Layer 

a) Identifying communication partners: It identifies 

the availability of communication partners for an 

application with data to transmit. 

b) Determining resource availability: It identifies 

whether sufficient network resources are available for 

the requested communication. 

c) Synchronizing communication: All the 

communications that occur between the applications 

require cooperation which is managed by an 

application layer 

 

3.7.2 Services  of the application layer 

a. Electronic mail 

b. net news(Usenet) 

c. WWW(world wide web) 

d. Multimedia 

e. Remote file transfer and access 

 

 

 

 

 

 

 

3.8 DISTRIBUTED OPERATING SYSTEM(DOS) AND ITS ISSUES 

         A distributed operating system is a system in which a number 

of computers are connected to perform real-time applications. This 

multiple computers are connected by communication lines. Each of 

the system are said to be loosely connected as each of the system 

has its own applications, data and operating system. It allows to 

perform together as if there exists a big system. We can increase the 

STOP TO CONSIDER 

 The application layer and the end user can interact 

directly with the software application 

CHECK TO PROGRESS 

8. What is the main responsibility of the application layer? 

9. What is the need of application layer? 

10. What is the position of application layer? 
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performance of a real-time application by using distributed 

operating system. 

 

 

 

3.8.1  Types of Distributed Operating system 

3.8.1.1 Middleware 

Also called message-oriented middle ware. It performed real-time 

applications by connecting two or more operating systems. It allows 

access of real-time information among the different systems by 

passing messages. It maintains data integrity among different 

systems. It helps to increase the growth of organizational efficiency 

and also streamlines business processes. 

 

3.8.1.2 Client-server 

Already  discussed about client server model, where client requests 

for service and server response by replying with the required 

information. 

3.8.1.3 Peer-to-Peer 

             Peer to Peer where there is no client and the server. Each 

one act as a client and the server. 
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3.8.2 Advantages and Disadvantages  

3.8.2.1 Advantages 

 It is very easy to share resources and to perform real-time 

applications in distributed operating systems as system are 

connected to each other via a network. 

 Distributed operating system meet the needs of the 

business, making it more flexible and efficient. 

 It is  easier to control and monitor since the system can be 

managed centrally. 

 Due to the rise of big data and the need for real-time 

applications, distributed operating systems became very 

popular 

3.8.2.2 Disadvantages 

 It is very  difficult to administer and manage. 

 Due to the increased number of systems, there is a 

greater possibility of risk of failure of the system. 

 The cost of maintaining a distributed operating system 

is very high. 

 

 

STOP TO CONSIDER 

Distributed operating system in which several computers are 

connected through a common communication channel. Each one 

has its own individual processor and memory. 
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3.9 SUMMING UP 

This unit tells us about the Client-server model and its variations. 

How the client-server model is organized and how the organization 

is different from the Peer-to-Peer model. It describes the concept of 

the distributed operating system, its advantages and disadvantages. 

It tells about the application layer, how it works, its types and 

advantages and disadvantages. 

3.10  REFERENCES AND SUGGESTED READING 

1. https://unacademy.com/content/bank-exam/study-

material/computer-knowledge/distributed-operating-system/ 

2. https://www.youtube.com/watch?v=ePvqvXEkVIk 

3. Distributed System By Andrew Tanenbaum and Maarten van Steen 

 

3.11 MODEL QUESTIONS 

1. What are the challenges of the client-server model? 

2. What is required by the client-server model? 

3. Why is peer-to-peer network bad? 

4. What are the limitations of client-server? 

5. What are the features of peer to peer network? 

6. What is the working principle of peer-to-peer networks? 

7. What are the responsibilities of middleware? 

8.What is a middleware issue? 

 

SELF ASKING QUESTION 

1. What is the main purpose of middleware in distributed 

systems? 

2. What are the functions of a middleware system? 
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9. What application layer protocol is commonly used? 

10.What are the key challenges in building distributed systems? 

 

3.12 ANSWER TO CHECK YOUR PROGRESS 

ANSWER 1. Each tier can be worked separately by the 

development team and can be updated without impacting  other tier 

.Each  tier runs on  its own infrastructure 

ANSWER 2.  In 2-tier performance decreases as the number of 

users increases. It is difficult to implement reliable security as users 

need to have login information for every database server. 

ANSWER3. A user access websites by sending request to the 

server via web browser and the web server returns back the 

required information to the user. But the proxy server sits 

between the user and the web server that act as an intermediary. 

ANSWER 4. Multiple server are used for balancing the load. 

Instead of allocating a single server for a specific function, we can 

allocate different servers for various functions. Thus reducing the 

load on a single server. Hence utilization of memory, CPU ,RAM 

and storage takes place efficiently. 

ANSWER 5.ADVANTAGES OF CLIENT SERVER  

a) If one system stops working ,it will not affect the other. 

b) The size of the system can be set according to the 

requirement. 

DISADVANTAGE: 

a. Cost of set up is more. 

b. If the central system fails,it will affect the whole system. 
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ADVANTAGES OF PEER-TO-PEER 

a. No extra investment in server hardware and software 

b. Easy setup then server-based network. 

      DISADVANTAGES OF PEER TO PEER 

a) Additional load on the computer because of resource 

sharing. 

b) Lack of central organization. 

 

ANSWER 6. Lack of centralized control: Managing and 

coordinating network activities is difficult as the absence of a 

centralized network in peer-to-peer networks. Also difficult to 

coordinate complex activities, ensure data integrity and also difficult 

to enforce consistent policies. 

 

ANSWER 7. Since  in P2P, both acts a client and the server, so they 

are more easy for the attackers  to gain access to each machine in 

the network. 

 

ANSWER8. From the cloud-based storage or from a database, the 

user can access data using the application layer only. Within the 

same network or different network the transfer of files takes place 

using application layer. Also transfer of file from each other takes 

place using the application layer only. 

ANSWER9.Web browsers and email clients are the end-user 

software that uses the application layer. It provides protocols that 

allow software to send and receive information and present 

meaningful data to users. 

ANSWER 10.It is the topmost layer in the Open Systems 

Interconnection (OSI) model. It acts as the interface between the 

network and the end-user applications, and allows communication 

between software applications and lower-level network services. 

 

××× 
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UNIT: 4 

CLOCK SYNCHRONIZATION AND LOGICAL 

CLOCKS 

 

Unit Structure: 

4.1 Introduction 

4.2 Unit Objectives 

4.3 What is Synchronization? 

 4.3.1 Clock Synchronization 

 4.3.2 Need of Clock Synchronization 

4.4 External Clock Synchronization 

 4.4.1 Network Time Protocol (NTP) 

 4.4.2 GPS Based Synchronization 

4.5 Internal Clock Synchronization 

4.5.1 Cristian's Algorithm 

4.5.2 Berkeley Algorithm  

4.6 Logical Clocks in Distributed System 

4.6.1 Lamport Clock 

4.6.2 Vector Clock 

4.7 Challenges and Trade-Offs In Clock Synchronization 

4.8 Summing Up 

4.9 Answers to Check Your Progress 

4.10 Possible Questions 

4.11 References and Suggested Readings  
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4.1   INTRODUCTION 

 

In distributed systems, multiple processes operate on different 

machines, each with its own local clock. These clocks often differ 

due to variations in hardware, environmental conditions, and 

inherent clock drift. Accurate and consistent timekeeping across 

these distributed components is crucial for ensuring the correct 

sequence of events, maintaining consistency, and coordinating 

actions among processes. This is where clock synchronization 

comes into play. 

 

4.2 UNIT OBJECTIVES 

After going through this unit, you will be able to: 

 understand the importance of clock synchronization in 

distributed systems and explain why accurate timekeeping is 

essential for the coordination and consistency of operations. 

 describe the concepts of external clock synchronization and 

the methods used to achieve it. 

 explain internal clock synchronization techniques. 

 discuss logical clocks and their role in distributed systems. 

 identify and analyze the challenges and trade-offs involved 

in clock synchronization in distributed systems. 

 

4.3 WHAT IS SYNCHRONIZATION? 

In general, synchronization refers to the coordination or alignment 

of actions or events in time. In the context of computing, 

synchronization refers to the techniques and mechanisms used to 

coordinate the execution of multiple threads or processes in a way 

that ensures correctness and consistency. 

When multiple threads or processes are running concurrently, they 

may access shared resources or data structures, and if their access is 

not properly coordinated, it can lead to various problems such as 

race conditions, deadlocks, and data corruption. Synchronization 

techniques provide a way to avoid such problems by ensuring that 

threads or processes access shared resources in a mutually exclusive 

and orderly manner. 
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Some common synchronization mechanisms include locks, 

semaphores, monitors, and barriers. Locks are used to enforce 

mutual exclusion, which means that only one thread or process can 

access a shared resource at a time. Semaphores are similar to locks, 

but they allow multiple threads or processes to access a shared 

resource with a specified limit. Monitors provide a higher-level 

abstraction for synchronization by combining locks with condition 

variables that allow threads or processes to wait for certain events to 

occur. Barriers are used to synchronize a group of threads or 

processes by ensuring that they all reach a certain point in their 

execution before continuing. 

Overall, synchronization is an essential concept in concurrent 

programming, and it is crucial to ensure that shared resources and 

data structures are accessed in a coordinated and consistent manner 

to avoid problems and ensure correct program behavior. 

4.3.1 Clock Synchronization 

Clock synchronization is the process of ensuring that the clocks of 

different devices in a distributed system are aligned with each other. 

In a distributed system, devices may have their own clocks, which 

can drift over time due to factors such as temperature changes, aging 

of components, or differences in clock frequencies. If the clocks of 

different devices are not synchronized, it can lead to various 

problems such as incorrect time stamping of events, data 

inconsistencies, and even security vulnerabilities. 

There are several approaches to clock synchronization in distributed 

systems, and some of the most common ones are: 

NTP (Network Time Protocol): NTP is a protocol used to 

synchronize the clocks of devices over a network. 

PTP (Precision Time Protocol): PTP is a protocol similar to NTP, 

but it is designed for high-precision clock synchronization in 

industrial and scientific applications. 

GPS (Global Positioning System): GPS is a satellite-based 

navigation system that can be used to synchronize clocks in 

distributed systems. 

There are several algorithms that can be used to synchronize clocks 

in a distributed system without relying on external time sources. 

One of the most common algorithms is the Cristian's algorithm, 
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which uses a time server to estimate the clock offset between a 

client and the server. Another algorithm is the Berkeley algorithm, 

which uses a centralized server to synchronize the clocks of multiple 

devices in a LAN. 

Clock synchronization is an important aspect of distributed systems, 

and it can have significant impacts on the correctness and 

performance of applications. Proper clock synchronization ensures 

that events are timestamped correctly, data is consistent across 

devices, and security protocols are effective. Different clock 

synchronization approaches have their own strengths and 

limitations, and the choice of approach depends on factors such as 

accuracy requirements, network topology, and available resources. 

4.3.2 Need of Clock Synchronization 

In a distributed system, multiple devices or processes may 

communicate with each other over a network. Each device or 

process has its own local clock, which can drift over time due to 

various factors such as temperature changes, aging of components, 

and differences in clock frequencies. This can result in time 

discrepancies between different devices, which can cause a range of 

problems such as: 

Inconsistent data: If different devices record timestamps for the 

same event, but their clocks are not synchronized, it can be difficult 

to determine the order in which the events occurred. This can lead to 

inconsistencies in the data, making it difficult to analyze and 

process. 

Incorrect results: In some applications, such as financial 

transactions or scientific experiments, accurate timing is critical. If 

the clocks of different devices are not synchronized, it can lead to 

incorrect results or even failures. 

Security vulnerabilities: In many security protocols, accurate 

timing is critical for preventing attacks such as replay attacks or 

denial-of-service attacks. If the clocks of different devices are not 

synchronized, it can create vulnerabilities in the security protocols. 

Coordination problems: In a distributed system, multiple devices 

may need to coordinate their actions or synchronize their operations. 

If the clocks of different devices are not synchronized, it can be 



 

62 

 

difficult to ensure that they execute their operations in the correct 

order and at the correct time. 

To address these problems, clock synchronization is needed in 

distributed systems. Clock synchronization ensures that the clocks 

of different devices are aligned with each other, reducing the time 

discrepancies between them. This enables consistent data recording, 

accurate timing, secure communication, and better coordination 

between devices. Clock synchronization is an essential aspect of 

distributed systems, and it is critical for ensuring correct and reliable 

operation of applications. 

Example: 

One example of the need for clock synchronization can be seen in a 

financial transaction system. Suppose that a financial institution 

operates a distributed system consisting of multiple servers that 

handle transactions from clients. Each server has its own clock, and 

transactions are recorded with timestamps based on the local clock 

of the server. 

If the clocks of the servers are not synchronized, it can lead to 

discrepancies in the recorded timestamps. For example, suppose a 

client initiates a transaction at server A, and the transaction is 

recorded with a timestamp of 10:00:00 AM based on the local clock 

of server A. If the transaction is then forwarded to server B for 

processing, but the clock of server B is 5 minutes ahead of the clock 

of server A, the transaction will be recorded at server B with a 

timestamp of 10:05:00 AM. This can create confusion and errors 

when analyzing the transaction records, and it can also affect the 

correctness of financial reports and audits. 

To avoid such problems, clock synchronization is necessary in a 

financial transaction system. The clocks of the servers need to be 

synchronized with each other to ensure that transactions are 

recorded with consistent and accurate timestamps, regardless of 

which server they are processed on. This enables the financial 

institution to maintain the integrity of its transaction records, ensure 

accurate billing and auditing, and provide reliable services to its 

clients. 

This example illustrates how clock synchronization is crucial in 

distributed systems, especially in applications where accurate timing 

is critical. Without proper clock synchronization, inconsistencies 
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and errors can arise, leading to incorrect results, security 

vulnerabilities, and coordination problems. 

 

4.4  EXTERNAL CLOCK SYNCHRONIZATION 

External clock synchronization refers to the process of 

synchronizing the clock of a device or system with an external 

reference clock. The reference clock is typically a highly accurate 

time source that is accessible over a network or through a dedicated 

hardware interface. 

External clock synchronization is crucial in distributed systems for 

several reasons: 

 Event Ordering: Ensures that events are recorded in the 

correct sequence. 

 Consistency: Maintains data consistency across distributed 

databases. 

 Coordination: Facilitates coordinated actions among 

distributed processes. 

 Security: Enhances security protocols that rely on time-

based authentication mechanisms 

4.4.1 Network Time Protocol (NTP) 

The Network Time Protocol (NTP) is a widely used protocol 

designed to synchronize the clocks of computers over a network. 

Developed by David L. Mills in 1985, NTP is essential for ensuring 

that all devices in a distributed system maintain a consistent and 

accurate time. It operates over the User Datagram Protocol (UDP) 

and is capable of synchronizing clocks to within a few milliseconds 

over the public Internet and even better over local area networks 

(LANs). 

NTP plays a key role in achieving these objectives by providing a 

reliable method to synchronize the system clocks of devices within a 

network to a common reference time. 

How NTP Works? 

NTP operates in a hierarchical system of time sources. The 

hierarchy is organized into strata, where each stratum level indicates 

the distance from the reference clock: 
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 Stratum 0: High-precision timekeeping devices such as 

atomic clocks or GPS clocks. 

 Stratum 1: Servers directly connected to Stratum 0 devices, 

serving as primary time servers. 

 Stratum 2 and below: Servers that synchronize with servers 

in higher strata, creating a cascading effect of time 

synchronization. 

NTP uses a client-server model where clients periodically query 

NTP servers to adjust their local clocks. The protocol involves 

exchanging timestamps between the client and the server, allowing 

the client to calculate the round-trip delay and offset. 

Synchronization Process 

1. Timestamp Exchange: NTP clients send requests to NTP 

servers, and servers respond with packets containing 

timestamps indicating when the request was received and 

when the response was sent. 

2. Delay and Offset Calculation: The client uses the 

timestamps to calculate the round-trip delay and clock offset. 

This involves four key timestamps: 

o T1: Time when the client sends the request. 

o T2: Time when the server receives the request. 

o T3: Time when the server sends the response. 

o T4: Time when the client receives the response. 

The round-trip delay (d) and offset (θ) are calculated using 

the following formulas: 

 

 

3. Clock Adjustment: The client adjusts its clock by the 

calculated offset (θ) to align with the server's time. 

Features and Benefits of NTP: 

 Accuracy: NTP can achieve synchronization accuracy 

within milliseconds over the Internet and microseconds in 

LAN environments. 
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 Fault Tolerance: NTP supports multiple servers for 

redundancy, improving reliability in case one or more 

servers fail. 

 Scalability: The hierarchical structure of NTP allows it to 

scale efficiently across large networks. 

 Security: NTP includes cryptographic mechanisms to 

prevent malicious attacks and ensure the integrity of the time 

synchronization process. 

Challenges and Limitations: 

 Network Latency: Variations in network latency can affect 

the accuracy of time synchronization. 

 Asymmetric Delays: Differences in delay times between the 

client-server and server-client paths can introduce errors. 

 Server Load: Heavy load on NTP servers can lead to delays 

and less accurate synchronization. 

It is a robust and widely adopted protocol for external clock 

synchronization in distributed systems. By aligning the clocks of 

distributed devices to a common reference time, NTP ensures 

accurate event ordering, consistency, and coordination, which are 

essential for the correct functioning of distributed systems. Despite 

some challenges, the benefits of NTP in maintaining synchronized 

clocks far outweigh its limitations, making it a critical component in 

modern networked environments. 

4.4.2 GPS Based Synchronization 

Global Positioning System (GPS) is a satellite-based navigation 

system that provides highly accurate time and location information 

to GPS receivers on Earth. While GPS is primarily known for its 

navigation capabilities, it also plays a crucial role in providing 

precise time synchronization for various applications, including 

distributed systems. GPS-based synchronization is one of the most 

accurate methods for achieving external clock synchronization, 

offering time precision within nanoseconds. 
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How GPS-Based Synchronization Works? 

GPS-based synchronization leverages the precise atomic clocks on 

GPS satellites to provide accurate time information to receivers on 

Earth. The process involves several key steps: 

 Satellite Signal Reception: GPS receivers on the ground 

receive signals from multiple GPS satellites. Each satellite 

broadcasts its current time and position. 

 Time Calculation: The receiver calculates the travel time of 

signals from each satellite by comparing the broadcast time with 

the reception time. 

 Position and Time Solution: By receiving signals from at least 

four satellites, the GPS receiver can calculate its precise location 

and correct its internal clock. This process is known as 

trilateration. 

 Clock Adjustment: The GPS receiver adjusts its local clock 

based on the highly accurate time information received from the 

satellites. This time information is typically derived from atomic 

clocks onboard the satellites, ensuring high precision. 

Features and Benefits of GPS-Based Synchronization: 

 High Accuracy: GPS provides time synchronization accuracy 

within nanoseconds, making it one of the most precise methods 

available. 

 Global Availability: GPS signals are available worldwide, 

making it suitable for synchronization in geographically 

dispersed systems. 

 Independence from Network Conditions: Unlike network-

based protocols such as NTP, GPS-based synchronization is not 

affected by network latency or asymmetric delays. 

 Redundancy: Multiple satellites ensure redundancy, enhancing 

the reliability of the synchronization process. 

Applications of GPS-Based Synchronization: 

 Telecommunications: Synchronizing base stations in cellular 

networks to ensure seamless handoffs and efficient spectrum 

usage. 

 Power Grids: Coordinating operations of power plants and 

substations to maintain grid stability and prevent blackouts. 
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 Financial Systems: Ensuring accurate timestamps for financial 

transactions to meet regulatory requirements and prevent fraud. 

 Scientific Research: Providing precise timing for experiments 

and data collection in fields such as astronomy and particle 

physics. 

Challenges and Limitations 

 Signal Obstruction: GPS signals can be obstructed by 

buildings, mountains, or other structures, limiting their 

effectiveness in certain environments. 

 Multipath Interference: Reflections of GPS signals from 

surfaces like buildings and water can cause errors in time 

calculation. 

 Atmospheric Conditions: Variations in the ionosphere and 

troposphere can affect signal travel time, introducing slight 

inaccuracies. 

 Dependency on Satellite Constellation: The accuracy of GPS-

based synchronization depends on the number of visible 

satellites and their positions relative to the receiver. 

This technique is a very effective way to keep clocks accurate in 

distributed systems. By using the precise time from GPS satellites, 

devices in a network can stay in sync. This is important for keeping 

the order of events correct, ensuring data is consistent, coordinating 

actions, and maintaining security. Even though there are challenges 

like signal blockage and weather conditions, the benefits make GPS-

based synchronization essential for many high-precision and time-

sensitive tasks. 

 

4.5  INTERNAL CLOCK SYNCHRONIZATION 

Internal clock synchronization refers to the process of ensuring that 

all the clocks within a distributed system are synchronized with each 

other. Unlike external clock synchronization, which relies on an 

external time source (such as GPS or NTP), internal clock 

synchronization focuses on achieving consistency and agreement 

among the clocks of different nodes within the system itself. This is 

crucial because, in a distributed system, each node typically has its 

own clock, and these clocks can drift apart over time due to various 
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factors, such as differences in clock hardware and environmental 

conditions. 

The importance of Internal clock synchronization are as follows: 

1. Event Ordering Consistency: Internal clock 

synchronization is essential for maintaining a consistent 

order of events across different nodes. 

2. Data Consistency: Ensuring that all nodes have 

synchronized clocks helps maintain data consistency. 

3. Coordinated Actions: Many applications in distributed 

systems require coordinated actions between nodes. For 

instance, in distributed control systems, synchronized clocks 

ensure that actions are taken at the correct time, allowing the 

system to function smoothly and predictably. 

4. Fault Tolerance: Synchronized clocks can enhance fault 

tolerance in distributed systems. 

5. Security: Time synchronization is crucial for security 

mechanisms such as authentication and authorization. 

Internal clock synchronization is crucial for making sure distributed 

systems run accurately, efficiently, and safely. It helps solve 

problems caused by clocks getting out of sync and ensures that 

events happen in the right order, data stays consistent, actions are 

well-coordinated, system failures are handled better, performance is 

improved, and security is strong. 

4.5.1 Cristian's Algorithm 

Cristian's Algorithm is a method used in distributed systems to 

synchronize the clocks of different nodes with a time server. The 

goal is to minimize the difference between the server's clock and the 

clocks of the client nodes. 

Steps of Cristian's Algorithm: 

1. Client Request: A client node sends a request to the time server 

asking for the current time. 

2. Server Response: The server receives the request and 

immediately sends back the current time (T_server) to the client. 

3. Client Adjustment: Upon receiving the server's time, the client 

adjusts its own clock by considering the network delay. 



 

69 

 

To account for the network delay, the client measures the round-trip 

time (RTT) of the message and adjusts the server's time accordingly. 

The estimated time when the server sent its response can be 

calculated as: 

 

where, RTT is the round-trip time measured by the client. 

Example: 

Let's consider an example to understand Cristian's Algorithm in 

action. 

1. Client Sends Request: 

o At time T1=10 (according to the client's clock), the client 

sends a request to the server. 

2. Server Responds: 

o The server receives the request and immediately sends 

the time Tserver=15. 

3. Client Receives Response: 

o The client receives the server's response at time T2=18 

(according to the client's clock). 

4. Calculate RTT: 

o The client calculates the round-trip time as:  

RTT=T2−T1=18−10=8 

5. Adjust Client's Clock: 

o The client adjusts its clock based on the server's time and 

the estimated network delay: 

 

So, the client sets its clock to 19, aligning it closer to the server's 

time while accounting for the network delay. 

Cristian's Algorithm is a popular method for clock synchronization 

in distributed systems for several reasons: 
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 Simplicity and Ease of Implementation: The algorithm is 

simple to understand and implement. It involves basic message 

exchanges between the client and the server, making it 

accessible for systems with limited resources. 

Here, the only requirement is a reliable time server and basic 

network communication capabilities, making it suitable for a 

wide range of environments. 

 Improved Accuracy over Simple Synchronization:Unlike 

simple synchronization methods, Cristian's Algorithm accounts 

for network delay by measuring the round-trip time (RTT) of 

messages. This helps in reducing the synchronization error. 

The client adjusts its clock based on the server's time and the 

measured network delay, leading to more accurate 

synchronization. 

 Reduced Synchronization Error:By calculating the RTT and 

adjusting the time accordingly, Cristian's Algorithm 

compensates for the delay in message transmission, which helps 

in achieving closer synchronization between client and server 

clocks. 

 Suitability for Various Network Conditions:The algorithm is 

particularly effective in networks with relatively low delay and 

jitter. It can provide accurate synchronization in environments 

where network conditions are stable and predictable. 

 Wide Applicability:Cristian's Algorithm can be applied in 

various distributed systems, such as distributed databases, real-

time systems, and networked applications where synchronized 

time is crucial for operations. 

Also, there are limitations this algorithm and they are: 

 Single Point of Failure: The algorithm relies on a single time 

server, which can be a single point of failure. If the server 

becomes unavailable, clients cannot synchronize their clocks. 

 Network Delay Variability: High variability in network delays 

can affect the accuracy of synchronization. The algorithm 

assumes a relatively stable network condition for accurate time 

adjustments. 

Cristian's Algorithm is a practical and effective solution for clock 

synchronization in many distributed systems. Its simplicity, ease of 
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implementation, and ability to reduce synchronization errors by 

accounting for network delays make it a valuable tool for achieving 

accurate time synchronization across networked devices. 

4.5.2 Berkeley Algorithm 

The Berkeley Algorithm is a way to synchronize clocks in 

distributed systems when there is no single, highly accurate time 

server. It works by choosing one node to act as the coordinator. This 

coordinator collects the current times from all the nodes, calculates 

the average time, and then tells each node how to adjust their clock 

to match this average. This method is particularly useful when no 

single node has a very accurate clock. 

Steps of Berkeley Algorithm: 

 Coordinator Selection: Choose one node to act as the 

coordinator. 

 Polling: The coordinator asks all other nodes for their current 

time. 

 Time Collection: Each node sends its current time back to the 

coordinator. 

 Average Calculation: The coordinator calculates the average 

time from all the collected times, including its own. 

 Adjustment Calculation: The coordinator figures out how 

much each node's time needs to change to match the average. 

 Time Adjustment: The coordinator tells each node how much 

to adjust their clocks to sync with the average time. 

Example: 

Consider a distributed system with four nodes (A, B, C, and D). 

Node A is selected as the coordinator. The current times on each 

node are as follows: 

 Node A: 10:00 

 Node B: 10:05 

 Node C: 09:58 

 Node D: 10:02 
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Here’s how the Berkeley Algorithm would synchronize these 

clocks: 

1. Coordinator Polling: Node A (the coordinator) polls nodes B, 

C, and D, asking for their current time. 

2. Time Collection: 

 Node B reports 10:05 

 Node C reports 09:58 

 Node D reports 10:02 

3. Average Calculation: 

 Node A collects these times: 10:00, 10:05, 09:58, and 10:02. 

 It calculates the average time: 

(10:00+10:05+09:58+10:02)/4=10:01.25 

1. Adjustment Calculation: 

 Node A determines the difference from the average: 

o Node A 10:00−10:01.25=−1.25 minutes 

o Node B: 10:05−10:01.25=+3.75 minutes 

o Node C: 09:58−10:01.25=−3.25 minutes 

o Node D: 10:02−10:01.25=+0.75 minutes 

2. Time Adjustment: 

 Node A sends each node the amount of time to adjust: 

o Node A adjusts by −1.25-1.25−1.25 minutes to match 

the average. 

o Node B adjusts by −3.75-3.75−3.75 minutes to match 

the average. 

o Node C adjusts by +3.25+3.25+3.25 minutes to 

match the average. 

o Node D adjusts by −0.75-0.75−0.75 minutes to match 

the average. 

After these adjustments, all nodes will have their clocks 

synchronized to 10:01.25. 

The benefits of using Berkeley algorithm for clock synchronization 

in distributed systems are: 
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 Single Clock Independence: Unlike some synchronization 

methods that rely on a single highly accurate time server, the 

Berkeley Algorithm does not require any node to have an 

extremely accurate clock. This makes it suitable for 

environments where no node can be guaranteed to have a 

perfectly accurate time source. 

 Fault Tolerance: By using the average time from multiple 

nodes, the algorithm reduces the impact of any one node having 

an inaccurate clock. This approach increases the overall 

robustness and reliability of the system. 

 Coordinated Adjustments: The Berkeley Algorithm ensures 

that all nodes adjust their clocks in a coordinated manner, 

preventing any significant time discrepancies between them. 

This is crucial for applications that require synchronized actions 

and consistent data states. 

Also, there are limitations this algorithm and they are: 

 Coordinator Dependency: The algorithm depends on the 

coordinator to compute the average time and distribute 

adjustments. 

 Communication Overhead: Requires polling and 

communication with all nodes, which can introduce delays in 

large systems. 

 Synchronization Accuracy: The accuracy depends on the 

stability of the network and the precision of the nodes' clocks. 

The Berkeley Algorithm is a practical and efficient way to keep 

clocks synchronized in a distributed system without needing an 

external accurate time source. 
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4.6 LOGICAL CLOCKS IN DISTRIBUTED SYSTEM 

Logical clocks help organize events in distributed systems by 

assigning them logical times, which is useful when physical clocks 

are not perfectly in sync due to issues like network delays and clock 

drift. 

In a distributed system, events can happen at the same time on 

different nodes, making it hard to determine the exact order of 

events. Logical clocks solve this problem by giving each event a 

CHECK YOUR PROGRESS-I 

1. State True or False: 

a) NTP stands for Network Time Protocol and is used for clock 

synchronization across computers over a network. 

b) GPS-based synchronization can achieve time precision 

within microseconds. 

c) The Berkeley Algorithm requires a highly accurate external 

time source for synchronization. 

d) Clock synchronization is not important for financial 

transaction systems. 

e) In NTP, the hierarchical structure is organized into strata, 

with Stratum 0 representing servers directly connected to 

atomic clocks. 

2. Fill in the blanks: 

a)______ is a satellite-based navigation system used for time 

synchronization. 

b)Cristian's Algorithm estimates the clock ______ between a 

client and server. 

c) In NTP, the client adjusts its clock based on the calculated 

______ and offset. 

d)GPS-based synchronization provides accuracy within 

______. 

e) Clock synchronization helps in achieving correct ______ 

and coordinated actions in distributed systems. 
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logical time based on how it relates to other events, without 

depending on the actual time they occurred. 

4.6.1 Lamport Clock 

One example of a logical clock is the Lamport clock, which is a 

simple algorithm that assigns a unique timestamp to each event 

based on the timestamp of the preceding event and the messages 

exchanged between nodes. The Lamport clock algorithm operates as 

follows: 

 Each node maintains a local counter that is incremented by 1 for 

each event. 

 When an event occurs, the node assigns a timestamp to the event 

by appending the local counter value to the node's unique 

identifier. 

 When a node sends a message to another node, it includes its 

own timestamp in the message. 

 When a node receives a message from another node, it updates 

its own timestamp to the maximum of its current timestamp and 

the timestamp received in the message. 

The Lamport clock algorithm ensures that events that are causally 

related, such as a message being sent and received, are assigned 

timestamps that reflect their causal ordering. However, events that 

are not causally related may be assigned the same timestamp or 

different timestamps, depending on the order in which they occur on 

different nodes. 

4.6.2 Vector Clock 

Another example of a logical clock is the vector clock, which 

extends the Lamport clock algorithm by maintaining a vector of 

counters instead of a single counter. Each entry in the vector 

corresponds to a node in the distributed system, and the value of 

each entry is the local counter value of the corresponding node. 

When an event occurs, the node increments its own counter and 

sends its vector clock along with the message. When a node receives 

a message, it updates its own vector clock by taking the maximum 

of its current vector and the vector received in the message. 
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Logical clocks are useful for various distributed system applications 

such as event ordering, synchronization, and debugging. By 

assigning logical timestamps to events, distributed systems can 

reason about the ordering of events and ensure that processes are 

executing consistently despite delays and failures in the network.  

 

4.7  CHALLENGES AND TRADE-OFFS IN CLOCK 

SYNCHRONIZATION 

The challenges in Clock Synchronization in distributed systems are 

as follows: 

 Clock Drift: The Clocks in distributed systems drift due to 

factors such as temperature variations, aging components, and 

differences in oscillator frequencies. This drifting clocks lead to 

time discrepancies among nodes, affecting the correctness of 

event ordering and synchronization. 

 Network Latency: Variations in network latency can affect the 

accuracy of time synchronization protocols like NTP or PTP. 

Higher latency can lead to synchronization errors and reduce the 

precision of synchronized clocks. 

 Fault Tolerance: Synchronization protocols must be resilient to 

failures in network connectivity, hardware failures, or server 

downtime. Failure to handle faults can disrupt synchronization, 

leading to inconsistencies and potential system failures. 

 Security: Ensuring the integrity and authenticity of time 

synchronization messages is crucial, especially in security-

sensitive applications. Insecure synchronization can lead to 

vulnerabilities such as replay attacks or unauthorized access. 

 Scalability: Synchronizing clocks in large-scale distributed 

systems with thousands of nodes poses scalability 

challenges.Scalability issues can affect synchronization accuracy 

and performance, especially as the network size increases. 

The trade-offs in Clock Synchronization in distributed systems are 

as follows: 

 Accuracy vs. Overhead: Increasing synchronization accuracy 

often requires more frequent clock updates and higher 

computational overhead.  
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Balancing accuracy with system performance is essential to 

meet application requirements without excessive resource 

consumption. 

 Centralized vs. Decentralized Approaches: Centralized 

synchronization approaches (e.g., NTP) provide high accuracy 

but can introduce single points of failure. 

Decentralized approaches (e.g., PTP) distribute synchronization 

responsibility but require more complex coordination and 

management. 

 Real-time vs. Eventual Consistency: Real-time consistency 

ensures immediate synchronization, whereas eventual 

consistency allows for gradual convergence over time. 

Choosing between these depends on application needs, such as 

real-time data processing or eventual data consistency in 

distributed databases. 

 Precision vs. Network Load: Achieving higher precision in 

synchronization may increase network traffic and load. 

Optimizing synchronization protocols to minimize network 

overhead while maintaining acceptable precision is crucial, 

especially in bandwidth-constrained environments. 

 Security vs. Performance: Implementing robust security 

measures (e.g., cryptographic authentication) adds overhead to 

synchronization protocols. 

Balancing security requirements with performance constraints 

ensures that clock synchronization does not compromise system 

responsiveness or scalability. 

 

4.8  SUMMING UP 

 Synchronization ensures coordinated actions or events in 

computing. It prevents issues like race conditions, deadlocks, 

and data corruption in concurrent processes. 

 Clock Synchronization isEssential for aligning clocks in 

distributed systems to avoid time discrepancies.Common 

methods include NTP, PTP, and GPS-based 

synchronization.Algorithms like Cristian's and Berkeley's handle 

internal synchronization without external sources. 
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 Clock Synchronization is necessary Ensures consistent data, 

accurate timing, and secure communication. 

 NTP is ahierarchical system with strata for time sources. 

 NTP utilizes UDP for clock adjustment based on round-trip 

delay and offset calculations. It provides fault tolerance, 

scalability, and security features. 

 GPS-Based Synchronization relies on satellite signals for 

precise time and location data. It offers high accuracy and global 

coverage, ideal for telecommunications, power grids, and 

financial systems. 

 

4.9 ANSWERS TO CHECK YOUR PROGRESS 

1. a) True    b) False    c) False    d) False    e) True 

2. a) GPS    b) offset    c) delayd) nanoseconds 

    e) event ordering 

 

4.10 POSSIBLE QUESTIONS 

Short Answer Type Questions: 

1. What is clock synchronization in distributed systems? 

2. Name two common protocols used for external clock 

synchronization. 

3. What are the primary challenges in achieving accurate clock 

synchronization? 

4. Explain the role of NTP in networked environments. 

5. Why is GPS-based synchronization highly accurate? 

6. Describe Lamport's Logical Clock and its fundamental principle. 

7. What problem do Vector Clocks solve that Lamport's Logical 

Clocks cannot? 

8. What are the key challenges in achieving accurate clock 

synchronization in distributed systems? 

9. Explain one advantage and one limitation of using Cristian's 

Algorithm for clock synchronization. 
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Long Answer Type Questions: 

10. Describe the process of internal clock synchronization in 

distributed systems. Why is it necessary? 

11. Discuss the steps involved in Cristian's Algorithm for clock 

synchronization. Provide an example to illustrate its operation. 

12. Explain how the Berkeley Algorithm works for clock 

synchronization in distributed systems. Provide an example 

scenario where the algorithm would be beneficial. 

13. Compare and contrast Cristian's Algorithm and the Berkeley 

Algorithm in terms of their approach to clock synchronization, 

advantages, and limitations. 

14. Discuss the challenges and considerations involved in achieving 

accurate internal clock synchronization in distributed systems. 

How do algorithms like Cristian's and Berkeley's address these 

challenges? 

15. Discuss the operational principle of Lamport's Logical Clock 

with a step-by-step example involving two processes 

communicating through messages. 

16. Explain the significance of logical clocks in ensuring causality 

tracking and event ordering in distributed systems. Provide 

examples of scenarios where this is crucial. 

17. Describe the Berkeley Algorithm for clock synchronization in 

distributed systems. Include its steps, advantages, and 

limitations. 

18. Discuss the challenges involved in achieving fault-tolerant clock 

synchronization in large-scale distributed systems. What 

strategies can be employed to mitigate these challenges? 
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UNIT 5: 

MESSAGE ORDERING AND CAUSAL ORDER 

 

 

Unit Structure: 

5.1 Introduction 

5.2 Unit Objectives 

5.3 Message Ordering and Its Importance 

5.4 Message Ordering: Lamport’s Logical Clock 

5.5 Message Ordering: Vector Clock 

5.6 Causal Order of Messages 

5.6.1 Lamport's “Happened-Before” Relation 

5.7 Birman-Schiper-Stephenson (BSS) Protocol 

5.7.1 Key Features 

5.7.2 How BSS Protocol Works? 

5.7.3 Advantages of BSS Protocol 

5.8 Schiper-Eggli-Sandoz (SES) Protocol 

5.8.1 Key Features 

5.8.2 How SES Protocol Works? 

5.8.3 Advantages of SES Protocol 

5.9 Summing Up 

5.10 Answers to Check Your Progress 

5.11 Possible Questions 

5.12 References and Suggested Readings  
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5.1   INTRODUCTION 

 

Message ordering is a fundamental aspect of distributed systems, 

ensuring that messages exchanged between different components 

are processed in a consistent and predictable manner. Proper 

message ordering is crucial for maintaining system correctness, 

consistency, and reliability, especially in environments where 

components are geographically dispersed and operate concurrently. 

 

5.2 UNIT OBJECTIVES 

After going through this unit, you will be able to: 

 understand the Concept of Message Ordering. 

 understand how Lamport's Logical Clock is used to establish 

a partial order of events in distributed systems. 

 analyze the use of Vector Clocks in relation with causal 

order of messages. 

 discuss the concept of causal ordering of messages and its 

significance in maintaining consistency in distributed 

systems. 

 

5.3 MESSAGE ORDERING AND ITS IMPORTANCE 

In a distributed system, multiple processes or nodes operate 

concurrently and communicate by sending and receiving messages. 

These processes may execute at different speeds and may not have 

access to a global clock, leading to challenges in determining the 

correct sequence in which messages should be processed. Message 

ordering refers to the rules or protocols that determine the sequence 

in which messages are delivered and processed by the receiving 

nodes. 

The following points emphasize the importance of Message 

Ordering in Distributed Systems. 

 Consistency and Correctness 

Making sure that messages are processed in the right order is 

essential for keeping a distributed system consistent.Correct 

message ordering prevents anomalies, such as processing a response 
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before the corresponding request or applying updates out of 

sequence. 

 Synchronization of Operations 

In distributed systems, many tasks need to be coordinated across 

different nodes. Message ordering makes sure that these tasks, 

especially those that depend on each other, are carried out in the 

right order, keeping the system running smoothly and logically. 

 Causal Relationships 

In distributed systems, some events can influence others. Message 

ordering methods like causal ordering make sure these connections 

are respected, so that an effect isn't processed before its cause. This 

is crucial in systems where tasks rely on the outcomes of earlier 

actions. 

 Fault Tolerance and Recovery 

If the network breaks down or a node fails, message ordering 

protocols make sure that messages are delivered and processed in 

the right order once the system is back up. This keeps the system 

consistent and reliable even after failures. Having messages in the 

right order also helps with undoing operations correctly if something 

goes wrong, by reversing the actions in the order they happened. 

 Coordination and Consensus 

In distributed systems where nodes must agree on a shared state or 

make a group decision, message ordering is vital. Making sure all 

nodes process messages in the same order prevents situations where 

the system gets divided, ensuring everything stays consistent and 

unified. 

 Performance Optimization 

Well-planned message ordering can make distributed systems run 

more efficiently by cutting down on the need for extra 

synchronization and coordination. For instance, if some tasks can 

happen at the same time without needing strict order, the system can 

work faster and with less delay. However, it's important to balance 

this with the need for consistency, as being too relaxed with the 

order can cause problems with data accuracy. 
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5.4 MESSAGE ORDERING: LAMPORT’S LOGIAL CLOCK 

In the previous unit, we talked about Lamport’s Logical Clock in 

simple terms. Now, let’s try to get the detail about it. The Lamport 

Logical Clock is a mechanism developed by Leslie Lamport in 1978 

to order events in a distributed system where a global clock is not 

available. In distributed systems, different processes or nodes may 

operate independently and communicate through message passing, 

making it difficult to determine the order of events accurately. 

5.4.1 How Lamport’s Logical Clock Works? 

Now, let’s discuss how Lamport Logical Clock Ensures Message 

Ordering. 

1. Event Timestamps 

In a distributed system, each process maintains its own logical 

clock. Whenever an event occurs, the logical clock is incremented, 

and the event is tagged with the updated timestamp. This timestamp 

helps the system to track the order of events across multiple 

processes. 

There are three types of events that Lamport's Logical Clock 

handles: 

 Internal events (actions within a process) 

 Send events (when a process sends a message to another 

process) 

 Receive events (when a process receives a message from 

another process) 

2. Message Send and Receive 

 Sending Messages: When a process sends a message, it 

increments its logical clock and attaches the clock value to 

the message. This ensures that the timestamp reflects the 

order of the event when it was sent. 

 Receiving Messages: When a process receives a message, it 

compares its own logical clock with the timestamp of the 

message. The receiving process sets its logical clock to be 

the higher of its current value or the message's timestamp, 
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and then increments it. This ensures that events are ordered 

properly, even if they occurred on different processes. 

For example: 

 Process A sends a message with timestamp 10 to Process B. 

 Process B has a logical clock of 8 when it receives the 

message. 

 Process B updates its clock to 11 (the max of its clock and 

the message timestamp, plus 1) before processing the 

message. 

3. The "Happened-Before" Relation (→) 

One of the key concepts of Lamport Logical Clock is the 

"happened-before" relation (denoted →), which helps define the 

order in which events should be processed. 

 Internal Order: If an event A happens in the same process 

before event B, then A → B. 

 Message Ordering: If an event A involves sending a message, 

and event B involves receiving that message, then A → B. 

 Transitivity: If A → B and B → C, then it follows that A → C. 

These rules ensure that messages which are causally related are 

processed in the correct order. For example, if Process A sends a 

message to Process B, the sending event should be ordered before 

the receiving event, preserving the logical sequence of events. 

4. Partial Order vs. Total Order 

Lamport Logical Clock provides a partial order of events. This 

means that it can order events that are causally related (i.e., where 

one event influences another), but it cannot definitively order events 

that are independent of each other. 

For example, if Process A sends a message to Process B, those two 

events are causally linked and can be ordered. However, if Process 

C performs an action independently of A and B, its events are not 

directly related, and the clock may not provide a strict order 

between events on A, B, and C. 

To obtain a total order of events (which is sometimes required in 

systems like distributed databases or consensus algorithms), 

additional mechanisms, such as attaching process IDs to 

timestamps, are needed. 
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Let’s walk through an example: 

Step 1: Initial Setup 

o Process A and Process B both start with a logical clock 

value of 0. 

Step 2: Process A sends a message to Process B 

o Process A increments its logical clock to 1, sends the 

message, and attaches the timestamp 1 to the message. 

Step 3: Process B receives the message 

o Process B receives the message when its clock is still 0. 

It compares the message timestamp (1) with its own 

clock (0), sets its clock to 2 (the higher value + 1), and 

then processes the message. 

Now, the events have been ordered correctly: 

 Process A’s send event has timestamp 1. 

 Process B’s receive event has timestamp 2. 

This ensures that B processes the message after it was sent, 

preserving the correct order of events. 

5.4.2 Applications of Lamport’s Logical Clock in Message 

Ordering 

Now let’s discuss the applications of Lamport’s Logical Clock in 

Message Ordering. Following are some of the application areas of 

Lamport’s Clock. 

Distributed Databases: 

 Ensures that updates to the database are applied in the 

correct order, even when they are processed by different 

nodes in the system. This maintains data consistency across 

the distributed system. 

Event Logging and Debugging: 

 Helps in tracking the sequence of events that occur across 

different processes, making it easier to debug and analyze 

system behavior. 
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Mutual Exclusion Algorithms: 

 Used in algorithms that require processes to access shared 

resources without conflicts, ensuring that requests are 

ordered and processed correctly. 

Consensus Protocols: 

In distributed systems where nodes must agree on a particular state, 

Lamport Logical Clocks help maintain an agreed-upon order for 

decision-making. 

5.5  MESSAGE ORDERING: VECTOR CLOCK 

Vector clocks are an extension of Lamport's logical clocks, designed 

to overcome the limitations of partial ordering and better capture the 

causal relationships between events in distributed systems. While 

Lamport's clock can order events that are causally related, it can't 

detect independent events that happen simultaneously in different 

processes. Vector clocks provide a more detailed mechanism, 

allowing for the detection of concurrency, which is crucial in 

maintaining consistency and ordering in distributed systems. 

5.5.1 How Vector Clock Works? 

A vector clock is an array of logical clocks, one for each process in 

the system. Each process maintains its own vector clock, which 

keeps track of both its own events and the events of other processes 

it has communicated with. 

Components of a Vector Clock: 

 Vector Array: Each process maintains a vector (an array of 

integers), where each element in the array corresponds to a 

logical clock value of a particular process. 

o For example, in a system with three processes A, B, and 

C, process A's vector clock would be something like [Va, 

Vb, Vc], where Va is A's local clock, Vb is what A 

knows about B’s clock, and Vc is what A knows about 

C’s clock. 

 Clock Updates: 

o Internal Events: When a process performs an internal 

action, it increments its own entry in the vector. 
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o Send Events: When a process sends a message, it 

increments its own clock entry in the vector and attaches 

the entire vector to the message. 

o Receive Events: When a process receives a message, it 

compares its vector with the vector attached to the 

message. It updates each entry in its vector clock to be 

the maximum of its own value and the value in the 

received vector. 

Vector clocks can ensure that messages are ordered correctly by 

comparing the vector timestamps of two events. The comparison 

works as follows: 

Causal Order: If every entry in vector clock VC1 of event A is less 

than or equal to the corresponding entry in vector clock VC2 of 

event B, and at least one entry in VC1 is strictly less than VC2, then 

event A causally happened before event B. This is denoted as A → 

B. 

Concurrent Events: If two events’ vector clocks have entries that 

are neither completely less than nor greater than each other (i.e., 

some entries are greater and others are less), then the events are 

considered concurrent (independent of each other). 

Equal Events: If two events have identical vector clocks, they are 

considered to have occurred at the same logical point in time. 

Example of Message Ordering with Vector Clocks: 

Let's consider a system with three processes, P1, P2, and P3, each 

maintaining a vector clock. 

1. Initial Setup: 

o P1: [0, 0, 0] 

o P2: [0, 0, 0] 

o P3: [0, 0, 0] 

2. Internal Event at P1: 

o P1 increments its own clock, so the new vector clock at 

P1 is [1, 0, 0]. 

3. P1 Sends a Message to P2: 

o P1 increments its clock before sending the message, 

making the vector [2, 0, 0]. 
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o P1 sends the message to P2 with the attached vector [2, 

0, 0]. 

4. P2 Receives the Message: 

o P2 compares its vector [0, 0, 0] with the received vector 

[2, 0, 0]. 

o P2 updates its clock to the maximum of the two vectors 

and increments its own clock: [2, 1, 0]. 

5. P2 Sends a Message to P3: 

o P2 increments its own clock to [2, 2, 0] and sends this 

vector to P3. 

6. P3 Receives the Message: 

o P3 updates its vector clock to [2, 2, 1] after receiving the 

message. 

5.5.2 Applications of Vector Clock in Message Ordering 

Now let’s discuss the applications of Vector Clock in Message 

Ordering. Following are some of the application areas of Vector 

Clock. 

Causal Consistency in Distributed Databases: 

Causal consistency is a type of rule used in distributed databases to 

make sure that actions that depend on each other are done in the 

right order. It ensures that if one action affects another, the system 

will keep that order across all parts of the network. However, 

actions that are not related or happen at the same time can be done 

in any order, giving the system more flexibility and better 

performance compared to stricter rules like sequential or linear 

consistency. 

Version Control Systems: 

In distributed databases, version control is essential for managing 

different versions of data that may be updated by multiple users at 

different locations. Since multiple copies of the same data can be 

updated simultaneously across nodes, vector clocks help track these 

updates, ensuring that versions are handled correctly and conflicts 

are resolved in a consistent manner. 
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Concurrency Control: 

In distributed databases, concurrency control ensures that multiple 

operations, often happening simultaneously across different nodes, 

are executed in a manner that preserves consistency. Vector clocks 

are an essential tool in managing concurrency by tracking the causal 

relationships between events and maintaining the correct order of 

operations across distributed systems. 

Event Logging and Debugging: 

In distributed databases, event logging and debugging are crucial for 

tracking operations and identifying issues that may arise during the 

execution of distributed processes. Vector clocks are an effective 

tool for ordering events and identifying causal relationships, making 

them highly valuable for both logging and debugging in such 

systems. 

5.6  CAUSAL ORDER OF MESSAGES 

In distributed systems, different processes communicate by sending 

messages to each other. To keep the system working correctly, it's 

important that these messages are delivered in the right order. 

Causal message ordering is a method that ensures messages are 

delivered in the correct sequence when one message affects another. 

This is crucial in systems where actions on one node can impact 

actions on another. By respecting the order of events, causal 

message ordering helps maintain the proper flow and consistency of 

operations across the system. 

5.6.1  Lamport's “Happened-Before” Relation 

In the section 5.4.1, we discussed the “Happened-Before” Relation 

in a very brief manner. Now, let’s discuss the same in detail. 

The "Happened-Before" relation is a foundational concept in 

distributed systems, introduced by Leslie Lamport in his seminal 

1978 paper "Time, Clocks, and the Ordering of Events in a 

Distributed System." This relation is critical for understanding the 

causal ordering of events in systems where multiple processes or 

nodes execute concurrently and independently. 

In distributed systems, there is no global clock, and events may 

occur at different times across different processes. The "Happened-
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Before" relation, often denoted as A → B, allows the system to infer 

causal relationships between events based on the notion of causality, 

rather than relying on absolute physical time. 

The Key Concepts related to “happened-before” relation are: 

 Causal Ordering of Events: The "Happened-Before" relation 

helps define the causal relationship between events in a 

distributed system. If an event A causally affects event B, we 

say that A happened before B, or A → B. 

 Partial Ordering: The "Happened-Before" relation creates a 

partial order of events in the system. It ensures that events that 

are causally related are ordered, but it does not impose any 

ordering on events that are independent of each other (i.e., 

events that occur concurrently). 

The "Happened-Before" relation (denoted →) is defined by the 

following three rules: 

1. Within a Single Process: 

If two events occur within the same process, the event that occurs 

earlier is said to have happened before the later event. 

For example, let A and B be two events in a process. If A occurs 

before B in the same process, then A → B. 

This is a simple linear ordering of events within a single process, 

which reflects the natural flow of time. 

2. Message Passing Between Processes: 

If one process sends a message to another process, the sending event 

happens before the receiving event. 

For example, let A be the event of sending a message from Process 

1 to Process 2, and let B be the event of receiving the message in 

Process 2. In this case, A → B, since sending a message must 

logically occur before the message can be received. 

This rule captures the causal relationship between message-sending 

and message-receiving events in distributed systems. 

3. Transitivity: 

The "Happened-Before" relation is transitive, meaning that if A → 

B and B → C, then A → C. 
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For example, if A is an event in Process 1 that happened before B, 

and B is an event in Process 2 that happened before C, then A → C. 

Transitivity allows the system to infer causal relationships across 

multiple events and processes. This property is crucial for 

maintaining consistency in distributed systems, as it ensures that all 

events that are causally related are ordered correctly. 

Now, let’s understand the “happened-before” relation with the help 

of an example, Consider three processes in a distributed system: P1, 

P2, and P3. Events occur in each process, and some processes send 

messages to each other. Below is an illustration of how the 

"Happened-Before" relation works: 

 

 

 

 

  

 

 

Fig. 5.1 

 A → D because A happens before D in Process P1 (Rule 1). 

 A → B because A sends a message to B in Process P2, meaning 

A happened before B (Rule 2). 

 B → E because B happens before E in Process P2 (Rule 1). 

 C → F because C happens before F in Process P3 (Rule 1). 

 A → E by transitivity, because A → B and B → E (Rule 3). 

This partial ordering only captures events that have a causal 

relationship. Events D and F, for example, are concurrent and do not 

have a defined causal order because there is no message exchanged 

between them and no direct happened-before relationship. 

The limitations of this relation are as follows: 

 Partial Order: The "Happened-Before" relation only defines a 

partial order of events. Events that are concurrent are not 

ordered, which means that the relation cannot capture a total 

order of events in the system. 

P1: 

P2: 

P3: 

A 

B 

C 

D 

E 

F 
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 Performance Overhead: Tracking causal relationships using 

vector clocks or other mechanisms introduces additional 

overhead in terms of communication and storage. Each process 

must maintain and exchange timestamp information, which can 

be costly in large-scale systems. 

5.7 BIRMAN-SCHIPER-STEPHENSON (BSS) PROTOCOL 

The Birman-Schiper-Stephenson (BSS) protocol is a method used 

in distributed systems to ensure causal message ordering. In 

distributed systems, messages are exchanged between different 

nodes or processes, and it is important to ensure that messages that 

are causally related are delivered in the correct order. The BSS 

protocol is designed to maintain this order. 

5.7.1 Key Features 

The key features of the BSS protocol are as follows: 

 Causal Message Ordering: The BSS protocol guarantees that if 

one message causally affects another, the first message is 

delivered before the second. This ensures that messages are 

delivered in a sequence that respects their causal relationships, 

preventing inconsistencies in the system. 

 Vector Clocks for Tracking Causality: Each process in the 

system maintains a vector clock that tracks the logical time of 

events. When a message is sent, it includes the sender’s current 

vector clock value. The receiving process uses this information 

to determine the causal relationship between the received 

message and other events. 

 Decentralized Approach: The BSS protocol operates without 

relying on a global clock. Instead, it uses a decentralized method 

where each process maintains its own vector clock to track 

causality. This is important in distributed systems, where a 

global clock is often not feasible due to network delays and 

system failures. 

 Concurrency Support: The BSS protocol allows independent 

or concurrent messages (those without a causal relationship) to 

be delivered in any order. This flexibility improves system 
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performance by not imposing unnecessary ordering on messages 

that are not causally linked. 

 Message Buffering: If a message arrives out of causal order 

(e.g., its causal predecessors haven't been received yet), it is 

temporarily buffered. The system delivers the message only after 

all causally preceding messages have been processed. This 

mechanism helps maintain causal consistency in the system. 

 Avoids Overhead of Total Ordering: The BSS protocol 

imposes partial ordering of messages based on causality, which 

is more efficient than total ordering (where all messages must 

be ordered). This reduces overhead, especially in systems where 

messages are independent or occur concurrently. 

5.7.2 How BSS Protocol Works? 

Let’s discuss a step-by-step explanation of how the BSS protocol 

works: 

1. Initialization of Vector Clocks 

 Each process in the system maintains a vector clock. 

 For a system with N processes, each process P_i keeps a vector 

clock VC_i of size N (where i is the process ID). 

 Initially, all entries in the vector clock are set to zero: VC_i = [0, 

0, 0, ..., 0]. 

2. Sending a Message 

When a process sends a message, it needs to update its vector clock 

and attach it to the message. 

Step 1: Before sending the message, the process increments its own 

entry in the vector clock. For example, if P_1 is sending a message, 

it increments VC_1[1] by 1. 

o VC_1 = [current values] → VC_1[1] = VC_1[1] + 1. 

Step 2: The updated vector clock is attached to the message and 

then sent to the receiving process. 

o Message M is sent with the timestamp VC_1 attached. 

3. Receiving a Message 

When a process receives a message, it checks the vector clock 

attached to the message and compares it with its own vector clock to 
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decide whether the message can be delivered immediately or must 

be delayed. 

Step 1: The receiving process compares the vector clock from the 

message with its own vector clock. Specifically, it checks if the 

message respects the causal ordering by comparing each entry of the 

vector clocks. 

Step 2: The message can be delivered only if all previous events 

that causally affect this message have been delivered. This is 

determined by checking the following condition: 

o For each P_j (any other process), VC_received[j] ≤ 

VC_receiver[j]. 

o This ensures that the process has received all necessary 

messages from other processes before processing the current 

message. 

Step 3: If the condition holds, the message is delivered and 

processed. The process then updates its own vector clock by setting 

each entry to the maximum of its own vector clock and the received 

vector clock: 

o VC_receiver[k] = max(VC_receiver[k], VC_received[k]), 

for each k. 

Step 4: The process then increments its own vector clock entry to 

reflect the new event. 

4. Message Buffering 

If the condition from Step 2 fails (meaning that some previous 

causally related messages have not yet been received), the process 

cannot deliver the message immediately. 

Step 1: The message is buffered (temporarily stored) until the 

missing causally related messages are received. 

Step 2: The process periodically checks whether the buffered 

messages can now be delivered based on updated vector clocks. 

5. Message Delivery and Causal Order 

 The BSS protocol ensures that messages are delivered in a way 

that respects causal dependencies. This is crucial in distributed 

systems where the order in which events occur matters for 

system consistency. 
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 By maintaining and updating vector clocks and comparing them 

with incoming messages' timestamps, the protocol enforces 

causal message ordering without requiring a global clock. 

6. Concurrency and Independent Messages 

 If two messages are causally independent (i.e., they are not 

related by the "happened-before" relation), they can be delivered 

in any order. 

 The BSS protocol does not impose strict ordering on messages 

that are not causally linked, improving system performance by 

allowing concurrency. 

5.7.3 Advantages of BSS Protocol 

The BSS Protocol is used in distributed systems to ensure causal 

message ordering. It provides several advantages in maintaining 

causal consistency across nodes. Here are the key advantages: 

1. Causal Message Ordering: The BSS protocol ensures that 

messages are delivered in the order of their causal relationships. If 

one message causally affects another, it ensures that the first 

message is delivered before the dependent one, preserving the 

system's logical consistency. 

2. Efficient Message Communication: The BSS protocol is 

designed to work efficiently in distributed systems where processes 

communicate via message passing. It ensures that messages are 

delivered in the correct order without excessive overhead, 

contributing to more reliable and organized communication across 

nodes. 

3. Decentralized Control: BSS operates without the need for a 

centralized coordinator, which reduces the bottleneck that can be 

introduced by centralized systems. Instead, each process 

independently ensures that it respects the causal order of messages, 

leading to improved system scalability. 

4. Handling of Concurrent Messages: The protocol allows for the 

concurrent delivery of messages that are not causally related. This 

means that independent messages can be processed in any order, 

which improves efficiency and throughput by allowing more 

parallelism in message processing. 
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5. Message Tagging with Timestamps: The BSS protocol uses 

timestamps to track causal dependencies. These timestamps are 

included with each message, enabling receiving processes to 

determine the correct order for processing. This approach is 

relatively simple to implement and ensures consistent ordering 

without requiring complex data structures. 

6. Fault Tolerance: In the event of failures, the BSS protocol 

ensures that causal dependencies are respected once the system 

recovers. Messages are not processed until all causally related 

messages have been delivered, helping to maintain consistency even 

in the presence of failures or network delays. 

7. Scalability: Due to its decentralized nature and the use of 

timestamps for causal ordering, the BSS protocol is scalable and can 

be applied to large distributed systems with many nodes. The lack of 

a centralized control mechanism helps it perform efficiently as the 

system grows. 

8. Supports Asynchronous Systems: The BSS protocol works well 

in asynchronous environments where messages can arrive at 

different times. It ensures that causal relationships are preserved 

even when there is no global clock or synchronization between 

processes. 

5.8  SCHIPER-EGGLI-SANDOZ (SES) PROTOCOL 

The Schiper-Eggli-Sandoz (SES) protocol is a protocol used in 

distributed systems to ensure causal message delivery. Like the 

Birman-Schiper-Stephenson (BSS) protocol, the SES protocol 

ensures that messages are delivered in the correct causal order. 

However, it differs in its approach, as it is designed to work in fully 

asynchronous systems where there is no assumption about the speed 

or synchronization of message delivery between processes. 

5.8.1 Key Features 

Here are the key features of SES Protocol: 

 Causal Message Ordering: The SES protocol ensures that if a 

message causally influences another, it is delivered before the 

dependent message. This preserves the causal relationships 
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between events across different processes in the distributed 

system. 

 No Message Buffering: Unlike other protocols like the BSS, the 

SES protocol does not rely on buffering undelivered messages. 

Instead, the system ensures that causally dependent messages are 

always sent in the correct order, so there is no need to delay 

message processing. 

 Piggybacking of Causal Information: Causal information is 

piggybacked on every message sent between processes. Each 

message contains metadata (causal information) that informs the 

receiver about the causal dependencies of the message. 

 Reduced Overhead: The SES protocol is designed to reduce the 

overhead associated with ensuring causal ordering. By 

eliminating message buffering and managing causal 

dependencies through metadata attached to messages, it 

simplifies the communication process between distributed 

nodes. 

 Causal History Tracking: The SES protocol uses causal 

histories to track the causal relationships between messages. 

Instead of relying on vector clocks, it records the history of past 

messages that have been sent, allowing the receiving process to 

reconstruct the causal order. 

5.8.2 How SES Protocol Works? 

Let’s discuss a step-by-step explanation of how the SESprotocol 

works. Here’s a step-by-step explanation of how the SES protocol 

works: 

1. Initialization of Causal History 

 Each process in the distributed system maintains a causal 

history of the messages it has sent and received. 

 This causal history contains information about the dependencies 

between messages, i.e., which messages must precede others to 

maintain causal order. 

2. Sending a Message 

When a process sends a message to another process, it attaches its 

causal history to the message. 
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Step 1: The process updates its causal history to reflect the current 

message being sent. 

o The causal history is a record of all previous messages sent or 

received by this process that causally affect the current 

message. 

Step 2: The updated causal history is piggybacked onto the 

message. This history provides the receiver with the information it 

needs to determine the causal dependencies of the message. 

Step 3: The message is sent along with the piggybacked causal 

information to the recipient process. 

3. Receiving a Message 

When a process receives a message, it must check the causal history 

attached to the message to decide whether it can deliver the message 

immediately or if it must wait for any missing dependencies. 

