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Space for learners: 1.1 INTRODUCTION 

In this unit, you will learn about a useful way of comparing the 
remainder of two integers, called congruence. You will also learn 
various properties of congruence with their proof like Addition 
rule of congruence, Multiplication rule of congruence, Power rule 
of congruence and Cancellation rule of congruence. You will also 
learn how Power rule can be used to check the divisibility of 
certain large numbers. Again, you will learn the concept of Least 
Residues and Modular Arithmetic with some examples. 

In the middle part, you will learn a very familiar concept of 
Mathematics, Permutation, i.e., how a number of objects can be 
arranged in a definite order taking some or all at a time. You will 
learn Factorial Notation with some examples, which is mostly 
used in Permutation as well as Combination. Again, the concept of 
Fundamental principle of Counting is explained here with some 
examples. We can also learn how we arrange n different objects 
taking r at a time if some objects repeats, i.e., Permutation with 
repetition with some examples. You will also learn how n objects 
can be arranged if the objects are distinct objects. Again, you will 
learn the arrangement of n distinct objects around a fix circle 
where Clockwise and Anticlockwise orders are different as well as 
same with some examples. Again, you can see the how certain 
restrictions can be imposed on Permutation, i.e., Restricted 
Permutation and some examples of it. 

In the latter part, you will learn another very familiar concept of 
Mathematics, called Combination, i.e., the selection of all or part 
of a set of objects without regard to the order in which objects are 
selected with various examples. You will again learn the concept 
of Restricted Combination, i.e., how Combination can be made if 
there are certain restriction. 

1.2 UNIT OBJECTIVES 

After going through this unit, you will be able to: 

 Understand the concept of Congruence 

 Know the Properties of Congruence 

 Know the concept of Least Residues 
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Space for learners:  Know Modular Arithmetic 

 Define Permutation 

 Understand the Concept of Factorial Notation 

 Know the fundamental concept of Counting 

 Learn Permutation with repetition 

 Learn Permutation of n objects if the objects are distinct 

 Learn the concept of Circular Permutation 

 Learn the concept of Restricted Permutation 

 Learn the concept of Combination 

 Learn the concept of Restricted Combination 

1.3 CONGRUENCE 

Definition1: Let n be a positive integer. Two integers a and b are 
congruent modulo n if they each have the same remainder on 
division by n. If a and b are congruent modulo n, then it is written 
symbolically as 

 a ≡ b (mod n). 

For example, 19 and 12 are congruent modulo 7; that is, 

19 ≡ 12 (mod 7) 

 because 19 and 12 each have remainder 5 on division by 7. 

Also, −8 and 10 are congruent modulo 6; that is, 

 −8 ≡ 10 (mod 6),  

because −8 and 10 each have remainder 4 on division by 6.   

Definition2: Let n be a fixed integer. Two integers a and b are 
said to be congruent modulo n if n│a-b i.e., if a-b is divisible by n.  

For example, 3 and 24 are said to be congruent modulo 7, because 
(3-24) = -21, which is divisible by 7. 

Therefore, 3 ≡ 24 (mod 7). 

Again, if a and b are not congruent modulo n, then the difference 
between a and b is not an integer multiple of n; that is, a − b is not 
divisible by n. 
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Space for learners: For example, 4 and 6 are not congruent modulo 5, because 4-6=-2, 
which is not divisible by 5. 

Illustrative Example: 

List all integers x in the range 1 < x < 100 that satisfy x ≡ 3(mod 
7). 

Solution: 

Given,  

x ≡ 3(mod 7) 

i.e.           7│ x-3 

i.e.   x-3= 7k, k ∈  Z 

i.e.        x=3+7k ……………… (1) 

 Therefore,  

1 <3+7k <100 

-2 < 7k< 97. 

From this we obtain the values of k as,  

0,1,2,3,4,5,6,7,8,9,10,11,12,13. 

Now, putting the values of k in equation (1), we get the values of  

x=3,10,17,24,31,38,45,52,57,66,73,80,87 and 94. 

1.4   PROPERTIES OF CONGRUENCE 

1.a ≡ a (mod n)  

2. if a ≡ b (mod n) then b ≡ a (mod n)  

3. if a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n) 

4. Addition Law of Congruence 

If a ≡ b (mod n) and c ≡ d (mod n), then a + c ≡ b + d (mod n) 

5. Multiplication Law of Congruence 

If a ≡ b (mod n) and c ≡ d (mod n), then ac ≡ bd (mod n). 

6.  For any integers a, b, and c 

 (a) If a ≡ b (mod n), then a + c ≡ b + c (mod n). 

 (b) If a ≡ b (mod n), then ca ≡ cb (mod n). 
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Space for learners: Proof (1): For any integer a and any fixed positive integer n, 

We have a-a=0, which is divisible by n 

  Therefore, n│(a-a), since 0 is divisible by any integer. 

  Therefore a ≡ a mod n. 

  For example, 5 ≡ 5(mod 7), because 5-5=0 is divisible by 7. 

Proof (2): Let, a ≡ b (mod n), then, n|(a − b). 

Therefore, n|(−1)(a – b) 

Or, n|(b − a).  

 Therefore, b ≡ a (mod n). 

So, if a ≡ b (mod n) then b ≡ a (mod n). 

For example, if 3≡ 18(mod 5), then 18  ≡ 3(mod 5), because 3-
18=-15 and 18-3=15,both -15 and 15 are divisible by 5. 

Proof (3): Let a ≡ b (mod n). 

Then,  

n|(a−b)………………………………………………….(1) 

Again, 

 Let, b ≡ c (mod n). 

 Then,  

n|(b−c)…………………………………………………(2) 

From equation (1) & (2), we get,   

n|(a − b + b− c)  [by Linear Combination Theorem] 

            or n|(a − c). 

 Thus, a ≡ c mod n. 

Therefore, if a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n) 

For example, we consider  

           7 ≡ 12 (mod 5)  [Because 7-12=-5,which is divisible by 5] 

and   12 ≡ 22(mod 5)  [Because 12-22=-10,which is 
divisible by 5] 

Now, clearly we can say that 

          7 ≡ 22 (mod 5)   [Because 7-22=-15,Which is divisible by 5] 
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Space for learners: Proof (4):Let, a ≡ b (mod n). 

Then,  

a-b is divisible by n ……………………(1) 

And, c ≡ d (mod n). 

Then, c − d are divisible by n …………………(2) 

From equation (1) & (2) we get, 

      (a − b) + (c − d) is divisible by n. 

But, (a − b) + (c − d) = (a + c) − (b + d). 

So, (a + c) − (b + d) is divisible by n.  

Therefore, a + c ≡ b + d (mod n). 

So, if a ≡ b (mod n) and c ≡ d (mod n), then a + c ≡ b + d (mod n). 

For example, 

We know that, 

        19 ≡ 1 (mod 18) and 37 ≡ 1 (mod 18), 

 so, by the addition rule of congruence, 

         19 + 37 ≡ 1 + 1 ≡ 2 (mod 18). 

    Or 56 ≡ 2 (mod18). 

Proof (5): Let, a≡ b(mod n). 

Then, a-b is divisible by n 

 Then, (a-b)c is also divisible by n……………………(1) 

And c≡ d (mod n).  

Then, c-d is divisible by n 

Then, (c-d)b is also divisible by n………………..… .(2) 

From equation (1) & (2), 

                (a-b)c+(c-d)b is also divisible by n 

But, (a − b)c + (c − d)b = ac – bd. 

So, ac − bd is divisible by n. 

Hence, ac ≡ bd (mod n). 

Hence, If a ≡ b (mod n) and c ≡ d (mod n), then ac ≡ bd (mod n). 
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Space for learners: For Example, 

           17 ≡ −2 (mod 19) 

    and 14 ≡ −5 (mod 19). 

 Therefore, 

           17 × 14 ≡ (−2) × (−5) ≡ 10 (mod 19) [By Multiplication 
rule of Congruence] 

Or ,  238≡10 (mod19). 

1.4.1 Power Rule for Congruences 

If a ≡ b (mod n), and m is a positive integer, then a m ≡ b m (mod 
n). 

For example, suppose you wish to find the least 
residue(remainder) of 195 modulo 9. Since 19 ≡ 1 (mod 9), it 
follows that 195 ≡ 1 5 ≡ 1 (mod 9), so the least residue is 1. This is 
a particularly simple application of the power rule. 

1.4.2 Cancellation Rule of Congruence 

If, ca≡ cb (mod n) then a ≡ b (mod n/d) where d = gcd(c,n) 

For example, 

Consider, 33 ≡ 15 (mod 9) 

Now, 3*11≡3*5(mod 9) 

11 ≡ 5 (mod 3),by cancellation law of congruence.[since, gcd of 3 
and 9 is 3] 

Again, by same law we can write -35≡ 45(mod 8), as -7≡ 9(mod 
8) 

1.5  LEAST RESIDUES 

The least residue of a modulo n is the remainder r that you obtain 
when you divide a by n. The integer r is one of the numbers 0, 1, . 
. . , n − 1, and it satisfies a ≡ r (mod n). 

 For example, the least residue of −33 modulo 7 is 2 

 Because, −33 = 7 × (−5) + 2  
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Space for learners: 1.6   MODULAR ARITHMETIC 

Modular arithmetic is the application of the usual arithmetic 
operations – namely addition, subtraction, multiplication and 
division – for congruences. Addition, subtraction and 
multiplication are often simpler to carry out in modular arithmetic 
than they are normally, because you can use congruences to 
reduce large numbers to small numbers.  

Examples:  

1. Find the least residue of 67+68 modulo 6 

2. Find the least residue of 17*14 modulo 19 

Solution1:  We know that, 

67≡1(mod 6) [Because 67-1=66,is divisible by 6]………(1) 

 68≡2(mod 6) [Because 68-2=66,is divisible by6]………(2) 

From equation (1) & (2), 

 67+68≡ 1+2 (mod 6) [By Addition rule of congruence] 

Or      135≡ 3(mod 6)  [135-3=132,is divisible by 6]. 

Therefore, the least residue of 67+68 modulo 6 is 3 

Solution2: We know that, 

17≡−2(mod 19) [Because 17-(-2)=19,is divisible by 19]………(1) 

14≡−5(mod 19) [Because 14-(-5)=19,is divisible by 19]………(2) 

From equation (1) & (2), 

17*14≡(-2)*(-5) ≡10(mod 19) [By Multiplication Law of 
congruence]. 

Therefore, the least residue of 17*14 modulo 19 is 10. 

1.7 APPLICATION OF POWER LAW OF 

CONGRUENCE 

Example1: Find the remainder when 25 100 + 11 5 00 is divided by 
3. 

Solution 1:  

We know that, 25 ≡ 1 (mod 3). 

Therefore, 25100≡ 1100(mod 3) [By Power rule of Congruence] 

Therefore, 25100 ≡ 1 (mod 3)……………………….(1) 

Again, 11 ≡ -1 (mod 3). 
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Space for learners: Therefore, 11500 ≡ (-1)500(mod 3) [By Power rule of Congruence] 

 Therefore,11500 ≡ 1 (mod 3)………………………(2) 

  From equation (1) & (2), 

             25100 +11500 ≡2 (mod 3) [By addition law of Congruence] 

Therefore, the remainder is 2. 

Example 2: Show that 3 1000 + 3 is divisible by 28. 

Solution 2: We know that, 3 3 = 27 ≡ -1 (mod 28). 

Therefore, (33)333 ≡ (-1)333 (mod 28)    [By power rule of 
Congruence] 

Therefore, 3999 ≡ -1 (mod 28). 

                  31000=3999.3 ≡ -1.3 (mod 28)   [ By Properties 6(b)] 

Therefore,  31000 ≡ -3( mod 28 ) ……………………….(1) 

 Again, 3≡3( mod 28 )  …………………………………(2) 

From equation (1) & (2), 

31000 + 3≡ -3+3  ≡ 0( mod 28 )  [By addition rule of Congruence] 

Therefore, 31000 + 3 ≡ 0 (mod 28). 

So, the remainder, when we divide 31000+3 by 28, is 0. 

Hence, we can say that  31000 +3 is divisible by 28. 

 
  

 
 
 
 
 
 

 
 
 

 

 

 

 

CHECK YOUR PROGRESS-I 

1. Which of the following congruences are true? 
(a) 11 ≡ 26 (mod 5)                   (b) 9 ≡ −9 (mod 5) 
(c) 28 ≡ 0 (mod 7)                     (d) −4 ≡ −18 (mod 7) 
(e) −8 ≡ 5 (mod 13)                    (f) 38 ≡ 0 (mod 13 

(2).  Determine the integers in between 50 and 100 which are 
congruent  to 1 modulo 4. 

(3).   List all integers x in the range 1 ≤ x ≤ 100 that satisfy x ≡ 7         
( mod 17 ). 

(4). Find the least residues of the following integers modulo 10. 
(a) 17 (b) 50 (c) 6 (d) −1 (e) −38 

(5). Find the least residues of the following integers modulo 7. 
(a) 3 × 6           (b) 22 × 29           (c) 51 × 74 

(6).Show that 220-1 is divisible by 41 

(7). What is the remainder when 3 5555 is divided by 80? 
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Space for learners: 1.8 PERMUTATION 

A permutation is an arrangement in a definite order of a number of 
objects taken some or all at a time. 

The number of permutations of n different objects taken r at a 
time, where 0 < r ≤ n and the objects do not repeat is n (n – 1) (n – 
2) . . . (n – r + 1), which is denoted by n ProrP(n,r) 

 npr= �!

(���)!
where 0 ≤ r ≤ n 

1.8.1  Factorial Representation 

The notation n! represents the product of first n natural numbers, 
i.e., the product 1 × 2 × 3 × . . . × (n – 1) × n is denoted as n!. We 
read this symbol as ‘n factorial’. 

 Thus, 1 × 2 × 3 × 4 . . . × (n – 1) × n = n! 

            1 = 1!  

              1 × 2 = 2!  

         1× 2 × 3 = 3!  

  1 × 2 × 3 × 4 = 4!  

We define 0! = 1 

Again, 

5! = 5 × 4! = 5 × 4 × 3! = 5 × 4 × 3 × 2! = 5 × 4 × 3 × 2 × 1!    

Example 1.       Evaluate (a) 3! (b) 2! + 4! (c) 2! ×3! 

Solution:  

(a) 3! = 3×2×1= 6 

(b) 2! = 2×1 = 2 

4! = 4×3× 2×1 = 24 

 Therefore, 2! + 4! = 2 + 24 = 26  

(c) 2! × 3! =2 ×6= 12 

Example2: Find the value of  (a)np0  (b)np1  (c) npn  (d)6p3   
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Space for learners: Solution 2 (a) 

We know that 

npr= �!

(���)!
 

Therefore,        

   np0= �!

(���)!
 

 

= �!

(�)!
 

=1 

So, np0= 1. Similarly5p0= 7p0=1. 

2. (b) We know that, 

npr= �!

(���)!
 

⇒np1= �!

(��
)!
 

 

= �∗(��
)!

(��
)!
 

 =n 

So, np1= n, similarly 5p1= 5, 6p1= 6. 

2(c) We know that  

npr= �!

(���)!
 

npn= �!

(���)!
 

     = �!

�!
 

     =n!  [since, 0! = 1] 

Therefore, npn= �!. Similarly,5p5= 5! , 7p7= 7! 

2 (d) We know that, 

npr= �!

(���)!
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Space for learners: ��,      6p3= �!

(���)!
 

 =�!

�!
 

=�×�×�×�!

�!
 

=6×5×4 

   =120 

Example 3: 

(a)  Prove that     npr = n-1pr +r.n-1pr-1 
(b)  �ind the value of n,ifnp7= 42× np5 
(c) ���� �ℎ�  !"#��$ � �$np5 :np3 = 2:1 

Solution 3(a): 

%&� =     n-1pr + r.n-1pr-1 

  =  
(��
)!

(��
��)!
  + r× (��
)!

{(��
)�(��
)}!
 [Since,npr= �!

(���)!
] 

 = (��
)!

(����
)!
 + r×(��
)!

(���)!
 

 = (��
)!

(����
)!
 + r× (��
)!

(���)×(����
)!
 [Since, n!=n×(n-1)! ] 

 = (��
)!

(����
)!
( 1+ �

���
) 

  = (��
)!

(����
)!
× �

���
 

  = �!

(���)!
 

 =npr 

    =L.H.S 

&��)�,npr  =
n-1pr + r.n-1pr-1 

 
3(b): 
Given, 

np7= 42× np5 

⇒ �!

(��*)!
=42× �!

(���)!
 

⇒ 


(��*)!
= �+

(���)!
 

⇒ (n-5)! =42×(n-7)! 
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Space for learners: ⇒ (n-5)(� − 6)(� − 7)! = 42 × (� − 7)! 

⇒  (n-5)(n-6)= 42 

⇒  (n-5)(n-6)=7×6 

⇒ (n-5)=7 or (n-6)=6 

⇒  n=12  

The required value of n is 12 

3(c): 

Given, 

np5 :np3 = 2:1 

⇒ �!

(���)!
 : �!

(���)!
 =2:1 

⇒
1!

(123)!
1!

(124)!

 =+



 

⇒ �!

(���)!
× (���)

�!
 =+



 

⇒ (���)!

(���)!
  = 2 

⇒ (���)(���)(���)!

(���)!
 =2 

⇒  (n-3)(n-4)=2 

⇒ (n-3)(n-4)=2×1 

⇒ n-3=2 or n-4 =1 

⇒ n=5 

 

1.8.2 Fundamental Principle of Counting 

(Multiplication Principle) 

“If an event can occur in m different ways, following which 
another event can occur in n different ways, then the total number 
of occurrences of the events in the given order is m×n.” 
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Space for learners: Example 1:  How many 3-digit numbers can be formed with the 
digits 1,4,7,8 and 9 if the digits are not repeated? 

Solution 1: 

Three-digit numbers will have units, ten’s and hundred’s place. 

Out of 5 given digits any one can take the unit’s place. 

This can be done in 5 ways. ... (i)  

After filling the unit’s place, any of the four remaining digits can 
take the ten’s place. 

This can be done in 4 ways. ... (ii) 

After filling in ten’s place, hundred’s place can be filled from any 
of the three remaining digits. 

This can be done in 3 ways. ... (iii) 

∴ By counting principle, the number of 3 digit numbers = 5×4×3 = 
60 

Example2: There are 4 books on fairy tales, 5 novels and 3 plays. 
In how many ways can you arrange these so that books on fairy 
tales are together, novels are together and plays are together and, 
in the order, books on fairy tales, novels and plays. 

Solution 2: 

There are 4 books on fairy tales and they have to be put together. 

They can be arranged in 4! ways.  

Similarly, there are 5 novels.  

They can be arranged in 5! ways. 

And there are 3 plays.  

They can be arranged in 3! ways.  

So, by the counting principle all of them together can be arranged 
in 4! ×5!× 3! ways = 17280 ways. 
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Space for learners:  

 

 

 

 

 

 

 

 

1.6.3 Permutation with Repetition 

The number of permutations of n different objects taken r at a 
time, where repetition is allowed, is nr. 

Example 1: Find the number of 4 digit numbers that can be 
formed using the digits 1, 2, 4, 5, 7, 8 when repetition is allowed. 

Solution1: 

The number of 4 digit numbers that can be formed using the digits 
1, 2, 4, 5, 7, 8 when repetition is allowed = 6 4 = 1296 

Example 2: Ten different letters of an alphabet are given. Words 
with 5 letters are formed from these letters. Find the number of 
words which have at least one letter repeated. 

Solution 2: 

The number of 5 letter words using ten different letters when 
repetition is allowed = 105 

Again, 

The number of 5 letter words using ten different letters when 
repetition is not allowed=10p5 

6ℎ�7�$�7�, �ℎ�number of 5 letter words using ten different letters 
in which at least one  

letter repeated =    105-10p5 = 100000 − 30240 = 69760 

CHECK YOUR PROGRESS-II 

8 (a) Evaluate: 
        (i) 6! (ii) 7! (iii) 7! + 3! (iv) 6! × 4!   
   (b) Which of the following statements are true?  
        (i) 2!× 3! = 6! (ii) 2! + 4! = 6!  (iii) 4! - 2! = 2! 
9.Find the value of 
    (!)   15p4   (b) 11p5          (c)   9p0 
10.Find the value of n if 2* 9pn = 10pn     
11. ���� �ℎ�<!"#� �$ 7 �$18pr-1:

17pr-1 =9:7         
12. Find the value of r if     5*4pr =6 *5pr-1  

13.How many words of 4 letters with or without meaning can be 
formed from the letters of the word RICE. 
14.Without repetition how many 4 digits numbers can be formed 
with the digits 1,3,5,7,9. 
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Space for learners: Example 3: How many numbers lying between 100 and 1000 can 
be formed with the digits 0, 1, 2, 3, 4, 5, if the repetition of the 
digits is not allowed? 

Solution 3: 

Every number between 100 and 1000 is a 3-digit number. We, 
first, have to count the permutations of 6 digits taken 3 at a time.  

This number would be 6p3.  

But, these permutations will include those also where 0 is at the 
100’s place. For example, 092, 042. . .etc. are such numbers which 
are actually 2-digit numbers and hence the number of such 
numbers has to be subtracted from 6p3 to get the required number. 
To get the number of such numbers, we fix 0 at the 100’s place 
and rearrange the remaining 5 digits taking 2 at a time. This 
number is 5p2 . 

So, the required number is = 6p3  −5p2  

= 100  

1.8.4 Permutations when all the Objects are Not 

Distinct Objects 

The number of permutations of n objects, where p1 objects are of 
one kind, p2 are of second kind, ..., pk are of kth kind and the rest, 

if any, are of different kind is   �!

=
! =+!……..=?!
 

Example 1: How many words can be formed with the letters of 
the words COMMITTEE? 

Solution1: 

Here, there are 9 objects (letters) of which there are 2M’s, 2 T’s, 2 
E’s and rest are all different. 

Therefore, the required number of arrangements = @!

+!+!+!
=

@×A×*×�×�×�×�×+×


+×+×+
 

 =9× 7 × 6 × 5 × 4 × 3 × 2 × 1 

=45360 
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Space for learners: Example 2: In how many ways can 4 red, 3 yellow and 2 green 
balls be arranged in a row if the balls of the same colour are 
indistinguishable? 

Solution 2: 

Total no of balls=9  

So, out of 9 balls, 4 balls are red, 3 balls are yellow and 2 balls are 
green. 

Therefore, the total no of arrangements= @!

�! �! +!
 

 =@×A×*×�×�×�!

�!×�×+
 

 =@×A×*×�

+
 

=9×4×7×5 

=1260 

1.8.5 Circular Permutation 

Circular Permutation is the total number of ways in which n 
distinct objects can be arranged around a fix circle. 

 It is of two types 

 Case1- Clockwise and Anticlockwise orders are different. 

Here, the number of circular permutations of n dissimilar things is 
(n −1)! 

Case2- Clockwise and Anticlockwise orders are same. 

Here, the number of circular permutations of n things is 

+
[(n-1)!] 

Example 1: Find the number of ways of arranging 7 persons 
around a circle. 

Solution1: 

Number of persons, n = 7  

∴The number of ways of arranging 7 persons around a circle = (n - 
1)! = 6! = 720 
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Space for learners: Example 2: Find the number of ways of arranging 6 boys and 6 
girls around a circular table so that (i) all the girls sit together (ii) 
no two girls sit together iii) boys and girls sit alternatively 

Solution2: 

(i) Treat all the 6 girls as one unit. Then we have 6 boys and 1 
unit of girls. They can be arranged around a circular table in 
6! Ways. Now, the 6 girls can be arranged among themselves 
in 6! Ways. 

∴The number of required arrangements = 6! × 6! = 720 × 720 
= 5,18,400 

(ii) First arrange the 6 boys around a circular table in 5! ways. 
Then we can find 6 gaps between them. The 6 girls can be 
arranged in these 6 gaps in 6! ways. 

∴The number of required arrangements = 5! × 6!= 120×720 = 
86,400 

 

(iii) The arrangements of boys and girls sit alternatively in same 
as the arrangements of no two girls sit together or 
arrangements of no two boys sit together. 

 First arrange the 6 girls around a circle table in 5! ways. 

 Then we can find 6 gaps between them.  

The 6 boys can be arranged in these 6 gaps in 6! ways. 

∴The number of required arrangements = 5! × 6! = 120× 720 
= 86,400 

Example 3: Find the number of ways of arranging 6 red roses and 
3 yellow roses of different sizes into a garland. In how many of 
them (i) all the yellow roses are together (ii) no two yellow roses 
are together 

Solution 3: 

Total number of roses = 6 + 3 = 9 

∴ The number of ways of arranging 6 red roses and 3 yellow roses 
of different sizes into a garland  

=



+
[(9-1)! 
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Space for learners:           =


+
(8!) 

          =


+
×40320 

          =20160 

(i) Treat all the 3 yellow roses as one unit. Then we have 6 
red roses and one unit of yellow roses. 

They can be arranged in garland form in (7 - 1)! = 6! ways.  

Now, the 3 yellow roses can be arranged among themselves in 
3! ways. But in the case of garlands, clockwise arrangements 
look alike. 

∴The number of required arrangements   =


+
×6! ×3! 

  =


+
×720 ×6 

 =2160 

 

(ii) First, arrange the 6 red roses in garland form in 5! ways.  

(iii) Then we can find 6 gaps between them. The 3 yellow 
roses can be arranged in these 6 gaps in 6p3 ways. But in 
the case of garlands, clock-wise and anti-clockwise 
arrangements look alike.  

∴The number of required arrangements= 

+

× 5! ×6p3 

 =


+
×120×6×5×4 

=7200 

1.8.6 Restricted Permutation 

Permutation with some specific restrictions is called restricted 
permutations. Following are some Permutation corresponding to 
some common restrictions. 

The number of permutation of n different things taken r of them at 
a time in which k particular things  

 (a)  Never Occur is =  n-kpr 
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Space for learners: (b)  Always occur  isn-kpr-k ×rpk 

(c)  Are placed in some specific places in  
n-kpr-k 

Example1: How many words can be formed with the letters of the 
word EQUATION taking 5 at a time if 

      (a) None of words contains Q,U and T 

      (b) A and O occur In each word 

Solution 1: 

(a) There are 8 letters in the word EQUATION. If none of the 
words contain the 3 letters Q,U and T, then there will be 
remain 8-3=5 letters. 

So, the permutation will be the arrangement of these 5 letters. 

Therefore, the required no of words = 5p5 =120 

(b) Since, A and O are always present, So any two of the 5 gaps 
are to be filled up by the two letters A and O, Which can be 
done in 5p2 ways. After filling 2 of the 5 gaps, the remaining 
5-2=3 gaps can be filled up by the 3 letters from the remaining 
8-2=6 letters, which will be filled in 6p3 ways. 

Therefore, the required no of words=6p3 ×5p2   =2400 

Example 2:  How many arrangements of the letters of the word 
‘BENGALI’ can be made (i) if the vowels are never together. (ii) 
if the vowels are to occupy only odd places. 

Solution 2: 

(i)  Considering vowels a, e, i as one letter, we can arrange 4+1 
letters in 5! Ways in each of which vowels are together.  

These 3 vowels can be arranged among themselves in 3! 
ways. 

∴ Total number of words = 5! × 3! = 120 × 6 = 720 

(ii)   There are 4 odd places and 3 even places.  

          3 vowels can occupy 4 odd places in 4p3 ways 

And 4 constants can be arranged in 4p4 ways. 

∴Required number of words =4p3 ×4p4 

  =24×24 

  =576 
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Space for learners: 1.9   COMBINATION 

A combination is a selection of all or part of a set of object 
without regard to the order in which objects are selected. 

The number of combinations of n things taken r at a time is 
denoted by nCr and it is defined by  nCr =

�!
(���)! �!

For  0≤ r ≤n  

1.9.1 Restricted Combination 

If there are certain restrictions on Combination like a particular 
object occurring   always and occurring never, then it is called 
Restricted Combination. 

The numbers of Combinations of n different things taking r of 
them at a time if x particular things are 

          (i) Always included is  n-xCr-x 

          (ii) Always excluded is n-xCr 

Example 1: 

Show That 

(a) nC0=1 

(b) ncr= npr/r! 

 (c) nc1=n 

 (d)  ncr=ncn-r 

 (e)  ncr+ncr-1=n+1c r 

Solution: 

(a)     LHS= nC0 

= �!
(���)! �!

  [nCr =
�!

(���)! �!
] 

 = �!

�! 

   [0!=1] 

=1 

=RHS 

 

(b)  LHS=nCr 

= �!
(���)! �!
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Space for learners:  =npr/r!   [Since, nPr   =
�!

(���)! 
] 

 =RHS 

(c)   LHS= nC1 

= �!
(��
)!× 
!

 [since, nCr=
�!

(���)! �!
] 

=�×(��
)!
(��
)!×


 

 =n 

 =RHS 

(d)  LHS= nCr 

= �!
(���)!× �!

 

 = �!
(���)!×B��(���)C!

 

 =nCn-r 

 =RHS 

(e)  LHS= nCr+ nCr-1   

 = �!
(���)! �!

+ �!
(���E
)!(��
)! 

 = �!
(���)! �(��
)!

+ �!
(���E
)(���)!( ��
)! 

 =  
�!

(���)! (��
)!
( 


�
+ 


���E
  ) 

  =
�!

(���)! (��
)!
(���E
E�

�(���E
)
) 

 =
(�E
)×�!

  �×(��
)!(���E
)×(���)!
 

 = (�E
)!

�!×(���E
)!
 

= (�E
)!

 �!×(�E
��)!
 

=n+1C r 

  =RHS 

Example 2: 

 (a) Find the value of  9C7 

 (b)  If 12Cr = 12Cr+2 find the value of r 

 (c)  If nC3 ÷ nC2 =8,find the value of n. 

 (d) If nPr =110 and nCr=55,find the value of r 
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Space for learners: Solution: 

(a) 9C7 

= @!

(@�*)!× *! 

= @!

+!× *!
 

=@×A×*!

+×*!
 

=@×A

+
 

 =36 

(b) Given 
12Cr=12Cr+2 

⇒ 12F12-r=12Fr+2     [���)�,ncr=ncn-r] 

⇒ 12 − 7 =  7 + 2[�$ n)r=n)s �ℎ�� 7 = I]  ⇒ 27 = 10 

          ⇒ 7 = 5 

(c) Given, 
         nC3÷nF2=8 

⇒ �!
(���)!×�!

÷ �!
(��+)!×+!

 =8⇒ �!
(���)!×�!

×
(��+)!×+!

�!
= 8 ⇒

(��+)!×+!
(���)!×�!

= 8 

⇒
(� − 2) × (� − 3)! × 2

(� − 3)! × 6
= 8 ⇒

(� − 2)
3

= 8 

⇒ (� − 2) = 24 ⇒ � = 26 

(d)    

Given, 

nPr =110 

Again,   nCr=55 

We know that, 

nPr= nCr× 7! 

⇒ 110 = 55 ∗ 7! 

⇒ 7! =
110
55  
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Space for learners: ⇒ 7! = 2 

6ℎ�7�$�7�, 7 = 2 

 

 

 

 

 

 

 

 

 

LMNOPQR S: A group consists of 4 girls and 7 boys. In how many 
ways can a team of 5 members be selected if the team has (i) no 
girl? (ii) at least one boy and one girl? (iii) at least 3 girls? 

Solution: 

(i) Since, the team will not include any girl, therefore, only boys 
are to be selected. 5 boys out of 7 boys can be selected in 7 C5 
ways.  

Therefore, the required number of ways =7C5 

=
7!

(7 − 5)! × 5!
=

7!
2! × 5! 

=
7 × 6 × 5!

2 × 5!  

 =
7 × 6

2
= 21 

(UU)Since, at least one boy and one girl are to be there in every 
team. Therefore, the team can consist of   

         (a) 1 boy and 4 girls                             (b) 2 boys and 3 girls 

         (c) 3 boys and 2 girls                            (d) 4 boys and 1 girl. 

1 boy and 4 girls can be selected in 7 C1 × 4 C4 ways.  

                       CHECK YOUR PROGRESS-II 

15. Find the value of n if  np4=30*nc5 

16. V$ nF6∶n-3C3= 91: 4, $��� �ℎ�  !"#� �$ �? 

17. If nC9=nC8 ,  find  nC17 . 

18.Verify each of the following statements: 

 (i) 5c2 =5c3 

 (ii) 4C3 ×3c2=12c6 

 (iii) 4C2+ 4 C3  =8c5 

(iv) 10c2 + 10c3=11c3 
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Space for learners: 2 boys and 3 girls can be selected in 7 C2 × 4 C3 ways.  

3 boys and 2 girls can be selected in 7 C3 × 4 C2 ways. 

4 boys and 1 girl can be selected in 7C4 × 4C1 ways. 

Therefore, the required number of ways = 7 C1 × 4 C4 + 7 C2 × 4 C3 
+ 7 C3 × 4 C2 + 7C4 × 4C1 

= 7 + 84 + 210 + 140 

 = 441 

(iii) Since, the team has to consist of at least 3 girls, the team can 
consist of 

(a) 3 girls and 2 boys.  Or (b) 4 girls and 1 boy. 

Note that the team cannot have all 5 girls, because, the group has 
only 4 girls 

3 girls and 2 boys can be selected in 4 C3 × 7 C2 ways. 

 4 girls and 1 boy can be selected in 4 C4 × 7 C1 ways 

 Therefore, the required number of ways = 4 C3 × 7 C2 + 4 C4 × 7 C1 

 = 84+7          

= 91 

LMNOPQR Y: A question paper consists of 10 questions divided 
into two parts A and B. Each part contains five questions. A 
candidate is required to attempt 6 questions in all of which at least 
2 should be from part A and at least 2 from part B. In how many 
ways can the candidate select the questions if he can answer all 
questions equally well? 

Solution: The candidate has to select six questions in all of which 
at least two should be from Part A and two should be from Part B. 
He can select questions in any of the following ways: 

                            Part A                  Part B 

         (i)                     2                   4  

         (ii)                    3                   3  
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Space for learners:          (iii)                     4                  2 

If the candidate follows choice (i), the number of ways in which 
he can do so is 

5C2  ×5C4 =10  × 5 =50 

If the candidate follows choice (ii), the number of ways in which 
he can do so is 

5C3  ×5C3= 10 × 10 = 100 

Similarly, if the candidate follows choice (iii), then the number of 
ways in which he can do so is 

5C4  ×5C2= 5 ×  10 = 50 

Therefore, the candidate can select the question in  

50 +  100 +  50 =  200 ways 

Example5:   

In how many ways can a selection of 4 persons be made from 10 
persons such that one particular person is always (i) included (ii) 
excluded 

Solution: This is the example of Restricted Combination. 

