
(5)

BLOCK I:

RELATIONAL MODEL CONCEPTS,

LANGUAGES, DESIGN THEORY AND

METHODOLOGY

Unit 1 : Relational Data Model and Relational Database

Constraints

Unit 2 : Relational Algebra and Relational Calculus

Unit 3 : Structured Query Language I

Unit 4 : Structured Query Language II

Unit 5 : Semantic Modelling

Unit 6 : Normalization and Functional Dependencies

7 | P a g e

Space for learners: UNIT-1: RELATIONAL DATA MODEL AND
 RELATIONAL DATABASE
 CONSTRAINTS

Unit Structure:
 1.1 Introduction
 1.2 Unit Objective
 1.3 Relational Model
 1.3.1 Advantages of Relational Model
 1.3.2 Limitations of Relational Model
 1.4 Components and Relational Terminologies
 1.5 Keys in Relational Model
 1.6 Relational Model Constraints
 1.6.1 Domain Constraints
 1.6.2 Key Constraints
 1.6.3 Entity Integrity Constraints
 1.6.4 Referential Integrity Constraints
 1.6.5 Operation in Relational Model with Constraint
 Violations
 1.7 Summing Up
 1.8 Answers to Check Your Progress
 1.9 Possible Questions
 1.10 References and Suggested Readings

8 | P a g e

Space for learners: 1.1 INTRODUCTION

In this unit, you will study about the relational database model: the
various components, characteristics and limitations. This unit will
also familiarize you with the key terms related to relational model
such as domain, attribute, tuple, &the various types of keys such as
primary, alternate, foreign, candidate, logical and super key with
examples. Here, the emphasis will also be given on the various
relational constraints, e.g., domain constraint, key constraint, entity
integrity constraint and referential integrity constraint. And you will
also learn about the Entity-Relationship diagram.

1.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 Understand in detail the relational model, its advantages,
limitations and applications

 Explain the key terms of relational model

 Structure of the relational model

 Learn various characteristic of relations

 Understand the different keys in relational model

 Learn about the relational constraints

 Operations in Relational Model with Constraint Violations

 Analyze the E-R diagram

1.3RELATIONAL MODEL

Storing and managing information is one of the most important
tasks for computers. The way in which information is organized can
have a profound effect on how easy it is to access and manage.
Perhaps the simplest but most versatile way to organize information
is to store it in the forms of tables. Table is the backbone of the
relational model.

The relational model is centered on this idea: the organization of
data into collections of two-dimensional tables called “relations.”
The data and relationships are represented by collection of inter-

9 | P a g e

Space for learners: related tables. Each table is a group of column and rows, where
column represents attribute of an entity and rows represents
records. The table name and column names are helpful to interpret
the meaning of values in each row. In the formal relational model
terminology, a row is called a tuple, a column header is called an
attribute, and the table is called a relation. The data type describing
the types of values that can appear in each column is represented by
a domain of possible values.

Originally, the relational model of database was introduced in 1970,
by English Computer Scientist Edgar F. Codd. The relational data
model was developed for databases — that is, information stored
over a long period of time in a computer system — and for database
management systems, the software that allows people to store,
access, and modify this information. Databases still provide us with
important motivation for understanding the relational data model.
They are found today not only in their original, large-scale
applications such as train booking systems or hospital management
systems, but in desktop computers handling individual activities
such as maintaining expense records, homework grades, and many
other uses.

1.3.1 Advantages of Relational Model

The relational model is the most dominant database model. It has
lots of advantages:
1. Simple Model
Compared to other types of models, a relational database model is
much simpler. It is free from query processing and complex
structuring. As a result, it does not require any complex queries. A
simple SQL query is sufficient enough for handling.

2. Data Accuracy
In the relational database system, there can be multiple tables
related to one another with the use of primary key and foreign key
concepts. Hence, there is no repletion of data. There is no chance
for duplication of data. Hence the accuracy of data in the relational
database is more than any other database system.

10 | P a g e

Space for learners: 3. Easy Access to Data
In the Relational Database System, there is no pattern or pathway
for accessing the data, as to another type of databases can be
accessed only by navigating through a tree or a hierarchical model.
Anyone who accesses the data can query any table in the relational
database. Using join queries and conditional statements one can
combine all or any number of related tables in order to fetch the
required data. Resulting data can be modified based on the values
from any column, on any number of columns, which permits the
user to effortlessly recover the relevant data as the result. It allows
one to pick on the desired columns to be incorporated in the
outcome so that only appropriate data can be displayed.

4. Data Integrity
Data integrity is a crucial characteristic of the Relational Database
system. It ensures that all the data in the database confines within
suitable arrangements and the data necessary for creating the
relationships are present. This relational reliability amongst the
tables in the database helps in avoiding the records from being
imperfect, isolated or unrelated. Data integrity aids in making sure
of the relational database’s other significant characteristics like case
of use, precision, and stability of the data.

5. Flexibility
A Relational Database system by itself possesses qualities for
leveling up, expanding for bigger lengths, as it is endowed with a
bendable structure to accommodate the constantly shifting
requirements. This facilitates the increasing incoming amount of
data, as well as the update and deletes wherever required. This
model consents to the changes made to a database configuration as
well, which can be applied without difficulty devoid of crashing the
data or the other parts of the database.

A Data Analyst can insert, update or delete tables, columns or
individual data in the given database system promptly and easily, in
order to meet the business needs. There is supposedly no boundary
on the number of rows, columns or tables a relational database can
hold. In any practical application, development and transformation
are restricted by the Relational Database Management System and
the hardware contained by the servers. So, these changes can create

11 | P a g e

Space for learners: an alteration in other peripheral functional devices connected to the
particular relational database system.

6. Normalization
The normalization process provides a set of regulations,
characteristics, and purposes for the database structure and
evaluation of a relational database model. Normalization aims at
illustrating multiple levels of breaking down the data. Any level of
normalization is expected to be accomplished on the same level,
that is, before moving ahead to the next levels. A relational
database model is usually confirmed to be normalized, only when it
satisfies the necessary conditions of the third normalization form.
Normalization offers an impression of reassurance on the database
plan, to be extra strong and reliable.

7. High Security
As the data is divided amongst the tables of the relational database
system, it is possible to make a few tables to be tagged as
confidential and others not. This segregation is easily implemented
with a relational database management system, unlike other
databases. When a data analyst tries to login with a username and
password, the database can set boundaries for their level of access,
by providing admission only to the tables that they are allowed to
work on, depending on their access level.

8. Feasible for Future Modifications
As the relational database system holds records in separate tables
based on their categories, it is straightforward to insert, delete or
update records that are subjected to the latest requirements. This
feature of the relational database model tolerates the newest
requirements that are presented by the business. Any number of
new or existing tables or columns of data can be inserted or
modified depending on the conditions provided, by keeping up with
the basic qualities of the relational database management system.

1.3.2 Limitations of Relational Model

The relational model suffers from certain limitations. The relational
model has been developed to meet the requirements of business
information processing. While applying the relational model to the

12 | P a g e

Space for learners: application areas, such as Computer-Aided Design (CAD),
simulation and image processing, many shortcomings have been
noticed in this model also. The various shortcomings of this model
may be discussed as follows:

1. Cost
The underlying cost involved in a relational database is quite
expensive. For setting up a relational database, there must be
separate software which needs to be purchased. And a professional
technician should be hired to maintain the system. All these can be
costly, especially for businesses with small budget.

2. Performance
Always the performance of the relational database depends on the
number of tables. If there are a greater number of tables, the
response given to the queries will be slower. Additionally, more
data presence not only slows down the machine, it eventually
makes it complex to find information. Thus, a relational database is
known to be a slower database.

3. Physical Storage
A relational database also requires tremendous amount of physical
memory since it is with rows and columns. Each of the operation
depends on separate physical storage. Only through proper
optimization, the targeted applications can be made to have
maximum physical memory.

4. Complexity
Although a relational database is free from complex structuring,
occasionally it may become complex too. When the amount of data
in a relational database increases, it eventually makes the system
more complicated.
5. Information Loss
Large organizations tend to use a greater number of database
systems with more tables. This information can be used to be
transferred from one system to another. This could pose a risk of
data loss.

6. Structure Limitations
The fields that are present on a relational database has limitations.
Limitations are in that sense that it cannot accommodate more

13 | P a g e

Space for learners: information. Despite if more information is provided, it may lead to
data loss. Therefore, it is necessary to describe the exact amount of
data volume which the field will be given.

1.4 COMPONENTS AND RELATIONAL
TERMINOLOGIES

The main principle of the relational model is the information
principle: all information is represented by data values in relations.
The three components- structural, manipulative and integrity- make
up this model. These components are defined as follows:

 The structural component is concerned with how data is
represented.

 The manipulative component is concerned with how data is
operated upon.

 The integrity component is concerned with determining
which states are valid for a database.

The various relational terminologies are described as follows-

Domain: A domain is a set of values permitted for an attribute in a
table. Domain is atomic. For example, ROLL_NO can only be a
positive integer. A data type or format is also specified for each
domain. It is possible for several attributes to have the same domain.

Fig 1.1: Relational Model Concepts

Attribute: Attributes are the characteristics of a relation. Each
column in a table is the attribute. Attributes are the properties which
define a relation. e.g.,ROLL_NO, FIRST_NAME etc of the relation
Student. Each attribute in a relational model must have domain
information. Domain information contains the following:

14 | P a g e

Space for learners: Data Type: Databases provide support for different types
of data and their variants. For example, integer, float etc.

 Length: Length means number of characters or digits that
an attribute value has. For example, when we assign a PIN
code, it has 6 digits.

 Date format: A date contains day, month and year. These
three must be given in combination. Such as
DD/MM/YYYY or MM/DD/YYYY or YYYY/MM/DD
etc.

 Range: A range is specified by lower and upper bounds of
data values that an attribute may have.

 Constraints: These are particular type of conditions that
put restrictions on values that are allowed.

 NULL support: There is a support for NULL values in
relational model. Some particular attribute may remain
blank. For example, in a relation the column
“PAN_Number” may be blank as a person may not have a
PAN number.

 Default Value: If nothing is entered, database assigns a
default value. Relational model supports the facility that
the default value may be set for every attribute.

Attributes can be of many types:

 Composite vs Simple attribute: Composite attributes can
be subdivided into smaller attributes. For example, the
“Name” of a student can be divided into “First_Name”,
“Middle_Name” and “Last_Name”. On the otherhand,
simple attributes are the attributes that can’t be subdivided
into smaller attributes. For example, the “Roll_No” of a
STUDENT.

 Single Valued vs Multivalued: Single valued attributes are
the attributes that have a single value for a particular entity.
For example, the “Last_Name” of an EMPLOYEE. But the
multivaled attributes can have more than one value for a
particular entity. For example, “Mobile _Number” of an
EMPLOYEE.

15 | P a g e

Space for learners: Derived vs Stored attributes: Derived attributes are the
attributes whose values can be derived from the value of
some other attributes. For example, the age of a student
can be derived from date of birth of the student. The
“Date_of_Birth” is called the stored attribute from which
you can derive some other attribute.

 NULL attribute: A certain entity may not possess a value
for an attribute. This will mean “not applicable” or that the
value is unknown” or “non-existent”. For example, there
may be chance when a student has no phone no. In that
case the “Phone_No” attribute is called NULL attribute.

Tuple – It is nothing but a single row of a table, which contains a
single record.

Relations- are in the table format. It is stored along with its
entities. A table has two properties rows and columns. Rows
represent records and columns represent attributes.

Relation Schema- A relational schema is the design for the table.
It includes none of the actual data, but is like a blueprint or design
for the table, so describes what columns are on the table and the
data types. It may show basic table constraints (e.g., if a column
can be null) but not how it relates to other tables.

A relation schema R, denoted by R (A1,A2, ..., An), is made up of
a relation name R and a list of attributes, A1,A2, ...,An. Each
attribute Ai is the name of a role played by some domain D in the
relation schema R.D is called the domain of Ai and is denoted by
dom(Ai). The relation schema R(A1,A2, ...,An), also denoted by
r(R),is a set of n -tuplesr= {t1,t2, ...,tm}.

Degree- is the number of attributes n of its relation schema. A
relation ofdegree four, which stores information about college
students, would contain four attributes describing each student as
follows:

STUDENT(Roll_No, First_Name, Last_name, Sex)

Cardinality: Total number of rows present in the Table.

Relation Instance–Relation instance is a finite set of tuples at a
given time. Relation instances do not have duplicate tuples.

16 | P a g e

Space for learners: Null Value: Afield with a NULL value is a field with no value.
Primary key can’t be a null value.

Table 1.1: STUDENT Relation
Roll Name Phone Age

1 Nipun 1234567890 26
2 Nava 1234567891 28
3 Mohit 1234567892 19

Characteristics of Relations

● Interpretation(Meaning)ofaRelation:Therelationschema
canbeinterpreted asa declaration or a type of assertion.
Each tuple in the relation can then be interpreted as a fact
or a particular instance of the assertion. For example
(Table 1.1), the first tuple in above table asserts the fact
that there is a STUDENT whose Roll Number is 1, Name
is “Nipun”, Phone is 1234567890 and Age is 26, and so
on.

 Ordering of Tuples in a Relation: A relation is defined as
a set of tuples. The tuples in a relation do not have any
particular order. In other words, a relation is not sensitive
to the ordering of tuples. However, in a file, there always is
an order among the records. Tuple ordering is not part of a
relation definition because a relation attempts to represent
facts at a logical or abstract level. Many tuple orders can be
specified on the same relation. For example, tuples in the
STUDENT relation (Table 1.1) could be ordered by values
of Name, Roll, Age etc. The definition of a relation does
not specify any order: There is no preference for one
ordering over another.

 Ordering of attributes in a Relation: The ordering of
attributes is not important, because the attribute name
appears with its value. There is no reason to prefer having
one attribute value appear before another in a tuple. When
a relation is implemented as a file, the attributes and the
values within tuples are ordered.

 Values in a tuple: All values are considered atomic. A
special null value is used to represent values that are

17 | P a g e

Space for learners: unknown or inapplicable to certain tuples. In general,
NULL values, means value unknown or value exists but is
not available.

Relational Model Notations
We will use the following notation in our presentation:

● A relation schema R of degree n is denoted by R(A 1, A 2
,..., A n).

● The uppercase letters Q, R,S denote relation names.
● The lowercase letter sq, r,s denote relation states.
● The letters t, u, v denote tuples.
● In general, the name of a relation schema such as

STUDENT also indicates the current set of tuples in that
relation—the current relation state—whereas STUDENT
(Roll , Name , ...)refers only to the relation schema.

● An attribute A can be qualified with the name of the
relation, R, to which it belongs by using the dot notation
R.A - for example (Table 1.1), STUDENT. Name or
STUDENT. Age. This is because the same name may be
used for two attributes in different relations. However, all
attribute names in a particular relation must be distinct.

● An n-tuple t in a relation r(R) is denoted by t = <v 1 , v 2 ,
..., v n >, where vi is the value corresponding to attribute Ai.

Fig 1.2: Illustration of Relational Schema

18 | P a g e

Space for learners: 1.5 KEYS IN RELATIONAL MODEL

Keys are very important part of Relational database model. A Key
can be a single attribute or a group of attributes, where the
combination may act as a key. They are used to establish and
identify relationships between tables and also to uniquely identify
any record or row of data inside a table.
Why do we need a Key?
In real world applications, number of tables required for storing the
data is huge, and the different tables are related to each other as well.
Also, tables store a lot of data in them. A table generally extends to
thousands of records stored in them, unsorted and unorganised.
Now to fetch any particular record from such dataset, you will have
to apply some conditions, but what if there is duplicate data present
and every time you try to fetch some data by applying certain
condition, you get the wrong data. How many trials before you get
the right data?
To avoid all this, Keys are defined to easily identify any row of data
in a table.
For example: In STUDENT table (Fig 1.2), The attribute ID is used
as a key because it is unique for each student. In PERSON table,
passport_number, license_number, SSN are keys since they are
unique for each person.

Types of Keys:
Different types of keys are shown in the following figure (Fig 1.3):

Fig 1.3Different types of Keys

 Primary key

o It is the first key which is used to identify one and only
one instance of an entity uniquely. An entity can contain

19 | P a g e

Space for learners: multiple keys as we saw in PERSON table (Fig 1.2). The
key which is most suitable from those lists become a
primary key.

o In the EMPLOYEE table (Fig. 1.4), ID can be primary
key since it is unique for each employee. In the
EMPLOYEE table, we can even select License_Number
and Passport_Number as primary key since they are also
unique.

o For each entity, selection of the primary key is based on
requirement and developers.

Fig 1.4: Illustration of Primary Key

 Candidate key
Candidate keys are defined as the minimal set of fields which can
uniquely identify each record in a table. It is an attribute or a set of
attributes that can act as a Primary Key for a table to uniquely
identify each record in that table. There can be more than one
candidate key.

For example: In the EMPLOYEE table(Fig 1.5), Employee_id is
best suited for the primary key. Rest of the attributes like SSN,
Passport_Number, and License_Number, etc. are considered as a
candidate key.

20 | P a g e

Space for learners:

Fig 1.5: Illustration of Candidate Key

 Super Key
Super Key is defined as a set of attributes within a table that can
uniquely identify each record within a table. Super Key is a superset
of Candidate key.

For example: In the above EMPLOYEE table (Fig 1.5),
for(EMPLOEE_ID, EMPLOYEE_NAME) the name of two
employees can be the same, but their EMPLYEE_ID can't be the
same. Hence, this combination can also be a key. The super key
would be EMPLOYEE-ID, (EMPLOYEE_ID, EMPLOYEE-
NAME), etc.

Let's take a simple STUDENT table (Table 1.2) with the
attributes: student_id, name, phone and age.

Table 1.2STUDENT Relation
student_id name phone age

1 Rohit 1234567890 17

2 Rohit 1234567891 18

3 Mohit 1234567892 19

In the table defined above super key would
include student_id, (student_id, name), phone etc.