Step 1: The receiving process inspects the causal history 

piggybacked on the message. This history lists the messages that 

must have been delivered before the current message can be 

processed. 

Step 2: The process verifies whether it has already received all the 

messages that are part of the causal history. If all messages from the 

causal history have already been delivered, the message can be 

processed immediately. 

Step 3: If there are any missing causal dependencies (i.e., messages 

listed in the causal history that the receiving process has not yet 

received), the message is not processed immediately. Instead, the 

process waits until the missing causal messages are received. 

4. Message Delivery 

Once the receiving process has determined that all necessary causal 

messages have been received, it can proceed to deliver the message. 

Step 1: The message is delivered to the application layer, and the 

process updates its own causal history to reflect the delivery of the 

message. 

Step 2: The process updates its record of delivered messages, 

ensuring that future messages are delivered in the correct causal 

order. 
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5. Direct Message Delivery (No Buffering) 

Unlike other protocols that use message buffering when a message 

arrives out of order, the SES protocol ensures that the sender only 

sends messages when the causal order can be respected. This 

eliminates the need for buffering at the receiver. 

Step 1: Since the causal history is attached to every message, and 

each message is sent only when it can be delivered in the correct 

order, the receiver does not need to buffer undelivered messages. 

Step 2: Messages are delivered immediately as soon as all necessary 

causal dependencies are met, improving efficiency. 

6. Concurrency and Independent Messages 

Concurrent messages (messages that are independent of each other 

and have no causal relationship) can be delivered in any order. The 

SES protocol does not enforce ordering on messages that are not 

causally related, which allows for greater concurrency and 

efficiency in distributed systems. 

5.8.3 Advantages of SES Protocol 

The SES Protocol offers several advantages in distributed systems, 

particularly in environments that require causal message ordering. 

Here are the key benefits: 

1. No Message Buffering: Unlike some other protocols that require 

messages to be buffered until all causal dependencies are satisfied, 

the SES protocol avoids buffering altogether. This simplifies the 

implementation and reduces memory overhead, as messages are 

delivered directly when received. 

2. Efficient Causal Message Ordering: The SES protocol ensures 

that messages are delivered in the correct causal order by 

piggybacking causal information on each message. This guarantees 
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that messages with dependencies are processed in the proper 

sequence, ensuring system consistency without the need for 

complex reordering. 

3. Designed for Asynchronous Systems: The SES protocol is 

particularly suited for fully asynchronous systems where there is 

no assumption about the speed or timing of message delivery. It 

ensures causal consistency even in environments where messages 

may arrive unpredictably or out of order. 

4. Reduced Communication Overhead: By piggybacking causal 

information directly onto messages, the SES protocol minimizes the 

need for additional control messages or synchronization steps. This 

reduces the communication overhead compared to protocols that 

require constant coordination or acknowledgment messages. 

5. Concurrency Support: The SES protocol allows for concurrent 

message delivery when messages are independent or have no causal 

relationships. This improves system performance by enabling more 

parallelism in message processing. 

6. Simpler Causal Dependency Management: The use of causal 

history (attached to messages) simplifies the tracking and 

management of dependencies between messages. Processes can 

easily determine the causal order by examining the history attached 

to incoming messages, without needing to maintain complex data 

structures like vector clocks. 

7. Improved Scalability: The protocol’s efficient handling of 

causal relationships and its ability to eliminate message buffering 

make it well-suited for large-scale distributed systems. By reducing 

the need for centralized control or excessive synchronization, the 

SES protocol can scale more easily across multiple nodes. 
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5.9  SUMMING UP 

 The importance of Message Ordering in Distributed Systems 

are: 

o Consistency and Correctness: Ensures correct processing 

order to prevent anomalies. 

o Synchronization of Operations: Coordinates dependent 

tasks across nodes. 

CHECK YOUR PROGRESS-I 

1. State True or False: 

a) Causal consistency ensures that only causally related 

operations are executed in the correct order. 

b) Lamport's Logical Clock can establish a total order of events 

in a distributed system. 

c) Vector clocks can detect concurrent events that occur in 

different processes. 

d) In distributed systems, message ordering is only necessary 

in fault-tolerant environments. 

e) A message sent with a lower timestamp must always be 

received before a message with a higher timestamp. 

2. Fill in the blanks: 

a) In a distributed system, ensuring that messages are delivered 

in the correct order is important for maintaining _______ and 

_______. 

b) The Lamport Logical Clock is used to order _______ in a 

distributed system where a global clock is not available. 

c) Vector clocks provide more detailed mechanisms than 

Lamport’s clock by allowing for the detection of _______. 

d) Causal consistency ensures that actions that are causally 

related are executed in the _______ order across all nodes. 

e) Vector clocks are commonly used in distributed databases to 

manage different _______ of data and ensure consistency. 
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o Causal Relationships: Preserves the cause-effect 

sequence of events. 

o Fault Tolerance and Recovery: Maintains order after 

network or node failures. 

o Coordination and Consensus: Helps achieve agreement 

on shared states. 

o Performance Optimization: Improves efficiency by 

balancing consistency and flexibility. 

 The mechanism of Lamport’s Logical Clock is as follows: 

o Event Timestamps: Processes increment clocks for 

internal, send, and receive events. 

o Message Send/Receive: Sender increments and attaches 

the timestamp; receiver updates its clock to ensure 

proper ordering. 

o Happened-Before Relation (→): Defines causal 

relationships using internal order, message ordering, and 

transitivity. 

o Partial vs. Total Order: LLC provides partial ordering, 

and additional mechanisms are needed for total order. 

 The mechanism of Vector Clock is as follows: 

o Vector Array: Each process maintains a vector clock 

tracking events of itself and others. 

o Clock Updates: Internal events, send, and receive events 

update the vector clock. 

o Causal Order: Events are ordered by comparing vector 

entries. 

o Concurrency Detection: VC detects concurrent 

(independent) events. 

 The operation of BSS Protocol is as follows: 

o Vector Clocks: Each process maintains a vector clock to 

track events. 

o Message Sending: A process increments its vector clock 

and attaches it to the message. 
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o Message Receiving: The receiver checks vector clocks to 

determine if the message can be delivered or should be 

delayed. 

o Message Buffering: If causality is violated, messages are 

buffered until dependencies are resolved. 

o Concurrency: Independent messages are delivered in any 

order. 

 The operation of BSS Protocol is as follows: 

o Causal History: Each process maintains a causal history 

of past messages. 

o Message Sending: Causal history is attached to the 

message. 

o Message Receiving: The receiver checks causal history 

to ensure all dependencies are met before delivery. 

o Direct Delivery: Messages are delivered immediately 

when causal dependencies are satisfied. 

o Concurrency: Independent messages are delivered 

without enforcing an order. 

 

5.10  ANSWERS TO CHECK YOUR PROGRESS 

1. a) True    b) False    c) True    d) False    e) False 

2. a) consistency, correctness    b) events    c) concurrency 

d) correct   e) versions 

 

5.11   POSSIBLE QUESTIONS 

Short Answer Type Questions: 

1. What role does Lamport's Logical Clock play in distributed 

systems? 

2. How are causal relationships between events maintained in 

distributed systems? 

3. How does vector clock differ from Lamport's Logical Clock? 

4. Why is causal consistency important in distributed databases? 
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5. What does the "happened-before" relation mean in Lamport's 

Logical Clock? 

6. How do vector clocks help in version control systems? 

7. What is the main limitation of Lamport's Logical Clock? 

Long Answer Type Questions: 

8. Discuss the importance of message ordering in distributed 

systems. 

9. Discuss how Lamport’s Logical Clock ensures message ordering 

in distributed systems. 

10. Explain how vector clocks improve over Lamport's Logical 

Clock in detecting concurrent events. 

11. Explain how vector clocks are used in event logging and 

debugging in distributed systems. 

12. What are the trade-offs between using total order and partial 

order message delivery in distributed systems? 
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6.1   INTRODUCTION 

 

A Distributed Snapshot is a way to take a picture of the global state 

of a distributed system without stopping it. It helps record the status 

of all processes and the messages being sent between them, allowing 

us to understand the system's behavior or detect problems.  

While Termination Detection is used to figure out when all the 

processes in a distributed system have finished their work and no 

more messages are being sent. This is important to know when the 

entire system has completed its tasks, especially when processes are 

waiting for messages. 

 

6.2 UNIT OBJECTIVES 

After going through this unit, you will be able to: 

 understand the Concept of Global State in Distributed 

Systems. 

 study the Chandy-Lamport Snapshot Algorithm. 

 explore the Message-Driven Approach. 

 understand how the Dijkstra-Scholten algorithm detects 

termination in distributed computations. 

 understand Termination Detection in Distributed Systems. 

 

6.3 GLOBAL STATE IN DISTRIBUTED SYSTEMS 

Global State in Distributed Systems refers to the collective state of 

all processes and communication channels at a particular instant in 

time across a distributed system. Since distributed systems consist 

of multiple, independent processes that run concurrently and 

communicate through messages, capturing a consistent global state 

is a complex task. 

6.3.1 Importance of Capturing Global State in Distributed 

Systems 

Capturing the Global State in Distributed Systems is important for 

several reasons, as it plays a crucial role in ensuring correct and 

efficient operation in scenarios where distributed systems need 
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coordination, consistency, or failure detection. Below are the key 

reasons why capturing global state is important: 

1. Consistency and Correctness: 

 Capturing a consistent global state helps in recovering from 

failures. By recording the global state, the system can 

resume operation from a known, valid checkpoint in case of 

failures (check pointing). 

 Debugging a distributed system is challenging due to the 

concurrent and independent execution of processes. 

Capturing global states helps in analysing the behavior of the 

system and identifying bugs or abnormal behaviours. 

 A consistent global state is needed to detect deadlocks in 

distributed systems, where two or more processes are 

waiting on each other indefinitely. 

2. Snapshot Algorithms: 

 Global states are used in algorithms like the Chandy-

Lamport snapshot algorithm to capture a "snapshot" of the 

system’s state without stopping the distributed computation. 

This snapshot can be used for monitoring, checkpointing, 

and rollback recovery. 

 Some algorithms for detecting global termination rely on 

capturing the global state to determine when all processes 

have finished their tasks and no messages are in transit. 

3. Distributed Consistency and Coordination: 

 To make meaningful decisions in distributed systems, it is 

important to capture a consistent cut of the system’s global 

state. This is essential for ensuring that actions taken on the 

basis of the global state are correct. 

 Capturing global states is crucial in coordination protocols 

like distributed transactions, where the consistency of the 

system state needs to be guaranteed across multiple 

processes. 

4. Performance Monitoring and Optimization: 

 Capturing global states allows for performance monitoring 

by providing insights into the load distribution, resource 

utilization, and bottlenecks across the distributed system. 
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This information can be used to optimize resource allocation 

and system efficiency. 

 Understanding the global state can help in dynamically 

adjusting the distribution of tasks across nodes to ensure 

even load and prevent some nodes from becoming 

overwhelmed. 

5. Event Ordering and Causal Consistency: 

 In distributed systems, understanding the cause-and-effect 

relationships between events is important. Capturing the 

global state helps in determining which events are causally 

related and ensures that these relationships are respected 

when reasoning about system behavior. 

 Global state information is essential for implementing 

different consistency models in distributed databases and 

systems where processes operate on shared data. 

6. Failure Detection and Recovery: 

 By capturing a consistent global state, the system can 

"rollback" to a previous state if an error or inconsistency is 

detected, ensuring that the system can continue operating 

correctly. 

 State Synchronization: Global state capture helps in 

synchronizing the system’s state after failures or partitions, 

ensuring that all processes eventually converge to a 

consistent view of the system. 

7. Security and Fault Diagnosis: 

 Capturing a global state can assist in detecting security 

breaches or anomalous behavior, allowing for quick 

identification of compromised processes. 

 It helps in diagnosing faults or abnormal states in the system, 

leading to faster resolution and preventing widespread 

system failures. 
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6.3.2    Challenges in Capturing Global State In Asynchronous 

Systems 

Capturing the Global State in asynchronous distributed systems 

presents several challenges due to the nature of these systems, where 

processes operate independently, communicate by message passing, 

and do not share a global clock. Unlike synchronous systems, where 

processes can assume certain timing guarantees, asynchronous 

systems have no such assumptions. This makes it difficult to capture 

a consistent global state at a single point in time. 

The key challenges in capturing global state in asynchronous 

systems are as follows: 

 Lack of a Global Clock: In asynchronous systems, there is no 

global clock or a shared notion of time across processes. As a 

result, each process maintains its own local clock, and messages 

between processes can experience arbitrary delays. This lack of 

synchronized time makes it impossible to capture a snapshot of 

the entire system at the same physical moment. 

Due to the absence of a global clock, determining the causal 

relationship between events across different processes is 

complex. It’s difficult to establish a consistent global view 

where events are properly ordered according to cause and effect. 

 Concurrent Message Passing: At any given time, there may be 

messages in transit between processes. These messages have 

been sent but not yet received, creating ambiguity about whether 

they should be included in the global state. If a message is in 

flight, the sender considers it part of its past state, while the 

receiver may not yet be aware of it. 

Message delivery is unpredictable in asynchronous systems. A 

message might take a long time to reach its destination or arrive 

out of order. This variability complicates the process of 

determining a consistent global state, as messages may arrive 

after the snapshot has been initiated, introducing inconsistencies. 

 Inconsistent Local States: Each process in a distributed system 

maintains its own local state, which evolves independently of 

other processes. Since processes execute concurrently, their 

local states may not be consistent with each other when captured 

at arbitrary points in time. Capturing the local state of each 



 

110 

 

process does not automatically yield a consistent global state due 

to these differences. 

In an asynchronous system, there’s no guarantee that the 

snapshot will be initiated at the same time across all processes. 

As a result, processes may capture their local states at different 

points in their execution, leading to inconsistencies when 

combining the snapshots into a global state. 

 Difficulty in Ensuring Consistency: To ensure a consistent 

global state, it is necessary to capture the state of processes and 

the messages in transit in a way that reflects a coherent and 

meaningful snapshot of the system. A global state is considered 

consistent if it reflects a valid "cut" of the system’s execution, 

where no messages are counted both in the sender’s past state 

and in the receiver’s future state. However, achieving such 

consistency is difficult in an asynchronous system. 

An inconsistent cut occurs when part of the snapshot reflects 

events from the future and another part from the past (e.g., the 

sender thinks a message has been sent, but the receiver hasn’t 

received it yet). Handling such inconsistent cuts is challenging 

and requires special mechanisms like marking channels or 

delaying snapshot collection until certain conditions are met. 

 State Coordination Among Processes: Asynchronous systems 

are typically decentralized, meaning that there is no global 

controller to coordinate when and how snapshots should be 

taken. Processes need to coordinate among themselves to agree 

on capturing a consistent global state, but in an asynchronous 

environment, coordinating this activity is difficult without 

introducing further delays or inconsistencies. 

Ensuring that processes capture their states at roughly the same 

logical point in time without halting the entire system is 

complex. Processes must be able to continue their normal 

operations while capturing snapshots, making it harder to 

coordinate the snapshot process. 

 Overhead and Performance Costs:Capturing global states, 

especially in large-scale systems, can incur significant 

performance overhead. The communication required to 

propagate control messages (like snapshot initiation markers) 

and the delays introduced to ensure consistency can reduce 
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system performance. Balancing the frequency and efficiency of 

snapshot capture with system throughput is a key challenge. 

Storing and managing the state of all processes and channels, 

particularly for large systems with many components, can 

consume a lot of memory and computational resources. This can 

limit the feasibility of frequent snapshot captures in resource-

constrained environments. 

 Handling Non-Deterministic Events:In distributed systems, 

non-deterministic events such as message loss, message 

duplication, or variable message delays introduce further 

uncertainty when capturing a global state. Processes might 

behave differently based on these events, and replicating a 

consistent global state becomes difficult if such non-

deterministic events are not properly accounted for. 

If a global state is captured inconsistently due to non-

deterministic behavior, rolling back to such a state after a failure 

can lead to further inconsistencies or even system corruption. 

 Capturing Channel State:In asynchronous systems, capturing 

the state of communication channels (i.e., the messages in 

transit) is especially challenging. Since messages may be 

delayed, it is difficult to determine which messages should be 

considered part of the snapshot. Including or excluding 

messages in transit may lead to inconsistencies if not handled 

properly. 

Techniques like channel marking (used in the Chandy-

Lamport snapshot algorithm) are required to capture the state 

of communication channels. However, the process of marking 

channels and ensuring that all processes adhere to the snapshot 

protocol adds complexity to the global state capture process. 

 Dynamic System Changes:Asynchronous systems are often 

dynamic, where processes or nodes can join or leave the system, 

and failures can occur at any time. Capturing a global state in the 

presence of failures is difficult, as the system topology can 

change during the snapshot process, leading to incomplete or 

outdated snapshots. 

If new processes are created or existing processes terminate 

during the snapshot process, the global state must account for 
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these changes. This dynamic behavior complicates the process 

of capturing a coherent global state. 

6.4  CHANDY-LAMPORT SNAPSHOT ALGORITHM 

This algorithm is widely used for capturing consistent global 

snapshots in asynchronous systems. It solves many of the challenges 

by introducing control messages (markers) that propagate through 

the system to help capture both the local states of processes and the 

state of communication channels. 

6.4.1 Assumptions and Prerequisites for Chandy-Lamport 

Algorithm 

The assumptions and prerequisites those ensures the Chandy-

Lamport algorithm works effectively in asynchronous distributed 

systems, by allowing a consistent global snapshot to be captured 

without halting the system, are as follows: 

 The algorithm assumes that the system is asynchronous. 

Messages sent between processes can have arbitrary delays, but 

they will eventually be delivered. 

 Messages are reliably delivered, but the delivery may be 

delayed. 

 The algorithm assumes that communication channels between 

processes are reliable and that messages sent between processes 

will eventually arrive, although the order of arrival may be 

unpredictable. 

 Channels are FIFO (First-In-First-Out). This assumption 

ensures that messages from a process arrive at their destination 

in the same order they were sent, simplifying the tracking of 

message states. 

 Every communication link (channel) between two processes is 

unidirectional, meaning each channel allows messages to flow in 

only one direction. If two processes need to communicate both 

ways, there are two channels: one for each direction. 

 Processes can continue their normal operations while the 

snapshot is being captured. There is no requirement for 

processes to pause or synchronize with others during the 

snapshot collection. 
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 Each process can send and receive messages as usual during the 

snapshot algorithm execution. 

 The algorithm is typically initiated by a single process known as 

the initiator. The initiator process triggers the snapshot 

procedure by sending marker messages to all other processes 

with which it shares a communication channel. 

 Once a process receives a marker message for the first time, it 

records its local state and begins the snapshot procedure for its 

outgoing channels. 

 The algorithm assumes that no process fails during the execution 

of the snapshot. All processes are expected to remain functional 

and participate fully in the snapshot-taking procedure. 

 If a process crashes or fails during the snapshot process, the 

global state capture could be incomplete or inconsistent. 

 Each process knows the set of processes with which it directly 

communicates and the channels connecting them. 

6.4.2 Steps Involved in Chandy-Lamport Algorithm 

Following is the step-by-step explanation of Chandy-Lamport 

Algorithm. 

1. Initiation by a Process: 

o A process (called the initiator) begins the snapshot process. 

o The initiator records its local state (this includes process 

variables, resources, etc.). 

o The initiator sends a marker message to all processes with 

which it has outgoing communication channels. 

2. Receiving a Marker Message for the First Time: 

o When a process receives a marker for the first time from any 

incoming channel, it: 

o Records its local state immediately. 

o Marks the incoming channel on which the marker was 

received as empty (no messages are in transit on that 

channel). 

o Sends a marker message to all its neighbouring processes 

with outgoing channels. 



 

114 

 

o Starts recording the messages arriving on its other 

incoming channels (those where it has not yet received a 

marker). 

3. Receiving Subsequent Markers on Other Channels: 

o When a process receives a marker on an incoming channel 

after recording its local state, it: 

o Stops recording the state of that incoming channel. 

o The messages received on that channel after the local 

state was recorded but before the marker arrived are 

considered part of the channel's state (i.e., in-transit 

messages). 

4. Propagation of Marker Messages: 

o After a process records its local state, it propagates marker 

messages to all its neighbouring processes (i.e., processes 

with which it shares an outgoing communication channel). 

o The propagation continues until all processes receive marker 

messages on all their incoming channels. 

5. Completion of Snapshot: 

o The snapshot is complete for a process when: 

o The process has recorded its local state. 

o It has received a marker on all its incoming channels and 

recorded the state of each channel. 

o The global snapshot is complete when all processes in the 

system have completed this process. 

6. Collecting the Global State: 

o Once the snapshot is complete, the global state consists of: 

o The local state of each process. 

o The state of all communication channels, which includes 

messages that were in transit when the snapshot was 

initiated. 

Now, let’s understand the above steps with the help of an example. 

Suppose three processes: P1, P2, and P3, connected by 

communication channels. P1 initiates the snapshot. 

1. P1 initiates the snapshot: 

o P1 records its local state. 

o P1 sends a marker message to P2 and P3. 
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2. P2 receives the marker from P1: 

o P2 records its local state. 

o P2 records the channel state from P1 to P2 as empty, as the 

marker indicates that no new messages are in transit on that 

channel. 

o P2 sends marker messages to its outgoing neighbours (for 

simplicity, assume P2 sends a marker back to P1 or to other 

processes, if connected). 

o P2 continues to record any incoming messages from 

channels where it hasn’t received a marker. 

3. P3 receives the marker from P1: 

o P3 records its local state. 

o P3 records the channel state from P1 to P3 as empty. 

o P3 sends marker messages to any outgoing channels (for 

example, it may send a marker to P2). 

o P3 also starts recording incoming messages from other 

channels, such as messages from P2 to P3, until it receives a 

marker from P2. 

4. P2 receives the marker from P3: 

o P2 stops recording the state of the channel from P3 to P2. 

Any messages that arrived before the marker was received 

are recorded as part of the channel state. 

Once every process has received markers on all its incoming 

channels and recorded its local state, the snapshot is complete. 

6.5        TERMINATION DETECTION IN DISTRIBUTED 

SYSTEMS 

Termination detection in distributed systems refers to the process 

of determining whether a distributed computation or algorithm has 

completed its execution, meaning that all processes have finished 

their tasks and no messages are in transit. In distributed 

environments, where processes operate independently and 

communicate through message-passing, it can be challenging to 

know when the entire system has terminated because there is no 

centralized control or global clock. 
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6.5.1 Importance of Termination Detection in Distributed 

Systems 

Termination detection in distributed systems is crucial because it 

allows the system to determine when a distributed computation has 

completed, ensuring that all processes have finished their tasks and 

no messages are in transit.  

Below are the key reasons why Termination Detection is important 

in Distributed Systems. 

 Efficient Resource Utilization: Termination detection allows 

for the timely release of resources (e.g., CPU, memory, network 

bandwidth). Once the computation is complete, system resources 

can be reallocated or freed, preventing resource wastage and 

improving system efficiency. 

 Synchronization in Distributed Algorithms: Many distributed 

algorithms require a well-defined point of termination before 

moving to the next stage. Detecting when all tasks are finished 

ensures that distributed processes remain synchronized, which is 

crucial for algorithms like distributed consensus, leader election, 

and distributed sorting. 

 Fault Tolerance and Recovery: In systems designed for fault 

tolerance, termination detection helps identify when a 

computation has finished, allowing the system to enter a 

recovery or check pointing phase. It prevents premature check 

pointing or incorrect fault recovery when processes are still 

active. 

 Task Completion in Distributed Systems: Distributed 

computations often involve multiple processes running 

concurrently across different machines. Without termination 

detection, it is difficult to determine when all tasks have 

finished, especially in asynchronous systems where messages 

may be delayed or lost. Termination detection provides a clear 

signal that the distributed task has completed. 

 Consistency in Results: Correct termination detection ensures 

that no part of the distributed system is prematurely stopped or 

ignored, leading to consistent and correct results. This is 

especially important in critical applications like financial 

transactions, distributed databases, and scientific computations. 



 

117 

 

 Coordination for System Maintenance: In environments such 

as cloud or cluster computing, it is necessary to know when a 

distributed task is complete so that maintenance activities like 

system upgrades, backups, or scaling can be performed without 

disrupting active computations. 

 Deadlock and Livelock Detection: Termination detection can 

also be used as a tool to detect deadlocks or livelocks in 

distributed systems. If processes remain active indefinitely 

without making progress, the termination detection mechanism 

can identify potential issues with the computation or 

communication patterns. 

6.5.2 Challenges in Termination Detection in Distributed 

Systems 

Termination detection in distributed systems is challenging due to 

asynchrony, lack of global visibility, the presence of in-transit 

messages, and potential network failures. These factors make it 

difficult to determine when all processes have completed their tasks 

and no messages are pending, necessitating sophisticated algorithms 

to ensure accurate detection and coordination. 

The key challenges in Termination Detection in distributed systems 

are as follows: 

 Asynchrony: In distributed systems, processes and message 

passing are typically asynchronous, meaning that there is no 

global clock to coordinate actions. Processes may execute at 

different speeds, and messages may be delayed or arrive out of 

order, making it difficult to determine when all processes have 

become idle and no messages are in transit. 

 No Global State Visibility:Sincedistributed systems are 

decentralized, no single entity has a complete view of the entire 

system. Each process only knows about its own state and its 

direct interactions with other processes. This makes it hard to 

detect when all processes have finished their tasks and when the 

system as a whole has terminated. 

 Messages in Transit:Even if all processes are in a passive state 

(i.e., not performing any tasks), there could still be messages in 

transit between processes. These in-transit messages can activate 

a passive process, meaning the system hasn’t truly terminated. 
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Accurately detecting and accounting for in-transit messages is a 

major challenge. 

 False Termination Detection:If termination is detected 

prematurely (e.g., assuming no messages are in transit when 

some still are), the system may conclude that the computation 

has finished when in fact, some tasks remain. This can lead to 

incorrect results or unfinished tasks. 

 Distributed Coordination:Detecting termination requires 

coordination across multiple processes. Ensuring that all 

processes correctly communicate their state without errors or 

delays, while accounting for network latency and failures, adds 

complexity to termination detection protocols. 

 Network Failures and Partitions:Distributed systems are 

prone to network failures, including message loss, delays, and 

network partitions (where parts of the system become 

disconnected). These failures can make it difficult to detect the 

termination of processes or to ensure that all processes have 

been accounted for in the detection process. 

 Scalability:As the number of processes and communication 

channels in the system increases, the complexity of termination 

detection also grows. More processes mean more 

communication and coordination, which increases the likelihood 

of delays, miscommunication, or failures in detecting 

termination accurately. 

 Process and Message State Changes:Processes may switch 

between active and passive states multiple times during 

computation, making it challenging to track the exact state of all 

processes. Additionally, if a process is falsely assumed to be 

passive, any remaining activity could cause an incorrect 

termination signal. 

6.6 DIJKSTRA-SCHOLTEN ALGORITHM 

The Dijkstra-Scholten Algorithm is a method used in distributed 

systems to check when all processes have finished their work and no 

messages are being sent between them. This algorithm is important 

because it helps determine when everything is done without needing 

a central authority to oversee the process. It ensures that the 

detection of completion is done efficiently and correctly. 
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6.6.1 Assumptions and Prerequisites for Dijkstra-Scholten 

Algorithm 

The Dijkstra-Scholten Algorithm relies on certain assumptions and 

prerequisites for its correct functioning in a distributed system. 

These conditions are necessary to ensure that the algorithm can 

effectively detect when the system has terminated.  

The assumptions for the algorithm are: 

 Reliable Communication Channels: The algorithm assumes 

that the communication between processes is reliable. Messages 

must be delivered without being lost, duplicated, or corrupted. 

Each message should eventually reach its destination. 

 Asynchronous System: The system is asynchronous, meaning 

processes do not operate in lockstep or have synchronized 

clocks. Each process can execute at its own pace, and message 

delivery times can vary, but no process waits for a global clock. 

 Spanning Tree Structure: A spanning tree exists over the 

distributed system. This structure is necessary because the 

algorithm passes tokens (or markers) up the tree to detect 

termination. The root of the tree (initiator) can then decide when 

the system has finished. 

 Processes Have Two States:Each process can be either active 

(performing some task or waiting for a message) or passive (idle 

or waiting). A passive process can only become active again 

upon receiving a message from another process. 

 Finite Number of Messages:The algorithm assumes that the 

system will eventually stop sending messages. If messages are 

continually exchanged without termination, the algorithm won't 

work as there would always be messages in transit. 

 No Failure during Execution:The algorithm assumes that no 

process or communication channel fails during its execution. It 

does not handle situations where processes crash or the network 

breaks down. 

The prerequisites for the algorithm are: 

 Initiator Process:A specific process, known as the initiator, 

must start the termination detection procedure. It is responsible 
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for triggering the detection by passing tokens down the spanning 

tree to other processes. 

 Tracking of Messages:Each process must track the messages it 

sends and receives. This tracking is necessary to ensure that it 

knows when it has finished sending all of its messages and can 

safely declare itself passive. 

 Knowledge of Parent and Children in the Tree:Each process 

in the system must know its parent and children in the spanning 

tree structure. This information is vital for propagating the 

termination signals correctly. 

 Passive Process Sends Termination Signal:Once a process 

becomes passive and has no pending messages, it should be 

capable of sending a signal (marker) to its parent, indicating that 

it is done. 

6.6.2 Steps Involved in Dijkstra-Scholten Algorithm 

The algorithm works by organizing processes into a spanning tree 

and using a token-passing mechanism to signal the completion of 

work. Below is a step-by-step explanation of how the algorithm 

works: 

1. Initialization: 

o One process (known as the initiator) begins the termination 

detection process. 

o The system is represented as a spanning tree, with the 

initiator as the root. 

2. Process States: 

o Each process can be in one of two states: 

 Active: The process is doing some work or waiting for a 

message. 

 Passive: The process is idle and has no work to do. 

3. Sending a Message (Establish Dependency): 

o When an active process sends a message to another process, 

it marks that process as its child (dependent) and itself as the 

parent. 
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o The sender process keeps track of how many messages it has 

sent to each child. 

4. Becoming Passive: 

o When a process finishes its work and has no more messages 

to send, it transitions to a passive state. 

o It does not immediately inform its parent; instead, it waits 

until it receives acknowledgments from all its children (i.e., 

all processes it has sent messages to must become passive 

first). 

5. Receiving a Termination Signal (Marker): 

o Once a process receives a termination signal from all its 

children, it knows that all its dependents have finished. 

o The process can now send a termination signal (marker) to 

its own parent, indicating that it has finished, and all its 

dependents are passive. 

6. Sending Termination Signals to Parent: 

o When a passive process has sent termination signals to all its 

parents and received acknowledgments from all children, it 

forwards the termination signal to its own parent. 

o This signal propagation continues until it reaches the 

initiator. 

7. Termination Detection at the Initiator: 

o The initiator (root process) collects termination signals from 

all its children. 

o When the initiator has received confirmation from all its 

children that they are passive, it concludes that the entire 

system has terminated (i.e., all processes are passive, and no 

messages are in transit). 

8. Global Termination: 

o Once the initiator determines that all processes are done, the 

termination is declared, and the distributed system can move 

on to other tasks, release resources, or shut down. 

Let’s understand the workflow with the help of an example: 

1. Active Process A sends messages to processes B and C, making 

them its children. 



 

122 

 

2. Process A then becomes passive after finishing its work and 

receiving acknowledgments from B and C. 

3. B and C finish their work, become passive, and send termination 

signals to A. 

4. Once A receives termination signals from B and C, it sends its 

own termination signal to its parent (say, Process D). 

5. The termination signal propagates up the tree until it reaches the 

root (initiator), which then declares that the system has 

terminated. 

6.7 HUANG'S ALGORITHM FOR TERMINATION 

DETECTION 

Huang's Algorithm is a popular method for detecting when all 

processes in a distributed system have finished their tasks and no 

messages are still being exchanged. It works by using a system of 

credit distribution and collection, where credits are passed along 

with messages. This algorithm is especially useful in asynchronous 

systems, where processes don't have to run in sync with each other. 

The Concepts of Huang's Algorithm are as follows: 

 A process (initiator) starts with an initial amount of credit (often 

set to 1). As it sends messages to other processes, it distributes 

fractions of its credit along with the messages. 

 Each process can be either active (performing computations) or 

passive (idle, with no pending tasks). 

 A process collects credit as it receives messages and completes 

tasks. When a process becomes passive, it passes its 

accumulated credit back to the initiator. 

 Termination is detected when the initiator regains its original 

amount of credit, and all processes are in a passive state. 

6.7.1 Steps Involved in Huang's Algorithm 

Huang’s Algorithm uses a credit distribution and collection system 

to track the state of processes. When the initiator process regains all 

of its original credit and all processes are passive, the system can 

safely declare that termination has occurred.Below is a step-by-step 

explanation of how the algorithm works: 
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1. Initialization: 

o One process is designated as the initiator and starts the 

algorithm with 1 unit of credit. 

o All other processes start with zero credit. 

2. Message Sending with Credit: 

o When an active process sends a message to another process, 

it divides its current credit and sends a fraction of the credit 

along with the message. 

o For example, if Process A sends a message to Process B, it 

might send 0.5 units of credit to B and keep the remaining 

0.5 units for itself. 

3. Receiving a Message: 

o When a process receives a message, it adds the credit that 

came with the message to its own credit. 

o If the receiving process was passive and now has some 

credit, it becomes active and begins performing its task. 

4. Becoming Passive: 

o Once a process finishes its task and has no more messages to 

send, it becomes passive. 

o A passive process sends any remaining credit back to the 

initiator or its parent (if a parent-child structure is used). 

5. Credit Collection: 

o As processes finish and become passive, they return their 

remaining credit (if any) to the initiator. 

o Credit flows back along the path through which it was 

originally distributed. 

6. Termination Detection: 

o The initiator continuously collects credit from passive 

processes. 

o Termination is detected when the initiator has regained the 

full 1 unit of credit, and all processes in the system are 

passive. 

o This signals that all tasks are completed, and there are no 

messages left in transit. 
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6.8  SUMMING UP 

 Global State refers to the collective state of all processes and 

communication channels at a particular point in time in a 

distributed system. 

 Capturing a consistent global state is complex due to the 

concurrent and independent execution of processes. 

CHECK YOUR PROGRESS-I 

1. State True or False: 

a) The FIFO property of communication channels is not 

required for the Chandy-Lamport algorithm to work. 

b) The global state snapshot can be used for rollback recovery 

in case of system failure. 

c) The lack of causal relationships between events makes 

capturing global state easier in asynchronous systems. 

d) Capturing global state is essential for debugging distributed 

systems. 

e) In asynchronous distributed systems, all processes share a 

common global clock. 

2. Fill in the blanks: 

a) The Chandy-Lamport Algorithm is used to capture a 

consistent __________ in asynchronous distributed systems. 

b) In distributed systems, the lack of a __________ makes 

capturing a global state more complex. 

c) A process becomes aware of an incoming message in the 

Chandy-Lamport algorithm after receiving a __________ 

message. 

d) In the Chandy-Lamport algorithm, once a process records its 

local state, it sends a __________ to all neighbouring 

processes. 

e) The global state of a system includes the state of all 

processes and __________ between them. 
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 Capturing global state helps in failure recovery and check 

pointing. 

 Global State helps to detect deadlocks in distributed systems. 

 Global State used in algorithms like Chandy-Lamport for 

capturing system states without halting. 

 Global State helps determine causal relationships between 

events. 

 Few of the challenges in Capturing Global State in 

Asynchronous Systems are: 

o Difficult to capture a snapshot across processes with no 

synchronized time. 

o Messages in transit create ambiguity in the global state. 

o Achieving a coherent global state that reflects a valid 

system cut is complex. 

o Coordinating state capture without halting processes is 

difficult. 

o Difficult to track messages in transit accurately. 

o Changes like process failures make capturing global 

states challenging etc. 

 Chandy-Lamport Algorithm is widely used for capturing 

consistent global snapshots in asynchronous systems. 

 Control messages (markers) help capture local states and 

communication channel states without stopping the system. 

 Termination detection ensures that all processes in a distributed 

system have completed their tasks and no messages are in 

transit. 

 Importance of Termination Detection are: 

o Frees up system resources once tasks are completed. 

o Allows correct progression to the next phase in 

algorithms like consensus and leader election. 

o Ensures accurate recovery or check-pointing. 

o Provides a clear signal when distributed computations 

finish. 
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o Prevents premature termination, ensuring accurate 

results. 

o Helps schedule tasks like upgrades once all work is done. 

o Identifies potential issues like deadlocks or livelocks. 

 Dijkstra-Scholten Algorithm is a distributed termination 

detection algorithm using a spanning tree to track process 

dependencies. 

 Huang's Algorithm uses credit distribution and collection to 

detect termination. 

 

6.9  ANSWERS TO CHECK YOUR PROGRESS 

1.a) False    b) True    c) False    d) True    e) False 

2.a) global state    b) global clock    c) marker 

d) markere) communication channels 

 

6.10  POSSIBLE QUESTIONS 

Short Answer Type Questions: 

1. What is the purpose of the Chandy-Lamport algorithm in 

distributed systems? 

2. How do marker messages work in the Chandy-Lamport 

algorithm? 

3. What are the two main components of the global state in a 

distributed system? 

4. Why is capturing a global state in asynchronous systems more 

challenging than in synchronous systems? 

5. What role does a global state play in detecting deadlocks in 

distributed systems? 

Long Answer Type Questions: 

6. Explain the significance of termination detection in distributed 

systems. 

7. What are the primary challenges in termination detection in 

distributed systems? 
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8. How does the Dijkstra-Scholten algorithm detect termination in 

a distributed system? 

9. What are the key challenges that Huang's algorithm addresses in 

asynchronous systems, and how does it solve them? 

10. Discuss the importance of resource utilization in distributed 

systems in the context of termination detection. 

 

6.11REFERENCES AND SUGGESTED READINGS 

1. "Distributed Systems: Concepts and Design" by George 

Coulouris 

2. “Designing Data-Intensive Applications" by Martin Kleppmann 
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UNIT: 1 

INTRODUCTION TO MUTUAL EXCLUSION AND 

PERFORMANCE METRICS 
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1.1 Introduction 
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1.3 Mutual Exclusion in Distributed Systems 

1.3.1 Importance of Mutual Exclusion in Distributed 

Systems 

1.4 Requirements of Mutual Exclusion Algorithms 
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 1.6.2 Distributed/Decentralized Algorithms 

1.7 Summing Up 
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1.9 Possible Questions 

1.10 References and Suggested Readings  

 

 
1.1   INTRODUCTION 

 

In distributed systems, multiple processes often need to access 

shared resources like files, data structures, or devices. To avoid 

conflicts and ensure data consistency, it is important to manage 

access to these resources. This management is done through mutual 

exclusion, which makes sure that only one process can use a shared 

resource at a time. Mutual exclusion is a key part of distributed 

computing, helping with synchronization and maintaining 

consistency between processes in a network. 

In this unit, we will cover the basics of mutual exclusion, the 

requirements of mutual exclusion algorithms, and the metrics used 

to measure their performance. Understanding these topics is crucial 
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for designing distributed systems that can efficiently handle shared 

resources and maintain stability. 

 

1.2 UNIT OBJECTIVES 

After going through this unit, you will be able to: 

 define mutual exclusion and explain its significance in 

distributed systems; 

 understand the requirements that must be met by mutual 

exclusion algorithms; 

 describe the various performance measurement metrics used 

to evaluate mutual exclusion in distributed systems; 

 identify and explain different classifications of mutual 

exclusion algorithms. 

 

1.3  MUTUAL EXCLUSION IN DISTRIBUTED SYSTEMS 

Mutual exclusion in distributed systems is a way to ensure that only 

one process can access a shared resource at a time. This is important 

to prevent issues like inconsistencies or conflicts when multiple 

processes try to modify the same resource at once. Mutual exclusion 

guarantees that if a process is in the critical section (the part of the 

code that accesses the shared resource), no other process can enter 

this section until the first process is done. 

Achieving mutual exclusion in distributed systems is harder than in 

centralized systems because there is no global clock, there are 

communication delays, and we have to consider network partitions 

and failures. Ensuring effective mutual exclusion is vital for keeping 

data consistent and synchronized in distributed applications like 

databases, file systems, and network services. 

1.3.1 Importance of Mutual Exclusion in Distributed Systems 

Mutual exclusion is a fundamental requirement in distributed 

systems to ensure proper coordination among processes and to 

maintain data consistency and integrity. The following points 

highlight the importance of mutual exclusion in distributed systems: 
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 Ensuring Access to Shared Resources: In distributed systems, 

different processes on various nodes may need to use shared 

resources like databases, files, or hardware. Without mutual 

exclusion, these processes might try to access the same resource 

at the same time, leading to problems like data corruption or 

loss. Mutual exclusion ensures that only one process can access 

the shared resource at a time, helping to keep everything 

consistent. 

 Preventing Race Conditions: A race condition happens when 

the outcome of a process depends on the timing or order of other 

processes' actions. This issue is more common in distributed 

environments, where processes run in parallel on different 

nodes. Mutual exclusion helps prevent race conditions by 

controlling access to critical sections, making sure that 

operations happen in a predictable order. 

 Maintaining Data Integrity: Distributed systems often use 

databases with data replicated across multiple nodes. To keep 

data integrity during updates, it’s essential to enforce mutual 

exclusion. If several processes try to change the same data at the 

same time without proper control, it can lead to conflicting 

updates and inconsistencies, which are hard to fix in a 

distributed setting. 

 Avoiding Deadlocks and Starvation: When multiple processes 

or nodes coordinate in distributed systems, improper 

management of shared resource access can cause deadlocks or 

starvation. Deadlocks happen when processes wait for each 

other endlessly, while starvation occurs when a process can't 

access a resource despite trying repeatedly. Mutual exclusion 

mechanisms help prevent these problems by ensuring fair and 

controlled resource allocation. 

 Supporting Consistent State of Distributed Applications: 

Many distributed applications, like databases or banking 

systems, require a consistent state across various nodes. Mutual 

exclusion is vital in making sure that updates are done in order, 

keeping a consistent overall state. Without mutual exclusion, 

simultaneous updates could lead to inconsistencies that might 

disrupt the entire application. 

 Coordination and Synchronization: In distributed systems, 

processes often need to work together to ensure correct results. 
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Mutual exclusion acts as a coordination tool, enforcing a 

sequence for how processes execute. This is particularly 

important in situations like leader elections, distributed 

transactions, and consensus algorithms, where the order and 

timing of actions are crucial for system stability. 

 Facilitating Fault Tolerance: Mutual exclusion mechanisms 

also help make distributed systems more fault-tolerant. By 

properly managing access to critical sections, the system can 

handle issues like node failures, lost messages, or network 

problems more effectively. For example, quorum-based 

algorithms ensure that even if some nodes fail, the system can 

still maintain mutual exclusion. 

1.4 REQUIREMENTS OF MUTUAL EXCLUSION 

ALGORITHMS 

Mutual exclusion algorithms must satisfy several requirements to 

ensure the proper functioning of the distributed system. They are: 

 Safety Requirement:The safety requirement ensures that only 

one process can be in the critical section at any given time. This 

is the primary condition of mutual exclusion. If multiple 

processes access the shared resource simultaneously, data 

inconsistencies and race conditions can occur, leading to 

unpredictable and erroneous system behavior. 

The key aspects of the safety requirement are: 

 Mutual Exclusion Property: At most one process is 

allowed to enter the critical section at any point in time. 

 Resource Consistency: Safety guarantees the integrity and 

consistency of shared data, as concurrent access is strictly 

regulated. 

 Avoidance of Conflict: By ensuring that only one process 

can access a shared resource, the safety requirement prevents 

conflicts between processes. 

 Liveness Requirement:The liveness requirement focuses on the 

ability of the system to make progress. It ensures that every 

process requesting access to the critical section will eventually be 

able to enter it, thereby preventing the system from getting stuck 

in an inactive state. 
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Liveness requirements are defined by: 

 No Deadlock: Deadlock occurs when two or more processes 

are indefinitely waiting for each other to release resources, 

leading to a system standstill. Mutual exclusion algorithms 

must ensure that no group of processes remains permanently 

blocked. 

 No Starvation: Starvation occurs when a process is 

indefinitely denied access to the critical section while other 

processes continue to enter and exit it. The liveness 

requirement ensures fairness, making sure that each process 

eventually gets its turn to access the resource. 

 Progress: The system must guarantee that processes 

requesting the critical section will be granted access within a 

finite amount of time, allowing the system to make progress 

without unnecessary delays. 

 Performance Requirement:Performance considerations involve 

evaluating the efficiency of the mutual exclusion algorithm in a 

distributed system. A well-designed algorithm should minimize 

communication overhead, reduce delays, and be scalable to 

handle an increasing number of processes or nodes. 

Performance considerations include: 

 Message Complexity: The number of messages exchanged 

between processes to achieve mutual exclusion is a critical 

factor. The lower the number of messages, the more efficient 

the algorithm is. Minimizing message overhead helps to 

reduce network congestion and enhances system 

responsiveness. 

 Synchronization Delay: This refers to the time required for 

a process to enter the critical section after the previous 

process has exited. Lower synchronization delay improves 

the throughput of the system, allowing more efficient use of 

resources. 

 Scalability: Distributed systems can involve a large number 

of processes or nodes, and the mutual exclusion algorithm 

must be scalable to accommodate this. The performance of 

the algorithm should not degrade significantly as the number 

of processes grows. 
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 Fault Tolerance: Distributed systems are prone to failures, 

such as process crashes or network partitions. A mutual 

exclusion algorithm should handle these failures gracefully 

to ensure that the system can continue functioning without 

violating mutual exclusion properties. 

 Load Balancing: If the algorithm involves centralized 

control, such as in a coordinator-based approach, the 

performance can suffer due to the single point of control 

becoming a bottleneck. Therefore, mutual exclusion 

algorithms should aim to distribute the load effectively 

across multiple nodes to avoid such bottlenecks. 

1.5 PERFORMANCE MEASUREMENT METRICS IN 

DISTRIBUTED SYSTEMS 

In distributed systems, performance measurement metrics are used 

to evaluate how efficiently the system functions under different 

conditions and workloads. These metrics are essential for comparing 

different system designs, identifying bottlenecks, and optimizing 

performance. The key performance metrics in distributed systems 

include response time, throughput, scalability, resource utilization, 

availability, fault tolerance, and consistency. 

1. Response Time 

Response time is the time interval between a user request and the 

system’s response to that request. It is one of the most critical 

performance metrics, particularly for time-sensitive applications. 

Response time includes: 

 Request Propagation Delay: Time taken for a request to 

reach the server or resource. 

 Processing Time: Time spent by the server in executing the 

request. 

 Response Propagation Delay: Time taken for the response 

to return to the requester. 

Minimizing response time is important for providing better user 

experience, especially in real-time applications like video 

conferencing or online gaming. 
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2. Throughput 

Throughput refers to the number of requests or tasks processed by 

the distributed system within a given time frame. It indicates the 

system's ability to handle workload and is usually expressed as the 

number of operations per second or transactions per second. 

Factors affecting throughput include: 

 Network Bandwidth: Higher bandwidth allows more data 

to be transferred, improving throughput. 

 System Bottlenecks: Bottlenecks like slow processors, 

limited memory, or overloaded nodes reduce throughput. 

 Task Scheduling Efficiency: Proper load balancing and 

efficient task scheduling can enhance system throughput. 

3. Scalability 

Scalability is the ability of a distributed system to maintain its 

performance levels when additional resources (such as nodes or 

servers) are added to handle increased workload. A well-designed 

distributed system should be able to scale horizontally (by adding 

more nodes) or vertically (by upgrading the capacity of existing 

nodes). 

Scalability can be assessed through: 

 Horizontal Scaling: Adding more nodes to the system 

without significantly affecting performance. 

 Vertical Scaling: Upgrading hardware components of 

existing nodes. 

 Elasticity: The ability of a system to handle workload spikes 

by dynamically scaling resources up or down. 

4. Resource Utilization 

Resource utilization measures how effectively the distributed system 

utilizes its hardware and software resources. It includes CPU usage, 

memory utilization, disk space, and network bandwidth usage. The 

goal is to achieve high utilization without overloading the system. 
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 CPU Utilization: Percentage of CPU resources used by 

processes. Efficient scheduling is essential for optimal CPU 

utilization. 

 Memory Utilization: Memory allocation must be managed 

to avoid underutilization or excessive swapping, which can 

degrade performance. 

 Network Utilization: Measures bandwidth usage and is 

crucial in determining the efficiency of data transfer between 

nodes. 

5. Availability 

Availability measures the proportion of time that the distributed 

system is operational and accessible to users. High availability is 

crucial for distributed systems that provide critical services, such as 

online banking or cloud computing. 

 Mean Time to Failure (MTTF): The average time between 

system failures. 

 Mean Time to Repair (MTTR): The average time required 

to repair the system and bring it back online. 

 Redundancy: Use of redundant nodes and data replication 

to improve availability. 

High availability can be achieved through techniques like 

replication, failover mechanisms, and redundancy in infrastructure. 

6. Fault Tolerance 

Fault tolerance is the ability of a distributed system to continue 

functioning correctly even in the presence of faults or failures. A 

fault-tolerant system can detect, isolate, and recover from faults 

without significantly affecting performance. 

Fault tolerance is measured by: 

 Reliability: Probability that a system will function correctly 

over a specified time. 
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 Redundancy: Adding redundant components to prevent 

failure. 

 Recovery Time: Time taken to detect and recover from a 

fault. 

Techniques such as data replication, consensus protocols, and check 

pointing can be employed to enhance fault tolerance. 

7. Consistency 

Consistency ensures that all nodes in a distributed system have the 

same view of data at any given point in time. It is an essential metric 

for systems that rely on data replication, as inconsistencies can lead 

to erroneous operations. 

Consistency metrics include: 

 Latency of Consistency: The time taken to propagate 

changes across replicas to achieve a consistent state. 

 Consistency Level: Different levels of consistency, such as 

strong, eventual, or causal consistency, depending on the 

application's requirements. 

 Staleness: The difference between the actual state of data 

and the last-known consistent state, indicating how out-of-

date a copy might be. 

Consistency must be balanced with availability and partition 

tolerance, often involving trade-offs governed by the CAP theorem. 

8. Latency 

Latency is the delay experienced in the communication between 

nodes in a distributed system. It can be caused by several factors, 

such as network congestion, physical distance between nodes, and 

processing overhead. Latency directly affects the responsiveness of 

the system and is critical for real-time applications. 

 Propagation Delay: Time taken for data to travel from the 

sender to the receiver. 
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 Queuing Delay: Time spent waiting in queues at the 

network interface due to congestion. 

 Processing Delay: Time taken by a node to process the data 

packet before forwarding or responding. 

Reducing latency often involves optimizing communication 

protocols, efficient routing, and minimizing the number of hops 

between nodes. 

9. Load Balancing Efficiency 

Load balancing refers to distributing the workload evenly across 

nodes to ensure that no single node becomes a bottleneck. Load 

balancing efficiency is measured by how well the system distributes 

tasks and maintains uniform resource utilization. 

 Uniform Task Distribution: Even distribution of tasks 

ensures that no node is overloaded. 

 Node Utilization Metrics: Measuring the utilization of 

individual nodes can help identify imbalances in workload 

distribution. 

 Task Migration Cost: The cost of migrating tasks between 

nodes for balancing purposes, which should be minimized 

for efficient load balancing. 

10. Network Bandwidth Utilization 

Network bandwidth utilization measures how effectively the 

available bandwidth is used by the distributed system. It is important 

for applications with heavy data transfers, such as video streaming 

or data analytics. 

 Effective Utilization: The proportion of the total available 

bandwidth that is effectively used for productive 

communication. 

 Congestion Control: Mechanisms to avoid overloading the 

network, which can degrade performance. 

 Minimizing Overhead: Efficient communication protocols 

to reduce message overhead and improve bandwidth usage. 
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1.6 CLASSIFICATION OF MUTUAL EXCLUSION 

ALGORITHMS 

Mutual exclusion algorithms are fundamental in distributed systems 

to ensure that shared resources are accessed in a mutually exclusive 

manner, preventing race conditions and data inconsistencies. 

Various algorithms have been proposed for achieving mutual 

exclusion, and they can be broadly classified into several categories 

based on different factors, such as the type of communication, the 

coordination strategy, or whether they require a central coordinator. 

There are two main classifications of mutual exclusion algorithms 

and they are - Centralized Algorithms and 

Distributed/Decentralized Algorithms. 

1.6.1 Centralized Algorithms 

Centralized algorithms are one of the primary classifications of 

mutual exclusion algorithms in distributed systems. In a centralized 

approach, a designated coordinator (a single central node or server) 

is responsible for managing access to the shared resource. This 

coordinator acts as an authority that decides which process can enter 

the critical section, ensuring that only one process has access to the 

resource at a time. Now, let’s discuss how a centralized algorithm 

works: 

 In a centralized mutual exclusion algorithm, all processes that 

need access to a critical section must send a request to the 

coordinator. 

 The coordinator maintains a queue of incoming requests for the 

critical section. 

 When a process sends a request, the coordinator decides if the 

critical section is available. If it is available, the coordinator 

grants permission to the requesting process. Otherwise, the 

request is queued until the critical section is free. 

 Once the process finishes its execution in the critical section, it 

sends a release message to the coordinator, allowing the next 

process in the queue to be granted access. 
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Advantages of Centralized Algorithms: 

Simplicity: Centralized algorithms are relatively simple to 

implement because only one node needs to handle all the 

coordination. 

Guaranteed Mutual Exclusion: The use of a central coordinator 

ensures that only one process can access the critical section at a 

time, making mutual exclusion straightforward. 

Low Message Overhead: Compared to distributed algorithms, 

centralized algorithms usually require fewer messages to manage 

access. A request, a grant, and a release message are all that is 

needed for each access, resulting in a total of 3 messages per critical 

section entry. 

Disadvantages of Centralized Algorithms: 

Single Point of Failure: The coordinator is a single point of failure. 

If the coordinator crashes, no process can enter the critical section 

until a new coordinator is chosen, this can disrupt the system. 

Scalability Issues: As the number of processes grows, the 

coordinator can become a bottleneck, leading to longer waiting 

times for processes and degraded performance. This approach is not 

suitable for systems that require high scalability. 

Coordinator Overload: All requests are handled by the central 

coordinator, which can lead to overload and reduced efficiency if 

the number of requests is very high. 

1.6.2 Distributed/Decentralized Algorithms 

Decentralized algorithms are a type of mutual exclusion algorithms 

used in distributed systems. Unlike centralized algorithms, where 

one node manages access to shared resources, decentralized 

algorithms spread this responsibility across multiple nodes. This 

approach helps prevent problems like having a single point of 

failure or a bottleneck, which are common issues with centralized 

methods. The decentralized algorithms are of two types and they are 

namely – Token-Based Algorithms and Non Token-Based 

Algorithms (or Permission-Based Algorithms). The two types of 

the decentralized algorithms will be discussed in the next Unit. 
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1.7  SUMMING UP 

 Mutual Exclusion ensures that only one process accesses a 

shared resource at a time to prevent inconsistencies and 

conflicts. 

 The challenges for Mutual Exclusion in Distributed Systems 

include the lack of a global clock, communication delays, and 

network failures. 

 Importance of Mutual Exclusion: 

o Prevents data corruption by ensuring exclusive access, 

o Controls access to prevent outcomes dependent on 

timing, 

CHECK YOUR PROGRESS-I 

1. State True or False: 

a) Mutual exclusion in distributed systems ensures that only 

one process can access a shared resource at a time. 

b) In a centralized mutual exclusion algorithm, a single 

coordinator manages access to shared resources. 

c) Liveness requirements ensure that a process requesting 

access to the critical section may remain blocked indefinitely. 

2. Fill in the blanks: 

a) The __________ requirement focuses on the ability of the 

system to make progress. 

b) The main communication method used in permission-based 

algorithms is __________ passing. 

c) A race condition occurs when the outcome of a process 

depends on the __________ of other processes' actions. 

d) __________ algorithms are designed to ensure that every 

process requesting access will eventually be able to enter the 

critical section. 

e) In distributed systems, __________ measures the proportion 

of time that the system is operational and accessible to users. 
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o Essential for ensuring data consistency during updates, 

o Ensures fair and controlled resource allocation, 

o Ensures ordered updates for a consistent system state, 

o Helps in coordination for leader elections, transactions, 

etc., 

o Improves system resilience in case of failures. 

 Performance Measurement Metrics in Distributed Systems are: 

Response Time, Throughput, Scalability, Resource Utilization, 

Availability, Fault Tolerance, Consistency, Latency, Load 

Balancing Efficiency andNetwork Bandwidth Utilization. 

 In Centralized Algorithms, single coordinator manages access to 

shared resources. 

 Simplicity, guaranteed mutual exclusion, low message overhead 

are the advantages of Centralized Algorithms. 

 

1.8  ANSWERS TO CHECK YOUR PROGRESS 

1.a) True    b) True    c) False 

2.a) liveness    b) message   c) timing or order 

d) Liveness e) availability 

 

1.9  POSSIBLE QUESTIONS 

Short Answer Type Questions: 

1. What is mutual exclusion in distributed systems? 

2. What is the main function of a coordinator in centralized mutual 

exclusion algorithms? 

3. What does scalability mean in the context of mutual exclusion 

algorithms? 

Long Answer Type Questions: 

4. Discuss the importance of mutual exclusion in distributed 

systems. 

5. Explain the safety and liveness requirements of mutual 

exclusion algorithms. 



 

142 

 

6. Compare centralized and decentralized mutual exclusion 

algorithms. 

7. How does mutual exclusion contribute to maintaining data 

integrity in distributed systems? 

 

1.10 REFERENCES AND SUGGESTED READINGS 

1. "Distributed Systems: Concepts and Design" by George 

Coulouris 

2. “Designing Data-Intensive Applications" by Martin Kleppmann 

3. “Distributed Systems: Principles and Paradigms" by Andrew 

Tanenbaum and Maarten Van Steen 
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UNIT: 2 

TOKEN-BASED AND NON-TOKEN-BASED 

MUTUAL EXCLUSION ALGORITHMS 

 

 

Unit Structure: 

2.1 Introduction 

2.2 Unit Objectives 

2.3 Token-Based Decentralized Mutual Exclusion Algorithms 

2.3.1 How Token-Based Algorithms Work? 

2.3.2Advantages of Token-Based Algorithms 

2.3.3 Disadvantages of Token-Based Algorithms 

2.4 Non Token-Based Decentralized Mutual Exclusion 

Algorithms 

2.4.1 How Non Token-Based Algorithms Work? 

2.4.2 Advantages of Non Token-Based Algorithms 

2.4.3 Disadvantages of Non Token-Based Algorithms 

2.5 Summing Up 

2.6 Answers to Check Your Progress 

2.7 Possible Questions 

2.8 References and Suggested Readings  

 

 

2.1   INTRODUCTION 

 

In distributed systems, Mutual Exclusion is a key part of distributed 

computing, helping with synchronization and maintaining 

consistency between processes in a network. As discussed in the 

previous unit, the algorithms for mutual exclusion are classified 

under two categories namely - Centralized Algorithms and 

Distributed/Decentralized Algorithms.In this unit, we will cover the 

Distributed/Decentralized Algorithms in detail. 
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2.2 UNIT OBJECTIVES 

After going through this unit, you will be able to: 

 understand token-based decentralized algorithms. 

 understandnon token-based decentralized algorithms. 

 

2.3 TOKEN-BASED DECENTRALIZED MUTUAL 

EXCLUSION ALGORITHMS 

A classification of decentralized mutual exclusion algorithms in 

distributed systems where a special token is used to manage access 

to shared resources. The token acts as a unique key, and only the 

process holding the token is allowed to enter the critical section and 

access the shared resource. This approach ensures mutual exclusion 

since there is only one token, preventing multiple processes from 

accessing the resource simultaneously. 

2.3.1 How Token-Based Algorithms Work? 

In this approach, all the processes are arranged in a logical ring, and 

the token is passed around the ring in one direction. Each process 

knows the identity of the next process to which it must send the 

token. If a process needs to enter the critical section, it waits for the 

token to arrive, and once done, it passes the token to the next 

process. If the process does not need the critical section, it simply 

forwards the token. This method is straightforward, but if the token 

is lost or a process fails, additional mechanisms are required for 

token. 

2.3.2 Advantages of Token-Based Algorithms 

Following are the advantages of token-based mutual exclusion 

algorithms: 

 Guaranteed Mutual Exclusion: Since only the process holding 

the token can access the critical section, mutual exclusion is 

guaranteed. 
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 Fairness: Token-based algorithms ensure fairness as the token is 

passed in a predefined sequence, giving all processes an equal 

chance to access the critical section. 

 Avoidance of Deadlock: These algorithms avoid deadlocks 

because only one process holds the token at any time, and others 

simply wait for it to be passed. 

2.3.3 Disadvantages of Token-Based Algorithms 

Following are the disadvantages of token-based mutual exclusion 

algorithms: 

 Loss of Token: If the token is lost or a process holding the token 

fails, the entire system might be blocked. Extra mechanisms are 

required to regenerate the lost token. 

 Token Circulation Delay: In large systems, the time taken for 

the token to circulate among all processes can lead to delays, 

especially if only a few processes require the critical section. 

 Fault Tolerance: Token-based systems are susceptible to node 

failures. If a node fails while holding the token, other nodes 

cannot access the critical section until the token is regenerated. 

 

2.4  NON TOKEN-BASED DECENTRALIZED MUTUAL 

EXCLUSION ALGORITHMS 

Non-token-based or permission-based algorithms are a type of 

decentralized classification mutual exclusion algorithm used in 

distributed systems where access to a critical section is managed 

without using a token. Instead, these algorithms use message 

exchanges between processes to control access to shared resources.  

2.4.1 How Non Token-Based Algorithms Work? 

The core idea is to get permission from other processes before 

entering the critical section, ensuring that no two processes can 

access it simultaneously. This coordination is done through request 

and reply messages, often using logical clocks, timestamps, or 

voting mechanisms. While these algorithms solve the challenges 

related to token management, they come with their own issues, such 
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as higher communication overhead, vulnerability to deadlocks, and 

reliance on all processes responding properly. Choosing a 

permission-based algorithm depends on factors like scalability, fault 

tolerance, and overall system efficiency. 

The main characteristics of Non Token-Based/ Permission-Based 

Algorithms are: 

 Message Passing: Processes request permission from other 

processes and wait for replies before entering the critical section. 

 Logical Clocks: Requests are often times-tamped to determine 

the order of access, helping to prevent conflicts. 

 Decentralization: There is no central coordinator or token; 

instead, multiple nodes are involved in granting permissions. 

2.4.2 Advantages of Non Token-Based Algorithms 

Following are the advantages of non token-based mutual exclusion 

algorithms: 

 There is no single point of failure since permission is obtained 

from multiple nodes. 

 Most permission-based algorithms use timestamps to ensure fair 

access to the critical section, preventing starvation. 

 Since no token is used, problems like token loss, duplication, or 

token regeneration are avoided. 

2.4.3 Disadvantages of Non Token-Based Algorithms 

Following are the disadvantages of non token-based mutual 

exclusion algorithms: 

 In systems with a large number of processes, the number of 

messages required to obtain permission can become significant. 

 The algorithms are sensitive to process failures, as a process 

may need replies from all other processes (or quorum members). 