(i) The number of ways of selecting 4 persons from 10 persons 
such that a particular person is always included is = 9C3 

=
9!

6! × 3!
=

9 × 8 × 7 × 6!
6! × 6

 = 84 

(ii)   The number of ways of selecting 4 persons from 10 persons 
such that a particular person is always excluded is   = 9C4 

=
9!

5! × 4!
 =

9 × 8 × 7 × 6 × 5!
5! × 4 × 3 × 2 × 1

= 126 

Example6: A committee of 5 members is to be formed from 6 
male teachers and 4 female teachers. How many ways the 
committee be formed if there be at least one female teacher in the 
committee? 

Solution: 

The possible selections are as follows: 
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Space for learners: 1. 4c1×6F4 

2. 4c2×6F3 

3. 4c3×6F2 

4. 4c4×6F1 

Therefore, the total no of Selections   

4c1×6F4+4c2×6F3+4c3×6F2+4c4×6F1 

= �!

�!×
!
× �!

�!×+!
 + �!

+!×+!
× �!

�!×�!
 + �!


!×�!
× �!

�!×+!
 + �!

�!×�!
× �!

�!×
!
 

= 4 × �×�

+
 +  �×�

+
× �×�×�

�×+×

 + 4 × �×�

+
 + 1× 6 = 60 + 6 × 20 +

60 + 6 = 246 

1.10   SUMMING UP 

 Two integers a and b are congruent modulo n if they each 
have the same remainder on division by n. 

 If a ≡ b (mod n), and m is a positive integer, then a m ≡ b m 
(mod n) can be termed as the power rule of congruence. 

 The least residue of a modulo n is the remainder r that you 
obtain when you divide a by n. 

 Addition, subtraction and multiplication are often simpler to 
carry out in modular arithmetic than they are normally, 
because you can use congruences to reduce large numbers to 
small numbers. 

 Permutation is an arrangement in a definite order of a number 
of objects taken some or all at a time. 

 The number of permutations of n different objects taken r at a 
time, where repetition is allowed, is nr

 

 Circular Permutation is the total number of ways in which n 
distinct objects can be arranged around a fix circle. 

 Permutation with some specific restrictions is called restricted 
permutations. 
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Space for learners:  A combination is a selection of all or part of a set of object 
without regard to the order in which objects are selected. If 
there are certain restrictions on Combination like a particular 
object occurring   always and occurring never, then it is called 
Restricted Combination. 

1.11 ANSWERS TO CHECK YOUR PROGRESS 

1. (!)67#� 

(k)�!"I� 

())67#� 

(d)  True 

(e)  True 

(f)    False 

2. n-=52, 56, 60,……….. .96 

3. X=7, 24, 41,58,75,92 

4. (a) Since, 17 = 1 × 10 + 7, the least residue is 7. 

(b) Since, 50 = 5 × 10 + 0, the least residue is 0. 

(c) Since, 6 = 0 × 10 + 6, the least residue is 6. 

(d) Since, −1 = (−1) × 10 + 9, the least residue is 9. 

(e) Since, −38 = (−4) × 10 + 2, the least residue is 2. 

5. (a) 3 × 6 ≡ 18 ≡ 4 (mod 7) So the least residue is 4. 

(b) 22 × 29 ≡ 1 × 1 ≡ 1 (mod 7),So the least residue is 1 

(c) 51 × 74 ≡ 2 × 4 ≡ 8 ≡ 1 (mod 7),so least residue is 1 

6.  We have,     32 ≡ -9 (mod 41) 

⇒ 25≡ −9(m�� 41) 

⇒ (25)2≡ (−9)2(m�� 41) [no p�q�7 7#"�]rs!��,    (−9)2 =
81 ≡  −1 (m�� 41) 
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Space for learners: �. �. , (25)2≡ (−1)(m�� 41) 

    ��m�"!7"o, {(25)2}2≡ (−1)2(m�� 41)[no t�q�7 7#"�] 

�. �. , 220≡ 1(m�� 41) 

7.  We notice that    3 4 = 81 ≡ 1 (mod 80). 

     That is, we have 3 4 ≡ 1 (mod 80) 

By power rule of Congruence, 

 (3 4) 1388 ≡1 (mod80).  [I��)�,3 5555 = (3 4) 1388. 3 3] 

Therefore,         (3 4) 1388. 33≡33 (mod80).   

Therefore,       35555≡27 (mod80).   

So, the required remainder is 27 

8. (a)  (i) 720 

 (ii) 5040    

 (iii) 5046      

 (iv) 17280 

8. (b)  (i)  False     

           (ii)  False   

           (iii) False 

9.  (a) 32760          

 (b) 55440         

 (c) 1 

10. n=5  

11. r=5           

12.  r=8, 3 

13.24                      

14. 120 
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Space for learners: 15. 8                        

16.  15                     

17. 1 

18. (i) True      

 (ii)  False     

 (iii)  False     

 (iv)  True 

1.12  POSSIBLE QUESTIONS  

1.  Find the least residue of 1492 (mod 4), (mod 10) . 

2.  Does 33x ≡ 12 (mod 6) imply 11x ≡ 4 (mod 6) ?Why ? 

3. What is the remainder when 250 �I �� ���� ko 7? 

4. Find the least residue of 116 modulo 9. 

5.  Check whether 4 and 6 are congruent modulo 5 or not? 

6.   Every integer a is congruent modulo 1 to every integer b. State 
True or False. 

7.  If nPr =nPr+1 and nCr=nCr-1,find the value of n and r. 

8.  If nCr-1 =36,nCr=84 and nCr+1=126,find the value of n and r? 

9.  How many numbers less than 1000 can be formed using the 
digits 0,1,2,3,4,5,6 if repetition of digits being allowed? 

10. In how many ways can 3 boys and  4 girls be arranged so that 
no two boys will be side by side? 

11. Find the number of numbers greater than 4000 which can be 
formed using the digits 0, 2, 4, 6, 8 without repetition. 

12. 9 different letters of an alphabet are given. Find the number of 
4 letter words that can be formed using these 9 letters which 
have (i) no letter repeated (ii) at least one letter repeated. 

13. Find the number of ways of arranging the letters of the word. 
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Space for learners:  (a) INDEPENDENCE           (b) MATHEMATICS 

14. In how many ways 6 books be put into 5 bags? 

15. How many ways 3 students can be selected from 50 students? 

16. In how many ways can the letters in the word ENGINEERING 
is arranged such that no two E’s are together? 

17. A cricket team consisting of 11 players is to be selected from 6 
bowlers and 8 batsmen including at least 4 bowlers. In how 
many ways can this be done? 

18. There are 5 black and 6 red balls in a bag. How many 
selections can be made taking 2 black and 3 red balls? 

1.12 REFERENCES AND SUGGESTED READINGS  

 Permutation and Combination by Ramesh Chandra 
 http:// www.wikipedia.org 
 http://mathworld.wolfram.com 
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Space for learners: 

UNIT 2: SETS 

Unit Structure: 

2.1  Introduction 

2.2  Unit Objectives 

2.3  Definition of Sets 

2.4  Operations of Sets 

2.5  Summing Up 

2.6  Answers to Check Your Progress 

2.7  Possible Questions 

2.8 References and Suggested Readings 

 

2.1   INTRODUCTION 

In mathematics, a set is a collection of elements. The elements that 

make up a set can be any kind of mathematical objects: numbers, 

symbols, points in space, lines, other geometrical shapes, variables, 

or even other sets. The set with no element is the empty set; a set 

with a single element is a singleton. A set may have a finite number 

of elements or be an infinite set. Two sets are equal if and only if 

they have precisely the same elements. 

Sets are ubiquitous in modern mathematics. Indeed, set theory, more 

specifically Zermelo–Fraenkel set theory, has been the standard way 

to provide rigorous foundations for all branches of mathematics 

since the first half of the 20th century. 

The concept of a set emerged in mathematics at the end of the 19th 

century. The German word for set, Menge, was coined by Bernard 

Bolzano in his work Paradoxes of the Infinite. 

A set is a gathering together into a whole of definite, distinct objects 

of our perception or our thought—which are called elements of the 

set. 

Bertrand Russell called a set a class: "When mathematicians deal 

with what they call a manifold, aggregate, Menge, ensemble, or 

some equivalent name, it is common, especially where the number 
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Space for learners: of terms involved is finite, to regard the object in question (which is 

in fact a class) as defined by the enumeration of its terms, and as 

consisting possibly of a single term, which is in that case is the 

class." 

2.2 UNIT OBJECTIVES 

After going through this unit, you will be able to:  

 idea of set 

 definition of sets 

 representation sets 

 operations of sets 

 questions and answers for your progress 

2.3 DEFINITIONS OF SETS 

Set - Definition 

A set is an unordered collection of different elements. A set can be 

written explicitly by listing its elements using set bracket. If the 

order of the elements is changed or any element of a set is repeated, 

it does not make any changes in the set. 

Some Example of Sets 

• A set of all positive integers 

• A set of all the planets in the solar system 

• A set of all the states in India 

• A set of all the lowercase letters of the alphabet 

Representation of a Set 

Sets can be represented in two ways − 

• Roster or Tabular Form 

• Set Builder Notation 

Roster or Tabular Form 

The set is represented by listing all the elements comprising it. The 

elements are enclosed within braces and separated by commas. 
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Space for learners:  

Example 1 Set of vowels in English alphabet, A={a,e,i,o,u}. 

Example 2 Set of odd numbers less than 10, B={1,3,5,7,9}. 

Set Builder Notation 

The set is defined by specifying a property that elements of the set 

have in common. The set is described as A={x:p(x)}A={x:p(x)} 

Example 1 The set {a,e,i,o,u}{a,e,i,o,u} is written as  

A={x:x is a vowel in English alphabet}. 

Example 2  The set {1,3,5,7,9} is written as  

B={x:1≤x<10 and (x%2)≠0}. 

If an element x is a member of any set S, it is denoted by x∈S and if 

an element y is not a member of set S, it is denoted by y∉S. 

Example  If S={1,1.2,1.7,2},1∈S, but 1.5∉S. 

Some Important Sets 

N − the set of all natural numbers = {1,2,3,4,.....} 

Z − the set of all integers = {.....,−3,−2,−1,0,1,2,3,.....} 

Z+ − the set of all positive integers 

Q − the set of all rational numbers 

R − the set of all real numbers 

W − the set of all whole numbers 

Cardinality of a Set 

Cardinality of a set S, denoted by |S|, is the number of elements of 

the set. The number is also referred as the cardinal number. If a set 

has an infinite number of elements, its cardinality is ∞. 

Example − |{1,4,3,5}|=4,|{1,2,3,4,5,…}|=∞|. If there are two sets X 

and Y, 

• |X|=|Y| denotes two sets X and Y having same cardinality. It 

occurs when the number of elements in X is exactly equal to the 

number of elements in Y. In this case, there exists a bijective 

function ‘f’ from X to Y. 

• |X|≤|Y| denotes that set X’s cardinality is less than or equal to 

set Y’s cardinality. It occurs when number of elements in X is 
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Space for learners: less than or equal to that of Y. Here, there exists an injective 

function ‘f’ from X to Y. 

• |X|<|Y| denotes that set X’s cardinality is less than set Y’s 

cardinality. It occurs when number of elements in X is less than 

that of Y. Here, the function ‘f’ from X to Y is injective 

function but not bijective. 

• If |X|≤|Y| and |X|≥|Y| then |X|=|Y|. The sets X and Y are 

commonly referred as equivalent sets. 

Types of Sets 

Sets can be classified into many types. Some of which are finite, 

infinite, subset, universal, proper, singleton set, etc. 

Finite Set 

A set which contains a definite number of elements is called a finite 

set. 

Example − S={x|x∈N and 70>x>50} 

Infinite Set 

A set which contains infinite number of elements is called an infinite 

set. 

Example − S={x|x∈N and x>10} 

Subset 

A set X is a subset of set Y (Written as X⊆Y) if every element of X 

is an element of set Y. 

Example 1  Let, X={1,2,3,4,5,6} and Y={1,2}. Here set Y is a 

subset of set X as all the elements of set Y is in set X. Hence, we can 

write Y⊆X. 

Example 2 − Let, X={1,2,3} and Y={1,2,3}. Here set Y is a subset 

(Not a proper subset) of set X as all the elements of set Y is in set X. 

Hence, we can write Y⊆X. 

Proper Subset 

The term “proper subset” can be defined as “subset of but not equal 

to”. A Set X is a proper subset of set Y (Written as X⊂Y) if every 

element of X is an element of set Y and |X|<|Y|. 
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Space for learners: Example − Let, X={1,2,3,4,5,6} and Y={1,2}. Here set Y⊂X since 

all elements in Y are contained in X too and X has at least one 

element is more than set Y. 

Universal Set 

It is a collection of all elements in a particular context or application. 

All the sets in that context or application are essentially subsets of 

this universal set. Universal sets are represented as U. 

Example: We may define U as the set of all animals on earth. In this 

case, set of all mammals is a subset of U, set of all fishes is a subset 

of U, set of all insects is a subset of U, and so on. 

Empty Set or Null Set 

An empty set contains no elements. It is denoted by ∅. As the 

number of elements in an empty set is finite, empty set is a finite set. 

The cardinality of empty set or null set is zero. 

Example − S={x|x∈NS={x|x∈N and 7<x<8}=∅ 

Singleton Set or Unit Set 

Singleton set or unit set contains only one element. A singleton set is 

denoted by {s}. 

Example − S={x|x∈N, 7<x<9}= {8} 

Equal Set 

If two sets contain the same elements they are said to be equal. 

Example − If A={1,2,6} and B={6,1,2}, they are equal as every 

element of set A is an element of set B and every element of set B is 

an element of set A. 

Equivalent Set 

If the cardinalities of two sets are same, they are called equivalent 

sets. 

Example  If A={1,2,6} and B={16,17,22}, they are equivalent as 

cardinality of A is equal to the cardinality of B. i.e. |A|=|B|=3. 

Disjoint Set 

Two sets A and B are called disjoint sets if they do not have even 

one element in common. Therefore, disjoint sets have the following 

properties – 
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Space for learners: • n(A∩B)=∅ 

• n(A∪B)=n(A)+n(B) 

Example Let, A={1,2,6} and B={7,9,14}, there is not a single 

common element, hence these sets are overlapping sets. 

Venn Diagrams 

Venn diagram, invented in 1880 by John Venn, is a schematic 

diagram that shows all possible logical relations between different 

mathematical sets. 

Examples 

 

 
 

Venn Diagram in case of two elements 

 

 
Where;  

X = number of elements that belong to set A only 

Y = number of elements that belong to set B only 

Z = number of elements that belong to set A and B both (AB) 

W = number of elements that belong to none of the sets A or B 

From the above figure, it is clear that  

n(A) = x + z ;  

n (B) = y + z ;  

n(A ∩ B) = z; 

n ( A ∪ B) = x +y+ z. 

Total number of elements = x + y + z + w 
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Space for learners: Venn Diagram in case of three elements 

 

 

Where, 

W = number of elements that belong to none of the sets A, B or C 

Example 1: In a college, 200 students are randomly selected. 140 

like tea, 120 like coffee and 80 like both tea and coffee.  

How many students like only tea? 

How many students like only coffee? 

How many students like neither tea nor coffee? 

How many students like only one of tea or coffee? 

How many students like at least one of the beverages? 

Solution: The given information may be represented by the 

following Venn diagram, where T = tea and C = coffee. 

 

 
 

Number of students who like only tea = 60 
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Space for learners: Number of students who like only coffee = 40 

Number of students who like neither tea nor coffee = 20 

Number of students who like only one of tea or coffee = 60 + 40 = 

100 

Number of students who like at least one of tea or coffee = n (only 

Tea) + n (only coffee) + n (both Tea & coffee) = 60 + 40 + 80 = 180 

Example 2: In a survey of 500 students of a college, it was found 

that 49% liked watching football, 53% liked watching hockey and 

62% liked watching basketball. Also, 27% liked watching football 

and hockey both, 29% liked watching basketball and hockey both 

and 28% liked watching football and basket ball both. 5% liked 

watching none of these games. 

How many students like watching all the three games? 

Find the ratio of number of students who like watching only football 

to those who like watching only hockey. 

Find the number of students who like watching only one of the three 

given games. 

Find the number of students who like watching at least two of the 

given games. 

Solution: 

n(F) = percentage of students who like watching football = 49% 

n(H) = percentage of students who like watching hockey = 53% 

n(B)= percentage of students who like watching basketball = 62% 

n ( F ∩ H) = 27% ; n (B ∩ H) = 29% ; n(F ∩ B) = 28% 

Since 5% like watching none of the given games so, n (F ∪ H ∪ B) 

= 95%. 

Now applying the basic formula, 

95% = 49% + 53% + 62% -27% - 29% - 28% + n (F ∩ H ∩ B) 

Solving, you get n (F ∩ H ∩ B) = 15%. 

Now, make the Venn diagram as per the information given. 
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Space for learners: 

 
 

Note: All values in the Venn diagram are in percentage. 

Number of students who like watching all the three games = 15 % of 

500 = 75. 

Ratio of the number of students who like only football to those who 

like only hockey = (9% of 500)/(12% of 500) = 9/12 = 3:4. 

The number of students who like watching only one of the three 

given games = (9% + 12% + 20%) of 500 = 205 

The number of students who like watching at least two of the given 

games=(number of students who like watching only two of the 

games) +(number of students who like watching all the three 

games)= (12 + 13 + 14 + 15)% i.e. 54% of 500 = 270. 

 

CHECK YOUR PROGRESS-I 

Q1 :Which of the following are sets? Justify our answer. 

(i) The collection of all months of a year beginning with the 

letter J. 

(ii) The collection of ten most talented writers of India. 

(iii) A team of eleven best-cricket batsmen of the world. 

(iv) The collection of all boys in your class. 

(v) The collection of all natural numbers less than 100. 

(vi) A collection of novels written by the writer Munshi Prem 

Chand. 
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Space for learners: (vii) The collection of all even integers. 

(viii) The collection of questions in this Chapter. 

(ix) A collection of most dangerous animals of the world. 

Q2. Let A = {1, 2, 3, 4, 5, 6}. Insert the appropriate symbol 

or in the blank spaces: 

(i) 5…A (ii) 8…A (iii) 0…A 

(iv) 4…A (v) 2…A (vi) 10…A 

Q3 :Write the following sets in the set-builder form: 

(i) (3, 6, 9, 12) (ii) {2, 4, 8, 16, 32} 

(iii) {5, 25, 125, 625} (iv) {2, 4, 6 …} 

(v) {1, 4, 9 … 100} 

Q4. Which of the following are examples of the null set 

(i) Set of odd natural numbers divisible by 2 

(ii) Set of even prime numbers 

(iii) {x:x is a natural numbers, x < 5 and x > 7 } 

(iv) {y:y is a point common to any two parallel lines} 

Q5. Which of the following sets are finite or infinite 

(i) The set of months of a year 

(ii) {1, 2, 3 ...} 

(iii) {1, 2, 3 ... 99, 100} 

(iv) The set of positive integers greater than 100 

(v) The set of prime numbers less than 99 

Q6. State whether each of the following set is finite or 

infinite: 

(i) The set of lines which are parallel to the x-axis 

(ii) The set of letters in the English alphabet 

(iii) The set of numbers which are multiple of 5 

(iv) The set of animals living on the earth 

(v) The set of circles passing through the origin (0, 0) 
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Space for learners: Q7. In the following, state whether A = B or not: 

(i) A = {a, b, c, d}; B = {d, c, b, a} 

(ii) A = {4, 8, 12, 16}; B = {8, 4, 16, 18} 

(iii) A = {2, 4, 6, 8, 10}; B = {x: x is positive even integer 

and x ≤ 10} (iv) A = {x: x is a multiple of 10}; B 

= {10, 15, 20, 25, 30 ...} 

Q8. Are the following pair of sets equal? Give reasons. 

(i) A = {2, 3}; B = {x: x is solution of 2
x  + 5x + 6 = 0} 

(ii) A = {x: x is a letter in the word FOLLOW}; B = {y: y is a 

letter in the word WOLF} 

 

2.4 OPERATIONS OF SETS 

A set is defined as a collection of objects. Each object inside a set is 

called an 'Element'. A set can be represented in three forms. They 

are statement form, roster form, and set builder form. Set operations 

are the operations that are applied on two more sets to develop a 

relationship between them. There are four main kinds of set 

operations which are: 

1. Union of sets 

2. Intersection of sets 

3. Complement of a set 

4. Difference between sets/Relative Complement 

Before we move on to discuss the various set operations, let us recall 

the concept of Venn diagrams as it is important in understanding the 

operations on sets. A Venn diagram is a logical diagram that shows 

the possible relationship between different finite sets. It looks as 

shown below. 
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Space for learners: Basic Set Operations: 

Now that we know the concept of a set and Venn diagram, let us 

discuss each set operation one by one in detail. The various set 

operations are: 

Union of Sets 

For two given sets A and B, A∪B (read as A union B) is the set of 

distinct elements that belong to set A and B or both. The number of 

elements in A ∪ B is given by n(A∪B) = n(A) + n(B) − n(A∩B), 

where n(X) is the number of elements in set X. To understand this 

set operation of the union of sets better, let us consider an example: 

If A = {1, 2, 3, 4} and B = {4, 5, 6, 7}, then the union of A and B is 

given by A ∪ B = {1, 2, 3, 4, 5, 6, 7}. 

Intersection of Sets 

For two given sets A and B, A∩B (read as A intersection B) is the 

set of common elements that belong to set A and B. The number of 

elements in A∩B is given by n(A∩B) = n(A)+n(B)−n(A∪B), where 

n(X) is the number of elements in set X. To understand this set 

operation of the intersection of sets better, let us consider an 

example: If A = {1, 2, 3, 4} and B = {3, 4, 5, 7}, then the 

intersection of A and B is given by A ∩ B = {3, 4}. 

Set Difference 

The set operation difference between sets implies subtracting the 

elements from a set which is similar to the concept of the difference 

between numbers. The difference between sets A and B denoted as 

A − B lists all the elements that are in set A but not in set B. To 

understand this set operation of set difference better, let us consider 

an example: If A = {1, 2, 3, 4} and B = {3, 4, 5, 7}, then the 

difference between sets A and B is given by A - B = {1, 2}. 

Complement of Sets 

The complement of a set A denoted as A′ or Ac (read as A 

complement) is defined as the set of all the elements in the given 

universal set(U) that are not present in set A. To understand this set 

operation of complement of sets better, let us consider an example: 

If U = {1, 2, 3, 4, 5, 6, 7, 8, 9} and A = {1, 2, 3, 4}, then the 

complement of set A is given by A' = {5, 6, 7, 8, 9}. 
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Space for learners: 

 

The above image shows various set operations with the help of Venn 

diagrams which makes it clearer. When the elements of one set B 

completely lie in the other set A, then B is said to be a proper subset 

of A. When two sets have no elements in common, then they are 

said to be disjoint sets. Now, let us explore the properties of the set 

operations that we discussed. 

Properties of Set Operations: 

The properties of set operations are similar to the properties of 

fundamental operations on numbers. The important properties on set 

operations are stated below: 

Commutative Law - For any two given sets A and B, the 

commutative property is defined as, 

A ∪ B = B ∪ A 

This means that the set operation union of two sets is commutative. 

A ∩ B = B ∩ A 

This means that the set operation intersection of two sets is 

commutative. 

Associative Law - For any three given sets A, B and C the 

associative property is defined as, 
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Space for learners: (A ∪ B) ∪ C = A ∪ (B ∪ C) 

This means the set operation union of sets is associative. 

(A ∩ B) ∩ C = A ∩ (B ∩ C) 

This means the set operation intersection of sets is associative. 

De-Morgan's Law - The law states that for any two sets A and B, 

we have (A ∪ B)' = A' ∩ B' and (A ∩ B)' = A' ∪ B' 

A ∪ A = A 

A ∩ A = A 

A ∩ ∅ = ∅ 

A ∪ ∅ = A 

A ∩ B ⊆ A 

A ∪ B ⊆ A 

Important Notes on Set Operations: 

Set operation formula for union of sets is n(A∪B) = n(A) + n(B) − 

n(A∩B) and set operation formula for intersection of sets is n(A∩B) 

= n(A)+n(B)−n(A∪B). 

The union of any set with the universal set gives the universal set 

and the intersection of any set A with the universal set gives the set 

A. 

Union, intersection, difference, and complement are the various 

operations on sets. 

The complement of a universal set is an empty set U′ = ϕ. The 

complement of an empty set is a universal set ϕ′ = U. 

 

CHECK YOUR PROGRESS-II 

9. Let A={1,2,3,4} and let B={3,4,5,6} . Then: find  A∩B, A∪B 

A−B and AC 

10. Let A={y,z} and let B={x,y,z} . Then: find A∩B, A∪B, 

A−B, and AC 

11. If A = {2, 3, 4, 5}     B = {4, 5, 6, 7}     C = {6, 7, 8, 9}     D 

= {8, 9, 10, 11}, find 
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Space for learners: (a) A ∪ B 

(b) A ∪ C 

(c) B ∪ C 

(d) B ∪ D 

(e) (A ∪ B) ∪ C 

(f) A ∪ (B ∪ C) 

(g) B ∪ (C ∪ D) 

12. If A = {4, 7, 10, 13, 16, 19, 22}   B = {5, 9, 13, 17, 20} 

C = {3, 5, 7, 9, 11, 13, 15, 17}   D = {6, 11, 16, 21} then find 

(a) A - C 

(b) D - A 

(c) D - B 

(d) A - D 

(e) B - C 

(f) C - D 

(g) B - A 

(h) B - D 

(i) D - C 

(j) A - B 

(k) C - B 

(l) C - A 

 

2.5  SUMMING UP 

 A set can be written explicitly by listing its elements using set 

bracket. If the order of the elements is changed or any element of 

a set is repeated, it does not make any changes in the set. 

 Sets can be represented in two ways − Roster or Tabular Form, 

Set Builder Notation 



 

47 | P a g e  

 

Space for learners:  Cardinality of a set S, denoted by |S|, is the number of elements 

(cardinal number) of the set. If a set has an infinite number of 

elements, its cardinality is ∞. 

 A set which contains a definite number of elements is called a 

finite set. A set which contains infinite number of elements is 

called an infinite set.  

 A set X is a subset of set Y (Written as X⊆Y) if every element 

of X is an element of set Y. A Set X is a proper subset of set Y 

(Written as X⊂Y) if every element of X is an element of set Y 

and |X|<|Y|. 

 Universal set is a collection of all elements in a particular 

context or application. The cardinality of empty set or null set is 

zero. Singleton set or unit set contains only one element. 

 If two sets contain the same elements, they are said to be equal. 

If the cardinalities of two sets are same, they are called 

equivalent sets. Disjoint sets do not have even one element in 

common. 

5. Set operations are the operations applied on two more sets to 

develop a relationship between them. There are four main kinds 

of set operations: Union of sets, Intersection of sets, 

Complement of a set, Difference between sets/Relative 

Complement. 

2.6 ANSWERS TO CHECK YOUR PROGRESS 

Answer 1: 

(i) The collection of all months of a year beginning with the letter J 

is a well-defined collection of objects 

because one can definitely identify a month that belongs to this 

collection. 

Hence, this collection is a set. 

(ii) The collection of ten most talented writers of India is not a well-

defined collection because the criteria for 

determining a writer's talent may vary from person to person. 

Hence, this collection is not a set. 
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Space for learners: (iii) A team of eleven best cricket batsmen of the world is not a well-

defined collection because the criteria for 

determining a batsman's talent may vary from person to person. 

Hence, this collection is not a set. 

(iv) The collection of all boys in your class is a well-defined 

collection because you can definitely identify a boy 

who belongs to this collection. 

Hence, this collection is a set. 

(v) The collection of all natural numbers less than 100 is a well-

defined collection because one can definitely 

identify a number that belongs to this collection. 

Hence, this collection is a set. 

(vi) A collection of novels written by the writer Munshi Prem Chand 

is a well-defined collection because one can 

definitely identify a book that belongs to this collection. 

Hence, this collection is a set. 

(vii) The collection of all even integers is a well-defined collection 

because one can definitely identify an even 

integer that belongs to this collection. 

Hence, this collection is a set. 

(viii) The collection of questions in this chapter is a well-defined 

collection because one can definitely identify a 

question that belongs to this chapter. 

Hence, this collection is a set. 

(ix) The collection of most dangerous animals of the world is not a 

well-defined collection because the criteria 

for determining the dangerousness of an animal can vary from 

person to person. 

Hence, this collection is not a set. 

Answer 2: 

(i) 5 A 

(ii) 8 A 
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Space for learners: (iii) 0 A  

(iv) 4 A 

(v) 2 A 

 (vi) 10 A 

Answer 3: 

(i) {3, 6, 9, 12} = {x: x = 3n, n N and 1 ≤ n ≤ 4} 

(ii) {2, 4, 8, 16, 32} 

It can be seen that 2 = 21, 4 = 22, 8 = 23, 16 = 24, and 32 = 25. 

{2, 4, 8, 16, 32} = {x: x = 2n, n N and 1 ≤ n ≤ 5} 

(iii) {5, 25, 125, 625} 

It can be seen that 5 = 51, 25 = 52, 125 = 53, and 625 = 54. 

{5, 25, 125, 625} = {x: x = 5n, n N and 1 ≤ n ≤ 4} 

(iv) {2, 4, 6 …} 

It is a set of all even natural numbers. 

{2, 4, 6 …} = {x: x is an even natural number} 

(v) {1, 4, 9 … 100} 

It can be seen that 1 = 12, 4 = 22, 9 = 32 …100 = 102. 

{1, 4, 9… 100} = {x: x = n2, n N and 1 ≤ n ≤ 10} 

Answer 4: 

(i) A set of odd natural numbers divisible by 2 is a null set because 

no odd number is divisible by 2. 

(ii) A set of even prime numbers is not a null set because 2 is an 

even prime number. 

(iii) {x: x is a natural number, x < 5 and x > 7} is a null set because a 

number cannot be simultaneously less 

than 5 and greater than 7. 

(iv) {y: y is a point common to any two parallel lines} is a null set 

because parallel lines do not intersect. Hence, 

they have no common point. 
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Space for learners: Answer 5: 

(i) The set of months of a year is a finite set because it has 12 

elements. 

(ii) {1, 2, 3 …} is an infinite set as it has infinite number of natural 

numbers. 

(iii) {1, 2, 3 …99, 100} is a finite set because the numbers from 1 to 

100 are finite in number. 

(iv) The set of positive integers greater than 100 is an infinite set 

because positive integers greater than 100 are 

infinite in number. 

(v) The set of prime numbers less than 99 is a finite set because 

prime numbers less than 99 are finite in number. 

Answer 6: 

(i) The set of lines which are parallel to the x-axis is an infinite set 

because lines parallel to the x-axis are infinite 

in number. 

(ii) The set of letters in the English alphabet is a finite set because it 

has 26 elements. 

(iii) The set of numbers which are multiple of 5 is an infinite set 

because multiples of 5 are infinite in number. 

(iv) The set of animals living on the earth is a finite set because the 

number of animals living on the earth is finite 

(although it is quite a big number). 

(v) The set of circles passing through the origin (0, 0) is an infinite 

set because infinite number of circles can pass 

through the origin. 

Answer 7: 

(i) A = {a, b, c, d}; B = {d, c, b, a} 

The order in which the elements of a set are listed is not significant. 

A = B 

(ii) A = {4, 8, 12, 16}; B = {8, 4, 16, 18} It can be seen that 12 A 

but 12 B. 

A ≠ B 
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Space for learners: (iii) A = {2, 4, 6, 8, 10} 

B = {x: x is a positive even integer and x ≤ 10} 

= {2, 4, 6, 8, 10} 

Therefore, A = B 

Answer 8: 

(i) A = {2, 3}; B = {x: x is a solution of x2 + 5x + 6 = 0} 

The equation x2 + 5x + 6 = 0 can be solved as: 

x(x + 3) + 2(x + 3) = 0 (x + 2)(x + 3) = 0 

x = -2 or x = -3 

A = {2, 3}; B = {-2, -3} 

A ≠ B 

(ii) A = {x: x is a letter in the word FOLLOW} = {F, O, L, W} 

B = {y: y is a letter in the word WOLF} = {W, O, L, F} 

The order in which the elements of a set are listed is not significant. 

A = B 

Answer 9:  

A∩B={3,4} 

A∪B={1,2,3,4,5,6} 

A−B={1,2} 

AC={all real numbers except 1,2,3 and 4} 

Answer 10: A∩B={y,z} A∪B={x,y,z}A−B=∅ 
c
A ={everything 

except y and z} 

Answer 11:   

(a) {2, 3, 4, 5, 6, 7} 

(b) {2, 3, 4, 5, 6, 7, 8, 9} 

(c) {4, 5, 6, 7, 8, 9} 

(d) {4, 5, 6, 7, 8, 9, 10, 11} 

(e) {2, 3, 4, 5, 6, 7, 8, 9} 

(f) {2, 3, 4, 5, 6, 7, 8, 9} 

(g) {4, 5, 6, 7, 8, 9, 10, 11} 
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Space for learners: Answer 12:  

(a) {4, 10, 16, 19, 22} 

(b) {6, 11, 21} 

(c) {6, 11, 16, 21} 

(d) {4, 7, 10, 13, 19, 22} 

(e) {20} 

(f) {3, 5, 7, 9, 13, 15, 17} 

(g) {5, 19, 17, 20} 

(h) {5, 9, 13, 17, 20} 

(i) {6, 16, 21} 

(j) {4, 7, 10, 16, 19, 22} 

(k) {3, 7, 11, 15} 

(l) {3, 5, 9 11, 15, 17} 

2.7 POSSIBLE QUESTIONS 

1. If A = {2, 3, 4, 5}     B = {4, 5, 6, 7}     C = {6, 7, 8, 9}      

D = {8, 9, 10, 11}, find 

(a) A ∪ B 

(b) A ∪ C 

(c) B ∪ C 

(d) B ∪ D 

(e) (A ∪ B) ∪ C 

(f) A ∪ (B ∪ C) 

(g) B ∪ (C ∪ D) 

2. If A = {4, 6, 8, 10, 12} B = {8, 10, 12, 14} C = {12, 14, 16} D = 

{16, 18}, find 

(a) A ∩ B 

(b) B ∩ C 

(c) A ∩ (C ∩ D) 

(d) A ∩ C 
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Space for learners: (e) B ∩ D 

(f)(A ∩ B) ∪ C 

(g) A ∩ (B ∪ D) 

(h) (A ∩ B) ∪ (B ∩ C) 

(i) (A ∪ D) ∩ (B ∪ C) 

3. If A = {4, 7, 10, 13, 16, 19, 22}   B = {5, 9, 13, 17, 20} 

C = {3, 5, 7, 9, 11, 13, 15, 17}   D = {6, 11, 16, 21} then find 

(a) A - C 

(b) D - A 

(c) D - B 

(d) A - D 

(e) B - C 

(f) C - D 

(g) B - A 

(h) B - D 

(i) D - C 

(j) A - B 

(k) C - B 

(l) C - A 

4. If A and B are two sets such that A ⊂ B, then what is A∪B? 

5. Find the union, intersection and the difference (A - B) of the 

following pairs of sets. 

