
(5)

BLOCK I :

REVIEW OF COMPUTER ORGANIZATION,

MEMORY ARCHITECTURE,

CONCURRENT PROCESS AND

SCHEDULING

Unit 1 : Computer System Review

Unit 2 : Operating System(OS) Overview

Unit 3 : Introduction to Linux

Unit 4 : Process Management

Unit 5 : System Calls

Unit 6 : Process Scheduling Algorithms I

Unit 7 : Process Scheduling Algorithms II

Unit 8 : Concurrent Process Management

7 | P a g e

Space for learners: UNIT 1: COMPUTER SYSTEM REVIEW

Unit Structure:

1.1 Introduction

1.2 Unit Objectives

1.3 Components of a Computer

1.3.1 Functional Units of a Computer

1.3.1.1 Input Unit

1.3.1.2 Output Unit

1.3.1.3 Central Processing Unit (CPU)

1.3.1.4 Memory Units

1.3.1.5 Units of Memory

1.4 Basic Instruction Sets of Computer

1.4.1 Instruction Set Architectures

1.4.1.1 RISC (Reduced Instruction Set Computer)

1.4.1.2 CISC (Complex Instruction Set Computer)

1.4.1.3 MISC (Minimal Instruction Set Computers)

1.4.1.4 VLIW (Very Long Instruction Word)

1.4.1.5 EPIC (Explicitly Parallel Instruction
Computing)

1.4.1.6 OISC (One Instruction Set Computer)

1.4.1.7 ZISC (Zero Instruction Set Computer)

1.4.2 Instruction Set

1.4.3 Addressing Mode

1.5 Summing Up

1.6 Answers to Check Your Progress

1.7 Possible Questions

1.8 References & Suggested Readings

8 | P a g e

Space for learners: 1.1 INTRODUCTION

In this unit you will learn about different functional units or sub
systems of a computer. A computer system is said to be functional
if all the major subsystems work properly. This unit introduces a
number of hardware units presents in a computer and give a broad
overview and functional aspects of the same. Instruction set is
another aspect of a computer systems to be discussed here, where
we will learn about different addressing modes and Instruction set
architecture of a computer.

1.2 UNIT OBJECTIVES

After going through this unit, you will be able to

 understand the major hardware units of Computer
System

 learn about the instruction set architectures

 learn about the various types of addressing modes

1.3 COMPONENTS OF A COMPUTER
An electronic calculating machine that takes digitized information
as input, processes the input according to internally stored one or
more instructions and produces the output information can be
termed as computer.

Digital computer consists of five functionally independent
main units

a) Input units

b) Output units

c) Central processing unit

i. Arithmetic and logic units

ii. Control Units

iii. Registers

d) Memory units

9 | P a g e

Space for learners:

Data Flow
Control Flow

Figure 1: Block Diagram of a Computer

Figure 1 shows the block diagram of a computer introduced by
John Von Neumann based on a stored-program concept. In this
stored-program concept, programs and data or information are
stored in a separate storage unit called memories and are treated
the same.

Instructions are the commands that move the information within
computer or between different computers and its Input and output
(I/O) devices and performs arithmetic and logic operations.

A set of instructions that performs a task is called a program. The
processor fetches the instructions from memory, one at a time and
performs the desired operations unless there is some interrupt
signal occurs.

Secondary
Storage

Primary
Storage

Control Unit

Arithmetic
and Logic Unit

Input Unit Output Unit

10 | P a g e

Space for learners: 1.3.1 Functional Units of a Computer

1.3.1.1 Input Unit
Input unit or device is hardware equipment through which data
and control signals are transferred to computer. Input unit converts
data and command to computer understandable form. Examples of
input devices: keyboards, mouse, scanners, digital cameras,
joysticks, digital pen, digitizers, Touch Panel etc.

Figure: Keyboard, Mouse, Scanner, Joystick, Digital Pen

1.3.1.2 Output Unit

An output unit or device is a hardware equipment which converts
digital information into human readable or understandable form.
Example of output device: Monitor, Printer, Plotters, Speakers etc.

Figure: Monitor, Printer, Plotters, Speaker

CHECK YOUR PROGRESS-I
1. State TRUE or FALSE:

(a) Input device takes inputs from computer
(b) Joysticks is an input device
(c) Printer is used to display Output (True/False)
(d) Through Instruction we can move information within a

computer
2. Fill in the Blanks:

(a) Computer use _________Unit to store information.
(b) Computer use _________Unit to do all arithmetic

operations.
(c) Instruction are _________used in computer.
(d) Speaker is a ________ Device

11 | P a g e

Space for learners: 1.3.1.3 Central Processing Unit (CPU)
Central processing Unit; in short CPU is the brain of a computer
system. All calculations are made inside the CPU. CPU is
responsible for controlling all the devices and maintain
communication between them. Arithmetic and logic unit, Control
Unit and Registers together referred as central processing unit or
processor.

i. Arithmetic and Logic Unit (ALU): The arithmetic logic
unit is that part of the CPU that handles all the
calculations the CPU may need, e.g. Addition,
Subtraction, Comparisons. It performs Logical
Operations, Bit Shifting Operations, and Arithmetic
Operations.

ii. Control Unit: The control unit manages and co-
ordinates all the operations of computer system
through signals. It transfers all input and output flow,
fetches instructions and controls data moves around
the system.

iii. Registers: Registers are small amounts of high-speed
memory contained within the CPU used as a
temporary storage area. They are used by the processor
to store small amounts of data that are needed during
processing, such as:

 Stores the address of the next executing
instruction

 The current instruction being executed

 The results of calculations

Different processors have different numbers of registers for
different purposes, but most have some, or all, of the following:

 Program Counter: Program Counter (PC) is used to keep
the track of execution of the program. After successful
completion of an instruction, PC points to the address of
the next instruction to be fetched from the main memory.

 Memory Data Register (MDR): Memory Data Register
contains data to be read or write from an addressed
location.

12 | P a g e

Space for learners: Memory Address Register (MAR): Memory Address
Register is used to hold address of the location to be
accessed from memory. The communication between
the CPU and the main memory is handled by MAR and
MDR.

 Instruction Register (IR): The Instruction Register holds
the instruction which is just about to be executed. The
instruction from PC is fetched and stored in IR. As soon
as the instruction in placed in IR, the CPU starts
executing the instruction and the PC points to the next
instruction to be executed.

 Accumulator (Acc) : Accumulator is the frequently used
register for storing data taken from memory. It is
commonly used as a temporary location for storing data.

 General Purpose Register: These are numbered as R0,
R1, R2….Rn-1, and used to store temporary data during
any ongoing operation.

All the components of CPU are connected to the computer through
buses. A bus is a high-speed internal connection. It can be
assuming as an electrical wire for connecting and communicating
between the units of CPU. Buses are used to send control signals
and data between the processor and other components.

Three types of bus are used:

 Address bus - carries memory addresses from the processor
to other components such as primary memory and
input/output devices.

 Data bus - carries the actual data between the processor
and other components.

 Control bus - carries control signals from the processor to
other components. The control bus also carries the clock's
pulses.

STOP TO CONSIDER
Program Counter always points to the address of the next
instruction to be fetched from the main memory.
Accumulator is the frequently used register for storing data taken
from memory.

13 | P a g e

Space for learners:

1.3.1.4 Memory Units

Memory Units are the storage space for storing program and data.
Memory units are used for storing intermediate results and for
final results. It has two broad categories.

i. Main Memory or Primary Memory

ii. Secondary Memory

Main Memory or Primary Memory

All computer uses primary memory for storing program and data
when computing is running. Primary memory can operate at
electronic speeds. When programs are being executed, it must be
residing in the main memory. In main memory, a distinct address
is mapped with each data location for accessing or manipulating
data. Addresses are the numbers that identify successive location

Types of Primary Memory:

 Read Only Memory (ROM)

 Random Access Memory (RAM)

 Cache Memory

Read Only Memory (ROM): ROM is a memory device or
storage medium that stores information permanently. It is called
read only memory as we can only read the programs and data
stored on it but cannot write on it. The manufacturer of ROM fills

CHECK YOUR PROGRESS-II
3. State TRUE or FALSE:

(a) Control Unit Controls Only Arithmetic and Logic Unit
(b) Registers re used as Temporary Storage
(c) Adress bus is a register
(d) Data bus carries actual data

4. Fill in the Blanks:
(a) Program counter points____________
(b) Memory Data Register contains ____________
(c) Memory Address Register is used to hold _____________
(d) The Instruction Register holds__________
(e) Control Signal is transferred through ______ bus

14 | P a g e

Space for learners: the programs into the ROM at the time of manufacturing the
ROM. After this, the content of the ROM can't be altered, which
means you cannot reprogram, rewrite, or erase its content later.

Various types of ROMs:

Programmable Read only Memory (PROM) is a programmable
read only memory to store information only once by a user.
PROM data cannot be erased.

Erasable Programmable Read Only Memory (EPROM) also a
programmable read only memory to store information by a user.
Stored information can be erased exposing it to strong ultraviolet
light source

Electrically Erasable Programmable Read Only Memory
(EEPROM) is a read only memory that can be programmed and
can be erased electrically.

Random Access Memory (RAM): RAM provides operating
memory for computer, when a program and data is being
executed. CPU can access contents from RAM randomly from any
location and any order. It is also called as read/write memory,
since the information can be written to it as well as read from it.
The more processes a computer needs to run at a single time, the
more RAM it needs. RAM is as volatile memory. Volatile means
information will be lost as soon as the power supply goes off.

Cache Memory: Cache memory is a type of fast, relatively small
memory, which computer microprocessors can access more
quickly than regular RAM. It is typically directly integrated with
the CPU chip, or is placed on a separate chip that can connect
CPU and RAM. The main purpose of this type memory is to store
program instructions that are frequently used by software during
its general operations, this is why fast access is needed as it helps
to keep the program running quickly.

STOP TO CONSIDER
Before executing any data or instruction in a processor, it
should be residing in RAM.
RAM termed as Random access because any location can be
reached randomly with a same amount of time.

15 | P a g e

Space for learners: Secondary Memory

Secondary memory is a non-volatile and persistent computer
memory. It enables a user to store data that can be retrieved,
transmitted, and utilized by applications and services in real time.
Secondary memory is used to store large amount of data or
programs permanently.

Some basic characteristics of Secondary Memory

a) It is non-volatile, i.e. it retains data when power is switched
off

b) It is large capacities to the tune of terabytes

c) It is cheaper as compared to primary memory. Secondary
storage can be broadly divided into three categories

 Magnetic Storage

 Optical Storage

 Solid state storage

 Magnetic Storage: Magnetic devices use magnetic fields to
magnetise tiny individual sections of a metal spinning disk.
Each tiny section represents one bit. A magnetised section
represents a binary '1' and a demagnetised section represents
a binary '0'. As the disk is spinning, a read/write head moves
across its surface. To write data, the head magnetises or
demagnetises a section of the disk that is spinning under it.
To read data, the head makes a note of whether the section is
magnetised or not. Magnetic devices are fairly cheap, high
in capacity and durable. Example of Magnetic storage
device: Hard Disks, Floppy Disk, magnetic tape

 Optical storage: Optical devices use a laser to store and
read the stored data from an optical spinning disc made from
metal and plastic. The disc surface is divided into tracks,
with each track containing many flat areas and hollows. The
flat areas are known as lands and the hollows as pits. When
the laser shines on the disc surface, lands reflect the light
back, whereas pits scatter the laser beam. A sensor looks for
the reflected light. Reflected light - land - represents a binary
'1', and no reflection - pits - represents a binary '0'. Example
of Optical storage: CD-ROM (Compact Disc -Read only

16 | P a g e

Space for learners: Memory), DVD-ROM (Digital Versatile Disc-Read Only
Memory), Blue Ray Disc

 Solid state storage: Solid state storage is a special type of
storage made from silicon microchips. It can be written to
and overwritten like RAM but it is non-volatile. Solid state
is also used as external secondary storage. One of the major
benefits of solid state storage is that it has no moving parts.
Because of this, it is more portable, and produces less heat
compared to traditional magnetic storage devices. Example
of Solid State Storage: USB memory sticks and solid state
drives (SSD)

CHECK YOUR PROGRESS-III

5. State TRUE or FALSE:
(a) Secondary memory is also known as Main Memory
(b) ROM is volatile Memory
(c) RAM is a volatile Memory
(d) DVD is an Optical Media

6. Fill in the Blanks:
(a) ______ provides operating memory for computer
(b) Cache Memory Stores the instruction that are

_________used
(c) Magnetic devices use _______ fields to store data
(d) SSD is mode from _________Microchips

STOP TO CONSIDER

 ROM is non-volatile memory
 RAM is volatile memory
 Cache is a volatile memory
 Magnetic Storage device like hard disk is non-volatile

memory
 Optical Storage device like CD DVD is non-volatile memory
 Solid state storage device like SSD Hard Disk, pen drive is

non-volatile Memory

17 | P a g e

Space for learners: 1.3.1.5 Units of Memory

The storage capacity of the memory is expressed in various units
of memory. Bit (Binary Digit) is the primary or smallest unit of
memory. A microprocessor uses binary digits 0 and 1 to decide the
OFF and ON state respectively. The following table shows
memory units

Sl Units Description

1 Bit A binary digit is a logical 0 or 1 that
indicates whether a component in an
electric circuit is in the passive or
active state.