A failure may lead to indefinite waiting. 

 Some permission-based algorithms can suffer from deadlock if 

multiple processes are waiting for each other’s replies, or 
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starvation if some processes are unable to get permission due to 

repeated denials. 

 

 

 

2.5  SUMMING UP 

 In token-based algorithms, a unique token is used to grant access 

to shared resources, ensuring mutual exclusion as only the 

token-holder can access the critical section. 

 In token-based algorithms, Processes are arranged in a logical 

ring. 

CHECK YOUR PROGRESS-I 

1. State True or False: 

a)In token-based algorithms, processes request permission 

from other processes to enter the critical section. 

b)Token-based algorithms guarantee mutual exclusion because 

only one token exists in the system. 

c) Token-based algorithms do not require message passing 

between processes.        

d)One disadvantage of non-token-based algorithms is that they 

are insensitive to process failures.  

2. Fill in the blanks: 

a)In token-based decentralized mutual exclusion algorithms, a 

special ______ is used to manage access to shared resources. 

b) Token-based algorithms avoid ______ because only one 

process can hold the token at any time. 

c)Non-token-based algorithms often rely on ______ clocks or 

timestamps to determine the order of access. 

d)In token-based systems, if the ______ is lost, mechanisms 

are required to regenerate it. 
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 Disadvantages of token-based algorithms are: 

o Lost tokens block the system; regeneration mechanisms are 

needed. 

o Inefficiency in large systems when token circulates 

unnecessarily. 

o Node failures disrupt token passing, requiring recovery 

protocols. 

 In non token-based algorithms, access to the critical section is 

managed through permission-based mechanisms, avoiding token 

dependency. 

 Characteristics of non token-based algorithms are: 

o Message Passing: Processes exchange request and reply 

messages. 

o Logical Clocks: Timestamps ensure proper access order. 

o Decentralization: No single point of control. 

 Disadvantages of non token-based algorithms are: 

o Requires many messages, especially in large systems. 

o Node failures or missing replies can cause indefinite waiting. 

o Deadlocks can occur due to waiting cycles; starvation may 

happen with repeated denials. 

 

2.6  ANSWERS TO CHECK YOUR PROGRESS 

1.a) False    b) True    c) False    d) False 

2.a) token    b) deadlocks   c) logicald) token 

 

2.7 POSSIBLE QUESTIONS 

Short Answer Type Questions: 

1. What is Token-Based Decentralized Mutual Exclusion 

Algorithm? 

2. What is token in Non Token-Based Decentralized Mutual 

Exclusion Algorithm? 

3. How do decentralized algorithms avoid single points of failure? 
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Long Answer Type Questions: 

4. What are the advantages and disadvantages of Token-Based 

Decentralized Mutual Exclusion Algorithms in Distributed 

Systems? 

5. What are the advantages and disadvantages of Non Token-Based 

Decentralized Mutual Exclusion Algorithms in Distributed 

Systems? 

6. Discuss the characteristics of Non Token-Based Decentralized 

Mutual Exclusion Algorithms. 

 

2.8  REFERENCES AND SUGGESTED READINGS 

1. "Distributed Systems: Concepts and Design" by George 

Coulouris 

2. “Designing Data-Intensive Applications" by Martin Kleppmann 

3. “Distributed Systems: Principles and Paradigms" by Andrew 

Tanenbaum and Maarten Van Steen 

 

 

 

××× 
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3.2 Unit Objectives 

3.3 Election Algorithm and its Role 

3.4 Bully Algorithm 

3.5 Ring Algorithm 

3.6 Bully vs Ring Algorithm 

3.7 Summing Up 

3.8 Answers to Check Your Progress 

3.9 Possible Questions 

3.10 References and Suggested Readings  

 

3.1   INTRODUCTION 

 

Distributed algorithms are specialized algorithms designed to 

operate in a distributed system, where a collection of independent 

computers, each with its own memory, work collaboratively without 

sharing memory. Communication between these computers occurs 

over a network, where processes running on different machines 

exchange information to achieve a common goal. In many 

distributed algorithms, the presence of a coordinator is essential, as 

it takes on specific roles like managing resources or coordinating the 

tasks of other processes. Election algorithms play a key role in this 

context, as they are used to select such a coordinator or leader to 

manage tasks centrally. 

Election algorithms are vital in distributed systems to determine 

which process among several should assume the role of a leader or 

coordinator. These algorithms aim to elect a process that can take on 

centralized responsibilities, such as managing access to shared 

resources or making important decisions for the entire system. 
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3.2 UNIT OBJECTIVES 

After going through this unit, you will be able to: 

 understand the purpose and importance of election 

algorithms in distributed systems. 

 describe how the Bully Algorithm and Ring Algorithm 

operate to elect a coordinator. 

 compare the Bully and Ring Algorithms in terms of 

efficiency, complexity, and use cases. 

 identify the advantages and limitations of different election 

algorithms. 

 explain the role of election algorithms in ensuring the 

reliability and coordination of distributed systems. 

 

 

3.3 ELECTION ALGORITHM AND ITS ROLE 

Election algorithms play a crucial role in distributed systems by 

providing a mechanism to elect a coordinator or leader among 

distributed processes. In a distributed system, multiple processes 

operate independently, and the absence of shared memory 

necessitates coordinated decision-making to avoid conflicts and 

maintain consistency. A coordinator often needs to be selected to 

centralize decision-making, assign responsibilities, or facilitate 

efficient task execution. Election algorithms are used to determine 

which process should act as the coordinator when the system starts 

or when the existing coordinator fails. 

The importance of election algorithms lies in their ability to 

dynamically manage the system in cases where processes may fail 

and recover unpredictably. The election process ensures that there is 

always a unique, active coordinator, which is crucial for maintaining 

control over shared resources and ensuring system reliability. Two 

popular election algorithms are the Bully Algorithm and the Ring 

Algorithm, each of which addresses the leader selection problem in 

different configurations of distributed systems. 
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Role of Election Algorithms: 

Election algorithms play an important role in distributed systems by 

ensuring that all independent processes work together smoothly and 

reliably. In a distributed system, different processes run on separate 

nodes, each with its own memory, and they need to coordinate to 

achieve common goals. Since there is no shared memory, and nodes 

can fail unexpectedly, a central point of control is needed for 

decision-making and efficient management of tasks. Election 

algorithms solve this problem by selecting a leader or coordinator 

among the processes. This coordinator manages resources, 

maintains consistency, and helps the system recover from failures. 

By electing a leader, election algorithms make it easier to coordinate 

actions, reduce conflicts, and keep the system running smoothly, 

even when problems arise.  

Leader Selection isthe primary roles of election algorithms is to 

select a leader or coordinator among the processes. The coordinator 

is responsible for managing specific tasks, such as resource 

allocation, synchronization, or decision-making. The leader is 

chosen based on specific criteria, such as process priority or unique 

identifier, ensuring that only one process is responsible for 

coordinating activities at any given time. By designating a leader, 

election algorithms prevent conflicts, as processes no longer need to 

compete for control over shared tasks. 

Assumptions for Election Algorithms: 

The assumptions are: 

Assumption 1: Each process in the system has a unique identifier, 

such as a network address (assuming one process per machine for 

simplicity). Generally, election algorithms aim to identify the 

process with the highest identifier and designate it as the 

coordinator. 

Assumption 2: Every process is aware of the identifiers of all other 

processes in the system. 

Assumption 3: Processes do not have information about which 

other processes are currently active (up) or inactive (down). 

Examples of election algorithms include the Bully Algorithm and 

the Ring Algorithm, each with unique approaches to selecting a 

leader. 
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3.4 BULLY ALGORITHM 

The Bully Algorithm is a popular election algorithm in distributed 

systems, designed to select a coordinator among multiple processes. 

Its primary objective is to choose the process with the highest 

unique identifier (ID) as the coordinator, ensuring that there is 

always a designated leader to manage coordination tasks effectively. 

This algorithm is particularly beneficial in environments where 

processes may fail and recover, as it helps maintain stability by 

always electing a new leader when needed. The Bully Algorithm 

assumes reliable communication between processes and requires 

that each process can directly communicate with others. When a 

process detects that the current coordinator has failed, it initiates an 

election, thereby ensuring that the system continues to operate 

efficiently.The algorithm is initiated when a process detects that the 

current coordinator has failed or is not responding. The process that 

initiates the election is called the “initiator”. 

 

STEPS INVOLVED IN BULLY ALGORITHM: 

1. Election Initiation: 

 When a process detects that the current coordinator has 

failed, it starts an election process by sending “election” 

messages to all processes with higher IDs. 

 If no process responds, the initiator assumes itself to be the 

new coordinator and broadcasts a “coordinator” message to 

all other processes. 

2. Response to Election: 

 When a process with a higher ID receives the “election” 

message, it responds with an “OK” message to indicate that 

it is alive and capable of becoming the coordinator. 

 The higher-ID process then starts its own election process by 

sending “election” messages to processes with even higher 

IDs. 

3. Coordination Announcement: 

 Eventually, the process with the highest ID among those 

participating in the election will not receive any response to 

its “election” messages. This process declares itself the new 
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coordinator by sending a “coordinator” message to all other 

processes. 

 All other processes update their records to recognize the new 

coordinator. 

4. Failure Handling: 

 If the new coordinator fails, the election process is restarted 

by the next process that detects the failure. 

Advantages of Bully Algorithm: 

 The Bully Algorithm ensures that the process with the highest 

ID always becomes the coordinator, providing a clear and 

deterministic outcome. 

 It is simple to implement and works well in systems where 

processes have unique identifiers and can directly communicate 

with each other. 

Disadvantages of Bully Algorithm: 

 The algorithm generates a significant amount of message traffic, 

especially if multiple processes initiate elections simultaneously. 

 It can be inefficient in large systems, as the number of messages 

grows rapidly with the number of processes. 

 The failure of multiple processes during the election process can 

lead to delays in selecting a new coordinator. 

3.5 RING ALGORITHM 

The Ring Algorithm is an election algorithm used in distributed 

systems to select a coordinator among multiple processes arranged 

in a logical ring. The main goal of this algorithm is to ensure that a 

single process is elected as the coordinator to manage coordination 

tasks and shared resources. In this algorithm, the processes are 

organized in a ring structure, where each process has a direct 

communication link with its successor in the ring. The algorithm 

ensures that the process with the highest unique identifier (ID) 

becomes the coordinator. 

In addition to the other assumptions mentioned earlier, the Ring 

Algorithm assumes that the processes are arranged in a specific 

order, either physically or logically, so that each process knows who 
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comes next in the sequence.The Ring Algorithm is well-suited for 

systems where processes are naturally organized in a circular 

structure and communication overhead must be minimized by using 

only local interactions. 

STEPS INVOLVED IN RING ALGORITHM: 

1. Logical Ring Formation:  

All processes in the system are arranged in a logical ring. Each 

process knows the identity of the process that comes right after it, 

allowing communication to flow around the ring. 

2. Election Initiation:  

When a process, say P, notices that the current coordinator has 

failed, it starts an election. It sends an election message with its own 

ID to the next process in the ring. 

3. Message Passing:  

The election message moves around the ring. Each process that 

receives the message compares its ID with the one in the message: 

 If its ID is higher, it replaces the ID in the message with its own 

and sends it to the next process. 

 If its ID is lower, it simply passes the message along without 

changing it. 

4. Election Completion:  

Eventually, the election message returns to the process that started 

it, carrying the highest ID found among all the processes in the ring. 

The process with this highest ID becomes the new coordinator. 

5. Coordinator Announcement:  

Once the new coordinator is chosen, a message is sent around the 

ring to let all processes know who the new coordinator is. 

Advantages of Ring Algorithm: 

 The Ring Algorithm is simple to implement and requires only 

local communication between neighbours in the ring. 

 It guarantees that a coordinator is eventually elected, even if 

multiple processes initiate elections simultaneously. 

 



 

156 

 

Disadvantages of Ring Algorithm: 

 The algorithm can be slow, especially in large systems, since 

messages must traverse the entire ring. 

 If the ring is disrupted (e.g., due to a process or communication 

link failure), the election process can be delayed. 

3.6  BULLYVS RING ALGORITHM 

Let’s try to analyze the Bully and Ring algorithm in terms of 

different aspects. 

Basic Approach: 

 Bully algorithm selects the process with the highest ID as the 

coordinator through direct communication among processes. 

 Ring Algorithm organizes processes in a logical ring, with each 

process passing an election message around the ring to 

determine the coordinator. 

Assumptions: 

 In Bully Algorithm it is assumed that each process knows the ID 

of every other process and can communicate directly with them. 

 In Ring Algorithm it is assumed that processes are arranged in a 

logical ring and each process knows its immediate successor. 

Communication Complexity: 

 In Bully Algorithm, the complexity is High. Involves direct 

communication between all active processes, resulting in O(n²) 

messages in the worst case (for n processes). 

 In Ring Algorithm, the complexity is Moderate. Only involves 

communication along the ring, resulting in O(n) messages for an 

election. 

Coordinator Selection: 

 In Bully Algorithm, the process with the highest ID is elected as 

the coordinator. 

 In Ring Algorithm, the process with the highest ID among those 

that receive the election message is elected as the coordinator. 
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Initiation of Election: 

 In Bully Algorithm, any process can initiate an election when it 

detects that the coordinator has failed. 

 In Ring Algorithm, any process can initiate an election when it 

detects a failure. The message travels along the ring to find a 

new coordinator. 

 

Failure Handling: 

 In Bully Algorithm, when a process detects a coordinator failure, 

it starts an election by sending messages to all higher-numbered 

processes. 

 In Ring Algorithm, when a coordinator failure is detected, an 

election message is passed around the ring to find the new 

coordinator. 

 

Scalability: 

 In Bully Algorithm, Scalability is limited due to high 

communication costs for larger networks. 

 In Ring Algorithm, Scalability is better since each process only 

communicates with its immediate successor. 

 

Overall, he Bully Algorithm works well for small systems where 

processes can easily communicate directly with each other, but it 

becomes less efficient in larger systems because of the high number 

of messages involved. On the other hand, the Ring Algorithm is 

more efficient in terms of the number of messages and can handle 

larger systems better, but it may take longer to elect a new 

coordinator since the message has to pass through every process in 

the ring. 

 



 

158 

 

 

 

3.7 SUMMING UP 

 Election Algorithms provide a mechanism to elect a coordinator 

or leader among distributed processes and Ensure coordinated 

decision-making in the absence of shared memory. 

 The Role of election algorithm is select a leader to manage tasks, 

allocate resources, and handle failures. 

 The assumptions for election algorithms are as follows: 

o Each process has a unique identifier, 

CHECK YOUR PROGRESS-I 

1. State True or False: 

a) Election algorithms select a coordinator among distributed 

processes. 

b) Election algorithms are only used when the system starts, 

not during coordinator failure. 

c) The Bully Algorithm requires each process to know the ID 

of every other process. 

d) In the Ring Algorithm, processes are organized in a logical 

ring. 

e) The Ring Algorithm involves communication along the ring 

to determine the new coordinator. 

2. Fill in the blanks: 

a) In the Ring Algorithm, each process knows the identity of its 

immediate _______. 

b) The Bully Algorithm has a high communication complexity 

of ______ in the worst case. 

c) The process that initiates an election in the Bully Algorithm 

is called the _______. 

d) In the Ring Algorithm, the process with the ______ ID in 

the ring becomes the new coordinator. 

e) The ______ Algorithm is more suitable for large systems 

due to better scalability. 
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o Every process knows the identifiers of other processes, 

o Processes do not know which others are active or inactive. 

 Bully Algorithm 

o Chooses the process with the highest unique identifier as 

coordinator. 

o Works in environments where processes may fail and 

recover. 

o Initiates election when a process detects coordinator failure. 

 Ring Algorithm 

o Arranges processes in a logical ring; each knows its 

successor. 

o Elects a coordinator through message passing along the ring. 

 

3.8  ANSWERS TO CHECK YOUR PROGRESS 

1. a) True    b) False    c) True    d) Truee) True 

2. a) successor    b) O(n²)   c) initiatord) higheste) Ring 

 

3.9 POSSIBLE QUESTIONS 

Short Answer Type Questions: 

1. What is the primary purpose of election algorithms in distributed 

systems? 

2. How does the Ring Algorithm arrange processes? 

3. What happens when a coordinator fails in the Bully Algorithm? 

4. What type of communication does the Ring Algorithm rely on? 

5. How does the Bully Algorithm determine the new coordinator? 

 

Long Answer Type Questions: 

6. Explain the importance of election algorithms in distributed 

systems. 

7. Describe the steps involved in the Bully Algorithm. 

8. Discuss the advantages and disadvantages of the Ring 

Algorithm. 
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9. Compare the Bully Algorithm and the Ring Algorithm in terms 

of scalability and efficiency. 

10. Describe the assumptions made by the Bully and Ring 

Algorithms. 

 

3.10  REFERENCES AND SUGGESTED READINGS 

1. "Distributed Systems: Concepts and Design" by George 

Coulouris 

2. “Designing Data-Intensive Applications" by Martin 

Kleppmann 

3. “Distributed Systems: Principles and Paradigms" by Andrew 

Tanenbaum and Maarten Van Steen 

 

 

××× 
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4.1   INTRODUCTION 

Distributed Scheduling involves deciding which node in a 

distributed system should execute a particular task, with the aim of 

achieving optimal system performance, load balancing, and 

minimizing response time. It requires making decisions about job 

assignments based on factors such as resource availability, task 

priority, and current system load. 

Load Distribution focuses on dividing the workload evenly across 

all nodes in the system to prevent some nodes from being 

overloaded while others are underutilized. It involves transferring 

tasks from heavily loaded nodes to lightly loaded ones, which can 

improve overall system performance and ensure fairness in resource 

usage. 
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4.2 UNIT OBJECTIVES 

After going through this unit, you will be able to: 

 understand the concept of distributed scheduling and its 

significance in distributed systems. 

 identify the challenges and issues involved in distributed 

load distribution. 

 describe the components of load distribution algorithms. 

 explain various task migration strategies used in load 

distribution. 

 analyze the factors that affect the stability of distributed 

scheduling. 

4.3 DISTRIBUTED SCHEDULING 

Distributed Scheduling means organizing and managing tasks across 

multiple independent computers in a distributed system. In a 

distributed environment, tasks are spread across different computers 

(nodes) to make the best use of resources, improve system 

performance, and increase fault tolerance. The main goal of 

distributed scheduling is to decide which tasks should be handled by 

which nodes, considering factors like load balancing, 

communication delays, and available resources. 

In distributed systems, each node works independently, but they 

cooperate to complete shared tasks. Scheduling in these systems not 

only involves assigning tasks to nodes but also considering the 

network structure, communication between nodes, and the changing 

state of nodes (e.g., availability and load levels).  

Let’s discuss the importance of Distributed Scheduling. Below are 

some key reasons why distributed scheduling is important: 

 Distributed scheduling makes sure that all nodes in the system 

are used effectively by balancing the workload among them. 

This prevents some nodes from being idle while others are 

overloaded, leading to better resource utilization. 

 By distributing tasks intelligently, distributed scheduling reduces 

the processing time, leading to faster execution of tasks and 

improved performance. It helps ensure that no single node 
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becomes a bottleneck, allowing the system to handle larger 

workloads more efficiently. 

 Distributed scheduling is essential for scaling distributed 

systems. As the number of nodes or tasks grows, scheduling 

helps distribute the increased workload without compromising 

system performance, making it easier to expand the system. 

 In distributed systems, nodes can fail unpredictably. Distributed 

scheduling provides a mechanism to reassign tasks from failed 

nodes to active ones, thus maintaining system reliability and 

ensuring that the system can continue to function smoothly even 

if some nodes fail. 

 Distributed systems are often dynamic, with nodes joining or 

leaving the network and workloads fluctuating over time. 

Distributed scheduling helps adapt to these changes in real time, 

ensuring that tasks are reassigned efficiently based on the 

current state of the system. 

 Effective distributed scheduling ensures that the workload is 

evenly distributed across all nodes, preventing any single node 

from being overwhelmed. This leads to improved system 

stability and prevents performance degradation due to 

overloading. 

Also, Distributed scheduling faces several challenges, including: 

 Heterogeneity: Nodes may have different processing power and 

available resources. Scheduling needs to adjust according to the 

capabilities of each node. 

 Communication Overhead: Assigning and moving tasks between 

nodes requires communication over a network, which can cause 

delays and increase overhead. 

 Dynamic Nature: Distributed systems are always changing, with 

nodes joining or leaving the network and their load levels 

varying. Scheduling algorithms must adapt to these changes in 

real time. 

 Load Balancing: Ensuring tasks are evenly distributed among 

nodes is essential to prevent any one node from becoming 

overloaded and to maximize efficiency. In the next section, we 

will discuss it in detail. 
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Distributed scheduling algorithms can be broadly categorized into 

three types: 

1. Static Scheduling: The tasks are assigned to nodes before 

execution begins, based on predefined criteria. This approach is 

simpler but less flexible in adapting to dynamic changes in the 

system. 

2. Dynamic Scheduling: The assignment of tasks is done during 

runtime, allowing the system to adapt to changes in workload 

and resource availability. 

3. Hybrid Scheduling: Combines features of both static and 

dynamic scheduling to achieve a balance between simplicity and 

adaptability. 

4.4  LOAD DISTRIBUTION 

Load Distribution in distributed scheduling is about assigning tasks 

or workloads to different nodes (computers) in a distributed system. 

The main goal of load distribution is to use resources effectively, 

improve system performance, and make sure no single node gets too 

much work while others are underused. The key concepts related to 

Load Distribution are: 

1. Load Balancing: This means distributing the workload among 

nodes so that each one gets a fair share of tasks, based on its 

ability to handle them. Load balancing prevents any one node 

from being overloaded, which keeps the system working 

smoothly. 

2. Load Monitoring: To distribute tasks effectively, the system 

needs to monitor how busy each node is. This includes checking 

things like CPU usage, memory usage, and the number of tasks 

each node is handling. Based on this information, tasks can be 

assigned to keep the workload balanced. 

3. Task Assignment: 

o Centralized Approach: One central scheduler decides which 

tasks go to which nodes based on their current load. This is 

easy to implement but can become a problem if the scheduler 

fails. 

o Distributed Approach: Each node decides for itself whether 

to take on new tasks or pass tasks to others. This prevents a 
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single point of failure but requires good communication 

between nodes to avoid conflicts. 

4. Task Migration: If one node gets too much work, tasks can be 

moved to nodes with less work. This helps keep the workload 

evenly distributed. 

Now, let’s discuss the why of load distribution is important in 

distributed systems. Following are the importance of load 

distribution: 

 Load distribution ensures that all nodes are being used, so no 

node is idle while others are overloaded. 

 By distributing tasks evenly, they get done faster, reducing the 

total time and improving system responsiveness. 

 Load distribution helps the system grow more easily as new 

nodes are added, allowing it to handle more work without 

slowing down. 

 If a node fails, its tasks can be reassigned to other nodes. This 

backup ensures the system keeps running smoothly even if there 

are failures. 

 Without good load distribution, some nodes might become 

bottlenecks and slow everything down. Load distribution 

prevents this by spreading tasks evenly. 

 

4.5  LOAD DISTRIBUTION ALGORITHMS 

Load distribution algorithms are methods used in distributed 

systems to assign tasks or workloads to different computers or 

servers. The main aim of these algorithms is to make sure that all 

computers are used effectively, so that no single machine gets 

overloaded while others are not fully used. This helps improve how 

well the system performs, makes better use of resources, increases 

reliability, and allows the system to grow. 

In distributed systems, tasks can be assigned either dynamically 

(adjusting in real-time) or statically (based on fixed rules), 

depending on factors like the processing power of each computer, 

network conditions, current workloads, and the need to complete 

tasks efficiently. 
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4.5.1 Challenges of Load Distribution Algorithms 

Load distribution algorithms in distributed systems face several 

challenges that can affect their efficiency and performance. Some of 

the key challenges include: 

Heterogeneity of Nodes:Distributed systems often consist of nodes 

with different hardware configurations, processing power, memory, 

and network capabilities. Designing a load distribution algorithm 

that takes these differences into account can be difficult, as tasks 

may need to be allocated in a way that suits each node's capacity. 

Dynamic Workload and Resource Availability:The workload in 

distributed systems is not constant; it can fluctuate over time as 

tasks are added or completed. Similarly, nodes may join or leave the 

system, and their resource availability can change (e.g., due to 

failures or resource contention). Load distribution algorithms must 

adapt in real time to these changes to prevent system overloads or 

underutilization. 

Communication Overhead:Effective load distribution often 

requires frequent communication between nodes to monitor system 

states and transfer tasks. This communication introduces network 

overhead, which can reduce system performance, especially in large 

distributed systems. 

Task Migration Complexity: Moving tasks from one node to 

another (task migration) is crucial for dynamic load balancing, but it 

can be complex. The task’s state, including data, memory, and 

dependencies, must be transferred without errors. Migration also 

incurs overhead in terms of time and network bandwidth, which can 

impact the overall system's efficiency if not handled properly. 

4.5.2 Types of Load Distribution Algorithms 

Load distribution algorithms can be broadly classified into two main 

types: Static load distribution, Dynamic load distributionand 

Adaptive load distribution. Each type has its own set of strategies 

and characteristics, which are outlined below. 

STATIC LOAD DISTRIBUTION ALGORITHMS 

In static load distribution, tasks are assigned to nodes based on pre-

defined rules or policies that do not change during runtime. The 

allocation is determined before the system starts executing tasks, 
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and it remains fixed regardless of any changes in the system’s state, 

such as node failures or load variations. The key characteristics of 

this type of algorithms are: 

 Tasks are assigned to nodes based on fixed parameters like node 

capacity, number of tasks, or historical performance. 

 Since task assignments are made in advance, there is no need for 

continuous monitoring or real-time adjustments, leading to 

lower communication overhead. 

 Static algorithms are not responsive to dynamic changes, such as 

node failures or fluctuating workloads, which can result in poor 

load balancing if the system's state changes. 

DYNAMIC LOAD DISTRIBUTION ALGORITHMS 

In dynamic load distribution, task assignment is made in real-time 

based on the current state of the system. The algorithm continuously 

monitors the status of nodes (e.g., CPU utilization, memory 

availability, network load) and adjusts the distribution of tasks 

accordingly. The key characteristics of this type of algorithms are: 

 Decisions about which node should handle a task are made 

during runtime, based on current system conditions. 

 Dynamic algorithms can adapt to changes in the system, such as 

varying workloads, node failures, or resource availability. 

 Dynamic load distribution requires continuous monitoring and 

communication between nodes, which can increase system 

overhead. 

ADAPTIVE LOAD DISTRIBUTION ALGORITHMS 

Adaptive Load Distribution Algorithms in distributed systems are 

dynamic strategies that adjust to changing system conditions in real-

time to distribute the workload efficiently among multiple nodes. 

These algorithms continuously monitor system resources and 

workload distribution and adapt to fluctuations in load, node 

availability, or network performance. The goal is to achieve optimal 

system performance, prevent bottlenecks, and ensure the fair 

utilization of resources across the network. The key characteristics 

of this type of algorithms are: 

 Adaptive algorithms respond to changes in system conditions 

such as node failures, varying workloads, and new nodes joining 
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the network. These algorithms make real-time decisions on how 

to assign or migrate tasks to maintain a balanced load. 

 The system regularly monitors each node's resource utilization 

(e.g., CPU, memory, task queue length) to determine if nodes 

are overloaded or underutilized. Based on this information, the 

algorithm can redistribute tasks to balance the load across all 

nodes. 

 These algorithms make decisions on-the-fly, meaning they 

analyze system conditions and adjust task allocations in real-

time to maintain efficiency. As workloads change dynamically, 

so does the task allocation strategy. 

There are different types of Adaptive load distribution algorithms. 

They are: 

Sender-Initiated Adaptive Algorithms: In this approach, nodes 

that are heavily loaded initiate the process of distributing tasks. 

When a node's workload exceeds a certain threshold, it looks for 

underloaded nodes to transfer tasks to. 

Receiver-Initiated Adaptive Algorithms: n this strategy, 

underloaded nodes initiate the process. They request tasks from 

overloaded nodes or the central system to balance their workload. 

Symmetric Adaptive Algorithms: This is a combination of sender-

initiated and receiver-initiated approaches. Both heavily loaded and 

underutilized nodes can initiate load balancing by communicating 

with each other. 

Centralized Adaptive Algorithms: A central node or controller 

monitors the system and decides how to distribute the workload 

among the nodes. It dynamically adjusts allocations based on real-

time system conditions. 

Decentralized Adaptive Algorithms:In a decentralized approach, 

individual nodes collaborate and make decisions locally about 

workload distribution. Nodes exchange information with 

neighboring nodes and adjust their tasks accordingly. 

4.6  TASK MIGRATION 

Task migration is a process in distributed systems where a task (or a 

process) that is already running on one node is transferred to another 

node. This transfer occurs to balance the system load, improve 
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performance, or handle system changes like node failures or 

resource unavailability. 

The main goal of task migration is to ensure that workloads are 

distributed more efficiently across the nodes in a distributed system. 

By moving tasks from overloaded nodes to underloaded ones, the 

system can avoid performance bottlenecks, reduce response times, 

and optimize resource utilization.Below are the key concepts that 

form the foundation of task migration: 

Load Balancing: The main reason for task migration is to balance 

the load. This means making sure that no computer or node is 

overwhelmed with too many tasks while others are underused. By 

moving tasks from overloaded nodes to less busy ones, the system 

works more efficiently and performs better. The goal is to: 

 Prevent any node from becoming a bottleneck. 

 Improve the speed at which tasks are completed. 

 Ensure tasks are shared fairly among all nodes based on their 

abilities. 

Resource Optimization:In distributed systems, different nodes 

have different capacities, like CPU power and memory. Task 

migration helps make the best use of resources by moving tasks to 

the nodes that have more available power. This prevents powerful 

nodes from being idle while weaker ones struggle with a heavy load, 

ensuring that resources are used as efficiently as possible. 

Fault Tolerance:Task migration helps keep the system running 

smoothly, even when something goes wrong. If a node fails or its 

performance drops, the tasks on that node can be moved to other 

active nodes. This ensures that tasks keep running without 

interruption, helping the system recover quickly from problems. 

Dynamic Adaptation:Distributed systems are constantly 

changing—nodes may join or leave, and workloads may shift. Task 

migration allows the system to adapt to these changes by regularly 

monitoring the state of the system and moving tasks as needed. It 

adjusts tasks in real time based on the availability and workload of 

each node to keep the system balanced. 

Task State Transfer:When a task is moved to another node, its 

current state (like memory usage, open files, and active connections) 

must also be transferred. The task should be able to continue on the 

new node without losing progress. This can be complicated, 



 

170 

 

especially if the task is connected to other processes, but it’s 

important to transfer all relevant data correctly and efficiently. 

Network Overhead:Moving tasks between nodes requires 

communication over the network, which can slow things down. This 

extra communication is called network overhead. The goal of task 

migration is to keep this overhead as low as possible so that the 

benefits of moving the task outweigh the cost of transferring it. 

Consistency:Maintaining consistency during task migration is 

crucial. If a task interacts with other processes or services, the 

system needs to make sure no errors or inconsistencies occur due to 

the migration. Consistency management ensures that everything 

runs smoothly and all interactions are handled correctly, so the task 

can continue without issues after the move. 

TYPES OF TASK MIGRATION IN DISTRIBUTED 

SYSTEMS 

There are different types of task migration strategies, each designed 

to address specific challenges and scenarios in distributed systems. 

These types can be categorized based on the timing of migration, the 

approach taken, and the triggering conditions. 

Static Task Migration: 

Static task migration refers to a fixed, predefined migration strategy 

that does not consider the real-time state of the system. Once tasks 

are assigned to nodes, they do not change, regardless of variations in 

load or node status. The key characteristics of this kind are: 

 Static migration is easy to implement but lacks flexibility, as it 

does not adapt to changes in the system’s state. 

 This approach works well in environments with predictable 

workloads where tasks do not need to be reallocated 

dynamically. 

Dynamic Task Migration: 

In contrast to static task migration, dynamic task migration 

continuously monitors the system's state and redistributes tasks 

based on real-time conditions such as node load, resource 

availability, or network conditions. Tasks can be migrated 

dynamically as needed. The key characteristics of this kind are: 

 Dynamic migration responds to changing conditions in the 

system, making it more flexible and efficient. 
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 The system must constantly monitor resource usage and task 

status, which adds complexity. 

 This is the most suitable approach for highly dynamic 

distributed systems where workloads and resources change 

frequently. 

Preemptive Task Migration: 

Preemptive migration involves transferring a task from one node to 

another while it is still in progress. This type of migration is more 

complex because the task's current state, including variables, 

memory, and other resources, must be preserved during the transfer 

to ensure that it can resume execution seamlessly on the new node. 

The key characteristics of this kind are: 

 The system must transfer the entire state of the task, including 

data and intermediate results. 

 Preemptive migration incurs higher overhead due to the 

complexity of transferring the task’s state across nodes. 

 Preemptive migration is useful in dynamic systems where 

workloads change frequently and tasks need to be moved in real-

time to prevent overloads on certain nodes. 

Non-Preemptive Task Migration: 

Non-preemptive migration involves moving a task only after it has 

completed execution or when it is in a waiting state (e.g., when 

waiting for input/output operations to finish). Unlike preemptive 

migration, there is no need to transfer the task's state during 

execution, making it simpler and less resource-intensive. The key 

characteristics of this kind are: 

 The task is either finished or paused, so there is no need to 

transfer its current state. 
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 Since no active state needs to be transferred, non-preemptive 

migration incurs less overhead. 

 Non-preemptive migration is suitable for systems where tasks 

have relatively short execution times or can be deferred to 

migrate at natural points in the workflow. 

Incremental Task Migration: 

In Incremental Task Migration only the incremental changes or 

updates in a task’s state are transferred from one node to another, 

rather than migrating the entire task’s state at once. This approach is 

used to reduce the overhead and downtime typically associated with 

migrating a task, allowing the system to maintain high performance 

and minimize service interruptions. The key characteristics of this 

kind are: 

 Only the changes or deltas in the task's state (e.g., modified 

memory, variables, or file handles) are transferred instead of 

migrating the entire task state. This helps in reducing the amount 

of data that needs to be sent across the network. 

 Task state is transferred in small increments over time, which 

reduces network load and minimizes the performance impact on 

the system. This prevents bottlenecks and ensures a smoother 

migration process. 

 Distributed systems often experience changes in workload or 

resource availability. Incremental migration allows tasks to 

move between nodes efficiently while adapting to these changes 

in real time. 
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4.7  SUMMING UP 

 Distributed scheduling decides which node in a distributed 

system should execute tasks for load balancing, system 

performance, and minimized response time. 

 The factors related to distributed scheduling are resource 

availability, task priority, system load, communication delays, 

and node states. 

CHECK YOUR PROGRESS-I 

1. State True or False: 

a) Distributed Scheduling aims to balance the workload evenly 

across nodes. 

b) Static scheduling can easily adapt to dynamic changes in the 

system. 

c) Dynamic load distribution assigns tasks based on the real-

time state of the system. 

d) Task migration involves moving completed tasks from one 

node to another. 

e) Heterogeneity of nodes is a challenge in load distribution 

algorithms. 

2. Fill in the blanks: 

a) The goal of ____________________ is to decide which 

tasks should be handled by which nodes. 

b) ____________________ ensures that each node gets a fair 

share of tasks based on its capabilities. 

c) ____________________allows the system to adapt to 

changes in workload and resource availability in real-time. 

d) ________________________ transfers only the changes or 

updates in a task’s state. 

e) ____________________ task migration occurs after a task 

has finished or is in a waiting state. 
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 Types of distributed scheduling are namely – Static, Dynamic 

and Hybrid. 

 Importance of Distributed Scheduling are: 

o Ensures efficient resource utilization by preventing node 

overloading. 

o Improves task execution time and system scalability. 

o Increases fault tolerance by reassigning tasks from failed 

nodes. 

o Adapts to system changes (e.g., node availability, workload 

fluctuations). 

 Load Distribution is to distribute workload evenly across nodes 

to prevent overloading and underutilization. 

 Load Balancing snsures fair task distribution based on each 

node's capacity. 

 Load Monitoring tracks node resource usage (CPU, memory) to 

guide task assignment. 

 Task Migration transfers tasks between nodes to balance load, 

optimize resources, and improve fault tolerance. 

 Types of Task Migration are namely – Static, Dynamic, 

Preemptive, Non-preemptive and Incremental. 

 Challenges related to Load Distribution Algorithms are: 

o Heterogeneity: Nodes with different capabilities require 

tailored task assignments. 

o Dynamic Workloads: System load fluctuates, requiring real-

time adaptation. 

o Communication Overhead: Task migration and monitoring 

introduce network load. 

o Task Migration Complexity: Transferring task state without 

disrupting execution. 

 

4.8  ANSWERS TO CHECK YOUR PROGRESS 

1. a) True    b) False    c) True    d) Falsee) True 

2. a) distributed scheduling    b) Load balancing   c) Dynamic 

schedulingd) Incremental task migratione) Non-preemptive 
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4.9 POSSIBLE QUESTIONS 

Short Answer Type Questions: 

1. What is the primary goal of distributed scheduling? 

2. What is load balancing in distributed systems? 

3. Why is task migration important in distributed systems? 

4. What is a centralized task assignment approach? 

5. What is heterogeneity in distributed systems? 

Long Answer Type Questions: 

6. Explain the key components of load distribution in distributed 

systems. 

7. Discuss the challenges of load distribution algorithms in 

distributed systems. 

8. Describe different types of task migration in distributed systems. 

9. Discuss the significance of adaptive load distribution algorithms 

in distributed systems. 

10. What are the challenges of task migration in distributed systems, 

and how can they be addressed? 
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UNIT: 5 

DEADLOCKS IN DISTRIBUTED SYSTEMS 

 

Unit Structure: 

 

5.1 Introduction 

5.2 Objectives 

5.3 Basic Conditions of Deadlocks 

5.4 Deadlock Handling 

          5.4.1 Deadlock Prevention 

          5.4.2 Deadlock Avoidance 

          5.4.3 Deadlock Detection and Resolution 

  5.4.3.1  Issues in Deadlock Detection and Resolution  

5.5 Resource Deadlocks Versus Communication Deadlocks 

 5.5.1 Communication Deadlock Handling 

5.6 Summing Up 

5.7 Answers to Check Your Progress 

5.8 Possible Questions 

5.9 References and Suggested Readings 

 

 

5.1 INTRODUCTION 

In one of the earlier unit, we have learnt about the use of locks to 

prevent race conditions, maintain data integrity and implement an 

efficient concurrency control mechanism for accessing shared 

resources in case of distributed systems. So, use of lock is very 

significant in distributed systems. But deadlock may occur due to 

the use of locks in distributed systems. Deadlock can be defined as a 

state where a set of transactions is unable to complete as each 

transaction is waiting for a resource which is currently allocated to 

another transaction available in that set. For example, consider A 

and B are two transactions and R and S are two resources. Currently 

R is allocated to A and A is waiting for S. On the other hand S is 

allocated to B and B is waiting for R. At this point, A is waiting for 

B to release a lock on S and B is waiting for A to release a lock on 
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R. In such a situation, both transactions will be in waiting mode 

indefinitely and this type of state is called a deadlock. In distributed 

system, due to deadlock, the system may become unresponsive. In 

this chapter we will learn about different conditions to occur 

deadlock and different ways to handle it. 

 

 

 

5.2 OBJECTIVES 

 

After going through this chapter, we will be able to learn: 

 About the basic conditions to occur deadlocks in 

distributed systems. 

 How to prevent deadlock? 

 How to avoid deadlock? 

 About Deadlock Detection and Resolution. 

 About different issues in Deadlock Detection and 

Resolution. 

 About Deadlock Detection Algorithms. 

 What is Communication deadlock? 

 About the differences between Resource deadlock 

and Communication deadlock. 

 

 

 

 

5.3 BASIC CONDITIONS OF DEADLOCKS 

We have already learnt that deadlock is a situationin which a set of 

transactions are not able to complete or proceed as they are 

indefinitely waiting for resources.Now there are four basic 

conditions that must be presentall together so that deadlocks may 

occur. These conditions are presented as follows. 

 Mutual exclusion condition: In Mutual exclusion 

condition, each resource can be allocated by only one 

process or transaction at a time. For example, if a database 

table is being accessed by a transaction, T, then no other 

transaction is allowed to access it until the transaction, T 

releases it. 
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 Hold and wait condition:In the Hold and Wait condition, if 

a transaction is already accessing a resource then it can 

request for more resources to complete its job. For example, 

if a transaction is currently accessing a database table and it 

requires the access of another database table to complete its 

job then it can request for that table. 

 No-Preemption condition: In the No-Preemption condition, 

if a transaction is accessing a resource then the resource 

cannot be released forcibly from that transaction before 

completion of its job with that resource. For example, if a 

transaction is accessing a database table then the table cannot 

be forcibly released from the transaction for any other 

transaction that is waiting for that resource. Only the 

transaction can release the table allocated to it. 

 Circular Wait condition:In the Circular Wait condition, a 

circular chain is formed among two or more transactionsin 

such a way that each transaction is waiting for a resource 

that is allocated to the next transaction in the chain. For 

example, let us consider that transaction T1 is waiting for a 

resource that is allocated to the transaction T2,transaction T2 

is waiting for a resource that is allocated to the transaction 

T3 and finally transaction T3 is waiting for a resource that is 

allocated to the transaction T1. As a result, a circular chain 

of transactions(T1→T2→T3→T1) is created. 

 

 

5.4 DEADLOCK HANDLING 

  

In general, deadlocks can be handled by using three 

approaches that areDeadlock Prevention, Deadlock Avoidance, 

Deadlock Detection and Resolution. 

 

5.4.1 Deadlock Prevention 

Earlier, we have learned about four basic conditions that must be 

fulfilled all together for a deadlock occurrence in a system. So, 

deadlocks can be prevented by providing a mechanism to stop from 

satisfying at least any one of these conditions. But it is not possible 

to stop from satisfying Mutual Exclusion condition and No-

Preemption condition in case of all kind of resources. For example, 

we have already learnt in earlier chapters that Mutual Exclusion 

condition can be prevented by allowing read operation on a file by 
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multiple processes simultaneously but in case of write operation, it 

cannot be allowed. Similarly, if a process is performing write 

operation on a file then it cannot be taken away forcibly from the 

process so that another waiting process can perform write operation 

on that file. Now, possible strategies to stop from satisfying, Hold 

and Wait Condition andCircular Wait Condition, are discussed in 

the following points. 

 

 The first possible strategy to break Hold and Wait condition 

is to allow all the processes or transactions to lock all the 

required resourcesbefore beginning of their executions.This 

locking process must be performed as one atomic step. If a 

transaction cannot lock all its required resources as one or 

more of them are currently locked by other transactions then 

the transaction will not lock any resources and it will be in 

waiting mode until the availability of all the required 

resources.As a result, each transaction will complete its job 

without waiting for any resource and deadlock will never 

occur in the system.But two issues are observed in this 

strategy as presented in the following points. 

 In case of some transactions, it is impossible to 

determine all the resources required for their job 

before beginning of their execution. 

 In this approach, efficient utilization of shared 

resources cannot be achieved. 

 The second possible strategy to break Hold and Wait 

condition is related to the temporary release of resources.In 

this strategy, if a transaction requires more resources which 

are currently allocated to the other transactions then the 

transaction must temporarily unlock all the resources 

currently allocated to it before requesting other required 

resources.After that, it will attempt to allocate all the 

necessary resources together. 
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 The first possible strategy to break Circular Wait condition is 

to apply a restriction on all the transactions or processes such 

that each transaction or process can allocate only one 

resource at a time and if it require another resource then it 

must release the allocated one.But practically this approach 

cannot be used for all types of transactions because some 

transactions may require more than one resource together to 

complete their jobs. 

 A better approach than the first one is available to break the 

Circular Wait condition. In this approach, a global ordering 

is assigned to the all resources available in a distributed 

system. Now, if a transaction is currently accessing a 

resource then it can request only for those resources which 

are placed after the already allocated resource in the global 

order of resources.If the transaction require a resource which 

is placed beforethe already allocated resource in that global 

order then at first it must release the already allocated 

one.Due to this restriction, Circular Wait condition will 

never be satisfied in any situation.So, in this approach, 

transactions can request for resources depending upon a 

global numerical order. For example, let us consider process 

P1 holds resource T and process P2 holds resource U.The 

global order of T is n1 and the global order of U is n2.Now if 

n1 is greater than n2 then the process P1 cannot be able to 

request for the resource U but process P2 can request for the 

resource T. On the other hand if n1 is smaller than n2 then 

the process P1 can request for the resource U but the process 

P2 cannot request for the resource T. In both situations, 

Circular Wait condition will never be satisfied.Issues with 

this approach are presented in the following points. 

 The major issue with this approach is to 

implement an efficient global ordering for 

resources that will work efficiently in every 

condition. 

 Due to this approach, resource utilization may 

not be efficient as concurrency will be reduced. 

 

5.4.2 Deadlock Avoidance 

 We have already learnt how deadlocks can be prevented in 

the earlier section and observed some issues in that approach.In this 

section, we are going to learn how deadlocks can be avoided 
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without preventing the four basic conditions.Deadlock avoidance is 

based on two factors that are careful resource allocation and 

maintaining a safe state in the system. In this context,a safe state in a 

system means that the system can allocate available resources to 

different processes in some order as per their requirements without 

causing a deadlock. So, deadlocks can be avoided if a careful 

resource allocation strategy is applied so that the system remains in 

safe state after each resource allocation process. It means, thesystem 

will allow a resource request of a process only if it will not cause a 

deadlock situation.On the other hand, if there is a possibility of a 

deadlock occurrence in the system after a sequence of resource 

allocations to different processes then it means that the system is in 

unsafe state. 

 Now, to implement Deadlock avoidance approach, the 

system must have four important information that are: (a) 

information about presently available resources, (b) information 

about the resources that are already locked by each process, (c) 

information about the resources thatwill be required by different 

processes in future, and (d) information about the resources that will 

be released by the processes in future.Theseinformation will be 

updated after each movement of the system from one safe state to 

another safe state.In case of a distributed system, each server must 

maintain these information and communicate with each other to 

maintain a safe state in the whole system by carefully allocating 

resources to different processes. 

 

 In 1965, Edsger Dijkstraproposed a scheduling algorithm to 

implement Deadlock avoidance. This algorithm is referred as 

Banker’s algorithm because it is based on the idea that a banker 

might apply to grant funds to a set of customers.The main concept 

of this algorithm is to find out the state of a system if it will allow a 

resource request of a process. If the state is a safe state then the 

system may allow the resource request. Otherwise, the system will 

delay the request. In case of distributed systems, the Banker’s 

algorithm for multiple resources is applied to avoid deadlock. 
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The Banker’s algorithm for multiple resources: In case of 

distributed systems, multiple types of resources are required by 

different processes from different servers to complete their 

jobs.Now to apply Banker’s algorithm, the number of resources of 

each type must be fixed and the maximum number of resources 

required by each process must be stated in advance.Let us consider, 

the current number of processes is A and the number of resource 

types available in the system is B.The execution of the Banker's 

algorithm requires three data structures that are presented in the 

following points. 

 Resource_Available: Resource_Available is a data structure 

that stores the number of available resources of each type in the 

system.So, let us consider,Resource_Available[t] stores the 

number of available resources of resource type 

Rt.‘Resource_Available[t] = N’ means that the number of 

available Rt type resources in the system is N. The maximum 

value of t can be B as per our assumption.In Figure 11.1(a), an 

example of Resource_Available is presented. 

 Resource_Allocated: Resource_Allocated is a [A × B] matrix 

that stores the number of already allocated resources of each 

type to each process in the system.So, 

‘Resource_Allocated[s][t] = M’ meansthat M number of 

resources of resource type,Rt is currently allocated to the 

process,Ps.In Figure 11.1(b), an example of 

Resource_Allocated is presented. 

 Resource_Required:  Resource_Required is also a [A × B] 

matrixthat stores the number of resources of each type that is 

still required by each process to complete its job. So, 

‘Resource_Required[s][t] = M’ means that M number of 

resources of resource type,Rt is still required by the 

process,Ps.In Figure 11.1(c), an example of 

Resource_Required is presented. 
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 R1 R2 R3 R4 

 
1 2 3 4 

Resource_Available 3 4 3 2 

 

Figure 11.1(a) Resource_Available 

 

 

 

 
 

R1 R2 R3 R4 

 
 

1 2 3 4 

P1 1 0 2 1 0 

P2 2 1 1 0 1 

P3 3 0 2 1 1 

P4 4 2 0 1 2 

P5 5 2 1 3 0 

 

Figure 11.1(b) Matrix Resource_Allocated 

 
 

R1 R2 R3 R4 

 
 

1 2 3 4 

P1 1 3 0 1 0 

P2 2 3 2 1 0 

P3 3 2 0 1 2 
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P4 4 3 1 2 1 

P5 5 2 3 1 1 

 

Figure 11.1 (c) Matrix Resource_Required 

 

Now, the Banker’s algorithm to avoid deadlockscan be explained 

with the following points. 

1. When a process try to request for a resource then before 

allowing it, the system must check the possible state of the 

system if the process request is allowed. If the state is found 

to be safe then only the process request is allowed. In 

Banker’s algorithm, a search operation is performed to find a 

row, I, in the Resource_Requiredmatrix (figure 11.1 

(c))whereResource_Required[I][J] <= 

Resource_Available[J] for all values of J. If the search 

operation could not finda row with that condition then it 

means that the system is in unsafe state. So, due to a process 

request, if the state of the system will become unsafe then 

the system delays the process request. Otherwise, the system 

will allow the process request to allocate a required resource 

and update related information in 

Resource_Available,Resource_Allocated and 

Resource_Required.  

For example, let us consider, the process, P1 try to request 

for a resource of type R1.  Now, if this request is allowed 

then information in Resource_Required related to P1 and 

information inResource_Available related to R1 will be 

changed as shown in figure 11.2(a) and 11.2(b). 

 

 
R1 R2 R3 R4 

 
1 2 3 4 

Resource_Available 
2 4 3 2 

 

Figure 11.2(a): Updated Resource_Available If Request of 

P1 is Allowed 
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R1 R2 R3 R4 

  1 2 3 4 

P1 1 2 0 1 0 

P2 2 3 2 1 0 

P3 3 2 0 1 2 

P4 4 3 1 2 1 

P5 5 2 3 1 1 

 

Figure 11.2(b): Updated Resource_Required If Request of P1 

is Allowed 

 

From figure 11.2(a) and 11.2(b), following statement can be 

stated. 

 ‘Resource_Required[1][J] <= 

Resource_Available[J]’ is true for all values 

of J(1 to 4). 

From the above statement, it means that the system will be in 

safe state if request of the process, P1 for a resource of type, 

R1 is allowed by the system. So, at this point, a resource of 

type R1 is allocated to the process, P1 and the value in 

Resource_Allocated[1][1] is updated to 1. Now, let us 

consider, the process, P2 try to request for a resource of type 

R1. If this request is allowed then information in 

Resource_Available related to R1and information 

inResource_Required related to P2will be changed as shown 

in figure 11.3(a) and 11.3(b) 

 R1 R2 R3 R4 

 
1 2 3 4 

Resource_Available 1 4 3 2 

 

Figure 11.3(a): Updated Resource_Available If Request of 

P2 is Allowed 
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R1 R2 R3 R4 

 
 

1 2 3 4 

P1 1 2 0 1 0 

P2 2 2 2 1 0 

P3 3 2 0 1 2 

P4 4 3 1 2 1 

P5 5 2 3 1 1 

 

Figure 11.3(b): Updated Resource_Required If Request of P2 

is Allowed 

 

 

From figure 11.3(a) and 11.3(b), following statement can be 

stated. 

 Resource_Required[1][J] <= Resource_Available[J] 

is false for J = 1 

 Resource_Required[2][J] <= Resource_Available[J] 

is false for J = 1 

 Resource_Required[3][J] <= Resource_Available[J] 

is false for J = 1 

 Resource_Required[4][J] <= Resource_Available[J] 

is false for J = 1 

 Resource_Required[5][J] <= Resource_Available[J] 

is false for J = 1 

 

From the above statements, it means that the system will be 

in unsafe state if request of the process, P2 for a resource of 

type, R1 is allowed by the system. So, the system will delay 

the request of the process, P2. 

 

2. If a process is able to allocate all the required resources and 

complete its job then the process is marked as finished and 
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all its resources are declared as available resources by 

updating corresponding information in Resource_Available. 

3. Above steps are repeated until all processes are marked 

finished. 

 

Issues associated with Deadlock avoidance approach are stated in 

the following points. 

 To apply Deadlock avoidance approach, the number of 

resources must be fixed in the system and the system must 

have the information about the resource requirements for 

each processin advance. In a large distributed system, it may 

not be possible to fulfill these two requirements of this 

approach.  

 Another issue of Deadlock avoidance approach is that the 

execution of processes may not fulfill the synchronization 

requirements to improve system performance. 

 Due to this approach, resource utilization may be decreased 

as resource requests from processes may be delayed to 

maintain safe state in the system although required resources 

are available for allocation. 

 In case of a large system with a huge number of processes 

and resources, this approach may increases computational 

overhead considerably in the system to avoid deadlocks. 

 Due to this approach, it may be possible that resource 

requests of some processes are continuously delayed to 

maintain safe state of the system which may degrade the 

system performance. 

 

5.4.3 Deadlock Detection and Resolution 

  

From the earlier sections, we can observe that deadlock occurrences 

can be stopped by using Deadlock Prevention and Deadlock 

Avoidance approaches. In this section, we are going to discuss about 

Deadlock Detection and Resolution technique to remove a deadlock 

after its occurrence in a distributed system. In this approach, at first 

occurrence of a deadlock is detected and after detection of the 



188 

 

deadlock, it is removed from the system by using deadlock 

resolution strategies. 

Detection of deadlocks can be performed by maintaining a wait-for 

graph. The wait-for graph is a directed graph that represents which 

processis waiting for which processes to release their one or more 

resources.Each node in a wait-for graph representsa process or a 

transaction. Let us consider, P and Q are two nodes available in the 

wait-for graph. Now, if there is a directed edge from P to Q then it 

means that process P is waiting for some resource that is currently 

allocated to the process Q. If a cycle of processes is formed in the 

wait-for graph then it indicates the occurrence of a deadlock.For 

example, from the wait-for graph presented in thefigure (11.4), it is 

observed that a cycle of processes is formed                        

(P→R→S→Q→P) and it indicates a possible occurrence of a 

deadlock. So, detection of deadlocks can be performed by searching 

for cycles in the wait-for graph. 

 

 

 

 

 

 

 

 

 

 

Figure 11.4 : Wait-for Graph 

 

The lock manager of a system contains the software to detect 

deadlocks. This software must be able to access a representation of 

the wait-for graph so that it can detect deadlocks by searching the 

graph for cycles. On the other hand, the wait-for graph is 

continuously updated whenever new edges are added to it or old 

edges are removed from it depending upon ‘setLock’ and ‘unLock’ 

operations of the lock manager.  

 

In a distributed system, several servers are accessed by multiple 

processes or transactions. As a result, multiple wait-for graphs are 

available in a distributed system. At each server, the lock manager 

P 

T 

Q S 
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constructs a local wait-for graph. So, to perform deadlock detection 

in a distributed system, a global wait-for graph may be created from 

the local wait-for graphs associated with the servers of the system. 

Detection of a distributed deadlock can be performed by searching 

for cycles in the global wait-for graph. In this process, 

communication among the servers available in the distributed 

system is necessary. In the later sub-section, distributed deadlock 

detection algorithms will be discussed. 

 

After detection of a deadlock, a resolution strategy is applied to 

remove the deadlock situation from the system.Different deadlock 

detection and resolution strategies will be discussed in the next 

chapter. 

 

5.4.3.1  Issues in Deadlock Detection and Resolution  

 Before implementing Deadlock detection and resolution 

strategy to solve deadlock problem in a distributed system, we have 

to consider different issues related to this approach. These issues are 

presented in the following points. 

 In distributed systems, deadlock detection approaches may 

require a large amount of transmissions of information 

between servers. The cost of these transmissionsmay be very 

high and it may degrade the performance of the system. 

 It is hard to maintain a consistent global wait-for graph in a 

distributed system due to different reasons like server 

failures, information losses, network delays etc. As a result, 

deadlock detections may be inconsistent. 

 In distributed systems, detection of deadlock may require 

considerable time as it may require large amount of 

information and analysis from multiple servers. As a result, 

deadlocks will be active for longer time periods in a system 

which will affect the performance of the system. 

 The complexity of deadlock detection and resolution is 

enhanced when the distributed system becomes greater in 

size.  

 Sometimes one or more servers in a distributed system may 

become inactive or temporarily not reachable.Deadlock 

detection and resolution approach must have the ability to 

handle such situations so that consistent deadlock detections 

can be maintained in the system. 
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 After deadlock detection, it is a difficult to choose 

appropriate resolution strategy to break the deadlock 

condition from the system. 

 In case of distributed systems, resources may be dynamically 

allocated and released. In such a dynamic environment, it is 

a very complex process in real-time to constantly track and 

update different modifications related to dynamic resource 

allocations and releases so that the deadlock detections can 

be performed consistently by the system. 

 

5.5 RESOURCE DEADLOCKS VERSUS COMMUNICATION 

DEADLOCKS 

We have already discussed about deadlocks that are occurred when 

in a group of transactions, each transaction is holding resources and 

waiting for some other resources which are currently acquired by 

other transactions. This type of deadlocks is referred as resource 

deadlocks in distributed systems.We have already discussed in the 

earlier section about the four basic conditions that must be present 

all together to occur a Resource deadlock.  

Now in this section, we are going to discuss about Communication 

deadlock in distributed systems.Communication deadlocks occur in 

a situation where two or more than two processes are waiting for 

communication through messages from each other.Communication 

deadlock is particularly connected to inter-process 

communication.Let us consider a situation to understand 

Communication deadlock. Let P1, P2 and P3 are three processes in a 

distributed system. P1 sends a message to P2 and then it is waiting 

for a message from P2. At the same time, P2 sends a message to P3 

and then it is waiting for a message from P3. Similarly, P3 sends a 

message to P1 and it is waiting for a message from P1. At this point, 

a circular wait condition is occurred where each process is waiting 

for a message from the next process in this cycle of three 

processes.As a result, deadlock occurs and it is termed as 

Communication deadlock. So, two conditions must be present 

together so that Communication deadlocks may occur and these are 

presented as follows. 

 Waiting forsend and receive operation: In this condition, 

processes are in block state until messages are sent or 

received before progressing. So, due to this condition, a 
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process may be waiting for a message from another process 

indefinitely as the other process is also waiting for a message 

indefinitely. 

 Circular wait condition: In this condition, a set of 

processes forms a cycle where each process is waiting for a 

message from the next process in that cycle. 

  

The differences between Resource deadlock 

andCommunicationdeadlock are presented in the following 

points: 

 Communication deadlock is connected to inter-process 

communication but Resource deadlock is associated 

withlogical or physical resources of a distributed system. 

 Mutual Exclusion, Hold and Wait, No-Preemption and 

Circular Wait are the four basic conditionsthat must be 

satisfied all together to take place a Resource deadlock. On 

the other hand, Waiting for send and receive operation and 

Circular Wait are the two conditions that must be satisfied so 

that a Communication deadlock may occur. 

 

 

5.5.1 Communication Deadlock Handling 

 Communication deadlocks can be handled in two ways that 

are: 

 Deadlock Detection and Recovery 

 Deadlock Prevention 

 

 

Deadlock Detection and Recovery: In this approach, at first, 

Communication deadlock is detected and then recovery procedure is 

applied to remove the deadlock condition. Detection of 

Communication deadlock is a difficult job in distributed system. In 

general, it can be performed by using the following techniques.  

 A Time-out Mechanism can be implemented which can 

generate deadlock detection alert if a process is waiting for a 

message from a long duration of time. 

 Dependency Graphs can be maintained to monitor which 

process is waiting for messages from which other 

processes.So, if a cycle of processes is formed in this graph 

then it means that a Communication deadlock is occurred. 
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 Processes can send Heartbeat Messages at regular intervals 

to specify that the processes are in active mode. So, if 

Heartbeat Message is not received from a process from 

particular duration of time then it means that the process is 

not in active mode due to deadlock or failure. 

 After successful detection of a Communication deadlock, 

recovery from that deadlock can be performed by using the 

following approaches. 

 One or more than one processes associated with the deadlock 

can be terminated and then restarted again to recover from 

the deadlock situation. In this approach, most important part 

is to find out which process or processes should be 

terminated and then restarted first. This decision is 

dependent on different conditions. For example, priority 

value of the processes and number of messages sent or 

received by them can be considered to decide which process 

or processes should be terminated and then restarted first. 

 Processes involved in a Communication deadlock can be 

rollback to their previous safe states so that they can 

continue to perform their jobs without having a deadlock 

situation. In this approach, states of the processes must be 

saved at regular intervals. 

 Deadlock Prevention: Communication deadlocks can also 

be prevented by using following approaches. 

 If processes are not in block state indefinitely while sending 

or receiving messages from other processes then 

Communication deadlock can be prevented. It means to 

prevent Communication deadlock, processes can use non-

blocking send and receive operations and check for 

messages from other processes at regular intervals. 

 If a process is waiting for a message from another process 

and it do not received it within a particular duration of time 

then the process can send the request for message again to 

the other process or it can rollback to a previous safe state 

from where it can continue again. As a result, a possible 

Communication deadlock can be prevented. 

 Message ordering protocols can be implemented so that a 

definite order to send and receive messages by the processes 

can be maintained in such a way that no circular wait 

condition can be formed. So, if no circular wait condition is 

formed then no Communication deadlock will be occurred.  
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5.6  SUMMING UP 

 

 Deadlock can be defined as a state where a set of 

transactions is unable to complete as each transaction is 

waiting for a resource which is currently allocated to another 

transaction available in that set. 

 Four basic conditions to occur deadlocks are Mutual 

exclusion condition, Hold and wait condition, No-

Preemption condition and Circular Wait condition. 

 Deadlocks can be handled by three approaches that are (a) 

Deadlock prevention, (b) Deadlock avoidance and (c) 

Deadlock detection and resolution. 

 If at least any one of the basic conditions to occur deadlocks 

is prevented then the occurrence of deadlocks can be 

prevented. 

 Deadlocks can be avoided by carefully allocating resources 

to processes or transactions. Banker’s algorithm is a 

scheduling algorithm to implement Deadlock avoidance and 

it was proposed by Edsger Dijkstra in 1965. 

 Detection of deadlocks can be performed by maintaining a 

wait-for graph. The wait-for graph is a directed graph that 

represents which process is waiting for which processes to 

release their one or more resources. Each node in a wait-for 

graph represents a process or a transaction. 

 The lock manager of a system contains the software to detect 

deadlocks. 

 After deadlock detection, resolution strategy is used to break 

the deadlock condition in the system. 

 Communication deadlocks occur in a situation where two or 

more than two processes are waiting for communication 

through messages from each other.Communication deadlock 

is particularly connected to inter-process communication. 

 Communication deadlocks can be handled in two ways that 

are: Deadlock detection and recovery and Deadlock 

prevention. 
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CHECK YOUR PROGRESS 

 

1. Fill in the blanks 

 

(a)  The four basic condition to occur deadlock are ____ , 

_____, ______ and _____. 

(b)  Communication deadlock is connected to _____. 