Confused? The first one is pretty simple as student_id is unique for
every row of data; hence it can be used to identity each row
uniquely.

21 | P a g e

Space for learners: Next comes, (student_id, name), now name of two students can be
same, but their student_id can't be same hence this combination can
also be a key.

 Foreign key
o Foreign keys are the column of the table which is used to

point to the primary key of another table. If an attribute can
only take the values which are present as values of some
other attribute, it will be a foreign key to the attribute to
which it refers. The relation which is being referenced is
called referenced relation and the corresponding attribute is
called referenced attribute and the relation which refers to the
referenced relation is called referencing relation and the
corresponding attribute is called referencing attribute.

o In a company, every employee works in a specific
department, and employee and department are two different
entities. So, we can't store the information of the department
in the employee table. That's why we link these two tables
through the primary key of one table.

o We add the primary key of the DEPARTMENT table (Fig
1.6), Department_Id as a new attribute in the EMPLOYEE
table.

o Now in the EMPLOYEE table, Department_Id is the foreign
key, and both the tables are related.

Fig 1.6 Illustration of Foreign Key

22 | P a g e

Space for learners: Moreover, the above main keys, we can have the following also:
Composite Key
Key that consists of two or more attributes that uniquely identify any
record in a table is called Composite key. But the attributes which
together form the Composite key are not a key independently or
individually.

Fig 1.7Illustration of Composite Key

In the above picture we have a Score table which stores the marks
scored by a student in a particular subject. In this table, Fig
1.7, student_id and subject_id together will form the primary key
and hence it is a composite key.

Secondary or Alternative Key

The candidate keys which are not selected as primary key are known
as secondary keys or alternative keys.

Non-key Attributes

Non-key attributes are the attributes or fields of a table, other
than candidate key attributes/fields in a table.

Non-prime Attributes

Non-prime Attributes are attributes other than Primary Key
attribute(s).

1.6 RELATIONAL MODEL CONSTRAINTS

Constraintsenforcelimitstothedataorrestrictionsondatathatcanbeinser
ted/updated/deleted from a table. The whole purpose of constraints

23 | P a g e

Space for learners: is to maintain the data integrity during an update/delete/insert into a
table. Constraints on databases can generally be divided into three
main categories:

1. Constraints those are inherent in the data model, we call these
inherent model-based constraints or implicit constraints.

2. Constraints that can be directly expressed in schemas of the
data model, typically by specifying them in the DDL.

3. Constraints that cannot be directly expressed in the schemas of
the data model, and hence must be expressed and enforced by the
application programs. This is known as application-based or
semantic constraints or business rules.

The schema-based constraints include: domain constraints, key
constraints, entity integrity constraints, and referential integrity
constraints.

1.6.1 Domain Constraints
Eachtablehascertainsetofcolumnsandeachcolumnallowsthesametype
ofdatabasedonitsdatatype. The column does not accept values of
any other data type. Domain constraints can be defined as follows:
DomainConstraint=datatype+Constraints(NOTNULL/UNIQUE/
PRIMARYKEY /FOREIGNKEY / CHECK / DEFAULT).
Let us consider the following STUDENT relation (Table 1.3):

Table 1.3: STUDENT Relation

Here, value A is not allowed since only integer values can be taken
by the age attribute.

24 | P a g e

Space for learners: 1.6.2 Key Constraints

Anattributethatcanuniquelyidentifyatupleinarelationiscalledthekeyo
fthetable.Allthevalues in the primary key column must be unique.

 Table 1.4: STUDENT Relation

This relation/table (Table 1.4) does not satisfy the key
constraint as here all the values of primary key are not
unique.

1.6.3 Entity IntegrityConstraint

Entity integrity constraint specifies that in a relation no attribute
value of primary key attribute must contain a null value. This is
because the presence of null value in the primary key violates the
uniqueness property.

Table 1.5: STUDENT Relation

This relation (Table 1.5) does not satisfy the entity integrity
constraint as here the primary key contains a null value.

ROLL NAME AGE

1 Rahul Sarmah 23

2 Smriti Gogoi 22

3 Shahidul Khan 24

4 Rupak Chetri A

25 | P a g e

Space for learners: 1.6.4 Referential Integrity Constraint
Referential Integrity constraints work on the concept of Foreign
Keys. A foreign key is an attribute of a relation which must be a
primary key or the part of the primary key in another relation.

A set of attributes FK in relation schema R1 is a foreign key of R1
that references relation R2 if it satisfies. R1 is called the
referencing relation and R2 is the referenced relation.

Fig 1.8:Illustration of the concept of Referential Integrity Constant

Table 1.6: STUDENT Relation

Table 1.7: DEPARTMENT Relation

26 | P a g e

Space for learners: From the table 1.6 and 1.7 it is clear that,

● The relation ‘Student’ does not satisfy the referential
integrity constraint.

● This is because in relation ‘Department’, no value of
primary key specifies department no.14.

● Thus, referential integrity constraint is violated.

1.6.5 Operations in Relational Model with Constraint
Violations

Four basic operations performed on relational database
model are insert, update, delete and select.

● Insert Operation: Insert operation is used to insert data
into the relation. Insert can violate any of the four types of
constraints mentioned above. Domain constraints can be
violated when an attribute value is given that does not
appear in the corresponding domain or is not of the
appropriate data type. Key constraints can be violated
when a key value in the new tuple “t” already exists in the
relation “R”. Entity integrity can be violated when any part
of the primary key of the new tuple “t” is null. Referential
integrity can be violated when the value of any foreign key
in a tuple “t” refers to a tuple that does not exist in the
referenced relation. If an insertion violates one or more
constraints, the default option is to reject the insertion. If
the insertion is not rejected then, the insertion violation can
cause cascade in the relation. A foreign key with cascade
delete means that if a record in the parent table is deleted,
then the corresponding records in the child table will
automatically be deleted. This is called a cascade delete.

● Delete Operation: This operation is used to delete tuples
from the table (Table 1.6 & 1.7). The delete operation can
violate only referential integrity. This occurs when the
tuple being deleted is referenced by foreign keys from
other tuples in the database. Here are some examples.

Operation: Delete the Department tuple with Dept_No=1.
Result: This deletion is acceptable and deletes exactly one

27 | P a g e

Space for learners: tuple.

Operation: Delete the Student tuple with Dept_No= 1.
Result: This deletion is not acceptable, because there are
tuples in Department those refer to this tuple.

Fig. 1.9: Relations (Department & Employee)

Several options are available if a deletion operation causes a
violation. The first option, called restrict, is to reject the deletion.
The second option, called cascade. A third option, called set null
or set default, is to modify the referencing attribute values that
cause the violation. The combinations of these three options are
also possible.

● Update Operation: This operation is used to
change/modify the values of the attributes in existing
tuples. Consider two tables in figure-1.9,
EMPLOYEE(Ssn, Name, Salary, Dno) and
DEPARTMENT(Dno,Dname)

Operation:Update the salary of the EMPLOYEE tuple
with Ssn = ‘123’ to 2800.Result: Acceptable.

Operation: Update the Dnoof the EMPLOYEE tuple with
Ssn= ‘123’ to7.Result: Unacceptable, because it violates
referentialintegrity.

Operation: Update the Ssn of the EMPLOYEE tuple with

28 | P a g e

Space for learners: Ssn = ‘123’ to ‘321’.Result: Unacceptable, because it
violates primary key constraint

Updating an attribute that is neither part of a primary key
nor of a foreign key usually causes no problems.

The Transaction Concept: A transaction is an executing program
that includes some database operations, such as reading from the
database, or applying insertions, deletions, or updates to the
database. At the end of the transaction, it must leave the database
in a valid or consistent state that satisfies all the constraints
specified on the database schema. A single transaction may
involve any number of retrieval operations C and any number of
update operations. For example, a transaction to apply a bank
withdrawal will typically read the user account record, check if
there is a sufficient balance, and then update the record by the
withdrawal amount.

CHECK YOUR PROGRESS-I

Multiple Choice Questions

1. What is the instance of a Database?
a) The logical design of the database system
b) The entire set of attributes of the database put together in

a single relation
c) The data or collection of information stored in a database

at a particular moment of time.
d) The initial values inserted into the database

2. An attribute is a ____________ in a relation.
a) Row
b) Column
c) Value
d) Tuple

3. Constraints define a condition, which needs to be satisfied
while storing data in a ________.
a) Data
b) Database
c) Attribute
d) Task

29 | P a g e

Space for learners: 4. An alternate key is a candidate key that is not the
___________.
a) Entity
b) Attribute
c) Secondary Key
d) Primary Key

5. Advantages of relational model are
a) Simplicity
b) Data Integrity
c) Flexibility
d) All of the above

 Fill in the Blanks

6. Primary key of a table never contains NULL and
__________________ values.

7. A _________ key allows us to identify uniquely an entity in
the entity set.

8. What is the degree of a table with 1000 rows and 10
columns?

9. In a relational database a referential integrity constraint can
be specified with the help of _________.

10. The format or data type must be specified for ________.

1.7 SUMMING UP
 A Relation is a tabular structure defined by the heading and

the data is entered in the body containing a set of rows.
 Domain is a set of possible values an attribute can acquire.
 A row of a relation in a relational data model that gives

complete information of an entity is known as Tuple.
 Relational Schema can be defined as the description of the

database that is specified during database design.
 An Attribute is the column header in a relation which is the

properties of entity.
 The number of tuples in a relation is known as Cardinality.
 Foreign Key is an attribute of one relation R2 whose values

are required to match those of the primary key of some

30 | P a g e

Space for learners: relation R1

 Relation that contains a foreign key in known as Referencing
Relation.

 Super Key can be defined as the superset of primary key that
can uniquely identify any data row in the table.

 Candidate Keys can be defined as the set of keys that is
minimal and can uniquely identify any data row in the table.

 Constrains are used to enforce limits to the data or type of that
data that can be inserted/updated/deleted from a table.

 E-R Diagram describes interrelated things of interest in a
specific domain of knowledge.

1.8 ANSWERS TO CHECK YOUR PROGRESS

1. (c)
2.(b)
3.(b)
4. (d)
5. (c)
6. Duplicate
7. Super
8. 10
9. Foreign key
10. Domain

1.9 POSSIBLE QUESTIONS

Short-Answer Questions

1. What are the different features of relational model?
2. What are the advantages of the relational model?
3. State the various features of relations.
4. Discuss the various components of domain information.
5. What is key? What is the importance of key in a relation?
6. With the help of example define a tuple in a relation.
7. What is constraint? Why they are important?
8. With the help of an example define a super key.
9. With the help of an example define foreign key.

31 | P a g e

Space for learners: 10. With the help of an example define candidate key.

Long-Answer Questions

1. Discuss the relational model.
2. Explain the different types of constraints with example.
3. Explain the different types of keys with example.
4. What are domains? Explain its constraints.
5. Explain the different types of attributes with example.
6. Explain the different types of entity with example.
7. Discuss the advantages of relational model.
8. Discuss the tabular structure that is used to represent a

relation in relational model.

1.10 REFERENCES AND SUGGESTED READINGS
• Ramez, Elmasri. Fundamentals of Database Systems. Pearson

Education India, 2020.
• Silberschatz, Abraham, Henry F. Korth, and Shashank

Sudarshan. Database system concepts. McGraw-Hill, 1997.

32 | P a g e

Space for learners: UNIT-2: RELATIONAL ALGEBRA AND
RELATIONAL CALCULUS

Unit Structure
 2.1 Introduction
 2.2 Unit Objective
 2.3 Relational Algebra Operations
 2.3.1 Relational-Oriented Operations
 2.3.2 Set-Oriented Operations
 2.4 Relational Calculus
 2.4.1 Tuple Relational Calculus
 2.4.2 Domain Relational Calculus
 2.5 Examples (Relational Algebra)
 2.6 Summing Up
 2.7 Answers to Check Your Progress
 2.8 Possible Questions
 2.9 References and Suggested Readings

2.1 INTRODUCTION

Relational algebra uses a procedural query language or formal query
language. Relational algebra deals with the study of relational
operations on single or multiple relations. After implementing a
relation, it returns a new relation which can be again reuse in another
relational operation. When we talk about of relational algebra it is
having a fixed set of operation denoted by symbols.

Relational algebra is necessary as because-
i) it represents the extraction or retrieval of data easily and

clearly, and

ii) from a relational algebra statement, a practical SQL
notation can easily be derived.

33 | P a g e

Space for learners: 2.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 understand the fundamental concepts of relational algebra
and relational calculus.

 know different relational algebra operations.

 know different types of relational calculus.

2.3 RELATIONAL ALGEBRA OPERATIONS

Relational algebra operations can be divided into two parts-
i) Relational-oriented operations

ii) Set-oriented operations

2.3.1 Relational-Oriented Operations

emp_no emp_name emp_age designation emp_address

1 Avik 35 Manager Guwahati

2 Prakhya 50 Accountant Jorhat

3 Rajib 45 Peon Nalbari

4 Tridip 53 Peon Golaghat

Table-1: EMPLOYEE Relation

2.3.1.1 SELECT (σ)
The SELECT operation retrieves specific rows from a relation or
table. Sigma (σ) symbol is used to denote the SELECT operation.

The general syntax of select operation is σ<selection_condition>
(<realtion-name>)
Where σ is used for select operation, selection_condition is nothing
but a boolean expression which contains the specific attributes of
relation and relation-name is the name of the table.
Considering table-1, to extract tuple having emp_name= “Avik”

34 | P a g e

Space for learners: from Employee table, the query can be written as follows:

σemp_name=”Avik” (Employee)
We can also extract rows in which the age of the employees is more
than 40 using the following query:

σ emp_age>40 (Employee)
We can also use relational operators (=, ≠ ,<, >, ≤, ≥) as well as
logical operators (˄, ˅, ̚).
Again, suppose we want to retrieve tuples which contain the
emp_name “Prakhya” and emp_address “Guwahati”; to do so we can
write the following query:

σemp_name=”Prakhya” ˄ emp_address=”Guwahati” (Employee)

2.3.1.2 PROJECT (π)
The project operation retrieves attributes or columns from a relation
or table. Pi(π) symbol is used to denote the project operation. The
general syntax of project operation is:

 π<attribute_list> (<relation-name>)
Here, π is used for project operation, attribute_list is a list of
specific attributes of relation and relation-name is nothing but a
table name.
Now from table-1, Suppose we want to retrieve the emp_no and
emp_name from Employee table, we can write the following query:

 πemp_no,emp_name (Employee)
Let us take another example. Suppose we want to retrieve the name
and designation of those employees whose age are less than 50, then
we can write the following query-

 πemp_name,designation (σage<50 (Employee))

2.3.1.3 JOIN
Join operations are used to combine two or more relations to form a
single new relation. Join is a combination of Cartesian product and
selection process. “⋈” symbol is used to denote the join. i) Inner join- when we write an inner join in a query, inner

join extract only those rows which are satisfy the

35 | P a g e

Space for learners: matching criteria. There are three types of inner join-
theta join, equi join and natural join.

 Theta join- The symbol “θ” is used to denote the join
condition and “θ” can use any comparison operator(=, ≠
,<, >, ≤, ≥). It is a general case of join. When we want to
join two or more relation based on some condition, we
use the theta join.

Let us take an example-
Example-1:
Suppose we have two relations, called “P” and “Q”.

P
Emp_id Emp_name Age

10 Raj 40

20 Rajib 35

30 Aman 36

Q

Emp_id Dept_id DOJ
10 111 10-10-2000
30 112 10-10-2017
40 113 01-02-2009

Then, we write the query using theta join

P ⋈P.emp_id<Q.emp_id Q
Table-2: The Resultant Table

P.Emp_id Emp_name Age Q.Emp_id Dept_id DOJ
10 Raj 40 30 112 10-10-

2017
20 Rajib 35 30 112 10-10-

2017

If we use Cartesian product for the above query then the equivalent
query is-

 σP.Emp_id<Q.Eid(PxQ)
 Equi join- Equi join is a special case of theta join. Equi

join uses only equivalence(=) condition. If we write the

36 | P a g e

Space for learners: following query we will get the same result as mentioned
in table 1-

P⋈p.Emp_id=Q.Emp_idQ
 Natural join- In natural join also equivalence(=) operator

is used but the difference is that attributes appears only
once in natural join. Using natural join we will get a new
table that does not have any duplicate columns.

 Outer join- An outer join is a type of join that is used to
show all tuples from one relation even when some of
these are not found in second relation. There are three
types of outer join-left outer join, right outer join and full
outer join.

Consider the example 1 to describe the types of outer join-
Left outer join- P Q
Emp_id Emp_name Age Dept_id DOJ
10 Raj 40 111 10-10-2017
20 Rajib 35 NULL NULL
30 Aman 36 112 01-02-2009

Right outer join- P Q
Emp_id Emp_name Age Dept_id DOJ
10 Raj 40 111 10-10-

2017
20 Rajib 35 112 NULL
40 NULL NULL 113 01-02-

2009

 In left outer join, it contains all the tuples from left relation
and only matching records from right relation.

 In right outer join, it contains all the tuples from right table
and only matching tuples from left table.

 In full outer join, it contains all the tuples from both relation
and the tuples of both relation which do not match the join
condition, these attributes are made NULL.