2 Nibble A group of 4 bits is called nibble.

3 Byte A byte is a collection of 8 bits. The
smallest unit that can represent a data
item or a character is a byte.

4 Kilobyte (KB) 1 KB = 1024 Bytes

5 Megabyte (MB) 1 MB = 1024 KB

6 GigaByte (GB) 1 GB = 1024 MB

7 TeraByte (TB) 1 TB = 1024 GB

8 PetaByte (PB) 1 PB = 1024 TB

1.4 BASIC INSTRUCTION SETS OF COMPUTER

 As mentioned in the previous section Instructions are the
commands that move the information within computer or between

CHECK YOUR PROGRESS-IV
7. Calculate the followings:

(a) 4 Nibble = ________bit
(b) 1 byte = ________bit
(c) 1kilobyte = ________bit
(d) 1024 MB = ________byte

18 | P a g e

Space for learners: different computers and its Input and output (I/O) devices and
performs arithmetic and logic operations

An instruction set is a collection of machine language commands
for a CPU. The term can apply to all of a CPU's potential
instructions or a subset of instructions designed to improve
performance in specific scenarios.

The instruction set consists of addressing modes, instructions,
native data types, registers, memory architecture, interrupt, and
exception handling, and external I/O

Machine language is the language, through which computer can
understand and communicate. Machine language is made up of
instructions and data that are all binary numbers.

An instruction set architecture (ISA), also called computer
architecture, is an abstract model of a computer. There are various
types of instruction set architecture available and each one has its
own usage and advantages. The ISA serves as the boundary
between software and hardware.

1.4.1 Instruction Set Architecture

 Following are the instruction set architectures based on
microprocessor architecture:

 RISC (Reduced Instruction Set Computer)

 CISC (Complex Instruction Set Computer)

 MISC (Minimal Instruction Set Computers)

 VLIW (Very Long Instruction Word)

 EPIC (Explicitly Parallel Instruction Computing)

 OISC (One Instruction Set Computer)

 ZISC (Zero Instruction Set Computer)

1.4.1.1 Reduced Instruction Set Computer (RISC)

Reduced Instruction Set Computer is an instruction set
architecture (ISA) with less number of cycles per instruction (CPI)
with extremely optimized set of Instruction

19 | P a g e

Space for learners: 1.4.1.2 Complex Instruction Set Computer (CISC)

Complex Instruction Set Computer is an instruction set
architecture (ISA) with fewer instructions per program than RISC.
In CISC, single instructions can execute multiple low-level
operations (like an arithmetic operation, load from memory and a
memory store) or are capable of multi-step operations

1.4.1.3 Minimal instruction set computers (MISC)

Minimal instruction set computers is a processor architecture
which has a very small number of primary instruction operations
and corresponding opcodes. So MISC has smaller instruction set, a
smaller and faster instruction set decode unit, and faster operation
of individual instructions.

1.4.1.4 Very long instruction word (VLIW)

Very long instruction word is an instruction set architectures
designed to achieve instruction level parallelism (ILP). Central
processing units commonly allow programs to specify instructions
to execute in sequence only. A VLIW processor allows
programmes to explicitly define concurrent execution of
instructions. This design aims to provide higher performance
without the complexity inherent in some other designs.

Instruction-level parallelism (ILP) is the parallel or simultaneous
execution of a sequence of instructions in a computer program

1.4.1.5 Explicitly parallel instruction computing
(EPIC)

Hewlett Packard and Intel collaboratively defined and designed
64-bit microprocessor instruction set, for Explicitly Parallel
Instruction Computing. EPIC is an instruction set that allows
microprocessors to execute software instructions to control
parallel instruction execution using compiler

1.4.1.6 One instruction set computer (OISC)

One instruction set computer is an abstract machine that uses only
one instruction where no machine language opcode is used. OISC
also well-known as ultimate reduced instruction set computer

20 | P a g e

Space for learners: (URISC). OISCs have been used as computational models in
structural computing research and guides in teaching computer
architecture.

1.4.1.7 Zero instruction set computer (ZISC)

A computer architecture based on pattern matching and the
absence of micro-instructions is known as a zero instruction set
computer (ZISC).

1.4.2 Instruction Set

The instruction set consists of a limited set of unique codes or
commands that let the processor know what to do next, along with
some basic rules of how to express them.

Instruction of a computer can be express with the followings

 Instruction length (Length may vary): Instruction length
can range from as little as four bits in certain
microcontrollers to hundreds of bits in some very long
instruction word systems.

 Opcodes: An opcode (operation code) also known as
instruction machine code is a command to the central
processing unit

 Operands: An operand is the part of a computer instruction
that specifies data that is to be operating on or
manipulated. Basically, a computer instruction describes
an operation (add, subtract, and so forth) and the operand
or operands on which the operation is to be performed

 Registers: A processor register is a quickly accessible
location available to a computer's processor.

 Memory: It is an external storage for larger and more
versatile number of locations, with slower to access

An instruction can vary in length depending on the architecture. In
x86 systems, the length of the instruction is normally 1 to 3 bytes
(for the opcode), and a number of bytes needed for the operands,
depending on the addressing mode.

21 | P a g e

Space for learners:

1.4.3 Addressing Mode

An addressing mode provides the way to calculate the effective
memory address of an operand by using the information stored in
registers and/or constants contained within a machine instruction.
The different ways for specifying the locations of instruction
operands are known as addressing modes.

In an instruction; the operation field specifies the operation to be
performed. The executed operation may have executed on some
data that is given explicitly on the instruction or stored in
computer registers or memory words. The addressing mode of the
instruction decides how the operands to be chosen during program
execution. The addressing mode specifies a rule for interpreting or
modifying the address field of the instruction before the operand is
actually referenced.

High-level language like C, C++, Java etc uses local and global
variables, arrays, constants and pointers. For translating a high-
level language program with human understandable code into
assembly language or machine Language, the compiler must be
able to implement or use these constructs using the facilities
provided in the instruction set of the computer in which the
program will be executed.

CHECK YOUR PROGRESS-V
8. State TRUE or FALSE:

(a) One Instruction set uses only one instruction.
(b) An operand is the part of a computer instruction.
(c) Instruction-level parallelism is the parallel or

simultaneous execution of a sequence of instructions in a
computer program.

(d) zero instruction set computer uses only one instruction.
9. Fill in the Blanks:

(a) Full form of RISC _________
(b) Full Form of CISC ________
(c) An opcode is a _____ to the central processing unit.

22 | P a g e

Space for learners: The ways through which the location of an operand can be found
is known as addressing modes. Variables and constants are the
simplest data types and are found in almost every computer
program. In assembly language, registers or memory locations are
used to represent the variable to hold values.

Followings are the different types of Addressing Modes:

Register mode:

CPU register contains the operand and the name of the register is
given in the instruction.

Example: Add R2, R3

Absolute mode (Direct Mode):

Here the operand is stored in memory location and the address of
the location is given explicitly in the instruction.

Example: Add LOC, R3

Immediate mode:

In this mode, the operand is explicitly given in the instruction
without any register or memory location.

Say we want to store value 200 in register R0. Then, using the
following immediate instruction we can do that

Move #200, R0

Immediate mode is commonly used to specify the source operand
values.

The number sign (#) is used in front of the value to represent as an
immediate operand.

Constant values are used frequently in high-level language
programs. For example, if we evaluate the expression A = B + 8,
where the expression contains the constant value 8. With the
assumption that A and B variables have been declared earlier.
Memory locations A and B may be accessed using the Absolute
mode. The expression A = B + 8 can be expressed in assembly
language as follows

Move B, R1

Add #8, R1

Move R1, A

23 | P a g e

Space for learners:

Indirect mode:

In the addressing mode operand or its address is not explicitly
specified in the instruction. Instead, it provides information from
which the memory address of the operand can be determined. This
address can be referred as effective address (EA) of the operand.
So in this mode, the effective address of the operand is the
contents of a register or memory location whose address specifies
in the instruction. The indirection mode is denoted by placing the
name of the register or the memory address in the instruction in
parentheses.

For example, consider the instruction, Add (R1), R0. For
executing the above Add instruction, the processor fetches the
value in register R1 and use as the effective address of the
operand. Then the processor starts a read operation from the
memory to read the contents of the specified location. The value
fetches after read operation is the required operand, which the
processor adds to the contents of register R0. The register or
memory location that contains the address of an operand is called
a pointer. Indirection and the use of pointers are important and
powerful concepts in programming.

Index mode:

In this mode, a constant value (displacement) is added to the
contents of a register to generate the effective address of the
operand. The register used may be any one of the general-purpose
registers or a special register for this purpose. In each case, it is
referred to as an index register. Index mode is symbolically
identified as

24 | P a g e

Space for learners:

X(Ri)

Where Ri is the name of the register involved and X is the
constant value contained in the instruction. The effective address
of the operand can be calculated by

EA = X + [Ri].

Square bracket [] indicates the address of that location. Here [Ri]
means, address of Ri. During the process of generating effective
address, the contents of the index register are not changed.

In an assembly language program, the constant X may be given
either as an explicit number or as a symbolic name representing a
numerical value. When the instruction is translated into machine
language, the constant X is given as a part of the instruction and is
usually represented by fewer bits than the word length of the
computer.

In the above figure, R1 is the index register that contains the
address of a memory location. The value X defines an offset or
displacement from the address in index register to the location
where the operand is found. According to the above figure; R1
contains address 1000. Program statement is Add 20(R1), R2. So
20 displacements will be added to memory address 1000. So the
operand will be found in memory location 1020. Result of the
expression will be the addition of the content of operand stored in
memory location 1020 and the Register R2.

There are two other variants of index mode;

 Here two register is used for index content. This type of
index mode can in write as

(Ri,Rj)

25 | P a g e

Space for learners: The effective address can be calculated by adding the
contents of registers Ri and Rj.

 This type of Index mode uses a constant along with two
registers. This mode can be denoted as

X(Ri,Rj)

The effective address is the sum of the constant X and the
contents of registers Ri and Rj.

Relative mode:

Relative mode is same as index mode. The only difference is that
instead of general purpose register, here program counter (PC) for
different execution.

Auto increment mode:

In this mode, contents of a register is used as Effective Address of
the operand. After accessing the operand, the contents of this
register is automatically incremented to point to the next
instruction in the list.

Example: (Ri)+

In the above example Ri contains address of the operand. After
execution of the instruction, the address contains in Ri will be
incremented to point to the next instruction.

Autodecrement mode:

In this mode, contents of a register are used as Effective Address
of the operand. After accessing the operand, the contents of this
register is automatically decremented to point to the next
instruction. Autodecrement mode is be denoted by putting the
specified register in parentheses, preceded by a minus sign to
indicate that the contents of the register are to be decremented
before being used as the effective address

Example : - (Ri)

In the above example Ri contains address of the operand. After
execution of the instruction, the address contains in Ri will be
decremented to point to the next instruction.

26 | P a g e

Space for learners:

1.5 SUMMING UP

 A computer a fast calculating electronic machine. It has five
main functional units; Input, output, Central processing and
memory units

 CPU is a combination of these other units called ALU, Control
unit and registers

 Program Counter (PC) registers point to the next instruction to
be executed next.