(c)    The ______of a system contains the software to detect 

deadlocks. 

(d)  The _____ is a directed graph that represents which 

processis waiting for which processes to release their 

one or more resources. 

(e) ______is a scheduling algorithm used to avoid 

deadlocks. 

 

 

 

5.7  ANSWERS TO CHECK YOUR PROGRESS 

 

1.  (a) Mutual exclusion condition, Hold and wait condition, No-

Preemption condition, Circular Wait condition 

 (b)inter-process communication 

 (c) lock manager. 

 (d) wait-for graph 

 (e)  Banker’s algorithm 

 

 

5.8  POSSIBLE QUESTIONS 

 

1. Define deadlock. Write down the basic conditions to occur 

deadlocks. 

2. Explain how deadlock can be prevented. Give examples. 

3. Explain deadlock avoidance with examples. 

4. Explain Banker’s algorithm for multiple resources to 

implement Deadlock avoidance. 

5. What is Communication deadlock? Write down the 

differences between Resource deadlock and Communication 

deadlock. 

6. Write down the issues associated with Deadlock avoidance 

approach. 

7. How distributed deadlocks can be detected? 
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8. What are the main issues of Deadlock Detection and 

Resolution approach to handle deadlocks?  

 

 

 

5.9  REFERENCES AND SUGGESTED READINGS 

 

 Coulouris, George, Jean Dollimore, and Tim Kindberg. 

"Distributed Systems: Concepts and Design Edition 4." 

(2005). 

 Tanenbaum, Andrew S., and Maarten Van 

Steen. “Distributed systems:Principles and Paradigms 

Edition 2.” (2007). 

 

 

 

××× 

 

 

 



196 

 

UNIT: 6 

DEADLOCK DETECTION AND RESOLUTION 

ALGORITHMS 

 

Unit Structure: 

 

6.1  Introduction 

6.2  Objectives 

6.3  Deadlock Detection Algorithm 

6.4  Centralized Deadlock Detection 

 6.4.1 Issues in Centralized Deadlock Detection 

6.5 Distributed Approach to Detect Deadlocks 

 6.5.1 Path-Pushing Algorithm 

 6.5.2 Edge Chasing Algorithm 

 6.5.3 Issues in Distributed Deadlock Detection 

6.6    Hierarchical Deadlock Detection 

 6.6.1 Issues in Hierarchical Deadlock Detection 

6.7   Comparative Analysis of Deadlock Detection Algorithms 

6.8 Deadlock Resolution Approaches 

6.9  Summing Up 

6.10  Answers to Check Your Progress 

6.11  Possible Questions 

6.12  References and Suggested Readings 

 

6.1  INTRODUCTION 

  

In the earlier chapter, we have already learnt that deadlock is a 

condition that occurs in a system when a set of transactions could 

not be able to complete their jobs as each transaction is waiting for 

at least one resource that is presently locked by another transaction 
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available in that set. There are four basic conditions that must be 

satisfied all together so that deadlock may occur in a system. These 

conditions are Mutual exclusion condition, Hold and wait condition, 

No-Preemption condition and Circular Wait condition. We have also 

learnt that deadlocks can be handled by applying three approaches 

that are Deadlock prevention, Deadlock avoidance and Deadlock 

detection and resolution. In this unit, we are going to discuss about 

different deadlock detection algorithms and their issues. Different 

deadlock resolution strategies will also be discussed in this unit. 

 

6.2  OBJECTIVES 

 After going through this chapter, we will be able to 

learn: 

 About Centralized deadlock detection algorithm. 

 About Distributed deadlock detection algorithm. 

 About Hierarchical deadlock detection algorithm. 

 Different deadlock resolution strategies. 

 

6.3  DEADLOCK DETECTION ALGORITHM 

 

We have already learnt in the earlier chapter that a deadlock can be 

resolved after its detection. Deadlock detection can be performed by 

maintaining a wait-for graph. We already know that if a cycle of 

transactions or processes is developed in the wait-for graph then it 

represents a deadlock occurrence. So, in a single server system, 

deadlock detection can be performed by searching for cycles in the 

wait-for-graph. But a distributed system consists of multiple servers 

and each of these servers maintains one local wait-for graph. So, 

deadlock detection process requires extra effort in distributed 

systems. In distributed systems, a global wait-for graph may be 

developed for deadlock detections.In general, three approaches are 

available that can be used to detect deadlocks in distributed systems. 

These are (a) Centralized deadlock detection approach, (b) 
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Distributed Approach to detect deadlocks,  and(c) Hierarchical 

deadlock detection approach. 

  

6.4  CENTRALIZED DEADLOCK DETECTION 

In the centralized deadlock detection approach, one server of a 

distributed system is given the responsibility to detect distributed 

deadlocks in the system. This server is referred as global deadlock 

detector. Each of the other servers available in the system sends 

regularly its recently updated local wait-for graph (Figure 12.1(a) 

and 12.1(b)) to the global deadlock detector. The global deadlock 

detector builds a global wait-for graph (Figure 12.1(c)) by 

combining all the information received from the local wait-for 

graphs and regularly updates it with any updated information 

received at any time from the local wait-for graphs. In the next step, 

the global deadlock detector, regularly searches for cycles in the 

global wait-for graph and if it discovers any cycle then it informs 

the servers about a best possible deadlock resolution strategy. For 

example, a cycle (P→A→C→R→P) is detected in the global wait-

for graph as shown in figure 12.1(c). 

 

 

 

 

 

Figure 12.1(a) : Local Wait-For Graph in Server S1 
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Figure 12.1(b) : Local Wait-For Graph in Server S2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.1(c) : Global Wait-For Graph in Global Deadlock 
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6.4.1 Issues in Centralized Deadlock Detection 

Now issues with this approach are presented in the following points. 

 Fault tolerance is very poor in this approach as only one 

server controls the deadlock detection process. If the global 

deadlock detector crashes due to some reason then whole 

deadlock detection mechanism will be failed. 

 If the local wait-for graphs are sent to the global deadlock 

detector very frequently then the cost of these transmissions 

will be very high. On the other hand, if the frequency of 

these transmissions is reduced then more time will be 

required to detect deadlocks and it may degrade the system 

performance. 

 This approach does not have the capacity to scale. 

 Phantom deadlocks may occur in the system due to this 

approach. If a deadlock is detected but in reality it is not a 

deadlock then that deadlock is referred as a Phantom 

deadlock. In case of the Centralized deadlock detection 

approach, all updated information from local wait-for graphs 

are regularly sent from different servers to the Global 

deadlock detector. After receiving updated information, the 

Global deadlock detector will detect a deadlock if it finds 

any cycle in the Global wait-for graph. This process requires 

some time. So, sometimes it may be happened that one 

process from the detected cycle releases its resources in that 

time duration and as a result the detected deadlock is not 

available in the system. But the Global deadlock detector 

will not have any idea about it and it will announce deadlock 

detection which is not actually available in reality. Lamport's 

algorithm can be used to avoid the occurrence of Phantom 

deadlocks. 

 

 

 

 

 

STOP TO CONSIDER 

In Lamport's algorithm, a global timing is maintained for distributed systems. 

When the Global deadlock detector receives new information from a server 

and detects a possible deadlock after updating the global wait-for graph then 

according to Lamport's algorithm, it immediately sends a message to all the 

servers that it just got a message with a timestamp, T
s
 that leads to a deadlock 

and if any server has a message with an timestamp before T
s
 for the global 

detector then send it to the detector instantly. After receiving reply from all the 

servers, the Global deadlock detector can find out the reality of the detected 

deadlock.The issue with this algorithm is that a global timing has to be 

maintained for the system which is costly. 
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6.5 DISTRIBUTED APPROACH TO DETECT 

DEADLOCKS 

 

In Distributed approach to detect deadlocks, no specific server is 

made responsible for deadlock detection by forming a global wait-

for graph. Instead of a global deadlock detector, every server 

participates in the process of deadlock detection in this approach. 

So, no global wait-for graph is required to form for deadlock 

detection by a specific server or node in a distributed system. Each 

server maintains a local wait-for graph for deadlock detection. Path-

pushing and Edge-chasing are two important Distributed approaches 

for deadlock detection discussed in the following subsections. 

6.5.1 Path-Pushing Algorithm 

In Path-pushing algorithm, distributed deadlock detection process is 

performed by developing a global wait-for graph in each server of 

the distributed system. According to this algorithm, each server 

maintains a local wait for graph. When a server detects an external 

process in its local wait-for graph then it sends the graph to all the 

adjacent servers. Then each adjacent server updates its local wait-for 

graph with the new information and sends again this updated local 

wait-for graph to its adjacent sites. This process is performed 

repeatedly till any server receives enough information so that it can 

declare deadlock detection or prove that there is no deadlock 

available in the system. 

 

Deadlock detection using Obermarck’s Path Pushing deadlock 

detection algorithm is explained with the following figures (Figure 

12.2(b), 12.2(c), 12.2(d) and 12.2(e)). In figure 12.2(a), a possible 

scenario of process dependencies in a distributed system with four 

servers (Server1, Server2, Server3 and Server4) is presented. Here, 

Server1 has three processes represented by ‘1’, ‘2’ and ‘3’ where ‘3’ 

is currently dependent on an external process and an external 
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process is dependent on ‘1’. Server2 has two processes represented 

by ‘4’ and ‘5’ where ‘5’ is dependent on an external process and an 

external process is dependent on ‘4’. Server3 has three processes 

represented by ‘6’, ‘7’ and ‘8’ where ‘8’ is dependent on an external 

process and an external process is dependent on ‘6’. Finally, Server4 

has only one process represented by ‘9’ and ‘9’ is dependent on an 

external process and an external process is dependent on ‘9’. 

 

In this example, let us consider that the deadlock detection process 

is started in Server1.  As shown in Figure 12.2 (b), the first step of 

the deadlock detection algorithm is started with Server1 where 

Server1 sends the path information from its local wait-for graph to 

Server2 through a string, “En 123 En”. En represents external 

process. Similarly, Server2 sends the path information from its local 

wait-for graph to Server3 through a string “En45 En”. Server3 sends 

the path information from its local wait-for graph to Server4 with a 

string “En68 En”. Finally, Server4 sends the path information from 

its local wait-for graph to Server1 with a string “En9 En”. After 

completion of the first step, it is observed that the string received by 

Server1 from Server4 does not include the path information of 

Server1’s local wait-for graph. It means that at this moment Server1 

cannot declare the occurrence of deadlock in the system. 

As shown in Figure 12.2 (c), in the second step of the deadlock 

detection algorithm, Server2 concatenate the path information 

received from Server1 in the first step with its current path 

information and the updated path information in Server2 is “En 

12345 En”. Server3 concatenate the path information received from 

Server2 in the first step with its current path information and the 

updated path information in Server3 is “En 4568 En”. Finally, 

Server4 concatenate the path information received from Server3 in 

the first step with its current path information and the updated path 



203 

 

information in Server4 is “En 689 En”. Each server sends its path 

information to its adjacent server. After completion of the second 

step, it is observed that the string received by Server1 from Server4 

does not include the path information of its local wait-for graph. It 

means that at this moment Server1 cannot declare the occurrence of 

deadlock in the system. 

Figure 12.2(d) presents the third step of the deadlock detection 

algorithm. In this step, Server3 concatenate the path information 

received from Server2 in the second step with its current path 

information and the updated path information in Server3 is “En 

1234568 En”. Server4 concatenate the path information received 

from Server3 in the second step with its current path information 

and the updated path information in Server4 is “En 45689 En”. Each 

server sends its path information to its adjacent server. After 

completion of the third step, it is again observed that the string 

received by Server1from Server4 does not include its path 

information of its local wait-for graph. It means that at this moment 

Server1 cannot declare the occurrence of deadlock in the system. 

Figure 12.2(e) presents the fourth step of the deadlock detection 

algorithm. In this step, Server4 concatenate the path information 

received from Server3 in the third step with its current path 

information and the updated path information in Server4 is “En 

12345689 En”. Each server sends its path information to its adjacent 

server. After completion of the fourth step, it is observed that the 

string received by Server1 from Server4 include its path information 

of its local wait-for graph. It means that a cycle is formed in the 

system.  As a result, at this moment Server1 can declare the 

occurrence of deadlock in the system.  
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distributed system is waiting for a resource from specific time 

duration and still the resource request is not successful then it 

indicates a possible deadlock situation in the system. In this 

situation, the process generates a probe and forwards it to those 

processes which are currently holding the resources that are 

currently requested by it. Then each process which receives the 

probe will update the probe and again forward it to those processes 

which are currently holding the resources that are currently 

requested by it. This procedure continues and the probe is forwarded 

from one server to another server in the distributed system through 

different processes. When a probe is returned back to its generator 

process then it indicates the formation of a cycle that means a 

deadlock is detected.One important point is that if Pb sends the 

probe, (a, b, c) to Pc then Pc can discard the probe if it is currently 

not dependent on any other process. This algorithm is also known as 

Chandy Misra Haas distributed deadlock detection algorithm.  

 

Figure 12.3 present the working of Chandy Misra Haas distributed 

deadlock detection algorithm on the scenario of process 

dependencies in a distributed system with four servers (Server1, 

Server2, Server3 and Server4) as presented in figure 12.2 (a). Let us 

consider, an integer value x refers the process, Px. In this example, 

the process, P1 is the generator of the probe and it sends the probe, 

(1, 1, 2) to the process, P2. Then the process P2, forward the probe 

(1, 2, 3) to the process P3 and P3 send the probe, (1, 3, 4) to P4. This 

process continues and finally, the probe is returned back to the 

generator process, P1 as (1, 9, 1). It indicates the formation of cycle 

in the distributed system that means a deadlock situation is 

developed in the system. From this example, it is also observed that 

the process, P7 is not dependent on any other process and so, it 

discards the probe, (1, 6, 7) which is sent by the process, P6.  
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information loss, network delays, variability in information 

delivery, variability in processing power among them etc. 

 Due to this approach, false deadlock may be detected and 

sometimes the system may fail to detect an actual deadlock. 

For example, in case of Edge Chasing algorithm, if deadlock 

related probes are discarded then it may be possible that a 

deadlock will be occurred but it will not be detected. On the 

other hand if outdated probes are forwarded by the processes 

then it may be possible that deadlocks are detected that 

actually not exist in the system.  

 The distributed approach must be able to handle the situation 

where one or more servers of the system are crashed due to 

some reason so that deadlock detection process can be 

continued without significant degradation of its performance. 

 In case of Edge Chasing algorithm, probes may be lost or 

delayed due to network problems and it will affect the 

accuracy of the deadlock detection process. Additionally, in 

case of a large and complex distributed system, tracking 

probes of different processes may increase the system 

overhead. 

 

 

CHECK YOUR PROGRESS 

 

1. Fill in the blanks 

 

(a)  In Centralized deadlock detection approach, the server 

responsible for deadlock detection is referred as 

________. 

(b)  If deadlock is detected in a system but actually it is not 

currently exist then that deadlock is referred as a 

_______. 

(c)    Path-Pushing algorithm is a ______ approach to detect 

deadlocks. 

(d)  In case of___algorithm, the servers of the distributed 

system try to find cycles by forwarding probes to other 

servers. 

(e) In Edge chasing algorithm, process, Pb sends the probe 

(a, b, c) to the process______. 
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6.6      HIERARCHICAL DEADLOCK DETECTION 
 

In the earlier sections, we have discussed the centralized approach 

and distributed approach to detect distributed deadlocks. It has been 

observed that both approaches are useful to detect distributed 

deadlocks but different issues are also associated with both of these 

approaches. In this section, we are going to discuss about 

Hierarchical approach for distributed deadlock detection. 

 

Hierarchical deadlock detection approach is a hybrid approach 

where the concepts of both centralized approach and distributed 

approach are combined to detect distributed deadlocks in a 

distributed system. In this approach, servers are arranged in a 

hierarchical structure where one server is responsible for detection 

of deadlocks occurred in a cluster of servers and this server is the 

local deadlock detector of that cluster. There may be multiple 

clusters of servers in a system and deadlock detection of each cluster 

is performed by a local deadlock detector by using centralized or 

distributed approach. A global deadlock detector is responsible for 

managing the local deadlock detectors and detects deadlocks 

associated with multiple clusters. Within a cluster, each server 

detects deadlocks that are local to that server by using its local wait-

for graph. Each server also transmits its local wait-for graph to the 

local deadlock detector for deadlock detection occurred within its 

cluster. Each local deadlock detectors transmit information related 

to the path dependencies of its cluster to the global deadlock 

detector. The global deadlock detector forms a higher level wait-for 

graph with these information and search cycles to detect inter-

cluster deadlocks. 
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6.6.1 Issues in Hierarchical Deadlock Detection 

 

 Issues associated with the Hierarchical deadlock detection 

approach are presented in the following points. 

 Implementation of Hierarchical deadlock detection approach 

is more complex than other deadlock detection approaches 

due to its requirement of hierarchical arrangement of servers 

and the coordination between different levels of the 

hierarchical arrangement. 

 Maintenance of a Hierarchical structure in a dynamic 

environment is a complex process. So, maintenance 

complexity is increased in case of Hierarchical deadlock 

detection approach. 

 Deadlock detection process may be slower in case of 

Hierarchical deadlock detection approach as in this 

approach, information are required to be combined and 

processed at different levels to detect distributed deadlocks. 

 In this approach, failure of a server that is responsible for 

deadlock detection of a cluster of servers can have a negative 

impact on the deadlock detection process. So, servers 

available in the upper layers of the hierarchical arrangement 

are very crucial in the deadlock detection process. Failure of 

such servers may degrade the performance of the deadlock 

detection process significantly. 

 

6.7   COMPARATIVE ANALYSIS OF DEADLOCK 

DETECTION ALGORITHMS 

  

We have discussed the three approaches to detect distributed 

deadlocks in the earlier sections. Now, the most important point is to 

find out the best approach among them to detect distributed 

deadlocks. But there is no clear result to this query. It is observed 

that selection of an appropriate deadlock detection approach for a 

distributed system is dependent upon different factors like size and 

complexity of the system, requirement of resources, possible 

frequency of deadlock occurrence etc.   

 

Implementation of Centralized deadlock detection is simple as only 

one server is responsible for deadlock detection process. Deadlock 

detection can be efficiently performed by using this approach in 

case of small or medium sized distributed systems with low 
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deadlock occurrences. But in case of large and complex distributed 

systems, this approach may not be appropriate one. The global 

deadlock detector plays a very crucial role in this approach and 

failure of this server may stop the whole deadlock detection process. 

We have already discussed other issues associated with this 

approach in the earlier section. 

 

Distributed approaches to detect deadlocks are more suitable in case 

of large and complex distributed systems where the frequency of 

deadlock occurrence is high. In this approach, every server may 

participate in the deadlock detection process. As a result, in this 

approach, the fault tolerance is better than the Centralized deadlock 

detection approach. This approach is more scalable and reliable. But 

designing an efficient distributed approach to detect distributed 

deadlocks is a complex process. Due to the requirement of large 

amount of communications among servers, system overhead may be 

increased in this approach.  

 

The concepts of both Centralized deadlock detection and Distributed 

deadlock detection approach are used in Hierarchical deadlock 

detection approach to detect distributed deadlocks. In this approach, 

servers are arranged in a hierarchical structure where upper layer 

servers are responsible for deadlock detection associated with its 

descendant lower layer servers. Communication overhead can be 

reduced in this approach as the system is divided into different 

clusters of servers. Deadlock detection in each cluster is controlled 

by an upper layer server. If work load can be balanced between local 

and global deadlock detectors then this approach may perform better 

than the other two approaches. The main drawback of this approach 

that its implementation and maintenance is more complex than the 

other two approaches. Additionally, deadlock detection process may 

be slower in case of Hierarchical deadlock detection approach. 

 

6.8    DEADLOCK RESOLUTION APPROACHES 

In the following points, possible resolution strategies are discussed. 

 If one or more than one processes associated with a deadlock 

are terminated then the cycle of processes as detected in the 

wait-for graph may be removed. As a result, the deadlock 

situation may be removed from the system. But it is a 
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difficult job to find out which process or transaction 

associated in a deadlock should be terminated to resolve the 

deadlock situation. To find out a best possible solution for 

this problem, different factors may be considered. For 

example: priority of the process, age of the process, number 

of cycles associated with the process in the wait-for graph, 

number of resources allocated to the process etc. When Edge 

chasing algorithm is used to detect distributed deadlocks 

then it may be possible that multiple transactions associated 

with a cycle start deadlock detection process at the same 

time by forwarding probes. As a result, detection of a 

deadlock may be announced at different servers and it may 

be possible that multiple transactions will be terminated to 

resolve the same deadlock. To solve this problem, 

transactions or processes can be arranged in an order by 

assigning each transaction with a priority value. If deadlock 

occurs then the transaction with lowest priority and involved 

in that deadlock is terminated. 

Another problem with this deadlock resolution approach is 

that the system may not work efficiently and data 

consistency issues may be occurred due to the termination of 

processes. 

 Rollback one or more processes or transactions to a previous 

safe state can be performed instead of terminating processes 

to resolve deadlock situation in a system. In this approach, 

when a deadlock is detected then one or more processes 

involved in that deadlock are rollback to one of their 

previous safe state which exist before allocation of resources 

to them. As a result, it may break the cycle of processes 

available in the deadlock condition and deadlock condition 

will be removed from the system. The main challenge in this 

approach is that safe state of each process or transaction 

must be saved and managed at regular intervals. 

 Lock timeouts can also be applied to remove deadlock 

condition from a system. In this approach, each lock is 

assigned with a certain amount of time. When a resource is 

locked then two cases may be observed. The first case is that 

no other processes are waiting for that resource and 

secondly, one or more processes are waiting for that 

resource. If the first case is observed then the resource can 

be remain locked even after the time period assigned with it. 



214 

 

But if the second case is observed then the resource is 

unlocked after the time period assigned with it. It is referred 

as the lock timeout. As a result of a lock timeout, a waiting 

process can resume its job and it may resolve a deadlock 

condition. Different issues observed in this approach are 

presented in the following points. 

 Sometimes, lock timeout may happen even if there 

is no actual deadlock.  

 In case of an overloaded system, some processes or 

transactions may require long time to perform their 

jobs and so, these processes may be badly affected 

by lock timeouts.  

 It is very difficult to estimate a proper time period 

for lock timeouts. 

 

 

 

CHECK YOUR PROGRESS 

 

2. Choose the correct option 

(a)  Which of the following deadlock detection approach is not 

suitable for large and complex distributed system? 

 (i) Centralized deadlock detection 

 (ii) Distributed approach to detect deadlocks 

 (iii) Hierarchical deadlock detection  

 (iv) Both (i) and (ii) 

 

(b)  Which of the following deadlock detection approach is 

suitable for large and complex distributed system? 

 (i) Centralized deadlock detection 

 (ii) Distributed approach to detect deadlocks 

 (iii) Hierarchical deadlock detection  

 (iv) Both (ii) and (iii) 

 

 (c) Which of the following deadlock detection approach is 

suitable for small distributed system? 

 (i) Centralized deadlock detection 

 (ii) Distributed approach to detect deadlocks 

 (iii) Hierarchical deadlock detection  

 (iv) None of the above 
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 (d)  Which of the following is not a way to resolve deadlocks? 

 (i) Terminate one or more processes involved in a deadlock. 

 (ii) Using lock timeouts. 

 (iii) Prevent any one of the basic conditions to occur 

deadlocks. 

 (iv) Rollback one or more processes to a previous safe state. 

 

(e)  In ______, both the concepts of centralized approach and 

distributed approach are used to detect deadlocks. 

 (i) Hierarchical deadlock detection approach 

 (ii) Edge Chasing algorithm 

 (iii) Path-Pushing algorithm 

 (iv)None of the above 

 

 

6.9  SUMMING UP 

 The three approaches to detect deadlocks in distributed 

systems are (a) Centralized deadlock detection approach,(b) 

Distributed Approach to detect deadlocks, and(c) 

Hierarchical deadlock detection approach. 

 In the centralized deadlock detection approach, one server of 

a distributed system is given the responsibility to detect 

distributed deadlocks in that system. This server is referred 

as global deadlock detector. It detects distributed deadlock 

by forming a global wait-for graph. 

 If a deadlock is detected in a system but in reality it is not a 

deadlock then that deadlock is referred as a Phantom 

deadlock. 

 In Distributed approach, every server participates in the 

process of deadlock detection. Path-pushing and Edge-

chasing are two important Distributed approaches for 

deadlock detection in distributed systems. 

 In Path-pushing algorithm, distributed deadlock detection 

process is performed by developing a global wait-for graph 

in each server of the distributed system. When a server 

detects an external process in its local wait-for graph then it 

sends the graph to all its adjacent servers. 

 In Edge chasing algorithm, the servers of the distributed 

system try to find cycles by forwarding messages to other 

servers. These messages are referred as probes. 
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 In Hierarchical deadlock detection approach, the concepts of 

both centralized approach and distributed approach are used 

to detect distributed deadlocks. In this approach, servers are 

arranged in a hierarchical structure. 

 Deadlock detection can be efficiently performed by using 

Centralized deadlock detection approach in case of small or 

medium sized distributed systems with low deadlock 

occurrences. 

 Distributed approaches to detect deadlocks are more suitable 

in case of large and complex distributed systems where the 

frequency of deadlock occurrence is high. 

 Deadlock can be resolved by three ways that are (a) 

Terminating one or more processes involved in a deadlock 

cycle, (b) Rollback one or more processes to a previous safe 

state, and (c) Using lock timeouts. 

 

6.10  ANSWERS TO CHECK YOUR PROGRESS 

1. 

 (a) Global deadlock detector 

 (b) Phantom deadlock 

 (c) Distributed  

 (d) Edge chasing 

 (e) Pc 

 

2. 

 (a) (i) Centralized deadlock detection 

 (b) (iv) Both (ii) and (iii) 

 (c) (i) Centralized deadlock detection 

 (d) (iii) Prevent any one of the basic conditions to occur 

deadlocks. 

 (e) (i) Hierarchical deadlock detection approach 

 

 

6.11  POSSIBLE QUESTIONS 

1. Explain Centralized Deadlock Detection approach. Write 

down the issues in this approach. 

2. Explain Distributed Deadlock Detection approach. Write 

down the issues in this approach. 

3. Explain Hierarchical Deadlock Detection approach. Write 

down the issues in this approach. 
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4. Write down the deadlock resolution strategy that can be 

applied without detecting deadlocks. 

5. Write down different deadlock resolution strategies that can 

be applied after detection of deadlocks. 
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UNIT: 1 

AGREEMENT PROBLEMS AND PROTOCOLS 

 

 

Unit Structure: 

1.1 Introduction 

1.2 Objectives 

1.3 Classification of Agreement Problems 

1.4 Solutions to the Byzantine Agreement Problem 

1.5 Applications of Agreement Algorithms in Distributed 

Systems 

1.6 Summing Up 

1.7 Reference sand Suggested Readings 

 

 

1.1 Introduction 

Imagine you are working with a group of people, who arebased 

at different locations, each member contributing to a project. 

How do you ensure that everyone agrees on the project's 

direction and maintains consistency, especially when some 

team members might face communication issues or 

misunderstandings? This scenario is similar to what happens in 

distributed computing systems. Agreement problems are the 

binding factors that hold these systems together, ensuring that 

all nodes, or team members, reach a consensus despite 

potential failures or communication delays. 

 

The most crucial task in distributed systems is to achieve 

consensus across multiple nodes, that is a must to ensure 

consistency, reliability, and coordination (Lamport, Shostak, & 

Pease, 1982). Distributed systems are intrinsically complex 

because of the lack of a central coordinating entity, the 

potential for node failures, and the variability in 

communication delays (Coulour is et al., 2011). Agreement 

problems and protocols are mechanisms that help these systems 

function smoothly by enabling nodes to agree on a common 

value or decision despite failures and asynchronous 

communication (Castro & Liskov, 1999). This section 
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introduces the fundamental concepts of agreement problems, 

highlighting their importance in maintaining the integrity of 

distributed systems, and sets the stage for a deeper exploration 

of their classifications and solutions.  

 

To start, we will dive into the objectives of understanding these 

problems. You will see why grasping these concepts is 

essential for designing and operating reliable distributed 

systems. Think of it as knowing why having a meeting agenda 

is crucial for a productive team meeting. You will explore 

various types of agreement problems, learning how each type 

addresses specific challenges in distributed environments 

(Cachin, Guerraoui, & Rodrigues, 2011).After exploring the 

classification of agreement problems, we will examine 

solutions to the Byzantine Agreement Problem. Finally, we 

will look at real-world applications of agreement algorithms. 

You willobserve how these algorithms are used in blockchain 

technology to confirm the security and consistency of 

distributed ledgers, in distributed databases to maintain data 

consistency, in multi-agent systems to facilitate coordination, 

and in cloud computing to ensure reliable and consistent 

service delivery. These examples will show you the practical 

importance of agreement protocols in modern distributed 

systems. 

 

By the end of this unit, you will have a comprehensive 

understanding of agreement problems and protocols, their 

significance, and their applications in real-world distributed 

environments. This knowledge will be invaluable in designing 

and operating robust distributed systems capable of handling 

faults and maintaining consistency, ensuring reliable and 

efficient performance. 

 

1.2 Objectives 

This unit explores various agreement problems and protocols 

in distributed systems. By the end of this unit, you should be 

able to - 

 

 understand the fundamental concepts of agreement 

problems and why they are crucial in distributed 

systems. Think of it as knowing why having a meeting 
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agenda is essential for a productive team meeting. 

 explore the different types of agreement problems. This 

is like understanding the different ways to ensure 

everyone on your team is on the same page. 

 analyze the Byzantine Agreement Problem in detail. It 

is a bit like dealing with a team member who might 

intentionally try to mislead the group. 

 examine solutions and protocols like Byzantine Fault 

Tolerance (BFT) and Practical Byzantine Fault 

Tolerance (PBFT). These are strategies to ensure that 

your team can still reach a consensus, even under 

challenging conditions. 

 identify real-world applications of agreement algorithms 

in systems like blockchain and cloud computing. 

 gain a comprehensive overview of agreement protocols 

and their importance. 

 

 

1.3 Classification of Agreement Problems 

In distributed systems, agreement problems in can be classified 

based on the type of the faults they address and the mechanisms 

used to achieve consensus. Understanding these classifications 

helps in identifying the appropriate protocols and solutions for 

different scenarios. Let us explore some of the main types of 

agreement problems and their unique characteristics. 

1.3.1 Byzantine Agreement 

Let us dive into a tricky situation: imagine one of your team 

members isn't just misunderstanding but is intentionally trying to 

disrupt the project. This is akin to the Byzantine Agreement 

Problem in distributed systems. It requires nodes to agree on a 

value in the situation where some nodes are behaving arbitrarily or 

maliciously. To achieve Byzantine Agreement, certain conditions 

must be met: 

 Termination: At some point, each working node must 

choose a value.  

 Agreement: The non-faulty nodes must be agreeing on the 

same value. 

 Validity: The agreed-upon value must be the starting value if 

it is shared by all non-faulty nodes. 
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STOP TO CONSIDER 

 Why is Byzantine Agreement important? 

 It ensures system reliability despite faulty or malicious nodes. 

 It is critical for applications like blockchain and secure 

communicationsystems. 

 

 What makes achieving Byzantine Agreement challenging? 

 Handling arbitrary faults and misleading information. 

 High communication overhead and complexity. 

The challenge here is filtering out the "noise" from those disruptive 

nodes and still reaching a common decision (Lamport, Shostak, & 

Pease, 1982). 

 

1.3.2 Consensus Problem 

Now, think about a situation where all your team members are 

trying to agree on the next step of the project. The consensus 

problem in distributed systems is similar. It requires all non-faulty 

nodes to agree on a single value, depending on their initial values. 

For consensus to be achieved, the following conditions must be 

met: 

 Termination: At some point, each non-faulty node needs to 

choose a value. 

 Agreement: At some point, each non-faulty node needs to 

choose a value. 

 Validity: The agreed-upon value must be the starting value if 

it is shared by all non-faulty nodes. 

The challenge lies in ensuring that all team members reach the 

same decision, even if some face issues (Pass & Shi, 2017). 

 

1.3.3 Interactive Agreement 

Imagine an ongoing conversation within your team where each 

member shares their thoughts until everyone agrees. This is 

similar to Interactive Agreement in distributed systems, which 

involves a series of communications between nodes to reach 

consensus. For interactive agreement to be achieved: 

 

 Multiple Rounds: Nodes participate in several rounds of 

message exchanges. 

 Convergence: The system must ensure that the values 



222 

 

STOP TO CONSIDER 

 Byzantine Agreement deals with arbitrary or malicious 

behaviour. 

 The goal of the Consensus Problem is for every non-faulty 

node to concur on a single value. 

 Interactive Agreement involves multiple rounds of 

communication to achieve consensus. 

 Fault Tolerance: The ability of a system to continue operating 

properly in the event of the failure of some of its components. 

 Convergence: Ensuring that the proposed values by non-faulty 

nodes converge to a single decision. 

 Communication Overhead: The extra communication required 

to achieve consensus, especially in Byzantine Agreement. 

Check Your Progress 

CYP1. Define the Byzantine Agreement Problem. What are the 
conditions required for achieving Byzantine Agreement? 

CYP2. Why is Byzantine Agreement particularly challenging in 

distributed systems, and what are some real-world scenarios 

where it is essential? 

CYP3. What is consensus problem in the context of distributed 

systems? Describe the three key conditions that must be 

encountered for consensus. 

CYP4. Discuss the main challenges in achieving consensus in a 

distributed system having potentially faulty nodes. 

CYP5. Explain what Interactive Agreement is and how it differs from 

the standard Consensus Problem. 

CYP6. Identify the unique challenges associated with Interactive 

Agreement and how they impact the communication between 

nodes. 
 

proposed by non-faulty nodes converge to a single decision. 

 Fault Tolerance: The system should tolerate a certain 

number of faulty nodes and still reach an agreement. 

The complexity here is managing these interactions efficiently 

(Cachin, Guerraoui, & Rodrigues, 2011). 

 

 

 

1.4  Solutions to the Byzantine Agreement Problem 

The Byzantine Agreement Problem is one of the most challenging 

issues in distributed systems because of the presence of faulty or 

malicious nodes. To address this problem, numerous protocols have 
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been developed. These protocols aim to ensure that non-faulty nodes 

can still reach a consensus in situations where some nodes are 

behaving arbitrarily or maliciously. In this section, we will explore 

two key solutions: Byzantine Fault Tolerance (BFT) and Practical 

Byzantine Fault Tolerance (PBFT). 

 

Key Concepts in Byzantine Agreement Solutions 

Before exploring specific solutions, it is important to understand 

some of the fundamental concepts that are common to these 

protocols: 

 Fault Models: Different fault models, including crash faults 

and Byzantine faults, dictate the complexity of achieving 

consensus. Byzantine faults are the most severe, as they include 

any arbitrary behaviour by faulty nodes. 

 Message Complexity: The number of messages exchanged 

between nodes is a critical factor, as high message complexity 

can result in inefficiencies. 

 Cryptographic Techniques:In order to confirm the integrity 

and authenticity of messages, many Byzantine agreement 

protocols rely on cryptographic techniques, viz.digital 

signatures and hash functions. 

 Redundancy and Replication: These techniques are 

frequently used to make sure that even if some nodes fail, the 

system can still reach consensus. 

 

1.4.1 Byzantine Fault Tolerance 

Think of Byzantine Fault Tolerance (BFT) as a strategy to ensure 

your team can come to an agreement even if some members are 

trying to disrupt the process. BFT protocols use a combination of 

message exchanges and cryptographic techniques to filter out the 

influence of Byzantine nodes and ensure that non-faulty nodes 

can agree on a common value (Castro & Liskov, 1999).BFT 

protocols are designed to handle Byzantine faults by ensuring that 

non-faulty nodes can arrive at a consensus despite of the faulty 

nodes. The fundamental idea is to use redundant computations 

and message exchanges to filter out the influence of faulty nodes. 

Overview of BFT 

The BFT protocol requires nodes to exchange a series of 

messages to agree on a value. All nodes are in communication 

with one another, and through a process of majority voting and 
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STOP TO CONSIDER 

 Byzantine Fault Tolerance (BFT) uses message exchanges 

and cryptographic techniques to achieve consensus despite 

malicious nodes. 

 BFT is highly robust and secure but can face challenges in 

terms of communication overhead and scalability. 

 Message Exchanges: The communication among nodes 

required to achieve consensus. 

redundancy, the system can achieve consensus. This protocol 

typically tolerates up to 
���

�
 faulty nodes, where n is the overall 

number of nodes present in the system. 

Phases of BFT 

1. Pre-Vote Phase: Each node proposes a value based on its 

initial state. 

2. Vote Phase: Nodes exchange their proposed values with 

each other. 

3. Commit Phase: Nodes decide on the final value based on the 

majority of received votes. 

Advantages of BFT 

 Robustness: BFT can tolerate a significant number of faulty 

nodes, making it extremely robust against a range of failures. 

 Security: Cryptographic techniques are used to ensure that 

messages cannot be tampered with, providing a high level of 

security. 

Challenges of BFT 

 Communication Overhead: The protocol requires a high 

number of message exchanges, leading to substantial 

communication overhead. 

 Scalability: Due to its high communication complexity, BFT 

can become inefficient in large-scale systems. 

 

1.4.2 Practical Byzantine Fault Tolerance 

Practical Byzantine Fault Tolerance (PBFT) is designed for 

practical applications, making it more efficient and suitable for 

real-world scenarios. It uses a three-phase protocol (pre-prepare, 

prepare, commit) to achieve consensus with fewer message 
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exchanges. Imagine organizing a team meeting where you 

propose an idea, discuss it, and then finalize the decision once 

everyone agrees (Castro & Liskov, 1999). 

 

Overview of PBFT 

PBFT enhances the traditional BFT approach by organizing the 

protocol into three distinct phases: pre-prepare, prepare, and 

commit. This structure increases the efficiency of the protocol by 

reducing the number of message exchanges needed to reach 

consensus. 

Phases of PBFT 

1. Pre-Prepare Phase: The leader node (or the primary node) 

proposes a value and broadcasts it to all the other nodes 

(replicas). 

2. Prepare Phase: Each replica verifies the proposal and 

broadcasts a prepare message to all other replicas if it finds 

the proposal valid. 

3. Commit Phase: Once a replica receives a majority of 

prepare messages, it sends a commit message. When a 

majority of commit messages is received, the replica 

commits the value. 

 

Advantages of PBFT 

 Efficiency: By reducing the number of required message 

exchanges, PBFT is more efficient and scalable compared to 

traditional BFT protocols. 

 Practicality: PBFT is designed for real-world applications, 

making it suitable for use in systems like blockchain and 

distributed databases. 

 

Challenges of PBFT 

 Leader Selection: The protocol relies on a leader to 

propose values, making it susceptible to performance 

degradation if the leader fails or becomes slow. 

 Complexity:Though being more efficient than BFT, PBFT 

is still complex to implement and manage. 
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Check Your Progress 
 

CYP7. Describe the Byzantine Fault Tolerance (BFT) protocol. How 

does it achieve consensus in the presence of Byzantine faults? 

CYP8. What are the strengths and weaknesses of BFT, and in what 

scenarios is it most effectively applied? 

CYP9. Outline the Practical Byzantine Fault Tolerance (PBFT) 

protocol and its three-phase process. What role does each 

stage have in reaching a consensus? 

CYP10. Compare PBFT to traditional BFT. List the practical 

advantages of PBFT in real-world applications? 
 

STOP TO CONSIDER 

 Practical Byzantine Fault Tolerance (PBFT) is optimized for 

real-world applications, making it more efficient and scalable. 

 PBFT reduces message complexity by organizing the protocol 

into three phases: pre-prepare, prepare, and commit. 

 Leader Selection: The process of choosing a primary node to 

propose values. 

 Efficiency: The ability of the protocol to achieve consensus 

with fewer message exchanges. 

 

 

 

1.5 Applications of Agreement Algorithms in Distributed 

Systems 

Agreement algorithms are fundamental to the operation of 

various distributed systems. Their ability to ensure consensus 

among nodes, even when faulty nodes are present, makes them 

indispensable in many real-world applications. This section 

explores how these algorithms are applied in blockchain 

technology, distributed databases, multi-agent systems, and cloud 

computing. 

 

1.5.1 Blockchain Technology 

Blockchain technology relies heavily on agreement algorithms to 

maintain the security and integrity of a distributed ledger. In a 

blockchain, each block of transactions must be agreed upon by 

the network before it is added to the chain. By ensuring that 

every node has the same version of the ledger, this agreement 

helps to avoid problems like double-spending. 

 

Key Concepts in Blockchain Consensus: 

 Proof of Work (PoW): An algorithm where nodes (miners) 
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solve complex cryptographic puzzles to propose a new 

block. The first node to solve the puzzle gets to add the 

block to the chain and is rewarded. This process, used in 

Bitcoin, ensures that adding new blocks requires significant 

computational effort, making it difficult for malicious actors 

to alter the blockchain (Nakamoto, 2008). 

 Proof of Stake (PoS): Instead of mining, nodes are chosen 

to propose new blocks depending on the number of coins 

they hold and are willing to "stake" as collateral. This 

method, used in Ethereum 2.0, lowers energy usage in 

comparison to PoW and aligns the incentives of participants 

with the network’s security (Buterin, 2014). 

 Practical Byzantine Fault Tolerance (PBFT):PBFT is 

used in permissioned blockchains, PBFT allows nodes to 

reach consensus through a series of message exchanges in 

three phases: pre-prepare, prepare, and commit. This method 

provides low-latency finality and is efficient in environments 

with a known set of participants, such as Hyperledger Fabric 

(Castro & Liskov, 1999). 

 

Applications in Blockchain: 

 Bitcoin: Uses PoW to secure its network, making it resistant 

to tampering and attacks. 

 Ethereum: Transitioning from PoW to PoS to improve 

scalability and reduce environmental impact. 

 Hyperledger Fabric: Employs PBFT for fast and reliable 

consensus in enterprise blockchain solutions. 

 

1.5.2 Distributed Databases 

Distributed databases ensure the consistency and dependability of 

data across several nodes through consensus protocols. These 

protocols help maintain a single version of the truth, in situations 

when some nodes fail or become unreachable. 

 

Key Concepts in Distributed Database Consensus: 

 Two-Phase Commit (2PC): A protocol used to ensure all 

nodes present in a distributed database either commit to a 

transaction or abort it, preventing partial updates. The 

coordinator node sends a prepare message to all participant 

nodes and waits for their acknowledgment. If all nodes 
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agree, the coordinator sends a commit message; otherwise, it 

sends an abort message (Gray, 1978). 

 Three-Phase Commit (3PC): An extension of 2PC that 

introduces an additional phase to handle coordinator failures, 

reducing the chances of a system-wide deadlock (Skeen, 

1981). 

 Paxos: A consensus algorithm that is intended to get 

distributed nodes agree on a single value. It tolerates node 

failures and asynchronous communication, making it 

suitable for large-scale distributed databases (Lamport, 

1998). 

 Raft: Similar to Paxos but designed to be more 

understandable and easier to implement. It divides the 

consensus process into leader election, log replication, and 

safety (Ongaro & Ousterhout, 2014). 

 

Applications in Distributed Databases: 

 Google Spanner: Uses Paxos for distributed consensus, 

providing strong consistency and global distribution. 

 Amazon DynamoDB: Employs a version of Paxos for 

eventual consistency and high availability. 

 CockroachDB: Implements Raft to ensure consistency and 

fault tolerance across distributed nodes. 

 

1.5.3 Multi-Agent Systems 

Agreement algorithms help multi-agent systems coordinate and 

make decisions. Imagine a team of robots working together, each 

relying on consensus protocols to synchronize their actions and 

achieve a common goal (Cachin, Guerraoui, & Rodrigues, 

2011).In multi-agent systems, agreement algorithms facilitate 

coordination and decision-making among autonomous agents. 

These systems often involve robots, drones, or software agents 

that work together to reach a common goal. 

 

Key Concepts in Multi-Agent Consensus: 

 Consensus-Based Control:It makes certain that every agent 

in a network is in agreement on a single state or choice. This 

is vital for tasks like formation control, where robots must 

maintain specific positions relative to each other (Olfati-

Saber, Fax, & Murray, 2007). 
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 Distributed Task Allocation: Assigns tasks to agents in a 

way that balances the workload and optimizes performance. 

Consensus algorithms help ensuring the agreement of all the 

agents on task assignments without central coordination 

(Gerkey & Mataric, 2004). 

 Swarm Intelligence: Models the collective behaviour of 

decentralized, self-organized systems, such as ant colonies or 

bird flocks. Consensus algorithms enable swarms to 

coordinate their actions so that they can adapt to the changes 

in the environment (Beni & Wang, 1993). 

 

Applications in Multi-Agent Systems: 

 Robotic Swarms: Use consensus algorithms to coordinate 

movements and tasks, enabling applications like search and 

rescue or environmental monitoring. 

 Autonomous Vehicles: Vehicles communicate with one 

another to maintain safe distances and optimize traffic flow, 

using consensus protocols to agree on routes and speeds. 

 Distributed AI: Multi-agent systems in AI research use 

consensus algorithms to combine the outputs of different 

models or agents, improving decision-making and 

performance. 

 

1.5.4 Cloud Computing 

Cloud computing systems rely on agreement algorithms to ensure 

reliable and consistent service delivery across distributed 

resources. These protocols manage data replication, load 

balancing, and fault tolerance in cloud environments. 

Key Concepts in Cloud Computing Consensus: 

 Data Replication: Ensures that data are kept in many copies 

on several nodes, to improve reliability and access speed. 

Consensus algorithms help synchronize these copies and 

ensure consistency (Birman & Joseph, 1987). 

 Load Balancing: Distributes workloads across multiple 

servers to optimize resource use and minimize response 

times. Consensus protocols help maintain a balanced state 

across the cloud infrastructure (Lu et al., 2011). 

 Fault Tolerance: Enables cloud services to keep operating 

even during the failure of some of the components. 

Consensus algorithms guarantee that the system can recover 
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CheckYourProgress 
 

CYP11. Give an example of how agreement algorithms are used in 

blockchain technology. What role do these algorithms play in 

maintaining a secure and consistent ledger? 

CYP12. Describe how consensus protocols are applied in cloud 

computing. How do they ensure reliable and consistent 

service delivery? 
 

and maintaining consistency despite failures (Cachin et al., 

2011). 

Applications in Cloud Computing: 

 Kubernetes: Uses consensus protocols to manage container 

orchestration, ensuring that applications run reliably across 

distributed nodes. 

 Amazon Web Services (AWS): Implements consensus 

algorithms in its data replication and load balancing services 

to provide high availability and fault tolerance. 

 Google Cloud Platform (GCP): Uses consensus protocols 

in its distributed storage and computing services to ensure 

data consistency and service reliability. 

 

 

 

1.6 Summing Up 

In this unit, we explored the fundamental concepts and importance 

of agreement problems and protocols in distributed systems. We 

began by comprehendingthe significance of consensus in preserving 

consistency, dependability, and coordination among nodes in the 

face of malfunctions or communication delays. We then examined 

different types of agreement problems, including Byzantine 

Agreement, Consensus Problem, and Interactive Agreement, 

highlighting their unique challenges and conditions for achieving 

consensus. 

 

We delved into solutions for the Byzantine Agreement Problem, 

focusing on Byzantine Fault Tolerance and Practical Byzantine 

Fault Tolerance. BFT ensures consensus by filtering out the 

influence of the nodes that are faulty, through extensive exchanges 

of messages and cryptographic techniques. PBFT, optimized for 

practical applications, reduces message complexity, and improves 

efficiency. 
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Self-AskingQuestions 

 

SAQ1. In what ways do agreement problems shape the overall 

reliability and integrity of distributed systems, and how 

might different types of faults impact the consensus 

process? 

SAQ2. How do the Byzantine Agreement and Consensus 

Problems differ in terms of their challenges and 

solutions, and what practical scenarios can you think of 

where each would be applied? 

SAQ3. Considering the high communication overhead in 

Byzantine Fault Tolerance (BFT), what strategies might 

you employ to balance robustness and efficiency in a 

large-scale distributed system? 

SAQ4. Reflect on how PBFT optimizes the consensus process 

for real-world applications. What are the key advantages 

of PBFT, and how does it mitigate the limitations of 

traditional BFT protocols? 

SAQ5. How do consensus algorithms like PBFT and Paxos 

enhance the functionality and reliability of systems such 

as blockchain, distributed databases, and cloud 

computing? Can you identify potential challenges in 

implementing these algorithms in different distributed 

environments? 
 

 

Finally, we discussed the real-world applications of agreement 

algorithms in blockchain technology, distributed databases, multi-

agent systems, and cloud computing. These applications 

demonstrate how consensus protocols enhance security, consistency, 

and fault tolerance in various distributed environments. 

Understanding and implementing these protocols is essential for 

designing robust and resilient distributed systems capable of 

withstanding faults and ensuring reliable operation. 
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1.8 Model Questions 

 

1. Explain the importance of achieving consensus in distributed 

systems. How does it affect system reliability and 

coordination? 

2. Define the Byzantine Agreement Problem. What are the main 

conditions that must be satisfied to achieve Byzantine 

Agreement? 

3. Discuss the main challenges in solving the consensus problem 

in distributed systems. How do these challenges impact the 

termination, agreement, and validity conditions? 

4. Differentiate between Byzantine Agreement and the 

Consensus Problem in the context of distributed systems. 

Provide examples of scenarios where each is applicable. 

5. Describe the Interactive Agreement process. What are the 

unique challenges associated with achieving Interactive 

Agreement in distributed systems? 

6. Outline the mechanism of Byzantine Fault Tolerance (BFT). 

How does it ensure consensus in the presence of Byzantine 

faults? 

7. Explain the Practical Byzantine Fault Tolerance (PBFT) 

protocol. Describe its three-phase process and how it 

contributes to achieving consensus. 

8. Compare and contrast Byzantine Fault Tolerance (BFT) and 

Practical Byzantine Fault Tolerance (PBFT). What are the 

strengths and weaknesses of each protocol? 

9. How do agreement algorithms like PBFT enhance the security 

and reliability of blockchain technologies? Provide specific 

examples. 

10. Discuss the role of consensus protocols in maintaining data 

consistency in distributed databases. How do these protocols 

ensure reliable transactions? 

11. Explain how agreement algorithms facilitate coordination and 

decision-making in multi-agent systems. Provide an example 

to illustrate your explanation. 

12. Describe how consensus protocols are applied in cloud 

computing environments. What are the key benefits of using 

these protocols in such scenarios? 

13. What are the implications of failing to achieve consensus in a 

distributed system? Discuss with reference to potential faults 

and failures. 
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14. Evaluate the impact of cryptographic techniques on the 

effectiveness of Byzantine Fault Tolerance (BFT) protocols. 

15. How does the iterative communication process in Interactive 

Agreement contribute to achieving consensus in distributed 

systems? 

16. Discuss the significance of the validity condition in the 

context of the Consensus Problem. Why is it crucial for 

ensuring correct outcomes? 

17. What are the practical challenges of implementing PBFT in 

large-scale distributed systems? How can these challenges be 

mitigated? 

18. In what ways can understanding agreement problems and 

protocols influence the design of more resilient distributed 

applications? 

19. Explain the role of message exchanges in Byzantine Fault 

Tolerance. How do they help in filtering out the influence of 

Byzantine nodes? 

20. Summarize the key takeaways from studying agreement 

problems and protocols. How can this knowledge be applied 

to future advancements in distributed computing? 

 

1.9 Answer to check your progress questions 

 

CYP1. Define the Byzantine Agreement Problem. What are the 

conditions required for achieving Byzantine Agreement? 

 

Answer: The Byzantine Agreement Problem requires nodes in a 

distributed system to agree on a single value even if some of the 

nodes (Byzantine nodes) exhibit arbitrary or malicious behaviour. 

The conditions required for achieving Byzantine Agreement are: 

1. Termination:At some point, each non-faulty node needs to 

choose a value. 

2. Agreement:Every non-faulty node needs to concur on the 

same value 

3. Validity:The agreed-upon value must be the starting value if 

it is shared by all non-faulty nodes. 

 

CYP2. Why is Byzantine Agreement particularly challenging in 

distributed systems, and what are some real-world scenarios 

where it is essential? 
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Answer: Byzantine Agreement is particularly challenging because it 

must account for nodes that can act arbitrarily or maliciously, 

sending conflicting or misleading information. This makes it 

difficult to achieve consensus as nodes cannot rely on the 

trustworthiness of their peers. Real-world scenarios where 

Byzantine Agreement is essential include: 

 Blockchain Technology: Ensuring all nodes agree on the 

state of the distributed ledger despite potential malicious 

actors. 

 Military Communication Systems: Securing command and 

control systems against potential sabotage or 

misinformation. 

 Financial Systems: Protecting against fraudulent 

transactions or data tampering. 

 

CYP3. What is consensus problem in the context of distributed 

systems? Describe the three key conditions that must be 

encountered for consensus. 

 

Answer: The consensus problem in distributed systems requires all 

non-faulty nodes to agree on a single value based on their initial 

values. The three key conditions that must be met for consensus are: 

1. Termination: Every non-faulty node must eventually agree 

on a value. 

2. Agreement: All non-faulty nodes must chose the same 

value. 

3. Validity: If all non-faulty nodes have the same initial value, 

the agreed-upon value must be that initial value. 

 

CYP4. Discuss the main challenges in achieving consensus in a 

distributed system having potentially faulty nodes. 

 

Answer: The main challenges in achieving consensus in a 

distributed system with potentially faulty nodes include: 

 Communication Delays: Asynchronous communication can 

cause delays, making it difficult to synchronize decisions. 

 Faulty Nodes: Nodes may fail or behave maliciously, 

sending incorrect or conflicting information. 

 Network Partitions: Temporary network failures can isolate 

nodes, preventing them from participating in the consensus 

process. 
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 Scalability: As the number of nodes increases, the 

complexity and overhead of achieving consensus also 

increase. 

 

CYP5. Explain what Interactive Agreement is and how it differs 

from the standard Consensus Problem. 

 

Answer: Interactive Agreement involves a series of 

communications between nodes to reach consensus, often requiring 

multiple rounds of message exchanges. It differs from the standard 

Consensus Problem in that it typically involves more complex 

interactions and iterative communication to ensure convergence and 

fault tolerance. While the standard Consensus Problem focuses on a 

single decision round, Interactive Agreement uses iterative 

processes to refine and validate decisions. 

 

CYP6. Identify the unique challenges in Interactive Agreement 

and how they impact the communication between nodes. 

 

Answer: Unique challenges associated with Interactive Agreement 

include: 

 High Communication Overhead: Multiple rounds of 

message exchanges can lead to significant communication 

overhead. 

 Latency: The iterative process can introduce delays, 

impacting the overall speed of reaching agreement. 

 Fault Tolerance: Managing faults across multiple rounds of 

communication can be complex and resource-intensive. 

 Synchronization: Ensuring all nodes participate in each 

round of communication and maintain synchronization is 

challenging. 

 

CYP7. Describe the Byzantine Fault Tolerance (BFT) protocol. 

How does it achieve consensus in the presence of Byzantine 

faults? 

 

Answer: The Byzantine Fault Tolerance (BFT) protocol achieves 

consensus by using a combination of message exchanges and 

cryptographic techniques to filter out the influence of Byzantine 

nodes. Each node communicates with every other node, and through 

a process of majority voting and redundancy, the system can achieve 
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consensus. BFT typically tolerates up to n−13\frac{n-1}{3}3n−1 

faulty nodes, where nnn is the total number of nodes. 

 

CYP8. What are the strengths and weaknesses of BFT, and in 

what scenarios is it most effectively applied? 

 

Answer:Strengths: 

 Robustness: BFT can tolerate a significant number of faulty 

nodes, making it highly robust. 

 Security: Cryptographic techniques ensure message integrity 

and authenticity. 

Weaknesses: 

 Communication Overhead: High number of message 

exchanges lead to substantial communication overhead. 

 Scalability: BFT can become inefficient in large-scale 

systems due to high communication complexity. 

Scenarios where BFT is most effectively applied: 

 Blockchain Technology: Ensuring secure and consistent 

ledgers. 

 Secure Communication Systems: Protecting against 

malicious interference. 

 Financial Systems: Ensuring reliable transaction processing. 

 

CYP9. Outline the PBFT protocol and its three-phase process. 

How does each phase contribute to achieving consensus? 

 

Answer: The Practical Byzantine Fault Tolerance (PBFT) protocol 

is organized into three phases: pre-prepare, prepare, and commit. 

1. Pre-Prepare Phase: The leader node proposes a value and 

broadcasts it to all other nodes. 

2. Prepare Phase: Each node verifies the proposal and 

broadcasts a prepare message to all other nodes if the 

proposal is valid. 

3. Commit Phase: Once a node receives a majority of prepare 

messages, it sends a commit message. When a majority of 

commit messages is received, the node commits the value. 

Each phase helps ensure synchronization among nodes and filters 

out any misleading information from faulty nodes, thus achieving 

consensus efficiently. 
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CYP10. Compare PBFT to traditional BFT. List the practical 

advantages of PBFT in real-world applications? 

Answer:Comparison to Traditional BFT: 

 Message Complexity: PBFT reduces the number of message 

exchanges compared to traditional BFT, making it more 

efficient. 

 Phases: PBFT uses a structured three-phase process, 

whereas traditional BFT involves more complex interactions. 

Practical Advantages of PBFT: 

 Efficiency: Lower message complexity makes PBFT more 

scalable and suitable for real-world applications. 

 Latency: PBFT provides faster consensus with lower 

latency. 

 Applicability: Suitable for permissioned blockchain systems 

and distributed databases where node identities are known. 

CYP11. Give an example of how agreement algorithms are used 

in blockchain technology. What role do these algorithms play in 

maintaining a secure and consistent ledger? 

Answer: In block chain technology, agreement algorithms like 

PBFT are used to ensure that all nodes must come to an agreement 

on the state of the distributed ledger. For example, Hyperledger 

Fabric employs PBFT to achieve consensus among known 

participants. These algorithms maintain a secure and consistent 

ledger by making sure that all nodes validate and agree on each 

block of transactions before it is added to the chain, preventing 

issues like double-spending and tampering. 

 

CYP12. Describe how consensus protocols are applied in cloud 

computing. How do they ensure reliable and consistent service 

delivery? 

Answer: In cloud computing, consensus protocols are used to 

manage data replication, load balancing, and fault tolerance through 

distributed resources. For example, Kubernetes uses consensus 

algorithms to orchestrate container deployment and scaling. These 

protocols ensure reliable and consistent service delivery by 

synchronizing the state and configuration of all nodes, enabling 

seamless scaling, and maintaining service availability even when 

node failures exist. 

 

××× 
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UNIT- 2 

IPC AND COMMUNICATION PROTOCOLS 

 

Unit Structure: 

2.1 Introduction 

2.2 Objectives 

2.3 Importance of Inter-Process Communication (IPC) 

 2.3.1 Characteristics of Inter-Process Communication 

 

2.4 Approaches for Inter-Process Communication 

2.5 Some Common IPC mechanisms used in distributed systems 

 2.5.1 Message Passing 

2.5.2 Remote Procedure Calls (RPC)  

2.5.3 Remote Method Invocation (RMI) 

2.5.4 Shared Memory 

2.5.5 Publish/Subscribe  

2.5.6 Socket Programming 

2.6 Application Programming Interfaces (API) for UDP and TCP 

2.6.1 API for TCP 

2.6.2 API for UDP 

2.7 The Request-Reply Protocol for Communication in distributed 

system 

2.7.1 Key characteristics of the Request-Reply Protocol. 

2.8 Basics of Remote Procedure Call (RPC) in distributed system 

2.9 RPC Operations, Parameter Passing in RPC in distributed 

system  

 2.9.1 RPC Operations 

 2.9.2 Parameter Passing in RPC 
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2.10 Some Examples of RPC Usage 

 2.10.1 Client-Server Applications 

 2.10.2 Micro services Architecture 

2.10.3 Distributed Computing 

2.10.4 Inter-process Communication (IPC) 

2.10.5 Embedded Systems 

2.11 Summing Up 

2.12 References and Suggested Readings 

2.13 Model Questions 

2.14 Answer to check your progress/Possible Answers to SAQ 

 

2.1 Introduction 

Inter-Process Communication (IPC) in distributed systems refers to 

the mechanisms and techniques used for communication and data 

exchange between different processes running on different machines 

within a network. In a distributed system, processes are not limited 

to a single machine; they can span across multiple machines, which 

adds complexity to communication and coordination. It is used for 

exchanging data between multiple threads in one or more processes 

or programs. The Processes may be running on single or multiple 

computers connected by a network. The full form of IPC is Inter-

process communication. 

In another words IPC, is set of interfaces, which is usually 

programmed in order for the programs to communicate between 

series of processes. This allows running programs concurrently in 

an Operating System. It is a set of programming interface which 

allow a programmer to coordinate activities among various program 

processes which can run concurrently in an operating system. This 

allows a specific program to handle many user requests at the same 

time. 

  

Since every single user request may result in multiple processes 

running in the operating system, the process may require to 

communicate with each other. Each IPC protocol approach has its 
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own advantage and limitation, so it is not unusual for a single 

program to use all of the IPC methods. 

2.2 Objectives 

After going through this unit you will be able to: 

 Understand the basic concepts of Inter-Process 

Communication (IPC) in distributed systems  

 Know about the importance of IPC. 

 Know about different approaches of IPC. 

 Know about some Common IPC mechanisms used in 

distributed systems  

 Understand about Application Programming Interfaces (API) 

for UDP and TCP  

 Know about the Request-Reply Protocol for Communication 

in distributed system  

 Idea about basics of Remote Procedure Call (RPC) in 

distributed system 

 Know about some examples of RPC Usage  

2.3 Importance of Inter-Process Communication (IPC) 

Here, are the reasons for using the inter-process communication 

protocol for information sharing: 

 It helps to speedup modularity 

 Computational 

 Privilege separation 

 Convenience 

 Helps operating system to communicate with each other and 

synchronize their actions. 

2.3.1 Characteristics of Inter-Process Communication 

 

There are mainly five characteristics of inter-process 

communication in a distributed environment/system. 

 

 Synchronous System Calls: In the synchronous system 

calls both sender and receiver use blocking system calls to 

transmit the data which means the sender will wait until the 

acknowledgment is received from the receiver and receiver 

waits until the message arrives. 
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 Asynchronous System Calls: In the asynchronous system 

calls, both sender and receiver use non-blocking system 

calls to transmit the data which means the sender doesn’t 

wait from the receiver acknowledgment. 

 Message Destination: A local port is a message destination 

within a computer, specified as an integer. Aport has 

exactly one receiver but many senders. Processes may use 

multiple ports from which to receive messages. Any 

process that knows the number of a port can send the 

message to it. 

 Reliability: It is defined as validity and integrity. 

 Integrity: Messages must arrive without corruption and 

duplication to the destination. 

 Validity: Point to point message services are defined as 

reliable, If the messages are guaranteed to be delivered 

without being lost is called validity. 

 Ordering: It is the process of delivering messages to the 

receiver in a particular order. Some applications require 

messages to be delivered in the sender order i.e the order in 

which they were transmitted by the sender. 