(a) A = The set of all letters of the word FEAST 

 

     B = The set of all letters of the word TASTE 

(b) A = {x : x ∈ W, 0 < x ≤ 7} 

     B = {x : x ∈ W, 4 < x < 9} 

(c) A = {x | x ∈ N, x is a factor of 12} 

     B = {x | x ∈ N, x is a multiple of 2, x < 12} 

(d) A = The set of all even numbers less than 12 
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Space for learners:      B = The set of all odd numbers less than 11 

(e) A = {x : x ∈ I, -2 < x < 2} 

     B = {x : x ∈ I, -1 < x < 4} 

(f) A = {a, l, m, n, p} 

    B = {q, r, l, a, s, n} 

6. Let X = {2, 4, 5, 6}   Y = {3, 4, 7, 8}   Z = {5, 6, 7, 8}, find 

(a) (X - Y) ∪ (Y - X) 

(b) (X - Y) ∩ (Y - X) 

(c) (Y - Z) ∪ (Z - Y) 

(d) (Y - Z) ∩ (Z - Y) 

7. Let ξ = {1, 2, 3, 4, 5, 6, 7} and A = {1, 2, 3, 4, 5} B = {2, 5, 7} 

show that 

(a) (A ∪ B)' = A' ∩ B' 

(b) (A ∩ B)' = A' ∪ B' 

(c) (A ∩ B) = B ∩ A 

(d) (A ∪ B) = B ∪ A 

8. Let P = {a, b, c, d}   Q = {b, d, f}   R = {a, c, e} verify that 

(a) (P ∪ Q) ∪ R = P ∪ (Q ∪ R) 

(b) (P ∩ Q) ∩ R = P ∩ (Q ∩ R) 
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Space for learners: UNIT 3: RELATIONS 
 

Unit Structure: 

3.1  Introduction 

3.2 Unit Objectives 

3.3  Types of relation 

3.3  Closure properties of relations 

3.4  Equivalence of relations 

3.5  Partial order of relations 

3.6  Introduction to function 

3.7  Summing Up 

3.8  Answers to Check Your Progress 

3.9  Possible Questions 

3.10 References and Suggested Readings  

3.1 INTRODUCTION 

In mathematics, a binary relation over sets X and Y is a subset of the 

Cartesian product X × Y; that is, it is a set of ordered pairs (x, y) 

consisting of elements x in X and y in Y. It encodes the common 

concept of relation: an element x is related to an element y, if and 

only if the pair (x, y) belongs to the set of ordered pairs that defines 

the binary relation. A binary relation is the most studied special case 

n = 2 of an n-ary relation over sets 1X , ..., 
nX , which is a subset of 

the Cartesian product 1X  × ... × 
nX .[1][2] 

An example of a binary relation is the "divides" relation over the set 

of prime numbers {\displaystyle \mathbb {P} }\mathbb {P}  and the 

set of integers {\displaystyle \mathbb {Z} }\mathbb {Z} , in which 

each prime p is related to each integer z that is a multiple of p, but 

not to an integer that is not a multiple of p. In this relation, for 

instance, the prime number 2 is related to numbers such as −4, 0, 6, 

10, but not to 1 or 9, just as the prime number 3 is related to 0, 6, 

and 9, but not to 4 or 13. 

Binary relations are used in many branches of mathematics to model 

a wide variety of concepts. These include, among others: 
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Space for learners: the "is greater than", "is equal to", and "divides" relations in 

arithmetic; 

the "is congruent to" relation in geometry; 

the "is adjacent to" relation in graph theory; 

the "is orthogonal to" relation in linear algebra. 

A function may be defined as a special kind of binary relation. 

Binary relations are also heavily used in computer science. 

A binary relation over sets X and Y is an element of the power set of 

X × Y. Since the latter set is ordered by inclusion (⊆), each relation 

has a place in the lattice of subsets of X × Y. A binary relation is 

either a homogeneous relation or a heterogeneous relation depending 

on whether X = Y or not. 

Since relations are sets, they can be manipulated using set 

operations, including union, intersection, and complementation, and 

satisfying the laws of an algebra of sets. Beyond that, operations like 

the converse of a relation and the composition of relations are 

available, satisfying the laws of a calculus of relations, for which 

there are textbooks by Ernst Schröder,[4] Clarence Lewis, and 

Gunther Schmidt. A deeper analysis of relations involves 

decomposing them into subsets called concepts, and placing them in 

a complete lattice. 

In some systems of axiomatic set theory, relations are extended to 

classes, which are generalizations of sets. This extension is needed 

for, among other things, modeling the concepts of "is an element of" 

or "is a subset of" in set theory, without running into logical 

inconsistencies such as Russell's paradox. 

The terms correspondence, dyadic relation and two-place relation 

are synonyms for binary relation, though some authors use the term 

"binary relation" for any subset of a Cartesian product X × Y 

without reference to X and Y, and reserve the term 

"correspondence" for a binary relation with reference to X and Y. 

3.2 UNIT OBJECTIVES 

In going through this unit, you will be able to: 

 learn about the relations. 

 learn types of relations 
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Space for learners:  understand closure properties of relations 

 know the equivalence and partial order of relations 

 know the basis of functions. 

3.3 TYPES OF RELATION 

Binary Relation 

Let P and Q be two non- empty sets. A binary relation R is defined 

to be a subset of P x Q from a set P to Q. If (a, b) ∈ R and R ⊆ P x Q 

then a is related to b by R i.e., aRb. If sets P and Q are equal, then 

we say R ⊆ P x P is a relation on P e.g. 

(i) Let A = {a, b, c}   

B = {r, s, t}   

Then R = {(a, r), (b, r), (b, t), (c, s)}  is a relation from A to B.   

(ii) Let A = {1, 2, 3} and B = A   

R = {(1, 1), (2, 2), (3, 3)}  is a relation (equal) on A.   

Example: If a set has n elements, how many relations are there from 

A to A. 

Solution: If a set A has n elements, A x A has n2 elements. So, there 

are 2n2 relations from A to A. 

Example: If a set A = {1, 2}. Determine all relations from A to A. 

Solution: There are 22= 4 elements i.e., {(1, 2), (2, 1), (1, 1), (2, 2)} 

in A x A. So, there are 24= 16 relations from A to A. i.e.     

1. {(1, 2), (2, 1), (1, 1), (2, 2)}, {(1, 2), (2, 1)}, {(1, 2), (1, 1)}, 

{(1, 2), (2, 2)},   

2. {(2, 1), (1, 1)},{(2,1), (2, 2)}, {(1, 1),(2, 2)},{(1, 2), (2, 1), (1

, 1)}, {(1, 2), (1, 1),   

3. (2, 2)}, {(2,1), (1, 1), (2, 2)}, {(1, 2), (2, 1), (2, 2)}, {(1, 2), (

2, 1), (1, 1), (2, 2)} and ∅.   

Domain and Range of Relation 

Domain of Relation: The Domain of relation R is the set of 

elements in P which are related to some elements in Q, or it is the set 

of all first entries of the ordered pairs in R. It is denoted by DOM 

(R). 
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Space for learners: Range of Relation: The range of relation R is the set of elements in 

Q which are related to some element in P, or it is the set of all 

second entries of the ordered pairs in R. It is denoted by RAN (R). 

Example: 

1. Let A = {1, 2, 3, 4}   

2. B = {a, b, c, d}   

3. R = {(1, a), (1, b), (1, c), (2, b), (2, c), (2, d)}.   

Solution: 

DOM (R) = {1, 2} 

RAN (R) = {a, b, c, d} 

Complement of a Relation 

Consider a relation R from a set A to set B. The complement of 

relation R denoted by R is a relation from A to B such that 

  R = {(a, b): {a, b) ∉ R}. 

Example: 

1. Consider the relation R from X to Y   

2.  X = {1, 2, 3}   

3. Y = {8, 9}   

4. R = {(1, 8) (2, 8) (1, 9) (3, 9)}   

Q. Find the complement relation of R.   

Solution: 

X x Y = {(1, 8), (2, 8), (3, 8), (1, 9), (2, 9), (3, 9)} 

 Now we find the complement relation R from X x Y 

   R = {(3, 8), (2, 9)} 

Representation of Relations 

Relations can be represented in many ways. Some of which are as 

follows: 

1. Relation as a Matrix: Let P = [a1,a2,a3,.......am] and Q = 

[b1,b2,b3......bn] are finite sets, containing m and n number of 

elements respectively. R is a relation from P to Q. The relation R can 

be represented by m x n matrix M = [Mij], defined as 
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Space for learners: 










Rbaif

Rbaif
M

ii
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ij
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Example 

1. Let     P = {1, 2, 3, 4}, Q = {a, b, c, d}  and     R = {(1, a), (1,

 b), (1, c), (2, b), (2, c), (2, d)}.   

The matrix of relation R is shown as fig: 

 

2. Relation as a Directed Graph: There is another way of picturing 

a relation R when R is a relation from a finite set to itself. 

Example 

1. A = {1, 2, 3, 4}   

2. R = {(1, 2) (2, 2) (2, 4) (3, 2) (3, 4) (4, 1) (4, 3)}   

 

3. Relation as an Arrow Diagram: If P and Q are finite sets and R 

is a relation from P to Q. Relation R can be represented as an arrow 

diagram as follows. 

Draw two ellipses for the sets P and Q. Write down the elements of 

P and elements of Q column-wise in three ellipses. Then draw an 

arrow from the first ellipse to the second ellipse if a is related to b 

and a ∈ P and b ∈ Q. 
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Space for learners: Example 

1. Let P = {1, 2, 3, 4}   

2. Q = {a, b, c, d}   

3. R = {(1, a), (2, a), (3, a), (1, b), (4, b), (4, c), (4, d)   

The arrow diagram of relation R is shown in fig: 

 

 

4. Relation as a Table: If P and Q are finite sets and R is a relation 

from P to Q. Relation R can be represented in tabular form. 

Make the table which contains rows equivalent to an element of P 

and columns equivalent to the element of Q. Then place a cross (X) 

in the boxes which represent relations of elements on set P to set Q. 

Example 

1. Let P = {1, 2, 3, 4}    

2. Q = {x, y, z, k}   

3. R = {(1, x), (1, y), (2, z), (3, z), (4, k)}.   

The tabular form of relation as shown in fig: 

 

Composition of Relations 

Let A, B, and C be sets, and let R be a relation from A to B and let S 

be a relation from B to C. That is, R is a subset of A × B and S is a 
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Space for learners: subset of B × C. Then R and S give rise to a relation from A to C 

indicated by R◦S and defined by: 

1. a (R◦S)c if for some b ∈ B we have aRb and bSc.   is,    

2. R ◦ S = {(a, c)| there exists b ∈ B for which (a, b) ∈ R and (b,

 c) ∈ S}    

The relation R◦S is known the composition of R and S; it is 

sometimes denoted simply by RS. 

Let R is a relation on a set A, that is, R is a relation from a set A to 

itself. Then R◦R, the composition of R with itself, is always 

represented. Also, R◦R is sometimes denoted by R2. Similarly, R3 = 

R2◦R = R◦R◦R, and so on. Thus, Rn is defined for all positive n. 

Example: Let X = {4, 5, 6}, Y = {a, b, c} and Z = {l, m, n}. 

Consider the relation R1 from X to Y and R2 from Y to Z. 

 R1 = {(4, a), (4, b), (5, c), (6, a), (6, c)} 

 R2 = {(a, l), (a, n), (b, l), (b, m), (c, l), (c, m), (c, n)} 

 

Find the composition of relation (i) R1 o R2 (ii) R1o R1
-1 

Solution: 

(i) The composition relation R1 o R2 as shown in fig: 
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Space for learners: R1 o R2 = {(4, l), (4, n), (4, m), (5, l), (5, m), (5, n), (6, l), (6, m), (6, 

n)} 

(ii) The composition relation R1o R1
-1 as shown in fig: 

 

Composition of Relations and Matrices 

There is another way of finding R◦S. Let MR and MS denote 

respectively the matrix representations of the relations R and S. 

Then 

Example 

Let P = {2, 3, 4, 5}. Consider the relation R and S on P defined by R

          = {(2, 2), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5), (5, 3)}   

S = {(2, 3), (2, 5), (3, 4), (3, 5), (4, 2), (4, 3), (4, 5), (5, 2), (5, 5)}.   

1. Find the matrices of the above relations.   

2. Use matrices to find the following composition of the relatio

n R and S.   

3. (i)RoS       (ii)RoR       (iii)SoR   

Solution: The matrices of the relation R and S are a shown in fig: 

 

(i) To obtain the composition of relation R and S. First multiply 

MR with MS to obtain the matrix MR x MS as shown in fig: 
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Space for learners: The non zero entries in the matrix MR x MS tells the elements related 

in RoS. So, 

 

Hence the composition R o S of the relation R and S is 

R o S = {(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (4, 2), (4, 5), (5, 2), (5, 3),

 (5, 4), (5, 5)}.   

(ii) First, multiply the matrix MR by itself, as shown in fig 

 

Hence the composition R o R of the relation R and S is 

R o R = {(2, 2), (3, 2), (3, 3), (3, 4), (4, 2), (4, 5), (5, 2), (5, 3), (5, 5)

}   

(iii) Multiply the matrix MS with MR to obtain the matrix MS x 

MR as shown in fig: 

 

The non-zero entries in matrix MS x MR tells the elements related in 

S o R. 



 

64 | P a g e  

 

Space for learners: Hence the composition S o R of the relation S and R is 

S o R = {(2, 4) , (2, 5), (3, 3), (3, 4), (3, 5), (4, 2), (4, 4), (4, 5), (5, 2)

, (5, 3), (5, 4), (5, 5)}.   

More on Types of Relations 

1. Reflexive Relation: A relation R on set A is said to be a reflexive 

if (a, a) ∈ R for every a ∈ A. 

Example: If A = {1, 2, 3, 4} then R = {(1, 1) (2, 2), (1, 3), (2, 4), (3, 

3), (3, 4), (4, 4)}. Is a relation reflexive? 

Solution: The relation is reflexive as for every a ∈ A. (a, a) ∈ R, i.e. 

(1, 1), (2, 2), (3, 3), (4, 4) ∈ R. 

2. Irreflexive Relation: A relation R on set A is said to 

be irreflexive if (a, a) ∉ R for every a ∈ A. 

Example: Let A = {1, 2, 3} and R = {(1, 2), (2, 2), (3, 1), (1, 3)}. Is 

the relation R reflexive or irreflexive? 

Solution: The relation R is not reflexive as for every a ∈ A, (a, a) ∉ 

R, i.e., (1, 1) and (3, 3) ∉ R. The relation R is not irreflexive as (a, a) 

∉ R, for some a ∈ A, i.e., (2, 2) ∈ R. 

3. Symmetric Relation: A relation R on set A is said to be 

symmetric iff (a, b) ∈ R ⟺ (b, a) ∈ R. 

Example: Let A = {1, 2, 3} and R = {(1, 1), (2, 2), (1, 2), (2, 1), (2, 

3), (3, 2)}. Is a relation R symmetric or not? 

Solution: The relation is symmetric as for every (a, b) ∈ R, we have 

(b, a) ∈ R, i.e., (1, 2), (2, 1), (2, 3), (3, 2) ∈ R but not reflexive 

because (3, 3) ∉ R. 

Example of Symmetric Relation: 

1. Relation ⊥r is symmetric since a line a is ⊥r to b, then b is ⊥r 

to a. 

2. Also, Parallel is symmetric, since if a line a is ∥ to b then b is 

also ∥ to a. 

Antisymmetric Relation: A relation R on a set A is antisymmetric 

if (a, b) ∈ R and (b, a) ∈ R then a = b. 

Example: Let A = {1, 2, 3} and R = {(1, 1), (2, 2)}. Is the relation R 

antisymmetric? 
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Space for learners: Solution: The relation R is antisymmetric as a = b when (a, b) and 

(b, a) both belong to R. 

Example: Let A = {4, 5, 6} and R = {(4, 4), (4, 5), (5, 4), (5, 6), (4, 

6)}. Is the relation R antisymmetric? 

Solution: The relation R is not antisymmetric as 4 ≠ 5 but (4, 5) and 

(5, 4) both belong to R. 

5. Asymmetric Relation: A relation R on a set A is called an 

Asymmetric Relation if for every (a, b) ∈ R implies that (b, a) does 

not belong to R. 

6. Transitive Relations: A Relation R on set A is said to be 

transitive iff (a, b) ∈ R and (b, c) ∈ R ⟺ (a, c) ∈ R. 

Example: Let A = {1, 2, 3} and R = {(1, 2), (2, 1), (1, 1), (2, 2)}. Is 

the relation transitive? 

Solution: The relation R is transitive as for every (a, b) (b, c) belong 

to R, we have (a, c) ∈ R i.e, (1, 2) (2, 1) ∈ R ⇒ (1, 1) ∈ R. 

Note 1: The Relation ≤, ⊆ and / are transitive, i.e., a ≤ b, b ≤ c 

then a ≤ c 

(ii) Let a ⊆ b, b ⊆ c then a ⊆ c 

(iii) Let a/b, b/c then a/c. 

Note 2: ⊥r is not transitive since a ⊥r b, b ⊥r c then it is not true 

that a ⊥r c. Since no line is ∥ to itself, we can have a ∥ b, b ∥ a but 

a ∦ a. 

Thus ∥ is not transitive, but it will be transitive in the plane. 

7. Identity Relation: Identity relation I on set A is reflexive, 

transitive and symmetric. So identity relation I is an Equivalence 

Relation. 

Example: A= {1, 2, 3} = {(1, 1), (2, 2), (3, 3)} 

8. Void Relation: It is given by R: A →B such that R = ∅ (⊆ A x B) 

is a null relation. Void Relation R = ∅ is symmetric and transitive 

but not reflexive. 

9. Universal Relation: A relation R: A →B such that R = A x B (⊆ 

A x B) is a universal relation. Universal Relation from A →B is 

reflexive, symmetric and transitive. So this is an equivalence 

relation. 
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Space for learners: CHECK YOUR PROGRESS 

1. The given figure shows a relationship between the sets P and 

Q. write this relation 

 

(i) in set-builder form (ii) in roster form. What is its domain 

and range? 

2. Let A = {1, 2, 3, 4, 6}. Let R be the relation on A defined by 

{(a, b): a, b ∈A, bis exactly divisible by a}. 

(i) Write R in roster form 

(ii) (ii) Find the domain of R 

(iii) (iii) Find the range of R. 

3. Determine the domain and range of the relation R defined by 

R = {(x, x+ 5): x ∈{0, 1, 2, 3, 4, 5}}. 

4. Which of the following relations are functions? Give 

reasons. If it is a function, determine its domain and range. 

(i) {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)} 

(ii) {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)} 

(iii) {(1, 3), (1, 5), (2, 5)} 

3.4 CLOSURE PROPERTIES OF RELATIONS 

Consider a given set A, and the collection of all relations on A. Let P 

be a property of such relations, such as being symmetric or being 

transitive. A relation with property P will be called a P-relation. The 

P-closure of an arbitrary relation R on A, indicated P (R), is a P-

relation such that 

R ⊆ P (R) ⊆ S   
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Space for learners: (1) Reflexive and Symmetric Closures: The next theorem tells us 

how to obtain the reflexive and symmetric closures of a relation 

easily. 

Theorem: Let R be a relation on a set A. Then: 

o R ∪ ∆A is the reflexive closure of R 

o R ∪ R-1 is the symmetric closure of R. 

Example: 

Let A = {k, l, m}. Let R is a relation on A defined by  R = {(k, k), (k

, l), (l, m), (m, k)}.    

Find the reflexive closure of R. 

Solution: R ∪ ∆ is the smallest relation having reflexive property, 

Hence, 

RF = R ∪ ∆ = {(k, k), (k, l), (l, l), (l, m), (m, m), (m, k)}. 

Example: Consider the relation R on A = {4, 5, 6, 7} defined by 

R = {(4, 5), (5, 5), (5, 6), (6, 7), (7, 4), (7, 7)}   

Find the symmetric closure of R. 

Solution: The smallest relation containing R having the symmetric 

property is R ∪ R-1,i.e. 

RS = R ∪ R-1 = {(4, 5), (5, 4), (5, 5), (5, 6), (6, 5), (6, 7), (7, 6), (7, 

4), (4, 7), (7, 7)}. 

 (2) Transitive Closures: Consider a relation R on a set A. The 

transitive closure R of a relation R of a relation R is the smallest 

transitive relation containing R. 

Recall that R2 = R◦ R and Rn = Rn-1 ◦ R. We define 

 

The following Theorem applies: 

Theorem1: R* is the transitive closure of R. 

Suppose A is a finite set with n elements. 

 R* = R ∪R2  ∪.....∪ Rn 
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Space for learners: Theorem 2: Let R be a relation on a set A with n elements. Then 

 Transitive (R) = R ∪ R2∪.....∪ Rn 

Example: Consider the relation R = {(1, 2), (2, 3), (3, 3)} on A = 

{1, 2, 3}.  

Then R2 = R◦ R = {(1, 3), (2, 3), (3, 3)} and  

R3 = R2 ◦ R = {(1, 3), (2, 3), (3, 3)} Accordingly, 

Transitive (R) = {(1, 2), (2, 3), (3, 3), (1, 3)} 

Example: Let A = {4, 6, 8, 10} and R = {(4, 4), (4, 10), (6, 6), (6, 

8), (8, 10)} is a relation on set A. Determine transitive closure of R. 

Solution: The matrix of relation R is shown in fig: 

 

Now, find the powers of MR as in fig: 

 

Hence, the transitive closure of MR is MR
* as shown in Fig (where 

MR
* is the ORing of a power of MR). 
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Space for learners: 

 

Thus, R* = {(4, 4), (4, 10), (6, 8), (6, 6), (6, 10), (8, 10)}. 

Note: While ORing the power of the matrix R, we can eliminate 

MRn because it is equal to MR* if n is even and is equal to MR3 if n 

is odd. 

3.5 EQUIVALENCE OF RELATIONS 

Equivalence Relations: 

A relation R on a set A is called an equivalence relation if it satisfies 

following three properties: 

1. Relation R is Reflexive, i.e., aRa ∀ a∈A. 

2. Relation R is Symmetric, i.e., aRb ⟹ bRa 

3. Relation R is transitive, i.e., aRb and bRc ⟹ aRc. 

Example: Let A = {1, 2, 3, 4} and R = {(1, 1), (1, 3), (2, 2), (2, 4), 

(3, 1), (3, 3), (4, 2), (4, 4)}. 

Show that R is an Equivalence Relation. 

Solution: 

Reflexive: Relation R is reflexive as (1, 1), (2, 2), (3, 3) and (4, 4) ∈ 

R. 

Symmetric: Relation R is symmetric because whenever (a, b) ∈ R, 

(b, a) also belongs to R. 

Example: (2, 4) ∈ R ⟹ (4, 2) ∈ R. 

Transitive: Relation R is transitive because whenever (a, b) and (b, 

c) belongs to R, (a, c) also belongs to R. 

Example: (3, 1) ∈ R and (1, 3) ∈ R ⟹ (3, 3) ∈ R. 

So, as R is reflexive, symmetric and transitive, hence, R is an 

Equivalence Relation. 
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Space for learners: Note1: If 1R and 2R  are equivalence relation then 1R ∩ 2R  is also an 

equivalence relation. 

Example: A = {1, 2, 3} 

1R  = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)} 

            2R  = {(1, 1), (2, 2), (3, 3), (2, 3), (3, 2)} 

            1R ∩ 2R  = {(1, 1), (2, 2), (3, 3)} 

Note2: If 1R and 2R  are equivalence relation then 1R ∪ 2R  may or 

may not be an equivalence relation. 

Example: A = {1, 2, 3} 

            1R  = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)} 

            2R  = {(1, 1), (2, 2), (3, 3), (2, 3), (3, 2)} 

            1R ∪ 2R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2)} 

Hence, Reflexive or Symmetric are Equivalence Relation but 

transitive may or may not be an equivalence relation. 

Inverse Relation 

Let R be any relation from set A to set B. The inverse of R denoted 

by 1R  is the relations from B to A which consist of those ordered 

pairs which when reversed belong to R that is: 

1R  = {(b, a): (a, b) ∈ R} 

Example: A = {1, 2, 3} 

                   B = {x, y, z} 

Solution: R = {(1, y), (1, z), (3, y) 

               1R  = {(y, 1), (z, 1), (y, 3)} 

                  Clearly 11)( R  = R 

Note1: Domain and Range of 1R  is equal to range and domain of 

R. 

Example: R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (3, 2)} 

                1R  = {(1, 1), (2, 2), (3, 3), (2, 1), (3, 2), (2, 3)} 

Note2: If R is an Equivalence relation, then 1R  is always an 

Equivalence relation. 
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Space for learners: Example: Let A = {1, 2, 3} 

    R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)} 

            1R  = {(1, 1), (2, 2), (3, 3), (2, 1), (1, 2)} 

            1R  is a Equivalence Relation. 

Note3: If R is a Symmetric Relation, then 1R =R and vice-versa. 

Example: Let A = {1, 2, 3} 

                    R = {(1, 1), (2, 2), (1, 2), (2, 1), (2, 3), (3, 2)} 

                    1R  = {(1, 1), (2, 2), (2, 1), (1, 2), (3, 2), (2, 3)} 

Note 4: Reverse Order of Law  

  111   STTS    1111   RSTTSR  . 

 

3.5 PARTIAL ORDER OF RELATIONS 

A relation R on a set A is called a partial order relation if it satisfies 

the following three properties: 

1. Relation R is Reflexive, i.e. aRa ∀ a∈A. 

2. Relation R is Antisymmetric, i.e., aRb and bRa ⟹ a = b. 

3. Relation R is transitive, i.e., aRb and bRc ⟹ aRc. 

Example: Show whether the relation (x, y) ∈ R, if, x ≥ y defined on 

the set of +ve integers is a partial order relation. 

Solution: Consider the set A = {1, 2, 3, 4} containing four +ve 

integers. Find the relation for this set such as R = {(2, 1), (3, 1), (3, 

2), (4, 1), (4, 2), (4, 3), (1, 1), (2, 2), (3, 3), (4, 4)}. 

Reflexive: The relation is reflexive as for every a ∈ A. (a, a) ∈ R, i.e. 

(1, 1), (2, 2), (3, 3), (4, 4) ∈ R. 

Antisymmetric: The relation is antisymmetric as whenever (a, b) and 

(b, a) ∈ R, we have a = b. 

Transitive: The relation is transitive as whenever (a, b) and (b, c) ∈ 

R, we have (a, c) ∈ R. 

Example: (4, 2) ∈ R and (2, 1) ∈ R, implies (4, 1) ∈ R. 
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Space for learners: As the relation is reflexive, antisymmetric and transitive. Hence, it is 

a partial order relation. 

Example: Show that the relation 'Divides' defined on N is a partial 

order relation. 

Solution: 

Reflexive: We have a divides a, ∀ a∈N. Therefore, relation 'Divides' 

is reflexive. 

Antisymmetric: Let a, b, c ∈N, such that a divides b. It implies b 

divides a if a = b. So, the relation is antisymmetric. 

Transitive: Let a, b, c ∈N, such that a divides b and b divides c. 

Then a divides c. Hence the relation is transitive. Thus, the relation 

being reflexive, antisymmetric and transitive, the relation 'divides' is 

a partial order relation. 

Example: (a) The relation ⊆ of a set of inclusion is a partial 

ordering or any collection of sets since set inclusion has three 

desired properties: 

1. A ⊆ A for any set A. 

2. If A ⊆ B and B ⊆ A then B = A. 

3. If A ⊆ B and B ⊆ C then A ⊆ C 

(b) The relation ≤ on the set R of real no that is Reflexive, 

Antisymmetric and transitive. 

(c) Relation ≤ is a Partial Order Relation. 

n-Ary Relations 

By an n-ary relation, we mean a set of ordered n-tuples. For any set 

S, a subset of the product set Sn is called an n-ary relation on S. In 

particular, a subset of S3 is called a ternary relation on S. 

Partial Order Set (POSET): 

The set A together with a partial order relation R on the set A and is 

denoted by (A, R) is called partial orders set or POSET. 

Total Order Relation 

Consider the relation R on the set A. If it is also called the case that 

for all, a, b ∈ A, we have either (a, b) ∈ R or (b, a) ∈ R or a = b, then 

the relation R is known total order relation on set A. 
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Space for learners: Example: Show that the relation '<' (less than) defined on N, the set 

of +ve integers is neither an equivalence relation nor partially 

ordered relation but is a total order relation. 

Solution: 

Reflexive: Let a ∈ N, then a < a 

⟹ '<' is not reflexive. 

As, the relation '<' (less than) is not reflexive, it is neither an 

equivalence relation nor the partial order relation. 

But, as ∀ a, b ∈ N, we have either a < b or b < a or a = b. So, the 

relation is a total order relation. 

Equivalence Class 

Consider, an equivalence relation R on a set A. The equivalence 

class of an element a ∈ A, is the set of elements of A to which 

element a is related. It is denoted by [a]. 

Example: Let R be an equivalence relation on the set A = {4, 5, 6, 

7} defined by 

                  R = {(4, 4), (5, 5), (6, 6), (7, 7), (4, 6), (6, 4)}. 

Determine its equivalence classes. 

Solution: The equivalence classes are as follows: 

                    {4} = {6} = {4, 6} 

                    {5} = {5} 

                    {7} = {7}. 

Circular Relation 

Consider a binary relation R on a set A. Relation R is called circular 

if (a, b) ∈ R and (b, c) ∈ R implies (c, a) ∈ R. 

Example: Consider R is an equivalence relation. Show that R is 

reflexive and circular. 

Solution: Reflexive: As, the relation, R is an equivalence relation. 

So, reflexivity is the property of an equivalence relation. Hence, R is 

reflexive. 

Circular: Let (a, b) ∈ R and (b, c) ∈ R 

                  ⇒ (a, c) ∈ R       (∵ R is transitive) 

                  ⇒ (c, a) ∈ R       (∵ R is symmetric) 
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Space for learners: Thus, R is Circular. 

Compatible Relation 

A binary relation R on a set A that is Reflexive and symmetric is 

called Compatible Relation. 

Every Equivalence Relation is compatible, but every compatible 

relation need not be an equivalence. 

Example: Set of a friend is compatible but may not be an 

equivalence relation. 

Friend       Friend 

a → b,       b → c     but possible that a and c are not friends. 

 

3.6 INTRODUCTION TO FUNCTION 

Functions 

It is a mapping in which every element of set A is uniquely 

associated at the element with set B. The set of A is called Domain 

of a function and set of B is called Co domain. 

 

Domain, Co-Domain, and Range of a Function: 

Domain of a Function: Let f be a function from P to Q. The set P is 

called the domain of the function f. 

Co-Domain of a Function: Let f be a function from P to Q. The set Q 

is called Co-domain of the function f. 

Range of a Function: The range of a function is the set of picture of 

its domain. In other words, we can say it is a subset of its co-domain. 

It is denoted as f (domain). 
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Space for learners: 1. If f: P → Q, then f (P) = {f(x): x ∈ P} = {y: y ∈ Q | ∃ x ∈ P, such 

that f (x) = y}.   

Example: Find the Domain, Co-Domain, and Range of function. 

1. Let x = {1, 2, 3, 4}   

2. y = {a, b, c, d, e}   

3. f = {(1, b), (2, a), (3, d), (4, c) }   

 

Solution: 

Domain of function: {1, 2, 3, 4} 

Range of function: {a, b, c, d} 

Co-Domain of function: {a, b, c, d, e} 

Functions as a Set 

If P and Q are two non-empty sets, then a function f from P to Q is a 

subset of P x Q, with two important restrictions 

1. ∀ a ∈ P, (a, b) ∈ f for some b ∈ Q 

2. If (a, b) ∈ f and (a, c) ∈ f then b = c. 

Note1: There may be some elements of the Q which are not related 

to any element of set P. 

2. Every element of P must be related with at least one element of Q. 

Example: If a set A has n elements, how many functions are there 

from A to A? 

Solution: If a set A has n elements, then there are nn functions from 

A to A. 

Representation of a Function 

The two sets P and Q are represented by two circles. The function f: 

P → Q is represented by a collection of arrows joining the points 

which represent the elements of P and corresponds elements of Q 
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Space for learners: Example: Let, X = {a, b, c} and Y = {x, y, z} and f: X → Y such 

that   

f= {(a, x), (b, z), (c, x)}   

Then f can be represented diagrammatically as follows 

 

Example: Let X = {x, y, z, k} and Y = {1, 2, 3, 4}. Determine 

which of the following functions. Give reasons if it is not. Find 

range if it is a function. 

a. f = {(x, 1), (y, 2), (z, 3), (k, 4) 

b. g = {(x, 1), (y, 1), (k, 4) 

c. h = {(x, 1), (x, 2), (x, 3), (x, 4) 

d. l = {(x, 1), (y, 1), (z, 1), (k, 1)} 

e. d = {(x, 1), (y, 2), (y, 3), (z, 4), (z, 4)} 

Solution: 

1. It is a function. Range (f) = {1, 2, 3, 4} 

2. It is not a function because every element of X does not relate 

with some element of Y i.e., Z is not related with any element of 

Y. 

3. h is not a function because h (x) = {1, 2, 3, 4} i.e., element x has 

more than one image in set Y. 

4. d is not a function because d (y) = {2, 3} i.e., element y has more 

than image in set Y. 

Types of Functions 

Injective (One-to-One) Functions: A function in which one 

element of Domain Set is connected to one element of Co-Domain 

Set. 
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Space for learners: 

 

Surjective (Onto) Functions: A function in which every element of 

Co-Domain Set has one pre-image. 

Example: Consider, A = {1, 2, 3, 4}, B = {a, b, c} and f = {(1, b), 

(2, a), (3, c), (4, c)}. 