 All the components of CPU are connected to the computer
through buses. In an ideal computer system three types of bus
used; address bus, data bus and control bus

 Before executing a program or instruction it should be stored
in main or primary memory. From main memory CPU will
fetch and executed the instruction

 RAM (Random access memory) is termed as Random access
because any location can be reached randomly in a short and
fixed amount of time after specifying its address.

CHECK YOUR PROGRESS-VI
10. State TRUE or FALSE:

(a) Absolute mode is also known as indirect mode.
(b) In Immediate mode, the operand is explicitly given in the

instruction without any register or memory location
(c) Constant value in Index Mode is also known as

displacement.
(d) Relative mode used General Purpose Register.

11. Fill the Blanks:
(a) The ways through which the location of an operand can be

found is known as_________
(b) In Register Mode, Operand is stored in ______________
(c) After accessing the operand, the contents of this register is

automatically decremented in ________ Addressing mode.

27 | P a g e

Space for learners: Cache memory is faster than RAM. And it is placed between
RAM and Processor to synchronize the speed of processor and
other slow speed devices

 An instruction set is a group of commands for a CPU in
machine language

 Machine language is the language, through which computer
can understand and communicate.

 An instruction set architecture (ISA), also called computer
architecture, is an abstract model of a computer. The ISA
serves as the boundary between software and hardware.

 An addressing mode specifies how to calculate the effective
memory address of an operand by using information held in
registers and/or constants contained within a machine
instruction.

1.6 ANSWERS TO CHECK YOUR PROGRESS

1.
(a) False
(b) True
(c) False
(d) True

2.
(a) Memory
(b) Arithmetic and Logic Unit
(c) Commands
(d) Output

3.
(a) False
(b) True
(c) False
(d) True

4.
(a) Next Instruction
(b) Data
(c) Address
(d) Instruction
(e) Control

5.
(a) False
(b) False
(c) True
(d) True

28 | P a g e

Space for learners: 6.
(a) RAM
(b) Frequently
(c) Magnetic
(d) Silicon

7.
(a) 16
(b) 8
(c) 8192
(d) 1073741824

8.
(a) True
(b) True
(c) True
(d) False

9.
(a) Reduced Instruction Set Computer
(b) Complex Instruction Set Computer
(c) Command

10.

(a) False
(b) True
(c) True
(d) False

11.
(a) Addressing modes
(b) CPU register
(c) Autodecrement

1.7 POSSIBLE QUESTIONS

 Short answer questions:

1. What is a computer?

2. Give two examples of pointing device?

3. Why we use secondary memory?

4. What is the role of Control Unit?

5. What is the functions of Arithmetic and logic Unit?

6. What is a program?

7. What is an instruction?

8. What do you understand by computer memory?

29 | P a g e

Space for learners: 9. Why RAM is called as Random Access Memory

10. What is a registers?

11. What is a Program counter?

12. What is Memory Data Registers?

13. What is Memory Address Register?

14. What is the use of Instruction register?

15. What are the different types of Primary memory?

16. Convert the followings

a. 1024 MB to bytes

b. 1TB to Kilobytes

c. 1 GB to Megabytes

17. What is addressing modes?

18. What is an opcode?

19. What is an operand?

Long answer questions

1. Mention four features of a computer system

2. Briefly describe the different units of computers.

3. Draw the block diagram of a computer and describe each
unit.

4. Write difference between the followings

a. Input unit and Output Unit

b. RAM and ROM

c. Primary Memory and Secondary Memory

5. What is bus? Discuss the different types of bus used in
computer

6. What is Optical Storage media? Discuss how Optical
media stores data in media.

7. What is Instruction set Architecture (ISA)? Discuss
different types of ISA briefly.

8. Discuss different addressing modes use in computer
Architecture.

30 | P a g e

Space for learners: 9. What is index addressing modes? Discuss different index
addressing modes with example.

10. Discuss the advantages and disadvantages of secondary
memory.

1.8 REFERENCES AND SUGGESTED READINGS

 V. Carl Hamacher, Zvonko G. Vranesic, Safwat G. Zaky,
Computer Organization , McGraw-hill International Editions

31 | P a g e

Space for learners: UNIT 2: OPERATING SYSTEM OVERVIEW

Unit Structure:

2.1 Introduction
2.2 Unit Objectives
2.3 Operating System (OS)
 2.3.1 Operating Systems Goals
2.4 History of Operating Systems and Computers
2.5 Types of Operating Systems
2.6 Functions of Operating Systems
2.7 Summing Up
2.8 Answers to Check Your Progress
2.9 Possible Questions
2.10 References & Suggested Readings

2.1 INTRODUCTION

We have often come across the term “operating system” and have
used different kinds of operating system in our day to day life. For
example, we use an operating system when we use a computer, a
laptop or a mobile. Operating System can be defined as an interface
between the user and the computer hardware. The goal of operating
system is to improve the efficiency of a computer system. Different
kinds of operating systems have been developed over the decades
depending on their uses and new technical advances. Operating
system performs various functions in the computer system like
program execution, I/O operation, error detection etc.

2.2 UNIT OBJECTIVES

After going through this unit, you will be able to

 define operating system
 describe the history of operating system
 explain the different types of operating systems
 describe the various functions of operating systems

32 | P a g e

Space for learners: 2.3 OPERATING SYSTEM

The operating system controls and performs a lot of the functions in
the computer system. Depending on the function it performs, there
are various ways in which the operating system can be defined.
However, the operating system can be defined in the following
ways:

“Operating system is a program that manages the computer
hardware. It also provides a basis for application programs and
acts as an intermediary between the computer user and the
computer hardware.” – [Ref 1]

Basically, the operation system has two main purposes. The first
purpose is to provide a platform that is easier and convenient for the
user to access and use the computer hardware. And the second
purpose is to efficiently manage the different resources in the
computer system.

2.3.1 Operating Systems Goals

The operating system has primarily two main goals. These goals are:

 Efficiency

 Convenience

Any operating system needs to be efficient in managing the various
resources of the computer system. The optimum of the resources like
CPU, memory, input/output devices etc. has to be made. The
computer user does not directly communicate with the computer
hardware. The computer user communicates with the hardware with
the use of an operating system. Hence the operating system needs to
be convenient for use to the user. Most of the operating systems are
designed to be either efficient or convenient and some are designed
for both. In addition to these two goals, the operating system should
also be able to evolve over the years. Over the years, the user would
require newer services and features and these need to be provided to
the user. A good operating system should evolve by upgrading to
newer versions that have better convenience and efficiency along
with updated features.

33 | P a g e

Space for learners:

2.4 HISTORY OF OPERATING SYSTEMS AND
COMPUTERS

Computers have been in use for many decades now. The first digital
computer was developed by Charles Baggage and named the
“analytical engine”, but it did not have an operating system.
Operating systems have evolved a lot over the ages and there is no
perfect mapping of operating systems with the different generations
of computers. Still, let us look at the history of operating systems
that have been developed and in use over the different generations of
computers.

First Generation of Computer (1945-55): Vacuum Tubes

The technological advancement in the first generation of computers
was the development of vacuum tubes. The machines used in this
generation were mostly calculating engines which used mechanical
relays. These mechanical relays were replaced by vacuum tubes.
Programming was done using machines language in these machines.
Assembly and high level programming languages were not used in
this generation. Operating systems were also not used in this
generation of computers. However, punched cards were introduced
in this generation.

Second Generation of Computer (1956-65): Transistors and
Batch Systems

The technological advancement in the second generation of
computers was the development of transistors. There were now
customers for the large sized computers used in this generation that
took large rooms and are called as “mainframes”. To run a job in
these machines, a programmer would write the code and hand it over
to the operator present in the input room. Depending on the language
used in writing the programming code, the operator would load the
compiler for that programming language. For example, if the code
was written in FORTRAN, then the operator would search for the

CHECK YOUR PROGRESS-I

Q1: Define operating system?

Q2. What are the goals of operating system?

34 | P a g e

Space for learners: FORTRAN compiler and load it to the computer for execution of
that code. If the next job was written in a different programming
language, then it required to unload the FORTRAN compiler and
load the compiler for that specific language. This caused a lot of
wastage of time. Hence, batch operating systems were introduced to
reduce this wastage of time. A batch of similar jobs was collected
together and then read and loaded one after another. For example, a
batch of jobs using written in FORTRAN language. After the
completion of one job, the operating system read and loaded the next
job run immediately. This process saved the time required for
loading and unloading of the compilers of different jobs.

Third Generation of Computer (1965-1980): ICs and
Multiprogramming

The technological advancement in the third generation of computers
was the development of integrated circuits (ICs). The integrated
circuits replaced the transistors of the second generation computers.
The concept of multiprogramming was also developed in this third
generation of computers. The CPU till now worked on the one job at
hand and executed the CPU burst of instructions for that job. But
when there was an I/O set of instructions, the CPU would remain
idle since it had to wait for the I/O operation to be completed and
this was a major loss of time and resource. The solution to this
problem was to partition the computer memory and then have
different jobs in these different partitions. The basic idea was that
when one job was waiting for I/O operations to be complete, the
CPU could be allocated to another job in one of these partitions.
This would keep the CPU busy and waste the resource. The concept
of time sharing operating system also introduced in this generation
used multiprogramming to provide each user with a small portion of
a time-shared computer. In the time sharing systems, each user had a
terminal and the computer provided fast interactive service to
multiple users such that it seemed like many users were using the
computer at the same time. The first general-purpose timesharing
system was CTSS (Compatible Time Sharing System) and its
success led to the development of the MULTICS (MULTiplexed
Information and Computing Service) system which was developed
to support hundreds of simultaneous users. The MULTICS had an
influence in the development of other operating systems like UNIX
and Linux.

35 | P a g e

Space for learners: Fourth Generation of Computer (1980- Present): Personal
Computers

The technological advancement in the fourth generation of
computers was the development of large scale integrated circuits
(LSI). With LSIs in use now the size of the computer became small
now as thousands of transistors could now be fitted into a square
centimetre of silicon and thus gave rise to the development of
personal computers. Disk Operating System (DOS) was one of the
operating systems used in these times. Microsoft developed a new
revised system called MS-DOS (Micro Soft Disk Operating System)
which was hugely popular. The Apple Macintosh system was also
developed during these times and was a success because of the
cheap cost and user friendly GUI. Following the success of
Macintosh, Microsoft developed their own graphical interface
Windows, which was first used as a graphical environment on top of
MS-DOS. But in 1995, Windows 95 was launched as a freestanding
operating system with MS-DOS as an underlying component for
booting and running MS-DOS programs. Over the years many
newer versions of Windows were launched like Windows 98,
Windows XP, Windows NT, Windows Me and Windows Vista.
Windows 7 was one of the prominent operating system launched by
Microsoft that had widespread popularity and demand. Later on,
other newer versions of Windows were also launched like Windows
8, Windows 10 and Windows 11. UNIX is another popular operating
system. LINUX is another alternative operating system that is
popular for personal computers. In addition, network operating
systems and distributed operating systems were also being
developed in this generation of computers.

Fifth Generation of Computer (1990-Present): Mobile
Computers

There are many operating systems specially developed for mobiles
and smartphones. Symbian operating system was widely used in the
early days of smartphones. It was the operating system that was used
by major companies like Samsung, Motorola and Nokia. But soon
other newly developed operating systems like Blackberry OS and
iOS also gave competition to the existing operating systems. In
2011, Nokia introduced their smartphones with Windows platform.
After the launch of Android operating system, it has quickly become
one of the most popular operating system that is currently used in

36 | P a g e

Space for learners: smartphones. Android is a Linux-based operating system and has the
advantage that it is open source and available under a permissive
license to evolve and adapt its operating system to cater to today’s
users’ needs and demands. Apple’s iOS is another operating system
that is widely popular nowadays for smartphones.

2.5 TYPES OF OPERATING SYSTEMS

Operating systems can be classified into different types. Let us look
at some of the different types of operating systems:

 Mainframe Operating Systems: The mainframe operating
systems are used in heavy processing oriented jobs where
huge amounts of data and I/O are processed. There are
typically three kinds of services for mainframe systems:
batch, transaction processing and timesharing. Batch systems
are used in jobs like sales reporting where interactive user
are not required. Transaction processing systems are used in
jobs that handle a large number of small requests in a short
span of time. For example, in airline or train ticket
reservation systems. Timesharing systems allow multiple
remote users to execute jobs on the computer at the same
time. Some mainframe computers perform all of the three
functions. OS/390 is an example of mainframe operating
system.