37 | P a g e

Space for learners: 2.3.2 Set-Oriented Operations
2.3.2.1 SET-UNION

The symbol “∪” is used to denote the union operation. Suppose P
and Q are two compatible relations. Now P∪Q denotes SET-UNION
of P and Q, which is a relation that includes all rows that are either in
P or in Q or in both P and Q. In set union, duplicate rows would be
eliminated.
Example-2: P and Q are two compatible relations where P holding
the details of department in which project P1 is assigned and Q
holding the details of those departments in which project P2 is
assigned.
P:

Dept_id Dept_name
D1 Physics

D2 Chemistry

D3 Computer
Science

Q:

Dept_id Dept_name
D1 Physics
D3 Computer

Science
D4 Electronics

The result of UNION operation is:
P∪Q:

Dept_id Dept_name
D1 Physics

D2 Chemistry

D3 Computer
Science

D4 Electronics

38 | P a g e

Space for learners: 2.3.2.2 SET-INTERSECTION

The symbol “∩” is used to denote SET INTERSECTION operation
and the result contains all rows that are in both P and Q.
Considering the example-2 above, the result of P∩Q will be a
relation which gives departments to those both P1 and P2 are
assigned.
P∩Q:

Dept_id Dept_name
D1 Physics

D3 Computer
Science

2.3.2.3 SET-DIFFERENCE

P-Q is used to denote the set difference operation. It finds the rows
those are in one table or relation but not in another table.
From example 2 , to select all those departments which are present in
P but not in Q. The result is-
P-Q

Dept_id Dept_name

D2 Chemistry

2.3.2.4 CARTESIAN PRODUCT (CROSS PRODUCT)
Cross product is denoted by P x Q and returns a table on rows whose
schema contains all fields of P (in the same order, they appear in P)
followed by all fields of Q (in the same order as they appear in Q).
Suppose, we have two relations P and Q-
Example 3:

P
Dept_id Dept_name

D1 Physics

D2 Chemistry

D3 Computer
science

D4 Electronics

39 | P a g e

Space for learners: Q
Project No

P1

P2

The result of the operation PxQ is follows-
 PxQ

Dept_id Dept_name Project_No

D1 Physics P1

D1 Physics P2

D2 Chemistry P1

D2 Chemistry P2

D3 Computer
science

P1

D3 Computer
science

P2

D4 Electronics P1

D4 Electronics P2

2.4 RELATIONAL CALCULUS

Relational Calculus is a non procedural query language. In relational
calculus, a query is formed as a formula consisting of a number of
variables and an expression involving these variables. It uses
mathematical predicate calculus. It tells what to do but never explain
how to do. There is no such mechanism to evaluate the formula.
DBMS decide how to transform such non procedural query language
into equivalent and efficient procedural queries. There are two types
of relational calculus. One is tuple relational calculus (TRC) and
domain relational calculus (DRC).

2.4.1 Tuple Relational Calculus
It was proposed by E.F. Codd in the year 1972. A tuple calculus
expression is essentially a non procedural definition of some relation

40 | P a g e

Space for learners: in terms of some given set of relations. A query in tuple relational
calculus is formed as: {t|cond(t)}, where t denotes a tuple variable
and cond(t) denotes predicate or condition involving t. The result of
the query is the set of all tuples “t” such that predicate p is true for t.

Example 4:

Consider the following relation-

DEPT (D_id, D_name D_location)

To find all department whose D_location are “Guwahati”, we can
write the following construct of the tuple relational calculus:

{t| DEPT(t) and t.D_location=“Guwahati”}

The condition DEPT(t) specifies that the ranges relation of table
variable t is department. Each department tuple “t” that specifies the
condition t.D_location=“Guwahati” will be retrieved. The above
query retrieves all attributes values for each selected department
tuple t. To retrieve only some of the attributes, we can write-
{t.Dept_id, t.Dept_name|DEPT(t) and t.D_location=”Delhi”}.

2.4.2 Domain Relational Calculus

In Domain Relational Calculus, variables uses the domain rather
than relations. It uses the same operators as tuple calculus. It uses ˄
(and), ˅(or) and ̚ (not) logical connectives. It also uses Existential
(∃) and Universal Quantifiers (∀).

Syntax: {x1, x2, x3, ….. xn|p(x1,x2,…..xn)} where x1,x2,…xn are
attributes and p is the formula which is formed by inner attributes.

For example: {<emp_id, emp_name, dept_name>|∃
EMP˄dept_name=“sales”}

This query will retrieve the emp_id, emp_name and dept_name from
the relation EMP where dept_name is sales.

2.5 EXAMPLES (RELATIONAL ALGEBRA)

Consider the following table structure:

EMPLOYEE (E_id, E_name, DOB, D_id)

DEPARTMENT (D_id, D_name, D_loc)

41 | P a g e

Space for learners: PROJECT (P_id, P_name, D_id)

WORKS_ON (E_id, P_id, Hours)

Query1: Get names of the employee who worked in department
“D1”.

Answer: πE_name(σD_id=”D1” (EMPLOYEE⋈DEPARTMENT))

Query2: Get all the information about employees whose date of
birth are before 01-01-1990.

Answer: σDOB<”01-01-1990”(EMPLOYEE)

Query3: Print the D_id and D_name of those departments which are
located in guwahati.

Answer: πD_id,D-name(σD_loc=”guwahati”(DEPARTMENT))

Query4: Get details of employees working on project P1.

Answer: EMPLOYEE⋈ πE_id(σP_id=”P1”(WORKS_ON))

Query 5: Get details of employees working on DBMS project.

Answer: EMPLOYEE⋈ πE_id(WORKS_ON) ⋈
(πP_id(σP_name=”DBMS”(PROJECT)))

CHECK YOUR PROGRESS

Fill-in the blanks:
1. _____________ operation retrieves specific rows from a relation

or table.
2. _____________ operation retrieves attributes or columns from a

relation or table.
3. _____________ operations are used to combine two or more

relations to form a single new relation.
4. P∪Q denotes _____________________ of P and Q.

Answer the following:
6. Write down the syntax for Select operation.
7. Write down the syntax for Project operation.

42 | P a g e

Space for learners: 2.6 SUMMING UP

 Relational algebra operations can be divided into two parts
namely Relational-oriented operations and Set-oriented
operations.

 The Select operation retrieves specific rows from a relation or
table. Sigma (σ) symbol is used to denote the SELECT operation.

 The Project operation retrieves attributes or columns from a
relation or table.

 Join operations are used to combine two or more relations to
form a single new relation.

 If P and Q are two compatible relations, then P∪Q denotes SET-
UNION of P and Q, which is a relation that includes all rows that
are either in P or in Q or in both P and Q.

 SET INTERSECTION operation between P and Q will result a
relation which contains all rows that are in both P and Q.

 Relational Calculus is a non-procedural query language.

 A tuple calculus expression is essentially a non-procedural
definition of some relation in terms of some given set of
relations. A query in tuple relational calculus is formed as: {t |
cond(t)}, where t denotes a tuple variable and cond(t) denotes
predicate or condition involving t.

2.7 ANSWERS TO CHECK YOUR PROGRESS

1. Select, 2. Project, 3. Join, 4. SET-UNION

5. σ<selection_condition>(<realtion-name>)
6. π<attribute_list> (<relation-name>)

2.8 POSSIBLE QUESTIONS

Short Answer type questions:
1. What is Relational algebra?
2. What is the purpose of Relational algebra?
3. Discuss the selection operation.

43 | P a g e

Space for learners: 4. Discuss the project operation.
5. Discuss the theta join.
6. What do you mean by Equi join?
7. What do you mean Relational calculus?
8. What do you mean by Tuple relational calculus?
9. What do you mean by Domain relational calculus?
10. Discuss the Cartesian product in Relational algebra.

Long answer type questions:
11. Explain selection and projection with examples.
12. Explain different types of Outer join with examples in

Relational algebra.
13. Explain different types of set-oriented operations with

examples in relational algebra.
14. Explain the different types of relational calculus with

examples.

2.9 REFERENCES AND SUGGESTED READINGS

• Ramez, Elmasri. Fundamentals of Database Systems. Pearson
Education India, 2020.

• Silberschatz, Abraham, Henry F. Korth, and Shashank
Sudarshan. Database system concepts. McGraw-Hill, 1997.

44 | P a g e

Space for learners: UNIT 3: STRUCTURED QUERY LANGUAGE - 1

Unit Structure:

3.1 Introduction

3.2 Unit Objectives

3.3 My SQL installation in Windows

3.4 Types of SQL Commands

3.4.1 Data Definition Language (DDL)

 3.4.2 Data Manipulation Language (DML)

3.5 Summing Up

3.6 Answers to Check Your Progress

3.7 Possible Questions

3.8 References and Suggested Readings

3.1 INTRODUCTION

SQL stands for Structured Query Language. It is used for storing,
manipulating and retrieving data stored in a relational database.
With the help of SQL, within a few microseconds, the records in a
table(s)/relation(s) can be searched, retrieved and manipulated.
Various RDBMS are available to work with SQL. Some of the
popular RDBMS are: MySQL, PostgreSQL (both are free and
open source), Oracle, SQL Server etc. MySQL is the most popular
open-source Database Management System and now it is
distributed and supported by Oracle Corporation. In this unit, we
will discuss the SQL commands using MySQL.

3.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 define SQL
 understand the installation and working process of MySQL

in Windows Environment
 use various DDL commands
 use various DML commands

45 | P a g e

Space for learners: 3.3 MY SQL INSTALLATION IN WINDOWS

The latest version of MySQL can be download from the link:
https://dev.mysql.com/downloads/installer/ as shown below (Fig.
3.1):

Fig. 3.1

After downloading the Installer, simply double click over the file
and the following window will appear (Fig. 3.2).

Fig. 3.2

46 | P a g e

Space for learners: Click the Next button. The following window will appear (Fig.
3.3):

Fig. 3.3

Click the Next button. You may see Upgrade Now option in a
window. If shown, click on it. The following window will
appear(Fig. 3.4):

Fig. 3.4

After upgradation completed, the following window (Fig. 3.5) will
appear:

47 | P a g e

Space for learners:

Fig. 3.5

Now, you can skip the process of product configuration process.
So, you can click the Cancel button.

MySQL is now installed in your computer.

You can now check whether MySQL server is working or not. For
that, open the DOS prompt as shown (Fig. 3.6) below:

Fig. 3.6

STOP TO CONSIDER

For MySQL 8.0 on Windows, the default installation directory
is C:\Program Files\MySQL\MySQL Server 8.0 for
installations performed with MySQL Installer.

48 | P a g e

Space for learners: Type cd\ to go to the drive C as shown (Fig. 3.7) below:

Fig. 3.7

Then go to the default installation directory as shown (Fig. 3.8)
below:

Fig. 3.8

Then type the following command

 mysql -uroot -proot

Here,
-usignifies that the word follows is the User Name which is root,
-psignifies that the word follows is the Password which is root.

The mysql prompt will be displayed as shown (Fig. 3.9) below:

49 | P a g e

Space for learners:

Fig. 3.9

To exit from mysql server, type \q

3.4 TYPES OF SQL COMMANDS

There are five types of SQL commands: DDL, DML, DCL, TCL,
and DQL. In this unit, we will discuss about the DDL and DML
commands.

3.4.1 Data Definition Language (DDL)

Data Definition Language (DDL) commands are used to define the
structure of the database or the database schema. The changes
made in the database using DDL commands are saved
permanently. Following SQL commands falls under the DDL:

(a)CREATE: It is used to create a new database, table, views and
index.Suppose, we want to create a database named “GUIDOL”.
The SQL statement for creating a database is as follows:

CREATE DATABASE database_name;

Let us execute the above statement using MySQL (Fig. 3.10):

Fig. 3.10

50 | P a g e

Space for learners: Let’s now create a table under the database GUIDOL. For this,
first we have to use this database using the following SQL
statement (Fig. 3.11) as:

 USE database_name;

Fig. 3.11

Now, let us create a table named Studentunder the database
“GUIDOL”. Suppose the attributes or field names of the table are
rollno, name, date_of_birth, vill_town, city, mobile. The SQL
statement will be:

create table student(rollno varchar(10) primary key, name
varchar(30), date_of_birth date,vill_town varchar(20), city
varchar(20), mobile varchar(10));

If you execute the SQL statement in mysql, it will be shown (Fig.
3.12) below:

Fig. 3.12

(b) ALTER: It is used to change the structure of an already
existing table of a database.

The ALTER TABLE statement is used to add, delete, or modify
columns in an existing table.

(i) To add a column in a table, use the following syntax:

ALTER TABLE table_nameADD column_namedatatype;

Suppose, We want to add a column name email with data types
varchar(20) to the existing table student. The SQL statement will
be (Fig. 3.13):

51 | P a g e

Space for learners:

Fig. 3.13

To check the structure of the table, use the following
SQLstatement (Fig. 3.14):

DESC table_name;

Fig. 3.14

(ii) To delete a column in a table, use the following syntax:

ALTER TABLE table_name DROP COLUMN column_name;

Let us remove the column email that is just created (Fig. 3.15).

Fig. 3.15

52 | P a g e

Space for learners: (iii) To change the data type of a column in a table, use the
following syntax:

ALTER TABLE table_name MODIFY COLUMN column_name
datatype;

Let us change the data type of the column city to varchar(15) (Fig.
3.16).

Fig. 3.16

(c) DROP: It is used to delete a database, table, views or index.

The following SQL statement drops the existing database
"GUIDOL":

DROP DATABASE GUIDOL;

The DROP TABLE statement is used to drop an existing table in a
database.For example,

DROP TABLE student;

Note: Do not try to execute these statements unnecessarily as it
will delete the existing database and existing table and all
information will be lost.

(d) TRUNCATE:It is used to completely remove all data from a
table, including their structure and space allocates on the server.

For Example, TRUNCATE TABLE student;

(e) RENAME: It is used to rename a database table.
The syntax is:

53 | P a g e

Space for learners: RENAME TABLE existing_table_name TO new_table_name;

For example, the table student will be renamed as student_master
(Fig. 3.17).

Fig. 3.17

Here, SHOW TABLES statement shows the available tables under
the current database.

CHECK YOUR PROGRESS-I

1. Fill in the blanks:
(a) ____________ command is used to create a database.
(b) ____________ command is used to create a table.
(c) To change the structure of a table, ___________ command

is used.
(d) ___________ command completely remove all data from a

table, including their structure and space allocates on the
server.

(e) To change the name of a table __________ command is
used.

3.4.2 Data Manipulation Language (DML)

DML stands for Data Manipulation Language. It includes various
types of data manipulation SQL statements. DML statements are
used to store, modify, retrieve, delete and update data in a
database. Followings are some DML statements:

54 | P a g e

Space for learners: (a) INSERT: It is used to insert data into a table. The syntax is:

INSERT INTO table_name (column 1, column 2,.......column n)
VALUES (value 1, value 2, ……value n);

Or

INSERT INTO table_name VALUES (value 1, value 2, ……value
n);

For example, to insert data into the table student_master, the SQL
statement will be (Fig. 3.18):

INSERT INTO student_master (rollno, name, date_of_birth,
vill_town, city, mobile) VALUES ('2100000001', 'Rajib Sarma',
'1990-12-01', 'Ganeshguri', 'Guwahati', '98540XXXXX');

Fig. 3.18

MySQL Insert Multiple Rows:

To insert multiple rows into a table, you use the following form of
the INSERT statement:

INSERT INTO table_name (column_list) VALUES
(value_list_1), (value_list_2), ...(value_list_n);

Example (Fig. 3.19):

INSERT INTO student_master (rollno, name, date_of_birth,
vill_town, city, mobile) VALUES ('2100000002', 'Jyoti Saikia',
'1990-01-02', 'Haripur', 'Pathsala', '98541XXXXX'),
('2100000003', 'Sanjib Kalita', '1988-06-07', 'Belsor', 'Nalbari',
'98640XXXXX');

55 | P a g e

Space for learners:

Fig. 3.19

Suppose, we want to add another two records into the table
student_master. The SQL statement will be (Fig. 3.20):

INSERT INTO student_master (rollno, name, date_of_birth,
vill_town, city, mobile) VALUES ('2100000004', 'Jiten Kalita',
'1990-07-02', 'Chanmari', 'Guwahati', '98541XXXXX'),
('2100000005', 'Jilmil Choudhury', '1987-09-07', 'Belsor', 'Nalbari',
'98640XXXXX');

Fig. 3.20

(b) SELECT: It is used to display records from a table.

The syntax is:

 SELECT column1, column2, ...FROM table_name;

If you want to select all the fields available in the table, the syntax
will be:

 SELECT * FROM table_name;

56 | P a g e

Space for learners: Example: Display all the records from the table student_master;

 SELECT * FROM student_master;

Example:Display the name and city of the students.

SELECT name, city FROM student_master;

SELECT DISTINCT: It is used to display only the distinct
values.

For example, the following SQL statement will display only the
distinct values from the column city.

SELECT DISTINCT(city) FROM student_master;

57 | P a g e

Space for learners:

WHERE clause:

In MySQL, WHERE is a keyword used for the criteria or
conditions to be applied for filtering the rows from a table or
database. The WHERE clause can be used with INSERT,
UPDATE, SELECT and DELETE statements to filter records and
perform various operations on the data.

Example: Display the name of the student along with the city
name whose roll number is 2100000004.

SELECT name, city from student_master WHERE
rollno=’2100000004’;

LIKE Operator:

The LIKE operator is used in a WHERE clause to search for a
specified pattern in a column. Here, two wildcards are used in
conjunction with the LIKE operator.

58 | P a g e

Space for learners: The percent sign (%) represents zero, one, or multiple
characters.

 The underscore sign (_) represents one, single character.

Example:

(i) Display the student information whose name starts with
the letter J.

 SELECT * FROM student_master where name LIKE ‘J%’;

(ii) Display the student information whose name ends with
the letter a.

 SELECT * FROM student_master where name LIKE‘%a’;

(iii) Display the student information whose name
contains‘it’

 SELECT * FROM student_master where name LIKE ‘%it%’;

(iv) Display the student information whose name contains
the letter ‘y’ in the second position.

 SELECT * FROM student_master where name LIKE ‘_y%’;

(v) Display the student information whose name starts with
the letter ‘S’ and ends with the letter ‘a’

 SELECT * FROM student_master where name LIKE ‘S%a’;

AND, OR and NOT Operations:

AND, OR and NOT operators can be combined with the WHERE
clause.

Example:

(i) Display the student information whose name starts with
the letter J and address is Guwahati

 SELECT * FROM student_master where name LIKE ‘J%’
AND address=‘Guwahati’;

(ii) Display the student information whose name starts with
the letter J and address is either Guwahati or Nalbari.