2.4 Approaches for Inter-Process Communication 

Here, are few important methods for inter-process communication: 

 

Figure 1. Inter-Process Communication Approaches 

Pipes 

Pipe is widely used for communication between two related 

processes. This is a half-duplex method, so the first process 

communicates with the second process. However, in order to 

achieve a full-duplex, another pipe is needed. 
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Message Passing 

It is a mechanism for a process to communicate and synchronize. 

Using message passing, the process communicates with each other 

without resorting to shared variables. 

IPC mechanism provides two operations: 

 Send (message)- message size fixed or variable 

 Received (message) 

Message Queues 

A message queue is a linked list of messages stored within 

the kernel. It is identified by a message queue identifier. This 

method offers communication between single or multiple processes 

with full-duplex capacity. 

Direct Communication 

In this type of inter-process communication process, should name 

each other explicitly. In this method, a link is established between 

one pair of communicating processes, and between each pair, only 

one link exists. 

Indirect Communication 

Indirect communication establishes like only when processes share a 

common mailbox each pair of processes sharing several 

communication links. A link can communicate with many 

processes. The link may be bi-directional or unidirectional. 

Shared Memory 

Shared memory is a memory shared between two or more processes 

that are established using shared memory between all the processes. 

This type of memory requires to protected from each other by 

synchronizing access across all the processes. 

FIFO 

Communication between two unrelated processes. It is a full-duplex 

method, which means that the first process can communicate with 

the second process, and the opposite can also happen. 

The important terms used in IPC are Semaphores and Signals which 

are defined below: 
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Semaphores: A semaphore is a signaling mechanism technique. 

This Operating System method either allows or disallows access to 

the resource, which depends on how it is set up. 

Signals: It is a method to communicate between multiple processes 

by way of signaling. The source process will send a signal which is 

recognized by number, and the destination process will handle it. 

2.5 Some Common IPC mechanisms used in distributed systems 

2.5.1 Message Passing 

This is a fundamental IPC mechanism where processes 

communicate by sending and receiving messages. In a distributed 

system, messages are typically sent over the network using 

protocols like TCP/IP or UDP. Message passing can be synchronous 

or asynchronous, and it's often used for communication between 

processes running on different machines. 

2.5.2 Remote Procedure Calls (RPC) 

RPC allows a process to invoke a procedure or function in another 

process as if it were a local procedure call. The RPC mechanism 

hides the complexities of network communication, making it easier 

for developers to build distributed applications. However, 

developers need to be mindful of issues like network latency, 

failures, and data consistency. 

2.5.3 Remote Method Invocation (RMI) 

RMI is a Java-specific form of RPC that enables communication 

between Java objects across different Java Virtual Machines 

(JVMs). RMI allows objects in one JVM to invoke methods on 

objects in another JVM, making it easier to build distributed Java 

applications. 

2.5.4 Shared Memory 

Shared memory IPC allows processes to communicate by accessing 

shared regions of memory. In a distributed system, shared memory 

can be implemented using distributed shared memory (DSM) 

techniques, where the memory is distributed across multiple 

machines but appears as a single address space to processes. 

However, DSM introduces challenges related to consistency, 

coherence, and synchronization. 
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2.5.5 Publish/Subscribe 

In this model, processes (or components) publish messages to 

specific topics or channels, and other processes subscribe to receive 

messages from those topics. Publish/subscribe mechanisms are often 

used in distributed systems for event-driven architectures, where 

components need to react to events generated by other components. 

2.5.6 Socket Programming 

Sockets provide a low-level IPC mechanism for communication 

between processes over a network. In a distributed system, 

processes can communicate using sockets by establishing 

connections and exchanging data streams. Socket programming 

allows for flexibility and customization but requires developers to 

manage details like connection establishment, data serialization, and 

error handling. 

 

 

Figure 2. Shared Memory and Message Passing 

Each IPC mechanism has its advantages and disadvantages, and the 

choice depends on factors such as performance requirements, 

programming language, scalability, fault tolerance, and ease of 

implementation. In distributed systems, designers often use a 

combination of IPC mechanisms to meet the specific needs of the 

application. 
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2.6 Application Programming Interfaces (API) for UDP and 

TCP 

As we know that UDP (User Datagram Protocol) and TCP 

(Transmission Control Protocol) are two widely used transport layer 

protocols in computer networks. APIs (Application Programming 

Interfaces) for UDP and TCP provide programmers with the 

necessary functions and methods to create, send, receive, and 

manage network communications using these protocols. Below, we 

explain the basic concepts of API for UDP and TCP: 

2.6.1 API for TCP 

Socket Creation: The API provides functions to create a TCP 

socket. 

Binding and Listening: For server applications, the TCP socket 

needs to be bound to a specific IP address and port and set to listen 

for incoming connections. The API provides functions for these 

purposes. 

Connection Establishment: TCP is a connection-oriented protocol, 

so before data exchange can occur, a connection needs to be 

established between the client and server. The API includes 

functions to initiate connections from the client side and accept 

connections on the server side. 

Data Transmission: Programmers can use the API to send and 

receive data over an established TCP connection. Data is transmitted 

reliably and in order, and the API provides functions to handle large 

data transfers, buffering, and flow control. 

Connection Termination: TCP connections need to be properly 

terminated once data exchange is complete. The API includes 

functions to gracefully close connections from both the client and 

server sides. 

Error Handling: TCP provides reliable, error-checked delivery of 

data, but errors such as connection timeouts or broken connections 

can still occur. The API includes mechanisms for error detection and 

recovery. 
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2.6.2 API for UDP 

Socket Creation: It is similar to TCP. The API provides functions 

to create a UDP socket, which is a communication endpoint that 

allows data to be sent and received over UDP. 

Binding: Before using a socket, it needs to be bound to a specific 

network interface and port. The API provides functions to bind a 

socket to a particular IP address and port number. 

Sending Data: Programmers can use the API to send data over 

UDP. This involves specifying the destination IP address, port 

number, and the data to be sent. 

Receiving Data: The API provides functions to receive data on a 

UDP socket. Programmers can specify the maximum size of the data 

buffer and retrieve the sender's IP address and port number along 

with the received data. 

Error Handling: UDP is a connectionless protocol, so errors like 

packet loss or duplication may occur. The API includes error-

handling mechanisms to handle such situations. 

In summary, the API for UDP and TCP provides programmers with 

the necessary tools to implement network communication using 

these protocols, including socket creation, data transmission, error 

handling, and connection management. Programmers can use these 

APIs to develop a wide range of networked applications, from 

simple client-server interactions to complex distributed systems. 

2.7 The Request-Reply Protocol for Communication in 

distributed system 

The Request-Reply Protocol is a fundamental communication 

pattern used in distributed systems where one component (the client) 

sends a request message to another component (the server), and the 

server responds with a corresponding reply message. This protocol 

is widely used in various distributed systems scenarios, including 

client-server architectures, micro services, and remote procedure 

calls (RPC). 

Here's how the Request-Reply Protocol works: 

Request Message: The client initiates communication by sending a 

request message to the server. The request message typically 
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contains information about the action the client wants the server to 

perform. This could be a query for data, a request to execute a 

specific function, or any other operation that the server is capable of 

handling. 

Server Processing: Upon receiving the request message, the server 

processes the request based on its functionality. This may involve 

executing the requested operation, accessing data, performing 

calculations, or any other task required to fulfill the client's request. 

Reply Message: After processing the request, the server generates a 

reply message containing the result of the operation or the requested 

data. The reply message is then sent back to the client as a response 

to the original request. 

Client Handling: Upon receiving the reply message, the client 

processes the response to extract the information it needs. 

Depending on the application logic, the client may take further 

actions based on the contents of the reply message, such as 

displaying data to the user, performing additional processing, or 

sending subsequent requests to the server. 

Error Handling: In addition to successful responses, the Request-

Reply Protocol also includes mechanisms for handling errors and 

exceptions. If an error occurs during request processing on the 

server side, the server can generate an error response indicating the 

nature of the problem. The client then needs to handle these error 

responses appropriately, which may involve retrying the request, 

notifying the user, or taking other corrective actions. 

2.7.1 Key characteristics of the Request-Reply Protocol 

Synchronous Communication: Request-reply communication is 

typically synchronous, meaning that the client waits for a response 

from the server before proceeding with further actions. This 

synchronous nature simplifies the programming model, as the client 

can assume that a response will be received in a predictable manner. 

Reliability: The protocol ensures reliable communication between 

the client and server by requiring that each request be acknowledged 

with a corresponding reply. This ensures that both parties are aware 

of the outcome of the communication and can take appropriate 

actions based on the response. 
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Statelessness: The Request-Reply Protocol is often designed to be 

stateless, meaning that each request-reply interaction is independent 

of previous interactions. This simplifies the design and scalability of 

distributed systems by allowing servers to handle requests from 

multiple clients concurrently without maintaining client-specific 

state between requests. 

Overall, the Request-Reply Protocol provides a straightforward and 

reliable communication mechanism for building distributed systems, 

allowing components to interact seamlessly across network 

boundaries while ensuring that communication is predictable and 

robust. 

2.8 Basics of Remote Procedure Call (RPC) in distributed 

system 

Remote Procedure Call (RPC) is a protocol that enables a program 

to execute procedures or functions on a remote system as if they 

were local, abstracting away the details of network communication. 

It allows distributed applications to communicate and invoke 

procedures across different systems transparently, making it appear 

as if the remote procedure is a local function call. 

Here the basics of Remote Procedure Call (RPC) in a distributed 

system are given below: 

Invocation: The client program calls a procedure or function on the 

remote system as if it were a local function call. From the client's 

perspective, there's no distinction between local and remote 

procedures. The client specifies the procedure name and provides 

the necessary parameters for the remote invocation. 

Marshalling: Before the request is sent over the network, the 

parameters of the procedure call need to be converted into a format 

that can be transmitted. This process is called marshalling or 

serialization. Complex data structures and objects are serialized into 

a byte stream that can be transmitted over the network. 

Communication: The client sends the serialized request message 

containing the procedure name and parameters to the server over the 

network. This communication typically occurs using a transport 

layer protocol such as TCP/IP. 
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Unmarshalling: Upon receiving the request, the server needs to 

deserialize or unmarshal the incoming message to extract the 

procedure name and parameters. This process reconstructs the 

original data structures from the byte stream received over the 

network. 

Execution: Once the server has extracted the procedure name and 

parameters, it invokes the corresponding procedure or function 

locally, using the provided parameters. From the server's 

perspective, the invocation is a local function call, and it executes 

the requested operation as if it were initiated locally. 

Result Marshalling: After executing the procedure, the server may 

return a result or response to the client. The result, along with any 

output parameters, needs to be serialized or marshalled into a format 

suitable for transmission over the network. 

Response: The server sends the serialized response message back to 

the client over the network. 

Result Unmarshalling: Upon receiving the response, the client 

unmarshals or deserializes the message to extract the result and any 

output parameters returned by the remote procedure call. 

Completion: Finally, the client receives the result of the remote 

procedure call and can continue with its execution based on the 

returned values. 

RPC frameworks and libraries, such as gRPC, Apache Thrift, and 

Java RMI, provide tools and APIs to simplify the implementation of 

RPC-based communication in distributed systems. These 

frameworks handle many of the underlying details, such as 

marshalling, communication, and error handling, allowing 

developers to focus on defining the interface and implementing the 

procedures to be invoked remotely. 

2.9 RPC Operations, Parameter Passing in RPC in distributed 

system  

Remote Procedure Call (RPC) operations facilitate the seamless 

execution of functions or procedures across distributed systems, 

abstracting away the complexities of network communication. The 

RPC model typically involves several operations and mechanisms 

for parameter passing, ensuring smooth interaction between client 
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and server components. Here's a concise explanation of RPC 

operations and parameter passing: 

2.9.1 RPC Operations 

Bind: In the bind operation, the client initiates communication with 

the server by establishing a connection. This involves identifying 

the server's network address and establishing a communication 

channel, often using TCP/IP or another transport protocol. The bind 

operation sets up the foundation for subsequent RPC operations. 

Call: The call operation is the heart of RPC, where the client 

invokes a remote procedure on the server. The client specifies the 

name of the procedure to be executed, along with any required 

parameters. The RPC runtime system then marshals the procedure 

name and parameters into a message format suitable for 

transmission over the network. 

Execute: Upon receiving the RPC call request, the server executes 

the specified procedure locally. The server locates the appropriate 

procedure based on the name provided in the RPC call and executes 

it with the provided parameters. The execution may involve 

complex computations, database queries, or other operations, 

depending on the functionality of the remote procedure. 

Return: After executing the procedure, the server generates a 

response containing the result of the operation, along with any 

output parameters. This response message is then sent back to the 

client over the network. The return operation completes the remote 

procedure call cycle initiated by the client. 

Unbind: In the unbind operation, the client or server terminates the 

RPC connection, releasing any allocated resources and closing the 

communication channel. This operation is typically performed after 

all required RPC calls have been completed or when the client or 

server no longer requires communication. 

2.9.2 Parameter Passing in RPC 

Marshalling: Before transmitting parameters over the network, the 

RPC system serializes or marshals the parameters into a format 

suitable for transmission. This involves converting data structures, 

objects, and primitive values into a byte stream that can be 

transmitted over the network. Marshalling ensures that parameters 
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are represented consistently across different systems and 

programming languages. 

Transmission: Once marshalled, the RPC system transmits the 

parameter data along with the procedure name to the server over the 

network. This transmission may occur using a reliable transport 

protocol such as TCP/IP to ensure the integrity and reliability of 

data delivery. 

Unmarshalling: Upon receiving the RPC call request, the server 

unmarshals or deserializes the incoming parameters from the 

network message. This process reconstructs the original data 

structures and values from the byte stream received over the 

network, making the parameters accessible for procedure execution. 

Execution: With the parameters unmarshalled, the server executes 

the specified procedure locally using the provided parameters. The 

execution may involve accessing databases, performing 

computations, or interacting with other components, depending on 

the functionality of the remote procedure. 

Result Marshalling: After executing the procedure, the server 

marshals the result and any output parameters into a response 

message format suitable for transmission back to the client. 

Marshalling ensures that the result data is represented consistently 

for transmission over the network. 

Result Transmission and Unmarshalling: Finally, the server 

transmits the response message containing the result back to the 

client over the network. The client then unmarshals the result and 

any output parameters from the response message, making them 

available for further processing or display. 

In summary, RPC operations enable the seamless execution of 

remote procedures across distributed systems, while parameter 

passing mechanisms ensure the consistent transmission and 

representation of data between client and server components. By 

abstracting away the complexities of network communication, RPC 

facilitates efficient and transparent interaction between distributed 

components, enabling the development of robust and scalable 

distributed applications. 
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2.10 Some Examples of RPC Usage 

RPC is widely used in various distributed systems and networked 

applications for seamless communication between client and server 

components. Here are some examples of RPC usage in different 

domains: 

2.10.1 Client-Server Applications 

RPC is commonly used in client-server architectures for 

communication between client applications and server-side services. 

For example: 

Web services: A client application can invoke remote procedures 

exposed by a web service using RPC, such as retrieving data from a 

database or performing authentication. 

Remote administration: Systems administrators can use RPC to 

remotely execute administrative tasks on servers, such as starting or 

stopping services, managing files, or monitoring system health. 

2.10.2 Microservices Architecture 

In microservices-based systems, RPC is often used for 

communication between individual microservices. Each 

microservice exposes a set of RPC endpoints, allowing other 

microservices to invoke their functionality. For example: 

User service: A microservice responsible for managing user 

accounts might expose RPC endpoints for operations like user 

authentication, profile management, and access control. 

Payment service: Another microservice handling payment 

processing might provide RPC endpoints for processing payments, 

generating invoices, and managing payment methods. 

2.10.3 Distributed Computing 

RPC is essential for distributed computing environments where 

computation is distributed across multiple machines or nodes. 

Examples include: 

Grid computing: Large-scale scientific or computational tasks can 

be parallelized and distributed across a grid of interconnected 
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computers. RPC facilitates communication between grid nodes to 

coordinate task execution and data exchange. 

Map Reduce frameworks: Distributed data processing frameworks 

like Apache Hadoop and Apache Spark utilize RPC for 

communication between master and worker nodes. RPC is used to 

distribute computation tasks, exchange intermediate results, and 

coordinate job execution. 

2.10.4 Inter-process Communication (IPC) 

Within a single machine or operating system, RPC can be used for 

communication between different processes or threads. Examples 

include: 

Remote method invocation (RMI) in Java: Java applications can use 

RMI, a form of RPC, to invoke methods on remote objects running 

in different Java Virtual Machines (JVMs) within the same network 

or on different machines. 

Named pipes on Windows: RPC can be used for inter-process 

communication on Windows systems using named pipes, allowing 

processes to communicate and exchange data within the same 

machine. 

2.10.5 Embedded Systems 

RPC can also be utilized in embedded systems for communication 

between microcontrollers, sensors, and other devices. For example: 

IoT applications: Internet of Things (IoT) devices often 

communicate with backend servers or cloud services using RPC 

protocols like MQTT or CoAP. RPC enables devices to send sensor 

data, receive commands, and interact with remote services. 

Automotive systems: In-vehicle communication networks use RPC 

for communication between electronic control units (ECUs) 

responsible for functions such as engine control, braking, and 

infotainment. 

Overall, RPC is a versatile communication mechanism used in a 

wide range of distributed systems and applications to enable 

seamless interaction between remote components, services, and 

devices. 
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2.11 Summing Up 

 Definition: Inter-process communication is used for 

exchanging data between multiple threads in one or more 

processes or programs. 

 Inter-Process Communication (IPC) in distributed systems 

refers to the mechanisms and techniques used for 

communication and data exchange between different 

processes running on different machines within a network. 

 Message Passing is a fundamental IPC mechanism where 

processes communicate by sending and receiving messages. 

In a distributed system, messages are typically sent over the 

network using protocols like TCP/IP or UDP. It is a 

mechanism for a process to communicate and synchronize. 

 Shared memory IPC allows processes to communicate by 

accessing shared regions of memory. 

 Sockets provide a low-level IPC mechanism for 

communication between processes over a network. In a 

distributed system, processes can communicate using sockets 

by establishing connections and exchanging data streams. 

 Pipe is widely used for communication between two related 

processes. 

 A message queue is a linked list of messages stored within 

the kernel. 

 Direct process is a type of inter-process communication 

process, should name each other explicitly. 

 Indirect communication establishes like only when processes 

share a common mailbox each pair of processes sharing 

several communication links. 

 Shared memory is a memory shared between two or more 

processes that are established using shared memory between 

all the processes. 

 Inter Process Communication method helps to speedup 

modularity. 

 A semaphore is a signaling mechanism technique. 

 Signaling is a method to communicate between multiple 

processes by way of signaling. 

 The Request-Reply Protocol is a fundamental 

communication pattern used in distributed systems where 

one component (the client) sends a request message to 

another component (the server), and the server responds with 

a corresponding reply message. 

 Remote Procedure Call (RPC) is a protocol that enables a 

program to execute procedures or functions on a remote 

system as if they were local, abstracting away the details of 

network communication. 
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 Like FIFO follows FIFO method whereas Unlike FIFO use 

method to pull specific urgent messages before they reach 

the front. 

2.12 References and Suggested Readings: 

 Tanenbaum, A. S., & Van Steen, M. (2006). Distributed 

systems: principles and paradigms. Prentice Hall. 

 Stallings, William (2009).Computer Communication: 

Architecture Protocols and Standards. 

 Stallings, William, Tenth Edition, Data and Computer 

Communications, Pearson  

2.13 Model Questions 

1. What do you mean by Inter-Process Communication 

(IPC)?Explain its various characteristics. 

2.  Explain the importance of Inter-Process Communication 

(IPC). 

3. What are different approaches for Inter-Process 

Communication? 

4. Explain the basics of Remote Procedure Call (RPC) in 

distributed system. 

5. Explain RPC Operations, Parameter Passing in RPC in 

distributed system. 

6. What are the key characteristics of the Request-Reply 

Protocol? 

7. What do you mean by Distributed Computing? 

2.14 Answer to check your progress/Possible Answers to SAQ 

       1. Select the correct options of the following questions 

(i). IPC Stands for 

(a) Inter-Process Communication. (b) Inter-Program 

Communication 

(c) Interface-Process Communication (d) None of above. 

(ii)  A fundamental IPC mechanism where processes communicate 

by sending and receiving messages is known as 

(a) Pipe     (b) Message Passing 
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 (c) Shared Memory  (d) None of Above 

(iii)  Which of the following is the Transport Layer Protocol 

(a) HTTP      (b) FTP 

                  (c)UDP     (d) SMTP 

(iv) A low-level IPC mechanism for communication between 

processes over a network is provided by 

(a) Sockets      (b) Pipe 

(c)Message     (d) None of 

above 

(v) Which operation is used by the client initiates communication 

with the server by establishing a connection. 

            (a) call      (b) bind 

            (c) execute     (d) exit 

 

 

 

××× 
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UNIT: 3 

REMOTE OBJECT INVOCATION AND DISTRIBUTED 

OBJECTS 
 

Unit Structure: 

3.1 Introduction 

3.2 Objectives 

3.3 Remote Object Invocation in Distributed Systems 

3.3.1 Distributed System 

3.3.2 Communication in Distributed System 

3.3.3 Distributed Objects 

 3.3.4 Remote Method Invocation 

3.4 Integrating Clients and Objects in a Distributed Environment 

3.4.1 Client-Server Model in Distributed Systems 

 3.4.2 Object-Oriented design for Distributed Systems 

3.4.3 Distributed Object Naming and Discovery Services 

3.4.4 Object Lifecycle Management in Distributed    

         Environments 

3.5 Static versus Dynamic Remote Method Invocation (RMI) 

3.5.1 Static Remote Method Invocation 

3.5.2 Dynamic Remote Method Invocation 

3.6 Parameter Passing in RMI 

3.7 Examples of RMI Usage in Distributed Systems. 

3.8 Summing Up 

3.9 References and Suggested Readings 

3.10 Model Questions 

3.11 Answer to Check your Progress/Possible Answers to SAQ 

 

3.1 Introduction 

The world of computing is becoming increasingly interconnected. 

Gone are the days of standalone applications; today, programs often 

collaborate across networks, spanning multiple machines. This is the 

realm of distributed systems, where components work together to 

achieve a common goal, even if they're physically separated. This 
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chapter introduces you to a powerful concept in distributed systems: 

Remote Method Invocation (RMI). But before diving into RMI, 

we need to understand its key players i.e. Distributed Objects. 

These are special objects that reside on remote machines, yet can be 

accessed and interacted with just like local objects. Imagine a 

program on your computer seamlessly interacting with a database 

residing on a server across the network, that's the magic of 

distributed objects. RMI acts as the bridge between clients 

(programs initiating requests) and these remote objects. It allows 

clients to invoke methods on remote objects as if they were local, 

making development for distributed systems much simpler and more 

intuitive. This chapter will equip you with the knowledge of RMI 

and distributed objects. We'll explore how they work together, delve 

into different approaches to RMI, and discover how parameters are 

passed between clients and objects. Finally, we'll see how RMI is 

used in real-world applications, showcasing its power in building 

robust and scalable distributed systems. So, buckle up and get ready 

to unlock the potential of a distributed world. 

   

3.2  Objectives 

This unit is an attempt to equip you with a solid understanding of 

Remote Method Invocation (RMI) and its role in distributed 

systems. After going through this unit you will be able to- 

 Understand how distributed objects enable resource 

sharing, location transparency, and scalability in 

distributed systems. 

 Discover how RMI bridges this gap by providing a 

mechanism for transparent remote method invocation. 

 Differentiate between static and dynamic approaches to 

RMI. 

 Explain how parameters are transmitted during remote 

method invocations using RMI. 

 Identify real-world applications of RMI in various 

distributed system scenarios. 

 

3.3 Remote Object Invocation in Distributed Systems 

 3.3.1  Distributed System 

Distributed system is a collection of autonomous computers 

cooperating to achieve a common goal through message passing.  A 

distributed system isn't a single giant computer, but rather a network 

of independent computers called nodes. These nodes can be 
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anything from laptops and desktops to powerful servers. Each node 

has its own CPU, memory, and operating system, and they can run 

programs independently. Since nodes are separate; they don't 

directly access each other's memory. Instead, they communicate by 

sending messages back and forth. These messages contain 

information and instructions that allow nodes to work together. 

Message passing protocols define how messages are formatted, sent, 

received, and handled by different nodes.  One of the main benefits 

of distributed systems is the ability to share resources across 

multiple nodes.   This can include hardware resources like storage 

and processing power, software resources like databases and 

applications, and even data itself. By sharing resources, distributed 

systems can handle larger workloads and provide services to more 

users. Ideally, a well-designed distributed system appears to the user 

as a single, coherent system. Users shouldn't need to be aware of the 

underlying complexity of the distributed architecture.  They should 

be able to interact with the system as if it were a single computer, 

accessing resources and services seamlessly. Examples of 

distributed systems: World Wide Web, Cloud computing platforms 

(Google Cloud, Amazon Web Services), Cluster computing for 

scientific simulations, Multiplayer online games etc. Some key 

characteristics of distributed system are: 

 It is a collection of independent computers (nodes). 

 It communicates via message passing. 

 Resource sharing across multiple nodes. 

 Transparency of distribution (appears as a single 

system). 

 The nodes are independent of one another and the 

failure of one does not impact the others. 

The essential components of a distributed system are: 

 Nodes: Individual computers or devices. 

 Network: The communication backbone connecting 

nodes. 

 Middleware: Software that facilitates 

communication and interaction between nodes. 

 Distributed Algorithms: Protocols for coordination 

and decision-making. 

A distributed system's design describes how several separate 

computers work together to accomplish a single objective. It 

includes defining how these nodes exchange information, 
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STOP TO CONSIDER 

A distributed system is a network of independent computers (nodes) 

that work together to appear as a single, unified system to users. These 

nodes communicate through message passing, sharing resources like 

hardware, software, and data.  

Check Your Progress 

Question1.  What is a distributed system? 

Question2.  How do nodes communicate in a distributed system? 

Question3.  What is the significance of resource sharing in distributed 

systems? 

distribute resources, and deal with errors. The architecture of a 

distributed system can be client-server, peer-to-peer and hybrid. 

Client-server architecture is a classic model where clients 

request services from servers. In peer-to-peer nodes can act as 

both clients and servers. Hybrid architecture combines elements 

of both client-server and peer-to-peer. Some Challenges of 

distributed system are: 

 Concurrency: Managing multiple processes 

accessing shared resources. 

 Consistency: Ensuring data integrity across multiple 

nodes. 

 Fault Tolerance: Handling node failures and 

network partitions. 

 Security: Protecting data and systems from 

unauthorized access. 

 Latency: Dealing with communication delays 

between nodes. 

 

 

 

3.3.2  Communication in Distributed System 

 In order to comprehend the basic components of a distributed 

system, two questions must be taken into consideration:  

In a distributed system, what are the entities that are 

communicating? 

 What paradigm of communication is employed, or more 

precisely, how do they communicate?  

The answers to the two questions above are essential for 

understanding distributed systems; the distributed systems 

developer has a rich design space to choose from depending on 

what entities are communicating and how they communicate 
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with one other. The answer is often extremely clear from a 

system perspective for communicating entities because 

distributed systems are typically made up of processes that 

communicate with one another. This has led to the usual 

understanding of distributed systems as processes combined 

with suitable inter process communication paradigms. In most 

distributed system environments, processes are augmented by 

threads; thus, threads are the endpoints of communication. In 

some primitive environments, such as sensor networks, the 

underlying operating systems may not support process 

abstractions, and hence the entities that communicate in such 

systems are nodes. This is adequate to describe a distributed 

system at a basic level. From the standpoint of programming, 

this is insufficient, and further problem-oriented abstractions 

have been suggested like objects and components. 

Objects, which include both object-oriented design and object-

oriented programming languages, were introduced to facilitate 

and promote the application of object-oriented techniques in 

distributed systems. A computation in distributed object-based 

techniques is made up of several interacting objects that serve 

as the problem domain's natural units of decomposition. 

Interfaces are used to access objects, and the methods defined 

on an object are specified by the interface description language 

(IDL) that is associated with the object. Components resemble 

objects in that they offer problem-oriented abstractions for 

building distributed systems and are also accessed through 

interfaces. The key difference is that components specify not 

only their interfaces but also the assumptions they make in 

terms of other components/interfaces that must be present for a 

component to fulfill its function – in other words, making all 

dependencies explicit and providing a more complete contract 

for system construction. 

Communication paradigms, how entities communicate in a 

distributed system, commonly we have two types of 

communication paradigm: interprocess communication and 

remote invocation. Interprocess Communication in a 

distributed system is a process of exchanging data between two 

or more independent processes in a distributed environment. 
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Some types of interprocess communication (IPC) commonly 

used in distributed systems are: 

 Message Passing: Message passing involves 

processes communicating by sending and         

receiving messages. Messages can be structured data 

packets containing information or commands. It is a 

versatile method suitable for both synchronous and 

asynchronous communication. Message passing can 

be implemented using various protocols such as 

TCP/IP, UDP, or higher-level messaging protocols 

like AMQP (Advanced Message Queuing Protocol) 

or MQTT (Message Queuing Telemetry Transport). 

    Remote Procedure Calls (RPC): RPC allows one 

process to invoke a procedure (or function) in 

another process, typically located on a different 

machine over a network. It abstracts the 

communication between processes by making it 

appear as if a local procedure call is being made. 

RPC frameworks handle details like parameter 

marshalling, network communication, and error 

handling. 

    Sockets: Sockets provide a low-level interface for 

network communication between processes running 

on different computers. They allow processes to 

establish connections, send data streams (TCP) or 

datagrams (UDP), and receive responses. Sockets 

are fundamental for implementing higher-level 

communication protocols. 

    Message Queuing Systems: Message queuing 

systems facilitate asynchronous communication by 

allowing processes to send messages to and receive 

messages from queues. They decouple producers 

(senders) and consumers (receivers) of messages, 

providing fault tolerance, scalability, and persistence 

of messages.  

Remote invocation represents the most common 

communication paradigm in distributed systems, covering a 

range of techniques based on a two-way exchange between 

communicating entities in a distributed system and resulting in 

the calling of a remote operation, procedure or method. 
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STOP TO CONSIDER 

Processes are often considered the primary communicating entities in 

distributed system along with threads, nodes, objects, and components.  

Check Your Progress 

Question1.  What are the common entities that communicate in a 
distributed system? 

Question2.  Differentiate between interprocess communication and remote 
invocation. 

Question3.  What is the role of an interface in distributed object-based 

systems? 

 

 

3.3.3 Distributed Objects 

A distributed object is essentially a software component that resides 

on a remote machine but can be accessed and interacted with as if it 

were local. This abstraction is crucial for building complex, 

scalable, and flexible systems. The principles of encapsulation, 

inheritance and polymorphism remain the same as in traditional 

object-oriented programming. Data and methods are bundled 

together within the object, providing a clear interface and protecting 

internal state. However, in a distributed context, encapsulation 

becomes even more important as it helps to manage the complexity 

of distributed systems. Distributed objects can inherit properties and 

methods from other objects, just like their local counterparts. This 

promotes code reuse and promotes a hierarchical structure for object 

relationships. However, inheritance in distributed systems can 

introduce challenges related to object location and network 

communication. The ability of objects to take on multiple forms is 

equally valuable in distributed systems. It allows for flexible and 

dynamic interactions between objects, enabling different 

implementations of the same interface to be used interchangeably. 

Distribution is the core characteristic of distributed objects. They 

can reside on different machines, connected by a network. This 

enables load balancing, fault tolerance, and scalability. However, it 

also introduces challenges related to communication, 

synchronization, and consistency. 

Properties of Distributed Object 

 Location Transparency: Ideally, a distributed object 

should appear to be local to the client, regardless of 

its actual location. This simplifies development and 

improves system flexibility. 
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STOP TO CONSIDER 

Distributed objects are software components that can be accessed 

remotely as if they were local. They offer encapsulation, 

inheritance, polymorphism, and distribution as core properties 

 Concurrency: Distributed objects often need to 

handle multiple concurrent requests. This requires 

careful synchronization and resource management to 

prevent data inconsistencies and race conditions. 

 Fault Tolerance: Distributed systems are inherently 

prone to failures. Distributed objects should be 

designed with fault tolerance in mind, using 

techniques like replication, redundancy, and error 

handling. 

 Security: Protecting distributed objects and their data 

is crucial. This involves authentication, authorization, 

encryption, and other security measures to prevent 

unauthorized access and data breaches. 

 

Role of Distributed Object in Distributed Computing  

 Modularity: By breaking down a system into 

distributed objects, you create smaller, more 

manageable components that can be developed, 

tested, and deployed independently. This improves 

code maintainability and facilitates collaboration 

among development teams. 

 Flexibility: Distributed objects can be replaced or 

upgraded without affecting the entire system, as long 

as they adhere to the same interface. This allows for 

incremental improvements and adaptation to 

changing requirements. 

 Scalability: Distributed objects can be deployed on 

multiple machines to handle increasing workloads. 

This enables systems to grow gracefully as demand 

increases, without compromising performance. 

 Reusability: Well-designed distributed objects can 

be reused in different applications, reducing 

development time and effort. This promotes code 

reuse and improves overall system efficiency. 

Distributed objects are applicable in a wide range of domains, 

including e-commerce, enterprise applications, cloud 

computing, real-time systems etc. 
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STOP TO CONSIDER 

Remote Method Invocation (RMI) is a mechanism that allows objects to 

communicate and interact across different machines. It involves a client, 

stub, skeleton, and registry. 

Check Your Progress 

Question1.  What is the role of a stub in RMI? 

Question2.  What is the difference between a stub and a skeleton in RMI? 

Question3.  What are the primary security concerns in RMI? 

STOP TO CONSIDER 

The client-server model is a fundamental architecture for distributed 

systems that divides applications into clients and servers, offering 

advantages in task distribution, scalability, and adaptability. 

tampering. Finally, non-repudiation mechanisms are necessary 

to prevent parties from denying their actions, ensuring 

accountability and trust within the system. 

  

  

 

 

3.4 Integrating Clients and Objects in a Distributed 

Environment 

3.4.1 Client-Server Model in Distributed Systems 

The client-server model is the cornerstone of distributed systems, 

dividing applications into two distinct roles: clients and servers. 

Clients, typically the user interface or application logic, handle user 

interaction and initiate requests. Servers, the workhorses of the 

system, manage shared data and resources, responding to client 

requests and providing services. This distributed processing 

approach offers several key advantages. Firstly, tasks are split 

between client and server, allowing for efficient resource allocation. 

The client focuses on user experience while the server handles 

complex calculations and data management. Secondly, network 

communication becomes the backbone of interaction. Clients and 

servers can reside on separate machines, enabling scalability – 

adding more servers can handle increased workloads. Finally, the 

model offers flexibility, adapting to diverse application domains. 

Whether it's web servers delivering content, email servers managing 

communication, or database servers storing data, the client-server 

model underpins a vast range of distributed systems. 
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Check Your Progress 

Question1.  What are the two main components of a client-server 
model? 

Question2.  Give an example of a client-server application. 

Question3.  What is the role of a server in a client-server model? 

Question4.  What is the role of a client in a client-server model? 

 

STOP TO CONSIDER 

Object-Oriented Design (OOD) is a powerful approach for 

building distributed systems. By encapsulating data and behavior, 

using inheritance and polymorphism, OOD promotes modularity, 

reusability, and flexibility. 

 

 

3.4.2   Object-Oriented design for Distributed Systems 

Object-oriented design (OOD) principles are fundamental to 

constructing efficient and adaptable distributed systems. By 

encapsulating data and behavior within objects, OOD promotes 

modularity, making code more manageable and maintainable. 

Inheritance facilitates code reuse, accelerating development and 

reducing redundancy. Polymorphism allows objects to take on 

various forms, enhancing system flexibility and adaptability to 

changing requirements. To achieve seamless integration, 

distribution transparency is crucial, masking the complexities of 

remote object interaction. OOD also supports concurrency, 

enabling objects to handle multiple requests simultaneously, 

improving system responsiveness. Furthermore, fault tolerance, 

a cornerstone of reliable distributed systems, can be enhanced 

through OOD by encapsulating error handling and recovery 

mechanisms within objects.   However, challenges persist. 

Managing the distribution of objects, including their location 

and state, requires careful consideration to ensure consistency 

and availability. Network latency and bandwidth limitations can 

impact performance, necessitating efficient communication 

protocols and object design. Additionally, robust security 

measures are essential to protect sensitive data and prevent 

unauthorized access. By effectively addressing these 

challenges, developers can leverage OOD to build scalable, 

resilient, and secure distributed systems. 
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Check Your Progress 

Question1.  What are the key OOD principles beneficial for 
distributed systems? 

Question2.  What is the importance of distribution transparency in 

OOD for distributed systems? 
Question3.  What are the primary challenges of applying OOD to 

distributed systems? 

 

 

 

 

 

 

 

3.4.3 Distributed Object Naming and Discovery Services 

In distributed systems, locating and accessing objects across 

different machines is a fundamental challenge. To address this, 

naming and discovery services play a crucial role. Naming 

services act as a directory or mapping system that associates 

human-readable names with the network addresses of objects. 

This abstraction layer simplifies the process of referencing 

objects, as users can employ meaningful names instead of 

complex network locations. Examples of naming services 

include the Domain Name System (DNS), which maps domain 

names to IP addresses, and the Lightweight Directory Access 

Protocol (LDAP), which provides a hierarchical structure for 

storing and accessing directory information.  

Discovery services go beyond simple name-to-address 

mapping by enabling the search for objects based on attributes 

or services they provide. This dynamic approach allows for 

flexible and adaptable system designs. Unlike naming services, 

which rely on predefined names, discovery services facilitate 

finding objects based on their characteristics. For instance, a 

discovery service might locate all printers available on a 

network or identify services that meet specific criteria. 

The core functionalities of naming and discovery services 

encompass object registration, lookup, and binding. Object 

registration involves adding objects to the service's database, 

associating them with their respective names or attributes. 

Object lookup enables clients to find objects by querying the 

service with a name or specific criteria. Once an object is 

located, object binding establishes a communication channel 

between the client and the object, facilitating interaction and 

data exchange. By providing efficient mechanisms for locating 

and accessing distributed objects, naming and discovery 

services are essential components of modern distributed 
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Self Asking Questions 

How does object binding contribute to the overall functionality of 

distributed systems?   (50 words) 

……………………………………………………………………… 

……………………………………………………………………… 

……………………………………………………………………… 

……………………………………………………………………… 

 

STOP TO CONSIDER 

Naming and discovery services are essential components of 

distributed systems that facilitate the location and access of objects 

across different machines. 

systems. They contribute to system scalability, flexibility, and 

ease of management by abstracting away the complexities of 

network-based object interactions. 

 

 

 

3.4.4 Object Lifecycle Management in Distributed 

Environments 

Object lifecycle management is a critical aspect of distributed 

systems, encompassing the entire journey of an object from 

creation to destruction. It involves a complex interplay of 

various operations and considerations. 

Object Creation and Activation: The lifecycle of a distributed 

object begins with its creation. This involves instantiating the 

object on a suitable remote machine. However, not all objects 

need to be actively running at all times. To optimize resource 

utilization, inactive objects can be placed in a suspended state. 

When required, these objects can be activated, bringing them 

back to a ready state to serve client requests. This process, 

known as object activation, involves loading the object's state 

from persistent storage and initializing it. 

Object Passivation and Persistence: To conserve system 

resources and handle failures gracefully, objects can be 

passivated. This involves saving the object's state to persistent 

storage and temporarily removing it from memory. Passivation 

is essential for objects that are infrequently accessed or have 

large memory footprints. Object persistence, on the other hand, 
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is concerned with storing object data for extended periods, 

independent of the object's runtime state. This is crucial for data 

that needs to be preserved even after the system is shut down. 

Object Migration: In dynamic distributed environments, it 

may be necessary to move objects between different machines. 

Object migration involves transferring an object's state and 

identity to a new location. This can be done for various reasons, 

such as load balancing, fault tolerance, or data locality. 

However, migrating objects can be complex and requires 

careful coordination to avoid data inconsistencies and 

disruptions. 

Object Garbage Collection: Similar to traditional 

programming languages, distributed systems need mechanisms 

to reclaim resources occupied by objects that are no longer in 

use. Object garbage collection identifies and removes these 

objects to prevent memory leaks and improve performance. In 

distributed environments, garbage collection becomes more 

challenging due to the distributed nature of objects and the 

potential for network partitions.    

Managing the lifecycle of distributed objects presents several 

challenges. Coordination is crucial to ensure consistency 

across multiple nodes. For example, updating an object's state 

on one node while other nodes have outdated information can 

lead to inconsistencies. Fault tolerance is another critical 

aspect. Objects and their associated data must be protected from 

failures, and the system should be able to recover from such 

events. Performance is also a significant concern. Object 

lifecycle operations, such as activation, passivation, and 

migration, should be optimized to minimize overhead and 

maximize system responsiveness.  To address the challenges of 

object lifecycle management, several key concepts are 

employed. Object persistence ensures that object data survives 

system failures and restarts. Object replication creates multiple 

copies of an object to enhance availability and performance. By 

distributing object data across different nodes, the system can 

tolerate failures and provide faster access to data. Object 

leasing is a mechanism for controlling object lifetimes. Objects 

are granted leases, which specify a time period during which 
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Self Asking Questions 

How does object migration impact system performance? (50 

words) 

………………………………………………………………………

………………………………………………………………………

………………………………………………………………………

……………………………………………………………………… 

they are considered active. If an object is not renewed before 

the lease expires, it can be passivated or garbage collected.  

Effective object lifecycle management is essential for building 

reliable, scalable, and efficient distributed systems. By carefully 

considering the various factors involved and employing 

appropriate techniques, developers can manage the complex 

lifecycle of distributed objects and optimize system 

performance. 

 

 

3.5 STATIC VERSUS DYNAMIC REMOTE METHOD 

INVOCATION  

3.5.1 Static Remote Method Invocation 

Static Remote Method Invocation, also known as compiled 

RMI is the traditional approach where method calls are resolved 

at compile time. In this method, the client-side code is aware of 

the remote interfaces and the methods they provide. This means 

that the method signatures are fixed and checked during the 

compilation of the client application. Static RMI is 

straightforward and offers performance advantages because the 

method calls are resolved at compile time, reducing the 

overhead during runtime. 

Characteristics of Static RMI: 

Compile-Time Binding: In static RMI, method invocations are 

bound to their respective implementations during the compile 

time. This results in faster execution as the method calls do not 

need to be resolved at runtime. 

Predictable Performance: Since the method signatures are 

known in advance, the performance is more predictable and 
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STOP TO CONSIDER 
Static RMI involves pre-compiled method calls, offering performance 

benefits but limited flexibility. Dynamic RMI resolves method calls at 

runtime, providing greater flexibility but potentially sacrificing 

performance. The choice between the two depends on the specific 

requirements of the distributed system, such as performance needs, 

frequency of interface changes, and development complexity. 

generally better compared to dynamic RMI. 

Less Flexibility: Static RMI can be less flexible as any change 

in method signatures requires recompiling the client 

application. This can lead to higher maintenance efforts when 

changes are made to the remote interfaces. 

 

 

3.5.2 Dynamic Remote Method Invocation 

Dynamic Remote Method Invocation, on the other hand, 

involves resolving method calls at runtime. In this approach, the 

client does not have fixed knowledge of the method signatures 

in advance. Instead, the method calls are dynamically resolved 

using reflection or similar mechanisms. This allows for greater 

flexibility as the client application does not need to be 

recompiled when remote interfaces change. 

Characteristics of Dynamic RMI: 

Runtime Binding: Methods are bound at runtime, which 

provides flexibility as the client application does not need to be 

updated when remote interfaces change. This makes dynamic 

RMI suitable for environments where interfaces evolve 

frequently. 

Increased Overhead: The runtime binding introduces 

additional overhead because method calls must be resolved 

dynamically, which can affect performance compared to static 

RMI. 

Greater Flexibility: Dynamic RMI is more adaptable to 

changes in the remote interfaces. This can simplify 

development and maintenance, especially in complex 

distributed systems where interfaces are subject to frequent 

changes. 
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Check Your Progress 

Question1.  What is the primary difference between static and 

dynamic RMI? 
Question2.  How does flexibility differ between static and dynamic 

RMI? 

 

 

Both static and dynamic Remote Method Invocation approaches 

have their advantages and trade-offs. Static RMI offers better 

performance and simplicity when method signatures are stable, 

while dynamic RMI provides flexibility and adaptability in 

environments where remote interfaces are frequently updated. 

The choice between static and dynamic RMI depends on the 

specific requirements of the distributed application and the 

nature of the remote interactions. 

 

 

3.6 Parameter Passing in RMI 

Parameter passing is a fundamental aspect of remote method 

invocation. It involves transferring data between the client and 

server during method calls. Understanding how different data 

types are handled and the implications of passing by value or 

reference is crucial for effective RMI programming.  

RMI supports a wide range of data types for parameter passing, 

including: 

 Primitive data types: These include basic data types 

like int, double, boolean, etc. They are passed by 

value, meaning a copy of the value is sent to the 

remote method. 

 Strings: Strings are treated as immutable objects in 

Java and are passed by reference. However, since 

strings are immutable, the remote method cannot 

modify the original string.    

 Arrays: Arrays can be passed as parameters. The 

behavior depends on the element type. If the elements 

are primitive types, the array is passed by value, 

meaning a copy of the array is sent. If the elements 

are objects, the array is passed by reference, but the 

objects themselves are still passed by value. 
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 Objects: Objects can be passed as parameters, but 

they are passed by reference. This means that the 

remote method receives a reference to the same 

object that exists on the client side. Any changes 

made to the object on the server side will be reflected 

on the client side. 

Passing Primitives and Objects by Value and Reference 

Understanding the difference between passing by value and 

passing by reference is essential in RMI. In passing by value, a 

copy of the data is sent to the remote method. Any 

modifications made to the data on the server side do not affect 

the original data on the client side. This is the case for primitive 

data types and arrays of primitive data types. In case of passing 

by reference, a reference to the original object is sent to the 

remote method. Any changes made to the object on the server 

side will be reflected on the client side. This is the case for 

objects and arrays of objects. It's important to note that while 

objects are passed by reference in RMI, the object itself is still 

serialized and deserialized during the transfer. This means that a 

copy of the object's state is sent to the server, but the reference 

to the original object is retained on the client side. Object 

serialization is the process of converting an object's state into a 

byte stream, which can be transmitted over the network. 

Deserialization is the reverse process, reconstructing the object 

from the byte stream. RMI uses object serialization and 

deserialization to transfer objects between the client and server. 

For an object to be serializable, it must implement the 

Serializable interface. This interface is a marker interface that 

indicates that the object's state can be serialized. When an 

object is passed as a parameter or returned from a remote 

method, it is automatically serialized and sent over the network. 

The object is then deserialized on the receiving end to recreate 

the object. It's important to consider the performance 

implications of object serialization and deserialization. Large 

objects can take significant time to serialize and deserialize, 

affecting overall RMI performance. Several factors influence 

the performance of parameter passing in RMI, Data type; 

primitive data types are generally faster to pass than objects. 

Object size; larger objects take longer to serialize and 
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STOP TO CONSIDER 

Parameter passing in RMI involves transferring data between 

client and server. Primitive data types are passed by value, while 

objects are passed by reference, though the object itself is serialized 

and deserialized. 

Check Your Progress 

Question1.  What is the difference between passing a primitive and an 
object as a parameter in RMI? 

Question2.  Can you modify an object passed by reference in a remote 
method? 

 

Self Asking Questions 

How does the choice of data types impact the overall efficiency of an 

RMI application? (80 words) 

………………………………………………………………………

………………………………………………………………………

………………………………………………………………………

……………………………………………………………………… 

deserialize. Network latency; the time it takes for data to travel 

between the client and server affects overall performance. 

Serialization/deserialization overhead; the process of 

converting objects to byte streams and vice versa adds 

overhead. To optimize performance, it's essential to carefully 

consider the data types used in parameter passing, minimize 

object size, and use efficient serialization techniques. 

 

 

 

 

 

3.7 Examples of RMI Usage in Distributed Systems. 

RMI has found widespread application in various domains due 

to its ability to distribute functionalities across multiple 

systems. E-commerce; RMI is extensively used in e-commerce 

applications for managing product catalogs, processing orders, 

and handling inventory management. For instance, a distributed 

e-commerce system might have separate servers for product 

information, order processing, and payment gateways, all 

communicating through RMI. Distributed Databases; RMI 

plays a crucial role in distributed database systems by enabling 

data access and manipulation across multiple nodes. It can be 
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used for load balancing, data replication, and fault tolerance. 

For example, a distributed database system might employ RMI 

to distribute query processing among multiple servers. In other 

applications such as financial systems; for real-time stock 

quotes, trading, and risk management, Collaborative 

applications; for sharing documents, whiteboarding, and real-

time communication, Enterprise resource planning (ERP) 

systems; for integrating different modules and managing 

complex business processes use RMI. 

RMI is a form of middleware, which is software that facilitates 

communication and interaction between different software 

components. It provides a layer of abstraction over underlying 

network protocols and operating systems. CORBA (Common 

Object Request Broker Architecture) is a more complex and 

heavyweight middleware platform compared to RMI, CORBA 

offers a broader range of features, including language 

interoperability and distributed transaction support. However, it 

is also more complex to implement and deploy. DCOM 

(Distributed Component Object Model) is a Microsoft-

specific technology, similar to RMI but is tightly integrated 

with the Windows operating system. While it offers some 

advantages in terms of performance and integration with other 

Microsoft technologies, it is less portable than RMI. 

RMI, while powerful, faces certain challenges in terms of 

performance, security, reliability and complexity. Network 

latency and serialization/deserialization overhead can impact 

performance. RMI inherently involves network communication, 

which introduces latency. This can significantly impact the 

perceived performance of applications, especially for operations 

that require frequent remote method invocations. The process of 

converting objects into byte streams for transmission 

(serialization) and reconstructing them at the receiving end 

(deserialization) adds overhead. Large objects or complex data 

structures can exacerbate this issue. Protecting data and 

preventing unauthorized access is crucial in RMI. Verifying the 

identity of clients and servers is crucial to prevent unauthorized 

access. Weak authentication mechanisms can lead to security 

breaches. Controlling access to specific methods or resources 

based on user privileges is essential to protect sensitive data. 
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Protecting sensitive data transmitted over the network requires 

encryption and other security measures to prevent 

eavesdropping. Ensuring that data is not tampered with during 

transmission is vital for maintaining data integrity. RMI 

systems can be vulnerable to Denial of Service attacks, which 

can render the system unresponsive. Ensuring fault tolerance 

and recovery is essential for mission-critical applications. RMI 

systems must be able to handle failures such as network 

outages, server crashes, or unexpected exceptions. 

Implementing mechanisms for detecting and recovering from 

failures is crucial. Coordinating transactions across multiple 

nodes can be complex and error-prone. Ensuring data 

consistency and atomicity in distributed environments is 

challenging. Developing and managing distributed systems 

using RMI can be complex. Developing distributed applications 

using RMI can be more complex than traditional monolithic 

applications. Debugging issues across multiple machines can be 

time-consuming. Deploying and managing distributed systems 

requires careful planning and coordination. Scaling and 

maintaining RMI-based systems can be challenging. 

Example of RMI Usage in Distributed Systems 

An example shared whiteboard application to illustrate RMI. 

This application allows users to draw shapes on a shared 

canvas, with a server maintaining the state of the drawing. 

Interfaces: 

Shape: Represents a drawable shape on the whiteboard. 

ShapeList: Manages a collection of Shape objects. 

import java.rmi.*; 

import java.util.Vector; 

 

public interface Shape extends Remote { 

    int getVersion() throws RemoteException; 

    GraphicalObject getAllState() throws RemoteException; 

} 

 

public interface ShapeList extends Remote { 

    Shape newShape(GraphicalObject g) throws 

RemoteException; 

    Vector<Shape> allShapes() throws RemoteException; 
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STOP TO CONSIDER 

RMI is a powerful tool for building distributed systems, enabling 

communication and interaction between objects on different 

machines. It has found applications in various domains, such as e-

commerce, distributed databases, and financial systems. 

Check Your Progress 

Question1.  What are the main advantages of using RMI in 

distributed systems? 

Question2.  What are the common performance challenges in 
RMI? 

Question3.  What is the difference between RMI and CORBA? 
 

 

    int getVersion() throws RemoteException; 

} 

In this example: 

Shape interface has methods to get the version and state of a 

shape. 

ShapeList interface has methods to add new shapes, retrieve all 

shapes, and get version information. 

Implementation Details 

Serialization: GraphicalObject must implement Serializable to 

allow its instances to be passed by value. 

Method Invocation: The newShape method in ShapeList 

accepts a GraphicalObject and returns a Shape reference. The 

getAllState method in Shape returns a GraphicalObject by 

value. 

Practical Considerations 

Concurrency: When designing RMI applications, consider 

thread safety and concurrency, as remote objects might be 

accessed by multiple clients simultaneously. 

Exceptions: Remote method calls must handle Remote 

Exception to manage communication failures. 
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3.8 Summing Up 

1. Distributed systems involve multiple computers working 

together to achieve a common goal. 

2. Remote Method Invocation (RMI) enables objects on 

different machines to interact as if they were local. 

3.  Key components of RMI include client, stub, skeleton, and 

registry. 

4. Distributed objects are the foundation of RMI, allowing for 

location transparency and object-oriented programming in 

distributed environments. 

5. Client-server model is a common architecture for 

distributed systems, with clients requesting services from 

servers. 

6.  Object-oriented design (OOD) principles enhance 

distributed system development through encapsulation, 

inheritance, polymorphism, and distribution transparency. 

7. Naming and discovery services help locate distributed 

objects. 

8. Object lifecycle management includes creation, activation, 

passivation, migration, and garbage collection. 

9. Static RMI involves compile-time binding, offering 

performance but less flexibility. 

10. Dynamic RMI uses runtime binding, providing flexibility 

but potentially lower performance. 

11.  Primitive data types are passed by value in RMI. 

12. Objects are passed by reference, but the object itself is 

serialized and deserialized. 

13. RMI faces challenges in performance, security, reliability, 

and complexity. 

 

 3.9 References and Suggested Readings   

1. Coulouris, G., Dollimore, J., Kindberg, T., Blair, 

G.,  (2012). Distributed Systems Concepts and 

Design (Fifth Edition).Pearson. 

2. https://www.geeksforgeeks.org/remote-method-

invocation-in-java/ 

 

 3.10 Model Questions 

1. Define a distributed system. 

2. What are the key characteristics of a distributed 

system? 
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3. Differentiate between a distributed system and a 

parallel system. 

4. Explain the concept of transparency in distributed 

systems. 

5. What are the common challenges in building 

distributed systems? 

6.  Describe the role of middleware in distributed 

systems. 

7. What is the significance of fault tolerance in 

distributed systems?  

8. Define Remote Method Invocation (RMI). 

9. What are the core components of an RMI system? 

10. Explain the role of a stub in RMI. 

11.  Differentiate between a stub and a skeleton. 

12. How does object serialization work in RMI? 

13. What are the advantages of using RMI for distributed 

computing? 

14. What are the performance implications of passing 

large objects in RMI? 

15.  Explain the concept of distributed objects. 

16. How does object-oriented design support distributed 

systems? 

17. What is the role of a naming service in distributed 

systems?  

18.  Describe the client-server model. 

19. What are the key components of a client-server 

architecture? 

20. What are the challenges of managing distributed 

objects? 

21. How does object replication improve system 

availability? 

22. Explain the concept of object leasing. 

23. What is the role of garbage collection in distributed 

systems? 

24.  What are the common security threats in RMI? 

25. How can you ensure data integrity in RMI? 

26.  Explain the concept of distributed transactions. 

27. What are the performance optimization techniques for 

RMI? 

28. How does RMI compare to other distributed 

computing technologies like CORBA and DCOM? 
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29. Discuss the role of middleware in RMI. 

30. Differentiate between static and dynamic RMI. 

31.  When would you choose static RMI over dynamic 

RMI? 

32. What are the performance implications of static and 

dynamic RMI? 

33. How does flexibility differ between static and 

dynamic RMI? 

34. Discuss the use cases for static and dynamic RMI. 

35.  Explain the difference between passing by value and 

passing by reference in RMI. 

36. How are primitive data types handled in RMI? 

37. What are the performance implications of object 

serialization in RMI? 

38. How can you optimize parameter passing in RMI? 

39. What are the potential security risks associated with 

parameter passing in RMI? 

 
 

 3.11 Answer to check your progress/Possible Answers to SAQ 

  

What is a distributed system? 

 A distributed system is a collection of independent 

computer systems that communicate and coordinate 

their actions to appear as a single, coherent system to the 

user. These systems are geographically dispersed and 

connected through a network. They work together to 

achieve a common goal by sharing resources and 

processing tasks. 

 

How do nodes communicate in a distributed system? 

 Nodes in a distributed system communicate through 

various methods. Nodes exchange data by sending and 

receiving messages. Nodes can communicate using 

remote procedure calls. One node can invoke a 

procedure on another node as if it were a local call. 

Sockets, a lower-level mechanism for network 

communication, providing direct control over data 

transmission. Using message queuing systems also 

nodes can communicate for asynchronous 

communication. 
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What is the significance of resource sharing in distributed 

systems? 

 Resource sharing is a cornerstone of distributed systems. 

It increases efficiency by distributing workloads across 

multiple nodes; systems can handle larger workloads 

and improve performance. If one node fails, other nodes 

can take over its tasks, preventing system failure.  

Systems can grow by adding more nodes, increasing 

capacity and handling increased demand. By sharing 

resources, organizations can optimize hardware and 

software utilization. Data can be replicated across 

multiple nodes for improved accessibility and reliability. 

What are the common entities that communicate in a 

distributed system? 

 In distributed systems, the primary entities that 

communicate are processes or threads. These are the 

fundamental units of execution within a system. While 

processes are heavier-weight entities with their own 

memory space, threads are lighter-weight and share the 

same memory space within a process. Both can serve as 

endpoints for communication in a distributed 

environment. 

Differentiate between interprocess communication and 

remote invocation. 

 Interprocess Communication (IPC) is a general term 

for any mechanism that allows processes to exchange 

data and synchronize their actions. It encompasses a 

wide range of techniques, including message passing, 

shared memory, and pipes. IPC can occur within a 

single system or across multiple systems. Remote 

Invocation is a specific type of IPC where a process on 

one machine invokes a procedure or method on another 

machine. It provides a higher-level abstraction than raw 

IPC, making it easier to interact with remote 

components. Examples include Remote Procedure Calls 

(RPC) and Remote Method Invocation (RMI). 
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What is the role of an interface in distributed object-based 

systems? 

 In distributed object-based systems, an interface defines 

the contract between a client and a distributed object. It 

specifies the methods that a client can invoke on the 

object, along with their parameters and return types. The 

interface acts as a blueprint for interaction, promoting 

modularity, encapsulation, and code reusability. By 

defining the interface separately from the object's 

implementation, it allows for different implementations 

of the same interface to be used interchangeably, 

enhancing flexibility and maintainability. 

 

What are the core properties of a distributed object? 

 The core properties of a distributed object are Location 

transparency, Concurrency, Fault tolerance and 

Security.  

In what domains are distributed objects commonly used? 

 E-commerce, enterprise applications, cloud computing, 

real-time systems etc. 

What are the challenges in managing distributed objects? 

 Managing distributed objects presents several 

challenges: 

o Ensuring consistency and synchronization of 

object state across multiple nodes. 

o Handling failures and recovering object state. 

o Optimizing object access and communication to 

achieve acceptable performance. 

o Protecting distributed objects from unauthorized 

access and data breaches. 

o  Dealing with network partitions and ensuring 

system resilience. 

o Managing objects on different platforms and 

with different programming languages. 

What is the role of a stub in RMI? 

 A stub is a local proxy object on the client side that 

represents a remote object. It acts as a placeholder for 

the actual remote object. When a client invokes a 

method on the stub, the stub marshals the method 
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arguments and sends them to the server-side skeleton. It 

then waits for the response from the server and returns 

the result to the client. Essentially, the stub hides the 

network communication details from the client, making 

it appear as if the method is being invoked locally. 

 

What is the difference between a stub and a skeleton in 

RMI? 

 Stub Resides on the client side. Acts as a local 

representative of the remote object. Marshals method 

arguments and sends them to the server. Skeleton 

resides on the server side. Receives incoming requests, 

unmarshals parameters, and forwards them to the actual 

remote object. Returns the result back to the client 

through the stub.  

 

What are the primary security concerns in RMI? 

 The primary security concerns in RMI includes 

o Authentication: Verifying the identity of clients 

and servers to prevent unauthorized access.  

o Authorization: Controlling access to specific 

methods or resources based on user privileges.  

o Confidentiality: Protecting sensitive data 

transmitted over the network using encryption.  

o Integrity: Ensuring data is not tampered with 

during transmission.  

o Non-repudiation: Preventing parties from 

denying their actions. 

o Denial of Service (DoS) attacks: Protecting 

against malicious attempts to overload the 

system. 

 

What are the two main components of a client-server 

model? 

 Client and server are the two main components of a 

client-server model. 

 

Give an example of a client-server application. 

 Email is a common example of a client-server 

application. 
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What is the role of a server in a client-server model? 

 The server in a client-server model is responsible for: 

o Managing shared resources and data 

o Providing services to clients 

o Responding to client requests 

o Storing and processing information 

What is the role of a client in a client-server model? 

 The client in a client-server model is responsible for: 

o Initiating requests to the server 

o Interacting with the user 

o Displaying information received from the server 

o Sending data to the server for processing 

What are the key OOD principles beneficial for distributed 

systems? 

 The key OOD principles that are particularly beneficial 

for distributed systems are: 

o Encapsulation: This helps to create well-

defined, modular components that can be 

distributed across different systems. 

o Inheritance: Supports code reuse and the 

creation of hierarchical relationships between 

distributed objects. 

o Polymorphism: Enables flexible interactions 

between distributed objects, allowing for 

different implementations of the same interface. 

o Distribution transparency: This principle aims 

to hide the complexities of distributed 

computing, making remote objects appear as 

local ones. 

 

What is the importance of distribution transparency in 

OOD for distributed systems? 

 Distribution transparency is crucial in OOD for 

distributed systems as by making remote objects appear 

local, developers can focus on application logic rather 

than network communication details. As the system 

grows, new components can be added without 

significantly impacting existing code. Changes to the 
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underlying distribution infrastructure are less likely to 

affect the application which improves maintainability. 

 

What are the primary challenges of applying OOD to 

distributed systems?  

 The primary challenges of applying OOD to distributed 

systems include: 

o Tracking object locations, states, and lifecycles 

across multiple systems. 

o Dealing with network latency, bandwidth 

limitations, and potential failures. 

o Managing concurrent access to shared objects 

and preventing data inconsistencies. 

o Protecting distributed objects and their data from 

unauthorized access. 

o Designing systems that can continue to function 

in the face of failures. 

o Dealing with different hardware, software, and 

network environments. 

How does object binding contribute to the overall 

functionality of distributed systems?                         