 Server Operating Systems: Server operating systems have
servers which may be large personal computers, workstations
or even mainframes. They serve multiple users who are
connected over a network. The users can share different
hardware and software resources among themselves like
printer services, web services etc. Websites use these servers
to store web pages and to handle the requests of clients.
Some of the server operating systems are Solaris, Linux and
Windows Server 201x.

 Multiprocessor Operating System: Multiprocessor
operating systems are used to increase the computing power
of a computer system by connecting multiple CPUs in a
single system. Depending on the way these CPUs are
connected they can be classified as parallel computers,

37 | P a g e

Space for learners: multicomputer or multiprocessors. With the introduction of

multicore chips in personal computers, the number of cores

in personal computers like desktop and notebooks are only

going to increase further more. Windows and Linux

operating systems run on multiprocessors.

• Personal Computer Operating System: Modern personal

computer operating systems use multiprogramming to run

multiple programs and are designed to support a single user.

These are mostly used for simple applications like word

processing, games and to access the Internet. Many versions

from Linux, Windows and Apple OS are examples for

personal computer operating system making these operating

systems the most popular in the world.

• Handheld Computer Operating Systems: Handled

computers or PDA (Personal Digital Assistant) are small

computers that can be held in our hand. Smartphones and

tablets are some of the examples of handheld devices. Some

of the popular operating systems used in these devices are

Google’s Android and Apple’s iOS. These devices have

multicore CPUs, camera and other sensors. Third party

applications can also be installed and used in these operating

systems.

• Embedded Operating System: Embedded operating

systems are used in devices like washing machines,

microwave ovens etc. These devices are generally not

thought of as computers. They differ from handheld devices

like smartphones in the way that no third party applications

can be installed or run in these machines as all the software

is pre-installed in the ROM. This makes these devices safe

from malicious software and in turn leads to a much less

complicated design. Embedded Linux and VxWorks are two

examples of embedded operating systems.

• Sensor - Node Operating System: Sensor – node operating

systems are used in wireless sensor nodes. These sensors are

small computers with CPU, RAM, ROM and one or more

environmental sensors. It has a small operating system that is

used to respond to events like for example detection of fire in

38 | P a g e

Space for learners: a building. Like embedded systems here too the programs are
pre-installed and third party applications cannot be installed
which makes these devices safe and simpler to design. One
of the most popular operating system for sensor node is the
TinyOS.

 Real – Time Operating System: In real time operating
systems, time is a major factor. Depending on the way
deadlines are met, real time systems can be divided either
into hard real - time systems or soft real – time systems. The
hard real – time system must meet the deadlines and the
actions need to happen at the exact precise time or else
catastrophic events may occur. For example if a welding
robot welds the car at wrong time then the car will get
ruined. Soft real time systems on the other hand allow small
flexibilities in meeting the deadlines provided there is no
permanent damage. eCos is an example of a real time
operating system. There is often an overlap between the
handheld, embedded and real time operating systems.

2.6 FUNCTIONS OF OPERATING SYSTEM

An operating system provides an environment to the user to run
application programs and to communicate with the computer
hardware. The operating system also needs to perform the jobs
requested by the user in an efficient manner and in optimum time.
This requires management of a lot of services and collaboration
between the different parts of the computer system.

Some of the main functions of the operating system are described
below:

 User interface: All operating systems have a user interface.
This user interface can be a command based interface or a
graphical user interface (GUI). In the command-line based

CHECK YOUR PROGRESS-II

Q3: Name two devices where embedded operating systems are
used?
Q4: What are hard and soft real time operating systems?

39 | P a g e

Space for learners: interface, the user uses text commands to issue orders to the
computer system. In the graphical user interface, instead of
commands the user uses a pointing device to choose options
from a menu, direct I/O and use a keyboard to enter text.
Some systems also provide a combination of both the user
interfaces.

 Program execution: The operating system must be able to
control the execution of the program. The operating system
must be able to load the program into the computer memory
and then execute it. The program must be able to end either
normally or abnormally i.e. with errors.

 I/O operations: While a program is running, it may require
I/O, which may involve a file or an I/O device. The device
requested by the program may be for a printer or scanner or
some other specific devices. Some of the I/O devices may
require special functions for the use of I/O. Users cannot
control the I/O directly and hence the operating systems are
used to act as an interface between the user and I/O.

 File – system manipulation: Managing file system is an
important function of the operating system. Programs need to
read and write to files and directories while in executed.
There are also other functions to be done on files like
creating, deleting and appending a file. File permissions also
need to be strictly maintained so that users can only access
those files for which they have the required permission and
access rights.

 Communications: Communications need to be maintained
between processes for exchanging of information. These
communications can be done through either message passing
or through shared memory. The communication can be
between processes that are on the same computer and even
on different computers that are linked by a computer
network.

 Error detection: One of the primary functions of operating
system is to detect errors and take necessary action. These
errors may happen in any part of the computer system like

40 | P a g e

Space for learners: the CPU, the memory, the I/O devices or in the program
itself. Once the error is detected the operating system should
take action to ensure correct computing.

 Resource allocation: The operating system needs to have an
efficient way to deal with resource allocation for multiple
users and their resource needs. Different types of resources
are managed in different ways by the operating system based
on the type of resource. For example, to allocate a resource
like CPU between different processes, CPU-scheduling
algorithms may be used based on different strategies like first
come first serve or priority based. Similarly, operating
system uses different handling and managing mechanisms
for other resources also.

 Protection and security: Protection and security are
important aspects to be considered for operating systems in
today’s world. Several processes are executed concurrently
in the computer system and it should not be possible for one
process to interfere with another process. Protection means
that all access to system resources should be controlled.
Security means that outsider’s access to system resources is
not allowed. This can be done by authenticating users by
means of a password or other tools. The protection and
security is maintained for all users and for all resources in the
computer system.

2.7 SUMMING UP

 The operating system controls and performs a lot of the
functions in the computer system.

 The operating system has primarily two main goals:
efficiency and convenience.

CHECK YOUR PROGRESS-III

Q5: What are the different types of user interface provided by
 operating systems?
Q6: Give an example on how operating system does resource
 allocation.

41 | P a g e

Space for learners: The technological advancement in the first generation of
computers was the development of vacuum tubes.

 The technological advancement in the second generation of
computers was the development of transistors.

 The technological advancement in the third generation of
computers was the development of integrated circuits (ICs)
and the concept of multiprogramming.

 The concept of time sharing operating system also
introduced in this generation used multiprogramming to
provide each user with a small portion of a time-shared
computer.

 The technological advancement in the fourth generation of
computers was the development of large scale integrated
circuits (LSI).

 There are different types of operating systems like
mainframe operating system, server operating system,
personal computer operating system, multiprocessor
operating systems, handheld computer operating system,
embedded operating systems, sensor node operating system,
real time operating system etc.

 The main functions of the operating system includes
providing user interface, program execution, I/O operations,
file system manipulation, communication, error detection,
resource allocation and to look after the protection and
security of the computer systems.

2.8 ANSWERS TO CHECK YOUR PROGRESS

Q1: Operating system is a program that manages the computer
hardware. It also provides a basis for application programs and acts
as an intermediary between the computer user and the computer
hardware

Q2: The operating system has primarily two main goals: efficiency
and convenience

Q3: Two devices where embedded operating systems are used are
washing machines and microwave ovens.

Q4: The hard real time system must meet the deadlines and the
actions need to happen at the exact precise time or else catastrophic

42 | P a g e

Space for learners: events may occur. Soft real time systems on the other hand allow
small flexibilities in meeting the deadlines provided there is no
permanent damage

Q5: This user interface can be a command based interface or a
graphical user interface (GUI). In the command-line based interface,
the user uses text commands to issue orders to the computer system.
In the graphical user interface, instead of commands the user uses a
pointing device to choose options from a menu, direct I/O and use a
keyboard to enter text. Some systems also provide a combination of
both the user interfaces.

Q6: To allocate a resource like CPU between different processes,
the operating system uses CPU-scheduling algorithms that are based
on different strategies like first come first serve or priority based
methods.

2.9 POSSIBLE QUESTIONS

1. What is an operating system?
2. What are the goals of operating system?
3. What are handheld operating systems and personal computer

operating systems?
4. What are sensor node operating systems? Give two

applications where sensor node operating systems are used.
5. Describe in brief the concept behind batch operating systems.
6. Describe the concept behind multiprogramming and time

sharing operating systems.
7. Write a brief note on the different operating systems used in

smartphones.
8. Discuss the history of operating system in relation to the

different generations of computers.
9. Describe the different types of operating system.
10. Describe the functions of operating system.

43 | P a g e

Space for learners: 2.10 REFERENCES AND SUGGESTED READINGS

1. Silberschatz, Abraham, Peter Baer Galvin, and Greg
Gagne. Operating system principles. John Wiley & Sons, 2006.

2. Tanenbaum, Andrew S., and Herbert Bos. Modern operating
systems. Pearson, 2015.

3. Tanenbaum, Andrew S., and Albert S. Woodhull. Operating
systems: design and implementation. Vol. 68. Englewood Cliffs:
Prentice Hall, 1997.

44 | P a g e

Space for learners: UNIT 3: INTRODUCTION TO LINUX

Unit Structure:
3.1 Introduction

3.2 Unit Objectives

3.3 History of Linux

3.4 Linux Distributions

3.5 Linux Architecture

3.6 Linux Shells

3.7 Linux Commands for File and Directory

3.8 Linux Commands for Process Management

3.9 Linux Commands for File Content and User Management

3.10 Summing Up

3.11 Answers to Check Your Progress

3.12 Possible Questions

3.13 References & Suggested Readings

3.1 INTRODUCTION

Like Window and Mac, Linux is also an Operating System. It is
Free and Open Source. As of now, Linux is the largest Open-
Source Software Projects in the world.

3.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 know the history of linux,

 understand the Architecture and File System of Linux,

 know different Linux commands.

45 | P a g e

Space for learners: 3.3 HISTORY OF LINUX

Linux is a free open-source secure community used operating
system. The operating system is based on Linux Kernel which was
released on September 17, 1991, by Linus Torvalds. The source
code of the operating system can be modified and distributed to
anyone by the Linux community under the GNU General Public
License. Earlier, it was used for personal computers and gradually,
used in servers, mainframe computers, supercomputers, etc. It is
also used in embedded systems, robotic automation, smartwatches,
etc. The Androids (operating system) running on a smartphone,
smartwatch, and tablets are based on the Linux kernel and are the
key success of Linux in the current time. It is generally packaged
and distributed in a Linux distribution under GNU.

3.4 LINUX DISTRIBUTIONS

From the very beginning of the development of Linux, the idea
followed regarding its distribution were:

 user can have it for free,

 user has the source code also for free,

 user can modify the code and redistribute it for free or priced
along with the source code.

The above ideas were then termed copyleft. This term was
originated from Free Software Foundation. The Free Software
Foundation is a non-profit organization and was founded by
Richard Stallman in the year 1985.

The distribution of the Linux operating system is made up of
Linux kernel software or libraries. The distribution of Linux
systems is distributed in different embedding systems or devices,
or the personnel computers. A few of the Linux distributions are
mentioned below.

i) MX Linux: It is one of the popular OSs which is based
on the Debian Linux OS. The OS is more friendly for
beginners and intermediates.

ii) Linux Mint: The Linux Mint OS is working as a
windows OS more simply and any newcomers can use
this OS as like Windows OS.

46 | P a g e

Space for learners: iii) Ubuntu: The Ubuntu OS is very simple and easy to use
as Mac OS. This OS is based on the Debian OS and
hence, it is a stable OS.

iv) Debian: The Debian Linux OS is very stable. It is more
complex than other Linux OS and hence, it is not
recommended to a new user.

v) Solus: This Linux distribution is developed
independently for 64-bit architecture. It is intentionally
developed for personal computers where enterprise and
server environment-based software are not included.

vi) Fedora: This Linux distribution was developed by the
Fedora project, which is similar to RedHat. It is easy to
use on laptop and desktop systems. It includes the latest
data center technologies.

vii) openSUSE: This Linux OS is a project Linux
distribution that serves to promote the use of Free and
Open-Source Software(FOSS).

viii) RedHat: This Linux OS is commercial, and its products
are freely available. The OS kept their trademark for not
distributing their software for being redistributed.

ix) CentOS: CentOS provides an upstream open-source
computing platform to the developer to contribute
continuously with its upstream source, i.e., Red Hat
Linux.

x) Arch Linux: The arch Linux OS is an independent
Linux OS that has been developed for 64-bit OS. It
provides the latest stable version of the software.