59 | P a g e

Space for learners: SELECT * FROM student_master where name LIKE ‘J%’
AND (address=‘Guwahati’ OR address=‘Nalbari’);

(iii) Display the student information who resides except
Guwahati;

 SELECT * FROM student_master where NOT address =
‘Guwahati’;

ORDER BY Keyword:

It is used to sort the records in ascending or descending order. By
default, it sorts the records in ascending order. To sort the records
in descending order, the DESC keyword is used.

Example:

(i) SELECT * FROM student_master ORDER BY name;
(ii) SELECT * FROM student_master ORDER BY name

DESC;

BETWEEN Operator:

It selects values within a given range. The values can be numbers,
text, or dates. The BETWEEN operator is inclusive i.e. begin and
end values are included.

(c) UPDATE:

The update command is used to update existing data in a table.

Example: Change the name of the student to Rajib Saikia whose
Roll Number is 21000000001.

UPDATE student_master SET name=‘Rajib Saikia’ where rollno
= ‘21000000001’;

(d) DELETE

It is used to delete records from a table according to a given
condition.

60 | P a g e

Space for learners: Example: Delete the student record whose roll number is
21000000002.

DELETE from student_master WHERE rollno=‘21000000001’;

JOIN Clause:

The Join command is used to combine rows from multiple tables
in a database. Join operation between multiple tables is done with
a common field with same attribute in the tables.

Let us consider the following two tables:

hostel(hostel_id, hostel_name, type, seat_capacity)

student_master(rollno, name, address, date_of_birth, sex, mobile,
hostel_id)

Here, in the hostel table hostel_id is the primary key and in the
student_master table rollno is the primary key. hostel_id field is
common in both the tables. So, to join the two tables we will use
the hostel_id field.

Example: Write SQL statement to display the name and seat
capacity of the hostel for the student whose roll number is
‘21000000001’.

SELECT hostel.hostel_name, hostel.seat_capacity FROM hostel,
student_master WHERE hostel.hostel_id=student_master.hostel_id
and student_master.rollno=‘21000000001’;

CHECK YOUR PROGRESS-II

2. Fill in the blanks:

(a) To insert data into a table, ____________ command is
used.

(b) ___________ command is used to display data from a
table.

(c) ____________ is a keyword used for the criteria or
conditions to be applied for filtering the rows from a
table or database.

61 | P a g e

Space for learners: (d) The ___________ operator is used in a WHERE clause
to search for a specified pattern in a column.

(e) The ___________ command is used to update existing
data in a table.

3.5 SUMMING UP

 SQL stands for Structured Query Language
 DDL stands for Data Definition Language
 Create, Drop, Alter, Truncate and Rename are DDL

commands.
 DML stands for Data Manipulation Language
 Insert, Select, Update are DML commands.
 To create a new database, CREATE DATABASE command

is used
 Before creating tables in a database, we have to use the

database.
 CREATE TABLE command is used to create a new table.
 INSERT INTO command is used to insert records into a table.
 SELECT command is used to display records from a table.
 ORDER BY keyword is used to sort the records in ascending

or descending order.
 The update command is used to update existing data in a

table.
 The JOIN command is used to combine rows from multiple

tables in a database.

3.6 ANSWERS TO CHECK YOUR PROGRESS

1. (a) CREATE DATABSE
 (b) CREATE TABLE
 (c) ALTER TABLE
 (d) TRUNCATE TABLE
 (e) RENAME TABLE

2. (a) INERT INTO
 (b) SELECT FROM
 (c) WHERE
 (d) LIKE

62 | P a g e

Space for learners: (e) UPDATE

3.7 POSSIBLE QUESTIONS

Short answer type questions:

1. Define SQL. What are the uses of SQL?
2. Differentiate between DDL and DML statements.
3. In SQL, how a new table can be created? Explain with an

example.
4. How multiple records can be inserted into a table? Explain

with an example.
5. How will you display records from a table with certain

conditions? Explain with examples.
6. Explain the uses of ALTER TABLE command with an

example.
7. How records can be displayed in sorted order? Explain

with an example.
Long answer type questions:

1. What are Data Definition Language statements? Explain
with examples.

2. What are Data Manipulation Language statements?
Explain with examples.

3. How will you insert a new field in an existing table? After
insertion, how the data in the newly created field will be
updated? Explain with an example.

4. What is LIKE operator? Explain its uses with examples.

3.8 REFERENCES AND SUGGESTED READINGS

1. https://www.w3schools.com/sql/default.asp

63 | P a g e

Space for learners:
UNIT 4: STRUCTURED QUERY LANGUAGE - II

Unit Structure:

4.1 Introduction
4.2 Unit Objectives
4.3 Data Control Languages

4.3.1 GRANT
4.3.2 REVOKE

4.4 Aggregate Functions
4.4.1 AVG
4.4.2 COUNT
4.4.3 MIN
4.4.4 MAX
4.4.5 SUM

4.5 GROUP BY Clause
4.6 HAVING Clause
4.7 Summing Up
4.8 Answers to Check Your Progress
4.9 Possible Questions
4.10 References and Suggested Readings

4.1 INTRODUCTION

The full form of SQL is Structured Query Language. It is used for
storing, manipulating and retrieving data stored in a relational
database. With the help of SQL, within a few microseconds, the
records in a table(s) can be searched, retrieved and manipulated.
Various types of RDBMS tools are available to work with SQL.
Some of them are: MySQL, PostgreSQL (both are free and open
source), Oracle, SQL Server etc. MySQL is the most popular open
source database management system and now it is distributed, and
supported by Oracle Corporation. In this unit, we will discuss the
SQL commands using MySQL.

64 | P a g e

Space for learners: 4.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 define SQL
 understand the installation and working process of MySQL

in Windows Environment
 describe the use of various DDL commands
 describe the use of various DML commands

4.3 DATA CONTROL LANGUAGES

There are two types of data control languages: (a) grant and (b)
revoke. Let us discuss with examples.

4.3.1 GRANT
It is employed to grant a privilege to a user. GRANT command
allows specified users to perform specified tasks.

Syntax:

GRANT privilege_name on object name to user; Here,

 privilege names are
SELECT,UPDATE,DELETE,INSERT,ALTER,ALL

 object name is table name

 user is the name of the user to whom we grant privileges

4.3.2 REVOKE
It is employed to remove a privilege from a user. REVOKE helps
the owner to cancel previously granted permissions.

Syntax:

 REVOKE privilege_name on object name from user;
Here,

 privilege names are

SELECT,UPDATE,DELETE,INSERT,ALTER,ALL

 object name is table name

 user is the name of the user whose privileges are removing

65 | P a g e

Space for learners: Examples:

GRANT SELECT, UPDATE ON employees TO Bhanu
Explanation − Firstly, to give the permissions to user, we have to
use GRANT command. The privileges are SELECT because to
view the records and UPDATE to modify the records. The object
name is table name which is Employee. The user name is bhanu.

REVOKE SELECT, UPDATE ON employees TO Bhanu
Explanation − Firstly, to revoke the permissions to user, we have to
use REVOKE command. The privileges Need to revoke are
SELECT because to view the records and UPDATE to modify the
records. The object name is table name which is Employee. The
user name is Bhanu.

4.4 AGGREGATE FUNCTIONS

SQL aggregation function is used to perform the calculations on
multiple rows of a single column of a table. It returns a single
value. It is also used to summarize the data. There are five types of
aggregate functions: (a) avg (b) count (c) sum (d) max (e) min

4.4.1 AVG
The AVG function is used to calculate the average value of the
numeric type. AVG function returns the average of all non-Null
values.

Syntax:
AVG()

or

AVG([ALL|DISTINCT] expression)

Example:

SELECT AVG(COST)

FROM PRODUCT_MAST;

STOP TO CONSIDER

For MySQL 8.0 on Windows, the default installation directory
is C:\Program Files\MySQL\MySQL Server 8.0 for
installations performed with MySQL Installer.

66 | P a g e

Space for learners: Output:
67.00

4.4.2 COUNT
COUNT function is used to Count the number of rows in a
database table. It can work on both numeric and non-numeric data
types.

COUNT function uses the COUNT(*) that returns the count of all
the rows in a specified table. COUNT(*) considers duplicate and
Null.

Syntax

COUNT(*)

or

COUNT([ALL|DISTINCT] expression)

Sample table:

PRODUCT_MAST
PRODUCT COMPANY QTY RATE COST

Item1 Com1 2 10 20
Item2 Com2 3 25 75
Item3 Com1 2 30 60
Item4 Com3 5 10 50
Item5 Com2 2 20 40
Item6 Cpm1 3 25 75
Item7 Com1 5 30 150
Item8 Com1 3 10 30
Item9 Com2 2 25 50
Item10 Com3 4 30 120

Examples:

SELECT COUNT(*)FROM PRODUCT_MAST;
The AVG function is used to calculate the average value of the
numeric type. AVG function returns the average of all non-Null
values.

Output:

10

Example:

67 | P a g e

Space for learners: SELECT COUNT(*) FROM PRODUCT_MAST WHERE
RATE>=20;

Output:

7

Example: COUNT() with DISTINCT

SELECT COUNT(DISTINCT COMPANY) FROM
PRODUCT_MAST;

Output:

3

Example:

SELECT COMPANY, COUNT(*) FROM PRODUCT_MAST
GROUP BY COMPANY;

Output:

Com1 5

Com2 3

Com3 2

Example: COUNT() with HAVING

SELECT COMPANY, COUNT(*)FROM PRODUCT_MASTGROUP
BY COMPANY

HAVING COUNT(*)>2;

Output:

Com1 5

Com2 3

4.4.3 MIN
MIN function is used to find the minimum value of a certain
column. This function determines the smallest value of all selected
values of a column.

Syntax

MIN()

or

MIN([ALL|DISTINCT] expression)

68 | P a g e

Space for learners: Example:

SELECT MIN(RATE) FROM PRODUCT_MAST;

Output:

10

4.4.4 MAX
MAX function is used to find the maximum value of a certain
column. This function determines the largest value of all selected
values of a column.

Syntax

MAX()

or

MAX([ALL|DISTINCT] expression)

Example:

SELECT MAX(RATE)

FROM PRODUCT_MAST;

Output:

30

4.4.5 SUM
Sum function is used to calculate the sum of all selected columns.
It works on numeric fields only.

Syntax

SUM()

or

SUM([ALL|DISTINCT] expression)

Example: SUM()

SELECT SUM(COST) FROM PRODUCT_MAST;

Output:

670

69 | P a g e

Space for learners:

4.5 GROUP BY CLAUSE
The GROUP BY statement groups rows that have the same values
into summary rows, like "find the number of customers in each
country".

The GROUP BY statement is often used with aggregate functions
(COUNT(), MAX(), MIN(), SUM(), AVG()) to group the result-set
by one or more columns.

Syntax

SELECT column_name(s)
FROM table_name
WHERE condition
GROUP BY column_name(s)
ORDER BY column_name(s);

4.6 HAVING CLAUSE
The HAVING clause was added to SQL because
the WHERE keyword cannot be used with aggregate functions.

Syntax:

SELECT column_name(s)
FROM table_name
WHERE condition

CHECK YOUR PROGRESS

1. Fill in the blanks:

(a) ____________ command is used to create a database.

(b) ____________ command is used to create a table.

(c) To change the structure of a table, ___________
command is used.

(d) ___________ command completely remove all data from
a table, including their structure and space allocates on the
server.

(e) To change the name of a table __________ command is
used.

70 | P a g e

Space for learners: GROUP BY column_name(s)
HAVING condition
ORDER BY column_name(s);

4.7 SUMMING UP

 Various types of RDBMS tools are available to work with
SQL. Some of them are: MySQL, PostgreSQL (both are
free and open source), Oracle, SQL Server etc.

 MySQL is the most popular open source database
management system and now it is distributed, and
supported by Oracle Corporation.

 GRANT command grants permissions to users on database
objects. It can also be used to assign access rights to users.
For every user, the permissions need to be specified.

 It is used to remove the privileges on user accounts for
access to a database object. It revokes permission granted to
a user on a database object and also revokes the access
rights assigned to users.

4.8 ANSWERS TO CHECK YOUR PROGRESS
 1.
 (a) CREATE DATABSE
 (b) CREATE TABLE
 (c) ALTER TABLE
 (d) TRUNCATE TABLE
 (e) RENAME TABLE

4.9 POSSIBLE QUESTIONS

Short Answer Type Questions:

1. Define SQL. What are the uses of SQL?

2. Differentiate between DDL and DML statements.

3. In SQL, how a new table can be created? Explain with an
example.

71 | P a g e

Space for learners: 4. How multiple records can be inserted into a table? Explain
with an example.

5. How will you display records from a table with certain
conditions? Explain with examples.

6. Explain the uses of ALTER TABLE command with an
example.

7. How records can be displayed in sorted order? Explain with
an example.

Long Answer Type Questions:

1. What are Data Definition Language statements? Explain
with examples.

2. What are Data Manipulation Language statements? Explain
with examples.

3. How will you insert a new field in an existing table? After
insertion, how the data in the newly created field will be
updated? Explain with an example.

4. What is LIKE operator? Explain its uses with examples.

4.10 REFERENCES AND SUGGESTED READINGS

1. https://www.w3schools.com/sql/default.asp

72 | P a g e

Space for learners: UNIT-5: SEMANTIC MODELING

Unit Structure:

 5.1 Introduction

 5.2 Unit Objectives

 5.3 E-R Model

 5.4 E-R Diagram

 5.4.1 Symbols used in E-R Diagram

 5.4.2 Example of E-R Diagram

 5.4.3 Transformation of E-R Model to Relational Schema

 5.5 Generalization

 5.6 Specialization

 5.7 Aggregation

 5.8 Summing Up

 5.9 Answers to Check Your Progress

 5.10 Possible Questions

 5.11 References and Suggested Readings

5.1 INTRODUCTION

In DBMS, Entity Relationship (ER) model is one of the
important topics. In 1970 relational databases were introduced.
Whenever we want to develop a software, DBMS plays an
important role. Without a database we cannot build proper
software. In Relational Database Management System, first of all
we have to develop a design using an ER model. And then we
convert this developed model into relations/tables so that we
design a database with required and necessary properties. In an
ER diagram, there are different components which help us to
know the relationship among different entity sets.

73 | P a g e

Space for learners: 5.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 understand the fundamental concepts of ER model

 know different components are used in ER model.

 know how to design database using ER model.

 understand the fundamental concepts of generalization,
specialization and aggregation.

5.3 E-R MODEL

The E-R model was developed by P.P. Chen in around 1976. He
introduced E-R model as well as corresponding diagramming
techniques. A model that contains entity and relationship sets to
represent system data is called E-R (Entity-Relationship) model.
E-R model is an important part of DBMS. E-R model is used to
model the logical structure of a database.

5.3.1 Components of E-R Model

There are different components of E-R model. The major
components of E-R model as follows-

i) Entity

ii) Attributes

iii) Relationships

5.3.1.1 Entity
An entity is any kind of objects having physical existence or
conceptual existence. For example, an entity may be person,
place, event, or concept etc.

Each entity is distinct from the other entities.

Persons: Students, Department, Customer, Supplier.

Places: Building, Department office etc.

Objects: Car, Machine etc.

74 | P a g e

Space for learners: Events: Order, Purchase, Registration etc.

Entity Type: An entity is any object of entity type. For example:
S1 is an entity having entity type student.

Entity Set: The collection of entities which are sharing common
characteristic is called entity set. For example, the set of all
students of a university can be called as the entity set student.

5.3.1.2 Attributes
Attributes are the properties or characteristics of an entity.
Suppose, we have an entity called student, then roll-number,
regn-no, name, address, date-of-birth, phone-number, age
etc. are the attributes. There are different types of attributes of an
entity:

i) Single Valued Attribute: The attributes those have a single
value for a particular entity. For example, student
registration number is a single valued attribute.

ii) Multi Valued Attribute: Attributes having more than one
value are called multi valued attributes. For example, phone
number, email address of a student entity is multi valued
attributes.

iii) Composite Attribute: Composite attributes are the attributes
which can be sub divided into different parts. For example,
Student_id of a student entity is a simple attribute and
address, name of a student can be composite attributes. We
can divide address of a student into house_no, bylane_no,
post_office, pin_no etc. and name can be divided into
first_name, middle_name and last_name.

iv) Derived Attribute: This is the kind of attribute whose values
are derived from other attributes. For example, the age
attribute of the student entity can be calculated from the
date-of-birth attribute and thus age attribute is called as
derived attribute.

5.3.1.3 Relationships
In E_R model technique, Relationships among two entities types
can be classified into three categories. These are: One-to-One,

75 | P a g e

Space for learners: One-to-Many and Many-to-Many. For our discussion, let’s
consider few entity types – Faculty, Department, Student and
Course. But first discuss few terminologies.

Degree:

The Degree of a Relationship is nothing but the number of entity
types which are participating in the relationship. Since we will be
discussing the Relationship Concept in terms of two entities and
therefore the degree will be 2.

Participation Constraint:

This specifies that how strong is the presence of an entity type
when it is related to the other entity type in a Relationship. It is
also termed as the minimum Cardinality Constraint. In simple
term it specifies the no. of entities of an entity type, participating
in a Relationship. There are two types of Participation
Constraints – Total and Partial Participations.

i) One-to-One (1:1) Relationship:

In this kind of relationship, one entity of an entity type can only
be associated with only one entity of the other entity type. Now,
let’s find the Relationship between Faculty and Department
entities in terms of “Head of”. First try to associate Faculty
entities with the Department entities in terms of “Head of” a
Department. It is obvious that only 1 (one) Faculty can be a
“Head of” only 1 (one) Department. Also in a Department, there
will be only 1 (one) Head. Fig.-1 depicts this One-to-One
association/mapping.