It is a Surjective Function, as every element of B is the image of 

some A 

 

Note: In an Onto Function, Range is equal to Co-Domain. 

Bijective (One-to-One Onto) Functions: A function which is both 

injective (one to - one) and surjective (onto) is called bijective (One-

to-One Onto) Function. 

 

Example: Consider P = {x, y, z} Q = {a, b, c} and f: P → Q such 

that   

          f = {(x, a), (y, b), (z, c)}   
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Space for learners: The f is a one-to-one function and also it is onto. So it is a bijective 

function. 

Into Functions: A function in which there must be an element of 

co-domain Y does not have a pre-image in domain X. 

Example: Consider, A = {a, b, c}   

     B = {1, 2, 3, 4}   and f: A → B such that   

     f = {(a, 1), (b, 2), (c, 3)}   

In the function f, the range i.e., {1, 2, 3} ≠ co-domain of Y i.e.,           

{1, 2, 3, 4}   

Therefore, it is an into function 

 

One-One into Functions: Let f: X → Y. The function f is called 

one-one into function if different elements of X have different 

unique images of Y. 

Example: Consider, X = {k, l, m}      Y = {1, 2, 3, 4} and f: X → Y 

such that   

          f = {(k, 1), (l, 3), (m, 4)}   

The function f is a one-one into function 
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Space for learners: Many-One Functions: Let f: X → Y. The function f is said to be 

many-one functions if there exist two or more than two different 

elements in X having the same image in Y. 

Example: Consider X = {1, 2, 3, 4, 5}   Y = {x, y, z} and f: X → Y 

such that   

f = {(1, x), (2, x), (3, x), (4, y), (5, z)}   

The function f is a many-one function 

 

Many-One into Functions: Let f: X → Y. The function f is called 

many-one function if and only if is both many one and into function. 

Example: Consider X = {a, b, c}   Y = {1, 2} and f: X → Y such 

that   

f = {(a, 1), (b, 1), (c, 1)}   

As the function f is a many-one and into, so it is a many-one into 

function. 

 

Many-One onto Functions: Let f: X → Y. The function f is called 

many-one onto function if and only if is both many one and onto. 

Example: Consider X = {1, 2, 3, 4} Y = {k, l} and f: X → Y such 

that   

          f = {(1, k), (2, k), (3, l), (4, l)}   
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Space for learners: The function f is a many-one (as the two elements have the same 

image in Y) and it is onto (as every element of Y is the image of 

some element X). So, it is many-one onto function 

 

Identity Functions 

The function f is called the identity function if each element of set A 

has an image on itself i.e., f (a) = a ∀ a ∈ A. 

It is denoted by I. 

Example: Consider, A = {1, 2, 3, 4, 5} and f: A → A such that   

f = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}.   

The function f is an identity function as each element of A is 

mapped onto itself. The function f is a one-one and onto 

 

Invertible (Inverse) Functions 

A function f: X → Y is invertible if and only if it is a bijective 

function. 

Consider the bijective (one to one onto) function f: X → Y. As f is a 

one to one, therefore, each element of X corresponds to a distinct 

element of Y. As f is onto, there is no element of Y which is not the 

image of any element of X, i.e., range = co-domain Y. 

The inverse function for f exists if f-1 is a function from Y to X. 
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Space for learners: Example: Consider, X = {1, 2, 3}   

Y = {k, l, m} and f: X→Y such that f = {(1, k), (2, m), (3, l)   

 

 

The inverse function of f is shown in fig: 

 

Compositions of Functions 

Consider functions, f: A → B and g: B → C. The composition of f 

with g is a function from A into C defined by (gof) (x) = g [f(x)] and 

is defined by gof. 

To find the composition of f and g, first find the image of x under f 

and then find the image of f (x) under g. 

Example: Let X = {1, 2, 3}   

 Y = {a, b}   

.     Z = {5, 6, 7}.   

Consider the function f = {(1, a), (2, a), (3, b)} and g = {(a, 5), (b, 

7)} as in figure. Find the composition of gof. 
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Space for learners: 

 

Solution: The composition function gof is shown in fig below: 

 

(gof) (1) = g [f (1)] = g (a) = 5, (gof) (2) = g [f (2)] = g (a) = 5 

(gof) (3) = g [f (3)] = g (b) = 7. 

Example: Consider f, g and h, all functions on the integers, by           

f (n) =n2, g (n) = n + 1 and h (n) = n - 1. 

Determine (i) hofog       (ii) gofoh       (iii) fogoh. 

Solution: 

(i) hofog (n) = n + 1, 

hofog (n + 1) = (n+1)2  

h [(n+1)2 ] = (n+1)2 - 1 = n2 + 1 + 2n - 1 = n2 + 2n. 

(ii) gofoh (n) = n - 1, gof (n - 1) = (n-1)2  

     g [(n-1)2 ] = (n-1)2 + 1 = n2 + 1 - 2n + 1 = n2 - 2n + 2. 

(iii) fogoh (n) = n - 1 

      fog (n - 1) = (n - 1) + 1 

      f (n) = n2. 

Note: 

o If f and g are one-to-one, then the function (gof) (gof) is also one-

to-one. 

o If f and g are onto then the function (gof) (gof) is also onto. 
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Space for learners: o Composition consistently holds associative property but does not 

hold commutative property. 

3.7  SUMMING UP 

 A binary relation R between two non-empty sets P and Q is 

defined to be a subset of P x Q from a set P to Q. 

 Domain of relation R is the set of elements in P which are related 

to some elements in Q, or it is the set of all first entries of the 

ordered pairs in R. Range of relation R is the set of elements in 

Q which are related to some element in P, or it is the set of all 

second entries of the ordered pairs in R. 

 Relations can be represented in terms of matrix, Directed Graph, 

Table or Arrow Diagram. 

 Relations may be of type reflexive, irreflexive, symmetric, 

asymmetric or transitive relations. 

 A relation R on a set A is called an equivalence relation if R is 

reflexive, symmetric and transitive. 

 A relation R on a set A is called a partial order relation if R is 

Reflexive, Antisymmetric and transitive. 

 The set A together with a partial order relation R on the set A 

and is denoted by (A, R) is called a partial order set or POSET. 

 A binary relation R on a set A is called circular if (a, b) ∈ R and 

(b, c) ∈ R implies (c, a) ∈ R. 

 A mapping in which every element of set A is uniquely 

associated with the element of set B is called function. The set of 

A is called Domain of a function and set of B is called Co 

domain. 

 Functions are of types injective, surjective, bijective and into and 

many more. 

3.8 ANSWERS TO CHECK YOUR PROGRESS 

Answer 1:  

According to the given figure, P = {5, 6, 7}, Q = {3, 4, 5} 
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Space for learners: (i) R = {(x, y): y = x- 2; x ∈P} or R = {(x, y): y = x- 2 for x= 5, 6, 7} 

(ii) R = {(5, 3), (6, 4), (7, 5)} 

Domain of R = {5, 6, 7} 

Range of R = {3, 4, 5} 

Answer 2: 

A = {1, 2, 3, 4, 6}, R = {(a, b): a, b ∈A, bis exactly divisible by a} 

(i) R = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 6), (2, 2), (2, 4), (2, 6), (3, 3), 

(3, 6), (4, 4), (6, 6)} 

(ii) Domain of R = {1, 2, 3, 4, 6} 

(iii) Range of R = {1, 2, 3, 4, 6} 

Answer 3: 

R = {(x, x+ 5): x ∈{0, 1, 2, 3, 4, 5}} 

∴ R = {(0, 5), (1, 6), (2, 7), (3, 8), (4, 9), (5, 10)} 

∴Domain of R = {0, 1, 2, 3, 4, 5} 

Range of R = {5, 6, 7, 8, 9, 10} 

Answer 4:  

(i) {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)} 

Since 2, 5, 8, 11, 14, and 17 are the elements of the domain of the 

given relation having their unique images, this 

relation is a function. 

Here, domain = {2, 5, 8, 11, 14, 17} and range = {1} 

(ii) {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)} 

Since 2, 4, 6, 8, 10, 12, and 14 are the elements of the domain of the 

given relation having their unique images, this 

relation is a function. 

Here, domain = {2, 4, 6, 8, 10, 12, 14} and range = {1, 2, 3, 4, 5, 6, 

7} 
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Space for learners: (iii) {(1, 3), (1, 5), (2, 5)} 

Since the same first element i.e., 1 corresponds to two different 

images i.e., 3 and 5, this relation is not a function. 

3.9  POSSIBLE QUESTIONS 

Short answer type questions: 

1.  Which of these is not a type of relation? 

 a) Reflexive 

 b) Subjective 

 c) Symmetric 

 d) Transitive 

2.  An Equivalence relation is always symmetric. 

 a) True 

 b) False 

3. Which of the following relations is symmetric but neither 

reflexive nor transitive for a set A = {1, 2, 3}. 

 a) R = {(1, 2), (1, 3), (1, 4)} 

 b) R = {(1, 2), (2, 1)} 

 c) R = {(1, 1), (2, 2), (3, 3)} 

 d) R = {(1, 1), (1, 2), (2, 3)} 

4. Which of the following relations is transitive but not reflexive 

for the set S={3, 4, 6}? 

 a) R = {(3, 4), (4, 6), (3, 6)} 

 b)  R = {(1, 2), (1, 3), (1, 4)} 

 c) R = {(3, 3), (4, 4), (6, 6)} 

 d) R = {(3, 4), (4, 3)} 
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Space for learners: 5. Let R be a relation in the set N given by R={(a,b): a+b=5, b>1}. 

Which of the following will satisfy the given relation? 

 a) (2,3) ∈ R 

 b) (4,2) ∈ R 

 c) (2,1) ∈ R 

 d) (5,0) ∈ R 

6. Which of the following relations is reflexive but not transitive for 

the set T = {7, 8, 9}? 

 a) R = {(7, 7), (8, 8), (9, 9)} 

 b) R = {(7, 8), (8, 7), (8, 9)} 

 c) R = {0} 

 d) R = {(7, 8), (8, 8), (8, 9)} 

7. Let I be a set of all lines in a XY plane and R be a relation in I 

defined as R = {(I1, I2):I1 is parallel to I2}. What is the type of 

given relation? 

 a) Reflexive relation 

 b) Transitive relation 

 c) Symmetric relation 

 d) Equivalence relation 

8. Which of the following relations is symmetric and transitive but 

not reflexive for the set I = {4, 5}? 

 a) R = {(4, 4), (5, 4), (5, 5)} 

 b) R = {(4, 4), (5, 5)} 

 c) R = {(4, 5), (5, 4)} 

 d) R = {(4, 5), (5, 4), (4, 4)} 

9. (a,a) ∈ R, for every a ∈ A. This condition is for which of the 

following relations? 

 a) Reflexive relation 
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Space for learners:  b) Symmetric relation 

 c) Equivalence relation 

 d) Transitive relation 

10. ( 21 , aa ) ∈R implies that ),( 12 aa ∈ R, for all 1a , 2a ∈A. This 

condition is for which of the following relations? 

 a) Equivalence relation 

 b) Reflexive relation 

 c) Symmetric relation 

 d) Universal relation 

Long answer type questions: 

1.  Let A = {1, 3, 5, 7} and B = {p, q, r}. Let R be a relation from A 

into B defined by R = {(1, p), (3, r), (5, q), (7, p), (7, q)} find the 

domain and range of R. 

2. Let A = {2, 4, 6} and B = {x, y, z}.  

State which of the following are relation from A into B 

   (i)  R₁ = {(2, x), (y, 4), (6, z)}  

   (ii) R₂ = {(4, y) (y, 4)}  

   (iii) R₃ = {(2, x) (4, y) (6, z)} 

3. Let A = {3, 4, 5, 6} B = {1, 2, 3, 4, 5, 6} Let R = {(a, b) : a ∈ A, 

b ∈ B and a < b}. 

Write R in the roster form. Find its domain and range. 

4.  Let A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} Let R be A relation on A 

defined by R = {a, b} : a ∈ A, b ∈ A, a is a multiple of b}. Find 

R, domain of R, range of R. 

5.  Determine the range and domains of the relation R defined by        

R = {(x - 1), (x + 2) : x ∈ (2, 3, 4, 5)} 

6.  Let A = {1, 2, 3, 4, 5, 6} Define a relation R from A to A by R 

{(x, y) : y = x + 2} 

   •  Depict this relation using an arrow diagram. 

   • Write down the domain and range of R 
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Space for learners: 7.  The adjoining figure shows a relation between the set A and B. 

Write this relation in find domain and range 

   (i)  Set builder form.  

   (ii) Roster form. 

 (iii) Find domain and range. 

8. If A = {1, 4, 9, 16} and B = {1, 2, 3} Let R be a relation 'is 

square of’ from A to B. 

Find R domain and range of R. 

9. Let A = {3, 4, 5} and B = {6, 8, 9, 10, 12}. Let R be the relation 

'is a factor of' from A to B. Find R. 

10. Adjoining figure shows relation between A and B. Write relation 

in 

 

Range of a set 

  (i) Set builder form. 

  (ii) Roster form. 

  (iii) Find domain and range of R. 

 

3.10   REFERENCES AND SUGGESTED READINGS 

 Sets Relations Functions – by Gunther Gedia. 

 Sets Relations Functions A programmed unit in modern 

mathematics – by Myra McFadden. 

 Concrete on the relation and function – by Jane Tennitope. 

 Set theory – Charles C Printer. 

 Naïve set theory – Paul Halmour. 
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Space for learners: UNIT4: BOOLEAN ALGEBRA 

Unit Structure: 

4.1    Introduction 

4.2 Unit Objectives 

4.3 Boolean Algebra 

4.4 Principle Of Duality 

4.5 Properties of  Boolean Algebra 

           4.5.1   Theorem (Uniqueness of the complement) 

4.6 Boolean Expression 

4.6.1  Minimization of Boolean expression 

4.7  Boolean Function 

4.8 Conjunction Operation 

4.9 Disjunction Operation 

4.10 Complementation 

4.11 Definition of Literal 

4.12  Fundamental Product or Minterm 

4.13 Definition of Maxterm 

4.14 Canonical Form or Normal form 

  4.14.1 Sum of Minterms (SOM) / Sum of Products (SOP)/ 

Disjunctive Normal Form (DNF) 

   4.14.2 Rules to Convert output expression into SOM 

  4.14.3 Product of Maxterms (POM) / Product of Sums 

(POS) / Conjunctive Normal Form (CNF) 

  4.14.4 Rules to convert output expression into POM 

4.15  Application of Boolean Algebra 

4.16  Summing Up 

4.17  Answers to Check Your Progress 

4.18  Possible Questions 

4.19  References and Suggested Readings 
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Space for learners: 4.1   INTRODUCTION 

In this unit we will learn Boolean algebra which was developed by 

George Boole (1815-1864) a logician, to examine a given set of 

propositions (statements) with a view to checking their logical 

consistency and simplifying them by removing redundant statements 

or clauses. He used symbols to represent simple propositions. 

Compound propositions were expressed in terms of these symbols 

and connectives. Again, we will learn various properties of Boolean 

algebra with their proof. We will learn Boolean expression and 

Principle of Duality, how we can convert one Boolean expression to 

another. We will learn how we can simplify various Boolean 

expressions by using the Boolean properties. 

We will learn Boolean function, literals, Minterms and Maxterm. 

Again, we will learn the truth table of Conjunction and Disjunction 

operation. we will learn the two most important canonical forms of 

Boolean algebra, Sum of Minterms (SOM) and Product of Maxterm 

(POM). We will learn how to write the simplified output expression 

of an Boolean function in SOM and POM form by using Boolean 

Identities as well as truth table. And finally we will learn the 

application of Boolean Algebra. 

4.2   UNIT OBJECTIVES 

After going through this unit, you will be able to: 

  define Boolean algebra 

  know about duality principle of Boolean algebra  

  know various properties of Boolean algebra with proof       

  define Boolean expression and how to simplify it  

  define literal, Minterm and Maxterm. 

 define Boolean function 

 define Conjunction, Disjunction and Complement operation 

  define the canonical form SOM and POM 

 know how to convert output expression into SOM and POM 

 know the application of Boolean Algebra 
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Space for learners: 4.3 BOOLEAN ALGEBRA 

Definitions: A non-empty set B with two binary operations ∨ and ∧, 

a unary operation ′, and two distinct elements 0 and I is called a 

Boolean Algebra if the following axioms holds for any elements a, 

b, c ∈ B 

[B1]: Commutative Laws: 

       a ∨ b = b ∨ a and a ∧ b = b ∧ a 

[B2]: Distributive Law: 

       a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) 

[B3]: Identity Laws: 

       a ∨ 0 = a and a ∧ I = a 

[B4]: Complement Laws: 

       a ∨ a′ = I and a ∧ a′ = 0 

We shall call 0 as zero element, 1 as unit element and a′ the 

complement of a. 

We denote a Boolean Algebra by (B, ∨, ∧, ~, 0, I) 

Example 1. Let, D6 = {1, 2, 3, 6} has four elements. Define ∨, ∧ and 

′ on D6 by a ∨ b = lcm(a, b) , a ∧ b = gcd(a, b) and a′ = 6/a . Then D6 

is a Boolean Algebra with 1 as the zero element and 6 as the unit 

element. 

Solution:  

We prepare the following tables for the operations   ∨, ∧, ′ 

Table for operation (∨) 

∨ 1 2 3 6 

1 1 2 3 6 

2 2 2 6 6 

3 3 6 3 6 

6 6 6 6 6 

Table for operation (∧) 

∧ 1 2 3 6 

1 1 1 1 1 

2 1 2 1 2 

3 1 1 3 3 

6 1 2 3 6 
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Space for learners: Table for operation (') 

' 1 2 3 6 

 6 3 2 1 

we observe that all the entries in the tables are element of D6. 

Therefore ‘∨’ and ‘∧’ are binary operations on set D6. Also, ‘ ‘ ‘ is a 

unary operation on D6 .  

we observe the following properties - 

Commutativity:  

The entries in the composition tables for ∨ and ∧ are symmetric 

about the diagonal starting from the upper left corner. Therefore, ∨ 

and ∧ are commutative binary operations on D6. 

Distributivity:  

From the composition tables of ∨ and ∧, we have 

   1∨ (2 ∧ 3) = 1 ∨ 1 = 1 and (1∨ 2) ∧ (1∨3) = 2 ∧ 3 =1 

 1 ∨ (2∧3) = (1∨2) ∧ (1 ∨3)  

Similarly,  

1 ∨ (2∧6) = (1 ∨2) ∧ (1∨6) 

1 ∨ ( 3∧6) = (1∨3) ∧ (1∨6) 

  2∨ (3∧6)= (2∨3) ∧ (2∨6)etc. 

Thus, ∨ is distributive over  ∧ 

Also, 

 1 ∧( 2 ∨ 3 ) = 1 ∧ 6 = 1 and (1∧2) ∨ ( 1 ∧3) = 2 ∧ 3 =1 

 1 ∧( 2∨3 ) = (1∧2) ∨ ( 1 ∧3)  

Similarly,  

1 ∧(2∨6) = (1 ∧2) ∨ (1∧6)  

1 ∧ ( 3∨6) = (1∨3) ∧(1∨6)  

2∧ (3∨6)= (2∧3)∨ (2∧6)etc. 

Thus, ∧ is distributive over ∨. 

Existence of identity elements:  

For binary operation ‘∨’, we observe that the first row of the 

composition table coincides with the top most row and the first 

column coincides with the left most column. These two intersect at 
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Space for learners: 1. so, 1 is the identity element for ‘∨’. Similarly, 6 is the identity 

element for ‘∧ ‘. 

Thus, 1 and 6 are respectively the zero and unit element. 

Complement laws: 

We have, 

1∨ 1  =1 ∨6 = 6, 2 ∨ 2  = 2 ∨3 = 6, 3∨3 = 3∨2 =6, 6∨6 =6∨1=6 

1∧1=1∧6=1, 2∧ 2=2∧3=1, 3∧3 =3∧2=1, 6∧6 =6∧1=1  

 1= 6/1 =6, 2 = 6/2 =3, 3 = 6/3 =2, 6 = 6/ 6 =1 

Thus, the set D6 with the given binary operations and a unary 

operation satisfies all the axioms of Boolean algebra. Hence, (D6, 

‘∨’, ‘∧’, ‘ ‘ ‘ ) is a Boolean algebra . 

4.4  PRINCIPLE OF DUALITY 

By the dual of a proposition concerning a Boolean algebra B, we 

mean the proposition obtained by substituting ∨ for ∧, ∧for V, 0 for 

1, and 1 for 0, i.e., by exchanging ∧ and V, and exchanging 0 and. 

Any pair of expression satisfying this property is called Dual 

expression. Again, this characteristic of Boolean algebra is called the 

Principle of Duality. 

For example, the dual of   x∧(y∨z) = (x∧Y) V (x∧Z) is xV (y∧Z) = 

(xVY) ∧ (xVZ), and vice versa.  

4.5  PROPERTIES OF A BOOLEAN ALGEBRA 

1. Idempotent Laws:  

(i) a ∨ a = a    (ii) a ∧ a = a 

2. Boundedness  Laws:  

(i) a ∨ I = I    (ii) a ∧ 0 = 0 

3. Absorption Laws:  

(i) a ∨ (a ∧ b) = a  (ii) a ∧ (a ∨ b) = a 

4. Associative Laws:  

(i) (a ∨ b) ∨ c = a ∨ (b ∨ c) (ii) (a ∧ b) ∧ c = a ∧ (b ∧ c) 
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Space for learners: 5.De Morgan’s Law:  

(i) (a ∨ b)′ = a′ ∧ b′  (ii) (a ∧ b)′ = a′ ∨ b′. 

6.(i) (a ∨ b) = (a′ ∧ b′)′  (ii)   (a ∧ b) = (a′ ∨ b′)′   

7. (i) a ∧( a′  ∨ b)=(a ∧ b) (ii)    a ∨  ( a′ ∧  b)=(a ∨ b) 

Proof: It is sufficient to prove first part of each law since second 

part follows from the first by principle of duality. 

1. (i).   We have       

a = a ∨ 0 (by identity law in a Boolean algebra) 

            = a ∨ (a ∧ a′) (by complement law) 

  = (a ∨ a) ∧ (a ∨ a′) (by distributive law)  

            = (a ∨ a) ∧ I (complement law) 

            = a ∨ a (identity law), 

1(ii). We know that, 

a = a∧ 1(by identity law in a Boolean algebra) 

  =a∧ (a∨ a′) (by complement law) 

    =(a∧a) ∨ (a∧ a′) (by distributive law) 

= (a∧a) ∨ 0 (complement law) 

   =(a∧a) (identity law) 

2(i).    We have 

a ∨ I = (a ∨ I) ∧ I (identity law) 

            = (a ∨ I) ∧ (a ∨ a′) (complement law) 

  = a ∨ ( I ∧ a′) (Distributive law)  

          = a ∨ a′ (identity law)  

            = I (complement law). 

2(ii). it is the dual of 2(i) 
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Space for learners: 3(i). we note that 

a ∨ (a ∧ b) = (a ∧ I) ∨ (a ∧ b) (identity law)  

= a ∧ (I ∨ b) (distributive law)  

= a ∧ (b ∨ I) (commutativity) 

  = a ∧ I (Identity law) 

  = a (identity law) 

3(ii). it is the dual of 3(i) 

4(i).    

Let, 

       L = (a ∨ b) ∨ c             R = a ∨ (b ∨ c)  

Then a ∧ L = a ∧ [(a ∨ b) ∨ c]  

= [a ∧ (a ∨ b)] ∨ (a ∧ c) (distributive Law)  

= a ∨ (a ∧ c) (absorption law)  

= a (absorption law) 

And 

a ∧ R = a ∧ [a ∨ (b ∨ c)]  

= (a ∧ a) ∨ (a ∧ (b ∨ c)] (distributive law)  

= a ∨ (a ∧ (b ∨ c)] (idempotent law) 

= a (absorption Law) 

Thus, a∧ L = a ∧ R and so, by duality, a ∨ L = a ∨ R. 

Further, a′ ∧ L = a′ ∧ [(a ∨ b) ∨ c]  

= [a′ ∧ (a ∨ b)] ∨ (a′ ∧ c) (distributive law)  

= [(a′ ∧ a) ∨ (a′ ∧ b)] ∨ (a′ ∧ c) (distributive law) 

= [0∨ (a′ ∧ b)] ∨ (a′ ∧ c) (complement Law) 

= (a′ ∧ b)] ∨ (a′ ∧ c) (Identity law) 

= a′ ∧ (b ∨ c) (distributive law) 
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Space for learners: On the other hand 

a′ ∧ R   = a′ ∧ [a ∨ (b ∨ c)]  

  = (a′ ∧ a) ∨ [a′ ∧ (b ∨ c)] (distributive law)  

= 0 ∨ [a′ ∧ (b ∨ c)] (complement law) 

= a′ ∧ (b ∨ c)] (identity law)  

Hence, 

a′ ∧ L = a′ ∧ R and so by duality a′ ∨ L = a′ ∨ R 

Therefore, 

L = (a ∨ b) ∨ c 

= 0 ∨ [(a ∨ b) ∨ c] = 0 ∨ L (identity law)  

= (a ∧ a′) ∨ [(a ∨ b) ∨ c] 

= (a ∧ a′) ∨ L (complement law) 

= (a ∨ L) ∧ (a′ ∨ L) (distributive law)  

           = (a ∨ R) ∧ (a′ ∨ R) (using A ∨ L = a ∨ R and a′ ∨ L = a′ ∨ R]  

= (a ∧ a′) ∨ R (distributive law)  

= 0 ∨ R (complement law)  

  = R (identity law) 

Hence, (a ∨ b) ∨ c = a ∨ (b ∨ c)  

4(ii). It is the dual of 4(i) 

5(i).  We have, 

(a ∨ b) ∨ (a′ ∧ b′) = (b ∨ a) ∨ (a′ ∧ b′) (commutative)  

= b ∨ (a ∨ (a′ ∧ b′)) (associative) 

= b ∨ [(a ∨ a′ ∧ (a ∨ b′)] (distributive) 

    = b ∨ [I ∧ (a ∨ b′) (complement) 

   = b ∨ (a ∨ b′) (identity)  

= b ∨ (b′ ∨ a) (commutative)  

     = (b ∨ b′) ∨ a (associative law)  

    = I ∨ a (complement law)  

     = I (Identity law) 



 

97 | P a g e  

 

Space for learners: Also, (a ∨ b) ∧ (a′ ∧ b′) = [(a ∨ b) ∧ a′] ∧ b′ (associativity) 

  = [a ∧ a′) ∨ (b ∧ a′)] ∧ b′ (distributive law) 

= [0 ∨ (b ∧ a′)] ∧ b′ (complement)  

= (b ∧ a′) ∧ b′ (identity) 

= b ∧ b′ ∧ a′ 

= 0 ∧ a′  

= 0  

Hence, a′ ∧ b′ is complement of a ∨ b, 

  i.e. (a ∨ b)′ = a′ ∧ b′.  

5(ii). It is the dual of 5(i) 

6(i). We know that, 

(a ∨ b)′ = a′ ∧ b′      [By De Morgan’s Law]   

(a∨b)′′ = (a′∧ b′) ′.  [Taking Complement on both sides] 

(a∨b) = (a′∧ b′) ′[ Since,   a′′ = a] 

6(ii).       It is the dual of 6(i) 

7(i). LHS= a ∧ (a′ ∨ b) 

= (a ∧ a′) ∨ (a ∨ b) [By Distributive Law] 

= 0∨ (a ∨ b)       [By Complement Law] 

=  (a ∨ b)       [Since, 0 ∨ x=x] 

=RHS 

7(ii). is the dual of 7(i) 

4.5.1 Theorem 

Uniqueness of the complement:   If x∨y=1 and x∧ y=0, then y=x′. 

Proof:  

We know that, 

y = y ∨ 0  [Since, x∨ 0=x] 

= y ∨ (X∧X′) [by Complement law B4] 
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Space for learners: = (y∨ x) ∧ (y ∨ x′) [by Distributive law B2] 

= (x ∨ y) ∧ (y∨ x′) [by Commutative Laws B1] 

= 1∧(y∨x′) [by hypothesis] 

= (yVx′) ∧ 1 [by Commutative Laws B1] 

= y ∨ x′ [Since, x∧1=x] 

Again, x′ = x′ ∨ 0 [Since, x∨ 0=x] 

= x′∨ (x ∧ y) [by hypothesis] 

= (x′∨ x) ∧ (x′∨ y) [by Distributive law B2] 

= (x∨ x′) ∧ (x′∨ y) [by Commutative Laws B1] 

= 1 ∧ (x′∨ y) [by Complement law B4] 

= (x′∨ y) ∧1 [By Complement law B4] 

= (x′∨ y)  [since, x∧ 1=x] 

= (y ∨ x′) [by Commutative Laws B1] 

= y[Already proved that y=y ∨ x′] 

Hence, If x ∨ y=1 and x ∧ y= 0, then y = x′. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHECK YOUR PROGRESS-I 

1.Find the duals of the following Boolean Expression 

(a)  x∨ y           (b)  (a ∨ b) ∨ c = a ∨ (b ∨ c)              (c)   a ∧( a′  ∨ 

b)=(a ∧ b)   

(d)   (a ∧ b)′ = a′ ∨ b′                                                               

2. Let D30 = { 1 , 2 , 3 , 5 , 6 , 10 , 15 , 30 } be the set of all divisors 

of 30 and let  ∨  and  ∧  be two operations on B as defined below : a  

∨   b = L C M of a and b ,a   ∧   b = GCD of a and b. Also , for each 

a B , let us define a = 30/a Then , show that ( D30 , ∨   , ∧   , ‘ ) is 

a Boolean algebra. 
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Space for learners: 4.6  BOOLEAN EXPRESSION  

Let, (A, ∧, ∨,’) be a Boolean algebra. Then expression involving 

members of A and the operations ∧, ∨ and complementation are 

called Boolean expression or Boolean Polynomials. 

Let x1, x2,…, xn be a set of n variables (or letters or symbols). A 

Boolean Polynomial (Boolean expression, Boolean form or Boolean 

formula) p(x1, x2, …., xn) in the variables x1, x2, …., xn is defined 

recursively as follows: 

 1. The symbols 0 to 1 are Boolean polynomials 

 2.  x1, x2, …., xn are all Boolean polynomials 

 3. if p(x1, x2, …., xn) and q(x1, x2, …., xn) are two Boolean 

polynomials, then  

p(x1, x2, …., xn) ∨ q(x1, x2, …., xn)  and  p(x1, x2, …., xn) ∧ q(x1, 

x2, …., xn) are also Boolean polynomials. 

4.  If p(x1, x2, …., xn) is a Boolean polynomial, then  

     (p(x1, x2, …., xn))′ is also Boolean polynomials 

5. There are no Boolean polynomials in the variables x1, x2, …., xn 

other than those obtained in accordance with rules 1 to 4. 

For example, for variables x, y and z, the expressions  

   p1(x, y, z) = (x ∨ y) ∧ z 

   p2 (x, y, z) = (x ∨ y′) ∨ (y ∧ 1) 

   p3(x, y, z) = (x ∨ (y′ ∧ z)) ∨ (x ∧ (y ∧ 1)) are Boolean expressions. 

Note: A Boolean expression of n variables, there may or may not 

contain all the n variables. 

4.6.1 Minimization of Boolean Expression 

1.Simplify the following Boolean Expression 

(a)( A′∧B′∧C′) ∨( A′∧B∧C′)∨ (A∧B′∧C′)∨(A∧B∧C′) 

(b)  (A∧B) ∨ (A∧C) ′ ∨ [ (A∧B′∧C) ∧ ( A∧B )∨ C] 

Solutions: 

1.(a) ( A′∧B′∧C′) ∨( A′∧B∧C′)∨ (A∧B′∧C′)∨(A∧B∧C′) 
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Space for learners: =  [( A′ ∧  C′)  ∧( B′  ∨ B)]  ∨  [ (A ∧ C′ )  ∧ ( B′  ∨ B) ] 

[Distributive law] 

= [( A′ ∧  C′) ∧ 1 ]   ∨ [(A ∧ C′ )  ∧  1 ]  [Since,   B′  ∨ B =1] 

=  ( A′ ∧  C′)  ∨ (A ∧ C′ )   [Since A ∧  1= A] 

= C′ ∧(A′ ∨ A)   [Distributive law] 

= C′ ∧ 1 [Since, B′  ∨ B =1 ] 

=  C′  [Since A ∧  1= A] 

1. (b) (A∧B) ∨ (A∧C) ′ ∨ [ (A∧B′∧C) ∧ ( A∧B )∨ C] 

=  (A∧B) ∨ (A∧C) ′ ∨  (A∧B′∧C ∧ A∧B )∨ (A∧B′∧C∧ C) 

= (A∧B) ∨ (A′ ∨  C′ ) ∨  0 ∨ (A∧B′∧C)   [By De Morgans 

law  and B∧B′=0,C∧C=C] 

=(A∧B) ∨ (A′ ∨  C′ )  ∨ (A∧B′∧C)    

= (A∧B) ∨ (A′ ∨  C′ )  ∨( B′∧C)  [Since,  A∨ (A∧B)=A∨ B]  

= A′ ∨  (A∧B) ∨  C′  ∨( C ∧ B′) 

= A′ ∨  B ∨  C′  ∨ B′ 

=  A′ ∨   C′  ∨  1  [since, B ∨ B′=1] 

=  A′  ∨ 1 [Since, C′  ∨  1  =1] 

  =1 

4.7  BOOLEAN FUNCTION 

Each Boolean expression represents a Boolean function. Any 

function specifying a Boolean expression is called a Boolean 

function. 

Let, B={0,1}.Then Bn={ (x1,x2,……..xn)| xi∈ B for 1≤ � ≤ � } is the 

set of all possible n-tuples of 0s and 1s.The variable x is called a 

Boolean variable if it assumes values only from B,that is,if its only 

possible values are 0 and 1. A function from  Bn to B is called  a 

Boolean function of degree n. 

Thus if f(x,y) = x∧y, then f is the Boolean function and x∧y is the 

boolean expression (or the value of the function f). 
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Space for learners: 4.8   CONJUNCTION (∧) OPERATION 

The Conjunction or Boolean product of two variables x and y, which 

is denoted by xy or x∧y gives a value 1 when both x and y have the 

value 1 and the value 0 otherwise. 