47 | P a g e

Space for learners: 3.5 LINUX ARCHITECTURE

The Linux Architecture depicted in Fig. 3.1.

Fig. 3.1: Architecture of Linux

Let’s discuss the components, mentioned in fig. 3.1 one by one.

Hardware: This layer, as all of you know, consists of different
computer peripherals like ROM, RAM, CPU, Keyboard, Monitor,
etc.

Kernel: It is the core/heart of the Linux O/S. The kernel is the
core software interface between a computer system’s hardware
and its processes. It also prevents and mitigates conflicts between
different processes. The kernel code is mostly written in C
language. When a system boots (in UNIX/Linux), the kernel is
loaded into the memory. The types of kernels are:

 Monolithic Kernels

 Hybrid Kernels

 Exo Kernels

 Micro Kernels
The jobs of the kernel are:

 Process Management (and System Calls)
 Memory Management
 Device Drivers

Shell: Shell is a software layer between the Kernel and User
Processes like Application, Utilities, and Commands, etc. It is
commonly known as Command Interpreter. Thus, whenever a user

Hardware

Kernel

Shell

Applications

Utilities

48 | P a g e

Space for learners: gives instructions to execute an application or command, the shell
interprets them first and then executes them.

Apart from being a Command Interpreter, it is also a scripting
language with components like variables, loops, conditional
statements, functions, and many more.

Utilities and Applications: Linux OS has System Libraries that
are used for different services such as process management,
concurrency, memory management, etc. These libraries are
implemented for several OS functionalities and need to access the
code for the same.
Utilities are the programs that provide almost all the
functionalities of an O/S to the users. These perform the
specialized level and individual activities of the OS.
The applications, as we all know, are programs that are for
different purposes.

3.6 LINUX SHELLS

As discussed above, a shell is a program that acts as an interface
between a user and the kernel. It allows a user to give commands
to the kernel and receive responses from it. Through a shell, we
can execute programs and utilities on the kernel.

There are different types of shells that exist in Linux. Let’s know
about some commonly used shells.

Bourne Shell: It was developed by Steve Bourne in AT&T Bell
Labs and is denoted by “sh”. In UNIX, the Bourne shell is

CHECK YOUR PROGRESS - I

1. What is a Linux operating system?
2. What do you mean by Linux Mint?
3. What is a debian Linux?
4. What is fedora Linux?
5. What is Linux kernel and library?
6. True or false?

a. The core part of linux is kernel.
b. Shell provides the command line interpreter.

49 | P a g e

Space for learners: regarded as the first shell. Due to its compactness and speed, this
shell gained tremendous popularity.

Path to the shell: /bin/sh and /sbin/sh

root User Prompt: #

Non root User Prompt: $

C Shell: It was developed by Bill Joy at the University of
California and is denoted by “bash”. This shell has the support for
arithmetic operations with syntax similar to C Programming
Language.

Path to the shell: /bin/csh

root User Prompt: #

Non root User Prompt: %

Korn Shell: It was developed by David Korn in AT&T Bell Labs
and is denoted by “ksh”. It supports all the features of Bourne
Shell and also the arithmetic programming features like C shell.

Path to the shell: /bin/ksh

root User Prompt: #

Non root User Prompt: $

GNU Bourne-Again Shell: This shell was developed not only to
match with the Bourne shell but also to incorporate the features of
C and Korn shells. It is the default shell in Linux.

Path to the shell: /bin/bash

root User Prompt: bash-versionNumber#

Non root User Prompt: bash-versionNumber$

The computer which is designed to run the UNIX shell is known
as a shell script. It is a list of commands, which are listed in the
order of execution. A good shell script will have comments,
preceded by the # sign, describing the steps.

Lets, you are writing a shell script. A shell script can be saved as a
.sh extension. Before you add anything, you need to start your
shell script as follows.
#!/bin/sh

50 | P a g e

Space for learners: This tells the system that the commands that follow are to be

executed by the Bourne shell. One can put comments in the script

as follows –

#!/bin/bash
University: Gauhati University
Branch: IDOL
pwd
ls
Now, Save the above content and make the script executable form.

Before that save your shell as the filename.sh. lets the file of the

shell is test.sh

$chmod +x test.sh

Now, the shell script is ready to be executed and for that type,

$./test.sh

3.7 LINUX COMMANDS FOR FILE AND
DIRECTORY

In the Linux OS, the command is considered a Linux utility, and
all the basic and advanced tasks are executed using the Linux
commands. The commands are executed in the Linux
terminal. Commands in Linux are case-sensitive. To open a
terminal, one needs to press the "CTRL + ALT + T" keys together
and execute the command by pressing ENTER. Few of the Linux
commands are defined as follows.

i) pwd :

The pwd directory denotes the current directory of the user. The
command gives the absolute path which starts from the root. The
root is the base of any Linux system. The path is denoted by the
slash(/) and the current user directory is as like below

"/home/username"

ii) ls :

51 | P a g e

Space for learners: The ls command is used to know what files are in the directory
you are in. The user can see all the hidden files by using the
command “ls -a”.

iii) cd:

The cd directory command is used to go to a directory. For
example, if the user want o move another directory from the home
directory, then the user can type the following

cd directory_name

The command is case-sensitive, so the user needs to type the
directory exactly the correct one.

iv) mkdir & rmdir:

The mkdir command is used to create a new folder or a directory.
For example, if a user wants to make a directory IDOL, then the
user should type “mkdir IDOL”. If the user wants to make a
directory in a specific position or under a specific directory, then
the user should go to these directories before the creation of a new
directory by using the command cd.

The rmdir is used to delete an empty directory. But to delete a
directory with files, the user should use the rm.

v) rm :

The rm command is used to delete files and directories. The user
should type "rm -r" to delete just the directory. It deletes both the
folder and the files it contains when using only the rm command.

vi) touch:

The touch command is used to create a file in the Linux system.
The command can be used for anything, from an empty text file to
an empty zip file. For example, “touch idol.txt”.

vii) man & --help:

The man command is used to know more about command and
how to use it. For example, “man cd” shows the manual pages of

52 | P a g e

Space for learners:

STOP TO CONSIDER
Under a directory (in Linux), apart from the entries for files and
sub-directories two more entries exists and these are “.” and “..”.
“.” refers to the current working directory and
“..” refers to the parent directory of the current working
directory

the cd command. Typing in the command name and the argument
helps it show which ways the command can be used (e.g., cd –
help).

viii) cp:

The cp command is used to copy files through the command line
by considering two arguments: The first is the location of the file
to be copied, the second is where to copy.

ix) mv:

The mv command is used to rename a file. For example, if a user
wants to rename the file “idol1” to “idol2”, we can use “mv idol1
idol2”.

x) locate:

The locate command is used to locate a file in a Linux system, just
like the search command in Windows. This command is useful
when you don't know where a file is saved or the actual name of
the file. If you want a file that has the word “idol”, it gives the list
of all the files in your Linux system containing the word "hello"
when you type in “locate -I idol”.

3.8 LINUX COMMANDS FOR PROCESS
MANAGEMENT

A process is an instance of a running program. When a user
executes a program or executes a command in Linux, it means
that the OS creates a process. The Linux operating system creates
the five-digit ID for each process which is known as Process ID
(PID). Each process has a unique ID. The OS tracks the process
through the PID. Pids eventually repeat because all the possible
numbers are used up and the next PID rolls or starts over. At any

53 | P a g e

Space for learners: point in time, no two processes with the same PID exist in the
system because it is the PID that Unix uses to track each process.

The user can start the UNIX process in two ways:

i) Foreground Processes:

Every process that a user runs are in the foreground. The
process gets the input from the keyboard and sends the
output to the screen. It can be shown using the ls command.
The foreground process is also known as the interactive
process. These processes are initiated by the user but not by
the system. While these processes are running we can not
directly initiate a new process from the same terminal.

The process runs in the foreground, the output is directed to
the user screen, and if the ls command wants any input
(which it does not), it waits for it from the keyboard.

ii) Background Processes

A background process runs without being connected to the
user keyboard. If the background process requires any
keyboard input, it waits. That’s why such kinds of processes
are known as non-interactive processes. These processes are
initiated by the system itself or by users, though they can be
managed by users. These processes have a unique PID or
process. The system can initiate other processes also with
different PIDs.

The different terms related to the Linux process are presented
below.

54 | P a g e

Space for learners: i) Listing Running Processes
It is easy to see the processes by running the ps (process
status) command.
The –f flag is used more commonly along with the ps
command for more information such as UID, PID, PPID, C,
STIME, TTY, TIM, and CMD. The UID denotes the User ID
that this process belongs to. The PID denotes the process ID.
The PPID denotes the parent process ID. C is the CPU
utilization process. STIME is process time. TTY is the
terminal type associated with the process. Time denotes the
CPU time taken by the process. CMD denotes the command
that started this process.

ii) Stopping Processes

The ending of the process can be done in several different
ways. The CTRL + C keystroke will exit the command. This
works when the process is running in the foreground mode.
If a process is running in the background, the user should get
its Job ID using the ps command and then use
the kill command to kill the process as follows.

 kill job_ID.

iii) Parent and Child Processes

The process of UNIX has two numbers. The first number
represents the Process ID (PID) and the second number
represents the parent process ID (PID). The user can use the
ps –f command for the process ID and the parent process ID.

iv) Zombie and Orphan Processes

Whenever the parent process is killed before its child, then
this process is called an orphan process. In this case, the
"parent of all processes," the init process, becomes the new
PPID (parent process ID).

A Zombie is a process that has completed its task but still, it
shows an entry in a process table. Zombie process states
always indicated by Z. The zombie process treated as dead
they are not used for system processing.

55 | P a g e

Space for learners: v) Daemon Processes

The system-related process which is running in the
background is known as Daemon Process. The daemon
process does not have controlling terminals. If a program runs
for a long time, then this process is a daemon process.

vi) The top Command:

The top command is a very useful command in Linux OS
which is used to display the Linux process. The real-time
view of the Linux system can be viewed by using the top
command. The running operation of the system along with
the process running in the OS can be viewed using the top
command.

3.9 LINUX COMMANDS FOR FILE CONTENT
AND USER MANAGEMENT

The operations in Linux OS have been performed on files. The
files are handled using directories that are organized in a tree
structure. The files of a Linux OS can be divided into 3 categories.

i) Regular Files:

Regular files are the common types of files that include text
files, images, binary files, etc. These files can be created using
the touch command. The regular file contains ASCII or
Human Readable text, executable program binaries, program
data, etc.

ii) Directories:

The windows OS represents the directories as folders. But in
the Linux operating system, it is known as directories. The
directories store the list of file names and the related
information. The root directory(/) is the base of the system,
/home/ is the default location for the user’s home directories,
/bin for Essential User Binaries, /boot – Static Boot Files, etc.
One can create new directories with the mkdir command

iii) Special Files:

56 | P a g e

Space for learners: The real physical devices in the Linux system can be used as
special files. The user can use these file systems as ordinary
files.

In the Linux operating system, a user is an entity that can
manipulate the files and perform different operations in the OS.
An ID is assigned to each user in the operating system. The root
user ID is 0 whereas the other ID varies from 1 to 999 are assigned
for the system user. The other local user IDs start from 1000.

The following commands are used for the user management

i) Using the id command of the Linux OS, one can get the
ID of the username.

ii) The command useradd adds a new user to the directory.
The user is given the ID automatically depending on
which category it falls in.

iii) The password command is used to assign a password to
the user. After using this command, the user can update a
new password.

iv) To access user configuration file cat /etc/passwd
command is used. This command prints the data of the
configuration file.

v) The usermod -u new_id username command is used to
change the user id.

vi) The command usermod -g new_group_id username is
used to modify the group id of the user.

vii) Using the command sudo usermod -l new_login_name
old_login_name, one can change the login name.

viii) The command usermod -d new_home_directory_path
username is used to change the home directory.

ix) Using the command, userdel -r username, anyone can
delete the user information.