Fig.-1: One-to-One Association

76 | P a g e

Space for learners: Thus, we can find a 1:1 Relationship, termed as “Head of”,
between the Department and the Faculty entity types and is
presented in Fig.-2.

Fig.-2: One-to-One (1:1) Relationship

i) One-to-Many (1:M) Relationship:

In this kind of relationship between two entity types, one entity
of an entity type may be associated with more than one entity of
the other entity type. Now, lets’ try to find the Relationship,
“Enroll in”, between Course and Student. For this, let’s assume
that a Student can only “Enroll in” a Course and a Course can
have many Students. This one-to-many association/mapping
between Course and Student is illustrated in fig.-3. Based on this
association we can find the required Relationship, which is 1:M,
shown in fig.-4.

Fig.-3: One-to-Many Association

Fig.-4: One-to-Many (1:M) Relationship

77 | P a g e

Space for learners: i) Many-to-Many (M:N) Relationship:

Entities that have many relationships among each other is called
a many-to-many relationship. For example, we have two entities
namely customer and items and a relationship “buy”. One
customer can buy at least one item or many items and one item
may be bought by one customer or many customers. Suppose we
have five customers C1, C2, C3, C4 and C5 and two items I1 and
I2. Item I1 is bought by C1, C2 and C3 and Item I2 is bought by
C2, C4, and C5. This many-to-many association/mapping
between Item and Customer is illustrated in fig.-5. Based on this
association we can find the required Relationship, which is M:N,
shown in fig.-6.

Fig.-5: Many-to-Many Association

Fig.-6: Many-to-Many (M:N) Relationship

5.3.1.4 Key Attributes
The attribute which uniquely identifies an entity in the entity set
is called key attribute. For example, student_id can be the key
attribute for the entity set student.

78 | P a g e

Space for learners: 5.4 E-R DIAGRAM
E-R diagram stands for Entity Relationship diagram. It is a
graphical representation of the logical structure of the database.
The main constituents of an E-R diagram are entities, attributes
and relationships.

5.4.1 Symbols used in E-R Diagram

The following symbols are used in E-R diagram (Fig.-7).

Fig.-7: Symbols used in E-R Diagram

79 | P a g e

Space for learners: 5.4.2 Example of E-R Diagram

Now let’s try to draw an E-R diagram by considering an example
of a simple company XYZ. Suppose, the entity types associated
are namely – Employee, Department and Projects. Each
department has employees and also different projects (may be
completed or in hand). Thus, each of the employee is associated
with one or more projects. Few of the employees are also
assigned with the responsibility of managing their respective
departments. The company has to keep information of
dependents of each of the employees. Keeping these facts into
consideration, the E-R diagram is depicted in fig. 8.

Fig.-8: E_R diagram of the XYZ Company

5.4.3 Transformation of E-R Model to Relational
Schema

The following steps are to be followed to transform an E-R
model to Relational Schema.

80 | P a g e

Space for learners: Step1: Convert all strong entity sets into tables/relations. Simple
attributes are mapped. Composite and multi valued attributes are
excluded from tables/relations. In our fig.-8, we have three strong
entities, so we have to create the following three tables (fig.-9).

Fig.-9: Relations from Strong Entities

Step2: Convert all weak entities into tables or relations. Primary
key of the strong entity is added into the weak entity as a foreign
key. In our example we have only one weak entity. So, we have
only one table.

Fig.-10: Mapping of Weak Entity

Step3: Mapping of 1:1 relationship types.

Method 1: Foreign key approach

Let A and B be two entity sets.

i) Identify the entity set with total participation. (say B)

ii) Add primary key of A into B as foreign key.

Method 2: Merged relation approach.

If both entity sets are having total participate then they can be
merged into a single relation.

81 | P a g e

Space for learners: Method 3: Cross reference approach.

Create a third relation comprising primary key of both entity
sets.

In our example there is a 1:1 relationship between EMPLOYEE
and DEPARTMENT with mange relationship.

Fig.-10: Mapping of 1:1 with mange relationship

Step4: Mapping of 1: M relationship types.

Let A and B be the entity sets (with 1: M) where B is having total
participation in relationships. Add primary key of A in B as
foreign key.

Fig.-11: Mapping 1: M relationships

Step5: Mapping M: N relationship types.

Create a third relation containing the primary keys of both the
entity sets and attributes which are in the relation (if any).

82 | P a g e

Space for learners:

Fig.-12: Mapping of M : N relationship having attribute

Step 6: Mapping multi valued attribute,

For each multi valued attribute, create a separate relation. Add
primary key of the entity set in new relation as a foreign key. The
foreign key attribute and multi valued attribute will become
composite key.

Fig.-13: Mapping multi valued attribute

5.5 GENERALIZATION

Generalizations is the process of retrieving similar properties
from a set of lower-level entity sets and create a generalized
entity from it. It is a bottom-up approach. Two or more entities
which have some common attributes can be generalized to a
higher-level entity. For example, Customer and Employee can be
generalized to a higher-level entity called Person as shown in
fig.-14.

In the following example, similar attributes like Name, Address
become part of Person entity and Emp_code and Emp_salary
attributes become part of specialized Employee entity.

83 | P a g e

Space for learners:

Fig.-14: Generalization

In the above figure, Person is the higher-level entity set and
Customer and Employee are lower-level entity sets. The higher-
level entity set is called super class and lower-level entity set is
called sub class.

5.6 SPECIALIZATION

It is top-down approach. It is the result of taking subsets of a
higher-level entity set to form lower-level entity sets. For
example, Employee entity can be specialized into set of sub
classes namely Salaried_employee and Hourly_Employee. In the
following figure, fig.-15, EName (employee’s name), address
etc. are common for both Salaried_Employee and
Hourly_Employee. They become part of higher entity Employee
and attributes like mode of payment is called specialized
attribute.

84 | P a g e

Space for learners:

Fig.-15: Specialization

5.7 AGGREGATION

One limitation of the E_R diagram is that it is not express
relationships within relationships. In those cases, a relationship
with its entities is aggregated into a higher-level entity.
Aggregation is the process of compiling information on an
object, thereby abstracting a higher-level entity sets.

Fig.-16: Aggregation

For example, employee working on a department may need a
manager. So, manages relationships is needed between
relationship Works_on and entity Manager. Using aggregation,
Works_on relationship with its entities. Employee and

85 | P a g e

Space for learners: Department is aggregated into single entity and relationship
manages is created between aggregated entity and Manager.

To represent aggregation via schema we need primary key of the
aggregated relationship; primary key of the associated entity set
and descriptive attribute, if exists.

5.8 SUMMING UP
 In Relational Database Management System E-R Model

helps in developing a design.

 P.P. Chen, in around 1976, introduced E-R model as well as
corresponding diagramming techniques.

 The major components of E-R model are – Entity, Attributes
and Relationships.

CHECK YOUR PROGRESS

1. What is E-R Model?

2. What is the use of E-R Model?

3. Write down the components of E-R Model.

4. What do you understand by an Entity?

5. What is Degree of a Relationship?

State TRUE or FALSE:

6. A derived attribute is the kind of attribute whose values are
derived from other attributes.

7. There are two types of Participation Constraints – Total and
Partial Participations.

8. The attribute which does not uniquely identify an entity in
the entity set is called key attribute.

9. It is a graphical representation of the physical structure of
the database.

10. In E-R Diagram, the Diamond symbol represents a
Relationship.

86 | P a g e

Space for learners: The Degree of a Relationship is nothing but the number of
entity types which are participating in the relationship.

 Participation Constraints specifies that how strong is the
presence of an entity type when it is related to the other
entity type in a Relationship.

 In E_R model technique, Relationships among two entities
types can be classified into three categories: One-to-One,
One-to-Many and Many-to-Many.

 The steps to be followed to transform an E-R model to
Relational Schema are:

o Convert all strong entity sets into tables/relations,

o Convert all weak entities into tables or relations,

o Mapping of 1:1 relationship types,

o Mapping of 1: M relationship types,

o Mapping M: N relationship types,

o Mapping multi valued attribute.

 Generalization is the process of retrieving similar properties
from a set of lower-level entity sets and create a generalized
entity from it. It is a bottom-up approach.

 Specialization is top-down approach which is the result of
taking subsets of a higher-level entity set to form lower-level
entity sets.

 Aggregation is the process of compiling information on an
object, thereby abstracting a higher-level entity sets.

5.9 ANSWERS TO CHECK YOUR PROGRESS

1. A model that contains entity and relationship sets to represent
system data is called E-R (Entity-Relationship) model.

2. E-R model is used to model the logical structure of a database.

3. There are different components of E-R model. The major
components of E-R model as follows-

87 | P a g e

Space for learners: i) Entity

ii) Attributes

iii) Relationships

4. An entity is any kind of objects having physical existence or
conceptual existence.

5. The Degree of a Relationship is nothing but the number of
entity types which are participating in the relationship.

6. T

7. T

8. F

9. F

10. T

5.10 POSSIBLE QUESTIONS

Short Answer type Questions:

1. What is entity?
2. What entity type and entity set?
3. What do you mean by stored and derived attribute? Give

examples
4. What do you mean by simple and composite attribute?

Give examples
5. What do you mean by single valued and multi valued

attribute? Give examples
6. Why we need relationships between two entities?
7. Write the basic difference between strong entity and weak

entity.
8. What do you mean by 1: 1 relationship?
9. What do you mean 1: M relationship?
10. What do you mean by M: M relationship?
11. What do you mean by key attributes?
12. Why we need convert E_R model into tables in RDBMS.

88 | P a g e

Space for learners: 13. What do you mean by aggregation?

Long Answer type Questions:

1. Explain the different symbols used in E_R diagram with
proper meaning.

2. Explain the E_R diagram with a suitable example.
3. Briefly explain the generalization and specialization with

suitable examples.
4. Briefly explain the rules for converting E_R model into

tables or relations with suitable examples.

5.11 REFERENCES AND SUGGESTED
READINGS

• Ramez, Elmasri. Fundamentals of Database Systems.
Pearson Education India, 2020.

• Silberschatz, Abraham, Henry F. Korth, and Shashank
Sudarshan. Database system concepts. McGraw-Hill, 1997.

89 | P a g e

Space for learners: UNIT6: NORMALIZATION AND FUNCTIONAL
DEPENDENCIES

Unit Structure:

6.1 Introduction

6.2 Unit Objectives

6.3 Informal Design Outlines for Relational Databases

 6.3.1 Semantics of a Relation

6.3.2 Minimization of Redundancy

6.3.3 Reducing the NULL values in tuples

6.3.4 SPURIOUS TUPLES

6.4 Functional Dependencies

6.4.1 Types of Functional Dependencies

6.4.2 Inference Rules for Functional Dependencies

6.4.3 Closure OF Functional Dependencies

6.4.4 Equivalent Sets of Functional Dependencies

6.4.5 Minimal Cover of Functional Dependencies

6.5 Normalization and Normal Forms

6.5.1 Definition of Keys

6.5.2 First Normal Form

6.5.3 Second Normal Form

6.5.4 Third Normal Form

6.5.5 Boyce Codd Normal Form (BCNF)

6.6 Multivalued Dependency and Fourth Normal Form

 6.6.1 Formal Definition of Multivalued Dependency

6.6.2 Fourth Normal Form

6.7 Relational Decomposition and its Properties

6.7.1 Dependency Preservation Property of a Decompostion

90 | P a g e

Space for learners: 6.7.2 Lossless (Non-Additive) Join Property of a
Decomposition

6.8 Algorithms for Relational Database Schema

 6.8.1 Relational Synthesis

 6.8.2 Testing lossless join property

6.8.3 Testing Lossless Join Property in Binary
Decomposition (Property LJ1)

6.8.4 Successive Lossless Join Decomposition (PROPER-
TY LJ2)

6.8.5 Non-additive Join Decomposition into BCNF
Schemas

6.8.6 Relational synthesis algorithm into 3NF with
dependency preservation and lossless join property

6.8.7 Finding a key K for relation schema R based on a set
F of functional dependencies

6.8.8 Relational decomposition into 4NF relations with
lossless join property

6.9 Summing Up

6.10 Answers to Check Your Progress

6.11 Possible Questions

6.12 References and Suggested Readings

6.1 INTRODUCTION

A relational database schema comprises of a number relational
schemas, where each relational schema is designed by grouping the
related attributes. While there are numerous groupings possible for
the same set of attributes, not all the groupings lead to a “good”

design. A good design can be easily understood by the users,
follows a logical organization of the attributes, and minimize
redundancy. In this model, we are going to discuss some informal
guidelines to measure the “goodness” of a relation. Another
important concept- functional dependency, which refers to the

91 | P a g e

Space for learners: constraints that exist among the attributes of a relation, is also
introduced in this module. Functional dependency is an important
tool to measure how appropriate is the grouping of the attributes in
a relation. This module also discusses normal forms and the
process of normalization. A relational schema is said to be in a
normal form if it meets certain desirable properties. The process of
converting a relation into a normal form is called normalization.
Functional dependency and constraints on key attributes can be
used to analyze which normal form relation is and also help in
further normalizing the relation if possible. Some other advanced
concepts like - multivalued dependency, join dependency and
lossless join property are also presented in this module.

6.2UNIT OBJECTIVES

After completion of this module, you will be able to -
• list the informal measures to assess the quality of relational

schema design.
• describe the various functional dependencies and normal

forms.
• understand the concept of null values, redundant

information, and spurious tuples and how to eliminate these
by performing normalization.

• apply the concept of database normalization (1 NF, 2NF, 3
NF, etc.) to create an efficient relational schema design to
organize the data logically and meaningfully and eliminate
redundancy.

• analyze whether a given relational schema design follows
the basic guidelines of design or not.

• evaluate in which normal form a given relational schema is,
and if possible, convert it to a higher normal form.

• create good relational schema designs by applying the
algorithms for losses join properties.

92 | P a g e

Space for learners: 6.3 INFORMAL DESIGN OUTLINES FOR
RELATIONAL DATABASES

A relational schema can be defined as a set of relational tables and
associated items related to each other. While it is possible to design
multiple relational schemas for the same problem, the challenging
task is to choose the good one. The design guidelines help us to as-
sess the quality of the relational schemas and thus enable us to
achieve good quality relational schema designs. The following are
the four informal design guidelines-

• The semantics of the Relation
• Minimizing redundancy
• Reduction of the null values in tuples.
• Discarding the possibility of generating spurious tuples.

6.3.1 Semantics of a Relation

When we arrange attributes to construct a relation schema, we pre-
sume that each attribute has a specific meaning. This meaning, or
semantics, describes how to interpret the attribute values recorded
in a tuple of the relation, or how the attribute values in a tuple

FACULT
Y

F_NAME F_ID F_GENDER F_DOB D_NO

 p.k.

DEPART
MENT

D_NO D_NAME D_EMAIL

p.k.

COURSE

C_CODE C_NAME C_CREDIT F_ID D_NO

p.k. f.k. f.k.

Fig-6.1: Relational Schema design with clear semantics

93 | P a g e

Space for learners: relate to one another. For example, in figure 1.1, the relations
FACULTY, COURSE, and DEPARTMENT have distinct
semantics. The attributes in the relations are also self-explanatory.
The relation DEPARTMENT represents details of a department-
 department number (D_NO), name of the department (D_NAME),
and the department email id (D_EMAIL). D_NO is the primary
key of the relation, inferring that each department has a unique
department number. The relation FACULTY, on the other hand,
outlines the details of a faculty, like-name (F_NAME), id
(F_ID), gender(F_GENDER), and date of birth(F_DOB). F_ID is
the primary key of the relation. The attribute, D_NO in FACULTY
is the foreign key from the relation DEPARTMENT, indicating the
implied relationship between the two relations. Similarly, the rela-
tion COURSE also has a distinct meaning. It depicts course details
like - name of the course (C_NAME), course code (C_CODE),
and credit (CREDIT). The attributes, F_ID and D_NO, in
COURSE are the foreign keys from FACULTY and
DEPARTMENT respectively and the attribute C_CODE is the
primary key.
Guideline 1: Create a relationship schema that is self-explanatory
and thus simple to understand. If a relation schema relates to a sin-
gle entity type or relationship type, the meaning is usually obvious.
However, in a single relation, if attributes from different entity
types and relationship types are combined, the relation becomes
semantically unclear.

6.3.2 Minimization of Redundancy

Redundancy is the repetition of the same fact again and again
across multiples places in the same database. Apart from wastage
of storage space, redundancy also results in various other side ef-
fects. In designing a relational schema, therefore, one of the most
important goals is to minimize redundancy across. Proper grouping
of the attributes in a relation schema helps significantly in minimiz-
ing redundancy. This can be illustrated with the example in figure
6.2. The relations FACULTY_DEPT and COURSE_DEPT are be-
ing designed to represent the faculties and the courses. The rela-

94 | P a g e

Space for learners: tions cover all the aspects the such as - which faculty works for
which department and which course is offered by which depart-
ment. However, if compared with the design in figure 6.1, the de-
sign in figure 6.2 consumes more storage space. In figure 6.1, the
department number and department email id have been mentioned
only once for a particular department in the DEPARTMENT rela-
tion. However, in figure 6.2, in the FACULTY_DEPT relation,
these two details are repeated for every employee that belongs to a
particular department. The same is also the case with the
COURSE_DEPT relation.
Apart from wastage of storage space, redundancy leads to another
serious issue of update anomalies. Insertion, deletion, and modifi-
cation anomalies are the three categories of update anomalies. A
brief discussion of each is presented in this section.

6.3.2.1 INSERT Anomalies

Consider table 6.1, which is the populated table for the relation
FACULTY_DEPT. Every time we enter a faculty detail, we must
also enter the corresponding department details. While entering
these details, one must be careful about entering all the fields
correctly. For example, two faculty members working for
department number 1, must have the same values for the attributes
D_NAME and D_EMAIL. However, as we can observe from table
6.1, the faculty members with id 123 and 124 work for the same
department but D_NAME and D_EMAIL values are different. This
results in the inconsistency of the database.