 

 

 

 

4.9   DISJUNCTION (∨) OPERATION 

The Disjunction or Boolean sum of two variables x and y, which is 

denoted by x+y or x∨y gives a value 1 when either x or y or both has 

the value 1 and the value 0 otherwise 

 

 

 

 

4.10  COMPLEMENTATION(′) 

It is an expression with the value 1 when x has the value 0 and the 

value 0 when x has the value 1. 

Examples1:Find the values of  Boolean function f(x,y)=x∧y′  

Examples2: Find the values of Boolean function f(x, y, z)=(x∧y) ∨ 

z′ 

Solution1:It is a Boolean function of two variables. The values are 

displayed in the table given below 

X y y′ f(x,y)= x∧y′ 

1 1 0 0 

1 0 1 1 

0 1 0 0 

1 1 O 0 

X y x∧y 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

X y x∨y 

0 0 0 

0 1 1 

1 0 1 

1 1 1 



 

102 | P a g e  

 

Space for learners: Solution2: It is a Boolean function of 3 variables. The values are 

displayed in the table given below: 

X y z x∧y z′ f(x,y,z)=(x∧y) ∨ z′  

1 1 1 1 0 1 

1 1 0 1 1 1 

1 0 1 0 0 0 

1 0 0 0 1 1 

0 1 1 0 0 0 

0 1 0 0 1 1 

0 0 1 0 0 0 

0 0 0 0 1 1 

4.11 DEFINITION OF LITERAL 

 A literal is a Boolean variable or complemented variable such as x, 

x′, y, y′, and so on. 

4.12 FUNDAMENTAL PRODUCT OR MINTERM 

A fundamental product is a literal or a product of two or more literal 

in which no two literals involve the same variable. Fundamental 

product is also called a minterm or complete product. 

A minterm in n variables is a product of n literals in which each 

variable is represented by the variable itself or its complement. 

A minterm of the Boolean variables x1, x2, … xn is a Boolean 

product y1∧ y2∧ y3…. ∧yn, where yi=xi or yi=x′i 

For example, for a 3 variable Boolean function there are 8 nos of 

possible minterms, which are 

 x ∧y ∧z,              x′ ∧ y ∧ z,         x ∧ y ′∧ z,              x ∧ y ∧  z′   

 x ∧ y′ ∧  z′             x′ ∧ y ∧  z′         x′ ∧  y′ ∧ z            x′∧ y′∧ z′ 

4.13  DEFINITION OF MAXTERM 

A maxterm in n variable is a sum of n literals in which each variable 

is represented by the variable itself or its complement. 

A maxterm of the Boolean variables x1, x2,… xn is a Boolean sum   

y1∨ y2∨ y3….∨yn, where yi=xi or yi=x′i 
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Space for learners: For example, for a 3 variable Boolean function there are 8 nos of 

possible maxterms, which are 

x ∨ y ∨ z,              x′ ∨ y ∨ z,         x ∨ y ′∨ z,              x ∨ y ∨ z′   

x ∨ y′ ∨ z′             x′ ∨ y ∨ z′         x′ ∨ y′ ∨ z               x′∨ y′∨ z′ 

4.14  CANONICAL FORM OR NORMAL FORM 

A Boolean function can be uniquely described by its truth table or in 

one of the canonical forms. Two dual canonical forms are: 

(1) The sum of Minterms (SOM) or Sum of Product (SOP) or 

Disjunctive normal form (DNF) 

(2)  The Product of Maxterm or Product of Sum (POS) or 

Conjunctive Normal form (CNF) 

4.14.1 Sum of Minterms (SOM) /Sum of Products 

(SOP) / Disjunctive Normal Form (DNF) 

A Boolean function(expression) is said to be in Disjunctive normal 

form in n variables x1, x2, …….. xn if it can be written as join(Sum) 

of terms of the type f1(x1) ∧f2(x2) ∧……fn(xn) where fi(xi) or x′i for 

all i=1,2,….n and no two terms are same. Also 1 and 0 are said to be 

in disjunctive normal form. 

  Here, f1(x1) ∧f2(x2) ∧……fn(xn) are called minterms or minimal 

polynomials. 

For example, (x ∧ y ∧ z�)  ∨ (x ∧ y′ ∧ z�) ∨ (x′ ∧ y ∧ z�) is a Boolean 

expression in SOM form. 

 

4.14.2 Rules for Converting Output Expression into 

SOM 

There are two ways by which we can convert the output expression 

in SOM form- 

First Way 

(a) Examine each term in the given logic function. Retain if it is a 

minterm; continue to examine the next term in the same manner. 
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Space for learners: (b) Check for variables that are missing in each product, which is not 

a minterm. Multiply (∧)  the product by (x∨ x′ ) term, for each 

variable x that is missing. 

(c) Multiply (∧) all the products and eliminate the redundant term. 

Second Way: Procedure for obtaining the output expression in SOM 

from a truth table: 

1. Give a product term for each input combination in the table, 

containing an output value of 1. 

2. Each product term contains its input variables in either 

complemented or uncomplemented form. 

3.  All the product terms are Summed (∨)together in order to 

produce the final SOM expression of the output.  

�������: ���� �ℎ� ��� � !"�#�$� %$& �ℎ� %'�(��$�  %( , *, +)

= ( ∨ y) ∧ z′ 

Solution:  We will find the SOM expansion of f(x,y,z)= ( ∨ y) ∧ z′ 

in two  ways. 

First way: By using Boolean identities  

Given, f(x,y,z)= ( ∨ y) ∧ z′ 

=    ( ∧ z�) ∨ (y ∧ z�) [Distributive law] 

=  ( ∧ 1 ∧ z�) ∨ (1 ∧ y ∧ z�)  [Identity law] 

= [  ∧ (y ∨ y�) ∧ z�)] ∨ [(x ∨ x�) ∧ y ∧ z�) ] [complement law]  

       = (x ∧ y ∧ z�)  ∨ (x ∧ y′ ∧ z�) ∨  (x ∧ y ∧ z�) ∨ (x′ ∧ y ∧

z�) [Distributive law] 

       =(x ∧ y ∧ z�)  ∨ (x ∧ y′ ∧ z�) ∨ (x′ ∧ y ∧ z�) [By idempotent law] 

Second Way:  

we can construct the sum of Minterm expansion by determining the 

values of for all possible values of the variables x,y and z. 

Now, the Sum of Product expansion of f is the Boolean Sum(∨) of 

the three minterms  corresponding to the three rows of the table that 

give the value 1 for the function. 
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Space for learners: X Y Z x∨
 y 

z′ f(x,y,z)=( ∨
y) ∧ z′ 

Minterm 

1 1 1 1 0 0  

1 1 0 1 1 1 x ∧ y ∧ z� 

1 0 1 1 0 0  

1 0 0 1 1 1 x ∧ y′ ∧ z� 

0 1 1 1 0 0  

0 1 0 1 1 1 x′ ∧ y ∧ z� 

0 0 1 0 0 0  

0 0 0 0 1 0  

Therefore, f(x,y,z)= (x ∧ y ∧ z�)  ∨  (x ∧ y′ ∧ z�) ∨  (x′ ∧ y ∧ z�) 

Example1. Convert the function into SOM form [( x∧ y′) ∨ z′  ] ∧ (  

x′∨ z) ′ 

Solution: 

[ ( x∧ y′) ∨ z′  ] ∧ (  x′∨ z) ′ 

= [ ( x ′∨ y′ ′) ∨ z′  ] ∧ (  x′∨ z) ′   [By De Morgan’s Law] 

= [ ( x ′∨ y ∨ z′  ] ∧ (x′∨ z  ) ′    [ Since, y′ ′=y] 

= [ ( x ′∨ y ∨ z′  ] ∧ ( z∨ x′ ) ′    [By Commutative law] 

= [ ( x ′∨ y ∨ z′  ] ∧ ( z′∧ x′′ )   [By De Morgan’s Law]   

= [ ( x ′∨ y ∨ z′  ] ∧ ( z′∧ x )    [since x′ ′=x] 

= ( x ′∧  z′∧ x )  ∨  ( y ∧  z′∧ x )  ∨ (z′∧  z′∧ x )  [By distributive law] 

= 0 ∨ ( y ∧  z′∧ x ) ∨ (z′∧  z′∧ x )  [since   x ∧  x′=0] 

=0 ∨ ( y ∧  z′∧ x ) ∨ (z′∧ x )  [Since z′∧  z′ = z′, Idempotent Laws] 

= (x ∧  y ∧  z′ ) ∨ (z′∧  x )  [Since 0 ∨ a=a] 

= (x ∧  y ∧  z′ ) ∨[ (z′∧  x ) ∧ 1] [Since, a ∧ 1=1] 

=(x ∧ y∧ z′ ) ∨ [(z′∧ x)∧ (y ∨ y′)]   [Since, a ∨ a′= 1] 

= (X∧ y∧ z′ ) ∨[ (z′∧  x∧ y ) ∨ (z′∧  x∧  y′)]   [By distributive law] 

= (x ∧  y ∧  z′ ) ∨[ (x∧ z′∧ y ) ∨ (x∧z′∧  y′)]   

=(x ∧  y ∧  z′ )  ∨ (x∧ y′∧  z′)   
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Space for learners: 4.14.3 Product of Maxterms (POM) / Product of Sums 

(POS) / Conjunctive Normal Form (CNF) 

A Boolean function(expression) is said to be in Conjunctive normal 

form in n variables x1, x2,.…..xn if it can be written as meet(Product) 

of terms of the type f1(x1) ∨f2(x2) ∨……fn(xn) where fi(xi) or x′i for 

all i=1,2,….n and no two terms are same. Also 1 and 0 are said to be 

in disjunctive normal form. 

Here, f1(x1) ∨f2(x2) ∨……fn(xn) are called Maxterms or maximal 

polynomials 

For example, 

(x ∨ y ∨ z�)  ∧ (x ∨ y′ ∨ z�) ∧ (x′ ∨ y ∨ z�) is a boolaen expression in 

POM form 

4.14.4  Rules for Converting the Output Expression 

into POM 

There are two ways by which we can convert the output expression 

in POM form 

First Way 

(a) Examine each term in the given logic function. Retain if it is a 

Maxterm; continue to examine the next term in the same manner. 

(b) Check for variables that are missing in each sum, which is not a 

maxterm. Add (x∧x′) to the sum term, for each variable x that is 

missing. 

(c) Expand the expression using the distributive property and 

eliminate the redundant term. 

Second Way 

The procedure for obtaining the output expression of a Boolean 

function in POM form from a truth table. 

(a) Give a sum term for each input combination in the table, which 

has an output value 0. 

(b) Each sum terms contains all its input variables in complemented 

or uncomplemented form. If the input variable is 0, then it appears in 

an uncomplemented form; if the input variable is 1, it appears in the 

complemented form. 
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Space for learners: (c) All the sum terms are AND operated (∧) together to obtain 

the final POM expression. 

Example: Convert the function in POM form 

                                             Y=A∨ (B′ ∧C) 

Solution: 

First way: 

Here, 

Y=A∨ (B′ ∧C) 

= (A∨ B′) ∧ ( A ∨C) [By Distributive law] 

= (A∨ B′ ∨ 0) ∧ ( A ∨C∨  0 ) [Since a∨ 0 = a] 

 = [A∨ B′ ∨ ( C ∧ C′ )] ∧ [ A ∨  C ∨ (B ∧ B�)] [Since, a ∧ a′ = 0] 

= ( A∨ B′ ∨ C ) ∧ ( A∨ B′ ∨  C′) ∧ (A ∨  C ∨ B) ∧ (A ∨  C ∨ B′) [ 

Distributive law] 

= (A ∨  B ∨ C) ∧ (A∨ B′ ∨ C) ∧ (A ∨ B′ ∨  C′) [Since, A ∧ A = A] 

Second Way: 

A B C B′ B′ ∧C Y=A∨ (B′ ∧C) Maxterm 

0 0 0 1 0 0 (A∨ B∨ C) 

0 0 1 1 1 1  

0 1 0 0 0 0 (A∨ B′ ∨  C) 

0 1 1 0 0 0 (A∨B′ ∨ C′) 
1 0 0 1 0 1  

1 0 1 1 1 1  

1 1 0 0 0 1  

1 1 1 0 0 1  

From the truth table, we have seen that for the given 3-input function 

we find the Y value is 0 for the input combinations 000,010 and 011 

and their corresponding Maxterms are (A∨ B∨ C),  (A∨ B′ ∨

 C) and(A∨B′ ∨ C′) 

Therefore, the required POM form is, 

(A ∨  B ∨ C) ∧ (A∨ B′ ∨ C) ∧ (A ∨ B′ ∨  C′) 
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4.15  APPLICATION OF BOOLEAN ALGEBRA 

Boolean algebra is useful in designing switching circuits. 

Subsequently we will use Boolean algebra to design logic circuits 

for logical and arithmetic operations performed by processors. 

Boolean Algebra of Switching circuits: 

Let B = {0 ,1}, where 0 and 1 denote the two mutually exclusive 

states, off and on, of a switch respectively.  

Let the operations of connecting the switches in parallel and 

connecting the switches in series be denoted by + and. respectively.  

Let 0 =1 and 1=0. Then, [ B, ∨, ∧, ‘] is a Boolean algebra, known 

as the Boolean algebra of switching circuits 

The composition tables for the above operations are given below: 

 

  

 

 

∨ 0 1 

0 0 1 

 1 1 1 

CHECK YOUR PROGRESS-II 

4.Simplify the following Boolean Expression 

(a) (A∨ B∨ C) ∧ ( A ∨ B� ∨  C′) ∧  (A∨ B∨ C′)  ∧ (A∨ B′ ∨ C) 

(b) (A ∧ B) ∨ ( B∧ B) ∨ C∨ B′ 

(c)  A∨ (A′ ∧ B) ∨ (A′ ∧ B′ ∧ C) ∨ (A′ ∧ B′ ∧ C′ ∧ D) 

5. Obtain the Canonical SOM expression for the function 

Y(A,B)= A∨ B 

6. Obtain the Canonical SOM expression for the function 

Y(A,B,C) = A∨ ( B∧ C) 

7. Obtain the Canonical POM expression for the function 

    Y(A,B,C) = (A∨ B′) ∧ (B∨ C) ∧ ( A∨ C′) 
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0 0 1 

 1 1 1 

 

'  

0 1 

 1 0 

  

 

Boolean switching circuit: An arrangement of wires and switches 

formed by the repeated use of a combination of switches in parallel 

and series is called a Boolean switching circuit. 

Equivalent switching circuits: Two switching circuits A and B, are 

said to be equivalent, denoted by A ~B if both are in the same state 

for the same states of their constituent switches. Thus, two switching 

circuits are said to be equivalent if and only if their corresponding 

Boolean functions are equal. This happens when their Boolean 

function have the same value, o or 1, for every possible assignment 

of the values o and 1 to their variables 

4.16  SUMMING UP 

 A non-empty set B with two binary operations ∨ and ∧, a unary 

operation ′, and two distinct elements 0 and 1 is called a Boolean 

Algebra if commutative, distributive, identity and complement 

properties hold for any elements a, b, c ∈ B. 

 By the dual of a proposition concerning a Boolean algebra B, we 

mean the proposition obtained by substituting ∨ for ∧, ∧for V, 0 

for 1, and 1 for 0, i.e., by exchanging ∧ and V, and exchanging 0 

and. Any pair of expression satisfying this property is called 

Dual expression. 

 Let (A, ∧, ∨,’) be a Boolean algebra. Then expression involving 

members of A and the operations ∧, ∨ and complementation are 

called Boolean expression or Boolean Polynomials. 

 Any function specifying a Boolean expression is called a 

Boolean function. A literal is a Boolean variable or 

complemented variable such as x, x′, y, y′, and so on. 
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Space for learners:  A minterm in n variable is a product of n literals in which each 

variable is represented by the variable itself or its complement. A 

maxterm in n variable is a sum of n literals in which each 

variable is represented by the variable itself or its complement. 

 Boolean algebra is useful in designing switching circuits. 

Subsequently we will use Boolean algebra to design logic 

circuits for logical and arithmetic operations performed by 

processors. 

4.17 ANSWERS TO CHECK YOUR PROGRESS 

1.(a)   x∧  y                                 (b)  (a  ∧  b) ∧  c = a  ∧  (b  ∧  c)               

   (c)   a ∨ ( a′ ∧   b)=(a ∨ b)   

   (d)   (a ∨ b)′ = a′ ∧  b′   

2. The given operations on D30 satisfy the following properties: 

(a) Closure properties: 

Let, a and b be any two arbitrary elements of D30. Then, each one of 

a and b is a divisor of 30, that means LCM of a and b is a divisor of 

30 and HCF of a and b is a divisor of 30. 

So, for all a and b, 

(a∨b)  D30 and (a∧ b) D30 .  

So, D30 is closed for each of the operations ∨and ∧ 

(b) Commutative laws: 

Let, a and b be any two arbitrary elements of D30 

Then, LCM of a and b= LCM of b and a 

So, for all a, b D30,a∨b = b∨a, and,  

HCF of a and b=HCF of b and a 

So, for all a, b D30,a∧b = b∧a, 

Hence, the given Boolean algebra follows Commutative law 

(c). Associative laws: 

Let a,b, c be arbitrary elements of B. 

(i) LCM [{LCM (a, b)} and c] = LCM [a and {LCM (b, c)}]  

(a ∨ b) ∨ c = a∨ (b ∨c) for all a, b, c  D30  
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Space for learners: (ii) HCF [{HCF (a, b)} and c] = HCF [a and {HCF (b, c)}]  

(a∧b) ∧c =a∧ (b ∧c) for all a, b, c  D30 

So, it follows the Associative law 

(d). Distributive laws: 

 Let a and b be any two arbitrary elements of D30  

Then, we know that HCF is distributive over LCM, and LCM is 

distributive over HCF 

(i) a∧ (b∨ c) = (a∧b) ∨ (a∧c) for all a, b, c  D30 . [Distributive law 

of HCF over LCM] 

(ii) a∨ (b∧ c) = (a∨b) ∧ (a∨c) [ distributive law of LCM over HCF] 

(e). Existence of identity elements 

Clearly, 1 D30 and 30  D30 

Such that (i) a∨1 = LCM (a and 1) = a for all a D30  

(ii) a ∧30=HCF(a and 30)=a for all  D30  

This shows that 1 is the identity element for ∨ and 30is the identity 

element for ∧ 

(f). Existence of complement 

For each a  D30  

Let us define its complement a30/a  

Then, we have (i) (a ∨ a )=LCM (a, 30/a) =30 

(ii) a∧ a =HCF(a, 30/a )=1 

Now, 

{1 30 and 30 1};{2 15 and 15 2}; { 3 10 and 10 

3};{5 6 and 6 5}. 

Thus, each a D30 has its complement a in B.  

Hence,  

( D30 , ∨ , ∧ , ‘ ,) is a Boolean algebra. 

3. (a) A           

3. (b) 1         

3. (c) A∨ B ∨ C ∨ D 
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Space for learners: 4. (A ∧ B) ∨ (A∧ B ) ∨(A∧B)    

5. (A∧ B ∧C) ∨ (A∧ B ∧ C ) ∨ (A ∧ B∧ C  )∨ (A∧ B ∧C) 

6. (A∨ B∨ C) ∧ (A ∨ B∨ C ) ∧ (A ∨ B ∨ C) ∧ (A∨ B ∨ C) ∧ (A ∨ 

B ∨ C ) 

7. (X∨Y∨Z  ) ∧ (X∨Y∨Z) ∧ (X∨ Y∨Z) ∧ (X∨ Y∨Z ) 

4.18 POSSIBLE QUESTIONS 

1. Find a Boolean product of the variables x, y and z or their 

complement that has the value 1 if and only if  

 (a) x=y=0,z=1     (b)  x=0,y=1,z=0   (c) x=0, y=z=1    (d) x=y=z=0 

2. Find the sum of product expansion of the function f(x,y,z)=x 

3. With the values of truth table express the values of the following 

Boolean Function 

 (a) F(x,y,z)=( x ∧  y ) ∨ (xyz)         (b)  F(x,y,z)=(x∧y)∨(y∧z) 

4. With the help of the truth table of Conjunction and Disjunction 

Operation verify De Morgan’s Laws. 

5. Using identities of Boolean algebra show that 

(x∧ y  ) ∨  ( y ∧ z  ) ∨  ( x ∧ z ) =( x ∧ y ) ∨ ( y ∧ z) ∨ ( x ∧ z  ) 

4.19 REFERENECS AND SUGGESTED READINGS 

 Lattices and Boolean Algebra first concept, Second Edition By 

Vijay K Khanna 

 Discrete Mathematical Structures with Application to Computer 

Science by J.P Tremblay & R. Manohar. 
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Space for learners: UNIT 5:  ALGEBRAIC STRUCTURES 

 

Unit Structure: 

5.1  Introduction 

5.2  Unit Objectives 

5.3  Group: Theorem and Properties  

5.4  Basic Terms and their Definitions 

5.5 Cancellation laws in a Group 

 5.5.1   Permutation Group and its definition 

5.6 Sub Group 

 5.6.1  Theorem and properties of sub-group 

5.7  Ring and their Properties 

5.8 Field and its Theorem 

5.9 Homomorphism  

 5.9.1  Homomorphism of a group 

 5.9.2   Kernel of Homomorphism 

5.10  Vector space and its properties 

5.10.1 Linear Dependence and Linear Independence of 

Vectors  

 5.10.2 Vector Subspaces 

5.11 Definition of basis and Dimension 

 5.11.1  Problem regarding Basis and dimension 

5.12 Summing up 

5.13 Answers to Check Your Progress 

5.14 Possible Questions 

5.15 References and Suggested Readings 
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Space for learners: 5.1  INTRODUCTION 

An algebraic structure consists of a non-empty set together with one 

or more binary compositions which satisfies some postulates. An 

Algebraic structure is the collection of any particular models of a 

given set of axioms. If∗ is a binary operation on �. Then �� ,∗� is an 

algebraic structure.�� , +  ,   . �  is an algebraic structure equipped 

with two operations 

5.2  UNIT OBJECTIVES 

After going through this unit, you will be able to: 

 understand the basics of group and its various properties. 

 know the cancellation laws of groups 

 define subgroups and various operations on subgroups 

 understand the Lagrange’s Theorem 

 understand ring and its operations 

 give the definition of field 

 understand the vector space 

5.3  GROUP: THEOREM AND PROPERTIES 

Group: A non-empty set � , together with a binary composition ‘∗’ 

(star) is said to form a group, if it satisfies the following postulates  

(i) Closure property:  


 ∗ � ∈ � , for all 
  , � ∈ � 

(ii) Associativity: 

�
 ∗ �� ∗  = 
 ∗ �� ∗ �,for all 
 , � ,  ∈ � 

(iii) Existence of identity: 

There exists a unique element � ∈ � ,  called the identity element of 

� such that   


 ∗ � = 
 = � ∗ 
 , for all 
 ∈ � 
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Space for learners: (the element � is called the identity element) 

(iv) Existence of inverse:  

 For every ∈ � , there exist 
′ ∈ �( depending upon 
 ) such that  


 ∗ 
′ = � = 
′ ∗ 
. 

Note: (i) The group �  with the binary operation ∗  is sometimes 

denoted by <� ,∗> 

(ii) In particular the group < � , +> is called an addition group, the 

binary operation being addition. 

(iii) In particular the group < � , . >  is called a multiplication 

group, the binary operation being multiplication. 

1. Theorem: The identity element in a group is unique.  

Proof: Let �  be a group. If possible, let �  and � ′  be two identity 

elements of a group �.  

We have, �� ′ = �  if � ′  is the identity and  �� ′ = � ′  if �  is the 

identity. But �� ′ is a unique element of G. 

∴ �� ′ = � and �� ′ = �   => � = � ′ 

Hence the identity element is unique. 

2. Theorem: The inverse of each element of a group is unique. 

Proof: Let 
 be any element of a group � and let � be the identity 

element. Suppose � and  are two inverses of 
  i.e.   

�
 = � = 
� … … … … … . . ���   and 

    
 = � = 
 … … … … … … ���� 

We have, ��
� = �  �∴ �
 = �� 

                 = ������∴ ������������ 

Also, ��
� = ����  �∴ 
 = �� 

= �� = ����� 

But in a group composition is associative 

∴ ��
� = ��
� => � =  

Hence, inverse of an element of a group is unique. 

3. Theorem: The inverse of product of two elements of a group is 

the product of the inverse taken in the reverse order. 

                                              OR 

Prove that �
���� = ���
��∀
 , � ∈ �, where �is a group. 
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Space for learners: Proof: Let 
 and � be elements of �. 

If 
��  and ��� are inverse of 
 and � respectively. 

Then   

�� = � = 
��
  and  ���� = � = ����  , where �  is the 

identity element. 

Now,  
�
������
��� = ��
������
��  ∵ "#$"����"���
�


��"�
���� % 

= �
�������
�����
��"�
������� 

=  �
��
���∵ ���� = �� 

= 

���∵ 
� = 
� 

= � 

Also, 

����
����
�� = ����
���
���     , by associativity 

= �����
��
��� 
= ��������∵ 
��
 = �� 

= ���� 

= �    (∵ ���� = �) 

Thus, we have �
������
��� = � = ����
����
�� 

∴by definition of inverse, we have �
���� = ���
�� 

Example: Show that the set &  of all natural numbers &  is not a 

group with respect to addition. 

Solution:  

(i) Closure: Property: 

We know that sum of two natural number is natural number. 

∴ & is closed with respect to addition. 

(ii) Associativity: 

Also, addition of natural number is an associative composition. 

(iii) Existence of identity: 

But there exist no natural number � ∈ & such that � + 
 = 
 = 
 +
� ∀
 ∈ & 

For addition, 0 is the identity but 0 ∉ & 

Hence, condition of existence of identity is not satisfied. 

∴ &  is not a group w.r.t.  addition. 

∴< &  , +> is not a group. 
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Space for learners: 5.4  BASIC TERMS AND THEIR DEFINITION 

Commutative group (or Abelian group): 

A commutative group is an order pair �� , ∗� where G is a non-

empty set and ∗ is a binary operation defined on � such that  the 

following properties hold. 

(i) Closure property: 


 ∗ � ∈ �  ,  for all 
  , � ∈ � 

(ii) Associativity: 


 ∗ �� ∗ � = �
 ∗ �� ∗    , for all 
 , � ,  ∈ � 

(iii) Existence of identity: 

There exists an element ∈ � , called the identity element of � such 

that 
 ∗ � = 
 = � ∗ 
  , ∀
 ∈ � . 

(iv) Existence of inverse: 

For any ∈ � , ∃ an element 
′ ∈ �( depending on 
 ) such that 
 ∗
� ′ = � = � ′ ∗ 
 , where 
′ is called inverse of  
. 

(v) Commutativity: 

The binary composition ∗ is commutative i.e.,  

∗ � = � ∗ 
 , ∀
 , � ∈ � . 

Semi-Group: A non-empty set � together with binary composition 

�. � is called a semi-group if  


 . �� . � = �
 . �� . ∀
 , � ,  ∈ � 

Note: Every group is a semi-group. 

Monoid: A non-empty set �  together with binary composition 

which is associative and identity element exists is said to be a 

monoid. 

Finite group and Infinite group: 

If in a group, the set � has a finite number of distinct elements is 

known as a finite group and if the number of elements of the set are 

infinite then it is known as an infinite group. 

Order of a group: 

The number of elements in a finite group is called the order of the 

group and is denoted by *��� or |�|. E.g., In the group 

 � = ,1  , −1  , �  , −�/ 
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Space for learners: The order of group is *��� = 4. 

Order of an element in a group (Period): 

The order of an element 
 in a group � is the least positive integer 

���1�2����  such that 
3 = �  ,  the identity element of �  and we 

write *�
� = �. 
If 
3 ≠ �∀ positive integer � then 
 is said to be of infinite order or 

of zero order. 

Example 1: Show that the set of integers, 5 is a group with respect 

to the operation of addition. 

Solution:  

(i) Closure property: 

We know that sum of two integer is also an integer i.e.  


 + � ∈ 5  ,   ∀
 , � ∈ 5 

Thus 5 is closed with respect to addition. 

(ii) Associativity: 

We know that addition of integers is an associative composition. 

∴ 
 + �� + � = �
 + �� + ∀
 , � ,  ∈ 5 

(iii) Existence of identity: 

The number 0 ∈ 5 , also we have  

0 + 
 = 
 = 
 + 0  ∀
 ∈ 5 

      ∴the integer 0 is an identity. 

(iv) Existence of inverse: 

For any 
 ∈ 5 ,  then −
 ∈ 5 

 ∴ 
 + �−
� = 0 = �−
� + 
 

∴ 5is a group with respect to addition 

i.e.< 5 , + >is a group. 

 

5.5   CANCELLATION LAWS  

If 
 , � ,  are any elements of � then  

(i) 
� = 
 => � =    (Left cancellation law ) 

(ii) �
 = 
 => � =   (Right cancellation law) 
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Space for learners: Proof: Let � be the identity 

Since, 
 ∈ � =>there exist 
�� ∈ � such that 
��
 = � = 

�� 

Now, 
� = 
 

=> 
���
�� = 
���
� (multiplying both sides on left by 
�� ) 

=> �
��
�� = �
��
�   , by associativity 

=> �� = ��∵  a��a = e� 

=> � =     ( ∵ � is the identity) 

∴ 
� = 
 => � =  

Example 1: Show that the cancellation laws do not hold in a semi-

group. 

Solution: Consider the set 8  of all 2 × 2  matrices over integers 

under matrix multiplication, which forms a semi-group. 

If we consider ; = <1 0
0 0=  ,  > = <0 0

0 2= and ? = <0 0
3 0= ∈ 8 

Then, ;> = <1 0
0 0= <0 0

0 2= = <0 0
0 0= 

& ;? = <1 0
0 0= <0 0

3 0= = <0 0
0 0= 

∴ ;> = ;? 

But, > ≠ ? 

∴ the cancellation laws do not hold in a semi-group 

Example 2: Prove that if for every element 
 in a group � , 
A = � 

where � is the identity element of � then show that � is abelian. 

Solution: Let � be a group such that 
A = �∀
 ∈ � where � is 

 the identity element of �. 

We are to show that � is abelian. 

Let  
 , � ∈ � then 
� ∈ � and so  

�
��A = � 

=> �
���
�� = � 

=> �
���
����� = ����            [  ∵ ��� ∈ �] 

=> �
��
������
�� = ���
��        [ ∵ 
�� ∈ �  ] 

=> �
���
�
��� = ���
�� 

=> 
�� = ���
�� 

=> 
� = ���
��   ……………………. (i) 

Also, 
 ∈ � => 
A = �  , by hypothesis 
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� = � 

=> �

�
�� = �
���∵ 
�� ∈ �� 
=> 
�

��� = 
�� 

∴ 
 = 
��   …………………………   (ii) 

Similarly, � ∈ � => �A = � 

=> � = ���    ……………………  (iii) 

Using  (ii) and (iii) we get from (i)  


� = �
 

Thus ,
  , � ∈ � => 
� = �
 

So �is abelian. 

 

5.5.1 Permutation Group 

Let ; be a finite set (may be finite or infinite) and 1: ; → ; is 

bijective mapping then D is called permutation group i.e.  

        E�;� = ,1: ; → ;: 1 �� ��F����� #
$$��G/ 

The number of elements in the finite set D is known as the degree of 

permutation.  

Cycle or circular permutation: 

Let ∝∈ D3 , then I is called a cycle or circular permutation if there 

exists  

,�� , �A  ,   … … , �J/ such that I���� = �A, 

I��A� = �K , … … … … ..  , I��J��� = �J,  
I��J� = ��  then permutation is represented by I =
����A  … … … … �J� and I��� = � for all other � ∈ D3 

 

5.6    SUBGROUP 

Sub group: Let < � ,∗>  be a group and L be a non-empty subset 

of �. Then L is called a subgroup �. Then L is called a subgroup � 

if and only if L itself is a group under the binary composition ‘∗’ 

defined on �. 

The above definition can be written in full as follows: 
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Space for learners: Let < �  ,∗>  be a group and ⊆ �  , L ≠ N . Then L  is called a 

subgroup of � if  

(i) L  is closed w.r.t. the binary composition ‘ ∗ ’ i.e. 
 ∗ � ∈ L 

∀
  , � ∈ L. 

(ii) ‘∗’ is associative in L( which is obvious since � is group). 

(iii) � ∈ L , where � is the identity element of � . 
(iv) ∀
 ∈ L there exist 
�� ∈ L such that 
 ∗ 
�� = � = 
�� ∗ 
 . 

Example 1: Show that a non-empty subset L  of a group �  is a 

subgroup of � if and only   , � ∈ L => 
��� ∈ L . 

Solution: Let � be a group and H be a non empty subset of �. 

We assume, L be a subgroup of � then L itself a group w.r.t. the 

binary composition defined on � . We show that 
 , � ∈ L =>

��� ∈ L 

Let  , � ∈ L , since L is a group. 

         � ∈ L => ��� ∈ L 

Thus, 
 , � ∈ L => 
 , ��� ∈ L 

=> 
��� ∈ L [ since L is a group, so using closure property in H] 

∴ 
  , � ∈ L => 
��� ∈ L 

Conversely let L be such that 
 , � ∈ L => 
��� ∈ L   ............. (i) 

We show that L is a subgroup of �. 

(I) Existence of identity:  

Let � be the identity element of �. 

Since, L is nonempty so there exists 
 ∈ L 

Taking � = 
 in ��� , we see that 

�� ∈ L => � ∈ L 

∴ This shows the existence of identity in L 

(II) Existence of inverse: 

Let 
 ∈ L  , by (I) ,� ∈ L 

∴ � ∈ L , 
 ∈ L => �
�� ∈ L(using(i)) 

=> 
�� ∈ L 

Thus, 
 ∈ L => 
�� ∈ L 

This shows the existence of the inverse of every element in L. 

(III) Closure property: 

Let 
 , � ∈ L.  



 

122 | P a g e  

 

Space for learners: Then by (II), ��� ∈ L 

Thus, a,b∈ L => 
������� ∈ L     [by using (i)] 

=> 
� ∈ L 

Thus, 
 , � ∈ L => 
� ∈ L 

Which shows that L is closed with respect to the composition �. 

(IV) Associativity:  

Let 
 , � ,  ∈ L 

Since, ⊆ � , 
 , � ,  ∈ � 

Since, � is a group , we have �
�� = 
��� 

Hence, associativity holds in L. 

From (I) to (IV), it follows that L  itself a group with respect to 

composition �. 

So, L is a subgroup of � . 

Intersections of subgroups: 

Theorem1. If L and O are two subgroups of a group � then L ∩ O 

is a subgroup. 

Proof: Let L and Obe two subgroups of a group �. 