57 | P a g e

Space for learners:

3.10 SUMMING UP

 Linux is a free open-source secure community used operating
system.

 The source code of the operating system can be modified and
distributed to anyone by the Linux community under the GNU
General Public License.

 MX Linux is one of the popular OSs which is based on the
Debian Linux OS.

 The Linux Mint OS is working as windows OS more simply
and any newcomers can use this OS as like Windows OS.

 The Ubuntu OS is very simple and easy to use as Mac OS. This
OS is based on the Debian OS and hence, it is a stable OS.

 The Debian Linux OS is very stable. It is more complex than
other Linux OS.

 Solus Linux distribution is developed independently for 64-bit
architecture.

 Fedora Linux distribution was developed by the Fedora project,
which is similar to RedHat. It is easy to use on laptop and
desktop systems.

 openSUSE Linux OS is a project Linux distribution that serves
to promote the use of Free and Open-Source Software(FOSS).

 RedHat Linux OS is commercial, and its products are freely
available.

CHECK YOUR PROGRESS - II

7. What is a shell and types of shell?
8. What is command prompt in Linux?
9. How does a shell script start?
10. Give five examples of command.
11. What is Linux process and types?
12. What is daemon process?

58 | P a g e

Space for learners: CentOS provides an upstream open-source computing platform
to the developer to contribute continuously with its upstream
source, i.e., Red Hat Linux.

 A Shell is an interface that acts as the interface between kernel
and user. It collects the input from the user and executes the
program based on the user input and displays that output.

 For shell prompt, the Linux user should type prompt, $, i.e
called as command prompt.

 In the Unix system, the following shells are available in UNIX.

 Bourne Shell

 C Shell

 The pwd directory denotes the current directory of the user.

 cd command is used the change the directory of the linux
system.

 The ls command is used to display the contents of the directory.

 The cat command is used to list the contents of a file. For
example, cat idol.txt.

 The mv command is used to move the files from one place to
another.

 To rename a file, the Linux system also uses the mv command.

 The mkdir command is used to create a new directory. The
rmdir command is used to remove an empty directory.

 The rm is used to delete directories and their contents. For
example, rm –r idol. It means that the command deletes all the
files and directories recursively.

3.11 ANSWERS TO CHECK YOUR PROGRESS

1) Linux is a free open-source secure community used operating
system.

2) The Linux Mint OS is working as windows OS more simply
and any newcomers can use this OS as like Windows OS.

3) The Debian Linux OS is very stable. It is more complex than
other Linux OS.

59 | P a g e

Space for learners: 4) Fedora Linux distribution was developed by the Fedora
project, which is similar to RedHat. It is easy to use on laptop
and desktop systems.

5) The Linux kernel is the core part of the Linux operating
system. The kernel acts as the core interface between
computer hardware and its process, manages the resources
between them.

A library is a collection of pre-compiled pieces of code called
functions. The library contains common functions and
together, they form a package called — a library

6) a) True; b) True
7) A Shell is an interface that acts as the interface between

kernel and user. It collects the input from the user and
executes the program based on the user input and displays that
output.

8) For shell prompt, the Linux user should type prompt, $, i.e.,
called as command prompt.

9) A shell script starts with #!/bin/sh
10) The following 5 are the commands in the Linux.

a. The cat command is used to list the contents of a file.
For example, cat idol.txt. The command will display the
contents of the idol.txt file.

b. The cp command is used to copy files from one
directory to another directory. For example, cp idol.txt
/home/username/idolfile.

c. The mv command is used to move the files from one
place to another. For example: mv idol.txt
/home/username/idolfile.

d. To rename a file, the Linux system also uses the mv
command. For example, mv idol.txt idol1.txt

e. The mkdir command is used to create a new directory.
For example, mkdir idol

11) A process is an instance of a running program. When a user
executes a program or executes a command in Linux, it means
that the OS creates a process. The types of the Linux process
are

a. Foreground processes,
b. Background process.

12) The system-related process which is running in the
background is known as Daemon Process.

60 | P a g e

Space for learners: 3.12 POSSIBLE QUESTIONS

1. What are basic elements or components of Linux?
2. What is Kernel? Explain its functions.
3. What are two types of Linux User Mode?
4. What do you mean by a Process States in Linux?
5. What is Linux Shell? What types of Shells are there in

Linux?
6. What is a Zombie Process?
7. What do you mean by Shell Script? Give example.
8. Why /etc/resolv.conf and /etc/hosts files are used?
9. Name some Linux variants.
10. Give some examples of Linux command

11. Difference between Zombie and Orphan Processes.

12. What is Linux file system? Explain the types of Linux file
system.

3.13 REFERENCES & SUGGESTED READINGS

 Linux: The Complete Reference, Sixth Edition - Richard
Petersen

61 | P a g e

Space for learners: UNIT 4: PROCESS MANAGEMENT
Unit Structure:

4.1 Introduction
4.2 Unit Objectives
4.3 Process

4.3.1 Process Control Block (PCB)
4.4 Process States
4.5 Thread

4.5.1 Difference between Process and Thread
4.5.2 Advantages of thread
4.5.3 User Level Threads
4.5.4 Kernel Level Threads

4.6 Operations on the Process
4.6.1 Process Creation
4.6.2 Process Termination

4.7 Process Schedulers
4.7.1 Scheduling Objectives
4.7.2 Difference among Schedulers Long-Term Vs. Short

Term Vs. Medium-Term
4.8 Process Queues
4.9 Various Times Related to the Process
4.10 Process Scheduling Queues

4.10.1 Types of CPU Scheduling
4.10.2 Non-Preemptive Scheduling
4.10.3 Preemptive Scheduling

4.11 Scheduling Criteria
4.12 The Concepts of Context Switch
4.13 Interrupt Mechanism
 4.13.1 Hardware Interrupts

4.13.2 Software Interrupts
4.14 Virtual Processor
4.15 Summing Up
4.16 Answers to Check Your Progress
4.17 Possible Questions
4.18 References & Suggested Readings

62 | P a g e

Space for learners: 4.1 INTRODUCTION

We know that a program is a set of instructions given to the
computer system to do some specific task. A program does nothing
unless its instructions are executed by a CPU. A program in
execution is called a process. In order to accomplish its task, process
needs the computer resources like memory and processor. There
may exist more than one process in the system which may require
the same resource at the same time. Therefore, the operating system
has to manage all the processes and the resources in a convenient
and efficient way. Some resources may need to be executed by one
process at one time to maintain the consistency otherwise the system
can become inconsistent and deadlock may occur.

The operating system is responsible for the following activities in
connection with Process Management

 Scheduling processes and threads on the CPUs.
 Creating and deleting both user and system processes.
 Suspending and resuming processes.
 Providing mechanisms for process synchronization.
 Providing mechanisms for process communication.

A process operates in either user mode or kernel mode. In user
mode, a process executes application code with the machine in a
non-privileged protection mode. When a process requests services
from the operating system with a system call, it switches into the
machine’s privileged protection mode via a protected mechanism
and then operates in kernel mode.

The resources used by a process are similarly split into two parts.
The resources needed for execution in user mode are defined by the
CPU architecture and typically include the CPU’s general-purpose
registers, the program counter, the processor-status register, and the
stack-related registers, as well as the contents of the memory
segments that constitute the FreeBSD notion of a program (the text,
data, shared library, and stack segments). Kernel-mode resources
include those required by the underlying hardware— such as
registers, program counter, and stack pointer—and also by the state
required for the FreeBSD kernel to provide system services for a
process. This kernel state includes parameters to the current system
call, the current process’s user identity, scheduling information, and
so on.

63 | P a g e

Space for learners: 4.2 UNIT OBJECTIVES

 After going through this unit you will be able to:

 understand the basic concepts of process management of
operating system

 know about the process and its different attributes.
 understand various states of a process
 give the basic concept of a thread and how it differ from a

process
 know about concept of process scheduling concepts
 define what is virtual processor
 understand about interrupt mechanism of processes.

4.3 PROCESS

A process is basically a program in execution. The execution of a
process must progress in a sequential fashion. A process is defined
as an entity which represents the basic unit of work to be
implemented in the system. To put it in simple terms, we write our
computer programs in a text file and when we execute this program,
it becomes a process which performs all the tasks mentioned in the
program. When a program is loaded into the memory and it becomes
a process, it can be divided into four sections ─ stack, heap, text and
data.
Stack: The process stack contains the temporary data such as
method/function parameters, return address, and local variables.
Heap: Heap is a dynamically allocated memory to a process during
its runtime.
Text: Text section of a process includes the current activity
represented by the value of Program Counter and the contents of the
processor's registers.
Data: Data section of any process contains the global and static
variables.

64 | P a g e

Space for learners: Stack

Heap

Data

Text

Fig.4.1. The simplified layout of a process in main memory

4.1.1 Process Control Block (PCB)

A Process Control Block is a data structure maintained by the
Operating System for every process. The attributes of the process are
used by the Operating System to create the process control block
(PCB) for each of them. This is also called context of the process. A
PCB keeps all the information needed to keep track of a process
with following some important attributes: Process State, Process
ID(PID), Process privileges, Pointer, Program Counter, CPU
registers, CPU Scheduling Information, Memory management
information, Accounting information and IO status information.

Process State: The Process, from its creation to the completion,
goes through various states which are new, ready, running and
waiting. The current state of the process i.e., whether it is ready,
running, waiting, or whatever.

Process ID: The PCB is identified by an integer process ID (PID)
which is the unique identification for each of the process in the
operating system.
Process privileges This is required to allow/disallow access to
system resources.
Pointer A pointer to parent process.

Program Counter: Program Counter is a pointer to the address of
the next instruction to be executed for this process. A program
counter stores the address of the last instruction of the process on

65 | P a g e

Space for learners: which the process was suspended. The CPU uses this address when
the execution of this process is resumed.

CPU registers: Various CPU registers where process need to be
stored for execution for running state.
CPU Scheduling Information: Process priority and other
scheduling information which is required to schedule the process.
Memory management information: This includes the information
of page table, memory limits, Segment table depending on memory
used by the operating system.
Accounting information: This includes the amount of CPU used
for process execution, time limits, execution ID etc.
IO status information: This includes a list of I/O devices allocated
to the process.

Process ID

Process states

Pointer

Program Counter

Priority

CPU Register

I/O status information

Accounting information

Etc.

Fig.4.2. The Simplified Diagram of a PCB.

The architecture of a PCB is completely dependent on Operating
System and may contain different information in different operating
systems. The PCB is maintained for a process throughout its
lifetime, and is deleted once the process terminates.

66 | P a g e

Space for learners: 4.4 PROCESS STATES

Fig.4.3. States diagram of a process

The process, from its creation to completion, passes through various
states. The minimum number of states is five which are New, Ready,
Running, Block or Wait, and Termination. Sometimes there are two
more states namely suspend ready and suspend wait have been seen
for some particular cases of process.

The names of the states are not standardized although the process
may be in one of the following states during execution.

(i) New

A program which is going to be picked up by the OS into the main
memory is called a new process.

(ii) Ready

Whenever a process is created, it directly enters in the ready state, in
which, it waits for the CPU to be assigned. The OS picks the new
processes from the secondary memory and put all of them in the
main memory.

The processes which are ready for the execution and reside in the
main memory are called ready state processes. There can be many
processes present in the ready state.

(iii) Running

67 | P a g e

Space for learners: One of the processes from the ready state will be chosen by the OS
depending upon the scheduling algorithm. Hence, if we have only
one CPU in our system, the number of running processes for a
particular time will always be one. If we have n processors in the
system then we can have n processes running simultaneously.

(iv) Block or wait

From the Running state, a process can make the transition to the
block or wait state depending upon the scheduling algorithm or the
intrinsic behaviour of the process.

When a process waits for a certain resource to be assigned or for the
input from the user then the OS move this process to the block or
wait state and assigns the CPU to the other processes.

(v) Completion or termination

When a process finishes its execution, it comes in the termination
state. All the context of the process (Process Control Block) will
also be deleted the process will be terminated by the Operating
system.

(vi) Ready Suspended

A process in the ready state, which is moved to secondary memory
from the main memory due to lack of the resources (mainly primary
memory) is called in the suspend ready state.