FACULTY_DEPT

F_NAME F_ID F_GENDER F_DOB D_NO D_NAME D_EMAIL

 p.k.

COURSE_DEPT

C_NAME C_CODE CREDIT F_ID D_NO D_NAME D_EMAIL

 p.k. f.k.

Fig-6.2: Relational Schema design with redundancy

95 | P a g e

Space for learners: Table 6.1: Populated FACULTY_DEPT table

Another difficulty is that there is no option to enter the details of a
department which has not appointed any faculty yet. The
department details can be entered into FACULTY_DEPT relation,
only where there is at least one faculty who is working in that
department. These issues will not occur in the design of figure 6.1
as the department details are not clubbed with the faculty details
and thus there is no redundancy.

6.3.2.2 DELETION Anomalies
This can be inferred from the second issue in insertion anomaly.
From table 6.1, if we delete the faculty information with id 125,
then we will lose all the details of department 2. This is because the
faculty, with id 125, is the only faculty working in department 2.
The same will be the problem if we delete the tuple with id 126.
This problem does not occur in the database of figure 6.1, as
deleting a tuple from the FACULTY relation will not cause any
deletion of tuples from the DEPT table. Thus all the tuples in
DEPT will still be intact.

6.3.2.3 MODIFICATION Anomalies
This again can be inferred from the first issue of insertion anomaly.
If there are some changes made in one department details- such as
the department name, the same has to be updated in all the tuple of
the FACULTY_DEPT relation with that department number. For
example, if we wish to change the department email id of depart-
ment number 1, then we need to update the same in all the faculty
tuples that are working in department 1. Even if we forget to update
it in one tuple, the database will be inconsistent.

96 | P a g e

Space for learners: Guideline 2: Design a schema with minimum redundancy, so that
there are no update anomalies. In case of any unavoidable redun-
dancy, the program must be designed to tackle all the related inser-
tion, deletion, and modification anomalies.

6.3.3 Reducing the NULL values in tuples
A NULL value for an attribute in a tuple can have multiple inter-
pretations, such as-

• The attribute doesn't apply to this tuple.
• The value of the attribute is unknown for this tuple
• The value of the attribute is known but has not been record-

ed yet.
The NULL values not only result in wastage of space but also cre-
ates problems in many operations such as JOIN operations, aggre-
gate operations such as COUNT or SUM, etc.

Guideline 3: While designing a relational schema we should group
the attributes in such a way that produces as few NULL values as
possible.

6.3.4 Spurious Tuples

Many a time, a relational schema has to be decomposed into small-
er relations. Inappropriate decomposition of the relation may result
in some information that originally did not exist in the original rela-
tion. For example, let a relation R be decomposed into two smaller
relations R1 and R2. If the natural join of R1 and R2 produces any
extra tuple that does not exist in the original relation R, then that
tuple is called the spurious tuple. Let's consider the relation R in
table 6.2(a). Decomposition of R into relations R1(A, B) and R2(B,
C) will result in the following two relations as shown in tables
6.2(b) and 6.2(c) respectively. Now the natural join over R1 and R2
will result in table 6.2(d). As we may observe, table 6.2(d) has two
extra tuples that are originally not present in R. These are called
spurious tuples. Spurious tuples represent wrong or invalid infor-
mation and thus leads to the inconsistency of the database.

97 | P a g e

Space for learners: Table 6.2 (a): Spurious tu-
ples: Relational schema R

A B C

a1 b1 c1

a2 b1 c2

Table 6.2 (b):Spurious
tuples: Relational schema

R1
A B

a1 b1

a2 b1

Table 6.2 (c):Spurious
tuples: Relational schema

R2
B C

b1 c1

b1 c2

Table 6.2 (d):Spurious
tuples: R1*R2

A B C

a1 b1 c1

a1 b1 c2

a2 b1 c1

a1 b1 c2

Guideline 4: Decompose a relation into multiple relations in such a
way that the natural join of the smaller relations does not produce
any spurious tuple. This can be done by having relations, where the
common attributes are either the primary key or foreign key of the

98 | P a g e

Space for learners: relations. In case of an unavoidable situation where two relations
have common non-key attributes, extra care should be taken not to
join such relations.

6.4 FUNCTIONAL DEPENDENCIES

In Database Management System (DBMS), functional dependency
(FD) refers to the relationship between two attributes in a table or
relation. For any relation, if the value of the set of attributes Y is
determined by the value of the set of attributes X, then Y is said to
be functionally dependent on X. This is symbolically represented
by X→Y . This notation can be read as “X functionally determines

Y” or “Y is functionally determined by X”. If this functional depend-
ency holds, then for every valid instance of X there will be a unique
value of Y in the table. Usually, the functional dependency exists
between a prime key attribute and a non-key attribute(s). Thus, in a
relation R, if two tuples, say t1 and t2 have the same values of X,
then they must have the same values of Y as well. A functional de-
pendency is the property of the attributes in a relation. It must hold
for every tuple in a relation. The concept of functional dependency
was introduced by E.C. Codd. It helps in avoiding bad design and
in avoiding data redundancy. To better understand functional de-

CHECKYOURPROGRESS-I

1. Redundancy in a database lead to _______, _______ and

_______ anomalies.

2. If the natural join of two relations results in extra tuples that are

not in the original relation, then those tuples are called as

_______ tuples.

3. State true or false

a. NULL vales in a relation always have specific meaning.

b. Spurious tuples represent wrong or invalid information.

c. A good relation always has complex semantics.

99 | P a g e

Space for learners: pendency, let us consider the relations in figure 6.1. Tables 6.3, 6.4,
and 6.5 are the populated tables for the relations FACULTY, DE-
PARTMENT, and COURSE respectively.

Table 6.3: Populated FACULTY relation

F_ID F_NAME F_GENDER F_DOB D_NO

123 Ravi Singh Male 06-02-1972 1

124 Rahul Bose Male 05-04-1980 1

125 P. Joseph Male 12-07-1979 2

126 Sima Mishra Female 08-11-1985 3

Table 6.4: Populated DEPARTMENT relation

D_NO D_NAME D_EMAIL

1 Geography geo@gmail.com

2 Social Science Sssc@gmail.com

3 Mathematics maths@gmail.com

Table 6.5: Populated COURSE relation

C_NAME C_CODE CREDIT F_ID D_NO

Physical geography 230 3 123 1

Anthropology 231 3 125 2

Graph Theory 232 3 126 3

Real Analysis 233 4 126 3

We can see from table 6.4, D_NAME is uniquely determined by
D_NO. Thus in this relation the functional dependency, D_NO→
D_NAME holds. Similarly, a few other functional dependencies
that hold in the relations DEPARTMENT, FACULTY, and
COURSE are-

100 | P a g e

Space for learners: • F_ID → F_GENDER

• F_ID → F_GENDER

• D_NO → D_EMAIL

• C_NAME → C_CREDIT

• C_CODE → F_ID

• C_NAME → F_NAME

6.4.1 Types of Functional Dependencies

Functional dependencies can be classified into the following forms-
• Trivial functional dependencies
• Non-trivial functional dependencies
• Multivalued functional dependencies
• Transitive functional dependencies
• Full Functional dependencies

6.4.1.1 Trivial functional dependencies
A functional dependency X→Y is said to be trivial if Y is a subset
of X. For example, the functional dependency {F_ID,
F_NAME}→ F_NAME is a trivial functional dependency since
F_NAME is a subset of {F_ID, F_NAME}. Similarly,
{D_NUMBER, D_NAME}→ DNAME is also another example of
trivial functional dependency.

6.4.1.2 Non-trivial functional dependencies
Unlike in trivial function dependency, in non-trivial functional de-
pendency, the set of attributes on the right-hand side is not a subset
of the attributes on the left-hand side. In other words, if X→Y, and
Y is not a subset of X, then the functional dependency is said to be
non-trivial. For example, the functional dependency, F_ID→
{F_NAME} in table 6.3 is an example of non-trivial functional de-
pendencies. Another example of non-trivial functional dependency
from table 6.5 is
COURSE_ID →C_NAME.

101 | P a g e

Space for learners: 6.4.1.3 Multivalued functional attributes
If there exists a functional dependency of the form X→ {Y, Z}
such that there is no dependency between Y and Z, then the FD is
said to be a multivalued functional dependency. In other words,
multi values dependency occurs when two or more attributes in a
table are functionally independent of each other but are functional-
ly determined by a specific attribute. Multivalued dependency is
represented by the symbol “→→”. For multivalued dependency,
we must have at least three attributes in the relation. A more de-
tailed discussion of the multivalued attribute is presented in section
6.5.

6.4.1.4 Transitive functional dependencies
In a relation, if the functional dependencies X→Y and Y→ Z exist,
then the functional dependency X→Z also exists. This is called
transitive dependency. For transitive dependency to exists, there
must be at least three attributes in the relation. For example, con-
sider table 6.6. In this table, S_ID determines S_Name and
S_Name determines S_Age. Due to transitive dependency, we can
also state that S_ID determines S_Age. Thus we can summarise as-

• S_ID→S_Name
• S_NAME→S_Age
• S_ID→S_Age [due to transitivity]

Table 6.6: Example of transitive dependency

S_ID S_Name S_Age

1 Ravi 20

2 Rohan 19

3 Sukanya 21

4 Puja 20

•

6.4.1.5 Full Functional dependencies
A functional dependency X→Y is said to be a full functional de-
pendency if removal of any attribute from X means the functional

102 | P a g e

Space for learners: dependency doesn't exist any longer. For example, consider table
6.7, showing the number of hours (per week) assigned to the
employees for different projects. In this table {E_ID, PRO-
JECT_ID}→ HOURS. If we remove any attribute from the left-
hand side then the dependency no longer holds as neither
E_ID→HOURS nor PROJECT_ID→HOURS. Thus, it is an
example of full functional dependency.

Table 6.7: Example of full functional dependency

E_ID PROJECT_ID HOURS

1 3 16

1 2 20

2 1 12

3 3 10

6.4.2 Inference Rules for Functional Dependencies

While designing a relational schema R, the designer also specifies a
set of functional dependencies. Let’s consider that this set of func-

tional dependencies is denoted by F. Usually, the schema designers
list only the functional dependencies that are semantically obvious.
Apart from the functional dependencies in F, it is possible to infer
several other functional dependencies that hold in any legal relation
instances in R. For example, one of the functional dependencies
that hold for the FACULTY relation in figure 6.1 is F_ID→
{F_NAME, F_GENDER, F_DOB, D_NO}. We can easily infer a
number of other functional dependencies from the given FD. Some
of these are-

• F_ID→ {F_NAME}
• F_ID→{F_GENDER, F_DOB}
• F_NAME→{F_DOB}

It is not practically possible to mention all the functional dependen-
cies that hold in a relation schema. However, we can systematically

103 | P a g e

Space for learners: infer the other functional dependencies with the help of the
inference rules. This set of inference rules were first introduced by
William W. Armstrong in 1974. These rules are thus also called
Armstrong’s axioms. These axioms define a set of rules which, if

applied repeatedly, generate all the other functional dependencies
that can be inferred from a set of functional dependencies originally
specified by the designer.

Armstrong’s Axioms:

• IR1: Axiom of reflexivity:
 If Y is a subset of X, i.e, Y⊆X, the X→Y.

• IR2: Axiom of augmentation:
 If in a relation the functional dependency X→Y holds, then
the functional dependency XZ→YZ also holds in that relation.
• IR3: Axiom of transitivity:
 In a relation if the two functional dependencies X→Y and
Y→Z hold, the functional dependency X→Z also holds.

Armstrong showed that the inference rules from IR1 to IR3 are
sound and complete. Soundness means - if we consider any rela-
tional schema R with a set of functional dependencies as F, then for
any legal relational instance r of R, which satisfies the functional
dependencies in F also satisfies the functional dependencies in-
ferred using IR1 to IR3. On the other hand, the rules are complete
in the sense that, application of the rules IR1 to IR3 over F until no
additional functional dependencies are generated will result in all
the possible dependencies that can be inferred from F.
Some other important secondary rules that can be derived from the
above inference rules are-
• IR4:Decomposition or Projective rule
 If X→YZ holds in a relation, then the functional dependen-
cies X→Y and X→Z also hold.
Proof:
 Step 1: X→YZ [Given]
 Step 2: YZ→Y [Applying IR1, as Y⊆YZ]

 Step 3: X→Y [Applying IR3 on step 1 and
step 2]

104 | P a g e

Space for learners: Similarly, we can prove that X→ Z.
• IR5: Union or additive rule:
 If the functional dependencies X→Y and X→Z hold in a
relation, then the functional dependency X→YZ also holds in the
relation.
Proof:
 Step 1: X→Y [Given]
 Step2: X→Z [Given]
 Step3: XY →YZ [Applying IR2 on step2]
 Step4: XX→XY [Applying IR2 on step1]
 Step5: X→XY [As XX=X]
 Step6: X→YZ [Applying IR3 over steps 5
and 3]
• IR6: Pseudo Transitivity
 If the functional dependencies X→Y and WY→Z hold in a
relation, then the relation WX→Z also holds in the same relation.
Proof:
 Step 1: X→Y [Given]
 Step 2: WX→WY [Applying IR2 on step 1]
 Step 3: WY→ Z [Given]
 Step 4: WX→Z [Applying IR3 on step2 and step 3]

CHECK YOUR PROGRESS-II

4. The functional dependency {ISBN, Book_Name} →
Book_Name is an example of _______________ functional
dependency.

5. If in a relation named COMPANY, C_name → C_location
and C_location → C_pincode, then we can say infer that
C_name → C_pincode due to _________.

6. If A→B and A→ C then, due to additive rule we can infer
that _______ .

7. State true or false
a. Functional dependency represents the relation between

two tables.
b. If A and B are two sets of attributes and A is a subset

of B, then we can say that B → A.
c. The three axioms- reflexivity, augmentation and transi-

tivity represent the complete and sound sound set of in-
ference rules.

105 | P a g e

Space for learners: 6.4.3 CLOSURE of Functional Dependencies

For any relational schema R, if the set of functional dependencies is
specified as F, then the set of all the functional dependencies that
can be inferred from F, is called the closure of F. The closure of F
is denoted as F+. The closure of a set of functional dependencies F,
F+, can be derived by repeatedly applying the inference rules over F
unless a point is reached where no additional functional dependen-
cies are generated.
To find closure of a functional dependency F systematically, first,
we need to identify each set of attributes X that occurs as the left-
hand side of any functional dependence in F. The next step is to
identify the set of all attributes that are dependent on X. As a result,
for each such set of attributes X, we find the set of attributes that
are functionally determined by X based on F; this is referred to as
the closure of X under F and is denoted by X+.

Example: Let’s consider a relation STUDENT (ID, NAME,
CGPA, LOCATION) with the set of functional dependencies
specified is F={ID → NAME, NAME→CGPA, ID
→LOCATION}
For finding the closure of F, we need to find the closure of the at-
tribute present in the left-hand side of the functional dependencies.
Thus, we need to find ID+ and NAME+
 Step 1: ID → ID [Due to IR1]
 Step 2: ID →NAME [Given]
 Step 3: ID →{ID, NAME} [Applying IR5 on
step1 and 2]
 Step 4: ID →LOCATION [Given]
 Step 5: ID →{ID, NAME, LOCATION} [Applying IR5
on step3 and 4]
 Step 6:NAME→CGPA [Given]
 Step7: ID → CGPA [Applying IR3 on step
2 and step 6]
 Step 8: ID →{ID, NAME, LOCATION, CGPA} [Applying
IR5 over step 5 and 7]
Thus

ID+={ID, NAME, LOCATION, CGPA}

106 | P a g e

Space for learners: Similarly, we can find that
 NAME+={NAME, CGPA}

Thus, the closure set with respect to F is:
 ID+={ID, NAME, LOCATION, CGPA}
 NAME+={NAME, CGPA}

6.4.4 Equivalent Sets of Functional Dependencies

Let F and G be two sets of functional dependencies for a relational
schema R. G is said to be covered by F if all the dependencies in G
can be inferred from F. In other words, F covers G if G+ is a subset
of F+ i.e. G+⊆ F+. On the other hand, F and G are said to

be equivalent if the following contains are satisfied:
• All the functional dependencies in F can be derived from func-

tional dependencies in G.
• All the functional dependencies in G can be derived from func-

tional dependencies in F.
In other words, if the closure of F is equal to the closure of G, i.e.,
if F+= G+, then F and G are said to be equivalent. Alternatively, we
can also say that F and G are equivalent if F covers G and G covers
F.

Example: A relation R (P, Q, R, S, T) is has two set of FDs F and
G specified as follows-
 F={P → Q, PQ → R, S → PR, S → T}
 G= {P → QR, S → PT}

Determine whether F covers G:
Step-1:

• (P)+ = { P, Q, R } // closure of left side
of P → QR using set G

• (S)+ = { P, Q, R, S, T } // closure of left side of
S → PT using set G

 Step-2:
• (P)+ = { P, Q, R } // closure of left side

of P → QR using set F

107 | P a g e

Space for learners: • (S)+ = { P, Q, R, S, T } // closure of left side of
S → PT using set F

From Step-1 and Step-2, we can conclude that F covers G i.e. F ⊇

G, as the FDs in F can determine all the attributes that are deter-
mined by the FDs in G.

Determining whether G covers F
Step-1:

• (P)+ = { P, Q, R } // closure of left side
of P → Q using set F

• (PQ)+ = { P, Q, R } // closure of left side of
PQ → R using set F

• (S)+ = { P, Q, R, S, T } // closure of left side of
S → PR and S → T using set F

Step-2:
• (P)+ = { P, Q, R } // closure of left side

of P → Q using set G
• (PQ)+ = { P, Q, R } // closure of left side of

PQ → R using set G
• (S)+ = { P, Q, R, S, T } // closure of left side of

S → PR and S → T using set G

From Step-1 and Step-2, we can conclude that G covers F i.e.
G ⊇F, as the FDs in G can determine all the attributes that are de-

termined by the FDs in F.Thus we can conclude that F=G.