We are to show that L ∩ O is a subgroup of G. 

Since, L and O are subgroups of � . 
We have, L ⊆ �    , O ⊆ �   , � ∈ L  , � ∈ O , where � is the identity 

element of �. 

=> L⋂O ⊆ �  and � ∈ L ∩ O 

=> L ∩ O ⊆ �  ..........(i)          

& L ∩ O ≠ N .............(ii) 

Finally, let  2 , � ∈ L ∩ O  then, 

2 , � ∈ L
��2 , � ∈ O 

Since, L is a subgroup of �, 

2 , � ∈ L => 2��� ∈ L 

Similarly, 2 , � ∈ O => 2��� ∈ O 

∴ 2��� ∈ L & 2��� ∈ O 

=> 2��� ∈ L ∩ O 

Thus, 2 , � ∈ L ∩ O => 2��� ∈ L ∩ O  .................(iii) 

From (i), (ii) and (iii) we see that 
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Space for learners: ∴ L ∩ O is a subgroup of �. 

Give an example to show that union of two subgroup of a group 

may not be a subgroup of the group. 

Solution: we consider the additive group < 5 , +> of all integers. Let 

L = ,2
 
 ∈ 5⁄ / and O = ,3
 ∕ 
 ∈ U/ then 

L ⊆ 5  , O ⊆ 5  and  L ≠ N , O ≠ N  ......................(i) 

Also, 2 , � ∈ L => 2 = 2
 , � = 2� , where 
 , � ∈ 5 

=> 2 − � = 2�
 − �� = 2    , where  = 
 − � ∈ 5 

=> 2 − � ∈ L  ............................................ . (ii) 

Similarly, 2  , � ∈ O => 2 − � ∈ O ......................(iii) 

From (i), (ii) & (iii) we see that 

∴ L and Oare subgroups of 5. 

Now, 2 ∈ L ⊆ L ∪ O&3 ∈ O ⊆ L ∪ O 

=> 2 , 3 ∈ L ∪ O 

But  2 + 3 = 5 ∉ L&2 + 3 = 5 ∉ O 

=> 2 + 3 = 5 ∉ L⋃O 

Hence, L ∪ O is not closed with respect to addition and  

consequently L⋃O is not a subgroup of 5 . 

Definition: 

Coset: Let L  be a subgroup of a group � . If 
 ∈ �  then the set 

L
 = ,ℎ
: ℎ ∈ L/ is called the right coset of L in � generated by 
. 

Let L be a subgroup of a group. If 
 ∈ � then the set  


L = ,
ℎ: ℎ ∈ L/ is called the left coset of L in � generated by 
. 

Note: Any two right (left) cosets of a subgroup are either disjoint or  

Identical. 

Lagrange’s Theorem: 

Statement: The order of each subgroup of a finite group is a divisor 

of the order of the group. 

Proof: Let � be a finite group and "��� = �. Let L be a subgroup 

of � then L is obviously finite. Let "�L� = #. 

We first show that "�
L� = #∀
 ∈ � 

We define 1: L → L  by 1�ℎ� = 
ℎ∀ℎ ∈ L 

Then, ℎ� , ℎA ∈ L , 1�ℎ�� = 1�ℎA� => 
ℎ� = 
ℎA 
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Space for learners:         => ℎ� = ℎA  , by left cancellation law. 

 ∴ 1is one-one. 

Also, for an arbitrary element 
ℎ ∈ 
L , we find ℎ ∈ L  such that 

1�ℎ� = 
ℎ and so 1 is onto. 

Thus, 1: L → 
L is bijection and consequently  

"�
L� =  "�L� = #   , ∀
 ∈ � … … … … . ��� 

Next, let ? = ,
L: 
 ∈ �/ 

Since, � is finite, ? is clearly a finite family. 

Also, two distinct elements of � may produce the same left  

coset. So, if �?� = Z , then 1 ≤ Z ≤ # .  

Let,  ? = ,
�L , 
AL , … … … … … … . . , 
\L/, where 


� , 
A , … … … … , 
\ ∈ � 

Clearly, 
]L ⊆ �  for � = 1 , 2 , … … … , Z 

=>∪]^�\ 
]L ⊆ � … … … … … … … … . . . ���� 

Further, 2 ∈ � => 2L = 
_L  , for some F , 1 ≤ F ≤ Z 

=> 2 ∈ 2L = 
_L ⊆∪]^�\ 
]L 

=> 2 ∈∪]^�\ 
]L 

∴ � ⊆ `
]^�

\

]L … … … … … … … … … … ����� 

From (ii) & (ii) we get, 

� =∪]^�\ 
]L … … … … . ���� 

Also, 1≤ � ≤ Z , 1 ≤ F ≤ Z, � ≠ F => 
]L ≠ 
_L 

=> 
]L ∩ 
_ = N ..........(v) 

Hence, the coset 
�L , 
AL , … … … … , 
3L are mutually disjoint. 

From (iv) we get, 

� = "��� = "a∪]^�\ 
]Lb 

= "�
�L� + "�
AL� +  … … … . . +"�
\L� 

= # + # +  … … … … … … ..upto Z times (by (i)) 

= Z# 

=> �
# = Z 

=> c�d�
c�e� = Z , where Z is positive integers. 
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Space for learners: => "�L�is a divisor of "��� . 

Cyclic group: Let a group � is said to be cyclic if there exist an 

element 
 ∈ � such that every element 2 ∈ � is of the form = 
3 , 

where � is an integer. The element 
 is then called the generator of 

� and we can write � =< 
 >. 

e.g.,  � = ,1 , −1 , � , −�/ 

 = ,�f , �A , �� , �K/ 

∴ � =< � > is a cyclic group under multiplication. 

Example 2: Show that every cyclic group is abelian. 

Solution: Let � =< � > be a cyclic group generated by 
 ∈ �.  

Let 2 , � ∈ � be any elements. 

Then 2 = 
J  ,  � = 
g  for some integer h&� 

∴ 2� = 
J
g 

   = 
Jig 

         = 
giJ = 
g
J = �2 

    ∴ 2� = �2 

∴ � is abelian. 

Example 3:  Show that a subgroup f a cyclic group is cyclic. 

Solution: Let � =< 
 > be a cyclic group generated by 
 ∈ � and 

L is any subgroup of �. 

If L = ,�/ =< � > then clearly L is a cyclic group 

Let, L ≠ ,�/ and  

2 ∈ L be any non-identity element. 

=> 2 ∈ �  , since L is a subgroup of � 

=> 2 = 
3  for some integer 

=> 2�� = 
�3 

∴ 
3  , 
�3 ∈ L 

Let, # be the least positive integer such that 
j ∈ L. We shall show 

that L =< 
j > is a cyclic group generated by 
j 

Let, 2 ∈ L 

=> 2 ∈ � , since L is a subgroup of � 

=> 2 = 
3 , for some integer 

By division algorithm there exists integer k and h such that 



 

126 | P a g e  

 

Space for learners: � = #k + h , where 0 ≤ h < |#| ............. (i) 
=> h = � − #k 

=> 
J = 
3�jl 

=> 
J = 
3
�jl 

=> 
J = 
3�
j��l 

∴ 
J ∈ L 

∴ h = 0 , since # is the least positive integer such that 
j ∈ L 

From (i) 

=> � = #k 

=> 
3 = 
jl 

=> 
3 = �
j�l 

=> 2 = �
j�l 

∴ L =< 
j > is a cyclic subgroup. 

 

 

 

 

 

 

 

 

 

 

5.7   RING AND THEIR PROPERTIES 

Ring: A ring is an order triples< � , + ,   . > where � is a nonempty 

set and   + ,   .   are two binary operation on �  satisfying the 

following axioms . 

[��� Closure property for addition: 

  
 , � ∈ � => 
 + � ∈ �∀
 , � ∈ � 

CHECK YOUR PROGRESS-I 

1. State whether true or false 

(a) A non-empty subset L of a group �, which is closed under the 

binary composition in � is a subgroup of �. 

(b) If � is a group and L is a non-empty subset of �, then L will be 

a subgroup of � if LA = L. 

2. Every group of prime order is … … … … … … … ….( Even/Cyclic) 

3. Union of two subgroup is a ........................... 
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Space for learners: [�A� Associativity for addition: 

�
 + �� +  = 
 + �� + �∀
  , �  ,  ∈ � 

[�K� Existence of identity w.r.t. addition: 

There exists an element 0 ∈ � , called the zero element of �  such 

that  


 + 0 = 
 = 0 + 
∀
 ∈ � 

[�f�  Existence of inverse w.r.t. addition: 

For all ∈ � , there exist an element −
 ∈ � such that  

            
 + �−
� = 0 = �−
� + 
 

�Rn� Commutative property for addition: 

           
 + � = � + 
∀
 , � ∈ � 

�Ro� Closure property for � .  �: 

         
. � ∈ �   , ∀
 , � ∈ � 

��p�Associative property for � . �: 

        �
. ��.  = 
. ��. � , ∀
 , � ,  ∈ � 

��q�Distributive laws of �. � and �+�: 
        �
 + ��.  = 
.  + �.  

        . �
 + �� = . 
 + . �∀
 , � ,  ∈ � 

Example 1: Give two examples of ring. 

Solution:  

(i) We consider the set � of real numbers equipped with two binary 

composition addition (+) and multiplication (.), then it is easy to 

verify that < � , + ,   . > is a ring. 

(ii) Let 8A  denotes the set of all 2 × 2 matrices of real numbers.           

In 8A  we consider two binary operations, viz. addition (+) of 

matrices and multiplication (.) of matrices then it is easy to verify 

that  �8A , + ,   . � is a ring. 

Example 2: Prove that the set of matrices 8A of order 2 × 2 form a  

ring with respect to addition and multiplication. 

Solution: Let ; and > ∈ 8A. Then ; and > are two 2 × 2 matrices 

and so ; + >& AB are also 2 × 2 matrices.  

        ∴ ; + > ∈ 8A&;> ∈ 8A 

This shows that 8A  is closed with respect to addition and 

multiplication of matrices    ................   (i) 



 

128 | P a g e  

 

Space for learners: Since both addition and multiplication of matrices are associative, 

we see that both the composition in 8A are associative.    ......(ii) 

Also there exists 2 × 2 null matrix 

* = <0 0
0 0= such that for any 2 × 2 matrix ; ∈ 8A , 

       ; + 0 = ; = 0 + ; 

This shows that 0 is the zero element of 8A   ........................(iii) 

Further, if ; ∈ 8A where ; = <
�� 
�A

A� 
AA= 

Then there exists a matrix  

−; = <−
�� −
�A
−
A� −
AA= ∈ 8A such that  

; + �−;� = <
�� 
�A

A� 
AA= + <−
�� −
�A

−
A� −
AA= = <0 0
0 0= = 0 

Similarly, �−;� + ; = 0 

Therefore, ; + �−;� = 0 = �−;� + ; 

This shows that – ; is the inverse of ; in 8A. 

Thus, every element of 8A has inverse   ..............................(iv) 

Further addition of matrices is commutative and so the composition 

in 8A is commutative ...........................................................(v) 

Finally, by the distributive property of multiplication of matrices 

over addition we have, 

;�> + ?� = ;> + ;? 

�> + ?�; = >; + ?; 

∀; , > , ? ∈ 8A     ....................................................  (vi) 

From (i)  to (vi) we see that 8A is a ring with respect to addition and 

multiplication of matrices . 

Note: The ring �  with two binary compositions �+� and � . � is 

sometimes denoted by ��  , +  ,   . �. 

Commutative Ring:  

A ring �� , + , . � is called a commutative ring if and only if for all 


, � ∈ � , 
. � = �. 
 . 

Ring with unity: 

If in a ring � there exists an element 1 ∈ � such that 

s. 
 = 
 = 
. 1   ∀
 ∈ � then � is called a ring with unity element. 
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Space for learners: The element 1 is called the unity element of the ring. 

2. Theorem: In a ring, the following results hold 

(i) 
. 0 = 0 = 0. 
∀
 ∈ � 

(ii) 
. �−�� = �−
�. � = −
. �∀
 , � ∈ � 

(iii) �−
�. �−�� = 
. � 

(iv) 
. �� − � = 
. � − 
.  

(v) �� − �. 
 = �. 
 − . 
 

Proof:  

(i) We have,  


. 0 = 
�0 + 0��∴    0 = 0 + 0� 
=> 
. 0 = 
. 0 + 
. 0    ���t�1�����h��u����t
v� 
=> 0 + 
. 0 = 
. 0 + 
. 0  [ since 0. 
 ∈ �and 0 + 
. 0 = 
. 0] 

=> 0 = 
. 0   [ sincr � is a group w.r.t. + ,therefore applying right 

cancellation law for addition in �� 
Similarly, we have 

0. 
 = �0 + 0�. 
 = 0. 
 + 0. 
 [ by right distributive law] 

=> 0 + 0. 
 = 0. 
 + 0. 
�∴ 0 + 0. 
 = 0. 
� 
=> 0 = 0. 
   [using R.C.L. w.r.t.+ in the group < � , + > � 
∴ 
. 0 = 0. 
 = 0 

(ii) From the existence of inverse, it follows that 

� + �−�� = 0 

=> 
. �� + �−��� = 
. 0 

=> 
. � + 
. �−�� = 0   [ by the left distributive law and 
. 0 =
0] 

=> −
. � + �
. � + 
. �−��� = −
. � + 0   [ adding – 
. � on the 

left of both sides] 

=> �−
. � + 
. �� + 
. �−�� = −
. �   [ by associative law ] 

=> 0 + 
. �−�� = −
. � 

=> 
. �−�� = −
. � 

Similarly, we can prove 

�−
�. � = −
� 

∴ 
. �−�� = �−
�. � = −
. � 
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Space for learners: (iii) We know that  


. �−�� = −. �
�� … … … . . �1� 

Writing – 
 for 
 in (1) , we get  

�−
�. �−�� = −��−
�. �� 
= −�−�
. ���  , since �−
�. � = −
. � 

= 
. �   [ ∴ �  is a group and inverse of the inverse of an 

element is the element itself. −(−
 = 
) ] 

∴ �−
�. �−�� = 
. � 

(iv)  we have ,
. �� − � = 
. �� + �−�� 
= 
. � + 
. �−��  by left distributive law] 

= 
. � + �−
. �� ∴ 
. �−� = �−
�.  = −
. ] 

= 
. � − 
.  

(v) we have ,�� − �. 
 = �� − �. 
 

= �. 
 + �−�. 
� by right distributive law) 

= �. 
 + �−. 
� ∵ ��−�. 
 = −. 
� 
= �. 
 − . 
 

Theorem:  A commutative ring is an integral domain if and only if 

the cancellation law with respect to multiplication hold  on it. 

Proof: Let � be a commutative ring. First, we assume that � is an 

integral domain We are to show that the cancellation laws hold in �. 

Let, 
� = 
  , where 
 , � ,  ∈ �  , 
 ≠ 0 

=> 
� − 
 = 0 

=> 
�� − � = 0 

∴ either 
 = 0    or   � −  = 0  [∵ �is an integral domain] 

But 
 ≠ 0,   � −  = 0 

=> � =  

∴ 
� = 
 => � =   , which shows that left cancellationlaw  

with respect to multiplication. 

Similarly, 
 ≠ 0   , �  ,  ∈ �   , �
 = 
 => � =   , which shows 

the right cancellation law with respect to multiplication. 

∴ The cancellation law holds in � . 

Conversely, suppose that the cancellation law with respect to 

multiplication hold in � . We are to show that �  is an integral 

domain. 
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Space for learners: Let, 
 , � ∈ � such that 
� = 0 

Now,  


 ≠ 0  ,   
� = 0 

=> 
� = 
0 

=> � = 0   [ by left cancellation law w.r.t. multiplication hold 

in � � 
Similarly,  

� ≠, 
� = 0 

=> 
� = 0�  [ by right cancellation law w.r.t. multiplication] 

=> 
 = 0 

Hence, 
 , � ∈ �    ,   
� = 0 => either 
 = 0 or � = 0 

So, �is an integral domain. Hence, commutative ring is an integral 

domain if and only if the cancellation law with respect to 

multiplication hold on it.   

Example 3: Give an example of ring. 

Solution: We consider the set of real number equipped with two 

binary composition addition (+) and multiplication ( . ) then it is 

easy to verify that �� , + , . � is a ring. 

Example 4: If � is a ring such that 
A = 
∀
 ∈ �   , prove that  

(i) 
 + 
 = 0 ∀
 ∈ � 

(ii) 
 + � = 0 => 
 = � 

(iii) � is commutative. 

Solution:  

(i) Let 
 ∈ � such that 
A = 
 then by closure property, 


 + 
 ∈ � 

=> �
 + 
�A = 
 + 
   [ by hypothesis ] 

=> �
 + 
��
 + 
� = 
 + 
 

=> �
 + 
�
 + �
 + 
�
 = 
 + 
 

=> �
A + 
A� + �
A + 
A� = 
 + 
  [ by right distributive law] 

=> �
 + 
� + �
 + 
� = 
 + 
�∵ 
A = 
� 

=> �
 + 
� + �
 + 
� = �
 + 
� + 0 

=> 
 + 
 = 0   [by right distributive law] 

 



 

132 | P a g e  

 

Space for learners: (ii) Let 
  , � ∈ � such that 
 + � = 0 then using (i)  


 + � = 0 = 
 + 
 

=> � = 
 [ by left cancellation law] 

∴ 
 = � 

∴ 
 + � = 0 => 
 = � 

(iii) Let, 
 , � ,  ∈ � then 
 + � ∈ � and so, by hypothesis, 

�
 + ��A = 
 + � 

=> �
 + ���
 + �� = 
 + � 

=> �
 + ��
 + �
 + ��� = 
 + � 

=> 
A + �
 + 
� + �A = 
 + �   [by right distributive law] 

=> 
 + �
 + 
� + � = 
 + � 

=> �
 + 
� + � = �  [by LCL] 

=> �
 + 
� = 0  [ by RCL] 

=> �
 = 
��by result (ii)] 

∴ 
� = �
∀
 , � ∈ � 

∴ � is commutative. 

Zero divisor in a ring: 

A non-zero element ‘ 
’ in a ring � is called a ( proper ) zero divisor 

if there exist another non zero elements ‘�’ in �such that 
� = 0 . 

Example 5: Give an example of a ring with zero divisor. 

Solution: We consider a ring 8A  of all 2 × 2  matrix over real 

numbers. 

Let ; = <0 1
0 0= ,   > = <2 0

0 0= ∈ 8A 

Then ; ≠ 0      , > ≠ 0 

;> = <0 1
0 0= <2 0

0 0= = <0 0
0 0= = 0 

∴ 8Ais a proper zero divisor 

Integral domain: 

A commutative ring �  without proper zero divisor is called an 

integral domain  

i.e.,          
� = 0  ∀
 , � ∈ � 

=> 
 = 0 or � = 0 
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Space for learners: Example 6: Give an example of a ring which is not an integral 

domain. 

Solution: Let 8A  denote the set of all 2 × 2  matrices of real 

numbers then it is easy to verify that 8A  is a ring under matrix 

addition and multiplication. 

Now, let ; = <1 0
0 0=     and  > = <0 0

0 1= 
Then ; ≠ 0   , > ≠ 0 

But   ;> = <1 0
0 0= <0 0

0 1= = <0 0
0 0= = 0 

∴ 8A is not an integral domain 

Example 7: When is a ring said to be an integral domain? 

Solution: A ring < �  , +  ,   . >is said to be an integral domain if the 

following two properties are satisfied in. 

(i) Commutative property of multiplicativity 


� = �
∀
 , � ∈ � 

(ii) Non-existence of zero divisor: 


 , � ∈ �     ,   
� = 0 =>either 
 = 0 or � = 0 

 

5.8 FIELD AND ITS THEOREM 

Definition: A field is an order triple < w  , + , . > where w is a set 

containing at least two elements and �+� , �. �  are two binary 

composition in w satisfying the following axioms: 

(i) Closure property for addition: 

      
 + � ∈ w∀
  , � ∈ w 

(ii) Associativity for addition: 

      
 + �� + � = �
 + �� + ∀
  , �  ,  ∈ w 

(iii) Existence of identity: 

There exists an element 0 ∈ w called the zero element of w such that   

       
 + 0 = 
 = 0 + 
∀
 ∈ w 

(iv) Existence of additive inverse: 

For all 
 ∈ w there exist an element −
 ∈ w such that  

         
 + �−
� = �−
� + 
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Space for learners: (v) Commutativity for addition: 

       
 + � = � + 
∀
 , � ∈ w 

(vi) Closure property for multiplication: 

       
. � ∈ w∀
 , � ∈ w 

(vii) Associativity for multiplication: 

        
. ��. � = �
. ��. ∀
  , � ,  ∈ w 

(viii) Distribution property of multiplication over addition: 

          
. �� + � = 
. � + 
.  

        �� + �. 
 = �. 
 + �. ∀
  , �  ,  ∈ w 

(ix) Existence of multiplicative identity: 

There exists an element 1 ∈ w , called the unit element of w  such 

that  
. 1 = 
 = 1. 
∀
 ∈ w 

(x) Existence of multiplicative inverse for non-zero elements of w: 

For every non zero element 
 ∈ w there exist an element 
�� ∈ w 

such that 
. 
�� = 1 = 
��. 
 

(xi) Commutativity for multiplication:  

       
. � = �. 
∀
 , � ∈ w 

Alternate definition of Field: 

A commutative ring with unity (having at least two elements) in 

which every non zero element has its multiplicative inverse (i.e., the 

set of non-zero element form a group under multiplication) is called 

a field. 

Example 1: Show that every field is an integral domain but 

converse is not true (i.e., integral domain may not be a field). 

Solution: Let w be a field i.e., w is a commutative ring with unity 

‘1’ in which every non-zero element has its multiplicative inverse. 

To show that w is an integral domain. 

Let, 
 , � ∈ w such that 
� = 0 

We first assume that 
 ≠ 0 since w is a field, 
�� exists i.e 
�� ∈ w 

such that 

�� = 1 = 
��
 

So,  
� = 0 

=> 
���
�� = 
���0� = 0 

=> �
��
�� = 0 

=> 1 � = 0    [ 1 being the unity element in w  ] 
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Next, we assume that � ≠ 0 then ��� exists and so 

        
� = 0 

=> �
����� = �0���� 

=> 
������ = �0���� 

=> 
�1� = 0  [ ∴1 being the unit element of w] 

=> 
 = 0 

Thus, 
 , � ∈ w  , 
� = 0 => either 
 = 0 or � = 0 

This shows that w  is an integral domain. Hence every field is an 

integral domain. 

Example 2: Show that every integral domain may not be a field. 

Solution: We consider the ring < 5 , + ,   . > of integers with usual 

addition and multiplication is an integral domain which is not a 

field. Since, the non-zero elements except ±1 have no multiplicative 

inverse in 5.  

Now, 2 ∈ 5 and 2 ≠ 0 but there exist no 
�
A ∈ 5 such that 2 .  �

A = 1 =
�
A  . 2 

∴t he non-zero element 2 ∈ 5 has no multiplicative inverse . 

So ,< 5 , +  ,   . >is not a field . 

 

5.9  HOMOMORPHISM 

 

5.9.1 Homomorphism of Group 

A mapping 1: � → �yis said to be a homomorphism of � into �y if  

     1�
�� = 1�
�1��� ∀  
  , � ∈ � 

5.9.2 Kernel of a Homomorphism  

If 1 is a homomorphism of a group � into a group �y, then the set O 

of all those elements of �which are mapped by 1. 
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Space for learners: 5.10 VECTOR SPACE AND ITS PROPERTIES 

Let �w , + ,    . �  be field. The element of w  is called scalars. The 

element of z(any non-empty set) is called vectors. Then z is a space 

over the field w if  

(I) �z , +�is abelian group 

(II) External Composition in z over w i.e I
 ∈ z   , 
 ∈ z   , I ∈ w 

(III) The two compositions �+ , . � satisfy the following conditions: 

(a) I�
 + �� = I
 + I�      ∀  
 , � ∈ z 

(b) �I + {�
 = I
 + {
    ∀  I ∈ w 

(IV) �I{�
 = I�{
�     ∀ 
 ∈ z  , I , { ∈ z 

(V)1
 = 
   ,1 is unity element of w 

The z is a vector space over the field, e.g., ℂ is a field of complex 

number and ℝ is a field of real number. 

(i) ℂ�ℝ� is vector space, since ℝ ⊆ ℂ . 

(ii) ℝ�ℂ� is not vector space. 

 

5.10.1  Linear Dependence and Linear Independence 

of Vectors 

Let z�w� be a vector space. A finite set ,I�, IA, … … … … . . , I3/ of 

vectors of z is said to be linearly dependent if there exist scalars 

�, A , … … … ..   , 3 ∈ wnot all of them zero ( some of them may be  

zero) such that �I� + AIA +  … … … … … . +3I3 = 0  
�. � 

∑ ]I]3]^� = 0 atleast one I] ≠ 0. 

Some Important Result: 

1. If two vectors are linearly dependent then one of them is a scalar  

multiple of other the other  

2. A system consisting of a single non-zero vector is always linearly  

dependent.  

 

 



 

137 | P a g e  

 

Space for learners: 5.10.2 Vector Subspaces 

Let z be a vector space over the field w and let � ⊆ z. Then �is 

called a subspace of z  if �  itself is a vector space over w  with 

respect to the operations of vector addition and scalar multiplication 

in z.  

Result: 

1.  A subset �of a vector space z�w� is a subspace of V, if and 

 only if ∀  I , { ∈ � and 
 , � ∈ w => 
I + �{ ∈ � . 

5.11 BASIS AND DIMENSION 

Let z be a vector space over a field w. Then a subset > of z is called 

a basis of z  if >  is linearly independent over w  and z =< > > 

Number of elements in basis is called dimensions of vector space. 

Linear Span 

If D = ,I� , IA , IK , … … … … .   , I3/  from �w�  . Set of all liner 

combination of vectors of D is known as linear span of D. 
Finite dimensional vector space  

A vector space z�  is said to be finite dimensional vector space if 

there exist a finite subset D of w such that =< > > . 

If ℝA�ℝ� is finite dimensional vector space. It is generated  

by a finite set > = ,�0 , 1� , �1 , 0�/ then ��#aℝA�ℝ�b = 2 

Example 1:  

Consider the vector space ℂ�ℝ� , find the basis and dimension. 

Solution:  

Let,                ℂ = ,I + �{: I , { ∈ ℝ/ 

2 + 3� = I. 1 + {. ������
h "#���
��"� "1 �
���� 

                           = 2.1 + 3. � 
∴ ��#aℂ�ℝ�b = 2 
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Space for learners: Example 2: What is the dimension of ℝ�ℚ�? 

Solution: ��#ℝ�ℚ� = ∞ 

5.12 SUMMING UP 

 A non-empty set, together with a binary composition ‘∗’ (star) is 

said to form a group, if it satisfies closure property, Associativity 

property, existence of identity and existence of inverse 

properties. 

 A commutative group is an ordered pair �� , ∗� having the 

additional Commutativity property in addition to all four 

properties of a group. 

 If G be a group and H be a non-empty subset of �. Then L is 

called a subgroup � if and only if L itself is a group under the 

binary composition ‘∗’ defined on �. 

 A ring is an order triples < � , + ,   . > where � is a nonemptyset 

and   + ,   .  are two binary operation on � satisfying the closure 

property for addition, associativity for addition, existence of 

identity w.r.t. addition, existence of inverse w.r.t. addition, 

commutative property for addition, closure property for � .  � , 

Associative property for � . �  and Distributive laws of �. �  and 

�+� 

 A non-zero element ‘ 
’ in a ring � is called a ( proper ) zero 

divisor if there exist another non zero elements ‘�’ in �such that 


� = 0 . 

 A commutative ring � without proper zero divisor is called an 

integral domain 

5.13  ANSWERS TO CHECK YOUR PROGRESS 

1.(a) False    

(b) False    

2. Cyclic   

3. Sub-group 
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Space for learners: 5.14  POSSIBLE QUESTIONS 

Short Answer type Questions: 

1.  Define semi-group. 

2.  Give an example of a semi group which is not group. 

3. Define zero divisor of a ring. 

4. Give an example of a ring which is not an integral domain 

5. Define basis of a vector space. 

6. Define linearly independent of the vector space. 

7. Define order of a permutation group. 

8. Under what condition a ring is said to be an integral domain. 

Long Answer type Question: 

1. Show that identity element in a group is Unique. 

2. Show that the set of all positive rational numbers forms an 

abelian group under the composition defined by  
 ∗ � =
�
�/2� 

3.  Show that every group of prime order is cyclic. 

4.  Show that union of two subspace may not be a subspace. 

5.  Show that intersection of two subgroup is again a subgroup. 

6.  Prove that two vectors are linearly independent then one of them 

is scalar multiple of the other. 

7.  Show that the vectors �1 , 1 , 0 , 0�  , �0 , 1 , −1 , 0�  , �0 , 0 , 0 , 3�  

in ℝf�ℝ�are linearly independent. 

8.  Give an example of a ring which is not a field. 

9.  Show that every transposition is always an odd permutation. 

10.  Show that every field is an integral domain. 

5.15REFERENCES AND SUGGESTED READINGS 

 Modern Algebra by. Vasistha, A. R., Krishna Publication, India 

2018 
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Space for learners: UNIT 6: PROPOSITIONAL CALCULUS-I 

 

Unit Structure: 

6.1 Introduction 

6.2 Objectives 

6.3 Proposition 

6.3.1 Examples of proposition 

6.4 Propositional variables 

6.5 Truth Tables 

6.6 Logical Connectives 

6.6.1.1   Negation 

6.6.1.2   Conjunction 

6.6.1.3   Disjunction 

6.6.1.4   Conditional Statements 

6.6.1.5   Biconditional Statements 

6.7 Summing Up 

6.8 Answers to Check Your Progress 

6.9 Possible Questions 

6.10 References and Suggested Readings 

6.1  INTRODUCTION 

Mathematical logic is the science of reasons. Greek philosopher 

Aristotle (381-322 BC) first introduced the concept of logical 

reasoning. The mathematical logic compromise of two branches:(a) 

Propositional calculus, (b) Predicate calculus. But in this course, our 

discussion will restrict only propositional calculus. The branch of 

logic that deals with propositions is called propositional calculus. 

Propositional calculus is the study of the logical relationship 

between propositions. Propositional calculus forms the basis of all 

mathematical reasoning and it has many applications in computer 

science like design of computing machines, artificial intelligence, 

data structures for programming language etc. 
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Space for learners: 6.2   UNIT OBJECTIVES 

After going through this unit, you will be able to:  

 define propositions and examples of propositions 

 define truth tables about different propositions 

 know about negation of a proposition 

 know about conjunction, disjunction, conditional and bi- 

conditional of two propositions 

6.3  PROPOSITION 

Definition: 

A proposition (or statement) is a declarative sentence which is either 

true or false but not both. 

The truth or falsity of a proposition is called its truth value. 

Notations: 

(a) If a proposition is true then its truth value is denoted by T 

(b) If a proposition is false then its truth value is denoted by F 

We now define Simple propositions and Compound propositions. 

A simple proposition is a statement or assertion that must be true or 

false. 

Many statements or propositions are constructed by combining one or more 

propositions, new propositions called compound propositions are formed 

existing propositions using logical connectives. A compound proposition is 

a combination of simple propositions and hence, can be broken 

down in primitive propositions. 

 

6.3.1 Example of Proposition 

ILLUSTRATION 1: Consider the following sentences 

(i) New Delhi is the capital of India. 

(ii) 7 is a prime number. 

(iii) Every quadrilateral is a rectangle. 
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Space for learners: (iv) The earth is a planet. 

(v) Three plus six is9. 

(vi) The sun is a star. 

(vii) Delhi is in America. 

 

Each of the sentences (i), (ii), (iv) & (v) is a true declarative sentence 

and so each of them is a proposition.  

Each of the sentences (iii), (vi), (vii) is a false declarative sentence 

and so each of them is a proposition.  

All the above propositions are atomic propositions 

 

ILLUSTRATION 2: Consider the following sentences: 

i) Go to bed. 

ii) Give me a glass of water. 

iii) How are you? 

iv) Where are you going? 

v) May god bless you! 

vi) May you livelong! 

vii) � + 2 = 5 

viii) � + � < 	 

 

Sentences (i) & (ii) are imperative sentences, so they are not 

propositions. Each of the sentences (iii) & (iv) is interrogative. So, 

they cannot be propositions. Similarly, (v) & (vi) are also not 

declarative sentences and hence not propositions. The expression 

(vii) and (viii) are not propositions, since the variables in these 

expressions have not been assigned values and hence, they are 

neither true or false. 
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CHECK YOUR PROGRESS-I 

 

1.Define proposition. 

2.Which of the following sentences are propositions? What are the 

truth values of those that are propositions? 

                  (a) 3 + 4 = 7 

 

                  (b) 5 + 7 = 10 

            (c) There are 35 days in a month. 

  (d) � + 3 = 12 

                (e)Answer these questions. 

3.Write down the truth value of the following propositions: 

(a) All the sides of a rhombus are equal in length. 

(b) √3 is a rational number. 

(c) The number 30 has four prime factors. 

(d) Every square matrix is non-singular. 

(e) 1 + √8 is an irrational number. 

 

6.4 PROPOSITIONAL VARIABLES 

 

Now, we will abbreviate propositions by using propositional 

variables. Each proposition will be represented by a propositional 

variable. Propositional variables are usually represented as lower-

case letters, such as p, q, r, s, etc. The capital letters A, B, C, ..., P, 

Q, ... with the exception of T and F are also used. Each variable can 

take one of two values: true or false. 

Example 1: Consider the propositions 

(i) Guwahati is in India. 

(ii) 6 + 8 = 14 

(iii) The sun is shining. 

Now we can assign propositional variables p, q, r for the 

propositions (i), (ii) and (iii). 
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Space for learners: The propositions (i), (ii) and (iii) can be represented by 

�: Guwahati is in India 

�: 6 + 8 = 14 

And    �: The sun is shining 

 

6.5 TRUTH TABLES 

A table which gives the truth values of a compound proposition in 

terms of its component parts is called a ‘Truth Table’. A truth table 

consists of rows and columns. The initial columns are filled with the 

possible truth values of the component parts and the last column is 

filled with the truth values of the compound proposition on the basis 

of the truth values of the component parts written in the initial 

columns. If the compound proposition is consisting of �  component 

parts, then its truth table will contain 2� rows. 

A truth table displays the relationship between the truth values of 

propositions. 

Note: Truth tables are very useful in the determination of 

propositions constructed from simple propositions. 