If the main memory is full and a higher priority process comes for
the execution then the OS have to make the room for the process in
the main memory by throwing the lower priority process out into the
secondary memory. The suspend ready processes remain in the
secondary memory until the main memory gets available.

(vii) Block Suspended

Instead of removing the process from the ready queue, it's better to
remove the blocked process which is waiting for some resources in
the main memory. Since it is already waiting for some resource to
get available hence it is better if it waits in the secondary memory
and make room for the higher priority process. These processes

68 | P a g e

Space for learners: complete their execution once the main memory gets available and
their wait is finished.

4.5 THREAD

A thread is a flow of execution through the process code, with its
own program counter that keeps track of which instruction to
execute next, system registers which hold its current working
variables, and a stack which contains the execution history.

A thread shares with its peer threads few information like code
segment, data segment and open files. When one thread alters a code
segment memory item, all other threads see that.

A thread is also called a lightweight process. Threads provide a way
to improve application performance through parallelism. Threads
represent a software approach to improving performance of
operating system by reducing the overhead thread is equivalent to a
classical process.

Each thread belongs to exactly one process and no thread can exist
outside a process. Each thread represents a separate flow of control.
Threads have been successfully used in implementing network
servers and web server. They also provide a suitable foundation for
parallel execution of applications on shared memory
multiprocessors. The following figure shows the working of a
single-threaded and a multithreaded process.

4.5.1. Difference Between Process and Thread

Followings are the differences between processes and threads:

(i) Process is heavy weight or resource intensive. On the
other hand thread is lightweight, taking lesser resources
than a process.

(ii) Process switching needs interaction with operating
system but thread switching does not need to interact
with operating system.

(iii) In multiple processing environments, each process
executes the same code but has its own memory and file

69 | P a g e

Space for learners: resources. But all threads can share same set of open
files, child processes.

(iv) If one process is blocked, then no other process can
execute until the first process is unblocked. While one
thread is blocked and waiting, a second thread in the
same task can run.

(v) Multiple processes without using threads use more
resources. On the other hand multiple threaded processes
use fewer resources.

(vi) In multiple processes each process operates
independently of the others. But in case of thread, one
thread can read, write or change another thread's data.

Fig.4.4. Block Diagram for the Single-Threaded and Multithreaded
Process Model

4.5.2 Advantages of Thread

(i) Threads minimize the context switching time.
(ii) Use of threads provides concurrency within a process.
(iii) Threads provide efficient communication.

70 | P a g e

Space for learners: (iv) It is more economical to create and context switch
threads.

(v) Threads allow utilization of multiprocessor architectures
to a greater scale and efficiency.

Threads are implemented in following two ways:

(i) User Level Threads – These types of threads are user
managed threads.

(ii) Kernel Level Threads -- These types of threads are
operating system managed threads acting on kernel, an
operating system core.

4.5.3 User Level Threads

In this case, the thread management kernel is not aware of the
existence of threads. The thread library contains code for creating
and destroying threads, for passing message and data between
threads, for scheduling thread execution and for saving and restoring
thread contexts. The application starts with a single thread.

Advantages:

(i) Thread switching does not require Kernel mode
privileges.

(ii) User level thread can run on any operating system.
(iii) Scheduling can be application specific in the user level

thread.
(iv) User level threads are fast to create and manage.

Disadvantages:

(i) In a typical operating system, most system calls are
blocking.

(ii) Multithreaded application cannot take advantage of
multiprocessing.

4.5.4 Kernel Level Threads

In this case, thread management is done by the Kernel. There is no
thread management code in the application area. Kernel threads are

71 | P a g e

Space for learners: supported directly by the operating system. Any application can be
programmed to be multithreaded. All of the threads within an
application are supported within a single process.

The Kernel maintains context information for the process as a whole
and for individual threads within the process. Scheduling by the
Kernel is done on a thread basis. The Kernel performs thread
creation, scheduling and management in Kernel space. Kernel
threads are generally slower to create and manage than the user
threads.

Advantages:

(i) Kernel can simultaneously schedule multiple threads
from the same process on multiple processes.

(ii) If one thread in a process is blocked, the Kernel can
schedule another thread of the same process.

(iii) Kernel routines themselves can be multithreaded.

Disadvantages:

(i) Kernel threads are generally slower to create and manage
than the user threads.

(ii) Transfer of control from one thread to another within the
same process requires a mode switch to the Kernel.

4.6 OPERATIONS ON THE PROCESS

The following operations are done with a process:

(i) Creation

Once the process is created, it will be ready and come into the ready
queue (main memory) and will be ready for the execution.

(ii) Scheduling

Out of the many processes present in the ready queue, the Operating
system chooses one process and start executing it. Selecting the
process which is to be executed next, is known as scheduling.

(iii) Execution

72 | P a g e

Space for learners: Once the process is scheduled for the execution, the processor starts
executing it. Process may come to the blocked or wait state during
the execution then in that case the processor starts executing the
other processes.

(iv) Deletion/killing

Once the purpose of the process gets over then the OS will kill the
process. The Context of the process (PCB) will be deleted and the
process gets terminated by the Operating system.

4.6.1 Process Creation

Through appropriate system calls, such as fork or spawn, processes
may create other processes. The process which creates other process,
is termed the parent process of the other process, while the created
sub-process is termed its child process.

Each process is given an integer identifier, termed as process
identifier, or PID. The parent PID (PPID) is also stored for each
process.

On a typical UNIX system the process scheduler is termed as sched,
and is given PID 0. The first thing done by it at system start-up time
is to launch init, which gives that process PID 1. Further Init
launches all the system daemons and user logins, and becomes the
ultimate parent of all other processes.

A child process may receive some amount of shared resources with
its parent depending on system implementation. To prevent runaway
children from consuming all of a certain system resource, child
processes may or may not be limited to a subset of the resources
originally allocated to the parent.

There are two options for the parent process after creating the child:

 Wait for the child process to terminate before proceeding.
Parent process makes a wait() system call, for either a
specific child process or for any particular child process,
which causes the parent process to block until
the wait() returns. UNIX shells normally wait for their
children to complete before issuing a new prompt.

73 | P a g e

Space for learners: Run concurrently with the child, continuing to process
without waiting. When a UNIX shell runs a process as a
background task, this is the operation seen. It is also possible
for the parent to run for a while, and then wait for the child
later, which might occur in a sort of a parallel processing
operation.

There are also two possibilities in terms of the address space of the
new process:

1. The child process is a duplicate of the parent process.

2. The child process has a program loaded into it.

To illustrate these different implementations, let us consider
the UNIX operating system. In UNIX, each process is identified by
its process identifier, which is a unique integer. A new process is
created by the fork system call. The new process consists of a copy
of the address space of the original process. This mechanism allows
the parent process to communicate easily with its child process. Both
processes (the parent and the child) continue execution at the
instruction after the fork system call, with one difference: The return
code for the fork system call is zero for the new (child) process,
whereas the(non zero) process identifier of the child is returned to
the parent.

Typically, the execlp system call is used after the fork system call
by one of the two processes to replace the process memory space
with a new program. The execlp system call loads a binary file into
memory - destroying the memory image of the program containing
the execlp system call – and starts its execution. In this manner the
two processes are able to communicate, and then to go their separate
ways.

Below is a C program to illustrate forking a separate process using
UNIX (using Ubuntu):

#include<stdio.h>

void main(int argc,char *argv[])

 {

74 | P a g e

Space for learners: int pid=fork(); // fork another process

 if(pid<0)

 {

 fprintf(stderr, “fork failed”); \\Error occurs

 exit(-1);

 }

 If(pid==0)

 {

 execlp(“/bin/ls”,”ls”,NULL); //child process

 }

 else

 {

 wait(NULL); //parent process

 printf(“Child Complete”);

 exit(0);

 }

 }

4.6.2 Process Termination

By making the exit (system call), typically returning an int,
processes may request their own termination. This int is passed
along to the parent if it is doing a wait(), and is typically zero on
successful completion and some non-zero code in the event of any
problem.

75 | P a g e

Space for learners: Processes may also be terminated by the system for a variety of
reasons, including :

 The inability of the system to deliver the necessary system
resources.

 In response to a kill command or other unhandled process
interrupts.

 A parent may kill its children if the task assigned to them is
no longer needed i.e. if the need of having a child terminates.

 If the parent exits, the system may or may not allow the child
to continue without a parent (In UNIX systems, orphaned
processes are generally inherited by init, which then proceeds
to kill them.)

When a process ends, all of its system resources are freed up, open
files flushed and closed, etc. The process termination status and
execution times are returned to the parent if the parent is waiting for
the child to terminate, or eventually returned to init if the process
already became an orphan.

The processes which are trying to terminate but cannot do so
because their parent is not waiting for them are termed zombies.
These are eventually inherited by init as orphans and killed off.

CPU scheduling is a process that allows one process to use the CPU
while the execution of another process is on hold (in waiting state)
due to unavailability of any resource like I/O etc, thereby making
full use of CPU. The aim of CPU scheduling is to make the system
efficient, fast, and fair.

Whenever the CPU becomes idle, the operating system must select
one of the processes in the ready queue to be executed. The
selection process is carried out by the short-term scheduler (or CPU
scheduler). The scheduler selects from among the processes in
memory that are ready to execute and allocates the CPU to one of
them.

76 | P a g e

Space for learners: 4.7 PROCESS SCHEDULERS

Process Scheduling is an operating system task that schedules
processes of different states like ready, waiting, and running.
Process scheduling allows OS to allocate a time interval of CPU
execution for each process. Another important reason for using a
process scheduling system is that it keeps the CPU busy all the time.
This allows you to get the minimum response time for programs.
Operating system uses various schedulers for the process scheduling.

4.7.1 Scheduling Objectives

There are some important objectives of Process scheduling

(i) Maximize the number of interactive users within acceptable
response times.

(ii) Achieve a balance between response and utilization.
(iii) Avoid indefinite postponement and enforce priorities.
(iv) It also should give reference to the processes holding the key

resources.

There are three types of process schedulers we have namely (i) long
term scheduler, (ii) short term scheduler and (iii) medium term
scheduler.

(i) Long term scheduler

Long term scheduler is also known as job scheduler. It chooses the
processes from the pool (secondary memory) and keeps them in the
ready queue maintained in the primary memory.

Long Term scheduler mainly controls the degree of
Multiprogramming. The purpose of long term scheduler is to choose
a perfect mix of IO bound and CPU bound processes among the jobs
present in the pool.

If the job scheduler chooses more IO bound processes then all of the
jobs may reside in the blocked state all the time and the CPU will
remain idle most of the time. This will reduce the degree of
Multiprogramming. Therefore, the Job of long term scheduler is
very critical and may affect the system for a very long time.

77 | P a g e

Space for learners: (ii) Short term scheduler

Short term scheduler is also known as CPU scheduler. It selects one
of the Jobs from the ready queue and dispatch to the CPU for the
execution.

A scheduling algorithm is used to select which job is going to be
dispatched for the execution. The Job of the short term scheduler can
be very critical in the sense that if it selects job whose CPU burst
time is very high then all the jobs after that, will have to wait in the
ready queue for a very long time.

This problem is called starvation which may arise if the short term
scheduler makes some mistakes while selecting the job.

(iii)Medium term scheduler

Medium term scheduler takes care of the swapped out processes.If
the running state processes needs some IO time for the completion
then there is a need to change its state from running to waiting.

Medium term scheduler is used for this purpose. It removes the
process from the running state to make room for the other processes.
Such processes are the swapped out processes and this procedure is
called swapping. The medium term scheduler is responsible for
suspending and resuming the processes.

It reduces the degree of multiprogramming. The swapping is
necessary to have a perfect mix of processes in the ready queue.

4.7.2 Difference among Schedulers Long-Term Vs.
Short Term Vs. Medium-Term

Sl
No Long-Term Short-Term Medium-Term

1 Long term is also
known as a job

scheduler

Short term is also
known as CPU

scheduler

Medium-term is also
called swapping

scheduler.
2 It is either absent or

minimal in a time-
sharing system.

It is insignificant in the
time-sharing order.

This scheduler is an
element of Time-
sharing systems.

78 | P a g e

Space for learners: Sl
No Long-Term Short-Term Medium-Term

3 Speed of long-term
schedulers is less

compared to the short
term scheduler.