 Object binding is the crucial step that transforms a 

theoretical connection between a client and a remote 

object into a functional interaction. It establishes a 

communication channel, allowing data and method calls 

to be exchanged. Without binding, even if an object is 

discovered, it remains inaccessible. This process ensures 

seamless interaction between distributed components, 

enabling tasks like remote procedure calls, data transfer, 

and synchronization. In essence, object binding is the 

bridge that connects the dots in distributed systems, 

making them operational and effective. 

 

How does object migration impact system performance?  

 Object migration can significantly impact both system 

performance and consistency. It can improve 

performance by moving objects closer to their 

frequently accessing clients, reducing network latency. 

However, the migration process itself can be resource-

intensive, temporarily impacting system performance. 
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What is the primary difference between static and dynamic 

RMI? 

 The primary difference between static and dynamic RMI 

lies in the timing of method resolution. In static RMI, 

method calls are resolved at compile time, while in 

dynamic RMI, they are resolved at runtime. This 

fundamental difference impacts performance, flexibility, 

and development complexity. 

 

How does flexibility differ between static and dynamic 

RMI? 

 Dynamic RMI offers significantly more flexibility than 

static RMI. In static RMI, the structure of remote objects 

is fixed at compile time, requiring changes to the client 

code if the remote interface evolves. In contrast, 

dynamic RMI allows clients to adapt to changes in 

remote interfaces at runtime without recompilation, 

making it more suitable for systems with frequently 

changing requirements. 

 

What is the difference between passing a primitive and an 

object as a parameter in RMI? 

 Primitives are passed by value, meaning a copy of the 

primitive value is sent to the remote method. Any 

modifications made to the primitive within the remote 

method do not affect the original value on the client 

side. Objects are passed by reference, meaning a copy 

of the object reference is sent to the remote method. 

While this might seem like pass-by-reference behavior, 

it's important to note that the object itself is serialized 

and sent over the network. Any changes made to the 

object's state on the server side will be reflected on the 

client side when the object is deserialized back. 

Can you modify an object passed by reference in a remote 

method? 

 When an object is passed by reference in RMI, the 

remote method receives a reference to the same object 

that exists on the client side. Any changes made to the 

object's state within the remote method will be reflected 

in the original object on the client side when the method 

returns. 
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How does the choice of data types impact the overall 

efficiency of an RMI application? 

 The choice of data types significantly influences the 

efficiency of an RMI application. Primitive Data 

Types: Generally more efficient as they are passed by 

value, requiring less overhead compared to objects. 

Objects: Less efficient due to the overhead of 

serialization and deserialization. Larger objects can 

significantly impact performance, especially over slower 

networks. Complex object hierarchies can further 

increase overhead. Arrays: Efficiency depends on the 

element type. Primitive arrays are generally more 

efficient than object arrays. Large arrays can impact 

performance due to their size. 

What are the main advantages of using RMI in distributed 

systems? 

 RMI aligns seamlessly with object-oriented 

programming principles, making it natural to distribute 

object-based applications. Compared to other distributed 

computing technologies, RMI provides a relatively 

straightforward approach for developing distributed 

applications, especially within the Java ecosystem. RMI 

supports communication between Java applications 

running on different platforms, enhancing portability. 

Automatic garbage collection simplifies memory 

management in distributed environments. 

 

What are the common performance challenges in RMI? 

 The time taken for data to travel between machines can 

significantly impact performance, especially for 

frequent interactions. Converting objects to byte streams 

and vice versa for network transmission incurs 

processing costs. The garbage collection process can 

sometimes interfere with application performance, 

particularly in high-throughput systems. 

 

What is the difference between RMI and CORBA? 

 RMI and CORBA are both middleware technologies for 

distributed computing, but they have key differences:  

RMI is primarily designed for Java, while CORBA 
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supports multiple programming languages. RMI is 

generally simpler to use and implement compared to 

CORBA, which offers a more complex and feature-rich 

approach. RMI often offers better performance than 

CORBA for simpler applications due to its focus on 

Java and reduced overhead. 
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UNIT: 4 

NAMING ENTITIES AND DOMAIN NAME SYSTEM (DNS) 
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4.23 Answer to check your progress/Possible Answers to SAQ 

 

 

4.1 Introduction 

Naming entities and managing the Domain Name System (DNS) are 

crucial aspects of designing and maintaining distributed systems. 

This abstract explores the significance of naming entities in 

distributed environments and the pivotal role of DNS in translating 

human-readable domain names into machine-readable IP addresses. 
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Naming entities in distributed systems involves assigning unique 

identifiers to components, services, and resources to facilitate 

communication and interaction. With the dynamic nature of 

distributed environments, challenges such as scalability, 

consistency, and fault tolerance arise. Effective naming schemes 

provide a foundation for seamless communication, enabling 

components to discover and interact with each other transparently. 

Naming entities in distributed systems involves assigning unique 

identifiers to various components, services, and resources within the 

system. A well-designed naming scheme simplifies communication, 

enables resource discovery, and facilitates scalability and flexibility 

in distributed environments. 

In distributed systems, naming entities involves assigning unique 

identifiers to various components, services, and resources. 

Challenges such as scalability, consistency, and fault tolerance arise 

due to the dynamic nature of distributed environments. Effective 

naming schemes simplify communication, enable resource 

discovery, and support scalability and flexibility. 

The Domain Name System (DNS) serves as the backbone of the 

Internet's naming infrastructure, providing a hierarchical naming 

structure and facilitating name resolution. DNS operates through a 

distributed system of servers, including authoritative name servers 

and recursive resolvers, to translate domain names into IP addresses 

and vice versa. 

Advanced topics in DNS, such as DNS Security (DNSSEC), 

Anycast DNS, and Content Delivery Networks (CDNs), enhance the 

security, performance, and resilience of distributed systems. 

DNSSEC adds cryptographic signatures to DNS records to prevent 

tampering and spoofing, while Anycast DNS and CDNs optimize 

routing and content delivery. 
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This introduction sets the stage for exploring the intricacies of 

naming entities and DNS management in distributed systems. 

Throughout this discussion, we will delve into the challenges of 

naming entities, the principles of DNS operation, advanced topics in 

DNS management, and best practices for designing robust and 

scalable distributed systems. By understanding the significance of 

naming entities and leveraging DNS effectively, organizations can 

build resilient and efficient distributed systems capable of meeting 

the demands of modern computing environments. 

In a distributed system, naming entities and managing them 

efficiently is crucial for seamless communication and interaction 

between distributed components. This chapter delves into the 

importance of naming entities in distributed systems and explores 

the Domain Name System (DNS) as a fundamental component for 

translating human-readable names into machine-readable IP 

addresses. 

4.2 Objectives 

After going through this unit you will be able to: 

 Understand the basic concepts of Naming entities and 

managing the Domain Name System (DNS) 

 Know about the importance of Naming entities and DNS. 

 Know about Uniform Resource Names (URNs) and its 

Importance  

 Know about Directory Services and Distributed Name 

Services  

 Understand about Domain Name System (DNS) and its 

Architecture and Hierarchy  

 Know about Resource Records (RRs), Name Resolution 

Process of DNS 
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 Idea about DNS Spoofing, Cache Poisoning and DNS 

Anycast.  

4.3 The Importance of Naming entities and DNS 

Understanding the principles of naming entities and DNS 

management is essential for building robust and efficient distributed 

systems. By employing scalable naming schemes and leveraging 

DNS effectively, organizations can ensure seamless communication, 

resource discovery, and reliable operation in distributed 

environments. In distributed systems, where computing resources 

are spread across multiple networked machines, efficient 

communication and interaction among distributed components are 

essential for system functionality and performance. Central to this 

communication is the ability to uniquely identify and address 

various entities within the distributed environment. This 

introduction explores the critical role of naming entities and the 

Domain Name System (DNS) in facilitating communication and 

resource discovery in distributed systems. 

At the heart of the Internet's naming infrastructure lies the Domain 

Name System (DNS), a distributed hierarchical naming system that 

translates human-readable domain names (e.g., www.example.com) 

into machine-readable IP addresses (e.g., 192.0.2.1) and vice versa. 

DNS plays a fundamental role in enabling users to access websites 

and services using memorable domain names, abstracting away the 

complexities of IP address management. 

4.4 Key Components of DNS 

DNS operates through a distributed system of servers, including 

authoritative name servers, recursive resolvers, and caching servers. 

These servers work collaboratively to resolve domain names to their 

corresponding IP addresses, providing efficient and reliable name 

resolution services to clients. 
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4.5 Names, Identifiers, and Addresses and their distinctions 

In distributed systems, naming entities involves the assignment of 

unique identifiers to various components, services, and resources to 

facilitate communication, interaction, and resource management. 

This process encompasses names, identifiers, and addresses, each 

serving distinct roles in identifying entities within the distributed 

environment. Understanding the differences between these concepts 

is crucial for designing effective naming schemes and managing 

distributed systems efficiently. 

4.5.1 Names 

Names are human-readable labels used to refer to entities within a 

distributed system. They are typically chosen to be meaningful and 

intuitive, making it easier for users, developers, and administrators 

to identify and reference specific entities. Names are often 

hierarchical, allowing for organization and categorization of entities 

into logical groupings. 

In distributed systems, names can represent a wide range of entities, 

including: 

Computers and Servers: Hostnames, such as "server.example.com" 

or "workstation1.local", identify individual machines within a 

network. 

Services and Applications: Service names, such as "database-

service" or "payment-gateway", identify specific services or 

applications running on distributed systems. 

Resources and Objects: Object names, such as "file.txt" or 

"user123", identify resources or objects within the system, such as 

files, documents, or users. 

Names provide a level of abstraction that shields users and 

applications from the underlying details of network addressing and 



298 

 

topology. However, names alone are not sufficient for 

communication and resource access in distributed systems; they 

need to be translated into machine-readable identifiers and 

addresses. 

4.5.2 Identifiers 

Identifiers are unique, system-assigned labels used to 

unambiguously identify entities within a distributed system. Unlike 

names, identifiers are typically not chosen by users or administrators 

but are generated or assigned by the system itself. Identifiers are 

used internally by the system to reference and manage entities 

efficiently. 

In distributed systems, identifiers may take various forms, 

including: 

UUIDs (Universally Unique Identifiers): Globally unique identifiers 

generated using algorithms that ensure uniqueness across distributed 

systems. UUIDs are commonly used to identify resources, 

transactions, or sessions within distributed applications. 

Object IDs: Unique identifiers assigned to objects or resources 

within a system's data model. Object IDs are used internally by 

applications and databases to reference and manipulate data objects. 

Process IDs (PIDs): Identifiers assigned to individual processes or 

threads within a distributed system. PIDs are used by the operating 

system for process management and resource allocation. 

Identifiers provide a low-level mechanism for uniquely identifying 

entities within a distributed system. They are essential for efficient 

resource management, concurrency control, and coordination across 

distributed components. However, identifiers are often system-

specific and may not be meaningful or human-readable. 
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4.5.3 Addresses 

Addresses are machine-readable labels used to locate entities within 

a distributed system. Unlike names and identifiers, which focus on 

identification, addresses specify the physical or network location of 

entities, enabling communication and data exchange between 

distributed components. 

In distributed systems, addresses may include: 

IP Addresses: Numeric labels assigned to network interfaces and 

used to identify and locate devices within a network. IPv4 and IPv6 

addresses are commonly used in distributed systems for network 

communication. 

URLs (Uniform Resource Locators): Uniform resource locators that 

specify the protocol, host, and path to access web resources. URLs 

enable clients to locate and retrieve web pages, files, and services 

from remote servers. 

Addresses serve as the foundation for communication and data 

transfer in distributed systems. They enable entities to send 

messages, access resources, and establish connections across 

networks. Addresses are essential for establishing communication 

channels, routing data packets, and ensuring reliable delivery within 

distributed environments. 

4.6 Distinctions between Names, Identifiers, and Addresses 

While names, identifiers, and addresses all play important roles in 

naming entities within distributed systems, they serve distinct 

purposes and have different characteristics: 

Names provide human-readable labels for entities and are used for 

identification and reference by users and applications. 
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Identifiers are system-assigned labels that uniquely identify entities 

within the system and are used for internal management and 

manipulation. 

Addresses specify the physical or network location of entities and 

are used for communication and data exchange between distributed 

components. 

By understanding the distinctions between names, identifiers, and 

addresses, architects and developers can design effective naming 

schemes and communication protocols that meet the requirements of 

distributed systems, balancing human readability with system 

efficiency and scalability. 

4.7 Uniform Resource Names (URNs) and its Importance 

Uniform Resource Names (URNs) are a type of Uniform Resource 

Identifier (URI) used to uniquely identify resources in a persistent 

and location-independent manner. Unlike Uniform Resource 

Locators (URLs), which specify the location of a resource, URNs 

provide a consistent and permanent name for a resource regardless 

of its location or access method. 

Structure of URNs: URNs follow a specific syntax defined by the 

Internet Engineering Task Force (IETF) in RFC 8141. They consist 

of three main components: 

URN Scheme: The URN scheme specifies the namespace to which 

the URN belongs. Common URN schemes include "urn:isbn" for 

identifying books by their International Standard Book Number 

(ISBN) and "urn:uuid" for universally unique identifiers (UUIDs). 

Namespace Identifier (NID): The NID uniquely identifies the 

namespace to which the URN belongs. It is typically a hierarchical 

string, such as "isbn" or "uuid", that defines the context or type of 

resource being identified. 
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Namespace-Specific String (NSS): The NSS is the portion of the 

URN that provides the specific identifier within the namespace. It 

can vary in format and content depending on the rules and 

conventions established by the namespace authority. 

Importance of URNs 

Persistent Identification: URNs provide a persistent and stable 

identifier for resources, even if their location or access method 

changes over time. This makes URNs suitable for referencing 

resources in scholarly publications, citations, and digital archives, 

ensuring that the identifier remains valid and functional indefinitely. 

Location Independence: Unlike URLs, which may change if a 

resource is moved to a different location or domain, URNs are 

location-independent. They do not contain information about the 

resource's location, making them suitable for referencing resources 

that may be accessed through different protocols or network paths. 

Global Uniqueness: URNs are designed to be globally unique 

identifiers, ensuring that no two resources within the same 

namespace have the same URN. This prevents naming conflicts and 

ambiguity, allowing for unambiguous identification and reference to 

resources across distributed systems and networks. 

Decentralized Naming: URNs support decentralized naming 

schemes, allowing different organizations and communities to 

define their own namespaces and assign URNs to resources within 

those namespaces. This promotes interoperability and flexibility in 

naming resources across diverse domains and contexts. 

Interoperability: URNs are part of the broader framework of 

Uniform Resource Identifiers (URIs), which also includes URLs and 

Uniform Resource Characteristics (URCs). This interoperability 

enables URNs to be used in conjunction with other URI schemes, 
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facilitating seamless integration with existing web technologies and 

protocols. 

Overall, URNs play a vital role in providing persistent, location-

independent, and globally unique identifiers for resources in 

distributed systems. By offering a standardized mechanism for 

naming resources, URNs contribute to improved resource 

management, interoperability, and long-term accessibility in digital 

environments. 

4.8 The Name Resolution Mechanisms and Strategies 

Name resolution mechanisms or strategies are techniques used to 

translate human-readable names into machine-readable identifiers or 

addresses within a distributed system. These mechanisms are 

essential for enabling communication and resource access by 

resolving names to their corresponding entities. Several name 

resolution strategies exist, each with its characteristics and 

suitability for different distributed system architectures: 

4.8.1 Local Name Resolution 

In this approach, each node within the distributed system maintains 

a local mapping of names to identifiers or addresses. When a name 

resolution request is received, the local node consults its mapping 

table to find the corresponding identifier or address. Local name 

resolution is simple and efficient but may lack scalability and 

consistency in larger distributed systems. 

4.8.2 Centralized Name Resolution 

 A centralized name resolution system employs a central server or 

service responsible for maintaining a global mapping of names to 

identifiers or addresses. When a name resolution request is received, 

it is forwarded to the central server, which performs the resolution 

and returns the result to the requesting node. Centralized name 
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resolution simplifies management and ensures consistency but may 

introduce single points of failure and scalability limitations. 

4.8.3 Distributed Hash Tables (DHTs) 

DHTs distribute the responsibility for name resolution across 

multiple nodes in the distributed system using a decentralized 

approach. Each node in the DHT is responsible for a portion of the 

name space, and name resolution requests are routed through the 

network based on a distributed hash function. DHTs provide 

scalability, fault tolerance, and load balancing but may suffer from 

increased latency and complexity in routing. 

4.8.4 Hierarchical Name Resolution 

Hierarchical name resolution structures names in a hierarchical 

manner, with each level representing a different scope or domain. 

Name resolution proceeds recursively through the hierarchy, starting 

from the root and descending to the specific entity. Hierarchical 

name resolution is commonly used in domain name systems (DNS) 

and directory services, providing scalability, organization, and 

delegation of naming authority. 

4.8.5 Iterative Name Resolution 

In iterative name resolution, the name resolution process involves 

multiple iterative steps, with each step querying a different node or 

service for resolution. The requesting node iteratively contacts 

authoritative servers or services until it receives a definitive 

resolution. Iterative name resolution is flexible and fault-tolerant but 

may incur higher latency and complexity due to multiple round-trip 

queries. 

4.9 Structuring and Organizing Name Spaces 

Name spaces are logical namespaces used to organize and structure 

names within a distributed system. Effective organization of name 
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spaces facilitates efficient naming, management, and resolution of 

entities. Several approaches are used to structure and organize name 

spaces within distributed systems: 

4.9.1 Flat Name Space 

In a flat name space, all names exist within a single, global 

namespace without hierarchical structure. Each name is unique 

within the namespace, and resolution is based on exact matching. 

Flat name spaces are simple and easy to implement but may suffer 

from naming conflicts and scalability limitations in large distributed 

systems. 

4.9.2 Hierarchical Name Space 

Hierarchical name spaces organize names in a hierarchical tree-like 

structure, with each level representing a different scope or domain. 

Names are composed of multiple components separated by 

delimiters, such as dots (.) in DNS. Hierarchical name spaces 

support delegation of naming authority, scalability, and efficient 

resolution through hierarchical traversal. 

4.9.3 Partitioned Name Space  

Partitioned name spaces divide the global namespace into smaller 

partitions or subdomains, each managed independently. Partitioning 

enables distributed management and delegation of naming authority, 

allowing different organizations or administrative domains to 

control their portion of the namespace. Partitioned name spaces 

support scalability, autonomy, and administrative flexibility. 

4.9.4 Distributed Name Space 

Distributed name spaces distribute naming authority and resolution 

across multiple nodes or servers within the distributed system. Each 

node is responsible for managing a portion of the namespace, and 

resolution requests are routed dynamically based on the distributed 
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structure. Distributed name spaces provide scalability, fault 

tolerance, and load balancing but require robust coordination and 

synchronization mechanisms. 

4.10 Directory Services and Distributed Name Services 

Directory services and distributed name services are specialized 

components within distributed systems responsible for managing 

naming information and facilitating name resolution. These services 

provide centralized or distributed repositories for storing and 

retrieving naming data, enabling efficient and scalable name 

resolution across the distributed environment. 

4.10.1 Directory Services 

Directory services centralize naming information and provide a 

unified directory or database for storing and querying naming data. 

They support features such as search, query, and access control, 

allowing clients to retrieve information about entities based on 

various attributes or criteria. Directory services are commonly used 

in enterprise environments for managing user identities, resources, 

and access permissions. 

4.10.2Distributed Name Services 

Distributed name services distribute naming information across 

multiple nodes or servers within the distributed system. They 

employ distributed data structures, such as DHTs or replicated 

databases, to store and replicate naming data across the network. 

Distributed name services provide scalability, fault tolerance, and 

decentralized management of naming information, suitable for 

large-scale distributed systems and peer-to-peer networks. 

In summary, effective name resolution mechanisms, structured 

name spaces, and specialized directory services are essential 

components of distributed systems, enabling efficient naming, 
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resolution, and management of entities across diverse network 

environments. By employing appropriate naming strategies and 

services, organizations can build robust and scalable distributed 

systems capable of meeting the demands of modern computing 

environments. 

4.11 Challenges in Naming Entities 

Scalability: As distributed systems grow in size and complexity, 

managing a large number of named entities becomes challenging. 

Scalable naming schemes and resolution mechanisms are necessary 

to handle the increasing number of entities. 

Consistency: Ensuring consistency in naming across distributed 

components is essential to avoid ambiguity and confusion. 

Distributed naming systems must support mechanisms for name 

resolution and synchronization to maintain consistency. 

Fault Tolerance: Distributed naming systems should be resilient to 

failures and network partitions. Redundancy, replication, and fault-

tolerant algorithms are employed to ensure the availability and 

reliability of naming services. 

4.12 Domain Name System (DNS) 

The Domain Name System (DNS) is a fundamental part of how the 

internet works, serving as a distributed directory that translates 

human-readable domain names into numerical IP addresses. This 

translation process allows users to access websites, send emails, and 

utilize various internet services using familiar domain names rather 

than having to remember complex IP addresses. One of the most 

common and important uses of DNS is connecting your network to 

the global Internet. To connect to the Internet, your network IP 

address must be registered with whomever is administering your 

parent domain. 



307 

 

Name-to-Address Resolution  

Though it supports the complex, worldwide hierarchy of computers 

on the Internet, the basic function of DNS is actually very simple: 

providing name-to address resolution for TCP/IP-based networks. 

Name-to-address resolution, also referred to as mapping, is the 

process of finding the IP address of a computer in a database by 

using its host name as an index. Name-to-address mapping occurs 

when a program running on your local machine needs to contact a 

remote computer. The program most likely will know the host name 

of the remote computer but might not know how to locate it, 

particularly if the remote machine is in another company, miles 

from your site. To get the remote machine's address, the program 

requests assistance from the DNS software running on your local 

machine, which is considered a DNS client. Your machine sends a 

request to a DNS name server, which maintains the distributed DNS 

database. The files in the DNS database bear little resemblance to 

the NIS+ host or ipnodes Table or even the local /etc/hosts or 

/etc/inet/ipnodes file, though they maintain similar information: the 

host names, the ipnode names, IPv4 and IPv6 addresses, and other 

information about a particular group of computers. The name server 

uses the host name your machine sent as part of its request to find or 

“resolve” the IP address of the remote machine. It then returns this 

IP address to your local machine if the host name is in its DNS 

database. 

If the host name is not in that name server's DNS database, this 

indicates that the machine is outside of its authority, or, to use DNS 

terminology, outside the local administrative domain. Thus, each 

name server is spoken of as being “authoritative” for its local 

administrative domain. Fortunately, the local name server maintains 

a list of host names and IP addresses of root domain name servers, 

to which it will forward the request from your machine. These root 



308 

 

name servers are authoritative for huge organizational domains, as 

explained fully in DNS Hierarchy and the Internet. These 

hierarchies resemble UNIX file systems, in that they are organized 

into an upside down tree structure. Each root name server maintains 

the host names and IP addresses of top level domain name servers 

for a company, a university, or other large organizations. The root 

name server sends your request to the top-level name servers that it 

knows about. If one of these servers has the IP address for the host 

you requested, it will return the information to your machine. If the 

top-level servers do not know about the host you requested, they 

pass the request to second level name servers for which they 

maintain information. Your request is then passed on down through 

the vast organizational tree. Eventually, a name server that has 

information about your requested host in its database will return the 

IP address back to your machine. 

4.12.1 Role of Domain Name System (DNS) 

Overview: DNS is a distributed hierarchical naming system used to 

translate human-readable domain names (e.g., www.example.com) 

into IP addresses (e.g., 192.0.2.1) and vice versa. It plays a crucial 

role in the Internet's architecture by enabling users to access 

websites and services using memorable domain names. 

Hierarchy: DNS organizes domain names into a hierarchical 

structure, with the root domain at the top, followed by top-level 

domains (TLDs), second-level domains, and sub-domains. This 

hierarchical structure allows for efficient name resolution and 

delegation of authority. 

Name Resolution: DNS operates through a distributed system of 

DNS servers, including authoritative name servers, recursive 

resolvers, and caching servers. When a client requests the IP address 

of a domain name, the DNS resolver recursively queries 
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authoritative name servers until it obtains the corresponding IP 

address. 

Resource Records: DNS uses resource records (RRs) to store 

information about domain names, including mapping records (e.g., 

A records for IPv4 addresses, AAAA records for IPv6 addresses), 

alias records (CNAME), mail exchange records (MX), and others. 

These records provide essential metadata for resolving domain 

names. 

4.12.2 DNS Administrative Domains  

From a DNS perspective, an administrative domain is a group of 

machines which are administered as a unit. Information about this 

domain is maintained by at least two name servers, which are 

“authoritative” for the domain. The DNS domain is a logical 

grouping of machines. The domain groupings could correspond to a 

physical grouping of machines, such as all machines attached to the 

Ethernet in a small business. Similarly, a local DNS domain could 

include all machines on a vast university network that belong to the 

computer science department or to university administration. For 

example, suppose the Ajax company has two sites, one in San 

Francisco and one in Seattle. The Retail.Sales.Ajax.com. domain 

might be in Seattle and the Wholesale.Sales.Ajax.com. domain 

might be in San Francisco. One part of the Sales.Ajax.com. domain 

would be in one city, the other part in the second city. Each 

administrative domain must have its own unique sub-domain name. 

Moreover, if you want your network to participate in the Internet, 

the network must be part of a registered administrative domain. The 

section Joining the Internet has full details about domain names and 

domain registration. 
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There are three types of DNS name servers which are Master server, 

Slave server and Stub server. Each domain must have one master 

server and should have at least one slave server to provide backup 

4.13 Domain Name System (DNS): Architecture, Hierarchy and 

Zones  

The Domain Name System (DNS) is like the phonebook of the 

internet, translating human-readable domain names (like 

google.com) into IP addresses (like 172.217.12.174) that computers 

use to communicate with each other. It's a hierarchical decentralized 

naming system, organized into a structure of domains and zones. 

4.13.1 Architecture 

DNS operates on a client-server model. When a user types a domain 

name into their web browser, the browser sends a DNS query to a 

DNS resolver (typically operated by the user's Internet Service 

Provider or ISP). If the resolver already has the IP address for the 

domain in its cache, it returns the result immediately. Otherwise, it 

forwards the query through a series of DNS servers until it reaches a 

server that can provide the IP address for the requested domain. 

Once the IP address is obtained, the resolver returns it to the user's 

device, allowing the device to establish a connection with the 

desired website or service. 

At its core, DNS operates on a client-server model, where DNS 

servers work together to fulfill requests from clients (such as web 

browsers or email clients) to resolve domain names to IP addresses. 

This process involves several types of DNS servers: 

Root DNS Servers: These are the top-level DNS servers in the DNS 

hierarchy, managing the root zone. There are 13 sets of root DNS 

servers distributed worldwide, each represented by a letter from A to 

M. These servers provide information about the authoritative DNS 

servers for top-level domains (TLDs). 
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Top-Level Domain (TLD) Name Servers: These servers are 

responsible for managing the DNS records associated with specific 

top-level domains (like .com, .org, .net). They maintain information 

about domain names registered within their respective TLDs and 

direct queries to the authoritative name servers for the next level in 

the domain hierarchy. 

Authoritative Name Servers: These servers store the authoritative 

DNS records for specific domains or zones. They are responsible for 

providing authoritative answers to DNS queries related to the 

domains they oversee. Authoritative name servers can be operated 

by domain registrars, internet service providers (ISPs), 

organizations, or hosting providers. 

Recursive DNS Resolvers: These are the DNS servers that most 

internet users interact with indirectly through their ISPs or network 

providers. When a client makes a DNS query, the recursive resolver 

handles the request on behalf of the client, recursively querying 

other DNS servers until it obtains the IP address associated with the 

requested domain name. 

4.13.2 Hierarchy 

DNS has a hierarchical structure composed of multiple levels, with 

each level separated by a dot. The highest level is the root domain, 

represented by a dot (.), followed by top-level domains (TLDs) like 

.com, .org, .net, and country code top-level domains (ccTLDs) like 

.uk, .de, .jp, etc. Below TLDs are second-level domains (SLDs), 

such as google.com or wikipedia.org. Subdomains can be further 

specified, resulting in a structure like subdomain.example.com. 

DNS follows a hierarchical structure that organizes domain names 

into a tree-like system. Each level of the hierarchy represents a 

different level of specificity in the domain name. The hierarchy 

begins with the root domain, represented by a single dot (.), 



312 

 

followed by subsequent levels of domains, separated by dots. For 

example: 

Root Domain: . 

Top-Level Domain (TLD): .com, .org, .net 

Second-Level Domain (SLD): google.com, wikipedia.org 

Subdomains: www.google.com, blog.wikipedia.org 

The hierarchical structure allows for efficient and scalable DNS 

resolution by dividing the responsibility for managing different parts 

of the DNS namespace among various DNS servers. 

4.13.3 Zones 

Zones are portions of the DNS namespace that are managed by a 

single entity, typically an organization or a domain registrar. Each 

zone corresponds to a portion of the domain name space and is 

administered independently. Zones are delineated by domain 

boundaries and are responsible for managing the domain's DNS 

records, including mapping domain names to IP addresses (A 

records), mapping domain names to mail servers (MX records), 

establishing domain aliases (CNAME records), and configuring 

DNSSEC security settings. 

There are two primary types of zones: 

Forward Lookup Zones: These zones translate domain names to IP 

addresses. When a user types a domain name into their browser, the 

DNS resolver looks up the corresponding IP address in the forward 

lookup zone. 

Reverse Lookup Zones: These zones perform the opposite function, 

translating IP addresses to domain names. They are commonly used 

for logging, troubleshooting, and security purposes. 
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Each zone is administered by one or more DNS servers responsible 

for hosting and distributing the zone's DNS records. These servers 

are often categorized as authoritative servers, which store 

authoritative DNS records for specific domains or zones, and 

caching servers, which temporarily store DNS records to speed up 

subsequent DNS queries. 

Each DNS zone contains various types of DNS records, including: 

A Records (Address Records): Map domain names to IPv4 

addresses. 

AAAA Records (IPv6 Address Records): Map domain names to 

IPv6 addresses. 

MX Records (Mail Exchange Records): Specify mail servers 

responsible for receiving email for a domain. 

CNAME Records (Canonical Name Records): Alias one domain 

name to another (canonical) domain name. 

NS Records (Name Server Records): Identify authoritative name 

servers for the zone. 

By organizing DNS information into zones, DNS administrators can 

efficiently manage and update DNS records for specific domains 

without affecting the resolution of other domains. 

Example: 

Let's consider the process of resolving the domain name 

"www.google.com" to its corresponding IP address using the DNS 

hierarchy: 

The user's web browser sends a DNS query to a recursive DNS 

resolver, asking for the IP address of "www.google.com." 
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The recursive resolver begins the resolution process by querying the 

root DNS servers to find the authoritative name servers for the 

".com" TLD. 

The root DNS servers respond with the IP addresses of the TLD 

name servers responsible for the ".com" TLD. 

The recursive resolver then queries one of the ".com" TLD name 

servers, asking for the authoritative name servers for the 

"google.com" domain. 

The ".com" TLD name server responds with the IP addresses of the 

authoritative name servers for the "google.com" domain. 

The recursive resolver selects one of the authoritative name servers 

for "google.com" and sends a query for the IP address of 

"www.google.com." 

The authoritative name server for "google.com" responds with the 

IP address(es) associated with "www.google.com." 

The recursive resolver returns the IP address(es) to the user's web 

browser, allowing the browser to establish a connection with the 

Google website. 

In this example, multiple DNS servers work together hierarchically 

to resolve the domain name "www.google.com," demonstrating the 

distributed nature of the DNS architecture. 

In summary, the Domain Name System (DNS) is a hierarchical and 

decentralized naming system that translates domain names into IP 

addresses, enabling users to access internet resources using human-

readable names. Through its architecture, hierarchy, and zone-based 

management, DNS facilitates efficient and scalable resolution of 

domain names across the internet.DNS is a crucial component of the 

internet's infrastructure, providing a decentralized system for 
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translating domain names into IP addresses. Its hierarchical 

architecture and zone-based management enable efficient and 

scalable resolution of domain names across the internet. 

4.14 Resource Records (RRs) in Domain Name System (DNS)  

Resource Records (RRs) are the building blocks of the Domain 

Name System (DNS), containing various types of information 

associated with domain names. Each RR consists of several fields, 

including the domain name it pertains to, a class identifier (usually 

IN for internet), a time-to-live (TTL) value indicating how long the 

record can be cached, and type-specific data. 

Here are some common types of Resource Records and their 

purposes: 

A Records (Address Records): These records map domain names to 

IPv4 addresses. For example, an A record for "example.com" might 

contain the IPv4 address "192.0.2.1". 

AAAA Records (IPv6 Address Records): Similar to A records but 

used for mapping domain names to IPv6 addresses. 

MX Records (Mail Exchange Records): MX records specify the 

mail servers responsible for receiving email for a domain. Each MX 

record has a priority value indicating the order in which mail servers 

should be used. For example, an MX record for "example.com" 

might specify "mail.example.com" as the mail server with priority 

10. 

CNAME Records (Canonical Name Records): CNAME records 

alias one domain name to another (canonical) domain name. They 

are often used to create aliases for existing domains or to implement 

load balancing across multiple servers. For example, a CNAME 

record for "www.example.com" might point to "example.com". 
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NS Records (Name Server Records): NS records identify the 

authoritative name servers for a domain. These records specify 

which DNS servers are authoritative for answering queries related to 

a particular domain. For example, NS records for "example.com" 

might specify "ns1.example.com" and "ns2.example.com" as 

authoritative name servers. 

PTR Records (Pointer Records): PTR records are used in reverse 

DNS lookups to map IP addresses to domain names. They are the 

reverse equivalent of A and AAAA records. For example, a PTR 

record might map the IP address "192.0.2.1" to the domain name 

"example.com". 

TXT Records (Text Records): TXT records contain arbitrary text 

information associated with a domain. They are often used for 

adding human-readable notes, SPF (Sender Policy Framework) 

records for email authentication, or other types of metadata. For 

example, a TXT record might contain a message like "This domain 

is managed by Example Corp". 

SOA Records (Start of Authority Records): SOA records are 

fundamental to each DNS zone and contain essential information 

about the zone, such as the primary name server for the zone, the 

email address of the zone administrator, the serial number of the 

zone, and various timing parameters (e.g., refresh interval, retry 

interval, expiry time, minimum TTL). 

These are just a few examples of the many types of Resource 

Records used in DNS. Each RR serves a specific purpose in 

facilitating the resolution of domain names to IP addresses and 

providing essential information about domain configuration and 

services. By combining different types of Resource Records, DNS 

administrators can configure the behavior of domain names and 

manage internet services effectively. 
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4.15 Name Resolution Process in the Domain Name System (DNS)  

The name resolution process in the Domain Name System (DNS) is 

the mechanism by which domain names are translated into IP 

addresses. This process involves multiple steps and components 

working together to provide the correct IP address for a given 

domain name. Here's a brief overview of the name resolution 

process: 

DNS Query Initiation: The name resolution process begins when a 

user or application requests the IP address associated with a domain 

name. For example, when a user enters a domain name into a web 

browser, the browser initiates a DNS query to resolve the domain 

name. 

Local DNS Cache Lookup: The DNS resolver on the user's device 

first checks its local cache to see if it has recently resolved the 

requested domain name. If the IP address is found in the cache and 

has not expired (based on the Time-to-Live or TTL value), the 

resolver can immediately return the cached IP address to the user. 

Recursive DNS Query: If the IP address is not found in the local 

cache or has expired, the resolver initiates a recursive DNS query. 

The resolver sends the query to a recursive DNS resolver, typically 

operated by the user's Internet Service Provider (ISP) or network 

provider. 

Root DNS Servers: If the recursive resolver does not have the 

requested domain name cached, it starts the resolution process by 

querying the root DNS servers. The root servers provide information 

about the authoritative name servers for the top-level domains 

(TLDs) based on the domain name's TLD (e.g., .com, .org, .net). 
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TLD Name Servers: The recursive resolver then queries one of the 

TLD name servers to obtain information about the authoritative 

name servers for the specific domain name's TLD. For example, if 

the requested domain name is "example.com," the resolver queries 

the .com TLD name servers. 

Authoritative Name Servers: With the information obtained from 

the TLD name servers, the recursive resolver sends a query to one of 

the authoritative name servers for the requested domain name. 

These authoritative name servers are responsible for storing DNS 

records specific to the domain, such as A (Address) records, MX 

(Mail Exchange) records, etc. 

Response from Authoritative Name Server: The authoritative name 

server responds to the recursive resolver's query with the IP address 

associated with the requested domain name, along with other 

relevant DNS records (such as MX records for email servers). 

Response to Client: Finally, the recursive resolver returns the IP 

address obtained from the authoritative name server to the client that 

initiated the DNS query. The client can then use the IP address to 

establish a connection with the desired website, server, or service. 

Throughout the name resolution process, DNS queries and 

responses are exchanged between different DNS servers, including 

recursive resolvers, root servers, TLD name servers, and 

authoritative name servers. By following this hierarchical resolution 

process, DNS efficiently translates domain names into IP addresses, 

allowing users to access internet resources using human-readable 

domain names. 

4.16 Caching and Performance Optimization of DNS 

Caching is a crucial aspect of DNS that significantly improves 

performance by reducing the time required to resolve domain names 
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to IP addresses. When a DNS resolver receives a response to a 

query, it caches the response for a specified period (TTL) 

determined by the authoritative name server. Subsequent queries for 

the same domain name can be answered directly from the resolver's 

cache, eliminating the need to perform the entire resolution process 

again. 

Reduced Latency: Caching helps reduce latency by providing faster 

responses to DNS queries. Instead of querying authoritative name 

servers every time, resolvers can retrieve cached responses locally, 

resulting in quicker resolution times. 

Improved Scalability: Caching reduces the load on authoritative 

name servers by distributing query traffic across various levels of 

the DNS hierarchy. This improves the overall scalability of the DNS 

infrastructure, ensuring efficient resolution even during periods of 

high query volume. 

Enhanced User Experience: Faster DNS resolution times lead to a 

better user experience, as websites and services can be accessed 

more quickly. This is particularly important for web applications 

and services that rely on low latency to deliver content and 

functionality to users. 

To optimize performance further, DNS servers may employ 

techniques such as prefetching, which involves proactively caching 

DNS records before they expire based on usage patterns or 

anticipated queries. 

4.17 Security and Challenges of DNS 

While DNS plays a critical role in enabling communication on the 

internet, it also presents several security challenges that need to be 

addressed: 
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DNS Spoofing and Cache Poisoning: Attackers may attempt to 

manipulate DNS responses to redirect users to malicious websites or 

intercept sensitive information. DNS spoofing involves forging 

DNS responses or injecting malicious records into DNS caches to 

redirect users to fraudulent websites. Cache poisoning attacks 

exploit vulnerabilities in DNS resolvers to corrupt their cache with 

false information. 

DNS Amplification Attacks: In DNS amplification attacks, attackers 

exploit open DNS resolvers to amplify the volume of traffic directed 

towards a victim's server. By sending DNS queries with spoofed 

source IP addresses to open resolvers, attackers cause the resolvers 

to send large amounts of traffic to the victim's server, overwhelming 

its network capacity. 

DNSSEC (DNS Security Extensions) Implementation: DNSSEC is a 

suite of extensions to DNS designed to provide authentication and 

data integrity for DNS responses. By digitally signing DNS records, 

DNSSEC helps prevent DNS spoofing and cache poisoning attacks. 

However, DNSSEC implementation can be complex, and not all 

DNS servers support it. 

DDoS (Distributed Denial of Service) Attacks: DNS infrastructure 

is susceptible to DDoS attacks, which aim to disrupt DNS resolution 

by flooding DNS servers with an overwhelming volume of traffic. 

DDoS attacks can cause service outages, impacting the availability 

of websites and online services. 

To mitigate these security challenges, organizations employ various 

security measures such as deploying firewalls and intrusion 

detection/prevention systems, implementing DNS filtering and 

monitoring solutions, regularly updating DNS software to patch 

known vulnerabilities, and adopting DNSSEC to enhance DNS 

security. 
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In summary, while DNS caching and performance optimization 

enhance the efficiency of DNS resolution, security remains a critical 

concern. By addressing security challenges and implementing 

appropriate safeguards, organizations can ensure the integrity, 

availability, and reliability of their DNS infrastructure. 

4.18 DNSSEC in Domain Name System (DNS)  

DNSSEC, or Domain Name System Security Extensions, is a set of 

protocols and cryptographic techniques designed to enhance the 

security and integrity of the Domain Name System (DNS). 

DNSSEC addresses vulnerabilities in the DNS that can be exploited 

by attackers to perform various types of attacks, such as DNS cache 

poisoning and DNS spoofing. 

How DNSSEC Works: 

Digital Signatures: DNSSEC uses digital signatures to verify the 

authenticity and integrity of DNS data. Each DNS record is signed 

with a digital signature generated using public-key cryptography. 

Chain of Trust: DNSSEC establishes a chain of trust, starting from 

the root DNS zone and extending down to individual domain names. 

The root zone is signed with a root zone signing key (ZSK), and 

each subsequent zone signs its zone data using its own zone signing 

key (ZSK). DNS resolvers use these cryptographic signatures to 

validate DNS responses received from authoritative name servers. 

Public-Key Cryptography: DNSSEC relies on public-key 

cryptography to generate key pairs consisting of a public key and a 

private key. The private key is used to sign DNS records, while the 

corresponding public key is published in DNSKEY records as part 

of the DNS zone's DNSSEC configuration. 

Chain of Delegation: DNSSEC ensures the authenticity of DNS data 

throughout the chain of delegation, from the root zone to the 
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authoritative name servers for individual domain names. By 

verifying the digital signatures associated with DNS records, DNS 

resolvers can validate that the DNS data has not been tampered with 

or forged. 

Benefits of DNSSEC: 

Data Integrity: DNSSEC ensures the integrity of DNS data by 

detecting and preventing unauthorized modification or tampering of 

DNS records. This helps prevent DNS cache poisoning attacks and 

DNS spoofing attacks. 

Authentication: DNSSEC provides authentication of DNS 

responses, allowing DNS resolvers to verify that the data they 

receive originates from legitimate authoritative name servers and 

has not been altered in transit. 

Trustworthiness: DNSSEC enhances the trustworthiness of DNS 

data by enabling DNS resolvers to verify the authenticity of DNS 

responses and validate the chain of trust from the root zone down to 

individual domain names. 

Security: By mitigating DNS-related vulnerabilities, DNSSEC helps 

protect against various types of DNS-based attacks, including man-

in-the-middle attacks, DNS redirection attacks, and DNS 

amplification attacks. 

In summary, DNSSEC is a critical security measure that strengthens 

the security and integrity of the Domain Name System. By using 

digital signatures and cryptographic techniques, DNSSEC helps 

prevent DNS-related attacks and enhances the trustworthiness of 

DNS data, contributing to a more secure and reliable internet 

infrastructure. 

 



323 

 

4.19 DNS Spoofing, Cache Poisoning and DNS Anycast in Domain 

Name System (DNS)  

4.19.1 DNS Spoofing 

DNS spoofing, also known as DNS cache poisoning, is a type of 

attack where an attacker manipulates DNS responses to redirect 

users to malicious websites or servers. The goal of DNS spoofing is 

to compromise the integrity of the DNS resolution process, leading 

users to unwittingly visit fraudulent websites or disclose sensitive 

information. 

How it works: In a DNS spoofing attack, the attacker sends falsified 

DNS responses to DNS resolvers or caches, containing forged or 

malicious IP addresses mapped to legitimate domain names. When a 

user or application queries the DNS resolver for a particular domain 

name, the resolver may cache the falsified response. Subsequent 

queries for the same domain name are then redirected to the 

malicious IP address specified by the attacker. 

Implications: DNS spoofing can lead to various security risks, 

including phishing attacks, malware distribution, and data theft. By 

redirecting users to counterfeit websites that mimic legitimate ones, 

attackers can trick users into entering sensitive information such as 

login credentials, credit card numbers, or personal details. 

4.19.2 DNS Cache Poisoning 

DNS cache poisoning is a specific type of DNS spoofing attack that 

targets DNS caches maintained by DNS resolvers. In a cache 

poisoning attack, the attacker exploits vulnerabilities in the DNS 

resolver's caching mechanism to inject falsified DNS records into its 

cache, thereby corrupting the integrity of the DNS data stored in the 

cache. 
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How it works: The attacker sends a flood of DNS queries containing 

requests for non-existent domain names or legitimate domain names 

with spoofed source IP addresses. By overwhelming the DNS 

resolver with a large volume of queries, the attacker increases the 

likelihood of the resolver accepting and caching falsified DNS 

responses containing malicious IP addresses. 

Implications: Once the DNS resolver's cache is poisoned with 

falsified DNS records, all subsequent DNS queries for the affected 

domain names are redirected to the malicious IP addresses specified 

by the attacker. This can result in widespread DNS resolution errors, 

leading users to unintentionally access malicious websites or 

services. 

4.19.3 DNS Anycast 

DNS Anycast is a networking technique used to improve the 

performance, availability, and resilience of DNS infrastructure by 

routing DNS queries to the nearest or best-performing DNS server 

within a group of geographically distributed servers. With Anycast, 

multiple DNS servers advertise the same IP address for a given 

domain name, and network routing protocols ensure that DNS 

queries are directed to the nearest or most optimal server based on 

network conditions. 

How it works: DNS Anycast involves deploying multiple DNS 

servers in different locations around the world and assigning them 

the same IP address for a specific domain name. When a DNS 

resolver sends a query to the Anycast IP address, the query is routed 

to the nearest DNS server in terms of network latency or routing 

distance. 

Benefits: DNS Anycast improves DNS resolution performance by 

reducing latency and network congestion, as queries are directed to 

nearby DNS servers. It also enhances the availability and resilience 
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of DNS infrastructure by distributing query traffic across multiple 

redundant servers, minimizing the impact of server failures or 

network outages. 

In summary, DNS spoofing and cache poisoning are malicious 

techniques used to manipulate DNS resolution and redirect users to 

malicious websites or servers. DNS Anycast, on the other hand, is a 

networking technique that enhances the performance, availability, 

and resilience of DNS infrastructure by routing queries to the 

nearest or best-performing DNS server within a group of 

geographically distributed servers. 

 

4.20 Summing Up 

 Naming entities in distributed systems involves assigning 

unique identifiers to components, services, and resources to 

facilitate communication and interaction. 

 The Domain Name System (DNS) serves as the backbone of 

the Internet's naming infrastructure, providing a hierarchical 

naming structure and facilitating name resolution. DNS 

operates through a distributed system of servers, including 

authoritative name servers and recursive resolvers, to 

translate domain names into IP addresses and vice versa. 

 DNS operates through a distributed system of servers, 

including authoritative name servers, recursive resolvers, 

and caching servers. 

 Name-to-address resolution, also referred to as mapping, is 

the process of finding the IP address of a computer in a 

database by using its host name as an index. Name-to-

address mapping occurs when a program running on your 

local machine needs to contact a remote computer. 
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 DNS has a hierarchical structure composed of multiple 

levels, with each level separated by a dot. The highest level 

is the root domain, represented by a dot (.), followed by top-

level domains (TLDs) like .com, .org, .net, and country code 

top-level domains (ccTLDs) like .uk, .de, .jp, etc. Below 

TLDs are second-level domains (SLDs), such as google.com 

or wikipedia.org. 

 DNS operates on a client-server model. When a user types a 

domain name into their web browser, the browser sends a 

DNS query to a DNS resolver (typically operated by the 

user's Internet Service Provider or ISP). 

 Resource Records (RRs) are the building blocks of the 

Domain Name System (DNS), containing various types of 

information associated with domain names. 

 Uniform Resource Names (URNs) are a type of Uniform 

Resource Identifier (URI) used to uniquely identify 

resources in a persistent and location-independent manner. 

 Caching is a crucial aspect of DNS that significantly 

improves performance by reducing the time required to 

resolve domain names to IP addresses. When a DNS resolver 

receives a response to a query, it caches the response for a 

specified period (TTL) determined by the authoritative name 

server. 

 DNSSEC, or Domain Name System Security Extensions, is 

a set of protocols and cryptographic techniques designed to 

enhance the security and integrity of the Domain Name 

System (DNS). 

 DNS spoofing, also known as DNS cache poisoning, is a 

type of attack where an attacker manipulates DNS responses 

to redirect users to malicious websites or servers. The goal of 

DNS spoofing is to compromise the integrity of the DNS 
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resolution process, leading users to unwittingly visit 

fraudulent websites or disclose sensitive information. 

 DNS cache poisoning is a specific type of DNS spoofing 

attack that targets DNS caches maintained by DNS resolvers. 

In a cache poisoning attack, the attacker exploits 

vulnerabilities in the DNS resolver's caching mechanism to 

inject falsified DNS records into its cache, thereby 

corrupting the integrity of the DNS data stored in the cache. 

 DNS Anycast is a networking technique used to improve the 

performance, availability, and resilience of DNS 

infrastructure by routing DNS queries to the nearest or best-

performing DNS server within a group of geographically 

distributed servers. 
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4.22 Model Questions 

1. Explain the Importance of Naming entities and DNS. 

2. What do you means by the terms Names, Identifiers, and 

Addresses and their distinctions? 

3. How does the chapter "Naming Entities" delve into the 

conceptual framework of assigning names to various entities 

within a system? 
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4. What are the key principles discussed in the chapter 

regarding the naming of entities, and how do they contribute 

to system organization and clarity? 

5. Could you outline the key components of the Domain Name 

System (DNS) as discussed in the chapter, and how they 

contribute to the efficient resolution of domain names to IP 

addresses? 

6. In what ways does the chapter explore the historical 

development and evolution of naming conventions, 

particularly in relation to the emergence of the internet and 

digital communication? 

7. How does the chapter address the challenges and 

complexities inherent in managing naming systems, both at 

the level of individual entities and within the context of 

global networks? 

8. Could you provide examples from the chapter illustrating the 

practical implications of effective naming strategies for 

enhancing user experience, system reliability, and security? 

9. What insights does the chapter offer into the design 

principles underlying the DNS, including considerations 

related to scalability, redundancy, and fault tolerance? 

10. How does the chapter examine the interplay between human-

readable domain names and their corresponding machine-

readable IP addresses, and the mechanisms by which DNS 

resolves this mapping? 

11. What discussions or case studies are presented in the chapter 

regarding the governance and regulation of naming systems, 

particularly within the context of internet governance bodies 

and standards organizations? 

12. In what ways does the chapter contextualize the significance 

of naming entities and the DNS within broader discussions 

of digital infrastructure, cybersecurity, and the socio-

technical implications of networked communication? 

 

 

4.23 Answer to check your progress/Possible Answers to SAQ 

Choose the correct option from the following questions 

1. Which of the following best describes the function of the Domain 

Name System (DNS)? 
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A) A protocol used for transferring files between networked 

computers.  

B) An encryption standard for securing internet communications.  

C) A hierarchical decentralized naming system for computers, 

services, or any resource connected to the internet.  

D) A method for compressing large data files for efficient storage. 

2. What is the primary purpose of the Domain Name System 

(DNS)? 

A) Encrypting internet traffic for enhanced security. B) Transferring 

files between networked computers. C) Resolving domain names to 

IP addresses. D) Managing email communication protocols. 

3. Which of the following best describes a domain name? 

A) A numerical label assigned to each device connected to a 

computer network.  

B) An alphanumeric string that represents the location of a website 

on the internet.  

C) A protocol used for transferring files over the internet.  

D) An encryption standard for securing online transactions. 

4. What is the hierarchical structure used in domain names called? 

A) Binary tree  B) Directory structure  C) Domain tree 

 D) Domain hierarchy 

5. Which organization oversees the management of the global 

Domain Name System? 

A) World Wide Web Consortium (W3C)  

B) Internet Corporation for Assigned Names and Numbers 

(ICANN)  

C) Internet Engineering Task Force (IETF)  

D) International Organization for Standardization (ISO) 

6. What is the purpose of a top-level domain (TLD)? 

A) Identifying the geographic location of a website.  

B) Designating the type or category of an organization.  

C) Encoding sensitive information for secure transmission.  
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D) Optimizing search engine ranking for a website. 

7. Which of the following is an example of a generic top-level 

domain (gTLD)? 

A) .com  B) .us   C) .gov  D) .uk 

8. What is the purpose of a DNS resolver? 

A) Encrypting DNS queries for privacy protection.  

B) Translating domain names into IP addresses.  

C) Managing DNS servers for domain registration.  

D) Analyzing network traffic for security threats. 

9. Which protocol is commonly used for communication between 

DNS clients and servers? 

A) HTTP  B) SMTP  C) UDP  D) TCP 

10. What is the significance of the root DNS servers in the DNS 

hierarchy? 

A) They store all domain name records.  

B) They manage top-level domain registries. 

C) They provide the initial point of contact for DNS queries.  

D) They regulate access to restricted websites. 

11. What is the purpose of DNS caching? 

A) Speeding up DNS resolution by storing previously resolved 

mappings.  

B) Encrypting DNS queries to prevent eavesdropping.  

C) Reducing the load on authoritative DNS servers.  

D) Blocking access to malicious websites. 

Answer Keys 

1(C), 2(C), 3(B), 4(C), 5(B), 6(B),7(A),8(B), 9(C), 10(C),11(A) 

 

××× 
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5.1  INTRODUCTION 

We have already learnt that a transaction in a system is a single 

logical unit of work. It consists of one or more operations that must 

be executed in such a way that either all of themare successful to 

achieve their completionor none of them is allowed to reach its 

completion and in that situation, the transaction is rollback to its 

earlier safe state. Transaction management is very important to 

maintain data integrity and consistency in a system.Transaction 

recovery and concurrency control are the two major parts of 

transaction management. In this unit, we are going to discuss about 

different concepts related to the transactions that are executed in 

distributed environments. 

  

5.2  OBJECTIVES 

After going through this chapter, we will be able to learn: 

 About the requirements and characteristics of distributed 

transactions. 

 About ACID properties in distributed environment. 

 Different approaches to achieve ACID properties in 

distributed environment. 

 About Two-phase commit (2PC) protocol. 

 About Three-phase commit (3PC) protocol. 

 About different Isolation levels. 

 About concurrency control in distributed transactions. 

 About handling durability in distributed systems. 

 

 

5.3  INTRODUCTION TO DISTRIBUTED 

TRANSACTIONS 

In distributed environments, a transaction is associated with multiple 

servers located in different physical sites. As a result,a distributed 

transaction becomes more complex than a transaction that is local to 

a particular server. A distributed transaction consists of multiple 

processes where each process is responsible to perform an operation 

of the transaction on a particular server in the distributed system. A 

distributed transaction can access and update multiple objects that 

may be managed by different servers. A distributed system must be 

able to identify the processes of a particular transaction.Atomicity of 

transactions in distributed environment must be maintained by 
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ensuring that either all the processes of a transaction successfully 

complete their jobs in the associated servers or all are aborted by the 

associated servers.One of the servers in a distributed system is 

responsible for coordinating all other servers to maintain this 

atomicity property of distributed transactions.If a coordinator in a 

server opens or starts a distributed transaction then it serves as the 

coordinator of that transaction. Concurrency control and transaction 

recovery in distributed environment requires more effort than in 

case of a single server system. Maintaining data integrity and 

consistency and handling different system failures are the major 

objectives of distributed transactions. 

Distributed transactions are prepared either asflat transactions or as 

nested transactions.Flat transactions are simple distributed 

transaction wheremultiple objects are requested that are managed at 

multiple servers. A flat distributed transaction completes only one 

request foran object at a time. It means after completing the current 

request, the next request will be completed in case of flat 

transactions. As a result, a flat transaction accesses objects managed 

at multiple serverone after another. 

On the other hand, in case of nested distributed transactions, a top-

level transaction is available which can open nested subtransactions. 

Again each subtransaction can open the next level of 

subtransactions. This process can be continued as per requirement. 

Subtransactions available at asimilar level can execute 

simultaneously. 

 

5.3.1 Need for Distributed Transactions 

Need for distributed transactions are discussed in the following 

points. 

 Distributed transactions are required to maintain data 

consistency and integrity in all servers available in a 

distributed system.  

 Distributed transactions are crucial when a database is 

distributed among several servers in a distributed 

system. 

 Distributed transactions may improve the fault tolerance 

and scalability in a distributed system. 

 Distributed transactions offer a way for coordination 

among different servers available in the system. It will 
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improve the overall system performance. So, distributed 

transactions are very crucial to implement complex 

processes in a large and complex distributed system 

where large amount of coordination among different 

servers are required. 

 Error handling mechanism is provided by Distributed 

transactions. In case of any system failure, distributed 

transactions may play an important role to recover the 

system so that the system can again attain a safe state.  

 

5.3.2 Characteristics of Distributed Transactions 

Characteristics of distributed transactions are presented in the 

following points. 

 Operations of a distributed transaction may be executed 

in multiple servers and a distributed transaction may 

access multiple objects that are managed by different 

servers.  

 In case of a distributed transaction, either all operations 

of the transactioncomplete successfully in different 

servers or all operations are aborted by corresponding 

servers.  

 Execution of each distributed transaction is isolated 

from other transactions so that concurrent distributed 

transactions in a system don’t interfere with each other’s 

operations. 

 Successful completion of a distributed transaction 

moves the system to a new safe state and it assure that 

the changes occurred in the system due to the transaction 

will not be lost in any type of system failure.  

 

5.4 ACID PROPERTIES IN DISTRIBUTED 

ENVIRONMENT 

ACID (Atomic Consistent Isolated Durable) properties are followed 

by distributed transactions to maintain consistency and reliability in 

a distributed system. It is a set of four properties discussed as 

follows. 

 Atomicity:According to this property, either all operations 

of each distributed transaction complete successfully or the 

transaction is aborted and no change will be permitted in the 
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system. The goal of this property is to prevent partial 

completion of distributed transactions so that consistency of 

the system can be maintained. 

 Consistency:According to this property, the system will 

move to a consistent state from a consistent state after the 

competition of each distributed transaction. The goal of this 

property is to maintain the data integrity of the system after 

each successful completion of distributed transactions. 

 Isolation:According to this property, the execution of each 

distributed transaction is isolated from other concurrent 

distributed transactions so that concurrent transactions are 

executed without interfering each other’s operations. The 

goal of this property is to avoid race conditions among 

distributed transactions. 

 Durability:According to this property, the changes 

happened to a distributed system after the successful 

completion of a distributed transaction is permanent. These 

changes will not be lost even in case of any type of system 

failures. The goal of this property is to save the changes that 

are happened to the system after each successful completion 

of distributed transactions so that these will not be lost in any 

situation. 

 

5.4.1    Challenges in Achieving ACID Properties in Distributed 

Environment 

We have already learnt about the importance of implementing ACID 

properties in case of distributed transactions. But several challenges 

are also available in distributed environment in achieving ACID 

properties.The major challenges are presented in the following 

points.  

 

 We have already learnt that a distributed system is a group 

of multiple independent servers that are located in different 

physical sites but they are connected by a centrally 

controlled computer network. Sometimes it may be possible 

that one or more servers are disconnected from the 

corresponding distributed systemdue to network failures. In 

that situation, achieving atomicity and consistency in related 

distributed transactions will be difficult. 
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 Achieving durability in distributed transactions require 

efficient mechanismsto handle server failures, server 

crashes, system errors and data corruption. Complexity in 

system design and cost of the system will be increased to 

include such mechanisms. 

 Achieving isolation in distributed transactions require 

efficient concurrency control mechanism. Communication 

delay among servers in a distributed system may increase the 

difficulty to achievetransaction isolation in distributed 

environment. 

 Using locks to achieve isolation in distributed transactions 

may create distributed deadlocks in the system. 

 Difficulty in achieving ACID properties in distributed 

transactions may be increased when the corresponding 

distributed system try to increase its size by including more 

servers and data. 

 According to the CAP theorem, distributed systems can 

provide two out of three desired features. These features are 

consistency, availability, and partition Tolerance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4.2 Techniques for achieving ACID Properties 

 

We have already discussed the challenges in achieving ACID 

properties in case of distributed transactions.Different techniques to 

achieve ACID properties in distributed transactions are introduced 

in the following points. 

 Atomic commit protocols are used to maintain atomicity and 

consistency in case of distributed transactions. In general, 

STOP TO CONSIDER 

Availability is a desired feature of distributed system which means 

that each active server will receive response forall its requests for 

resources even if one or more servers are disconnected or failed due 

to some reason.  

 

Partition toleranceis another desired feature of distributed systems 

which means that a distributedsystem can be able to perform its 

functions even if one or more servers are temporarily disconnected 

or failed due to some reason like network failures or any type of 

system errors. 
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two types of Atomic commit protocols are available and 

these are Two-Phase Commit (2PC) protocol and Three-

Phase Commit (3PC) Protocol. Detailed discussions of these 

protocols are provided in the later part of this unit. 

 Concurrency control mechanisms are provided to achieve 

transaction isolation in case of concurrent distributed 

transactions. Locking mechanism, Concurrency control 

based on Timestamp ordering and Optimistic concurrency 

control are the general concurrency control approaches. 

Detailed discussion about concurrency control is provided in 

the later part of this unit. 

 Recovery mechanisms and permanent storage can be utilized 

to maintain durability in distributed transactions. 

 

 

Check Your Progress 

1. Fill in the blanks 

 

(a)  ______ transactions provide a top-level transaction to open 

sub-transactions. 

(b)  The four ACID properties are _____, ______, ______, and 

______. 

(c) Atomicity in distributed transactions can be achieved by 

applying _____ protocols. 

(d)  _____ can be achieved in distributed system by applying 

Recovery mechanisms. 

(e) _______ transaction completes only one request for an 

object at a time. 

 

5.5 ATOMIC COMMIT PROTOCOLS  

Atomicity of ACID properties can be achieved by atomic commit in 

case of distributed transactions. Atomic commit means either all 

operations within each of the distributed transactions will be 

successfully committed in different servers or the entire transaction 

will be aborted.Atomic commit can be implemented in distributed 

systems by using a transaction coordinator and an atomic commit 

protocol. A transaction coordinator is a specific server available in a 

distributed system. Its job is to coordinate execution of the 

distributed transactions and to achieve atomicity property by 

following an atomic commit protocol. The simplest atomic commit 
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protocol is the One-Phase commit protocol where the transaction 

coordinatorsends the commit or abort request repeatedly to all of the 

servers that are involved in a distributed transaction. If all servers 

acknowledged that they can commit their parts related to that 

transaction then the entire transaction will be committed on all the 

corresponding servers.  On the other hand if one or more servers are 

not able to commit their parts then the entire transaction will be 

aborted.The advantage of this protocol is its simplicity. But 

practically it cannot be used in case of distributed transactions 

because when failure occurs then it may be possible that one or 

more servers may not be able to communicate with the coordinator 

to acknowledge the commit request.In some situations, one or more 

server may not able to perform their parts related to a distributed 

transactionbut according to this protocol, it is not possible to send 

this information to the coordinator.So, In general, atomic commit 

can be implemented in distributed systems by using one of the two 

atomic commit protocols that are Two-Phase Commit (2PC) 

protocol and Three-Phase Commit (3PC) protocol. 

 

5.5.1 Two-Phase Commit (2PC) Protocol 

The Two-phase commit protocol consists of two phases. The first 

phase is referred as the Voting phase and in the second phase, 

commit or abort transaction is performed depending upon the result 

of the Voting phase. Steps of the each phase are presented as 

follows. 

 

Phase I: 

 Step 1: The transaction coordinator sends a request to all 

participating servers of a distributed transaction to vote for 

commit or vote for aborttheir parts of the transaction. 