 

6.6 LOGICAL CONNECTIVES 

Till now, we have considered simple or primary propositions which 

are declarative sentences, each of which cannot be expressed as a 

combination of more than one sentence. We often combine simple 

(primary) propositions to form compound propositions by using 

certain connecting words known as logical connectives or logical 

operators. Primary statements are combined by means of five 

logical connectives. 

Now we will discuss in details about these five logical connectives 

which will allow us to build up compound proposition sand their truth 

values expressed in a tabular form, called Truth Table. 
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Space for learners: Five Basic Logical Connectives 

 Logical 

Connectives 

Name of the 

Connectives 

Symbols of the 

connectives 

1 Not Negation (or Denial) ~ 

2 And Conjunction ∧ 

3 Or Disjunction ∨ 

4 If … then Conditional → 

5 If and only if Biconditional ↔ 

 

6.6.1 Negation 

The denial of a proposition� is called its negation and is written as 

~�and read as ‘not �’. Negation of any proposition� is formed by 

writing “It is not the case that’’ or “It is false that’’ before � or 

inserting in � the word “not’’. 

Let us consider the proposition 

�: All integers are rational numbers. 

The negation of this statement is: 

   ~ �: It is not the case that all integers are rational numbers. 

or 

   ~ �: It is false that all integers are rational numbers. 

or 

   ~ �: It is not true that all integers are rational numbers.  

Let us consider another the proposition,  

     � : 7 >9 

The negation of this statement is~�:~ (7>9) or ~�:(7<9) 

Truth Table of Negation: If the truth value of “�’’isT, then the truth 

value of~� is F. Also, if the truth value of “�’’is F, then the truth 

value of ~� is T. 

The truth table of for the negation of a proposition 

 

� ~� 

T F 

F T 

Example 1: Write the negation of the following propositions: 

(i) √7is arational 
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7 

  (ii) Every natural number is greater than zero. 

  (iii) All primes are odd. 

  (iv) All mathematicians are men.  

Solution: 

(i) Let �denote the given proposition i.e., 

�: is arational. 

The negation of this proposition is given by 

                  ~�: It is not the case that √7 is arational. 

Or 

                ~�: √7 is not arational. 

Or 

                  ~�: It is false that √7 is arational. 

(ii) The negation of the given proposition is: 

It is false that every natural number is greater than 0. 

OR, 

There exists a natural number which is not greater than0. 

(iii) The negation of the given proposition is  

There exists a prime which is not odd. 

OR 

Some primes are not odd. 

OR 

At least one prime is not odd. 

(iv)The negation of the given proposition is: 

Some mathematicians are not men. 

OR 

There exists a mathematician who is not man. 

OR 

At least one mathematician is not man. 

OR 
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Space for learners: It is false that all mathematicians are me 

 

CHECK YOUR PROGRESS-II 

4. Why Logical Connectives are used? 

5. Write the negation of the following propositions- 

i) Bangalore is the capital of Karnataka. 

ii) The Earth is round. 

iii) The Sun is cold. 

iv) Some even integers are prime. 

v) Both the diagonals of a rectangle have the same length. 

vi) 4 + 7 = 10 

vii) Today is Monday 

viii) If it snows, Samir does not drive the car. 

 

6.6.2 Conjunction 

 

The conjunction of two propositions � and �  is the proposition 

“� and �” which is denoted by� ∧ �.�,� are called the 

components of � ∧ �. 

Illustrative Examples: 

(i) The conjunction of the propositions: 

�:It is raining 

�: 2 + 2 = 4  is 

� ∧ �:It is raining and 2 + 2 = 4. 

(ii) Consider the proposition   

 � : The Earth is round and the Sun is cold. 

 Its components are:  

 �: The Earth is round. 

! : The Sun is cold. 

Truth table: The statement � ∧ � has the truth value Twhenever 

both � and � have the truth value T; Otherwise, it has the truth value 

F. 
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Space for learners: The truth table for conjunction of two propositions 

P Q P∧ � 

T T T 

T F F 

F T F 

F F F 

 

6.6.3 Disjunction 

The disjunction of the two propositions � and� is the statement 

“�or �”, denoted by � ∨ �. �,�are called the components of � ∨
�. 

Examples: 

(i) Consider the compound proposition  

�: Two lines intersect at a point or they are parallel. 

 The component propositions of are:   

 � : Two lines intersect at a point.  

          ! : Two lines are parallel. 

(ii) Consider another proposition 

 �: 45 is a multiple of 4 or 6.  

 Its component propositions are:  

 �: 45 is a multiple of 4.    

          !: 45 is a multiple of 6. 

Truth table: The statement � ∨ � hasthetruthvalueFonlywhen 

both� and � havethetruthvalueF,� ∨ � istrueifeither� istrue or � is 

true (or both � and � are true).  

Truth table for disjunction o f  t w o  p r o p o s i t i o n s  

P Q P∨Q 

T T T 

T F F 

F T F 

F F F 

 

Example 2: Write the component propositions of the following 

compound propositions and check whether the compound 

proposition is true or false. 
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Space for learners: (i)   50 is a multiple of both 2and5. 

(ii) Mumbai is the capital of Gujrat or Maharashtra. 

(iii) A rectangle is a quadrilateral or a 5-sidedpolygon. 

Solution: 

i) The component statements of the given statement are  

�: 50 is multiple of2 

� : 50 is multiple of 5 

We observe that both �and �are true statements. Therefore, the 

compound statement � ∧ � is true. 

ii) The components proposition of the given proposition are  

�: Mumbai is the capital of Gujrat. 

�: Mumbai is the capital of Maharashtra. 

We find that � is false and � is true. Therefore, the compound 

statement,� ∨ �is true. 

iii) The component propositions are 

�: A rectangle is a quadrilateral. 

�: A rectangle is a 5-sided polygon. 

We observe that � is true and � is false. Therefore, the compound 

proposition � ∨ � is true. 
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Space for learners: CHECK YOUR PROGRESS-III 

 

6. Write the following propositions in symbolic form:  

i) Pavan is rich and Raghav is not happy. 

ii) Pavan is not rich and Raghav is happy. 

iii) Naveen is poor but happy. 

iv) Naveen is rich or unhappy 

v) Naveen and Amal are both smart.  

vi) It is not true that Naveen and Amal are both smart 

vii) Naveen is poor or he is both rich and unhappy 

vii) Naveen is neither rich nor happy. 

7. Write the component statements of the following compound 

statements and find true values of the compound statements. 

i) Delhi is in India and 2 + 2 =4. 

ii) Delhi is in England and 2 + 2 =4. 

iii) Delhi is in India and 2 + 2 = 5.  

iv) Delhi is in England and 2 + 2 =5. 

v) Square of an integer is positive or negative. 

vi) The sky is blue and the grass is green.  

vii) The earth is round or the sun is cold. 

viii) All rational numbers are real and all real numbers are 

complex. 

ix) 25 is a multiple of 5 and8. 

x) 125 is a multiple of 7or8. 

 

6.6.4 Conditional Statements 

If P and Q are any two statements, then the statement “if P, then Q”, 

is called a conditional statement. It is denoted by P→Q.  

Example: Let,  

P: Amulya works hard. 

Q:Amulya will pass the examination. 
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Then,  

P→Q: If Amulya works hard, then he will pass the 

examination. 

The statement P is called the antecedent and Q is called the 

consequent in P→Q. The sign “→” is called the sign of implication. 

The conditional statement P→Q can also be read as:  

i) P only if Q  

ii) Q if P 

iii) Q provided that P 

iv) P is sufficient for Q 

v) Q is necessary conditions for P 

vi) P implies Q 

(vii) Q is implied by P. 

Truth table: If the antecedent P is true and the consequent Q is 

false, then the conditional statement P→Q is false, otherwise it is 

true as given in the following table. 

The truth table for the conditional P→Q 

P Q P→Q 

T T T 

T F F 

F T T 

F F T 

Example 3: Write each of the following statements in the form “If–

then” 

i) You get job implies that your credentials are good. 

ii) A quadrilateral is a parallelogram if its diagonals bisect each 

other. 

iii) To get A+ in the class, it is necessary that you do all the 

exercises of the book. 

Solution: 

(i) The given statement can be written as “If you get a job, then 
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P 

 
T 

S 

 
F 

P→S 

 
F 

R 

 
F 

S 

 
F 

R→S 

 
T 

your credentials are good.” 

(ii) The given statement can be written as- 

“If the diagonal of a quadrilateral bisects each other, then it is a 

parallelogram”. 

(iii) The given statement can be written as 

“If you are to get A+ in the class, then you are to do all the exercises 

of the book”. 

Example 4: Write the following conditional statements in symbolic 

form and hence, find truth values. 

i) If 2 + 2 = 4, then Guwahati is in Assam 

ii) If 2 + 2 = 4, then Guwahati is in Bihar 

iii) if 2 + 2 = 5, then Guwahati is in Assam 

iv) If2+2=5, then Guwahati is in Bihar 

Solution: Let,  

P: 2 + 2 =4 

Q: Guwahati is in Assam  

R: 2 + 2 =5 

S: Guwahati is in Maharashtra, Then  

i) The given statement is P→Q 

As P and Q have truth values T each, so P→Q has truth value T, i.e., 

the given conditional statement is true. 

ii) The given statement is P→S 

So, the given statement is false. 

iii) The given statement is R→Q 

 

 

 

So, the given statement is true. 

iv) The given statement is R→S 

R Q R→Q 

F T T 
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Space for learners: So, the given statement is true. 

 

CHECK YOUR PROGRESS-IV 

8. Write down the truth value of each of the following implication. 

i) If 3 + 2 = 7, then Paris is the capital of India. 

ii) If 3 + 4 = 7, then 3 >7 

iii) If 4 > 5, then 5 <6. 

iv) If 7 > 3, then 6 <14 

   v) If 7 > 3, then 14 > 9. 

 

6.6.5 Biconditional Statements 

If P and Q are any two statements, then the statement ‘P if and only 

if Q’ is called a biconditional statement which is denoted by P↔Q. 

‘P if and only if Q’ is also abbreviated as “P if Q”. 

The biconditional ‘P if and only if Q’ is regarded as having the 

same meaning as ‘if P, then Q and if Q, then P’. So, the 

biconditional P↔Q is the conjunction of the conditionals P→Q 

and Q→P i.e., (P→Q) ∧ (Q→P) is same asP↔Q. 

The statement P↔Q can also be read as 

a) Q if and only if P 

b) P implies Q and Q implies P 

c) P is necessary and sufficient condition for Q 

d) Q is necessary and sufficient condition for P 

The truth table for the biconditional P↔Q 

P Q P↔Q 

T T T 

T F F 

F T F 

F F T 

Thus, the biconditional P→Q is true only when both P, Q have 
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Space for learners: identical truth values, otherwise it is false. 

For examples: 

1. A triangle is equilateral if and only if it is equiangular. 

2. 8> 4 if and only if 8 – 4 is positive. 

3. 2+2=4ifandonlyifitisraining. 

4. Two lines are parallel if and only if they have the same slope. 

Example 5: Write the truth value of each of the following 

biconditional statements. 

i)4 > 2 if and only if 0 < 4 – 2.  

ii) 3 < 2 if and only if 2 <1. 

iii) 3 + 5 > 7 if and only if 4 + 6 <10. 

iv) 2 + 5 = 7 if and only if Guwahati is in Assam. 

Solution: 

i) L e t  P: 4 >2 

Q: 0 < 4 – 2 

Then, the given statement is P→Q. 

Clearly, P is true and Q is true and therefore, P→Q is true. 

Hence, the given statement is true, and its truth value is T. 

(ii)  Let P:3 <2 

Q: 2 <1 

Then, the given statement is P→Q. 

Clearly, P is false and Q is false and therefore, P→Q is true. 

Hence, the given statement is true, and its truth value is T. 

(iii) Let, P: 3 + 5 >7 

Q: 4 + 6 < 10 

Then, the given statement is P→Q. 

Clearly, P is true and Q is false and therefore, P→Q is false. 

Hence, the given statement is false and therefore, its truth value 

is F. 
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Space for learners: (iv) Let, P: 2+5=7 

Q: Guwahati is in Assam 

Then, the given statement is P→Q. As P is false, Q is true, the given 

statement is false. 

 

CHECK YOUR PROGRESS-V 

9.Write down the truth value of each of the following: 

i) 3 + 5 = 8 if and only if 4 + 3 =7. 

ii) 4isevenifandonlyif1isprime. 

iii) 6isoddifandonlyif2isodd. 

iv) 2 + 3 = 5 if and only if 3 >5. 

v) 4 + 3 = 8 if and only if 5 + 4 =10. 

vi) 2 < 3 if and only if 3 <4. 

 

6.7 SUMMING UP 

 A primary proposition is a declarative sentence which cannot be 

further broken down or analyzed into simpler sentences. 

 New propositions can be formed from primary propositions 

through the use of sentential connectives. The resulting 

statements are called compound propositions. 

 The sentential connectives are also called logical connectives. 

These connectives are: NOT (negation), AND (conjunction), OR 

(disjunction), IF– THEN (conditional), IF AND ONLY IF (Bi-

conditional). 

 Truth tables have been introduced in the definitions of the 

connectives. 

 The statement P is called the antecedent and Q is called the 

consequent in P → Q. 

6.8  ANSWERS TO CHECK YOUR PROGRESS 

Ans. to Q. No.1: A proposition is a declarative sentence which is 

either True or False but not both.  
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Space for learners: Ans. to Q. No.2: 

 (a)  Proposition, T 

 (b)  Proposition, F 

 (c)  Proposition, F 

 (d)  Not proposition 

 (e) Not proposition 

 

Ans. to Q. No.3: (a) T (b) F (c) F (d) F (e) T 

 

Ans. to Q. No.4: Logical connectives are used to form new 

propositions or compound 

propositions. 

Ans. to Q. No.5:  

i) Bangalore is not the capital of Karnataka. 

(ii)  The earth is not round. 

(iii) The sun is not cold. 

(iv) No even integer is prime. 

(v) There is at least one rectangle whose both diagonals do 

not have the same length. 

(vi) 4 + 7 ≠ 10 

(vii) Today is not Monday. 

(viii) It snows and Samir drives the car. 

 

Ans. to Q. No.6:  

i) P ∧~Q, where P: Pavan is rich 

   Q: Raghav is happy 

ii) ~P ∧Q 

iii) ~R ∧ H, where R: Naveen is rich 

   H: Naveen is happy 

iv) R ∨~H 

v) P ∧Q, where  P: Naveen is smart 

   Q: Amal is smart 

vi) ~ (P ∧Q) 
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Space for learners: vii) ~R ∨ (R∨~H), where  R: Naveen is rich 

      R: Naveen is happy 

viii) ~R ∧~H 

Ans. to Q. No.7:  

i) P: Delhi is in India 

Q: 2 + 2 = 4 

The compound statement is true. 

(ii) P: Delhi in England 

Q : 2 + 2 =4 

The compound statement is false. 

(iii) P: 

Delhi is 

in India 

Q: 2 + 

2 =5 

The compound statement is false. 

(iv) P: 

Delhi is in 

England 

Q: 2 + 2 =5 

The compound statement is false. 

(v)  P: Square of an integer is positive 

Q: Square of an integer is negative 

The compound statement is true. 

(vi) P: The sky is blue 

Q: The grass is green 

The compound statement is true. 

(vii)  P: The earth is round  

Q: The sun is cold 

The compound statement is true. 

(viii) P: All rational numbers are real  

Q: All real numbers are complex.  
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Space for learners: The compound statement is true. 

(ix) P: 25 is a multiple of 5  

Q: 25 is a multiple of8 

The compound statement is false. 

(x) P: 125 is a multiple of 7  

Q: 125 is a multiple of8 

The compound statement is false. 

Ans. to Q. No.8: i) True, ii) False, iii) True, iv) False, v) True 

Ans. to Q. No.9: i) True, ii) False, iii) True, iv) False, v) True,  

                          vi) True. 

6.9   POSSIBLE  QUESTIONS 

1. Find out which of the following sentences are propositions and 

which are not. Justify your answer. 

i) The real number x is less than2. 

ii) All real numbers are complex numbers. 

iii) Listen to me, Ravi! 

2. Find the component propositions of the following and check 

whether they are true or not: 

i) The sky is blue and the grass is green. 

ii) The earth is round or the sun is cold. 

iii) All rational numbers are real and all real numbers are 

complex 

iv) 25 is a multiple of 5 and 8. 

3. Write the component propositions of each of the following 

statements. Also, check whether the statements are true or not. 

i) Sets A and B are equal if and only if (A⊆BandB⊆A). 

ii) |%|< 2 if and only if (a > –2 and a <2) 

iii) △ABC is isosceles if and only if ∠B =∠C. 

iv) 7 < 5 if and only if 7 is not a prime number. 

v) ABC is a triangle if and only if AB + BC >AC. 
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Space for learners: 4. If P is true and Q is false, then find truth values of 

 

 

5. What is proposition? Explain with illustration. 

6. What do you mean by propositional variables? 

7. Discuss truth table with example. 

8. What are logical connectives? Explain the logical connectives 

with their corresponding truth tables. 

9. Discuss how conditional statements are implemented using 

propositions. 
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i) P ∧ (~Q), ii) ~P ∨ Q, iii) ~P → Q, 

iv) P → (~Q), v) ~ (P → Q), iv) P ∧Q 
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Space for learners: 

UNIT 7:  PROPOSITIONAL CALCULUS-II 

Unit Structure: 

7.1 Introduction 

7.2 Unit Objectives 

7.3 Statement (or Proposition) Formula  

7.4 Tautology 

7.5 Contradiction 

7.6 Logical Equivalence 

7.6.1.1 Equivalent Formulas 

7.7 Tautological Implications 

7.8 Two-State Devices 

7.9  Summing Up 

7.10 Answers to Check Your Progress 

7.11 Possible Questions 

7.12 References and Suggested Readings 

7.1 INTRODUCTION 

The notion of a proposition has already been introduced in the 

previous unit. In this unit, we define statement formula. Also, we 

define tautology and contradiction of statement formulas and discuss 

equivalence of two statement formulas. In this unit, we will also 

discuss tautological implication of two statement formulas and will 

define the concept of two-state devices. 

7.2 UNIT OBJECTIVES 

After going through this unit, you will be able to 

• define statement (or proposition) formulas  

• define tautology and contradiction 

• know about logical equivalence of two different statement 

formulas 

• know about some important equivalence formulas 
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Space for learners: 7.3 STATEMENTFORMULA 

Statements which do not contain any connective are called simple 

or primary or atomic statements. On the other hand, the statements 

which contain one or more primary statements and at least one 

connective are called composite or compound statements. For 

example, let P and Q be any two simple statements. some of the 

compound statements formed by P and Q are– 

 

~P, P ∨Q, (P ∨Q) ∧(~P), P ∨ (~P), (P∨~Q) ∧P. 

 

statement variables P and Q. Therefore, P and Q are called 

components of the statement formulas. 

Definition: A statement formula is an expression which is a string 

consisting of propositional variables, parenthesis and connectives. 

Statement formulas are constructed from simple propositions using 

logical connectives. An example of Statement formula is P∧ ( Q 

∨R)→ S. 

A statement formula alone has no truth value. It has truth value 

only when the statement variables in the formula are replaced by 

definite statements and it depends on the truth values of the 

statements used in replacing the variables. 

The truth table of a statement formula (Proposition): Truth table 

has already been introduced in the previous unit. In general, if there 

are ‘n’ distinct components in a statement formula. We need to 

consider 2n possible combinations of truth values in order to obtain 

the truth table. 

For example, if any statement formula has two component 

statements namely P and Q, then 22 possible combinations of truth 

values must be considered. 

Illustrative Examples: 

Example 1. Construct the truth table for  

(a) ~(� ∧ �)                       

(b) (~�) ∨ (~�) 
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Space for learners: Solution:  

(a) Truth table: 

   P Q 	 ∧ 
 ~(	 ∧ 
) 

T T T F 

T F F T 

F T F T 

F F F T 

(b) Truth table: 

P Q ~	 ~
 (~	)
∨ (~
) 

T T F F F 

T F F T T 

F T T F T 

F F T T T 

Example 2. Construct the truth table for  ~� ∧ � 

Solution:  

P Q ~	 ~	 ∧ 
 

T T F F 

T F F F 

F T T T 

F F T F 

Example 3: Construct the truth table for P → (Q →R). 

Solution: P, Q and R are the three statement variables that occur in 

this formula P → (Q → R). There are 23 = 8 different sets of truth 

value assignments for the variables P, Q and R. 

The following table is the truth table for P → (Q → R): 
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Space for learners: P Q R Q → R P → (Q 

→ R) 

T T T T T 

T T F F F 

T F T T T 

T F F T T 

F T T T T 

F T F T T 

F F T T T 

F F F T T 

 

Example 4: Construct the truth table for � ∧ (� ∨ �) 

Solution:  

P Q 	 ∨ 
 	 ∧ (	 ∨ 
) 

T T T T 

T F T T 

F T T F 

F F F F 

 

Example 5: Construct the truth table for (� ∨ �) ∨ ~� 

Solution:  

P Q 	 ∨ 
 ~	 (	 ∨ 
)
∨ ~	 

T T T F T 

T F T F T 

F T T T T 

F F F T T 

 

 

CHECK YOUR PROGRESS-I 

1. Construct the truth tables for the following formulas 

a) ~ (~P ∧~Q) 

b) (~P ∨ Q) ∧ (~Q ∨P) 

c) (� ∧ �) → (� ∨ �) 

d) �� ∧ (� → �)� → � 
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Space for learners: 7.4 TAUTOLOGY 

We have already defined truth table of a statement formula. In 

general, the final column of a given formula contains both T and F. 

There are some formulas whose truth values are always T oral 

ways F regardless of the truth value assignments to the variables. 

This situation occurs because of the special construction of these 

formulas. 

Definition: A statement formula which is true regardless of the 

truth values of the statements which replace the variables in it is 

called a universally valid formula or a tautology or a logical truth. 

A straight forward method to determine whether a given formula is a 

tautology is to construct its truth table. In the table, if the column 

below the statement formula contains T only, then it is a tautology. 

The conjunction of two tautologies is also a tautology. Let us denote 

by A and B two statement formulas which are tautologies. If we 

assign any truth values of the variables of A and B, then the truth 

values of both A and B will be T. Thus, the truth value of A ∧ B will 

be T, so that A ∧ B will be atautology. 

Example 6: Verify whether P v (~P) is at tautology. 

Solution: 

P ~	 	 ∨ ~	 

T F T 

F T T 

As the entries in the last column are T, the given formula is a 

tautology. 

Example 7: Show that the proposition (� ∨ �) ↔ (� ∨ �)is 

atautology. 

Solution: 

P Q 	 ∨ 
 
 ∨ 	 (	 ∨ 
)
↔ (
 ∨ 	) 

T T T T T 

T F T T T 

F T T T T 

F F F F T 
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Space for learners: The last column entries are T.  Therefore, given formula is a 

tautology. 

Example 8: Verify whether (� → �) ∧ (� → �)is atautology. 

Solution: 

P Q 	 → 
 
 → 	 (	 → 
)
∧ (
 → 	) 

T T T T T 

T F F T F 

F T T F F 

 

All the entries in the resulting column are not T, hence the given 

proposition is not a tautology. 

Example 9: Show that the proposition (� ∧ ~Q) ∨ ~(� ∧ ~Q) is a 

tautology. 

Solution: 

P Q ~� 	 ∧ ~� ~(	
∧ ~�) 

(	 ∧ ~�)
∨ ~(	 ∧ ~�) 

T T F F T T 

T F T T F T 

F T F F T T 

F F T F T T 

As the entries in the last column are T, the given proposition is a 

tautology. 

Example 10: Verify that the proposition � ∨ ~(� ∧ Q) is a 

tautology. 

Solution: 

P Q 	 ∧ � ~(	 ∧ �) 	
∨ ~(	 ∧ �) 

T T T F T 

T F F T T 

F T F T T 

F F F T T 

As the entries in the last column are T, the given proposition is a 

tautology. 
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Space for learners:  

CHECK YOUR PROGRESS-II 

 

2. Prove that the following are tautologies (using truth tables): 

a) Q ∨ (P ∧ ~Q) ∨ (~P ∧ ~Q) 

b) (P → Q) ↔(~P ∨ Q) 

c) ~ (P ∨Q) ∨ (~P ∧ Q) ∨P 

         3. Show that �(~�) ∨ (~�)� ∨ �is a tautology. 

 

 

7.5 CONTRADICTION 

Definition: A statement formula which is false regardless of in the 

truth values of the statements which replace the variables in it is 

called a contradiction., if each entry in the final column of the truth 

table of a statement formula is F only then it is called as 

contradiction. 

Clearly, the negation of a contradiction is a tautology. We may call a 

statement formula which is a contradiction as identically false. 

Example 11: Verify that P ∧ (~P) is acontradiction. 

Solution: 

P ~P P ∧ (~P) 

T F F 

F T F 

Since the last column has F only, the statement formula is a 

contradiction. 
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Space for learners: Example 12: Verify the statement (P ∧ Q) ∧~ (P vQ). 

Solution: 

P Q P ∧ Q P vQ ~ (P vQ) (P ∧ Q) ∧ ~ (P 

vQ) 

T T T T F F 

T F F T F F 

F T F T F F 

F F F F T F 

Since the truth value of (P ∧ Q) ∧ ~ (P vQ) is F, for all values of P 

and Q, the proposition is a contradiction. 

Example 13: Prove that, if A (p, q, ⋅⋅⋅) is a tautology, then ~A  

(p, q,⋅⋅⋅) is a contradiction and conversely. 

Solution: Since a tautology is always true, the negation of a 

tautology is always false i.e., is a contradiction and vice-versa. 

 

7.6 LOGICALEQUIVALENCE 

Two statement formulas A (P, Q, ...) and B (P, Q, ...) are said to be 

logically equivalent or simply equivalent if they have identical 

truth tables. In other words, corresponding to identical truth values 

of P, Q, ... the truth values of A & B must be same. If A and B are 

equivalent, we shall write A≡B or A ⇔B. 

Example 14: Show that P is equivalent to the following formulae. 

(i)~~�     (ii)  � ∧ �      (iii) � ∨ �       (iv)  � ∨ (� ∧ �)  

(v) � ∧ (� ∨ �) 

Solution: 

P Q ~	 ~~	 	
∧ 	 

	
∨ 	 

	
∧ 
 

	
∨ (	
∧ 
) 

	
∨ 
 

	
∧ (	
∨ 
) 

T T F T T T T T T T 
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Space for learners: T F F T T T F T T T 

F T T F F F F F T F 

F F T F F F F F F F 

Here the 4th ,5th ,6th ,7th ,8th ,10th columns give the truth values of 

the formulas. The columns 1,4,5,6,8,10 have the identical truth 

values. Hence P is equivalent to all given formulas. 

Example 15: Prove that P∨Q⇔~ (~P∧~Q) 

Solution: 

P Q P∨Q ~P ~Q ~P∧~Q ~ 

(~P∧~Q) 

T T T F F F T 

T F T F T F T 

F T T T F F T 

F F F T T T F 

The truth table shows that P∨Qand ~ (~P∧~Q) have identical 

truth value column. So, P∨Q⇔~ (~P∧~Q). 

Example 16: Prove that P → Q ⇔(~P ∨ Q) 

Solution: 

P Q P → Q ~P ~P ∨ Q 

T T T F T 

T F F F F 

F T T T T 

F F T T T 

Here, columns of P→Q and ~P ∨ Q are identical. 

Hence, P → Q ⇔(~P ∨ Q). 
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CHECK YOUR PROGRESS-III 

4.Explain the equivalence of propositions. 

5.Show the following equivalences using truth table method: 

a) ~(� → �) ⇔ � ∧ ~� 

b) � ↔ � ⇔ (� → �) ∧ (� → �) 

c) � → � ⇔ ~� → ~� 

 

7.6.1 Equivalent Formulas 

Using respective truth tables, we can prove the following 

equivalence: 

Idempotent Laws (i) � ∨ � ⟺ � 

(ii) � ∧ � ⟺ � 

Associative Laws (i) (� ∧ �) ∧ � ⟺ � ∧
(� ∧ �) 

(ii) (� ∨ �) ∨ � ⟺ � ∨
(� ∨ �) 

Commutative Laws (i) � ∨ � ⟺ � ∨ � 

(ii) � ∧ � ⟺ � ∧ � 

De Morgan’s Laws (i) ~(� ∧ �) ⟺ ~� ∨ ~� 

(ii) ~(� ∨ �) ⟺ ~� ∧ ~� 

Distributive Laws (i) � ∧ (� ∨ �) ⟺ (� ∧
�) ∨ (� ∧ �) 

(ii) � ∨ (� ∧ �) ⟺ (� ∨
�) ∧ (� ∨ �) 

Complement Laws (i) � ∧ ~� ⟺ � 

(ii) � ∨ ~� ⟺ � 

Dominance Laws (i) � ∨ � ⟺ � 

(ii) � ∧ � ⟺ � 

Identity Laws (i) � ∧ � ⟺ � 

(ii) � ∨ � ⟺ � 

Absorption Laws (i) � ∨ (� ∧ �) ⟺ � 

(ii) � ∧ (� ∨ �) ⟺ � 

Double negation Law ~(~�) = � 

Contra positive Law � → � ⟺ ~� → ~� 



 

170 | P a g e  

 

Space for learners: Conditional as disjunction � → � ⟺ ~� ∨ � 

Biconditional as conditional � ↔ � ⟺ (� → �) ∧ (� → �) 

Exportation Laws � → (� → �) ⟺ (� ∧ �) → � 

Check yourself the above formulas as an exercise by truth table 

technique. Here, T and F respectively stands true statement and 

false statement. 

Replacement Process: Consider the formula A: P → (Q→R). The 

formula Q→R is a part of the formula A. If we replace Q→R by an 

equivalent formula ~Q∨R in A, we get another formula 

B:P→(~Q∨R). We can easily verify that the formulas A and B are 

equivalent to each other. This process of obtaining B from A is 

known as there placement process. Using the laws stated in 7.6.1, 

we can also establish equivalence of statement formulas without 

using truth tables. 

Illustrative Examples: 

Example 17: Prove that, (P→Q)∧(R→Q)⟺(P∧R)→Q 

Solution:                     

(P → Q) ∧ (R →Q) 

⟺(~P ∨ Q) ∧ (~R ∨ Q) 

⟺(~P∧~R)∨ Q       [Distributive Law] 

⟺~ (P ∨ Q)∨ Q      [DeMorgan’s Law] 

⟺(P∧R)→Q 

 

Example18: Prove that, (~P∧(~Q∧R))∨(Q∧R)∨(P∧R)⟺R 

Solution: 

(~P∧(~Q∧R))∨(Q∧R)∨(P∧R) 

⟺((~P ∧ ~Q)∧  R) ∨ ((Q ∨ P)∧  R) (Associative Law & 

distributive Law) 

⟺(~ (P∨Q)∧R)∨((Q∨P)∧R) [DeMorgan’s Law] 

⟺(~ (P∨Q)∨(P∨Q))∧R (Distributive Law)  

⟺T ∧ R Since ~S ∨ S ⟺T 

⟺R as T ∧ R ⟺R 
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Space for learners: Example 19: Show that � → (� → �) ⟺ � → (~Q ∨ �) ⟺
(~P ∧ �) ∨ � 

Solution: 

� → (� → �) 

⟺  � → (~Q ∨ �) [∵ � → � ⟺ ~P ∨ �] 

⟺ ~P ∨ (~Q ∨ �) [∵ � → � ⟺ ~P ∨ �] 

⟺ (~P ∨ ~Q) ∨ � [ by Associative Law] 

⟺ ~(P ∧ Q) ∨ �   [ By De Morgan’s Law] 

Hence   � → (� → �) ⟺ � → (~Q ∨ �) ⟺ (~P ∧ �) ∨ � 

 

 

CHECK YOUR PROGRESS-IV 

6. Prove that: 

a) (P→Q)∧(R→Q)⟺(P∨R)→Q 

b) (P∨Q)∧ ~(~P∧Q)⟺ P 

c) (P →Q) →Q⟺ (P∨Q) 

 

 

7.7 TAUTOLOGICAL OR LOGICAL 

IMPLICATIONS 

Definition: A statement A is said to tautologically or logically 

imply a statement B if and only if A→B is a tautology. In this case, 

we write A→B, read as “A tautologically implies B” or “A 

logically implies B”. We shall denote this idea by A⟹B which is 

read as “A implies B”. 

Note: Learner should be very cautious with the following four 

notations: 

(1) → means the connective conditional 

(2) ↔ means the connective Biconditional 

(3) ⟺ means equivalent 

(4) ⟹ means tautological implications. 
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Let us Know 

i) ⟹ is not connective, A⟹B is not a statement formula. 

ii) A⟹B states that A→B is a tautology or A logically 

implies B. 

iii) A⟹B guarantees that B has the truth value T whenever 

A has the truth value T. 

iv) By constructing the truth table, we can determine A⟹B. 

v) A⟺B if and only if A⟹B and B⟹A i.e., if each of two 

formulas A and B tautologically or logically implies the 

other, then A and B are equivalent. 

 

Illustrative Examples: 

Example 20: Show that (� ∧ �) ⟹ (� → Q) 

Solution: To prove the given proposition, it is enough to prove 

that (� ∧ �) → (� → Q)is a tautology 

P Q 	 ∧ 
 	 → � (	 ∧ 
)
→ (	 → �) 

T T T T T 

T F F F T 

F T F T T 

F F F T T 

 

Since the last column of the truth table of(� ∧ �) → (� → Q) 

contains only T’s, so(� ∧ �) → (� → Q)is a tautology. 

Hence   (� ∧ �) ⟹ (� → Q) 

Example 21: Prove that (� → (Q → R)) ⟹ ((� → Q) → (P → R)) 

by constructing the truth table. 

Solution: 

To prove the given proposition, it is enough to prove that (� →
(Q → R)) → ((� → Q) → (P → R)) is a tautology. 
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Space for learners: P Q R � → � 	 → � 	 → � (	
→ (�
→ �)) 

(	 →
�) →

(� → �) 

(	 → (� →
�)) → ((	 →
�) → (� →

�)) 

T T T T T T T T T 

T T F F T F F F T 

T F T T F T T T T 

T F F T F F T T T 

F T T T T T T T T 

F T F F T T T T T 

F F T T T T T T T 

F F F T T T T T T 

Since the last column of the truth table of (� → (Q → R)) → ((� →
Q) → (P → R))contains only T’s, so (� → (Q → R)) → ((� → Q) →
(P → R)) is a tautology. 