6.4.5 Minimal Cover of Functional Dependencies

A set of FDs, Fmin issaid to be the minimal cover of another set of
functional dependency F if-

• Fmin is the minimal set of functional dependencies and
• Fmin is equivalent to F.

A set of functional dependency Fmin is said to be minimal if the fol-
lowing conditions are satisfied-

• Each functional dependency in the set has only one attribute
to the Right Hand Side (RHS)

108 | P a g e

Space for learners: • Any dependency in Fmin,say X→Z, can not be replaced by
some other functional dependency Y→Z, where Y ⊂ X.

• If we remove any dependency from Fmin, the resultant set will
no longer be equivalent to Fmin.

Algorithm 6.1:Finding minimal cover of a functional dependency
Step1: Identify the functional dependencies that have more than
one attribute to the RHS. Transform them into a series of functional
dependencies having only one attribute to the RHS.
Step2: Remove the redundant attributes on the left-hand side.
Step3: Eliminate the redundant functional dependencies.

Example:
Let’s consider the functional dependency F={P → R, PQ → R, R
→ SU, RS → U, TR → PQ, TU → R}
Step 1: F1={P→R, PQ→R, R→S, R→U, RS→U, TR→P, TR→
Q, TU→R}
Step 2: To find the redundant attributes, we need to first find the
closure of each attribute.

i. P+-=PRSU
ii. Q+ =Q
iii. R+=RSU
iv. S+=S
v. T+=T

We can see from (i) that P+ includes R. Thus Q is extraneous in
PQ→R and thus Q can be removed. So, this dependency can be
rewritten as P→R.
From (iii), we can see that R+ includes U, thus in RS→U, S is ex-
traneous. So, we can rewrite it as R→U.
Thus the new reduced set of functional dependencies can be written
as,

F2={P→R, R→S,R→U, TR→P, TR→Q, TU→R}
Step 3: The last step is to eliminate the redundant dependencies
Here, TU→R is redundant as R can be determined using P due to
the functional dependency P→R. Thus the final set of minimal
cover for F is

Fmin={P→R, R→S,R→U, TR→P, TR→Q}

109 | P a g e

Space for learners:

6.5 NORMALIZATION AND NORMAL FORMS

In DBMS normalization is used to minimize redundancy. As we
have already discussed in section 6.2.2, redundancy in relations
may lead to insert, delete, and modification anomalies. Normaliza-
tion helps in breaking down big relations into smaller relations and
ensures that data is stored logically with minimal redundancy.
Normal forms a relation reflects its degree of normalization. It
refers to the highest normal form condition that the relation
satisfies. The normal forms that will be discussed in this unit are-
first normal form (1NF), second normal form (2NF), third normal
form (3NF), Boyce- Codd normal form (BCNF), and fourth normal
form (4NF). In practice, the database designer has to normalize the
relations to the highest normal form possible (usually up to 3NF,
BCNF, or 4NF).

CHECKYOURPROGRESS-III
8. If a and B are two sets of functional dependencies such that A

covers B and B covers A, then A and B are said to be

_______.

9. If G is a set of functional dependencies, then its closure is de-

noted by ______ .

10. In a relation R, the functional dependencies A→BC and B→D

hold. The closure of the attribute A in that relation is ______.

11. State true or false

a. Two sets of functional dependencies F and G are said to be

equivalent if F+=G+.

b. F is the minimal cover of G. If we remove any functional

110 | P a g e

Space for learners: 6.5.1 Definition of Keys

• Super Key: For a relational schema R={A, B, C,….., J}, a super
key, S, is a set of attributes such that S⊆R and for each legal tu-

ple in R, S has a unique value.
• Key: A key, K is a minimal super key. This implies that if we

remove any attribute from K, then K will no longer hold the super
key property.

• Candidate Key: A relational schema sometimes may have more
than one key. In that case, each key is referred to as a candidate
key. The designer may assign any of the candidate keys as
the primary key. The other candidate keys are then referred to
as secondary keys.

• Prime and non-prime attributes: If an attribute is a member of a
candidate key, it is referred to as a prime attribute, otherwise as a
non-prime attribute.

6.5.2 First Normal Form

The first normal states that each attribute in a relation must have
atomic values. For a relation to be in1NF, each tuple in that relation
must have single values for each attribute. Thus, 1NF disallows
multivalued and composite attributes.

Let’s consider the relation shown in table 6.8(a). It is not in 1NF as
E_PHONE_NO is a multivalued attribute. We can convert it to
1NF by distributing the multiple values of phone number across the
rows and making E_ID and E_PHONE_NO a combined primary
key as shown in table 6.8 (b). By definition, each relation in a rela-
tional model by default is in 1NF.

Table 6.8(a): Example of a relation that is not in 1NF

E_ID E_NAME E_PHONE_NO

1 Ravi Sharma 912346795

2 Erica Swift 8123456745

3 Rahul Nath {6712387453, 6532478456}

4 Prabin Kumar 77345546734

111 | P a g e

Space for learners:

Table 6.8 (b): Normalized version of the relation in table 6.8(a)

E_ID E_PHONE_NO E_NAME

1 912346795 Ravi Sharma

2 8123456745 Erica Swift

3 6712387453 Rahul Nath

3 6532478456 Rahul Nath

4 77345546734 Prabin Kumar

6.5.3 Second Normal Form

The second normal form is based on full functional dependency. A
relation is in second normal form it is already in 1NF and all the
non-prime attributes in the relation are fully functionally dependent
on the prime key. Let's consider the following relation in table
6.9(a)-

Table 6.9(a): Example of a relation that is not in 2NF

S_ID COURSE_ID S_NAME COURSE_NAME GRADE

1 1 Ravi Java A+

1 2 Ravi Python B

2 1 Rahul Java A

2 2 Rahul Python A+

The above table stores the grade scored by the students in different
subjects. The primary key of the table is {S_ID, COURSE_ID}.
The following are some of the functional dependencies that hold in
the above relation-

i. {S_ID,COURSE_ID}→GRADE
ii. {S_ID}→S_NAME
iii. {COURSE_ID}→COURSE_NAME

112 | P a g e

Space for learners: The FD (i) is full functional dependency as GRADE is dependent
on the S_ID and the COURSE_ID. Neither S_ID nor COURSE_ID
alone can determine the GRADE. However, as we can see that the
FDs (ii) and (iii) are partial dependencies as S_NAME can be de-
termined by S_ID alone. Similarly, COURSE_NAME can be
uniquely identified by COURSE_ID only. Due to these partial de-
pendencies, the relation is not in 2NF.

A relation that is not in 2NF, can be converted to 2NF by breaking
it into multiple relations where the nonprime attributes are fully
dependent on the primary key. For example, the relation in table
6.9 (a) can be normalized to 2NF by breaking it down into Grade,
Student and Course tables as shown in tables 6.9(b)-6.9(d).

Table 6.9 (b): Grade table which is in 2NF

S_ID COURSE_ID GRADE

1 1 A+

1 2 B

2 1 A

2 2 A+

Table 6.9(c): Student table(2NF)

S_ID S_NAME

1 Ravi

2 Rahul

Table 6.9(d): Course table (2NF)

COURSE_ID COURSE_NAME

1 Java

2 Python

113 | P a g e

Space for learners: 6.5.4 Third Normal Form

The third normal form is based on transitive dependency. To be in
3NF, a relation must also be in 2NF, and no non-prime attribute
should be transitively dependent on the primary key. An attribute,
Z, in a relation is transitively dependent on the primary key X, if
the functional dependencies X→Y and Y→Z hold, where Y is nei-
ther a candidate key nor a subset of any key in that relation.
Consider the relation in table 6.10(a) that stores the information of
the students and the corresponding programs they are enrolled in.
The primary key of the table is S_ID.

Table 6.10(a): Example of a relation violating 3NF

S_ID S_NAME PROGRAM_NAME PROGRAM_DURATION

1 Ravi B. Tech 4

2 Rahul BCA 3

3 Arati BCOM 3

4 Arif MCA 2

Some of the functional dependencies that hold in the relation are-
i. S_ID→S_NAME
ii. S_ID→PROGRAM_NAME
iii. PROGRAM_NAME→PROGRAM_DURATION
iv. S_ID→PROGRAM_DURATION

We can see that the FD (iv) is a transitive dependency that can be
inferred from FDs (i) and (ii) using the IR3. However, PRO-
GRAM_NAME is not a candidate key in this relation neither it is a
subset of any key. Thus, it can be concluded that the relation is not
in 3NF as PROGRAM_NAME is transitively dependent on the
primary key S_ID via the non-prime attribute PROGRAM_NAME.
We can covert it to 3NF by breaking it into two relations as shown
in table 6.10(b) and 6.10(c).

114 | P a g e

Space for learners: Table 6.10(b): Student relation which is in 3NF

S_ID S_NAME PROGRAM_NAME

1 Ravi B. Tech

2 Rahul BCA

3 Arati BCOM

4 Arif MCA

Table 6.10(c): Program relation which is in 3NF

PROGRAM_NAME PROGRAM_DURATION

B. Tech 4

BCA 3

BCOM 3

MCA 2

6.5.5 Boyce Codd Normal Form (BCNF)

The Boyce codd normal form is a stricter version of 3NF. Original-
ly, it was proposed to simplify the definition of 3NF, however end-
ed up putting more constraints on the relation. Every relation to be
in BCNF must be in 3NF.
The general definition of 3NF states that- whenever a non-trivial
functional dependency X→Y holds then it must satisfy either of the
following conditions-

i. X is a super key in the relation.
ii. Y is a prime attribute.

In BCNF the condition (ii) is eliminated. This implies that a rela-
tion is in BCNF if, for each functional dependency X→Y, X is a
super key of R.

Example: To better understand the concept let's consider the rela-
tion in table 6.11(a).

115 | P a g e

Space for learners: Table 6.11(a): Example of a relation which is not in BCNF

S_ID COURSE INSTRUCTOR

101 Java Rupam

101 DBMS Priya

103 DBMS Trisha

104 Python Ashmita

105 Java Kalyan

The constraints in the above table are-
• A student can enrol in multiple courses
• For each course, an instructor is assigned to the student.
• A course can be thought by multiple instructors.

The primary key in this relation is {S_ID, COURSE}, as it unique-
ly determines the INSTRUCTOR. Another point to be noted is that
the course is dependent on the instructor as one instructor can teach
only one subject. Thus the functional dependencies are-

i. {S_ID, COURSE} →INSTRUCTOR

ii. INSTRUCTOR → COURSE

The table is in 3NF as both the FDs either the right-hand side is a
key or the left-hand side is a prime attribute. However, it is not in
BCNF as in the FD (ii) INSTRUCTOR is not a prime attribute. To
covert the relation to BCNF, we may decompose the relation into
two other relations as shown in table 6.11(b) and 6.11(c).

Table 6.11(b): Student_instructor table

S_ID INSTRUCTOR

101 Rupam

101 Priya

103 Trisha

104 Ashmita

105 Kalyan

116 | P a g e

Space for learners: Table 6.11(c): Instructor_course table

INSTRUCTOR COURSE

Rupam Java

Priya DBMS

Trisha DBMS

Ashmita Python

Kalyan Java

Consider another example. The relation in table 6.11(d) stores em-
ployee details- id, name, pan number, and age. The candidate keys
for this relation are- E_ID and PAN_NO. From these E_ID has
been chosen as the primary key. Following are some of the depend-
encies that exist in the relation-

iii. E_ID→ E_NAME
iv. E_ID→PAN_NO
v. PAN_NO→ AGE
vi. PAN_NO→E_ID

As we can see that in all the FDs the left-hand side is a candidate
key, so the relation is in BCNF.

Table 6.11(d): Example of a relation which is in BCNF

E_ID E_NAME PAN_NO AGE

1 Xavier Mavely ABCFX985B 48

2 Manish Pandey PQRET654X 34

3 Rakesh Sharma GFRTE4563B 54

4 Shilpi Molohtra FDREU004T 43

117 | P a g e

Space for learners:

6.6 MULTIVALUED DEPENDENCY AND FOURTH
NORMAL FORM

In section 6.3.1.3, we introduced the concept of multivalued de-
pendency. In this section, we will present an elaborate discussion
on multivalued attributes and the fourth normal form (4NF).

6.6.1 Formal Definition of Multivalued Dependency

Lets X and Y be two attributes in a legal relation and let t1 and t2
be any two legal tuples in that relation such that-

t1(X)=t2(X) .
The multivalued dependency X→→ Y holds in the relation, if there
exists another two tuples t3 and t4 with the following conditions-

t1(X)=t2(X)=t3(X)=t4(X)
t1(Y)=t3(Y)
t2(Y)=t4(Y)

Example: Consider the relation in table 6.12. We may observe that
the students Ravi and Rahul have interests in multiple indoor and
outdoor games. In the first four tuples, S_Name is the same, i.e,

CHECKYOURPROGRESS-IV

12. A legal relational schema by default is in _______ normal form.

13. If a relation is in 2NF, then non no-prime attribute can be

_______ dependent on the key.

14. For a relation R to be in BCNF, if the functional dependency A

→ B holds in R then A must be a _____.

15. In a relation, which is in 3NF, no non-prime attribute is

________ dependent on the primary key.

16. State true or false

a. BCNF is stricter than 3NF.

b. Normalization is a tool to minimize NULL values.

118 | P a g e

Space for learners: Ravi. As the tuple (Ravi, Badminton, Cricket) and (Ravi, Table
Tennis, Football) exist in the relation, another two tuples (Ravi,
Badminton, Football) and (Ravi, Table Tennis, Cricket) also exist
in the same relation. Sam can be observed from the last four tuples
as well. Thus, we can say that-

S_Name→→ IndoorGame
S_Name→→ OutdoorGame

Table 6.12: Example of multivalued dependency

S_Name IndoorGame OutdoorGame

Ravi Badminton Cricket

Ravi Table Tennis Cricket

Ravi Badminton Football

Ravi Table Tennis Football

Rahul Chess Cricket

Rahul Volleyball Football

Rahul Chess Football

Rahul Volleyball Cricket

6.6.2 Fourth Normal Form

The definition of the fourth normal form is based on multivalued
dependency. For a relation to be in 4NF, it must be in BCNF and
should not have any multivalued dependency. The relation in table
6.12 is in BCNF but not in 4NF as it contains multivalued depend-
encies. To transform the said relation into 4NF, we may decompose
it into tables 6.13(a) and 6.13(b)

119 | P a g e

Space for learners:

Table 6.13(a): Student_Indoor Games relation

S_Name IndoorGame

Ravi Badminton

Ravi Table Tennis

Rahul Chess

Rahul Volleyball

Table 6.13(b): Student_Outdoor Games relation

S_Name OutdoorGame

Ravi Cricket

Rahul Cricket

Ravi Football

Rahul Football

Both the relations in table 6.13(a) and 6.13(b) are in 4 NF as there
is no multivalued dependency.

6.7 RELATIONAL DECOMPOSITION AND ITS
PROPERTIES

In the earlier sections, we have discussed the normal forms- 1NF,
2NF, 3NF, BCNF, and 4NF. In all the cases we have seen a relation
can be upgraded to a higher normal form by decomposing it into
multiple relations. Decomposition helps in removing redundancies
and inconsistencies.
While decomposing a relational schema into multiple relational
schemas one must make sure that the decomposition preserves all
the original attributes. If a relational schema, R, is decomposed into
multiple relations D={R1, R2, R3,……, Rn}, then each attribute in
R must appear in at least one relation Ri in D. This property is
called the attribute preserving property of decomposition. Another
additional aim of decomposition is that each relation Ri in D must

120 | P a g e

Space for learners: be at least in either 3NF or BCNF. Unfortunately, these two proper-
ties alone don't guarantee a good database design. In the following
sections, we discuss some additional criteria that must hold in a de-
composition.

6.7.1 Dependency Preservation Property of a Decom-
position

Let's consider the decomposition of the relational schema R into D
as discussed above. The dependency preserving property of a de-
composition states that- every functional dependency X→Y speci-
fied in R, must appear either directly in one of the relations Ri ∈ D

or can be inferred from other dependencies specified in some rela-
tion Ri ∈ D. Let F be the set of FDs specified in R. Let F1, F2…

Fn is the set of functional dependencies specified in R1, R2…. Ri
respectively. The decomposition D is said to be dependency pre-
serving if-

(F1∪ F2…∪Fn)+=F+

Example: Let’s consider a relation R (W, X, Y, Z). The specified
set of functional dependencies for this relation is F= {WX → Y, Y
→ Z, Z → W}. R is decomposed into two relations - R1(W, X, Y)
and R2(Y, Z). Let F1 and F2 be the set of functional dependencies
for R1 and R2 respectively.First, we will find the closure of F1. To
do so, we will consider the combinations- W, X, Y, WX, XY, and
XY.

W+ = { W } // Trivial
X+ = { X } // Trivial
Y+= {Y, W, Z} = {Y, W} [As Z is not in R1, it has
been removed from the closure]
Y→ W [Removing Y from right side
as it is trivial attribute]
WX+ = {W, X, Y, Z} [As Z is not in R1, it has
been removed from the closure]
 = {W, X, Y}

121 | P a g e

Space for learners: WX → Y [Removing WX from right-
side as these are trivial attributes]
XY+ = {X, Y, Z, W}
 = {W, X, Y}
XY → W [Removing XY from right
side as these are trivial attributes]
WY+ = {W, Y, Z}
WY → Z [Removing WY from right
side as these are trivial attributes]

Thus, F1 ={Y→ W, WX → Y, XY → W}
Similarly, F2= { Y→ Z }
In the original relation R,

F={ WX → Y, Y → Z, Z → W}
WX → Y is present in F1.
Y → Z is present in F2.

But, Z → W is not preserved.
F1 U F2 is a subset of F. So, the given decomposition is not de-
pendency preserving.