 Step 2: When a participating server of the transaction 

receive the request from the transaction coordinator then 

either it inform the coordinator that it is ready to commit its 

part of the transaction or it replies to the coordinator with the 

vote for abort the transaction and locally abort the 

transaction right away. 

Phase II: 

 Step 1: The transaction coordinator gathers all the messages 

from the participating servers of the transaction. If the 

coordinator finds that all participants are ready to commit 
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their parts of the transactions then it decides to commit the 

transaction and sends a global commit request to all the 

participants. On the other hand if the coordinator finds that 

one or more participants are voted for abort the transaction 

then it decides to abort the entire transaction and sends 

global abort request to all participants. 

 Step 2:In this step, all participating servers ready to commit 

the transaction wait for the global commit or global abort 

request from the coordinator. If they receive global commit 

request then they locally commit the transaction and confirm 

the coordinator about their commit operation. On the other 

hand, if they receive global abort requests then they locally 

abort the transaction. 

 

Two-phase atomic commit protocol is a simple and flexible 

protocol to implement atomicity property in case of distributed 

systems.  Communication overhead is increased with the use of 

this protocol due to the requirement of communications between 

the coordinator and all the participants. A possible situation 

during the execution of Two-phase commit protocol is that one 

or more participating servers of a transaction may be crashed 

during the communications with the coordinator. Such type of 

situation can fail the Two-phase atomic protocol. As a solution 

to this problem, each of the participants saves all information 

related to the Two-phase protocol in permanent storage so that it 

can be used to replace crashed participants. It may also be 

possible that the communication between a participant and the 

coordinator may be lost due to network fail or server crash. As a 

result, some processes may be blocked indefinitely. This 

situation can be prevented by using timeouts.  

The major disadvantage of this protocol is the possible 

occurrence of the blocking problem. Let us consider a possible 

scenario to understand the blocking problem where a 

participating server of a transaction is ready to commit and 

waiting for the global commit or global abort request from the 

coordinator. At this point, unfortunately the coordinator crashes 

and the participant cannot be able to proceed as it is 

continuously waiting for the decision (commit or abort) from the 

coordinator. Now the participant is in an uncertain state and it 

blocks the system. This uncertain state of the participant will be 
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continued till the replacement of the crashed coordinator.This 

possible problem is referred as the blocking problem. A possible 

solution to this problem is to provide a mechanism so that the 

participants can also receive the decision (commit or abort) 

cooperatively. But in a possible situation, if all the participants 

are in uncertain state then this strategy also fails to solve the 

blocking problem. 
 

 

5.5.2 Three-Phase Commit (3PC) Protocol 

Three-phase commit protocol is actually the upgraded version of 

Two-phase commit protocol. The blocking problem of Two-phase 

commit protocol may be solved by using Three-phase commit 

protocol and reliability of the commit operation can be improved. 

Three-phase commit protocol consists of three phases that are 

presented as follows. 

 

Phase I: Phase I of Three-phase commit protocol is similar 

to the phase I of Two-phase commit protocol. So, in 

this phase, the transaction coordinator sends a 

request to all participating servers of a distributed 

transaction to vote for commit or vote for abort their 

parts of the transaction.When a participating server 

of the transaction receive that request from the 

transaction coordinator then either it inform the 

coordinator that it is ready to commit its part of the 

transaction or it replies to the coordinator with the 

vote for abort the transaction and locally abort the 

transaction right away. 

 

Phase II:  The coordinator gather all votes received from all 

the participants. If it finds that all participants vote 

for commit operation then it sends a pre-commit 

request to all the participants. Otherwise, it aborts 

the transaction and send transaction abort request to 

all the participants that voted for commit operation. 

When a participant receivesthe pre-commit request 

from the coordinator then it acknowledges it. On the 

other hand, when a participant receivesthe 

transaction abort request from the coordinator then 

it locally abort its part of the transaction. 
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Phase III: In this phase, the coordinator gathers all the 

acknowledgments for the pre-commit request 

received from the participants. When the 

coordinator receives all the acknowledgments then 

it sends a global commit request to all the 

participants. All participants wait for the global 

commit request from the coordinator. When a 

participant receives the global commit request then 

it commits its part of the transaction. 

 

In the Three-phase commit protocol, an additional phase (Pre-

commit phase) is included to decrease the possibility of occurrence 

of the blocking problem. In this case, this protocol is better than 

the Two-phase commit protocol. But on the other hand, due to the 

additional phase, the implementation complexity and 

communication overhead will be increased in the system when the 

Three-phase protocol is used to implement atomic commit 

operation. 

 

5.5.3 Trade-offs of Atomic Commit Protocols 

We have learnt that atomic commit protocols are very important in 

case of distributed transactions to maintain consistency and 

reliability in the distributed systems. But these protocols 

alsoincludedifferent trade-offs. In general, following trade-offs are 

involved in atomic commit protocols. 

 

 Atomic commit protocols ensure system consistency and 

reliability but communication overhead is increased in the 

system due to these protocols because they require several 

communications among the coordinator and the participating 

servers. This overhead may impact the overall performance 

of the distributed system. 

 Atomic commit protocol implement the atomicity property 

in case of distributed systems but in this process the system 

performance is compromised because sometimes atomic 

commit operation of a transaction may have to wait for slow 

participating servers or controlling network failures. 
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 Implementation of atomic commit protocolsin a distributed 

system may require additional resources like storage media, 

computational resources, network facilities etc. 

 We have already learnt that the Two-phase commit protocol 

is a simple and flexible atomic commit protocol. But the 

blocking problem may occur when this approach is used to 

perform atomic commit operation in a distributed system. 

Now, to deal with the blocking problem, we can use the 

Three-phase commit protocol. But this approach is more 

complex than the Two-phase commit protocol and due to 

this approach; communication overhead is also increasedin 

the system.  

 Atomic commit protocols can be used to implement 

atomicity in case of distributed transactions that involve any 

number of participating servers. But if the number of 

participating servers of a distributed transaction is increased 

then the communication overhead in the system will also be 

increased. 

 

5.6 ISOLATION LEVELS 

Isolation is one of the ACID properties of distributed transactions. 

We have already learnt that according to this property, operations of 

a distributed transaction should be performed in isolation from the 

operations of other simultaneous distributed transactions. Now, the 

degree of this isolation is referred as isolation level. An isolation 

level is termed as low when multiple concurrent distributed 

transactions can be able to access the same resource at the same 

time.  As a result, consistency in the system may be lost. On the 

other hand, an isolation level is termed as high when only one of the 

multiple concurrent transactions can be able to access a resource at a 

time. In this case, consistency in the system will be high but the 

system requires more number of resources. 

There are four basic isolation levels defined in case of transactions 

and these are presented in the following points. 

 

 The lowest isolation level is Read Uncommitted. This 

isolation level allows multiple concurrent distributed 

transactionsto read the uncommitted changes that are 

performed by other concurrent transactions. Dirty read, 
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non-repeatable read and phantom read may be occurred due 

to this isolation level. 

 Read Committed is the next higher isolation level. This 

isolation level allows multiple concurrent distributed 

transactions to read only committed changes that are 

performed by other concurrent transactions. As a result, 

dirty read does not occur in case of this isolation level. But 

non-repeatable read and phantom read may be occurred due 

to this isolation level. 

 Repeatable Read is the higher isolation level than Read 

Committed.This isolation level allows only one distributed 

transaction at a time to readcommitted changes performed 

by other concurrent transactions. It means, in this level, a 

distributed transaction holds both read and write lock on a 

resource. So,both dirty read and non-repeatable read do not 

occur due to this isolation level.But phantom read is 

possible in case of this isolation level. 

 The highest isolation level is serializable. In this isolation 

level, the execution of distributed transactions istotally 

isolated to each other. All transactions are executed serially 

by maintaining an order. So, dirty reads, non-repeatable 

reads, and phantom reads can be avoided in case of this 

isolation level. 

 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

STOP TO CONSIDER 

Dirty read: Let us consider a situation where a transaction, R 

updates some data but it does not perform the commit 

operation till now. Now, another transaction, S is allowed to 

read that uncommitted data. At this moment, if the 

transaction,R aborts its operations and rollback the 

modifications that are performed by its operations then it leads 

to a situation where the transaction,Sreadsdata that is not exist 

in the system at present. This situation is termed as Dirty read. 

Non Repeatable read: It is a situation where a transaction is 

allowed to read the same data two times and it obtains 

different valuesin each time.  

Phantom Read:It is a situation where two identical queries 

are executed but the data obtained by the second query is 

different from the data retrieved by the first query. 
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5.7 CONCURRENCY CONTROL IN DISTRIBUTED 

TRANSACTIONS 

Concurrency control in distributed systems is a mechanism that is 

utilized to control the execution of multiple concurrent distributed 

transactions when they are required to access shared resources so 

that consistency and integrity can be maintained in the system. 

Isolation property can be achieved by using concurrency control in 

case of distributed transactions. In general, following techniques are 

used for concurrency control in distributed systems. 

 

5.7.1  Locking Mechanism 

Locking mechanism can be used to implement concurrency control 

in case of distributed transactions. In this approach, when a 

transaction is accessing an object then that object is locked so that 

other concurrent transactions cannot be able to access it. In 

distributed systems, locks are managed locally. Each server in a 

distributed system uses a lock manager to handle locks on its 

resources independently. The lock manager is responsible to grant a 

lock on an object of the server. If an object required by a transaction 

is already locked then the lock manager is responsible to keep the 

resource request in waiting mode. In a distributed system, a lock 

manager can release the lock from an object only when the 

corresponding transaction is committed in all its participating 

servers. On the other hand, if the transaction is aborted then the lock 

is released after the phase one of atomic commit protocol. Other 

concurrent transactions can try to access the object after the release 

of lock on it. Due to locking mechanism, distributed deadlock may 

be developed in the system. 

 

5.7.2  Concurrency Control Based on Timestamp Ordering 

In this approach, each distributed transaction is assigned with a 

global unique timestamp. When a transaction begins its execution in 

a distributed system then the global timestamp is assigned to it by 

the coordinator inthe first server where it is opened. This timestamp 

is passed to each coordinator in the participating servers of the 

transaction. The distributed transactions are executed serially 

depending on their timestamps. It means older transactions are 

executed before younger transactions.All participating servers of 

different transactions in a distributed system have to work together 
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so that transactions are executed serially depending on their 

timestamps. 

 

5.7.3 Optimistic Concurrency Control 

In 1981, H. T. Kung and John T. Robinson had proposed the 

Optimistic concurrency control approach to control concurrent 

transactions so that consistency and integrity can be maintained in a 

system.In the Optimistic concurrency control approach,concurrent 

distributed transactions within a distributed system are controlled 

without using locks on resources. In this approach, when a 

transaction started, it is supposed that it will notconflictwith other 

concurrent transactions when shared resources will beaccessed by 

them. When the transaction completes its operations then the system 

checks for any conflict that may occurred duringits operations. If it 

is found that a conflict has occurred then some transaction is aborted 

to resolve the conflict.The Optimistic concurrency control approach 

consists of the following phases. 

 Phase I:In the phase I, eachtransaction is provided a 

tentative version of each of the resources that it requires to 

access.A tentative version of a resource is the latest 

committed copy of that resource. At first each transaction 

performs read operation on the tentative versions of the 

corresponding resources.Then as per requirement write 

operations are performed by each transaction to update the 

tentative version of the corresponding resources. When 

multiple concurrent distributed transactionsare required to 

perform write operation on the same resource then in this 

phase, multiple tentative values for that same resource may 

be created. Two records are maintained for each concurrent 

transaction in this phase. One record contains the resources 

read by the transaction and the other record contains the 

resources updated by the transaction. 

 Phase II:The phase II is referred as the validation phase. 

The validation phase starts when a transaction completes its 

operations and the request to close that transaction is 

received.In this phase, the system validated that the 

operations of the transaction do not conflict with the 

operations of other concurrent transactions when they are 

accessing the same resource. When a distributed transaction 

enters the validation phase then a global transaction number 
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is assigned to it. So, all the concurrent transactions available 

in the validation phase are serialized depending upon the 

order of their transaction numbers. In case of distributed 

transactions, multiple independent servers are responsible for 

the validation of a transaction. The servers whose resources 

are accessed by a distributed transaction are responsible for 

the validation of that transaction. The validation process at 

all the servers of a distributed system is performed during 

the phase I of the Two-phase atomic commit protocol.  

The validation process is performed by satisfying three read-

write conflict rules. These three rules are based on the 

conflicts between the operations of two concurrent 

transactions. Let us consider, the validation test will be 

performed on the transaction, S and on the other hand, Ti is 

one of the concurrent transactions. Then the validation will 

be successful for the pair of transactions, (S, Ti) if the 

following read-write rules are satisfied. 


 If S has performed write operation on some 

resources then Ti must not perform read operation 

on those resources. 


 If Tihas performed write operation on some 

resources then S must not perform read operation on 

those resources. 


 Ti must not perform write operation on the 

resources that are written by S and S must not 

perform write operation on the resources that are 

written by Ti. 

 

If the validation is successful then the transaction goes to the 

third phase. Otherwise, a conflict resolution approach is 

used. In general, one of the transactions involved in the 

conflict is aborted to resolve that conflict. 

 Phase III: If the validation of a distributed transaction is 

successful then all updated values available in the tentative 

versions are permanently written to the original resources. 

Then the transaction is committed. A distributed transaction 

that performs only read operation is committed immediately 

after the validation phase. 

 

Optimistic concurrency control approach can be used instead of 

locking mechanism to reduce the overhead that is introduced in the 
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system due to lock maintenance. We already know that the use of 

locks may lead to deadlock situations in a system. So, occurrence of 

deadlocks may be reduced by using Optimistic concurrency control 

approach. Finally, if a few conflicts are possible among transactions 

in a distributed system then Optimistic concurrency control 

approach can provide better concurrency and performance in the 

system. 

Implementation of Optimistic concurrency control approach is more 

complex than the other concurrency control mechanisms. This 

approachmay increase the transaction aborts in a systemwhere a 

large number of conflicts among transactions are developed. It can 

significantly degrade the system performance. 
 
5.8 HANDLING DURABILITY IN DISTRIBUTED 

SYSTEM 

 

We have already learnt about Durability which is one of the ACID 

properties. Durability in distributed systems confirms that the 

changes generated by a transaction in the system will be permanent 

after successful commit operation of the transaction. It means these 

changes will not be lost from the system in case of any type of 

failures, server crashes and system errors.So, permanent storage 

media is required to record objects so that Durability can be 

achieved. When a distributed transaction is committed then the 

changes made by it are saved in the permanent storage. Durability in 

case of distributed transactions is crucial for the maintenance of 

accuracy and reliability in the system. Durability can be handled in 

distributed system by using different recovery mechanisms. The 

recovery mechanisms are used to restore a crashed server or an 

erroneous server with the most recent saved versions of its objects 

from permanent storage.Two types of recovery approaches are 

available in distributed systems that are backward recovery and 

forward recovery. In case of backward recovery if the current state 

of a system become inconsistent then the recovery process will 

bring the system to its previous consistent state. On the other hand, 

in case of forward recovery, the recovery approach tries to bring the 

system with inconsistent state to a new consistent state from where 

the system can continue to perform its tasks. 
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General approaches to maintain Durability in a distributed system 

are discussed in the following points. 

 
 Multiple copies of data can be saved in multiple servers so 

that data can be protected from server failures or crash 

situations. Regularly data backups can also be performed to 

prevent data loss from the system. 

 To implement backward recovery, a distributed system must 

regularly record its consistent global states in permanent 

storage. This process is termed as Check pointing. A 

consistent global state of a distributed system is termed as a 

distributed snapshot.  Distributed snapshots are constructed 

from the local consistent states recorded in multiple servers 

of a distributed system.  

 Each server in a distributed system maintains a log that 

contains the records of all transactions that are executed by 

the server. Record of a transaction in a log consists of 

objects’ values, entries of the transaction status and the 

references and the values of all the objects that are changed 

by the transaction.The order of the records in the log of a 

server is dependent upon the order in which the transactions 

are executed at the server. When a server is crashed or failed 

then recovery of the system to a consistent state can be 

performed by utilizing the log of that server. In this process, 

all committed transactions can be recovered by using the 

records available in the log. 

 
 

Check Your Progress 

 

2. Choose the correct option 

(a)  Which of the following is performed at the first phase of the 

Two-phase commit protocol? 

(i)   Participating servers vote for commit or abort operation. 

(ii)  The transaction coordinator send request to all 

participating servers to vote for commit or abort 

operation. 

(iii)  The transaction coordinator vote for commit or abort 

operation. 

(iv) None of the above 
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(b)  Which of the following problem may be solved by using 

Three-phase commit protocol? 

 (i) The blocking problem. 

 (ii) Deadlock. 

 (iii) Communication delay. 

 (iv) All of the above. 

 

 (c) Which of the following will not occur in case of Repeatable 

Read isolation level? 

 (i) Dirty read   

 (ii) Non-repeatable read 

 (iii) Phantom read 

 (iv) Both (i) and (ii) 

 

 (d) Which of the following is not used to control concurrency? 

 (i) Locking mechanism. 

 (ii) Timestamp ordering 

 (iii) Transaction recovery 

 (iv) All of the above 

 

(e)  Multiple copies of data can be saved in multiple servers to 

achieve____. 

 (i) Atomicity 

 (ii) Integrity 

 (iii) Efficiency 

 (iv) Durability 

 

 

5.9  SUMMING UP 

 

 A distributed transaction is associated with multiple servers 

located in different physical sites. A distributed transaction 

may access multiple objects that are managed by different 

servers. Either all operations of a distributed transaction 

complete successfully in different servers or all operations 

are aborted by corresponding servers.  

 Flat distributed transactions are simple distributed 

transaction where multiple objects are requested that are 

managed at multiple servers. A flat distributed transaction 

completes only one request for an object at a time.  
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 In case of a Nested distributed transaction, a top-level 

transaction is available which can open nested sub-

transactions. Then each sub-transaction can open the next 

level of sub-transactions. This process can be continued as 

per requirement. Sub-transactions available at a similar level 

can execute concurrently. 

 According to the Atomicity property, either all operations of 

each distributed transaction complete successfully or the 

transaction is aborted and no change will be permitted in the 

system. Atomic commit protocols are used to maintain 

atomicity and consistency in case of distributed transactions. 

In general, two types of Atomic commit protocols are 

available and these are Two-Phase Commit (2PC) protocol 

and Three-Phase Commit (3PC) Protocol.  

 According to the Consistency property, the system will move 

to a consistent state from a consistent state after the 

successful competition of each distributed transaction. 

 According to the Isolation, the execution of each distributed 

transaction is isolated from other concurrent distributed 

transactions so that concurrent transactions are executed 

without interfering each other’s operations.  

 According to Durability property, the changes happened to a 

distributed system after the successful completion of a 

distributed transaction is permanent.  

 The Two-phase commit protocol consists of two phases. The 

first phase is referred as the Voting phase and in the second 

phase, commit or abort transaction is performed depending 

upon the result of the Voting phase.  

 Three-phase commit protocol is actually the upgraded 

version of Two-phase commit protocol. The blocking 

problem of Two-phase commit protocol may be solved by 

using Three-phase commit protocol and reliability of the 

commit operation can be improved. 

 An isolation level is termed as low when multiple concurrent 

distributed transactions can be able to access the same 

resource at the same time.  On the other hand, an isolation 

level is termed as high when only one of the multiple 

concurrent transactions can be able to access a resource at a 

time. 
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 Four basic isolation levels are Read Uncommitted, Read 

Committed, Repeatable Read and Serializable. 

 Concurrency control in distributed systems is a mechanism 

that is utilized to control the execution of multiple 

concurrent distributed transactions when they are required to 

access shared resources so that consistency and integrity can 

be maintained in the system. Concurrency control 

mechanisms are provided to achieve transaction isolation in 

case of concurrent distributed transactions. Locking 

mechanism, Concurrency control based on Timestamp 

ordering and Optimistic concurrency control are the general 

concurrency control approaches.  

 Durability can be handled in distributed system by using 

different recovery mechanisms. The recovery mechanisms 

are used to restore a crashed server or an erroneous server 

with the most recent saved versions of its objects from 

permanent storage.  

 In case of any server failure, backward recovery will bring 

the system to its previous consistent state.  

 In case of forward recovery, the recovery process tries to 

bring the system with inconsistent state to a new consistent 

state from where the system can continue to perform its 

tasks. 

 

 

5.10  ANSWERS TO CHECK YOUR PROGRESS 

 

1. 

(a) Nested distributed 

(b)  Atomicity, Consistency, Isolation, Durability 

(c)  Atomic commit 

(d)  Durability  

(e) A flat distributed  

 

2. 

 (a)(ii)  The transaction coordinator send request to all 

participating servers to vote for commit or abort operation. 

 (b)(i) The blocking problem. 

 (c)(iv) Both (i) and (ii) 

 (d)(iii) Transaction recovery 

 (e)(iv) Durability 
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5.11  POSSIBLE QUESTIONS 

 

1) Write down the characteristics of distributed transactions. 

2) How ACID properties can be achieved in distributed 

transactions? 

3) Explain Two-phase atomic commit protocol. 

4) Write down the difference between Two-phase commit 

protocol and Three-phase commit protocol. 

5) How concurrency control can be implemented in distributed 

systems? 

6) Write a short note on Isolation levels in distributed 

transactions. 

7) How Durability can be handled in distributed systems? 
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6.1   INTRODUCTION 

 

Replication in distributed systems means making multiple copies of 

data or objects and storing them on different servers or locations. 

This helps improve system availability, performance, and fault 

tolerance. If some servers fail or go offline, the system can still 

work because other servers have the same data. 

Consistency in distributed systems means, making sure that all 

servers or replicas show the same data at any given time, so users 

always see the same information. However, ensuring strong 

consistency is tricky because there’s a trade-off with availability, 

especially if some servers are temporarily disconnected or the 

network has issues (as explained by the CAP theorem). 

In short, replication and consistency are key for keeping distributed 

systems reliable and efficient, but there's often a balance between 

having consistent data and keeping the system running smoothly 

when problems arise. 

 

6.2 UNIT OBJECTIVES 

After going through this unit, you will be able to: 

 understand the need for Data Replication. 

 identify Types of Replication Strategies. 

 explore Object Replication Techniques. 

 learn Different Consistency Models. 

 understand Trade-offs between Consistency and Availability. 

 

6.3 DATA REPLICATION IN DISTRIBUTED SYSTEMS 

Data replication means making and storing copies of data on 

different servers or locations in a distributed system. The main 

reason for doing this is to make the system more reliable, faster, and 

able to keep working even if some servers fail or cannot be reached. 

With multiple copies of data, the system can continue running 

smoothly. There are different ways to replicate data, like primary-

backup, where one server has the main copy, or multi-master, where 

many servers have equal copies and can update them. While 
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replication makes the system more reliable, it can be tricky to make 

sure all copies of the data stay the same across servers. 

6.3.1 Need for Data Replication 

The need for data replication in distributed systems centers around 

the following points: 

Increased Availability: By keeping multiple copies of data on 

different servers, the system can keep running even if some servers 

fail. This ensures users can still access their data despite problems 

like hardware failures or network issues. 

Fault Tolerance: Replication means there are backup copies. If one 

server goes down, another copy can take over, lowering the chance 

of losing data and keeping the system working. 

Better Performance: Having data stored closer to users helps them 

get information faster, reducing delays. This is especially useful in 

systems spread across large areas. 

Load Balancing: Multiple data copies allow the system to share the 

workload between different servers. This prevents any one server 

from getting overloaded, helping the system run smoothly. 

Data Safety: With several copies, there's a lower risk of 

permanently losing data. If one copy gets damaged or lost, the 

others can still provide the correct information. 

6.3.2 Types of Data Replication 

In distributed systems, data replication can be implemented in 

several ways, depending on how data is synchronized and managed 

across different servers. The common types of data replication are: 

 Primary-Backup Replication, 

 Multi-Master Replication, 

 Chain Replication, 

 Distributed Replication. 

Now, let’s discuss each of the types one by one. 
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6.3.2.1 Primary-Backup Replication 

Primary-Backup Replication is a common method used in 

distributed systems to make sure the system is always available, 

reliable, and consistent with data. In this method, one main server, 

called the primary (or leader), stores the main version of the data. 

One or more other servers, called backups (or followers), store 

copies of this data. The primary server handles all changes or 

updates to the data, while the backup servers simply keep their 

copies updated. If the primary server stops working, one of the 

backups can take over to keep the system running. 

The working of Primary-Backup Replication is follows: 

 The primary server handles all read and write operations from 

clients. Whenever there is a write or update request, it modifies 

its local copy of the data and sends the updated information to 

all backup servers. It ensures that changes are propagated to 

backups to maintain consistent copies across the system. 

 Backup servers receive updates from the primary and keep their 

copies in sync. They do not handle client write operations 

directly; they simply mirror the state of the primary. In the event 

of the primary server failing, one of the backups can be 

promoted to the new primary, ensuring the system remains 

operational. 

 If the primary server crashes or becomes unavailable, the system 

detects this failure and promotes one of the backups to take over 

as the new primary. The new primary continues handling client 

requests and updating the remaining backup servers. Thus, it 

process ensures that the system remains available even in the 

event of failures, but there might be some delay during the 

switch from the primary to the backup (failover). 

Now, consider a banking application where customer accounts and 

transactions are stored across multiple servers to provide fault 

tolerance and ensure high availability. In this setup: 

 The primary server handles all transaction processing, such as 

deposits, withdrawals, and balance updates. It records all the 

latest account information and ensures data integrity. 

 Multiple backup servers store replicas of the account data, which 

are updated by the primary server. These backup servers are 
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passive—they do not process transactions but receive updates 

from the primary. 

 Now, if the primary server fails (e.g., due to hardware failure or 

a network issue), one of the backup servers is promoted to the 

new primary. It takes over transaction processing, ensuring that 

customers can continue using the banking system without 

interruption. The remaining backups continue to receive updates 

from the new primary. 

Advantages of Primary-Backup Replication: 

 The system remains available even when the primary server 

fails, as backups can quickly take over. 

 Since only the primary handles write operations, the system 

ensures a consistent state across all replicas, provided that 

synchronous replication is used. 

 The primary-backup model is relatively easy to understand and 

implement compared to more complex replication schemes like 

multi-master. 

 Write operations are handled by a single server (primary), 

preventing issues like conflicting updates or race conditions 

between replicas. 

Disadvantages of Primary-Backup Replication: 

 In case of a primary server failure, there is a delay while the 

system detects the failure and promotes a backup to the new 

primary. This failover process, although automatic, can cause a 

temporary service outage. 

 Since all write operations go through the primary server, it can 

become a bottleneck when handling a large number of updates. 

This model may not scale well for systems with high write 

loads. 

 If asynchronous replication is used, backups may lag behind the 

primary, meaning they might not have the most up-to-date data. 

In the event of a primary failure, the newly promoted primary 

could have slightly out-dated information. 

 The primary server represents a single point of failure for write 

operations. If the primary fails, even though a backup can take 

over, there is still a brief interruption in service. 
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6.3.2.2 Multi-Master Replication 

Multi-Master Replication is a replication strategy used in distributed 

systems where multiple servers, known as masters, can accept write 

operations and maintain copies of the same data. This model 

enhances availability and performance by allowing updates to occur 

on any of the master nodes, rather than relying on a single primary 

server. However, it comes with its own set of challenges, 

particularly around data consistency and conflict resolution. By 

carefully designing the replication strategy and conflict-handling 

mechanisms, organizations can leverage the benefits of this model 

while mitigating its drawbacks. 

The working of Multi-Master Replication is follows: 

 In this model, several servers act as masters. Each master can 

accept read and write requests from clients. Because of this, the 

system can continue to operate and serve requests even if one or 

more masters fail. 

 When a master server receives a write request, it processes the 

update and then replicates this change to other master servers. 

This can happen in various ways, such as: 

Synchronous Replication: The update is sent to all masters, 

and they must acknowledge receipt before the operation is 

considered complete. This ensures data consistency but can 

increase latency. 

Asynchronous Replication: The update is sent to other 

masters without waiting for their acknowledgment. This 

approach improves performance but may lead to temporary 

inconsistencies between replicas. 

 Since multiple masters can accept write operations, conflicts 

may arise if two or more masters attempt to update the same 

piece of data simultaneously. To handle this, the system must 

implement a conflict resolution strategy, which could include: 

 The most recent write operation takes precedence. 

 Each write includes a version number, and the system uses 

this number to determine the most recent update. 

 The application logic decides how to resolve conflicts based 

on specific business rules. 
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Advantages of Multi-Master Replication: 

 The system remains operational even if one or more master 

servers go down. This redundancy enhances overall system 

reliability. 

 With multiple masters available to handle requests, the system 

can distribute the load more evenly, reducing response times for 

users. 

 In scenarios where users are spread across different regions, 

having multiple masters can bring the data closer to users, 

further reducing latency. 

Challenges of Multi-Master Replication: 

 Complexity: Managing multiple masters and ensuring data 

consistency can be complex. This requires sophisticated conflict 

resolution and synchronization mechanisms. 

 Data Inconsistency: The asynchronous nature of updates may 

lead to temporary inconsistencies among the replicas, making it 

challenging to guarantee a uniform view of data at all times. 

 Overhead: The need for synchronization and conflict resolution 

can add overhead to the system, potentially affecting 

performance. 

 

6.3.2.3 Chain Replication 

Chain replication is a structured method used in distributed systems 

to manage the replication of data across multiple nodes, ensuring 

strong consistency. It is particularly effective for systems that 

require high availability while maintaining strict order and 

consistency of data. In chain replication, the nodes are organized in 

a sequence or chain, and data is propagated through this chain from 

start to end. 

The working of Multi-Master Replication is follows: 

The Architecture: 

 Nodes are arranged in a linear sequence, often referred to as 

a chain. 

 There is a head node, intermediate nodes, and a tail node. 
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 Write operations always start at the head and move 

sequentially through the chain to the tail. 

Writing Operations: 

 A client that wants to update the data sends a write request to 

the head node. 

 The head node processes the write and then forwards it to the 

next node in the chain. 

 This process continues until the tail node is updated. 

 Once the tail node is updated, it sends an acknowledgment 

back through the chain, confirming that the update has been 

fully replicated. 

 The acknowledgment to the client is only sent when the tail 

has processed the write, ensuring that all nodes in the chain 

have consistent data. 

Reading Operations: 

 Typically, read requests are handled by the tail node. 

 This ensures that clients always read the most up-to-date 

data because the tail node receives all updates last, after they 

have been processed by every other node in the chain. 

Handling Failure: 

 If a node in the chain fails, the chain is reconfigured to 

bypass the failed node. 

 The system can add new nodes to the chain to replace the 

failed one, maintaining redundancy and ensuring 

consistency. 

Now, let’s try to understand this with the help of an example. 

Consider a distributed system where multiple copies of a data 

object, say "X," are maintained across three nodes: Node A as Head 

node, Node B as Intermediate Node, and Node C as Tail Node. 

Now, the steps are as follows: 

 Write Operation: 

 A client wants to update the value of "X" to 100. 

 The client sends a write request to Node A. 
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 Node A updates "X" to 100 and forwards the update to Node 

B. 

 Node B updates "X" to 100 and forwards it to Node C. 

 Node C updates "X" to 100 and sends an acknowledgment 

back to Node B, then to Node A, and finally to the client. 

 Only when the update is confirmed at Node C (the tail) is 

the operation considered successful, ensuring all nodes have 

consistent data. 

 Read Operation: 

 A client requests to read the value of "X." 

 The read request is directed to Node C, which provides the 

value 100. 

 Since Node C is the last node in the chain to be updated, it 

always has the most recent value of "X." 

 Failure Handling: 

 If Node B fails, the system reconfigures to bypass Node B, 

and the chain becomes Node A → Node C. 

 A new node, Node D, could be added later, making the new 

chain Node A → Node D → Node C. 

 This ensures that redundancy is maintained and that the 

system can continue functioning even if nodes fail. 

Advantages of Chain Replication: 

 Since all updates are processed sequentially through the chain, 

all nodes have the same version of data once an 

acknowledgment is sent, ensuring strong consistency. 

 Reads are served from the tail node, ensuring that the most 

recent data is always provided to clients. 

 The chain can be reconfigured in the event of a node failure, and 

new nodes can be added without interrupting the service. 

Disadvantages of Chain Replication: 

 Since write operations must propagate through each node in the 

chain before being acknowledged, the write latency can be 

higher compared to other replication methods. 
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 The head and tail nodes can become bottlenecks. The head 

handles all incoming writes, while the tail handles all reads. 

 If a node fails, the reconfiguration of the chain might take some 

time, potentially affecting the availability of the system. 

6.3.2.3 Distributed Replication 

Distributed replication means keeping multiple copies of data on 

different nodes or locations in a distributed system. Replication 

helps improve data availability, fault tolerance, reliability, and 

performance. By having multiple copies, the system can handle 

failures more effectively, provide faster data access, and ensure that 

data is still available even if some nodes fail. 

There are types of Distributed Replication: 

Synchronous Replication: 

 All replicas must be updated before a write operation is 

considered complete. 

 Guarantees that all replicas have consistent data, but may 

increase latency because of waiting for acknowledgments from 

all replicas. 

 Example: A banking system where transaction consistency is 

critical. 

Asynchronous Replication: 

 The primary node acknowledges a write operation immediately, 

and the updates are propagated to replicas in the background. 

 This approach offers better performance but might lead to 

temporary inconsistencies between replicas. 

 Example: Social media applications where immediate 

consistency is not critical. 

Partial Replication: 

 Only a subset of the nodes in the distributed system contains 

copies of the data. 

 Helps reduce storage costs and network overhead. 

 Example: In large-scale distributed databases, only frequently 

accessed data might be replicated across all nodes, while less 

frequently accessed data is only partially replicated. 
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Full Replication: 

 Every node in the distributed system contains a copy of the 

entire dataset. 

 This ensures high availability but comes at the cost of increased 

storage and replication overhead. 

 Example: Distributed ledger systems like block-chain where 

each node contains the entire ledger. 

The working of Multi-Master Replication is follows: 

Writing Operations: 

 When a write request is made, the data must be updated on 

all or some of the replicas. 

 In synchronous replication, the system waits until all 

replicas have been updated before acknowledging the write 

to the client. 

 In asynchronous replication, the primary replica is updated 

first, and then the changes are propagated to secondary 

replicas. 

Reading Operations: 

 Read requests can be handled by any replica, which helps 

distribute the load and improves read performance. 

 The system may use a load balancer to distribute read 

requests among replicas. 

Consistency Models: 

 Strong Consistency: Guarantees that all reads will return 

the latest value. 

 Eventual Consistency: Guarantees that, given enough time, 

all replicas will eventually become consistent. 

 Causal Consistency: Ensures that causally related updates 

are seen in the same order by all replicas. 

Now, let’s try to understand this with the help of an example. 

Consider an online e-commerce platform with users distributed 

across the world. The platform wants to ensure that product 

information (e.g., availability, price) is accessible with minimal 

latency and remains highly available even during a network partition 

or failure. The system could use distributed replication as follows: 



 

364 

 

Nodes Setup: 

 The system has several nodes: Node A (in North America), 

Node B (in Europe), Node C (in Asia). 

 Each node contains a replica of the product database. 

Write Operation: 

 Suppose a seller in North America updates the price of a 

product. 

 The update is first made to Node A. 

 In synchronous replication, the update will then be propagated 

to Node B and Node C, and only after all replicas are updated 

will the seller receive an acknowledgment. 

 In asynchronous replication, the update will be immediately 

acknowledged to the seller after it is made to Node A, while 

Node B and Node C are updated in the background. 

Read Operation: 

 If a customer in Asia wants to check the price of the product, the 

read request is directed to Node C, which is geographically 

closer. 

 This reduces latency and ensures a faster response to the 

customer. 

Advantages of Distributed Replication: 

 By having multiple replicas, data remains accessible even if one 

or more nodes fail. 

 Replication provides redundancy, allowing the system to 

continue operating in the event of hardware or network failures. 

 Read requests can be distributed among different replicas, 

improving system scalability and reducing bottlenecks. 

 Users can access the closest replica, reducing the response time 

for read operations. 

Challenges of Distributed Replication 

 Consistency Management: Maintaining consistency across 

replicas is challenging, especially in asynchronous replication, 

where temporary inconsistencies may occur. 
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 Network Overhead: Replicating data across nodes incurs 

additional network traffic, which can be a bottleneck in high-

volume systems. 

 Conflict Resolution: When multiple replicas accept write 

operations, conflicts can arise those needs to be detected and 

resolved. 

6.4 OBJECT REPLICATION IN DISTRIBUTED SYSTEMS 

Object replication in distributed systems refers to the practice of 

creating and maintaining multiple copies (or replicas) of an object 

(such as files, databases, or application components) across different 

nodes in the network. The main goal of object replication is to 

enhance system availability, fault tolerance, scalability, and 

performance. Replicating objects allows a distributed system to 

continue operating smoothly even in the presence of hardware 

failures or network issues. 

6.4.1 Types of Object Replication 

Object replication in distributed systems can be categorized into the 

following types based on how updates to replicas are handled: 

Active Replication or Synchronous Replication: 

 In active replication, all replicas of an object are kept 

identical by processing all requests in parallel. 

 Every replica processes the same request, and the system 

ensures that they remain consistent with one another. 

 This type is generally used in systems that need high 

availability and consistency, such as financial services. 

 Example: In a distributed online banking application, every 

transaction can be processed at all replicas simultaneously to 

ensure that account balances are always consistent across 

nodes. 

Passive Replication or Primary-Backup Replication: 

 In passive replication, a primary replica processes all client 

requests and updates. After processing, the primary sends 

updates to the backup replicas. 
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 If the primary replica fails, one of the backups takes over as 

the new primary. 

 This approach is often used where lower update latency is 

preferred, and it's acceptable for the replicas to be slightly 

out-of-date. 

 Example: In a distributed file storage system, a primary 

server stores user files, and changes are replicated to backup 

servers after a write operation. If the primary server fails, a 

backup server becomes the new primary. 

Lazy or Asynchronous Replication: 

 In lazy replication, updates are made to a primary replica and 

propagated to other replicas asynchronously, meaning 

changes may take some time to reach all replicas. 

 This can lead to temporary inconsistencies across replicas, 

but it improves system performance since nodes do not need 

to wait for acknowledgments from all replicas. 

 Example: In content distribution networks (CDNs), when a 

new video is uploaded, the update is initially made on one 

server and then propagated to other servers gradually. This 

may result in some users getting the latest content before 

others, but overall system performance is improved. 

6.4.2 Replication Consistency Models 

Ensuring consistency among replicas is a key challenge in object 

replication. The different levels of consistency are: 

Strong Consistency: 

o All replicas must reflect the latest update immediately. 

o This guarantees that any read operation returns the most 

recent write. 

o Example: A distributed database that ensures every read 

returns the latest value, even if it means delaying the read 

request until all replicas are updated. 

Eventual Consistency: 

o Replicas will become consistent over time, but they may be 

temporarily out of sync. 
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o This is used when the system favours availability and 

partition tolerance over immediate consistency. 

o Example: DNS servers use eventual consistency to update 

their records. Changes to DNS records might take time to 

propagate to all DNS servers. 

Causal Consistency: 

o Causal relationships between updates are preserved, meaning 

that if update A happens before update B, any node that sees 

update B must also see update A. 

o This allows for a more relaxed consistency model without 

sacrificing the logical flow of updates. 

o Example: Social media feeds can maintain causal 

consistency, ensuring that users see a comment only after 

they have seen the original post. 

6.5      DATA-CENTRIC VS. PROCESS-CENTRIC 

REPLICATION 

In distributed systems, replication can be broadly categorized into 

two types based on the focus of what is being replicated: data-

centric replication and process-centric replication. Both approaches 

aim to improve reliability, availability, and performance, but they 

differ in terms of what they replicate and how they handle 

replication. Let's discuss both approaches in detail: 

6.5.1 Data-Centric Replication 

Data-centric replication involves replicating the data across multiple 

nodes or servers in a distributed system. The main goal is to ensure 

that data is accessible, consistent, and available even if some nodes 

fail. The characteristics of data-centric replication are: 

 Data-centric replication aims to ensure that the same piece of 

data is available in multiple locations, thus enhancing data 

availability and fault tolerance. 

 This approach may use various consistency models, such as 

strong consistency, eventual consistency, or causal consistency. 
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 Guarantees that all replicas have the same value at any point 

in time. 

 Ensures that replicas eventually converge to the same value, 

even if there may be temporary discrepancies. 

 Data is replicated in a way that reduces latency and optimizes 

read performance. This is especially useful in distributed 

databases or content delivery networks (CDNs) to provide fast 

access to data for users across different regions. 

 Conflicts may arise during concurrent updates to the same data at 

different nodes. Conflict resolution mechanisms, such as version 

vectors or timestamps, are used to ensure consistency. 

For example, in a distributed database, such as Cassandra or 

MongoDB, data-centric replication ensures that copies of data are 

stored in multiple nodes. When a client requests data, it is served 

from the nearest replica, improving response time. If an update is 

made, the changes are propagated to all replicas to maintain 

consistency. 

6.5.2 Process-Centric Replication 

Process-centric replication involves replicating the processes or 

computations across multiple nodes. In this approach, the main 

focus is on ensuring that the processing of requests can continue 

even if some nodes or processes fail. The characteristics of process-

centric replication are as follows: 

 Process-centric replication is used to enhance fault tolerance 

and high availability of services or processes, allowing the 

system to continue functioning even when individual processes 

fail. 

 Active &. Passive Replication: 

o Active Replication: All replicas run the same process 

and receive the same input, ensuring that they produce 

the same output simultaneously. This method is suitable 

for achieving strong fault tolerance. 
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o Passive Replication (Primary-Backup): One process 

(primary) handles requests, and the state is replicated to 

backups. If the primary fails, one of the backups takes 

over. 

 The replicas of the process need to maintain a synchronized 

state. This may involve periodically sending state updates from 

the primary process to the backup processes. 

 Replicated processes ensure that, if one node handling a request 

fails, another replica can take over and continue processing 

without interrupting the overall service. 

For example, in a distributed web service, a process-centric 

replication approach could involve having multiple replicas of a web 

server that handle client requests. If one web server fails, another 

server can seamlessly take over the requests, ensuring uninterrupted 

service. 

6.5.3 Data-Centric vs.Process-Centric Replication 

The comparison between data-centric and process-centric 

replication are presented in table 6.1. 

Aspect Data-Centric Replication Process-Centric Replication 

Focus 
Replicates data across 

multiple nodes 

Replicates processes or 

computations across nodes 

Goal 
Enhance data availability 

and consistency 

Improve fault tolerance and 

service availability 

Consistency 

Model 

Strong, eventual, or causal 

consistency 

Typically uses active or 

passive replication models 

Access 
Optimizes data access and 

read performance 

Ensures that services remain 

available in case of failure 

Conflict 

Resolution 

Involves techniques like 

timestamps or version 

vectors 

Ensures state consistency 

between replicated 

processes 

Each approach addresses different aspects of distributed system 

design, and choosing between them depends on whether the goal is 
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to provide data availability or service continuity. In practice, a 

combination of both types of replication is often used to achieve a 

robust and highly available distributed system. 

6.6 CONSISTENCY MODELS IN DISTRIBUTED SYSTEMS 

In earlier sections we had a very brief introduction to Consistency 

Models. Now, let’s try to get a bigger picture. 

In distributed systems, consistency models define the rules that 

govern how data replicas are kept in sync to maintain a coherent 

view across the entire system. These models establish the conditions 

under which different parts of the system can communicate, and 

determine how changes made by one process become visible to 

others. By setting specific guarantees on the visibility and 

propagation of updates, consistency models address distributed 

computing challenges like network delays, partial failures, and 

concurrency. The choice of a consistency model plays a crucial role 

in balancing consistency, availability, and performance, ensuring the 

system's reliability and predictable behavior even in the presence of 

faults. 

In distributed systems, there are several types of consistency 

models, each suited to different requirements and use cases. Each 

model offers a different balance of consistency, availability, and 

performance, with its own advantages and limitations. The main 

types of consistency models are: Strong Consistency, Sequential 

Consistency, Causal Consistency, Weak Consistency etc. The 

choice of a specific consistency model depends on the needs of the 

system, such as the level of data consistency required and the 

tolerance for delays or failures. 

6.6.1 Strong Consistency 

Strong consistency means that every read operation always returns 

the latest value that has been written, no matter which copy of the 

data you access. To the user, it looks like there is only one version 

of the data, and all the changes are seen instantly. In a system with 

strong consistency, all nodes agree on the order of operations, 

meaning that everyone sees updates in the same sequence. This 

ensures that reads always provide the latest version, and writes are 



 

371 

 

visible to all nodes immediately. However, achieving this level of 

consistency can lead to performance and availability challenges. 

Let’s discuss the Principles of strong consistency and they are: 

Single Copy: To users and applications, the distributed system 

behaves as if there is only one copy of the data. This means that any 

changes made to the data are immediately visible to all users. 

Immediate Visibility: When a write operation is completed, all 

subsequent read operations will reflect that change. There is no 

delay or inconsistency in seeing the latest data. 

Global Ordering: All operations (reads and writes) are executed in 

a total order that is agreed upon by all nodes in the system. This 

guarantees that all nodes see operations in the same sequence. 

Synchronous Operations: Strong consistency often requires that 

write operations are completed before subsequent read operations 

can proceed, ensuring that all processes are up to date. 

Advantages of Strong Consistency: 

 Clients can always expect to see the most recent data, which 

simplifies application logic and improves user experience. 

 Strong consistency helps ensure that the system maintains data 

integrity across distributed nodes, preventing issues like stale 

reads. 

 Developers can write simpler code because they don’t need to 

account for inconsistencies that could arise from concurrent 

operations. 

Disadvantages of Strong Consistency: 

 Achieving strong consistency typically requires more 

communication between nodes, which can introduce latency and 

reduce throughput, particularly in large distributed systems. 

 During network partitions or node failures, maintaining strong 

consistency can lead to reduced availability. If some nodes are 

unreachable, the system may block operations to ensure 

consistency. 

 The need for synchronization can result in higher response times 

for operations, especially in geographically distributed systems 

where communication delays are significant. 
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6.6.2 Sequential Consistency 

Sequential Consistency is a key concept in distributed systems that 

helps maintain a clear and consistent view of operations across 

different nodes. This model finds a middle ground between strict 

consistency and more relaxed models by ensuring that operations 

seem to happen in a specific order, even if they are actually 

processed at the same time on different nodes. According to this 

model, the results will always look like the operations (both read 

and write) were executed one after the other in a sequence, 

respecting the order in which each process performed them. It was 

introduced by Leslie Lamport and is considered less strict than 

stronger consistency models, making it easier to implement while 

still providing a reliable framework for understanding how 

operations relate to each other in a distributed system. 

Let’s discuss the Principles of sequential consistency and they are: 

Global Order: The results of operations must be consistent with 

some global ordering, meaning that even if operations are performed 

in parallel, they can be viewed as part of a single, orderly sequence. 

Local Order: The local order of operations for each process must 

be preserved. If a process issues a read after a write, any subsequent 

reads must see the effects of that write. 

Client View: From the client's perspective, the system behaves as if 

all operations were executed in some sequential order, which 

provides a straightforward understanding of the system's state. 

Advantages of Sequential Consistency: 

 Sequential consistency is easier for programmers to reason about 

than stronger models because it maintains a simple, intuitive 

view of the order of operations. 

 Compared to strong consistency, sequential consistency allows 

for some level of concurrency, potentially improving 

performance and throughput. 

 It offers a middle ground between strong consistency (which can 

be too restrictive) and weaker models (which can lead to 

confusion). 
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Disadvantages of Sequential Consistency: 

 While it allows some concurrency, maintaining a sequential 

order can still introduce latency, especially in systems with high 

contention for resources. 

 Implementing sequential consistency can be complex, especially 

in a distributed environment where nodes may have different 

latencies and failure rates. 

 In cases of network partitions or failures, achieving sequential 

consistency may require delaying some operations, which can 

impact system availability. 

6.6.3 Casual Consistency 

Causal Consistency is an important model in distributed systems 

that helps keep track of the logical connections between different 

operations. It ensures that if one operation affects another, the first 

one will be visible before the second. This model finds a middle 

ground between high performance and keeping things coherent, 

making it useful for various applications. Introduced by Hutto and 

Ahamad in 1990, causal consistency ensures that all processes see 

related operations in the same order, but it’s less strict than models 

like sequential consistency, which require a complete order of 

operations. By focusing on the cause-and-effect relationships, causal 

consistency allows systems to run efficiently while still providing a 

clear view of the data, making it popular for collaborative and real-

time applications where the order of actions is important. 

Let’s discuss the Principles of casual consistency and they are: 

Causal Relationship: In causal consistency, operations are seen as 

causally related if one operation can influence the outcome of 

another. For example, if Process A sends a message to Process B, 

any subsequent operations by B that depend on that message must 

see the effects of A's operation. 

Event Ordering: The model ensures that if an operation O1 

causally affects another operation O2, then all processes must see 

O1 before they see O2. However, operations that are not causally 

related can be seen in different orders by different processes. 

Visibility: Each process has its own view of the operations, which 

may differ from other processes, but the visibility of operations 
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respects causal relationships. This allows for more flexibility and 

improved performance compared to stronger consistency models. 

Advantages of Causal Consistency: 

 By allowing operations to be executed concurrently as long as 

they are not causally related, causal consistency enhances 

performance and scalability in distributed systems. This leads to 

lower latency and better resource utilization. 

 Causal consistency aligns closely with how users typically 

reason about dependencies in their operations, making it easier 

for developers to build applications that behave predictably. 

 Causal consistency provides more flexibility than strict or 

sequential consistency, allowing systems to tolerate delays and 

network partitions while still maintaining a coherent view of 

operations. 

Disadvantages of Causal Consistency: 

 Implementing causal consistency can be complex due to the 

need to track causal relationships and maintain metadata like 

vector clocks. This may introduce overhead and increase system 

complexity. 

 Because operations are not globally ordered, processes may read 

stale data if they do not have visibility into all preceding 

operations. This can lead to scenarios where users see outdated 

information. 

 Causal consistency does not guarantee that all operations will be 

seen in the same order by all processes, which can be 

problematic in certain applications requiring stronger 

guarantees. 

6.6.4 Weak Consistency 

Weak consistency is a model used in distributed systems that allows 

changes to data to be visible at different times across different 

nodes. Unlike stronger consistency models that require all copies of 

data to be in sync right away, weak consistency accepts that there 

may be temporary differences between data replicas. This approach 

helps improve performance and availability. When creating systems 

that use weak consistency, developers need to think carefully about 

what the application needs, balancing consistency, availability, and 
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performance to meet user expectations. Applications that can handle 

short periods of inconsistency, like social media updates, messaging 

apps, and collaboration tools, are a good fit for this model. In 

summary, weak consistency is beneficial for distributed systems as 

it supports better performance and availability while allowing for 

some data differences, even though it can lead to challenges with 

data accuracy and complexity in development. 

The key features of weak consistency are as follows: 

 In weak consistency models, there are no guarantees that all 

replicas of data will reflect the most recent updates immediately. 

This means that a read operation may return stale data if it occurs 

before updates propagate to all nodes. 

 Weak consistency allows for operations to be visible in different 

orders across different processes. Thus, different nodes may see 

the results of operations in varying sequences. 

 Although weak consistency permits temporary inconsistencies, it 

often includes mechanisms that ensure that all replicas will 

converge to the same state eventually, given sufficient time 

without new updates. 

Advantages of Weak Consistency: 

 Weak consistency models typically allow for more efficient use 

of resources since they do not require synchronization among all 

nodes for every operation, leading to faster read and write 

operations. 

 By not enforcing strict consistency, distributed systems can 

remain operational even during network partitions or failures, 

improving overall system availability. 

 Weak consistency models are well-suited for large-scale 

distributed systems, where strict consistency can be challenging 

to maintain due to the sheer volume of data and interactions. 

Disadvantages of Weak Consistency: 

 Developers must handle the complexities introduced by potential 

stale data and ensure that applications can tolerate inconsistency, 

which can lead to increased programming effort. 
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 Weak consistency may lead to scenarios where conflicting 

updates occur, and resolving these conflicts can be challenging, 

especially in collaborative applications. 

 Users may experience unexpected results since the data might 

not be immediately consistent across nodes, which can affect the 

user experience. 

6.7 CONSISTENCY VS. AVAILABILITY 

In distributed systems, the trade-offs between consistency and 

availability are central to system design and operation. These two 

concepts often compete with each other, especially in the context of 

the CAP theorem, which states that in the presence of a network 

partition, a distributed system can only guarantee either consistency 

or availability, but not both. Below is a detailed discussion of these 

trade-offs, their implications, and examples. But first just refresh 

what does consistency and availability means. 

In distributed systems, consistency means that all nodes see the 

same data at the same time. When a write operation is performed, it 

should be visible to all subsequent read operations across the 

system. Strong consistency ensures that all replicas reflect the latest 

updates immediately, while eventual consistency allows temporary 

discrepancies between replicas, with the guarantee that they will 

eventually converge. 

Availability refers to the system's ability to respond to requests, 

even in the face of failures or network partitions. An available 

system guarantees that every request receives a response, whether it 

is a success or an error, as long as a node is reachable. 

6.7.1 Trade-offs between Consistency and Availability 

Lets’ discuss the trade-offs between Consistency and Availability. 

1) Consistency vs. Availability: 

 High Consistency, Low Availability: Systems that 

prioritize strong consistency often require coordination 

among nodes to ensure that updates are synchronized. This 

can lead to reduced availability, especially during network 

partitions or node failures. For example, a banking 

application that requires all transactions to be immediately 
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reflected across all servers may temporarily deny access if 

some nodes are unreachable. 

 High Availability, Low Consistency: Conversely, systems 

that prioritize availability might allow different nodes to 

serve different versions of the data temporarily. For instance, 

social media platforms often accept that users may see 

outdated information briefly while ensuring that the system 

remains operational. Users can still post updates even if 

some nodes are behind in syncing. 

2) CAP Theorem: 

 The CAP theorem asserts that it is impossible for a 

distributed data store to simultaneously provide all three 

guarantees: Consistency, Availability, and Partition tolerance 

(the system's ability to continue operating despite network 

partitions). When a partition occurs, systems must choose 

between maintaining consistency or availability. For 

example, during a partition, a system may either block writes 

(ensuring consistency) or allow writes to proceed at the risk 

of creating conflicts later (ensuring availability). 

3) Implications: 

 User Experience: The choice between consistency and 

availability can significantly impact user experience. In 

applications where immediate accuracy is critical (e.g., 

financial transactions), consistency is essential. However, for 

applications where user engagement is a priority (e.g., 

messaging apps), availability may take precedence. 

 Conflict Resolution: When prioritizing availability over 

consistency, developers need to implement conflict 

resolution strategies to handle scenarios where different 

nodes have diverging data. For example, in a distributed 

database, if two nodes accept updates simultaneously, a 

merge process must determine which update is the "correct" 

one. 

 Latency: Systems that emphasize strong consistency often 

experience higher latency because they must wait for all 

replicas to acknowledge the update before proceeding. On 

the other hand, systems that favor availability may have 
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lower latency, as they do not need to wait for all nodes to 

sync. 

The trade-offs between consistency and availability in distributed 

systems are complex and depend on the situation. Designers need to 

carefully consider the specific needs of their applications, balancing 

what users expect with what the system can handle. Choosing 

between strong consistency and high availability often means 

making compromises, and understanding these trade-offs is crucial 

for creating effective distributed systems. 

 

 

 

 

CHECK YOUR PROGRESS-I 

1. State True or False: 

a) Data replication in distributed systems improves availability 

and fault tolerance. 

b) In Primary-Backup replication, the backup servers can 

directly handle client write operations. 

d) Multi-Master Replication allows multiple servers to accept 

write requests, enhancing performance.        

e) Chain replication always ensures the latest data is available 

for read requests. 

2. Fill in the blanks: 

a) In Multi-Master Replication, _________ is required to 

handle conflicts that may arise from concurrent updates. 

b) _________ replication allows data to be written and read 

from any of the master servers. 

c) In _________ replication, the update operation is considered 

complete only after all nodes have been updated. 

d) In chain replication, the _________ node handles write 

requests. 

e) Distributed replication provides _________ by having 

multiple replicas to handle read requests. 
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6.8  SUMMING UP 

 Data Replication means Storing data copies across multiple 

servers for reliability, speed, and fault tolerance. 

 Need for data replication are: 

o System remains operational despite server failures, 

o Backup copies reduce data loss risk, 

o Data closer to users for faster access, 

o Distributes workload across servers, 

o Reduced risk of permanent data loss. 

 The types of Data Replication are namely Primary-Backup 

Replication, Multi-Master Replication, Chain Replication and 

Distributed Replication. 

 Object Replication means maintaining multiple copies of an 

object across different nodes to enhance availability, fault 

tolerance, scalability, and performance. 

 Type of Object Replications are: 

o Active Replication: All replicas process requests in 

parallel; ensures high availability and consistency. 

o Passive Replication: Primary replica processes requests; 

backups receive updates and take over on failure. 

o Lazy Replication: Updates propagated asynchronously; 

temporary inconsistencies allowed improving 

performance. 

 In case of Strong Consistency, all replicas reflect the latest 

update immediately. 

 In Weak Consistency, replicas eventually converge to the same 

state. 

 In Causal Consistency, causal relationships are preserved 

between updates. 

 In Data-centric Replication, data is replicated across nodes to 

improve availability and reduce latency. Uses consistency 

models like strong, eventual, or causal. 

 In Process-centric Replication, processes are replicated to 

enhance fault tolerance. Can use active (all replicas run in 

parallel) or passive (primary-backup) replication. 
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 The Consistency Models are namely: 

o Strong Consistency: Ensures every read returns the latest 

value; high latency and availability challenges. 

o Sequential Consistency: Operations are seen in a specific 

order, maintaining local order of each process. 

o Causal Consistency: Maintains the order of causally 

related operations; improves performance and flexibility. 

o Weak Consistency: Allows temporary inconsistencies 

across nodes; improves performance and availability but 

requires applications to handle stale data. 

 

6.9  ANSWERS TO CHECK YOUR PROGRESS 

1. a) True    b) False    c) True    d) True 

2. a) conflict resolution    b) Multi-Master    c) synchronous 

d) heade) load balancing 

 

6.10  POSSIBLE QUESTIONS 

Short Answer Type Questions: 

1. What is the primary goal of data replication in distributed 

systems? 

2. How does Multi-Master replication improve system availability? 

3. What is the main advantage of chain replication regarding read 

operations? 

4. How does synchronous replication differ from asynchronous 

replication? 

5. What is a key disadvantage of chain replication in terms of write 

latency? 

Long Answer Type Questions: 

6. Explain the difference between active replication and passive 

replication in distributed systems. 

7. Describe the advantages and disadvantages of strong consistency 

in distributed systems. 
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8. How does causal consistency differ from strong consistency and 

sequential consistency? 

9. Explain how weak consistency can improve system performance 

and availability in distributed systems. 

10. Compare and contrast data-centric replication and process-

centric replication in distributed systems. 
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UNIT: 7 

DISTRIBUTED FILE SYSTEMS 

 

Unit Structure: 

7. 1 Introduction  

7. 2 Objectives  

7. 3 Characteristics and their Key Features  

7. 4 Challenges and Requirements  

7. 5 Overview of File Service Architecture  

7. 6 Distributed File System Requirements  

7. 7 File Service Architecture  

7. 8 File Accessing Models 

7. 9 File Access Protocols 

7. 10 Summing Up 

7. 11 Model Questions 

7.12  References and Suggested Readings 

7. 1. Introduction 

A Distributed File System (DFS) is a vital infrastructure component 

that allows data to be stored and accessed from numerous file 

servers and locations. It provides a seamless approach for programs 

to handle isolated data as if it were stored locally, while also letting 

users to access and exchange files across the network. The primary 

goals of DFS are to improve data availability, improve performance, 

and ensure data redundancy. This document describes the essential 

characteristics, difficulties, and needs of DFS, including scalability, 

fault tolerance, security, and access controls. It also provides an 

overview of the file service architecture, including the structural 

design and component interactions inside a DFS.  It also covers 

alternative file access models and protocols, such as Server Message 

Block (SMB) and Andrew File System (AFS), which are critical for 

efficient and safe file sharing in remote contexts. This 

comprehensive reference is intended to provide a detailed 
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understanding of DFS, its architectural foundation, and the protocols 

that enable its functionality. 

7. 2. Objectives 

1. Understanding the basic concepts and principles of 

distributed file systems. 

2. Exploring different architectures and designs of distributed 

file systems. 

3. Learning about the challenges and trade-offs in designing 

and implementing distributed file systems. 

4. Studying the various techniques and algorithms used in 

distributed file systems for fault tolerance, scalability, and 

performance. 

5. Analyzing real-world examples of distributed file systems 

and their use cases. 

6. Discussing future trends and advancements in distributed file 

systems technology. 

7. 3. Characteristics and their key features 

A distributed file system uses multiple servers to store files that 

are accessible over networks. A distributed file system's primary 

features offer the benefits, and they can be summed up as 

follows by using a few example distributed file systems, like 

Hadoop, Andrew File System, Coda, GFS, Sun NFS, and many 

more. Characteristics and key features of distributed file systems 

include
1
: 

1. Transparency: This security mechanism conceals details of 

one file system from others and from users. There are four 

types: 

a. Structure Transparency: Users are unaware of the 

DFS's actual structure, including the number of file 

servers and storage devices. 

b. Access Transparency: Users can access their file 

resources securely regardless of their location, 

following the correct login process. 

                                                           
1
 https://www.techtarget.com/searchstorage/tip/Key-features-of-a-distributed-

file-system  
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c. Replication Transparency: Replicated files in 

different nodes are hidden from other nodes within 

the system. 

d. Naming Transparency: File names do not indicate 

their location and remain consistent even when files 

move among storage nodes. 

2. Performance: This measures the time required to process 

user file access requests, including processor time, network 

transmission time, and storage access time. The DFS 

performance should be comparable to a local file system. 

3. Scalability: The DFS should support the addition of storage 

resources seamlessly, maintaining performance levels as 

storage capacity scales up. 

4. High Availability: The DFS must remain operational 

despite issues like node failures or drive crashes. It should 

quickly reconfigure to alternative storage resources to 

maintain uninterrupted operations. Disaster Recovery (DR) 

plans must include provisions for backing up and recovering 

DFS servers and storage devices. 

5. Data Integrity: The DFS must manage multiple access 

requests to the same file storage systems without causing 

disruptions or damage to file integrity. 

6. High Reliability: To ensure data availability and 

survivability during disruptions, the DFS should create 

backup copies of files. This complements high availability 

and ensures that files and databases are accessible when 

needed. 

7. Security: Data must be protected from unauthorized access 

and cyber attacks. Encrypting data at rest and in transit 

enhances security and protection. 

8. User Mobility: This feature directs a user's file directory to 

the node where the user logs in, ensuring seamless access to 

their resources. 

9. Namespaces: A namespace defines a repository of 

commands and variables for specific activities. In DFS, 

namespaces collect the necessary commands and actions for 

the system's functionality. A single namespace supporting 

multiple file systems creates a unified interface, making all 

systems appear as a single file system to the user. This 

reduces the likelihood of interference with the contents of 

other namespaces. 
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STOP TO CONSIDER 

Transparency: 

 Structure Transparency: Users are unaware of 

the DFS's actual structure. 