Hence, (� → (Q → R)) ⟹ ((� → Q) → (P → R)) 

Some Important Logical Implications: 

1. P ∧ Q⟹P 2. P ∧ Q ⟹Q 

3.   P ⟹ P∨Q 4. ~P ⟹ P →Q 

5.   Q ⟹ P→Q 6. ~ (P → Q) ⟹P 

7.   ~ (P → Q)⟹~Q 8. P ∧ (P → Q) ⟹Q 

9. (P → Q) ∧ (Q → R) ⟹ P → R 

10. (P ∨ Q)∧  (P → R) ∧ (Q → R) ⟹ R 

Check yourself the above logical implications by using the truth 

table. 

Example 22: Show that P ∧(P → Q)⟹Q without constructing the 

truth table. 

Solution: We have to prove that [P ∧(P → Q)]→Q is a tautology. 

[P ∧(P → Q)]→Q 

⟺[P ∧(~P ∨ Q)]→Q         [∵  P → Q ⟺ ~ P ∨ Q] 

⟺ ~[P ∧(~P ∨ Q)]∨Q       [∵  P → Q ⟺ ~ P ∨ Q] 
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Space for learners: ⟺[~P ∨ ~(~P ∨ Q)]∨Q       [DeMorgan’s Law] 

⟺[~P ∨(P ∧ ~Q)]∨Q       [DeMorgan’s Law] 

⟺[(~P∨ P)∧ (~P ∨ ~Q)]∨Q       [Distributive Law] 

⟺[� ∧ (~P ∨ ~Q)]∨Q       [Complement Law] 

⟺[~P ∨  ~Q]∨Q       [Identity Law] 

⟺[~P ∨ (~Q ∨Q)]   [Associative Law] 

⟺ ~P ∨ � [Complement Law] 

⟺ � [Identity Law] 

Hence, P ∧(P → Q)⟹Q 

 

CHECK YOUR PROGRESS-V 

7.Show the following logical implications using the truth table: 

d) Q ⟹ P→Q  

e) ~(P→Q)⟹ ~Q 

8.Show the following logical implications without constructing the 

truth tables: 

               a) � ∧ � ⟹ � ∨ � 

              b) � ∧ � ⟹ P → Q 

 

7.8 TWO-STATE DEVICES 

Let us consider the example of an electric switch which is used for 

turning “On” and “Off “an electric light. It has wo states “On” and 

“Off “. So, it is a two-state device. Let us consider another example 

of a magnetic core which is used in computer. In magnetic core, 

there lies a doughnut-shaped metal disc with a wire coil wrapped 

around it. It may be magnetized in one direction, if current is passed 

through the coil in one way and may be magnetized in the opposite 

direction, it the current is reversed. So, the magnetic core is a two-

state device. 
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Space for learners: 7.9  SUMMING UP 

 A statement formula is an expression which is a string consisting 

of (capital letters with or without subscripts), parentheses and 

connective symbols (∨, ∧, →, ↔, ~), which produces a statement 

when the variables are replaced by statements. 

 A statement formula which is true regardless of the truth values of 

the statements which replace the variables in it is called a 

universally valid formula or a tautology or a logical truth. 

 A statement formula which is false regardless of the truth values 

of the statements which replaces the variables in it a 

contradiction. 

 The statement formulas A and B are equivalent provided A ↔B is 

a tautology; and conversely, if A↔B is a tautology, then A and B 

are equivalent. We shall represent the equivalence of A and B by 

writing “A ⟺B” which is read as “A is equivalent to B.”  

 A statement A is said is to tautologically imply a statement B if 

and only if A → B is a tautology. We shall denote this idea by A 

⟹ B which is read as “A logically implies B”. 

7.10 ANSWERS TO CHECK YOUR PROGRESS 

Ans. to Q. 1:  

(a) The variable that occur in the formula are P and Q, so we have 

to consider 4 possible combinations of truth values of two 

statements P and Q. 

P Q ~� ~� ~�
∧ ~� 

~(~�
∧ ~�) 

T T F F F T 

T F F T F T 

F T T F F T 

F F T T T F 

(b) The variable are P and Q, clearly there are 2 rows in the truth 

table of this formula. 
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Space for learners:  

 

(c)  

P Q 	 ∧ 
 	 ∨ 
 (	 ∧ 
)
→ (	 ∨ 
) 

T T T T T 

T F F T T 

F T F T T 

F F F F T 

 (d) 

P Q 	 → 
 
 ∧ (	 → 
) �
 ∧ (	 → 
)�
→ 	 

T T T T T 

T F F F T 

F T T T F 

F F T F T 

 

Answer to Q. 2:  

(a) 

 

P Q ~P ~Q ~P ∨ Q ~Q ∨ P (~P ∨ Q) ∧(~Q ∨ P) 

T T F F T T T 

T F F T F T F 

F T T F T F F 

F F T T T T T 

P Q ~� ~� � ∧ ~� � ∨ (� ∧ ~�) ~� ∧ ~� �
∨ (� ∧ ~�)
∨ (~� ∧ ~�) 

T T F F F T F T 

T F F T T T F T 

F T T F F T F T 

F F T T F F T T 
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Space for learners: All the entries in the last column are T, the given formula is a 

tautology. 

 (b) 

P Q ~P ~P ∨ Q P → Q (P → Q) ↔(~P ∨ 

Q) 

T T F T T T 

T F F T F T 

F T T T T T 

F F T F F T 

All the entries in the last column are T, the given formula is a 

tautology. Similarly, for (c) construct truth tables. 

 

Answer to Q. 3: 

Truth table for �(~�) ∨ (~�)� ∨ � 

	 
 ~	 ~
 (~	)
∨ (~
) 

�(~	) ∨ (~
)�
∨ 	 

T T F F F T 

T F F T T T 

F T T F T T 

F F T T T T 

 

The last column contains only T. 

∴ �(~�) ∨ (~�)� ∨ � is a tautology. 

Ans. To Q. 4: Two propositions are logically equivalent or simply 

equivalent if they have exactly the same truth values under all 

circumstances. 

Ans. To Q. 5: 

(a) 

P Q ~Q P → Q ~ (P → Q) P ∧ ~Q 

T T F T F F 

T F T F T T 

F T F T F F 

F F T T F F 

As ~ (P → Q) and P ∧ ~Q have identical truth columns, so ~ (P → 

Q)⇔ P ∧  ~Q. 
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Space for learners:  

(b) 

P Q P → Q Q → P P ↔ Q (P → Q)∧ (� →
 �) 

T T T T T T 

T F F T F F 

F T T F F F 

F F T T T T 

As P ↔ Q and (P → Q)∧ (Q →  P)have identical truth columns,  

so, P ↔ Q⇔ (P →  Q) ∧ (Q →  P). 

(c) 

P Q ~P ~Q P → Q ~Q → ~P 

T T F F T T 

T F F T F F 

F T T F T T 

F F T T T T 

As P → Q and ~Q → ~P have identical truth columns, so P → Q  ⇔
~Q →  ~P. 

 

Ans. to Q. 6:  

(a) We know that P→Q⇔~P∨Q 

Similarly, R → Q ⇔ ~R ∨ Q  

Now, (P→Q)∧(R→Q)⇔(~P∨Q)∧(~R∨Q) 

⇔(~P ∧ ~R)∨Q  (By distributive law)  

⇔(~ (P v R))∨Q   (By DeMorgan’s law)  

⇔(P ∨ R) → Q. 

(b) (P∨Q)∧ ~(~P∧Q) 

⇔ (P ∨ Q) ∧ (~~P ∨ ~Q)  [De Morgan’s Law] 

⇔ (P ∨ Q) ∧ (P ∨ ~Q)  [ Law of Double Negation] 

⇔ � ∨ (Q ∧ ~Q) [Distributive Law] 

⇔ � ∨ �  [Inverse Law] 

⇔ �         [Identity Law] 
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Space for learners: (c) (P →Q) →Q 

⇔(~P ∨Q) →Q      [Conditional as disjunction] 

⇔ ~(~P ∨Q)∨ Q    [Conditional as disjunction] 

⇔(~~P∧ ~Q)∨ Q  [De Morgan’s Law] 

⇔(P∧ ~Q)∨ Q       [Law of Double Negation] 

⇔(P∨ Q) ∧ (~Q∨Q) [Distributive Law] 

⇔(P∨ Q) ∧ �   [~Q∨ Q = T] 

⇔ P ∨  Q  [∵ P ∧  T = P] 

Hence, (P →Q) →Q⇔ P ∨  Q   

Ans. to Q. 7:  

(a) 

P Q P → Q Q → (P → Q) 

T T T T 

T F F T 

F T T T 

F F T T 

Since, Q → (P → Q) is a tautology, Therefore Q ⟹ P→Q. 

(b) 

P Q ~Q P→Q ~ (P → Q) ~ (P → Q) →~Q 

T T F T F T 

T F T F T T 

F T F T F T 

F F T T F T 

Since ~(P→Q)→ ~Q is a tautology, therefore~(P→Q)⟹ ~Q. 

Ans. to Q. 8:  

(a) We have to prove that � ∧ � → � ∨ � is a tautology. 

� ∧ � → � ∨ � 

⇔  ~(� ∧ �) ∨ (� ∨ �)       [ Conditional as disjunction] 

⇔  (~� ∨ ~�) ∨ (� ∨ �)    [ De Morgan’s Law] 

⇔  (� ∨ ~�) ∨ (� ∨ ~�)    [ Associative and Commutative law] 

⇔  � ∨ �                               [ � ∨ ~� = � ,� ∨ ~� = �] 
⇔  �                                     [ Idempotent Law] 
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Space for learners: Hence, � ∧ � ⟹ � ∨ � 

(b) We have to prove that � ∧ � → (� → �)is a tautology. 

� ∧ � → (� → �) 

⇔  (� ∧ �) → (~� ∨ �)      [ Conditional as disjunction] 

⇔  ~(� ∧ �) ∨ (~� ∨ �)    [ Conditional as disjunction] 

⇔  (~� ∨ ~�) ∨ (~� ∨ �) [ De Morgan’s Law] 

⇔  ~� ∨ (~� ∨ �)              [ Associative Law] 

⇔  ~� ∨ �                            [~Q∨ Q = T] 

⇔  � 

Hence,  � ∧ � → � ∨ � is a tautology. 

∴   � ∧ � ⟹ � ∨ � 

7.11 POSSIBLE QUESTIONS 

1. Construct the truth table for each of the following: 

(a) (P ∧ Q) → (P ∨Q) 

(b) (P ∧ Q) →~P 

(c) (P → Q) ∧ (~P ∨ Q) 

2. With the help of truth tables, prove the following: 

(a) (P → Q) ⟺(~P ∨ Q) 

(b) (P → Q) ⟺(~Q → ~P) 

(c) (P∧Q)⟺(P→Q)∧(Q→P) 

3. Use the truth table to determine whether the proposition 

�(~�) ∨ �� ∨ �� ∧ (~�)� is a tautology. 

4. Show the implications without constructing the truth tables. 

(a) ~ (P → Q) ⟹ P 

(b) P∧ (P → Q) ⟹ Q 

(c) ~Q∧ (P → Q)⟹ ~P 

(d) (P∨ �) ∧ (~�) ⟹ Q 

(e) (P→Q) → Q ⟹ P ∨ � 

(f) (P∧Q)⟹ P→Q 

5. Discuss the different types of statements with examples. 
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Space for learners: 6. What do you mean by tautology? Explain with example 

7. What is contradiction? Discuss. 

8. Give a detailed discussion on logical equivalence. 

9. What do you mean by tautological implications? Explain. 
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Space for learners: 
UNIT 8: PREDICATE CALCULUS 

Unit Structure: 

8.1  Introduction 

8.2  Unit Objectives 

8.3  Predicates 

8.4  Quantifiers 

 8.4.1 Negation of a Quantified Expression 

8.5  Predicate Formulas 

8.6  Free and Bound Variables 

8.7  Inference Theory of Predicate Calculus 

8.8  Validity 

8.9.  Soundness, Completeness and Compactness 

8.10  Summing Up 

8.11  Answers to Check Your Progress 

8.12 Possible Questions 

8.13 References and Suggested Readings 

8.1 INTRODUCTION 

In this unit, we shall discuss about simple statements and their validity 

through predicates and quantifiers. Also, we apply predicate formulas to 

determine the truth or falsity of the statements. The soundness, 

completeness and compactness of the statements are also discussed in 

this unit. 

8.2 UNIT OBJECTIVES 

After going through this unit, you will be able to  

 understand the logic of a computer program  



 

183 | P a g e  

 

Space for learners:  develop write programs in various computer languages.  

 get ideas behind mathematical logic and inference theory 

 understand mathematical logic associated with various reasoning 

and mathematical proofs  

 understand predicates, quantifiers, free and bound variables  

 know the inference theory of predicate calculus. 

8.3 PREDICATES 

Let us consider a mathematical relation x>10.  The Statement “x is 

greater than 10” has two parts. The first part, the variable x, is the 

subject of the statement. The second part, “is greater than 10” which 

refers to a property that the subject can have, is called the predicate. We 

can denote the statement “x is greater than 10” by the notation P(x), 

where P denotes the predicate “is greater than 10” and x is the variable. 

P(x) is called propositional function of x. Once a value has been 

assigned to the variable x, the statement P(x) becomes a proposition and 

has a truth value. 

8.4 QUANTIFIERS 

Many mathematical statements assert that a property is true for all 

values of a variable or for some values of the variable, in a particular 

domain, called the universe of discourse. Mostly it is denoted by D. 

The universal quantification of P(x) is the statement: 

P(x) is true for all values of x in the universe of discourse” and is 

denoted by the notation, 

(x)P(x) or ∀xP(x). 

The proposition (x)P(x )or ∀xP(x is read as “for all x,P(x)” or “for every 

x, P(x)”. The symbol ∀ is called the universal quantifier. 

The existential quantification of P(x )is the proposition. There exists at 

least one x (or an x) such that P(x) is true” and is denoted by the 

notation ∃xP(x). 
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Space for learners: The symbol ∃ is called the existential quantifier. 

Example 1: Express the following statement using quantifiers: 

“Every Computer Science student needs a course in Mathematics” 

Solution. 

Let D={Students in Computer Science} (D is universe of discourse or 

domain). 

Let P(x):x needs a course in Mathematics. 

We can rewrite the above expression as “For all x, x needs a course in 

Mathematics”. 

Then ∀xP(x). 

Example 2: Express the following statement using quantifiers:   

“Every Computer Science student needs a course in Mathematics”. 

Solution. 

Let, D={Students} 

Let, P(x):x is Computer Science student. 

Q(x):x needs a course in Mathematics. 

We can rewrite the above expression as: 

“For all x, if x is a Computer Science student, then x needs a course in 

Mathematics”. 

Then, ∀x[P(x)→Q(x)]. 

Example 3: Express the following statement using quantifiers: 

“There is a student in this class, who owns a personal computer”. 

Solution. 

Let, D={Students int his class}. 

Let, P(x):x owns a personal computer. 

We can rewrite the above expression as: 

“There exists an x, such that, x owns a personal computer”. 

Then, ∃xP(x). 
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Space for learners: Example 4: Express the following statement using quantifiers: 

“Everyone who knows how to write programs in JAVA can get a 

high paying job”. 

Solution. 

Let, D={Students in this class}. 

Let, P(x):x knows how to write programs in JAVA. 

Q(x):x gets a high paying job. 

We can rewrite the above expression as:  

“For every x, if x knows how to write programs in JAVA then he gets a 

high paying job”. 

Then ∀x[P(x)→Q(x)]. 

Example 5: Express the following statement using 

quantifiers: 

“Someone who passed the first examination has not read the 

book”. 

Solution. 

Let, D={Students in this class}. 

Let, P(x): x has passed the first examination. 

Q(x):x has not read the book. 

We can rewrite the above expression as “There exists an x, such 

that x has passed the first examination and x has not read the 

book”. 

Then ∃x[P(x)∧Q(x)]. 

 

8.4.1 Negation of a Quantified Expression 

Example 6: Find the negation of following expression: 

“Every student in the class has studied computer programming”. 

Solution. 

Let, D={Students in a Class}. 
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Space for learners: Let, P(x):x has studied computer programming. Then the given 

expression is ∀xP(x). 

To find the negation of ∀xP(x): 

Negation of the above expression is “It is not the case that, every 

student in the class has studied computer programming”. Hence it is 

represented as ¬[∀xP(x)]. 

It also means that, “there is a student in the class who has not studied 

computer programming”, i.e., there is a student x in the class, such that, 

x has not studied computer programming. 

Hence it is represented as ∃x[¬P(x)].  

∴¬[∀xP(x)]≡∃x[¬P(x)]. 

Example 7: Find the negation of following expression: 

“There is a student in the class who has studied computer 

programming”. 

Solution: 

Let, P(x): x has studied computer programming. 

Let, D={Students in a Class} (D is universe of discourse or domain). 

Then the given expression is ∃xP(x). 

To find the negation of ∃xP(x): 

Negation of the above expression is “It is not the case that, there is a 

student in the class who has studied computer programming”. Hence it 

is represented as ¬[∃xP(x)]. 

It also means that, “No student is found in the class, who have studied 

computer programming”, i.e., “Every student in the class has not 

studied computer programming”, i.e., “For every x in the class, x has not 

studied computer programming”. 

Hence it is represented as ∀x[¬P(x)]. 

∴¬[∃xP(x)]≡∀x[¬P(x)]. 
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Space for learners: 8.5 PREDICATE FORMULAS 

We denote by  1 2, ,..., nP x x x , an n-place predicate formula in which the 

letter P is an n-place predicate and x1, x2,…,xn are individual variables. 

In general,  1 2, ,..., nP x x x  is called an atomic formula of predicate 

calculus. The following are some examples of atomic formulas. 

A(x), B(x, y) and C(x, d, z). 

A well-formed formula (wf.) of predicate calculus is defined by 

(i) Every atomic formula is a well-

formed formula. 

(ii) If A is a well-formed formula, so is 

A. 

(iii) If A and B are well-formed formulas, so are ( )A B , ( )A B , 

( )A B  and ( )A B€ . 

(iv) If A is a well-formed formula and x is any variable, so are ( )x A  and 

 x A . 

(v) Only the formulas obtained by applying rules (i)-(iv) are well-

formed formulas. 

 

 

 

 

 

 

 

 

 

 

CHECK YOUR PROGRESS-I 

 

1. A property that the subject can have, is called the 

________________ 

2. The symbol _______ is called the existential quantifier. 

3. The symbol _______ is called the universal quantifier. 

4. The negation of a statement is denoted by the symbol 

_______. 
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Space for learners: 8.6 FREE AND BOUND VARIABLES 

Consider the following statement: 

All students are intelligent. This can be written in symbolic form as 

( )( ( ) ( )),x S x I x  

where ( ) :S x x  is a student and ( ) :I x x  is intelligent. 

In the above statement, if we restrict the class as the class of students, 

then the symbolic representation will be ( ) ( ).x I x  Such a restricted class 

is also called “Universe of Discourse”. 

 In any symbolic formula, the part containing ( ) ( )x A x  or ( ),xA x

such part is called the “ x -bound” part of the formula.  

 Any variable appearing in an “ x - bound” part of the formula is 

called as a bound variable. 

 Otherwise, it is called as a free variable. 

 Any formula immediately following ( )x  or ( )x  is called the scope 

of the quantifier. 

Example 8: 

Consider the symbolic form of a statement: ( ) ( ) ( ).y A y B y  

In this notation, all y in ( )A y  is bound whereas the y in ( )B y is free. 

The scope of ( )y  is ( ).A y  

 

8.7 INFERENCE THEORY OF PREDICATE CALCULUS 

Rules of Inference: 

1.  Rule P: A premise can be introduced at any point of derivation. 

2. Rule T: A formula can be introduced provided it is tautologically 

implied by previously introduced formulas in the derivation. 

3. Rule CP: If S can be derived from R and a set of premises, then R→S 

can be derived from the set of premises alone. 
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Space for learners: Rule US [Universal Specification]: 

It is the rule of inference, which states that one can conclude that ( )A k is 

true, if ( )y A y is true, where ' 'k  is an arbitrary member of the universe 

of discourse. This rule is also called the Universal Instantiation. 

In other words, Universal Specification is the rule of inference which 

says we can conclude ( )A k  is true for a particular element k  of the 

universe of discourse if ( )y A y  is true. This k  can be chose 

arbitrarily. 

For example, if 2 0, 0,y y   then 23 0, for the particular value 3.  It 

is true for any 20, 0.k k   

Rule ES [Existential Specification]: 

It is the rule which allows us to conclude that ( )A k is true ,if ( )y A y  is 

true, where ' 'k  is not an arbitrary member of the universe, but one for 

which ( )A k is true. Usually we will not know, what ' 'k is, but know that 

it exists. Since it exists, we may call it ' '.k This rule is also called the 

Exist entail Instantiation. 

In other words, Existential Specification is the rule of inference which says 

that there is an element k  in the universe of discourse for which ( )A k  is 

true if ( )y A y  is true. Here ' 'k  is not arbitrary, but it is specific. In 

practice, we may not know what ' 'k  is, but it exists. Since it exists, we give 

a name ' 'k   and proceed with our argument. 

Rule UG [Universal Generalization]: 

It is the rule which states that ( )y A y is true, if ( )A k is true, where ' 'k is an 

arbitrary member (not a specific member) of the universe of discourse. 

In other words, Universal Generalization is the rule of inference which 

says that ( )y A y i s  t r u e  i f  ( )A k  i s  t rue  fo r  an  a rb i t r a ry  

e l ement  ' 'k  o f  the  un ive r se  o f  d i s cou r se .  Th i s  ru le  i s  u sed  

when  we  need  to  p rove  ( )y A y  i s  t r ue .  

Rule EG [Existential Generalization] 

It is the rule that is used to conclude that, ( )y A y when ( )A k is true, where

' 'k is a particular member of the universe of discourse. 
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Space for learners: In other words, Existential Generalization is the rule of inference which 

says that for particular element ' 'k  of the universe of discourse if ( )A k  

i s  t r u e ,  t h en  ( )y A y  i s  t r u e .  

We summarize the above rules in the following table. 
 

Rule Inference 

US 
( )yA y  

( )A k  for an arbitrary k  

ES 
( )y A y  

( )A k  for a particular k  

UG 
( )A k  for an arbitrary k  

( )y A y  

EG 
( )A k  for some k  

( )y A y  

 

Remark: 

We have seen rules of inference for proposition and rules of inference 

for quantified propositions. Sometimes, we have to use a combination 

of the above rules. Two such combinations of rules of inference quite 

often used are the Universal Modus Ponens and Universal Modus 

Tollens.  

 Universal Modus Ponens (MP) says that ,y  if ( )A y  is true then ( )B y  

is true and if ( )A k  is true for a particular element ' 'k  in the universe of 

discourse then ( )B k must also be true. 

Thus,  

( ( ) ( ))

( )

( ),

y A y B y

A k

B k

 

 

where ' 'k  is particular element in the domain. 

 Universal Modus Tollens (MT)says that ,y if ( )A y then ( )B y and if 

for a particular element ' 'k  in the universe of discourse ( )B k is true then 

( )A k  is true. 

Thus, 
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Space for learners: ( ( ) ( ))

( )

( )

y A y B y

B k

A k

 





 

for a particular ' '.k  

 Universal Transitivity (UT) says that if ( ( ) ( ))y A y B y   and 

( ( ) ( ))y B y C y   are true, then ( ( ) ( ))y A y C y   is true, where the 

domains of all the quantifiers are the same. 

Example 8: 

Let us verify the argument by inference theory. 

All men are mortal. 

Socrates is a man. 

Therefore, Socrates is mortal. 

Solution. 

Let, D = {Human being} 

Let, P(x): x is a man; Q(x): x is mortal and s :Socrates. 

Above problem becomes ∀x[P(x)→Q(x)], P(s)⇒Q(s) 
 

S. No Statement Reason 

1 

2 

3 

4 

∀x[P(x)→Q(x)] 

P(s ) →  Q(s ) 

P(s) 

Q(s) 

Rule P (Given Premise) 

Rule US, 1 

Rule P (Given Premise) 

MP, 2, 3 

 

Solved Problems 

1. Prove the implication: 

∀x(P(x)→Q(x)),∀x(R(x)→¬Q(x))⇒∀x(R(x)→¬P(x)). 

Solution:  

Given premises are ∀x(P(x)→Q(x)),∀x(R(x)→¬Q(x)). 

Conclusion is ∀x(R(x)→¬P(x)). 
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Space for learners:  

 

 

 

 

 

 

 

 

 

2.  Prove that ∀x(P(x)→(Q(y)∧R(x))), ∃xP(x)⇒Q(y)∧∃x(P(x)∧R(x)). 

Solution: 

Premises are ∀x(P(x)→(Q(y)∧R(x))),∃xP(x). 

Conclusion is Q(y)∧∃x(P(x)∧R(x)). 
 

 

 

 

 

S. No Statement Reason 

1 ∀x(P(x)→Q(x)) 

P(a)→Q(a) 

∀x(R(x)→¬Q(x)) 

R(a)→¬Q(a) 

¬Q(a)→¬P(a) 

R(a)→¬P(a) 

∀x(R(x)→¬P(x)) 

Rule P 

2 RuleUS,1,forall a 

3 Rule P 

4 RuleUS,3,forall a 

5 RuleT,2,contrapositive,foralla 

6 RuleT,4,5, for all a 

7 RuleUG,6 

S.No Statement Reason 

1 

2 

3 

4 

5 

6 

7 

∀x(P(x)→(Q(y)∧R(x))) 

P(a)→(Q(y)∧R(a)) 

∃xP(x) 

P(a) 

Q(y)∧R(a) 

Q(y) 

R(a) 

Rule P 

RuleUS,1,for all a Rule P 

RuleES,3,for some a 

MP,2,4,for some a 

RuleT,5 

RuleT,5, for some a 

8 

9 

10 

P(a)∧R(a) 

∃x(P(x)∧R(x)) 

Q(y)∧∃x(P(x)∧R(x)) 

Rule T, 4,7, for some aRuleEG,8 

RuleT,6,9 
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Space for learners: 3. Show by indirect method of proof, that  

∀x(P(x)∨Q(x)) ⇒ (∀xP(x))∨(∃xQ(x)). 

Solution: 

By indirect method, let us assume that ¬[(∀xP(x))∨(∃xQ(x))] as an 

additional premise and arrive at a contradiction. 

S.No Statement Reason 

1 ¬[(∀xP(x)) ∨(∃xQ(x))] 

¬(∀xP(x))∧¬(∃xQ(x)) 

¬(∀xP(x)) 

¬(∃xQ(x)) 

∃x¬P(x) 

∀x¬Q(x) 

Rule P (additional premise) 

2 RuleT,DeMorgan’slaw,1 

3 RuleT,2 

4 RuleT,2 

5 RuleT,3 

6 RuleT,4 

7 

8 

9 

10 

 

11 

12 

13 

14 

¬P(a) 

¬Q(a) 

¬P(a)∧¬Q(a) 

¬(P(a)∨Q(a)) 

 

∀x(P(x)∨Q(x)) 

P(a)∨Q(a) 

¬(P(a)∨Q(a))∧(P(a)∨

Q(a)) 

F 

Rule ES, 5, for some a 

Rule US, 6, for all a 

RuleT,7,8,for some a 

RuleT,DeMorgan’slaw,9, for 

some a 

Rule P 

Rule US, 11, for all a 

RuleT,10,12,for some a 

RuleT,13 

 

4. Prove the implication 

∀x(P(x)→Q(x)),∀x(R(x)→¬Q(x))⇒∀x(R(x)→¬P(x)). 

Solution:  

Premises are ∀x(P(x)→Q(x))and∀x(R(x)→¬Q(x)). 

Conclusion is∀x(R(x)→¬P(x)). 
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Space for learners: S.No Statement Reason 

1 ∀x(P(x)→Q(x)) 

P(a)→Q(a) 

∀x(R(x)→¬Q(x)) 

R(a)→¬Q(a) 

Q(a)→¬R(a) 

Rule P 

2 RuleUS,1,for all a 

3 Rule P 

4 RuleUS,3,forall a 

5 Rule T, Contrapositive,4, 

 For all a 

6 

7 

P(a)→¬R(a) 

R(a)→¬P(a) 

Rule T, 2, 5, for all a 

RuleT,Contrapositive,6, 

For all a 

8 ∀x(R(x)→¬P(x)) RuleUG,7 
 

 

5. Show that the premises “One student in this class knows how to 

write programs in JAVA” and “Everyone who knows how to write 

programs in JAVA can get a high-paying job” imply the conclusion 

“Someone in this class can get a high-paying job”. 

Solution: 

Let, D={Student}. 

Let, C(x):x is in this class. 

J(x):x knows JAVA programming. 

H(x):x can get a high-paying job. 

Then premises are ∃x(C(x)∧J(x)) and ∀x(J(x)→H(x)). 

Conclusion is ∃x(C(x)∧H(x)). 
 

S.No Statement Reason 

1 

2 

3 

4 

5 

6 

∃x(C(x)∧J(x)) 

C(a)∧J(a) 

C(a) 

J(a) 

∀x(J(x)→H(x)) 

Rule P 

RuleES,1,for some a 

Rule T, 2, for some a 

Rule T, 2, for some a 

Rule P 

RuleUS,5,for all a 
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Space for learners: 7 

8 

9 

J (a)→H(a) 

H(a) 

C(a)∧H(a) 

∃x(C(x)∧H(x)) 

Rule T, MP,4,6,for some a 

Rule T, 3, 7, for some a 

RuleEG,8 

 

6. Show that the premises “A student in this class has not read the 

book” and “Everyone in this class passed the first examination” 

imply the conclusion “Someone who passed the first examination 

has not read the book”. 

Solution: 

Let, D={Student}. 

Let, C(x):x is in this class. 

R(x):x has not read the book. 

F(x):x has passed the first examination. 

Then the premises are ∃x(C(x)∧R(x)), ∀x(C(x)→F(x)). 

Conclusion is ∃x(F(x)∧R(x)). 

 

S.No Statement Reason 

1 

2 

3 

4 

5 

6 

7 

8 

9 

∃x(C(x)∧R(x)) 

C(a)∧R(a) 

C(a) 

R(a) 

∀x(C(x)→F(x)) 

C(a)  →F(a) 

F(a) 

F(a)∧R(a) 

∃x(F(x)∧R(x)) 

Rule P 

RuleES,1, for some a 

Rule T, 2, for some a 

Rule T, 2, for some a 

Rule P 

RuleUS,5,for all a 

RuleT,MP,3,6,for some a 

Rule T, 4, 7, for some a 

Rule EG,8 
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Space for learners: 8.8 VALIDITY 

In the practical life, the validity of a statement made by a person is 

important. Suppose a person makes a validity of a statement which may 

be true depending on the nature of the statement. For example, if the 

statement is “Daily it is raining or it is raining on some days”. 

A predicate formula is said to have validity if every assignment in every 

structure satisfies it. 

Examples: 

1. y P y P     

2. y P y P     

3. ( )y P Q y P y Q       

4. ( )y P Q y P y Q      

5. y y y   

 

8.9. SOUNDNESS, COMPLETENESS AND 

COMPACTNESS 

 

There are distinct concepts of "truth" (⊨) and "provability" (⊢). We'd 

like them to be the same, in the sense that we should only be able to 

prove things that are true, and if they are true, we should be able to 

prove them. These two properties are known as soundness and 

completeness. 

A proof system is sound if everything that is provable is true. In other 

words, if A1,…,An⊢S then A1,…,An⊨S. 

A proof system is complete if everything that is true has a proof. In 

other words, if A1,…,An⊨S then A1,…,An⊢S. 

A set W of well-formed formulas is called satisfiable if and only if there 

is a truth assignment that satisfies every member of W. 

A set of well-formed formulas is satisfiable if and only if every finite 

subset is satisfiable (Compactness Theorem). 
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Space for learners:  

 

 

 

 

 

 

 

 

 

8.10 SUMMING UP 

 Propositions have truth values. 

 A property is true for all values of a variable or for some values of 

the variable, in a particular domain. It is called the universe of 

discourse. 

 Conjunction, disjunction or negation operations can be applied on 

propositions. 

 Every atomic formula is a well-

formed formula.  

 Any variable appearing in an “ x - bound” part of the formula is called 

as a bound variable. Otherwise, it is called as a free variable. 

 Any formula immediately following ( )x  or ( )x  is called the scope of 

the quantifier. 

 A predicate formula is said to have validity if every assignment in 

every structure satisfies it. 

 A proof system is sound if everything that is provable is true. A 

proof system is complete if everything that is true has a proof.  

 A set W of well-formed formulas is called satisfiable if and only if 

there is a truth assignment that satisfies every member of W. 

 

CHECK YOUR PROGRESS-II 

 

5. In the statement ( )( ( ) ( )),x S x I x  _______ is free and ______ is 

bound variables. 

6. A proof system is _______if everything that is provable is true. 

7. A proof system is _________if everything that is true has a proof. 

8. A set of well-formed formulas is ____________if and only if 

every finite subset is satisfiable (Compactness Theorem). 
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Space for learners: 8.11 ANSWERS TO CHECK YOUR PROGRESS 

1. Predicate 

2. ∃ 

3. ∀ 

4. ¬ 

5. I(x), S(x) 

6. Sound 

7. Complete 

8. Satisfiable 

8.12 POSSIBLE QUESTIONS 

1. Express the following statements using predicates and both 

quantifiers. 

(i) All men are mortal. 

(ii) Every apple is red. 

(iii) All birds can fly. 

(iv) There is an integer which is odd and prime. 

(v) Every student of this class visited either Mumbai or New 

Delhi”. 

2. For the following statements, write the symbolic form using 

predicates and quantifiers, and then their negation forms. 

(i) Everybody who is healthy can do all types of works. 

(ii) Some people are not admired by everyone. 

(iii) Everyone should help his neighbours or his neighbours 

will not help him. 

3. Show that the premises “Everyone in the Computer Science 

branch has studied Discrete Mathematics” and “John is in 

Computer Science branch” imply the conclusion “John has 

studied Discrete Mathematics”. 
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Space for learners: 4. Verify the validity of the following statement.  

Every living thing is a plant or an animal. John’s gold fish is 

alive and it is not a plant. All animals have hearts. Therefore 

John’s gold fish has a heart. 

5. Find the free and bound variables in the following: 

(i) ( ( ) ( )) ( ( )) ( ).y A y B y y A y C y     

(ii) ( ( ) ( ) ( )) ( ).y A y B y y C y D y   €  
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