6.7.2 Lossless (Non-Additive) Join Property of a De-
composition

Another important property that a decomposition should satisfy is
the lossless or non-additive join property. This ensures that if we
reconstruct the relation R by performing natural join (*) on R1, R2
… and Rn, then it should not produce any spurious tuples. To put it
in another way, the decomposition is -

• lossy if R1*R2*…..*Rn ⊃R

• Lossless if R1*R2*…..*Rn = R
The problem of spurious tuples has already been discussed in sec-
tion 6.2.4.
To illustrate this concept lets consider the following relational
schema in table 6.14(a).

122 | P a g e

Space for learners: Table 6.14(a): Employee_Department relation

E_ID E_NAME E_AGE DEPT_ID DEPT_NAME

1 Xavier 42 1 Sales

2 Pallavi 34 1 Sales

3 Arun 42 2 Marketing

4 Susane 28 3 HR

If we decompose this relation into two smaller schemas R1(E_ID,
E_NAME, E_AGE, DEPT_ID) and R2(DEPT_ID, D_NAME),
then following tables 6.14(b) and 6.14(c) will be the result of the
decomposition.

Table 6.14(b): Decomposition of Employee_Department relation to
relation R1

E_ID E_NAME E_AGE DEPT_ID

1 Xavier 42 1

2 Pallavi 34 1

3 Arun 45 2

4 Susane 28 3

Table 6.14(c): Decomposition of Employee_Department relation

to relation R2

DEPT_ID DEPT_NAME

1 Sales

2 Marketing

3 HR

If we perform natural join over R1 and R2 then we will get back
exactly the tuples present in the relation R. Neither will any extra
tuple be generated nor will there be any missing tuple. Thus this
decomposition is lossless.

123 | P a g e

Space for learners: However, if the same relation R is decomposed into two other rela-
tions- R3(E_ID, E_NAME, E_AGE) and R4(DEPT_ID, D_NAME,
E_AGE), then this would result in the following tables 6.14(d) and
6.14(e).

Table 6.14(d): Decomposition of Employee_Department relation
to relation R3

E_ID E_NAME E_AGE

1 Xavier 42

2 Pallavi 34

3 Arun 42

4 Susane 28

Table 6.14(e): Decomposition of Employee_Department relation

to relation R4
DEPT_ID E_AGE DEPT_NAME

1 42 Sales

1 34 Sales

2 42 Marketing

3 28 HR

The natural join of R3 and R4 (R3*R4) would result in table
6.14(f).

Table 6.14(f): Natural join of R3 and R4

E_ID E_NAME E_AGE DEPT_ID DEPT_NAME

1 Xavier 42 1 Sales

1 Xavier 42 2 Marketing

2 Pallavi 34 1 Sales

3 Arun 42 2 Marketing

4 Susane 28 3 HR

124 | P a g e

Space for learners: As we can see that the natural join of R3 and R4 results in extra
information that does not exist in the original relation R. Thus, the
decomposition of R into R3 and R4 is a lossy join.

6.8 ALGORITHMS FOR RELATIONAL DATA-
BASE SCHEMA

In this section, we present some algorithms related to the decompo-
sition of a relational schema.

6.8.1 Relational Synthesis

Algorithm 6.2: Relational Synthesis into 3NF with Dependency
Preservation

Input: A universal relation R with a set of a functional dependency
F

Step 1: Find the minimal cover G of F.

Step 2: For each left-hand side of X of a functional dependency in
G, construct a relational schema with attributes
{X∪A1∪A2….∪Ak} with X as key, where X→A1, X→A2…

X→Ak.

CHECKYOURPROGRESS-V

17. For multivalued dependency to occur in a relation, it must

have at least ____ attributes.

18. A decomposition is loss-less if natural join of the relations in

the decomposition does not produce any _______ tuple.

19. 4NF is based on ______ dependency.

20. _________ states that each attribute of the original relation

must appear in at least one of the relation in its’s decomposi-

tion.

125 | P a g e

Space for learners: Step3: Place the remaining attributes (which could not be placed in
any relation in step2) in single relation.

Claim: All the relational schemas created by algorithm 6.2 are in
3NF.

6.8.2 Testing Lossless Join Property

Algorithm 6.3: Testing for lossless or non-additive join property
Input:A universal relation R, R’s decomposition D = {R1, R2, . . .,
Rm}, and a set of functional dependencies F.
Step1: Create an initial matrix S with dimension ‘m’ rows and ’n’
columns, where ‘m’ is the number of relations in D and ’n’ is the
number of attributes in R.
Step2: Set each S(i,j) in the matrix to bij, where bij is a distinct
symbol associated with S(i,j).
Step 3: For each row i in S:
 For each column j in S:
 If Ri contains attribute aj then
 set S(i,j)=aj
Step 4: Repeat the following loop until S remains unchanged after
a complete loop execution: For each A→B in F:
 For each row i in S, having the same symbol in the
column corresponding to attribute for A:

Set the symbols in each column correspond-
ing the attribute B to be the same. If there
exists an ‘a’ symbol for any of these col-
umns, set all other columns to symbols ‘a’,
else chose any of the ‘b’ symbols that appear
for any of these columns and update the
symbols in the rest of the columns in all such
rows to ‘b’.

Step5: The decomposition has lossless join property only if there
exists a row in S that contains only ‘a' symbol. Otherwise, the de-
composition is lossy.

126 | P a g e

Space for learners: Example: Lets consider a relation R = {E_ID, E_NAME, P_NO,
P_NAME, P_LOC, HOURS} with the following set of functional
dependency-

F = {E_ID → E_NAME, P_NO → {P_NAME, P_LOC},
{E_ID, P_NO} → HOURS}

Let D = {R1, R2, R3} be the decomposition the relation,
where,

R1 = {E_ID, E_NAME}

R2 = {P_NO, P_NAME, P_LOC}

R3 = {E_ID, P_NO, HOURS}

Application of steps 1,2 and 3 results in the matrix in table 6.15(a).

Table 6.15(a): Example for testing loss-less join property

 E_ID E_NAME P_NO P_NAME P_LOC HOURS

R1 a1 a2 b13 b14 b15 b16

R2 b21 b22 a3 a4 a5 b26

R3 a1 b32 a3 b34 b35 a6

Now, for the functional dependency E_ID → E_NAME, the E_ID
attribute in R1 and R3 have the same symbol. So, the symbol for
the E_NAME attribute in R3 will be updated to a2 as R1 has a2 for
E_NAME. This results in the matrix in table 6.15(b).

Table 6.15(b): Example for testing loss-less join property

 E_ID E_NAME P_NO P_NAME P_LOC HOURS

R1 a1 a2 b13 b14 b15 b16

R2 b21 b22 a3 a4 a5 b26

R3 a1 a2 a3 b34 b35 a6

Similarly, for the functional dependency P_NO → {P_NAME,
P_LOC}, in the values for attributes, P_NAME and P_LOC are
updated to a4 and a5 respectively as R2 and R3 have the same
symbol for P_NO. Thus the updated matrix will be as shown in ta-
ble 6.15(c).

127 | P a g e

Space for learners: Table 6.15(c): Example for testing loss-less join property

 E_ID E_NAME P_NO P_NAME P_LOC HOURS

R1 a1 a2 b13 b14 b15 b16

R2 b21 b22 a3 a4 a5 b26

R3 a1 a2 a3 a4 a5 a6

We can see observe from the above matrix that the row R3 has all
‘a’ symbols. Thus, the decomposition D has lossless join property.

6.8.3 Testing Lossless Join Propertyin Binary Decom-
position (Property LJ1)

Breaking down a relation into two relations is called binary decom-
position. The following property helps to test for lossless join prop-
erty in binary decomposition-
• Property LJ1:The binary decomposition D = {R1, R2} of a rela-

tion R has the lossless join property with respect to a set of func-
tional dependencies F on R if and only if either

• ((R1 ∩ R2) → (R1- R2)) is in F+, or
• ((R1 ∩ R2) → (R2 - R1)) is in F+.

6.8.4 Successive Lossless Join Decomposition (PROP-
ERTY LJ2)

Let a decomposition D={R1, R2…. Rm} of a relation R, concern-
ing a set of functional dependency F, has lossless join property.
Now, let’s divide a relation Ri in D to smaller relations Q={Q1,

Q2…Qp} in such a way that Q also has lossless join property for F.
If we now replace Ri by Q in D, then property LJ2 states that a set
of decomposition D1={R1, R2,…Ri-1,Q1,Q2,…Qp, …, Rm}) will
also have lossless join property.

128 | P a g e

Space for learners: 6.8.5 Non-additive Join Decomposition into BCNF
Schemas

Algorithm 6.4: Relational decomposition into BCNF relations with
lossless join property

Input: A universal relation R with F as set of specified functional
dependencies .

Step1: Set D={R}

Step2: For each relation Q in D, which is not in BCNF:

 Identify the functional dependency A→B, that vio-
lates the BCNF.

 Replace Q in D by two relations (Q − B) and (A ∪

B)

Step3: Stop

Explanation: Since (Q − B) ∩ (A ∪ B) → (A ∪ B) − (Q − B)

is equivalent to A → B ∈ F +. By virtue of property LJ1, the de-

composition is lossless.

Example:R = {X, Y, Z} F = {XY → Z, Z → Y}
Let D= {{X, Y, Z}};
{X, Y, Z} in D is not in BCNF due to the functional dependency Z
→ Y.
Thus, decompose {X, Y, Z} to ({X, Y, Z} − Y) and (X ∪ Y), i.e.

to {X, Z} and {X,Y}.
Replace {X, Y, Z} in D by {X, Z} and {X,Y}.
D={{X, Z},{X,Y}}
{X, Z} and {X,Y} both are now in BCNF.

6.8.6 Relational synthesis algorithm into 3NF with
dpendency preservation and lossless join
property

129 | P a g e

Space for learners: Algorithm 6.5: Relational synthesis algorithm into 3NF with de-
pendency preservation and lossless join property
Input: A universal relation R and a set of FDs F
Step 1: Compute a minimal cover G for F
Step 2: Construct a relational schema in D with attributes
{X∪A1∪A2….∪Ak} with X as key, for each left-hand side of X

of a functional dependency in G. The functional dependencies:
X→A1, X→A2… X→Ak, should be the only dependencies in G
with X on the left-hand side.
Step 3: If there is no relation in D that contains a key of R, then
create one with the attributes of a key in R.

Example: R = {A, B, C, D, E, H} is a relation with functional de-
pendencies F = {AE → BC, B → AD, CD → E, E → CD, A →
E}.
Step 1: The minimal cover of F is G = {A → B, A → E, B → A,
CD → E, E → CD} [Derived using the algorithm 6.1]
Step 2: Based on the functional dependencies in G the R will be
decomposed into D={R1, R2, R3, R4, R5}, with the set of func-
tional dependencies F1, F2, F3, F4 and F5 respectively, where

• R1 = {A, B, E} with F1 = {A → B, A → E}
• R2 = {B, A} with F2 = {B → A}
• R3 = {C, D, E} with F3 = {CD → E}
• R4 = {E, C, D} with F4 = {E → CD}

Combine R3 and R4 into one relation schema R5 = {C, D, E} and
F5 = {CD → E, E → CD}. So, D={R1, R2, R5}
Step 3: In R, AH, and BH are candidate keys. As we can see that
neither of these appears as key in any of the relations in D. So, we
create another relational schema R6 = {A, H} and F = {}
Now, all the relations in D = {R1, R2, R5, R6} are in 3NF.

6.8.7 Finding a key K for relation schema R based on a
set F of functional dependencies

Algorithm 6.6: Finding a Key for a relation schema based on a set
of functional dependencies.

130 | P a g e

Space for learners: Input: A relational schema R(A1, A2,…, Am)
Step 1: Set the key K={A1, A2,…, Am}
Step 2:For each attribute Ai in K:
 Determine (K-Ai)+ with respect to F. If (K-Ai)+ contains all
the attributes in R, then set K=K-{Ai}
Example: Lets consider the relation R={A, B, C, D} with F={A →
BCD, C → A}

• A+=ABCD
• B+=B
• C+=ABCD
• D+=D

So, the candidate keys are A and C as the closure of A and C con-
tains all the attributes of R.

6.8.8 Relational decomposition into 4NF relations with
lossless join property

Whenever a relational schema R is decomposed into D={R1, R2}
based on multivalued dependency A→→B that holds in R, then
property LJ1’ presents the necessary and sufficient condition to

check whether the decomposition is lossless or not.

• PROPERTY LJ1’
■ The decomposition D={R1, R2} of R, is a lossless (non-

additive) join decomposition with respect to a set F of
functional and multivalued dependencies if and only if

■ (R
1

∩ R
2
) →→ (R

1
 - R

2
)

■ or by symmetry, if and only if
■ (R

1
 ∩ R

2
) →→ (R

2
 - R

1
)).

Algorithm 6.7: Decomposition of a relation into 4NF relations with
lossless join property
Input:A universal relation R and a set of functional and multi-
valued dependencies F.
Step 1: Set D := { R };
Step 2:While there exists a relation Ri in D that is not in 4NF do {

131 | P a g e

Space for learners: choose a relation schema Ri in D that is not in 4NF;
 find a nontrivial MVD A →→ B in Ri that violates 4NF;
 replace Ri in D by two relation schemas (Ri - B) and (A υ
B);
 };

6.9 SUMMING UP

 A relational schema can be defined as a set of relational ta-
bles and associated items related to each other.

 Following are the four informal design guidelines-
o The semantics of the Relation
o Minimizing redundancy
o Reduction of the null values in tuples.
o Discarding the possibility of generating spurious tu-

ples.
 Redundancy is the repetition of the same fact again and

again across multiples places in the same database.
 Apart from wastage of storage space, redundancy leads to

another serious issue of update anomalies. Insertion, dele-
tion, and modification anomalies are the three categories of
update anomalies.

 Spurious tuples represent wrong or invalid information and
thus leads to the inconsistency of the database.

 In Database Management System (DBMS), functional de-
pendency (FD) refers to the relationship between two at-
tributes in a table or relation.

 A functional dependency X→Y is said to be trivial if Y is a
subset of X.

 If X→Y, and Y is not a subset of X, then the functional de-
pendency is said to be non-trivial.

 If there exists a functional dependency of the form X→ {Y,
Z} such that there is no dependency between Y and Z, then
the FD is said to be a multivalued functional dependency.

 In a relation, if the functional dependencies X→Y and Y→
Z exist, then the functional dependency X→Z also exists.

132 | P a g e

Space for learners: A functional dependency X→Y is said to be a full function-
al dependency if removal of any attribute from X means the
functional dependency doesn't exist any longer.

 The set of inference rules were first introduced by William
W. Armstrong in 1974. These rules are thus also called
Armstrong’s axioms. These axioms define a set of rules
which, if applied repeatedly, generate all the other function-
al dependencies that can be inferred from a set of functional
dependencies originally specified by the designer.

 For any relational schema R, if the set of functional de-
pendencies is specified as F, then the set of all the function-
al dependencies that can be inferred from F, is called the
closure of F. The closure of F is denoted as F+.

 Let F and G be two sets of functional dependencies for a re-
lational schema R. G is said to be covered by F if all the de-
pendencies in G can be inferred from F.

 Normalization helps in breaking down big relations into
smaller relations and ensures that data is stored logically
with minimal redundancy.

 The first normal states that each attribute in a relation must
have atomic values.

 A relation is in second normal form it is already in 1NF and
all the non-prime attributes in the relation are fully func-
tionally dependent on the prime key.

 To be in 3NF, a relation must also be in 2NF, and no non-
prime attribute should be transitively dependent on the pri-
mary key.

 For a relation to be in 4NF, it must be in BCNF and should
not have any multivalued dependency.

6.10 ANSWERS TO CHECK YOUR PROGRESS

1. Insertion, deletion and modification
2. Spurious
3.

3.a.False

133 | P a g e

Space for learners: 3.b.True
4. Trivial
5. Transitivity
6. A→BC
7.

7.a. False
7.b.True
7.c.True

8. Equivalent
9. G+
10. {A, B, C, D}
11.

11.a.True
11.b.False

12. 1NF
13. Partially
14. Superkey
15. Transitively
16.

16.a. True
16.b.False

17. 3
18. Spurious
19. Multivalued
20. Attribute preservation property

6.11POSSIBLE QUESTIONS

1. Define closure of a set of functional dependencies.
2. Write down the properties LJ1 and LJ2.
3. State when two sets of functional dependencies are considered

to be equivalent.
4. What are spurious tuples? Why are they considered as bad?
5. What are the problems with null values in a relation?
6. State the condition a relation must satisfy to be in 2NF.
7. List the conditions a binary decomposition must satisfy to be

loss-less.

134 | P a g e

Space for learners: 8. Write the condition for a relation to be in BCNF.
9. Discuss the four informal guidelines for designing a good rela-

tion.
10. Discuss the problem of update anomalies in a relation with ap-

propriate examples.
11. What is normalization? Why is it important? Discuss, with an

example, how a relation which is not in 1NF can be converted
to 1NF.

12. Define functional dependency. Briefly discuss the types of
functional dependencies. Give one example each.

13. Write down the Armstrong’s axioms for functional dependency.
Why are these rules important?

14. Discuss the 1st, 2nd and 3rd normal forms with suitable exam-
ples.

15. What is multivalued functional dependency? Discuss the fourth
normal forms with an example.

16. Discuss the attribute preservation and dependency preservation
properties of a relational decomposition. Write the algorithm to
decompose a relation to smaller relations where each smaller
relation is in 3NF and dependency is also preserved.

17. What is loss-less join property of a relation? Write an algorithm
to test the loss-less join property of a decomposition.

6.12REFERENCES AND SUGGESTED READINGS

• Ramez, Elmasri. Fundamentals of Database Systems.
Pearson Education India, 2020.

• Silberschatz, Abraham, Henry F. Korth, and Shashank
Sudarshan. Database system concepts. McGraw-Hill,
1997.