 Access Transparency: Secure access to file 

resources regardless of location. 

 Replication Transparency: Replicated files in 

different nodes are hidden from each other. 

 Naming Transparency: File names remain 

consistent and do not indicate location. 

Performance: Measures time for processing user file 

access requests, including processor, network, and storage 

access times. Comparable to local file system 

performance. 

Scalability: Supports seamless addition of storage 

resources while maintaining performance levels as 

capacity scales up. 

High Availability: Remains operational despite node 

failures or drive crashes, with quick reconfiguration to 

alternative resources. Disaster Recovery (DR) plans must 

cover backups and recovery of DFS servers and storage 

devices. 

Data Integrity: Manages multiple access requests without 

causing disruptions or damage to file integrity. 

High Reliability: Creates backup copies to ensure data 

availability and survivability during disruptions, 

complementing high availability. 

Security: Protects data from unauthorized access and 

cyber attacks through encryption at rest and in transit. 

User Mobility: Routes user's file directory to the node 

where they log in, ensuring seamless access to resources. 

Namespaces: Collects commands and actions for DFS 

functionality, creating a unified interface that makes all 

systems appear as a single file system to the user, reducing 

interference with other namespaces. 
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Check Your Progress 

Question  1. What is structure transparency in a distributed 

file system, and why is it important? 

Question  2. How does access transparency benefit users in a 

distributed file system? 

Question  3. Explain replication transparency and its 

significance in a distributed file system. 

Question  4. What is naming transparency, and how does it 

maintain file name consistency? 

Question  5. List the components that contribute to the 

performance of a distributed file system. 

Question  6. Describe how scalability is achieved in a 

distributed file system. 

Question  7. What mechanisms ensure high availability in a 

distributed file system during node failures or drive 

crashes? 

Question  8. How does a distributed file system maintain 

data integrity when multiple users access the same files? 

Question  9. Explain the role of high reliability and how 

backup copies contribute to it in a distributed file system. 

Question  10. What security measures are implemented in a 

distributed file system to protect data from unauthorized 

access and cyber attacks? 

Question  11. How does user mobility enhance the user 

experience in a distributed file system? 

Question  12. Define namespaces in the context of a 

distributed file system and their role in providing a unified 

user interface. 

Question  13. Why is it essential for a distributed file system 

to have performance comparable to a local file system? 

Question  14. How do disaster recovery plans complement 

high availability in a distributed file system? 

Question  15. What are the benefits of having a single 

namespace support multiple file systems in a distributed 

file system? 
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 Requirements  

 of a distributed system is shown in Figure 1. 

 

allenges of a distributed system(1) 

buted systems encompass a variety of services 

can operate across different computers and 

over the Internet. This includes hardware 

ypes (PCs, tablets, etc.) running different 

(Windows, iOS, etc.), which need to 

change information. Programs written in 

an interact only when these differences are 

n standards, similar to Internet protocols, are 

e, a software layer that provides programming 

k the heterogeneity of networks, programming 

ystems, and hardware. An example of mobile 

ated and executed on different computers is a 

 

STOP TO CONSIDER 

ments: Operates across various hardware 

tems. 

asks differences in networks, languages, and 

le: Java applet. 
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STOP TO CONSIDER 

 Core Aspects: Confidentiality, integrity, and availability. 

 Protection Measures: Encryption enhances security, but 

vulnerabilities like DoS attacks remain. 

STOP TO CONSIDER 

 Failure Management: Detect, mask, and recover from 

failures while maintaining functionality. 

 Redundancy: Data replication to prevent loss and ensure 

continuous operation. 

Security: Security is a critical concern in distributed environments, 

especially when using public networks. Security encompasses 

confidentiality (protection against unauthorized access), integrity 

(protection against data tampering), and availability (protection 

against service disruption). Encryption techniques, such as those 

used in cryptography, can help address these concerns, but they are 

not foolproof. Distributed systems are vulnerable to threats like data 

leakage, integrity breaches, denial-of-service (DoS) attacks, and 

unauthorized access. DoS attacks, often conducted by botnets, 

overwhelm a server with fake requests. 

 

 

 

 

Fault Tolerance and Handling: Distributed systems must be fault-

tolerant, continuing to function normally even when some 

components fail. This involves detecting failures (e.g., using 

checksums), masking failures (e.g., retransmitting data upon 

failure), recovering from failures (e.g., rolling back to a safe state), 

and building redundancy (e.g., replicating data to prevent loss). 

Failures are inevitable, and the system must be equipped to handle 

them without significant disruption. 

 

 

 

 

Concurrency: Concurrency issues arise when multiple clients 

request a shared resource simultaneously. The results may depend 

on the order of completion, necessitating synchronization. 

Distributed systems lack a global clock, making synchronization 

essential for the proper functioning of all components. 
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Scalability: Scalability challenges occur when a system cannot 

handle a sudden increase in resources or users. Efficient architecture 

and algorithms are crucial. Scalability has three primary dimensions: 

 Size: The number of users and resources. Overloading can 

be a problem. 

 Geography: The distance between users and resources. 

Communication reliability is a concern. 

 Administration: Managing a growing number of nodes. 

Administrative chaos can occur. 

 

Openness and Extensibility: Distributed systems should have well-

defined interfaces that are openly available, facilitating easy 

addition of new components or features. Openness issues arise when 

previously published content is retracted. There is often no central 

authority in open distributed systems, with different systems having 

their own mediators. For example, platforms like Facebook and 

Twitter allow developers to create interactive software through their 

APIs. 

 

STOP TO CONSIDER 

 Interfaces: Well-defined and openly available for easy 

additions. 

 API Integration: Enables interactive software development. 

STOP TO CONSIDER 

 Efficient Growth: Manages increases in resources and 

users. 

 Key Dimensions: 
o Size: Number of users and resources. 

o Geography: Distance between users and resources. 

o Administration: Managing a growing number of 

nodes. 

STOP TO CONSIDER 

 Synchronization: Essential for managing simultaneous 

access to shared resources. 
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STOP TO CONSIDER 

 Seamless Migration: Tasks and applications move without 

disrupting others. 

 Optimal Performance: Balances load across resources. 

Check Your Progress 

Question  1. What are the challenges associated with heterogeneity 

in distributed systems? 

Question  2. How does middleware help manage heterogeneity in 

distributed systems? 

Question  3. What are the three core aspects of security in distributed 

systems? 

Question  4. How do encryption techniques enhance security in 

distributed systems? 

Question  5. What methods are used to detect failures in a distributed 

system? 

Question  6. How does redundancy improve fault tolerance in 

distributed systems? 

Question  7. What is the importance of having recovery mechanisms 

in a distributed system? 

Question  8. What role does synchronization play in managing 

concurrency? 

Question  9. How do distributed systems handle multiple 

simultaneous access requests? 

Question  10. What are the key dimensions of scalability in distributed 

systems? 

Question  11. What are common challenges faced when scaling up a 

distributed system? 

Question  12. How do well-defined interfaces benefit a distributed 

system? 

Question  13. What are the challenges associated with openness in 

distributed systems? 

Question  14. What is the significance of task migration in distributed 

systems? 

Question  15. How do distributed systems ensure load balancing 

across resources? 

Question  16. What are the benefits of effective load balancing in a 

distributed environment? 

Question  17. How does middleware function as a bridge in 

distributed systems? 

Question  18. How do namespaces contribute to the functioning of a 

distributed file system? 

Migration and Load Balancing: Tasks and applications should 

operate independently to allow for seamless migration within the 

system without affecting others. To optimize performance, the 

system should distribute the load among available resources 

effectively. 
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7. 5. Overview of File Service Architecture 

 

In distributed system, File Service Architecture is an essential 

component that enables users to access and manipulate files 

remotely. It allows multiple users to access a shared file system over 

a distributed network. The design of file service architecture is 

based on the client server model. The client sends a request to server 

and server process request and send back requested data. The client 

Server model provides a scalable, fault-tolerance and reliable file 

service architecture. Examples of File Service Architecture are 

Network File System (NFS), Amazon S3, GlusterFS. The file 

service architecture of distributed file system is shown in Figure 2
2
.  

 

Figure 2 File Service Architecture of Distributed File System 

The File Service Architecture consist of three primary component 

1. Flat File Service: The flat file service is responsible for 

implementing the operations on the content of file. A Unique 

File Identification (UFIDs) are used to refer all requests for 

the flat file service operations. The falt file service 

operations includes Read, write, Create, Delete, GetAttribute 

and SetAttribute. 

 

2. Directory Service: Directory Service provides mapping 

between file names and their UFIDs. Users and client 

                                                           
2
 https://medium.com/@ak_gaur/file-service-architecture-0b85d2051cba  
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STOP TO CONSIDER 

  Flat File Service: 

 Responsible for file content operations like Read, 

Write, Create, Delete, GetAttribute, and SetAttribute. 

 Uses Unique File Identifications (UFIDs) to manage 

file requests efficiently. 

  Directory Service: 

 Provides mapping between file names and UFIDs. 

 Enables navigation, file searching, and location 

determination within the file system. 

 Supports operations such as Lookup, AddName, 

UnName, and GetName. 

  Client Module: 

 Software running on user devices that interacts with the 

file service architecture. 

 Acts as an intermediary between users and file 

services. 

 Initiates file operations requests, accesses directory 

services for file location, and communicates with the 

flat file service for data operations. 

modules can use the directory service to navigate the file 

system, search for files, and determine their location. 

Directory service operations include Lookup, AddName, 

UnNme and GetName. 

 

3. Client Module: The client module is the software that runs 

on user devices and interacts with the file service 

architecture. It acts as an intermediary between users the file 

services. The client module initiates requests for file 

operations, accesses the directory service to locate files, and 

communicates with the flat file service to read or write data. 
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Check Your Progress 

Question  1. What are the key components of a distributed file 

system architecture? 

Question  2. How does middleware help in managing 

heterogeneity in distributed systems? 

Question  3. What are the core security concerns in distributed 

systems, and how can they be addressed? 

Question  4. Explain the concept of fault tolerance in 

distributed systems. What strategies are commonly used? 

Question  5.  How does concurrency control work in 

distributed file systems? 

Question  6.  What are the scalability challenges in distributed 

systems, and how can they be mitigated? 

Question  7.  Discuss the importance of APIs in enabling 

interaction between different components of distributed 

systems. 

Question  8. What role does synchronization play in ensuring 

data consistency across distributed systems? 

Question  9. How do distributed systems handle load 

balancing and resource allocation? 

Question  10.  Explain the concept of namespaces in distributed 

file systems and their significance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. 6. Distributed File System Requirements 

Distributed File System Requirements refer to the set of criteria that 

a distributed file system must meet in order to effectively store, 

manage, and access files across multiple nodes in a network. 

7.6.1. Needs and goals  

A distributed file system (DFS) must meet several fundamental 

needs and goals to effectively manage and provide access to files 

across distributed environments. The primary objective is to ensure 

efficient and reliable storage and retrieval of data. This involves 

enabling seamless access to files from multiple locations while 

prioritizing data integrity and security. The goal is to support diverse 

applications and user needs by offering a unified and scalable 

platform for storing and accessing data across distributed networks. 
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STOP TO CONSIDER 

Needs and Goals 

 Efficient and Reliable Storage and Retrieval: Ensuring data is 

stored and retrieved effectively. 

 Seamless Access: Providing smooth access to files from multiple 

locations. 

 Data Integrity and Security: Prioritizing the safety and 

correctness of data. 

 Support for Diverse Applications: Catering to various user needs 

and applications. 

 Unified and Scalable Platform: Offering a cohesive system that 

can grow with data demands. 

STOP TO CONSIDER 

Scalability: 

 Horizontal Scalability: Adding nodes or storage resources as 

needed. 

 Dynamic Scaling: Adjusting resources based on workload 

growth. 

 Maintaining Performance: Ensuring consistent performance 

levels despite increasing data volumes. 

 Supporting Growth: Accommodating expanding data storage 

requirements over time. 

 

 

 

 

 

 

 

 

 

 

7.6.2. Scalability 

Scalability is a critical requirement for distributed file systems to 

handle increasing data volumes and user demands effectively. The 

system should be able to scale horizontally by adding nodes or 

storage resources dynamically as the workload grows. This 

scalability ensures that the DFS can accommodate expanding data 

storage requirements and maintain performance levels without 

disruptions, supporting the growth and evolution of organizational 

data needs over time. 
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STOP TO CONSIDER 

Fault Tolerance 

 System Availability: Keeping the system operational despite 

failures. 

 Data Integrity: Preserving data accuracy and consistency. 

 Redundancy Mechanisms: Implementing data replication and 

failover procedures. 

 Minimizing Downtime: Ensuring continuous operation of 

services and applications. 

7.6.3. Fault tolerance 

Fault tolerance is essential to maintain system availability and data 

integrity in the face of node failures or network issues. The 

distributed file system must implement robust redundancy 

mechanisms such as data replication and failover procedures. These 

mechanisms ensure that data remains accessible and consistent even 

if individual nodes fail, thereby minimizing downtime and ensuring 

continuous operation of critical services and applications. 

 

 

 

 

 

 

 

7.6.4. Data Consistency 

Ensuring data consistency across distributed nodes is another crucial 

requirement for a DFS. It involves managing concurrent access and 

updates to files across multiple users and locations while 

maintaining a consistent and accurate view of data. Distributed 

locking mechanisms and transaction protocols are employed to 

synchronize data access and updates, preventing conflicts and 

maintaining data integrity throughout the distributed file system. 

 

 

STOP TO CONSIDER 

Data Consistency 

 Concurrent Access Management: Handling multiple users 

and locations accessing and updating files. 

 Consistent Data View: Maintaining an accurate view of data 

across the system. 

 Synchronization: Using distributed locking mechanisms and 

transaction protocols. 

 Conflict Prevention: Preventing data access and update 

conflicts. 
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STOP TO CONSIDER 

Security and Access Controls 

 Data Protection: Safeguarding against unauthorized access and 

breaches. 

 Authentication: Verifying user identities. 

 Encryption: Protecting data during storage and 

transmission. 

 Access Control: Enforcing policies to control data access 

and manipulation. 

 Regulatory Compliance: Ensuring adherence to data 

protection regulations. 

7.6.5. Security and Access controls 

Security is paramount in distributed file systems to protect data from 

unauthorized access, tampering, and breaches. Robust 

authentication, encryption, and access control mechanisms are 

required to enforce data security policies effectively. These 

measures ensure that only authorized users and applications can 

access and manipulate data within the DFS, safeguarding sensitive 

information and maintaining regulatory compliance. 

 

 

 

 

 

 

 

 

 

7. 7. File Service Architecture 

 

File Service Architecture in a distributed file system refers to the 

way in which the file system is designed and structured to provide 

file services across a network of computers. In the previous section, 

it has been explained that this architecture typically involves a set of 

components that work together to manage and store files in a 

distributed manner.  
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7.7.1 Client-server vs. peer-to-peer models  

Client-server and peer-to-peer are two common architectural models 

used in distributed systems, including file systems. Here is a 

comparison of the two models: 

 

Figure 3 Client-server and peer-to-peer Model   

(Source: https://systemdesignschool.io/blog/peer-to-peer-

architecture ) 

 

Client-Server Model: In the client-server model, there are two 

types of entities: clients and servers. 

 Clients request services or resources from servers, which 

respond to these requests. 

 Servers are typically centralized and dedicated to providing 

specific services or resources to clients. 

 Clients have limited responsibilities and rely on servers for 

most tasks. 

Examples of client-server architectures include web servers serving 

web pages to web browsers, file servers providing file access to 

client machines, and database servers handling database queries 

from client applications. 

 



398 

 

Peer-to-Peer Model: In the peer-to-peer model, all participating 

nodes (peers) in the network have the ability to act as both clients 

and servers. 

 Peers can directly communicate and share resources with 

each other without the need for a centralized server. 

 Peers collaborate and contribute resources to the network, 

such as files, processing power, or bandwidth. 

 The peer-to-peer model is decentralized, allowing for more 

scalability and fault tolerance compared to client-server 

architectures. 

Examples of peer-to-peer architectures include file-sharing networks 

like BitTorrent, decentralized cryptocurrency networks like Bitcoin, 

and collaborative applications like Skype. 

 

Table 1 Client Server vs. Peer-to-Peer model 

Client-Server Model Peer-to-Peer Model 

Client-server model is 

centralized, with dedicated 

servers providing services to 

clients,  

Peer-to-peer model is 

decentralized, with peers sharing 

resources directly with each 

other. 

servers have specialized roles 

and responsibilities, 

All peers have equal status and 

can act as both clients and 

servers. 

easier to manage and control offers more scalability and fault 

tolerance 

commonly used for services that 

require centralized control and 

management 

Suitable for distributed 

applications that benefit from 

decentralization and 

collaboration. 

 

Both client-server and peer-to-peer models have their advantages 

and limitations, and the choice between them depends on the 

specific requirements of the distributed system being designed. 
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Check Your Progress 

Question  1. What are the key characteristics of the client-server 

model in distributed systems? 

Question  2. Describe how clients and servers interact in the 

client-server architecture. Provide examples of applications 

that use this model. 

Question  3. What distinguishes the peer-to-peer model from 

the client-server model in distributed file systems? 

Question  4. Compare and contrast the centralized nature of the 

client-server model with the decentralized nature of the peer-

to-peer model. 

Question  5. Explain why the peer-to-peer model offers more 

scalability and fault tolerance compared to the client-server 

model. 

Question  6. Give examples of applications or networks that 

utilize the peer-to-peer architecture. How do these 

applications benefit from decentralization? 

Question  7. Discuss the advantages and disadvantages of using 

a client-server architecture in distributed file systems. 

Question  8. In what scenarios would you prefer to use a client-

server model over a peer-to-peer model, and vice versa? 

Question  9. How does each model handle resource sharing and 

management differently? 

Question  10. What are the implications of choosing between a 

client-server and a peer-to-peer architecture for ensuring 

security and data integrity in distributed systems? 
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STOP TO CONSIDER 

Function:  Store metadata information about files and 

directories in a distributed file system. 

Metadata Includes: Attributes such as file names, sizes, 

timestamps, permissions, file locations, and directory structures. 

Responsibilities: Maintain the namespace of the file system. 

Track the mapping between logical file names and physical file 

locations. 

Client Interaction: Clients contact metadata servers to perform 

operations like file lookups, file creation, file deletion, and 

directory listing. 

Coordination: Help coordinate access to data stored across 

multiple data servers in the system. 

 

7.7.2 Role of metadata and data servers  

 

Metadata and data servers play crucial roles in distributed file 

systems and storage systems.  

Metadata Servers: 

 Metadata servers store metadata information about files and 

directories in a distributed file system. 

 Metadata includes attributes such as file names, sizes, 

timestamps, permissions, file locations, and directory 

structures. 

 Metadata servers maintain the namespace of the file system 

and track the mapping between logical file names and 

physical file locations. 

 Clients in the distributed system contact metadata servers to 

perform operations like file lookups, file creation, file 

deletion, and directory listing. 

 Metadata servers help coordinate access to data stored across 

multiple data servers in the system. 
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Data Servers: 

 Data servers store the actual data contents of files in a distributed 

storage system. 

 Data servers are responsible for storing and retrieving data blocks 

or chunks that make up files. 

 Data servers handle read and write requests from clients, 

providing access to the data stored on disk or in memory. 

 Data servers may replicate data blocks for fault tolerance and 

performance optimization. 

 Data servers work in conjunction with metadata servers to ensure 

data consistency and availability in the distributed system. 

 

 

 

 

Check Your Progress 

Question  1. What is the primary function of metadata 

servers in a distributed file system? 

Question  2. List some key attributes that are typically stored 

in metadata by metadata servers. Why are these attributes 

important? 

Question  3. Explain the role of metadata servers in 

maintaining the namespace of a distributed file system. 

Why is namespace management crucial? 

Question  4. How do clients interact with metadata servers in 

a distributed file system? Provide examples of operations 

that clients perform via metadata servers. 

Question  5. Discuss the coordination role of metadata 

servers in accessing data stored across multiple data 

servers. Why is coordination necessary in distributed file 

systems? 
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Check Your Progress 

Question  1. What is the primary role of data servers in a 

distributed storage system? 

Question  2. Explain how data servers manage the storage 

and retrieval of file data in distributed file systems. 

Question  3. What are data blocks or chunks, and how do 

data servers handle them in distributed storage systems? 

Question  4. Discuss the responsibilities of data servers in 

handling read and write requests from clients. How do they 

ensure data availability and reliability? 

Question  5. Why is data replication important for data 

servers in distributed file systems? How does replication 

contribute to fault tolerance and performance optimization? 

Question  6. Describe the collaboration between data servers 

and metadata servers in ensuring data consistency across a 

distributed system. 

 

Key Roles of Metadata and Data Servers: 

1. Namespace Management: Metadata servers manage the 

namespace of the file system, while data servers store the 

actual data contents of files. 

2. Metadata Access: Clients interact with metadata servers to 

access file metadata information, while data servers handle 

read and write operations for file data. 

3. Coordination: Metadata servers coordinate access to data 

stored across multiple data servers in the distributed system. 

4. Fault Tolerance: Data servers may replicate data blocks for 

fault tolerance, while metadata servers help maintain 

consistency and availability of metadata information. 

5. Performance Optimization: Data servers optimize data 

access by storing and retrieving data efficiently, while 

metadata servers help optimize file system operations. 

 

 

In summary, metadata servers handle metadata information 

about files and directories in a distributed file system, while data 

servers store and manage the actual data contents of files. 
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Together, they play essential roles in ensuring efficient and 

reliable access to data in distributed storage systems. 

 

 

 

 

 

 

 

 

STOP TO CONSIDER 

Namespace Management: 

 Metadata Servers: Manage the namespace of the file system. 

 Data Servers: Store the actual data contents of files. 

Metadata Access: 

 Metadata Servers: Clients interact with these servers to 

access file metadata information. 

 Data Servers: Handle read and write operations for file data. 

Coordination: 

 Metadata Servers: Coordinate access to data stored across 

multiple data servers in the distributed system. 

Fault Tolerance: 

 Data Servers: May replicate data blocks for fault tolerance. 

 Metadata Servers: Help maintain consistency and availability 

of metadata information. 

Performance Optimization: 

 Data Servers: Optimize data access by storing and retrieving 

data efficiently. 

 Metadata Servers: Help optimize file system operations. 
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7.7.3 Communication protocols 

A distributed system consists of interconnected computers, known 

as nodes, each performing specific tasks and collaborating to 

achieve a common objective. Such systems are designed to continue 

functioning even if some nodes fail, and these systems are referred 

to as fault-tolerant distributed systems. The primary types of faults 

in these systems are: crash (a node stops working), omission (a node 

fails to perform an expected action or to send/receive data), and 

Byzantine failure (a node exhibits malicious behavior). To achieve 

their goals, nodes in a distributed system communicate with one 

another, exchanging information through methods like messaging or 

shared memory, and coordinate their activities based on the shared 

information. This communication can be synchronous, 

asynchronous, or a hybrid of both
3
. 

                                                           
3
 https://www.linkedin.com/pulse/communication-protocols-distributed-

systems-arthur-sergeyan/ 

 

Check Your Progress 

Question  1. What is the primary function of metadata servers in 

a distributed file system? 

Question  2. How do clients interact with metadata servers, and 

what type of information do they typically request from them? 

Question  3. Explain the role of data servers in fault tolerance 

within distributed file systems. How does data replication 

contribute to this? 

Question  4. What is namespace management, and why is it 

important in the context of distributed file systems? 

Question  5. Discuss the coordination role of metadata servers in 

accessing data across multiple data servers. Why is 

coordination necessary? 
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1. Synchronous Communication: In this type of 

communication, nodes interact in a tightly coordinated 

manner. They wait for each other to send and receive 

messages before proceeding. This ensures that all nodes are 

always on the same page, but it can be slower due to the 

waiting times. 

 

2. Asynchronous Communication: Nodes operate more 

independently, sending and receiving messages without 

waiting for responses. This can lead to faster overall 

performance, but it requires more complex mechanisms to 

ensure that all nodes stay synchronized and that the system 

remains consistent. 

 

STOP TO CONSIDER 

 Nodes operate independently, sending and receiving 

messages without waiting for responses. 

 Can lead to faster overall performance. 

 Requires complex mechanisms to ensure synchronization 

and system consistency. 

STOP TO CONSIDER 

 Nodes interact in a tightly coordinated manner. 

 Nodes wait for each other to send and receive 

messages before proceeding. 

 Ensures all nodes are synchronized, but can be slower 

due to waiting times. 

STOP TO CONSIDER 

Types of Faults: 

 Crash: A node stops working. 

 Omission: A node fails to perform an expected action or 

to send/receive data. 

 Byzantine Failure: A node exhibits malicious behavior. 
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3. Hybrid Communication: Many distributed systems use a 

mix of synchronous and asynchronous communication to 

balance the need for coordination with the need for speed 

and efficiency. 

 

 

 

7.7.4 Data Transfer Mechanisms 

Data transfer mechanisms in distributed file systems (DFS) are 

crucial for ensuring efficient, reliable, and scalable access to files 

across multiple nodes. These systems distribute data storage and 

access across a network of computers, enabling high availability and 

performance. Here is some key data transfer mechanisms used in 

distributed file systems,  

1. Chunk-Based Data Storage and Transfer: Distributed file 

systems often break files into fixed-size chunks or blocks. These 

chunks are stored on different nodes, and data transfer involves 

reading/writing these chunks. Example: Google File System 

(GFS)(2). 

Check Your Progress 

Question  1. What are the primary types of faults that can occur 

in fault-tolerant distributed systems? Explain each type 

briefly. 

Question  2. Describe synchronous communication in 

distributed systems. What are the advantages and 

disadvantages of this communication model? 

Question  3. Explain asynchronous communication in 

distributed systems. What are the benefits and challenges 

associated with this approach? 

Question  4. Why do many distributed systems opt for a hybrid 

communication approach? Provide examples of scenarios 

where hybrid communication might be advantageous. 

Question  5. How do nodes in a distributed system coordinate 

their activities through communication protocols? 
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2. Replication: To ensure reliability and fault tolerance, chunks are 

often replicated across multiple nodes. The replication 

mechanism ensures data availability even if some nodes fail. 

Example: Hadoop Distributed File System (HDFS) (3) 

 

3. Data Placement and Balancing: DFS uses algorithms to decide 

where to place chunks to optimize for load balancing and 

network traffic minimization. Example: Ceph (4). 

 

4. Metadata Management: Efficient metadata management is 

crucial for tracking the locations of chunks and ensuring quick 

access to files. Metadata servers handle this information and 

respond to client queries. Example: Lustre File System, (5) 

 

5. Client Caching: Clients often cache frequently accessed data 

locally to reduce network traffic and improve access speed. 

STOP TO CONSIDER 

 Efficient metadata management is crucial for tracking the 

locations of chunks and ensuring quick access to files.  

 Metadata servers handle this information and respond to client 

queries. 

STOP TO CONSIDER 

 DFS uses algorithms to decide where to place chunks to 

optimize for load balancing and network traffic minimization. 

STOP TO CONSIDER 

 Chunks are replicated across multiple nodes to ensure 

reliability and fault tolerance, maintaining data availability 

even if some nodes fail. 

STOP TO CONSIDER 

 Files are broken into fixed-size chunks or blocks. 

 These chunks are stored on different nodes. 

 Data transfer involves reading/writing these chunks. 
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Caching mechanisms ensure consistency and coherency of data. 

Example: AFS (Andrew File System). (6) 

 

 

6. Data Striping: Data striping distributes chunks of data across 

multiple disks or nodes to improve throughput by parallelizing 

read/write operations. Example: IBM GPFS (General Parallel 

File System) (7) 

 

7. Consistency Protocols: Ensuring data consistency across replicas 

is a key challenge. Distributed file systems implement various 

consistency protocols to handle concurrent access and updates. 

Example: Coda File System. (8) 

 

8. Erasure Coding: Erasure coding is used to provide fault 

tolerance with lower storage overhead compared to replication. 

It divides data into fragments, expands it with redundant data 

pieces, and stores these pieces across different locations. 

Example: Microsoft Azure Storage. (9) 

 

STOP TO CONSIDER 

 Ensuring data consistency across replicas is a key challenge.  

 Distributed file systems implement various consistency protocols to 

handle concurrent access and updates. 

STOP TO CONSIDER 

 Data striping distributes chunks of data across multiple disks or 

nodes to improve throughput by parallelizing read/write 

operations. 

STOP TO CONSIDER 

 Clients often cache frequently accessed data locally to 

reduce network traffic and improve access speed.  

 Caching mechanisms ensure consistency and coherency of 

data. 
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7. 8. File Accessing Models:  

File Accessing Models refer to the different methods or approaches 

used to control and manage access to files in a file system. These 

models define the rules and permissions governing how users or 

processes can interact with files, read or write data, and perform 

operations on files stored in the file system. The file accessing 

model essentially depends on: 

 The unit of data access/transfer. 

 The method utilized for accessing remote files. 

Check Your Progress 

Question  1. What are the primary types of faults that can occur 

in fault-tolerant distributed systems? Explain each type 

briefly. 

Question  2. Describe synchronous communication in 

distributed systems. What are the advantages and 

disadvantages of this communication model? 

Question  3. Explain asynchronous communication in 

distributed systems. What are the benefits and challenges 

associated with this approach? 

Question  4. Why do many distributed systems opt for a hybrid 

communication approach? Provide examples of scenarios 

where hybrid communication might be advantageous. 

Question  5. How do nodes in a distributed system coordinate 

their activities through communication protocols? 

STOP TO CONSIDER 

 Erasure coding is used to provide fault tolerance with lower 

storage overhead compared to replication.  

 It divides data into fragments, expands it with redundant data 

pieces, and stores these pieces across different locations. 
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Based on the unit of data access, the following file access models 

may be used to access specific files: 

1. File-Level Transfer Model: In the file-level transfer model, the 

entire file is transferred whenever a specific action requires the 

file data. The entire document is sent across the distributed 

computing network between the client and server. This model 

has better scalability and is efficient. 

2. Block-Level Transfer Model: In the block-level transfer model, 

file data is transferred between the client and server in units of 

file blocks. The unit of data transfer in this model is file blocks. 

This model may be utilized in a distributed computing 

environment with several diskless workstations. 

3. Byte-Level Transfer Model: In the byte-level transfer model, file 

data is transferred between the client and server in units of bytes. 

The unit of data transfer in this model is bytes. The byte-level 

transfer model offers greater flexibility compared to other file 

transfer models because it allows the recovery and management 

of an inconsistent subset of a file. The major disadvantage of 

this model is the complexity in cache management due to 

variable-length data for different access requests. 

4. Record-Level Transfer Model: The record-level transfer model 

is used in scenarios where file contents are organized as records. 

In this model, file data is transferred between the client and 

server in units of records. The unit of data transfer in the record-

level transfer model is records. 
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Check Your Progress 

Question  1. Compare and contrast the file-level transfer model 

with the block-level transfer model. What are the advantages 

and disadvantages of each? 

Question  2. Explain the flexibility offered by the byte-level 

transfer model compared to other file transfer models. What 

challenges does it pose for cache management? 

Question  3. In which scenarios would the record-level transfer 

model be most beneficial? Discuss its advantages in specific 

use cases. 

Question  4. How does the choice of data access unit (file, block, 

byte, or record) impact the performance and efficiency of file 

access in distributed computing environments? 

STOP TO CONSIDER 

File-Level Transfer Model: In this model, the entire file is 

transferred whenever a specific action requires the file data. The 

entire document is sent across the distributed computing network 

between the client and server. This model has better scalability and 

is efficient. 

Block-Level Transfer Model: Here, file data is transferred 

between the client and server in units of file blocks. This model 

may be utilized in a distributed computing environment with 

several diskless workstations. 

Byte-Level Transfer Model: In this model, file data is transferred 

between the client and server in units of bytes. The byte-level 

transfer model offers greater flexibility because it allows the 

recovery and management of an inconsistent subset of a file. 

However, it has the disadvantage of complexity in cache 

management due to variable-length data for different access 

requests. 

Record-Level Transfer Model: This model is used in scenarios 

where file contents are organized as records. File data is 

transferred between the client and server in units of records. 
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7.8.1. Remote access  

In the remote service model, handling a client’s request is performed 

at the server’s hub. The client’s request for file access is passed 

across the network as a message to the server. The server machine 

performs the access request, and the result is sent back to the client. 

Advantages: 

1. Simplifies consistency management by keeping a single 

authoritative copy at the server. 

2. Useful when the client’s main memory is limited. 

Disadvantages: 

1. Increases server load and network traffic, potentially 

compromising performance. 

2. Remote access handling across the network is inherently 

slower. 

3. Transmitting a series of responses to specific requests results 

in higher network overhead. 

This model is essentially an extension of the local file system 

interface across the network, ensuring that the server maintains a 

consistent copy of the data. 

 

STOP TO CONSIDER 

 In the remote service model, handling a client’s request is performed at the 

server’s hub.  

 The client’s request for file access is passed across the network as a 

message to the server.  

 The server machine performs the access request, and the result is sent back 

to the client.  

 Advantages: Simplifies consistency management by keeping a single 

authoritative copy at the server, and is useful when the client’s main 

memory is limited.  

 Disadvantages: Increases server load and network traffic, potentially 

compromising performance; remote access handling across the network is 

inherently slower; transmitting a series of responses to specific requests 

results in higher network overhead.  

 This model is essentially an extension of the local file system interface 

across the network, ensuring that the server maintains a consistent copy of 

the data. 
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7.8.2. Caching and Sharing 

The data-caching model reduces network traffic by caching data 

obtained from the server. This exploits the locality aspect observed 

in file accesses. A replacement policy, such as Least Recently Used 

(LRU), is employed to keep the cache size limited. 

Advantages: 

1. Remote access can be served locally, making access faster. 

2. Reduces network traffic and server load, improving 

scalability. 

3. Network overhead is less significant when transmitting large 

amounts of data compared to the remote service model. 

 Disadvantages: 

1. Maintaining consistency can be challenging. Performance is 

better with fewer writes and worse with more frequent 

writes. 

2. Caching is more effective for machines with disks or large 

main memory. 

3. The lower-level machine interface is different from the 

upper-level user interface. 

Check Your Progress 

Question  1. How does the remote service model simplify 

consistency management in distributed file systems? 

Question  2. What are the primary disadvantages of handling 

remote access across a network? 

Question  3. Explain the concept of network overhead in the 

context of remote service models. 

Question  4. What advantages does the remote service model 

offer when the client’s main memory is limited? 

Question  5. Compare the performance implications of remote 

access handling versus local file system operations. 
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Check Your Progress 

Question  1. How does the data-caching model reduce network 

traffic in distributed systems? 

Question  2. What role does the Least Recently Used (LRU) 

policy play in caching? 

Question  3. List two advantages of using data caching in 

distributed systems. 

Question  4. What are two challenges associated with 

maintaining consistency in a caching system? 

Question  5. Explain why caching may be more effective for 

machines with disks or large main memory. 

STOP TO CONSIDER 

 The data-caching model reduces network traffic by caching 

data obtained from the server, exploiting the locality aspect 

observed in file accesses.  

 A replacement policy, such as Least Recently Used (LRU), is 

employed to keep the cache size limited.  

 Advantages: Remote access can be served locally, making 

access faster; reduces network traffic and server load, 

improving scalability; and network overhead is less significant 

when transmitting large amounts of data compared to the 

remote service model.  

 Disadvantages: Maintaining consistency can be challenging, 

with performance being better with fewer writes and worse 

with more frequent writes; caching is more effective for 

machines with disks or large main memory; and the lower-

level machine interface is different from the upper-level user 

interface. 
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7.8.3. Benefit of Data-Caching Model over the Remote Service 

Model 

The data-caching model offers the potential for improved 

performance and greater system scalability. It reduces network 

traffic, contention for the network, and contention for the file 

servers. Consequently, almost all distributed file systems implement 

some form of caching. 

Example: NFS primarily uses the remote service model but adds 

caching for better performance. 

 

 
 

Check Your Progress 

Question  1. What potential advantages does the data-caching 

model offer over the remote service model? 

Question  2. How does caching reduce network traffic in 

distributed file systems? 

Question  3. Name one specific benefit of caching mentioned in 

the text. 

Question  4. Why do almost all distributed file systems implement 

some form of caching? 

Question  5. Which distributed file system primarily uses the 

remote service model but incorporates caching for performance 

enhancement? 

STOP TO CONSIDER 

 The data-caching model offers the potential for improved 

performance and greater system scalability.  

 It reduces network traffic, contention for the network, and 

contention for the file servers.  

 Consequently, almost all distributed file systems implement 

some form of caching.  

 Example: NFS primarily uses the remote service model but 

adds caching for better performance. 
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7. 9. File Access Protocols:  

File access protocols are essential communication protocols that 

define how data is accessed, transferred, and managed between 

clients and servers in a networked file system environment. These 

protocols enable users to access and manipulate files stored on 

remote servers as if they were stored locally. Here are five common 

file access protocols used in networking: 

 

7.9.1. Network File System (NFS)  

NFS, or Network File System, is a protocol for a distributed file 

system developed by Sun Microsystems in 1984. It operates on a 

client/server architecture, consisting of a client program, a server 

program, and a protocol that facilitates communication between the 

client and server. 

NFS allows users to access data and files remotely over a network, 

making it possible for users to manipulate files as if they were 

stored locally. It is an open standard, enabling easy implementation 

by any user. The protocol is built on the ONC RPC system. 

NFS is particularly useful in computing environments where 

centralized management of resources and data is essential. It uses 

both the Transmission Control Protocol (TCP) and User Datagram 

Protocol (UDP) to access and deliver data and files. 

NFS operates on all IP-based networks and is implemented in 

client/server applications where the NFS server handles 

authorization, authentication, and client management. This protocol 

is commonly used with operating systems such as Apple Mac OS, 

Unix, and Unix-like systems including Solaris, Linux, FreeBSD, 

and AIX. 
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7.9.2. Common Internet File System (CIFS) 

The Common Internet File System (CIFS) is a network file-sharing 

protocol that provides shared access to files, printers, serial ports, 

and various communications between nodes on a network. 

Originally developed by IBM and later enhanced by Microsoft, 

CIFS is an extension of the Server Message Block (SMB) protocol, 

which allows programs to request files and services from servers 

over a network. CIFS operates over TCP/IP, making it suitable for 

use both over the internet and within local area networks (LANs). 

Check Your Progress 

Question  1. When was NFS developed, and by whom? 

Question  2. What is the basic architecture of NFS? 

Question  3. Name two protocols used by NFS for data access 

and delivery. 

Question  4. What role does the NFS server play in the 

client/server setup? 

Question  5. Which computing environments find NFS 

particularly useful, and why? 

Question  6. List two operating systems compatible with NFS. 

STOP TO CONSIDER 

 NFS, developed by Sun Microsystems in 1984, is a protocol 

for distributed file systems operating on a client/server 

architecture.  

 It allows remote access to data and files over a network, 

facilitating manipulation as if stored locally.  

 NFS is an open standard built on the ONC RPC system, 

supporting both TCP and UDP for data access.  

 It's widely used in environments requiring centralized resource 

management and is compatible with various operating systems 

like Apple Mac OS, Unix, Solaris, Linux, FreeBSD, and AIX. 
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CIFS operates on a client-server model where clients request file 

access and other services from servers. It supports essential features 

such as file sharing, printer sharing, and named pipes for inter-

process communication. The protocol includes mechanisms for 

secure access, including user authentication and permission 

management, ensuring data integrity and coherence when multiple 

users access and update the same file. 

One of the primary advantages of CIFS is its interoperability across 

different operating systems, including Windows, Linux, and Unix. 

This cross-platform compatibility simplifies resource sharing within 

networks. Additionally, CIFS is well-documented and standardized, 

supporting a wide range of implementations. However, CIFS can be 

slower than some other file-sharing protocols, especially over wide 

area networks (WANs), and earlier versions had security 

vulnerabilities. Managing permissions and shares can also be 

complex in larger environments. 

CIFS is widely used in enterprise networks for sharing files and 

printers and facilitates cross-platform file sharing between different 

operating systems. While CIFS is often used interchangeably with 

SMB, it specifically refers to the version of SMB used in Windows 

NT 4.0 and later. Modern implementations of SMB, such as SMB2 

and SMB3, offer enhanced performance and security features, 

improving upon CIFS. 

An example implementation of CIFS is mapping a network drive in 

Windows, allowing users to access shared folders and files on a 

remote server as if they were on their local machine. Another 

example is Samba, an open-source implementation of the 

SMB/CIFS protocol, enabling Unix and Linux systems to interact 

with Windows clients and servers. In summary, CIFS is a robust and 

versatile protocol widely used for network file and resource sharing 

across different operating systems and network configurations, with 

continued evolution and integration into modern SMB versions 

ensuring its relevance in today’s networked environments. 
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Table 2. Difference between NFS and CIFS 

NFS CIFS 

1. NFS is an abbreviation of the 

Network File System. 

1. CIFS is an abbreviation of the 

Common Internet File system. 

2. This protocol is used for 

sharing the files by Unix and 

Linux Operating systems. 

2. This protocol is used for 

sharing the files by Windows 

Operating systems. 

3. It is highly scalable. 3. It is low scalable. 

4. The speed of communication is 

fast. 

4. The speed of communication 

is medium. 

5. The network File system is not 

a secure protocol. 

5. Common Internet File System 

is more secure than the Network 

File System. 

6. NFS is not a reliable protocol. 6. CIFS is a reliable protocol. 

7. This protocol does not provide 

the session. 

7. This protocol provides the 

sessions. 

8. This protocol is easy to 8. Its implementation is 

STOP TO CONSIDER 

 CIFS is a network file-sharing protocol developed by IBM and 

enhanced by Microsoft, extending the Server Message Block 

(SMB) protocol.  

 It enables shared access to files, printers, and other resources 

across nodes on a network, operating over TCP/IP for use in 

LANs and over the internet.  

 CIFS operates on a client-server model, supporting features 

like file sharing, printer sharing, and secure access with 

authentication and permission management.  

 It offers interoperability across Windows, Linux, and Unix 

systems, simplifying resource sharing.  

 Despite earlier security vulnerabilities and potential 

performance issues over WANs, CIFS remains widely used in 

enterprise networks for its robust file-sharing capabilities and 

cross-platform support. 
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implement and set up. complex. 

9. This protocol uses 111 port for 

both TCP and UDP. 

9. This protocol uses 139 and 

445 TCP ports and 137 and 138 

UDP ports. 

 

 

 

 

 

STOP TO CONSIDER 

 Name and Purpose: NFS: Network File System, used by Unix 

and Linux whereas CIFS: Common Internet File System, used 

by Windows. 

 Scalability: NFS: Highly scalable whereas CIFS: Low 

scalability. 

 Speed of Communication: NFS: Fast communication speed. 

whereas CIFS: Medium communication speed. 

 Security: NFS: Not a secure protocol. whereas CIFS: More 

secure than NFS. 

 Reliability: NFS: Not considered highly reliable. whereas CIFS: 

Considered a reliable protocol. 

 Session Support: NFS: Does not provide sessions. whereas 

CIFS: Provides sessions. 

 Ease of Implementation: NFS: Relatively easy to implement and 

set up. whereas CIFS: Implementation can be complex. 

 Port Usage: NFS: Uses port 111 for both TCP and UDP. 

whereas CIFS: Uses TCP ports 139 and 445, and UDP ports 137 

and 138. 
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7.9.3. Server Message Block protocol (SMB protocol) 

The Server Message Block (SMB) protocol is a client-server 

communication protocol used for sharing access to files, printers, 

serial ports, and other resources on a network. It also supports 

transaction protocols for interprocess communication. Initially 

developed by IBM in the 1980s, SMB has become a widely 

implemented solution, particularly in Windows environments, but it 

is also supported by Linux and macOS. 

SMB allows applications and users to access files on remote servers 

and connect to other resources like printers and named pipes. It 

provides secure and controlled methods for opening, reading, 

moving, creating, and updating files on remote servers. As a 

response-request protocol, SMB enables network communications 

where the client sends a request and the server responds, 

establishing a two-way communication channel. 

Originally, SMB ran on top of Network Basic Input/Output System 

over TCP/IP (NetBIOS over TCP/IP, or NBT) and used ports 137, 

138, and 139. Nowadays, SMB runs directly over TCP/IP using port 

445. Systems that do not support SMB directly over TCP/IP require 

NetBIOS over a transport protocol like TCP/IP. 

 

Check Your Progress 

Question  1. What does CIFS stand for, and what protocol is it an 

extension of? 

Question  2. Describe the client-server model used by CIFS. 

Question  3. What are two primary advantages of CIFS? 

Question  4. How does CIFS ensure data integrity and coherence 

when multiple users access the same file? 

Question  5. Name one disadvantage of CIFS mentioned in the text. 

Question  6. Differentiate between NFS and CIFS based on 

scalability. 

Question  7. Which modern implementations of SMB have enhanced 

upon CIFS, and how? 
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List of SMB Protocol Dialects: 

Over the years, SMB has evolved through several dialects, each 

introducing improvements in capabilities, scalability, security, and 

efficiency: 

 SMB 1.0 (1984): Introduced by IBM for DOS, featuring 

opportunistic locking to reduce network traffic. 

 CIFS (1996): Microsoft's SMB dialect introduced in Windows 95, 

supporting larger file sizes and direct transport over TCP/IP. 

 SMB 2.0 (2006): Released with Windows Vista and Windows 

Server 2008, enhancing performance and scalability. 

 SMB 2.1 (2010): Introduced with Windows Server 2008 R2 and 

Windows 7, featuring improved caching and energy efficiency. 

 SMB 3.0 (2012): Came with Windows 8 and Windows Server 

2012, adding significant upgrades like SMB Multichannel, SMB 

Direct, and SMB Encryption. 

 SMB 3.02 (2014): Included performance updates and the option to 

disable CIFS/SMB 1.0. 

 SMB 3.1.1 (2015): Released with Windows 10 and Windows 

Server 2016, featuring advanced encryption and protection against 

man-in-the-middle attacks. 

 

Despite its widespread use, SMB has faced security challenges. For 

instance, the WannaCry and Petya ransomware attacks in 2017 

exploited a vulnerability in SMB 1.0. Microsoft released a patch, 

and experts recommended disabling SMB 1.0/CIFS. Newer versions 

like SMB 3.0 and 3.1.1 offer enhanced security features such as 

end-to-end encryption and pre-authentication integrity. 
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Check Your Progress 

Question  1. What is the Server Message Block (SMB) protocol 

used for? 

Question  2. Which company initially developed SMB, and in 

what decade? 

Question  3. What is the current port used by SMB over 

TCP/IP? 

Question  4. Name two improvements introduced in SMB 3.0 

over previous versions. 

Question  5. What were the security vulnerabilities associated 

with SMB 1.0 that led to significant cyberattacks? 

Question  6. How does SMB facilitate network communications 

between clients and servers? 

Question  7. What is the significance of SMB 2.0 in terms of 

enhancements? 

STOP TO CONSIDER 

 The Server Message Block (SMB) protocol is a client-server 

communication protocol used for sharing access to files, 

printers, and other resources on a network.  

 Initially developed by IBM and widely implemented in 

Windows environments, SMB also has support in Linux and 

macOS.  

 It facilitates secure and controlled access to remote resources, 

allowing applications to perform operations like opening, 

reading, and updating files over a network.  

 SMB operates over TCP/IP, primarily using port 445, and has 

evolved through various dialects (SMB 1.0 to SMB 3.1.1), 

each introducing improvements in capabilities, security, and 

efficiency. 
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7.9.4. Andrew File System (AFS) 

The Andrew File System (AFS), created by Morris et al. in 1986 at 

Carnegie Mellon University (CMU), is a distributed computing 

environment designed to facilitate campus-wide computer and 

information system usage. AFS allows client workstations in various 

locations to access server files easily, providing a consistent and 

location-independent file namespace through a network of reliable 

servers. 

Key Features and Functionality 

 Location-Independent Namespace: AFS offers a 

homogeneous file namespace that is transparent to the 

location, accessible to all client workstations. 

 Distributed Computing Infrastructure (DCI): Users log 

into workstations within the DCI to share data and 

applications. 

 Client-Server Communication: AFS reduces the frequency 

of client-server communications by transferring entire files 

between servers and clients and caching them locally until 

updates are available. 

 Local Caching: Servers respond to requests by storing data 

in the client’s local cache, improving speed and efficiency in 

distributed networks. 

Architecture of AFS 

Vice 

 Role: Vice refers to the group of trustworthy servers that 

provide the homogeneous, location-transparent file 

namespace. 

 Implementation: Uses the Berkeley Software Distribution 

(BSD) of Unix on both clients and servers. 

 Operation: Each workstation’s operating system intercepts 

file system calls and redirects them to a user-level process 

known as Venus. 
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Venus 

 Role: Venus is the mechanism that caches files from Vice 

and updates the server with new versions of those files. 

 Operation: Venus communicates with Vice only when files 

are opened or closed. It reads and writes individual bytes 

directly on the cached copy, bypassing Vice for most 

operations. 

 Scalability: Venus performs most of the work to minimize 

the load on Vice, which focuses on maintaining the file 

system’s integrity, availability, and security. 

Components of AFS Networks 

 Clients: Any computer that requests files from AFS servers 

on the network. 

 Local Cache: Once a server responds to a file request, the 

file is saved in the client’s local cache and displayed to the 

user. 

 Callback Mechanism: The client sends modifications to the 

server via callbacks, and frequently accessed files are stored 

in the local cache for rapid access. 

Implementation of AFS 

 Client and Server Communication: Client processes 

interact with the UNIX kernel through standard system calls. 

The kernel is modified to identify and route requests to Vice 

files to the workstation’s Venus client process. 

 File Retrieval and Caching: Venus contacts the server for 

missing volumes in the cache, retrieves the file or directory, 

and caches a copy on the local disk. 

 Security and Authentication: Establishing a secure 

connection is essential for accessing files. Venus returns the 

cached file to the kernel, which then opens it for the client 

process. 

 Local Directory for Cache: The client cache is a local 

directory on the workstation’s disk, containing placeholder 

files for cache entries. 

Advantages of AFS 

 Longevity of Shared Files: Files that are not frequently 

updated can be cached for a long time. 
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STOP TO CONSIDER 

 Creation and Purpose: Created in 1986 at Carnegie Mellon University 

(CMU) to support campus-wide computing and information system usage. 

 Location-Independent Namespace: AFS provides a homogeneous file 

namespace accessible to client workstations regardless of location. 

 Distributed Computing Infrastructure (DCI): Users within the DCI log 

into workstations to share data and applications. 

 Client-Server Communication: AFS transfers entire files between 

servers and clients, minimizing client-server communications and caching 

files locally until updates are available. 

 Architecture Components: 

 Vice: Group of trustworthy servers providing a location-transparent 

file namespace. 

 Venus: Client-side mechanism caching files from Vice and updating 

server copies. 

 Components of AFS Networks: 

 Clients: Computers requesting files from AFS servers. 

 Local Cache: Stores requested files locally for efficient access. 

 Callback Mechanism: Ensures server updates for modified files via 

callbacks. 

 Implementation Details: 

 Client and Server Communication: Uses UNIX system calls, 

routing requests to Venus client processes. 

 File Retrieval and Caching: Venus retrieves files from servers and 

caches them locally. 

 Security and Authentication: Establishes secure connections for file 

access. 

 Local Cache Directory: Stores cached files on the workstation's 

disk. 

  Advantages: 

 Longevity of Shared Files: Caches files not frequently updated for 

extended periods. 

 Ample Caching Storage: Allocates significant storage for file 

caching. 

 Efficient Working Set: Ensures frequently accessed files remain 

cached for quick access. 

 Ample Caching Storage: AFS allocates significant storage 

for caching files. 

 Efficient Working Set: Ensures that a user's frequently 

accessed files remain in the cache for quick access. 

In summary, the Andrew File System is a scalable and efficient 

distributed file system that uses local caching and a transparent file 

namespace to streamline file access and reduce network 

communication overhead. 
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7. 10. Summing Up 

Distributed File Systems (DFS) have emerged as a critical 

infrastructure for modern computing environments, enabling 

seamless data storage and access across numerous servers and 

locations. These systems provide the foundation for programs to 

handle isolated data as if it were stored locally while facilitating 

secure and efficient file sharing over networks. The primary 

objectives of DFS are to enhance data availability, improve 

performance, and ensure data redundancy. These goals are achieved 

through the system's key characteristics, which include 

transparency, high performance, scalability, high availability, data 

integrity, reliability, security, user mobility, and unified 

namespaces. Transparency in DFS, divided into structure, access, 

replication, and naming transparency, hides the complexities of the 

underlying system architecture from users, allowing for a more user-

friendly experience. High performance in DFS ensures that the time 

taken to process user file access requests remains comparable to that 

of local file systems. Scalability is another crucial feature, enabling 

the system to seamlessly integrate additional storage resources while 

maintaining optimal performance levels. High availability ensures 

that the system remains operational despite potential hardware or 

software failures, employing disaster recovery plans to back up and 

recover servers and storage devices. Data integrity is maintained 

through mechanisms that manage multiple access requests without 

disrupting or damaging file contents. Reliability is achieved by 

creating backup copies of files, ensuring data availability even 

during disruptions. 

Security in DFS is paramount, involving robust measures to protect 

data from unauthorized access and cyber threats. Encryption 

techniques, both for data at rest and in transit, enhance this security. 
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User mobility is another essential feature, allowing users to access 

their file directories from any node within the network seamlessly. 

Unified namespaces provide a single interface for multiple file 

systems, making the entire system appear as a single file system to 

the user and reducing the risk of interference. However, the 

implementation of DFS is not without challenges. Heterogeneity, 

which involves the variety of services and applications operating 

across different hardware and networks, requires standardized 

protocols and middleware to mask differences and facilitate 

communication. Security concerns are significant, especially when 

using public networks, necessitating encryption and robust access 

controls to protect against data breaches, tampering, and denial-of-

service attacks. Fault tolerance is essential to maintain system 

functionality in the face of component failures, employing 

techniques such as data replication and failover procedures. 

Concurrency issues arise from multiple clients accessing shared 

resources simultaneously, requiring synchronization to ensure 

proper operation. Scalability challenges involve handling increasing 

resources and users efficiently, with considerations for size, 

geography, and administration. Openness and extensibility are also 

critical, allowing easy addition of new components and features 

without compromising the system's integrity. 

The file service architecture of DFS, typically based on the client-

server model, includes components like the flat file service, 

directory service, and client module. The client-server model 

provides a scalable, fault-tolerant, and reliable architecture, with 

servers processing client requests and managing data. Alternatively, 

the peer-to-peer model offers a decentralized approach, allowing 

peers to share resources directly, providing greater scalability and 

fault tolerance. The architecture must support seamless data access, 

robust security measures, and efficient data management across 
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distributed networks. Real-world examples of DFS include Network 

File System (NFS), Amazon S3, and GlusterFS. As organizations 

continue to generate and rely on vast amounts of data, the 

importance of DFS will only grow, necessitating advancements in 

scalability, fault tolerance, data consistency, and security to meet 

evolving data management needs. Understanding the principles and 

challenges of DFS is essential for developing robust, efficient, and 

secure distributed systems that can handle the demands of modern 

data-driven environments. 

The data-caching model enhances performance and scalability in 

distributed file systems by locally caching data obtained from 

servers. This reduces network traffic, server load, and access times. 

Caching exploits data locality, employing policies like Least 

Recently Used (LRU) to manage cache size. While it improves read 

performance, maintaining consistency can be challenging, especially 

with frequent writes. Caching is most effective with machines 

having disks or ample memory. In contrast to the remote service 

model, which handles requests directly at the server, data-caching 

minimizes network overhead and server contention, offering a more 

efficient and scalable solution. Example: NFS with added caching. 

File access protocols like NFS, CIFS, and SMB facilitate seamless 

file sharing across networks. NFS, developed by Sun Microsystems, 

offers open standard access primarily used in Unix and Linux 

environments. CIFS, an extension of SMB, supports file sharing, 

printer access, and inter-process communication across TCP/IP 

networks, widely used in Windows environments. SMB, evolving 

through versions like SMB 3.0, enhances performance with features 

like multichannel support and encryption, supporting Windows, 

Linux, and macOS. These protocols ensure secure, efficient, and 
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scalable file access, crucial for collaborative and distributed 

computing environments. 

7. 11. Model Questions 

Question  1. What is the primary function of a distributed file 

system (DFS)? 

Question  2. Explain the difference between a centralized and 

distributed file system. 

Question  3. Describe the components typically found in a 

distributed file system architecture. 

Question  4. How do clients interact with servers in a distributed 

file system? 

Question  5. What role does metadata play in a distributed file 

system? 

Question  6. Draw a diagram illustrating the architecture of a 

distributed file system and label its components. 

Question  7. How does data access differ between a distributed 

file system and a traditional file system? 

Question  8. List three main objectives of a distributed file system. 

Question  9. Explain how a distributed file system addresses the 

scalability challenge. 

Question  10. Discuss the importance of fault tolerance in 

distributed file systems. 

Question  11. Why is data consistency critical in distributed file 

systems? 

Question  12. How does a distributed file system enhance data 

availability compared to traditional file systems? 

Question  13. What are the security objectives that a distributed file 

system aims to achieve? 

Question  14. Describe the goals of caching mechanisms in 

distributed file systems. 

Question  15. Define transparency in the context of distributed file 

systems. 

Question  16. Discuss the role of concurrency control in distributed 

file systems. 

Question  17. What scalability challenges might distributed file 

systems face as they grow? 
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Question  18. How does fault tolerance contribute to the reliability 

of a distributed file system? 

Question  19. Explain the concept of metadata management in 

distributed file systems. 

Question  20. Describe the role of caching in improving 

performance in distributed file systems. 

Question  21. Compare the performance of read and write 

operations in distributed file systems. 

Question  22. What are the main challenges in ensuring data 

consistency across distributed file systems? 

Question  23. How does network latency affect the performance of 

distributed file systems? 

Question  24. Discuss the security challenges specific to distributed 

file systems. 

Question  25. Explain the impact of metadata scalability on the 

overall performance of a distributed file system. 

Question  26. Describe the challenges associated with maintaining 

fault tolerance in distributed file systems. 

Question  27. What are the requirements for effective load 

balancing in distributed file systems? 

Question  28. How does data fragmentation impact the efficiency 

of distributed file systems? 

Question  29. Compare and contrast file-level and block-level 

access models in distributed file systems. 

Question  30. Explain the benefits of using a record-level transfer 

model for specific types of data. 

Question  31. Describe the role of access control lists (ACLs) in 

managing file access permissions. 

Question  32. Discuss the advantages of using erasure coding over 

traditional replication in distributed file systems. 

Question  33. What is the significance of data striping in improving 

throughput in distributed file systems? 

Question  34. How do consistency protocols ensure data integrity 

across replicas in distributed file systems? 

Question  35. Compare NFS and SMB/CIFS protocols in terms of 

their design and use cases. 

Question  36. Explain how distributed file systems handle file 

locking to ensure data consistency. 
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Question  37. Describe the role of caching in improving 

performance in distributed file systems. 

Question  38. What are the common authentication mechanisms 

used in distributed file systems? 

Question  39. Explain how encryption is used to secure data in 

transit and at rest in distributed file systems. 

Question  40. Describe the challenges of implementing secure 

access controls in distributed file systems. 

Question  41. How does auditing contribute to maintaining security 

in distributed file systems? 

Question  42. Discuss the role of firewalls in protecting distributed 

file system infrastructures. 

Question  43. What are the best practices for securing data stored in 

distributed file systems? 

Question  44. Explain the concept of role-based access control 

(RBAC) and its implementation in distributed file systems. 

Question  45. Describe the chunk-based data storage and transfer 

mechanism used in distributed file systems. 

Question  46. How does data replication contribute to fault 

tolerance in distributed file systems? 

Question  47. Discuss the challenges associated with maintaining 

data consistency in systems using data replication. 

Question  48. Explain the concept of data placement and balancing 

in distributed file systems. 

Question  49. Describe the advantages and disadvantages of client-

side caching in distributed file systems. 

Question  50. How does data striping improve performance in 

distributed file systems? 

Question  51. Compare and contrast the use of synchronous and 

asynchronous communication in distributed file systems. 

Question  52. What is the role of metadata servers in managing file 

access in distributed file systems? 

Question  53. Explain how distributed file systems manage data 

transfer across different network topologies. 

Question  54. Describe the scalability challenges that distributed 

file systems face as the number of clients increases. 

Question  55. How does data partitioning contribute to scalability 

in distributed file systems? 
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Question  56. Discuss the trade-offs between strong consistency 

and eventual consistency in distributed file systems. 

Question  57. Explain the impact of network bandwidth on the 

performance of distributed file systems. 

Question  58. Describe the mechanisms used to optimize data 

access performance in distributed file systems. 

Question  59. How does load balancing improve the overall 

performance of distributed file systems? 

Question  60. Define fault tolerance and explain its importance in 

distributed file systems. 

Question  61. Describe the role of redundancy in achieving fault 

tolerance in distributed file systems. 

Question  62. Explain how distributed file systems handle node 

failures and maintain data availability. 

Question  63. Discuss the challenges of achieving fault tolerance in 

geographically distributed file systems. 

Question  64. Compare the strategies for handling Byzantine faults 

in distributed file systems. 

Question  65. What is the role of consensus algorithms in 

maintaining data consistency in distributed file systems? 

Question  66. Describe the challenges of recovering data after a 

catastrophic failure in distributed file systems. 

Question  67. Provide examples of industries or applications where 

distributed file systems are commonly used. 

Question  68. Describe the architecture and features of the Google 

File System (GFS) and its impact on distributed computing. 

Question  69. How does the Hadoop Distributed File System 

(HDFS) address the storage and processing needs of big data 

applications? 

Question  70. Discuss the evolution of distributed file systems in 

cloud computing environments. 

Question  71. Describe the use of distributed file systems in 

supporting real-time data analytics applications. 

Question  72. Explain the role of distributed file systems in 

enabling collaborative work environments. 

Question  73. What are the emerging trends in distributed file 

systems for edge computing applications? 

Question  74. Discuss the role of machine learning in optimizing 

performance and scalability in distributed file systems. 



434 

 

Question  75. How are blockchain technologies influencing the 

development of distributed file systems? 

Question  76. Describe the potential impact of quantum computing 

on distributed file system architectures. 

Question  77. What advancements are being made in the area of 

metadata management in distributed file systems? 

Question  78. Explain how distributed ledger technologies (DLTs) 

can enhance security in distributed file systems. 

Question  79. Discuss the challenges and opportunities of 

integrating distributed file systems with IoT platforms. 

Question  80. How does cloud storage differ from traditional 

distributed file systems? 

Question  81. Explain the concept of hybrid cloud storage and its 

benefits for distributed file systems. 

Question  82. Describe the role of data migration strategies in 

distributed file systems. 

Question  83. How does regulatory compliance impact the design 

and implementation of distributed file systems? 

Question  84. What are the environmental considerations associated 

with deploying large-scale distributed file systems? 

Question  85. Discuss the challenges of data sovereignty and 

localization in distributed file systems. 

Question  86. Explain the concept of self-healing architectures and 

their relevance to distributed file systems. 
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