Speed is the fastest
compared to the short-
term and medium-term

scheduler.

It offers medium
speed.

4 It allows us to select
processes from the
loads and pool back

into the memory

It only selects
processes that are in a

ready state of the
execution.

It helps you to send
process back to

memory.

5 It offers full control It offers less control It reduces the level of
multiprogramming.

4.8 PROCESS QUEUES

The Operating system manages various types of queues for each of
the process states. The PCB related to the process is also stored in
the queue of the same state. If the Process is moved from one state to
another state then its PCB is also unlinked from the corresponding
queue and added to the other state queue in which the transition is
made.

There are the following process queues maintained by the Operating
system.

(i) Job Queue

In starting, all the processes get stored in the job queue. It is
maintained in the secondary memory. The long term scheduler (Job
scheduler) picks some of the jobs and put them in the primary
memory.

(i) Ready Queue

Ready queue is maintained in primary memory. The short term
scheduler picks the job from the ready queue and dispatch to the
CPU for the execution.

(ii) Waiting Queue

79 | P a g e

Space for learners: When the process needs some IO operation in order to complete its
execution, OS changes the state of the process from running to
waiting. The context (PCB) associated with the process gets stored
on the waiting queue which will be used by the Processor when the
process finishes the IO.

4.9 VARIOUS TIMES RELATED TO THE PROCESS

(i). Arrival Time

The time at which the process enters into the ready queue is called
the arrival time.

(ii). Burst Time

The total amount of time required by the CPU to execute the whole
process is called the Burst Time. This does not include the waiting
time. It is confusing to calculate the execution time for a process
even before executing it hence the scheduling problems based on the
burst time cannot be implemented in reality.

(iii). Completion Time

The time at which the process enters into the completion state or the
time at which the process completes its execution, is called
completion time.

(iv). Turnaround time

The total amount of time spent by the process from its arrival to its
completion, is called Turnaround time.

(v). Response Time

The difference between the arrival time and the time at which the
process first gets the CPU is called Response Time.

4.10 PROCESS SCHEDULING QUEUES

Process Scheduling Queues help us to maintain a distinct queue for
each and every process states and PCBs. All the process of the same

80 | P a g e

Space for learners: execution state is placed in the same queue. Therefore, whenever the
state of a process is modified, its PCB needs to be unlinked from its
existing queue, which moves back to the new state queue.

Three types of operating system queues are:

I. Job queue – All processes, upon entering into the system,
are stored in the Job Queue. It helps us to store all the
processes in the system.

II. Ready queue – This type of queue helps us to set every
process residing in the main memory, which is ready and
waiting to execute. Processes in the ready state are placed in
the Ready Queue.

III. Device queues – It is a process that is blocked because of the
absence of an I/O device. Processes waiting for a device to
become available are placed in Device Queues. There are
unique device queues available for each I/O device.

Fig.4.5. Block Diagram of Process Scheduling Queues

Here in the above-given block Diagram of process scheduling
queues, we use the rectangle that represents a queue, circle denotes
the resource and arrow indicates the flow of the process. Here we
discuss the every step from 1 to 7 as follows:

81 | P a g e

Space for learners: 1. Every new process first put in the Ready queue .It waits in
the ready queue until it is finally processed for execution.
Here, the new process is put in the ready queue and wait until
it is selected for execution or it is dispatched.

2. One of the processes is allocated the CPU and it is executing
3. The process should issue an I/O request
4. Then, it should be placed in the I/O queue.
5. The process should create a new subprocess
6. The process should be waiting for its termination.
7. It should remove forcefully from the CPU, as a result

interrupt. Once interrupt is completed, it should be sent back
to ready queue.

The act of determining which process is in the ready state, and
should be moved to the running state is known as Process
Scheduling.

The prime aim of the process scheduling system is to keep the CPU
busy all the time and to deliver minimum response time for all
programs. For achieving this, the scheduler must apply appropriate
rules for swapping processes IN and OUT of CPU.

4.10.1 Types of CPU Scheduling

Here we observed that CPU scheduling decisions may take place
under the following four circumstances:

1. When a process switches from the running state to
the waiting state(for I/O request or invocation of wait for the
termination of one of the child processes).

2. When a process switches from the running state to
the ready state (for example, when an interrupt occurs).

3. When a process switches from the waiting state to
the ready state(for example, completion of I/O).

4. When a process terminates.

In circumstances 1 and 4, there is no choice in terms of scheduling.
A new process(if one exists in the ready queue) must be selected for
execution. There is a choice, however in circumstances 2 and 3.

82 | P a g e

Space for learners: When Scheduling takes place only under circumstances 1 and 4, we
say the scheduling scheme is non-preemptive; otherwise, the
scheduling scheme is preemptive.

4.10.2 Non-Preemptive Scheduling

In non-preemptive scheduling, once the CPU has been allocated to a
process, the process keeps the CPU until it releases the CPU either
by terminating or by switching to the waiting state.

It is the only method that can be used on certain hardware platforms
because It does not require the special hardware needed for
preemptive scheduling.

This scheduling method is used by the Microsoft Windows 3.1 and
by the Apple Macintosh operating systems.

In non-preemptive scheduling, it does not interrupt a process
running CPU in the middle of the execution. Instead, it waits till the
process completes its CPU burst time, and then after that it can
allocate the CPU to any other process.

Some Algorithms based on non-preemptive scheduling are: Shortest
Job First (SJF basically non-preemptive) Scheduling and Priority
(non- preemptive version) Scheduling, etc.

4.10.3 Preemptive Scheduling

In this type of process scheduling, the tasks are usually assigned
with priorities. At times it is necessary to run a certain task that has a
higher priority before another task although it is running. Therefore,
the running task is interrupted for some time and resumed later when
the priority task has finished its execution.

Thus this type of scheduling is used mainly when a process switches
either from running state to ready state or from waiting state to ready
state. The resources (like CPU cycles) are mainly allocated to the
process for a limited amount of time and then are taken away, and
after that, the process is again placed back in the ready queue in the
case if that process still has a CPU burst time remaining. That

83 | P a g e

Space for learners: process stays in the ready queue until it gets the next chance to
execute.

Some Algorithms that are based on preemptive scheduling are
Round Robin Scheduling (RR), Shortest Remaining Time First
(SRTF), Priority (preemptive version) Scheduling, etc.

4.11 SCHEDULING CRITERIA

There are many different criteria to check the best scheduling
algorithm, they are respectively:

CPU Utilization

To make out the best use of the CPU and not to waste any CPU
cycle, the CPU would be working most of the time (Ideally 100% of
the time). Considering a real system, CPU usage should range from
40% (lightly loaded) to 90% (heavily loaded.)

Throughput

It is the total number of processes completed per unit of time or
rather says the total amount of work done in a unit of time. This may
range from 10/second to 1/hour depending on the specific processes.

Turnaround Time

It is the amount of time taken to execute a particular process, i.e.
The interval from the time of submission of the process to the time
of completion of the process(Wall clock time).

Waiting Time

The sum of the periods spent waiting in the ready queue amount of
time a process has been waiting in the ready queue to acquire get
control on the CPU.

Load Average

It is the average number of processes residing in the ready queue
waiting for their turn to get into the CPU.

Response Time

84 | P a g e

Space for learners: Amount of time it takes from when a request was submitted until the
first response is produced. Remember, it is the time till the first
response and not the completion of process execution (final
response).

In general CPU utilization and Throughput are maximized and other
factors are reduced for proper optimization.

4.12 THE CONCEPTS OF CONTEXT SWITCH

Context switch means switching the CPU to another process
requires saving the state of the old process and loading the saved
state for the new process. The context of a process is represented in
the Process Control Block (PCB) of a process which includes the
value of the CPU registers, the process state and memory-
management information. When a context switch occurs, the Kernel
saves the context of the old process in its PCB and loads the saved
context of the new process scheduled to run.

Context switch time is pure overhead, because the system does no
useful work while switching. Its speed varies from machine to
machine, depending on the memory speed, the number of registers
that must be copied, and the existence of special instructions (such
as a single instruction to load or store all registers). Typical speeds
range from 1 to 1000 microseconds.

4.13 INTERRUPT MECHANISM

An interrupt refers to an external event that needs immediate
attention from the processor. An interrupt signals the processor,
indicating the need of attention, and requires interruption of the
current code the processor is executing. As a response, the processor
suspends its current activities, saves its state and executes a
particular function to service the event that has caused the
interruption. Such function is often called an interrupt handler or an
interrupt service routine. Once the processor has responded to the
interrupt, i.e. after the processor has executed the interrupt handler,
the processor resumes its previously saved state and resumes the
execution of the same program it was executing before the interrupt
occurred. The interrupts are often caused by external devices that

85 | P a g e

Space for learners: communicate with the processor (Interrupt-driven I/O). Whenever
these devices require the processor to execute a particular task, they
generate interrupts and wait until the processor has acknowledged
that the task has been performed. To be able to receive and respond
to interrupts a processor is equipped with an interrupt port. Through
the interrupt port the processor can receive the interrupt request
signals and can respond to these requests through the interrupt
acknowledge signals.

Interrupts are important because they give the user better control
over the computer. Without interrupts, a user may have to wait for a
given application to have a higher priority over the CPU to be run.
This ensures that the CPU will deal with the process immediately.

An interrupt is also referred to as an input signal that has the highest
priority for hardware or software events that requires immediate
processing of an event. During the early days of computing,
the processor had to wait for the signal to process any events. The
processor should check every hardware and software program to
understand if there is any signal to be processed. This method would
consume a number of clock cycles and makes the processor busy.
Just in case, if any signal was generated, the processor would again
take some time to process the event, leading to poor system
performance.

A new mechanism was introduced to overcome this complicated
process. In this mechanism, hardware or software will send the
signal to a processor, rather than a processor checking for any signal
from hardware or software. The signal alerts the processor with the
highest priority and suspends the current activities by saving its
present state and function, and processes the interrupt immediately,
this is known as ISR. As it doesn’t last long, the processor restarts
normal activities as soon as it is processed. Interrupts are classified
into two main types.

4.13.1 Hardware Interrupts

An electronic signal sent from an external device or hardware to
communicate with the processor indicating that it requires
immediate attention. For example, strokes from a keyboard or an
action from a mouse invoke hardware interrupts causing the CPU to
read and process it. So it arrives asynchronously and during any
point of time while executing an instruction.

86 | P a g e

Space for learners: 4.13.2 Software Interrupts

The processor itself requests a software interrupt after executing
certain instructions or if particular conditions are met. These can be
a specific instruction that triggers an interrupt such as subroutine
calls and can be triggered unexpectedly because of program
execution errors, known as exceptions or traps.

4.14 VIRTUAL PROCESSOR

A virtual processor is a representation of a physical processor core to
the operating system of a logical partition that uses shared
processors. This allows the operating system to calculate the number
of concurrent operations that it can perform.

A virtual processor is a representation of a physical processor core to
the operating system of a logical partition that uses shared
processors.

When you install and run an operating system on a server that is not
partitioned, the operating system calculates the number of operations
that it can perform concurrently by counting the number of
processors on the server. For example, if you install an operating
system on a server that has eight processors, and each processor can
perform two operations at a time, the operating system can perform
16 operations at a time. In the same way, when you install and run
an operating system on a logical partition that uses dedicated
processors, the operating system calculates the number of operations
that it can perform concurrently by counting the number of
dedicated processors that are assigned to the logical partition. In
both cases, the operating system can easily calculate how many
operations it can perform at a time by counting the whole number of
processors that are available to it.

However, when you install and run an operating system on a logical
partition that uses shared processors, the operating system cannot
calculate a whole number of operations from the fractional number
of processing units that are assigned to the logical partition. The
server firmware must therefore represent the processing power
available to the operating system as a whole number of processors.
This allows the operating system to calculate the number of
concurrent operations that it can perform. A virtual processor is a

87 | P a g e

Space for learners: representation of a physical processor to the operating system of a
logical partition that uses shared processors.

Advantages of virtual processors

 Virtual processors can share processing.

 Virtual processors save memory and resources.

 Virtual processors can perform parallel processing.

 You can start additional virtual processors and terminate active
CPU virtual processors while the database server is running.

4.15 SUMMING UP

 A program is a set of instructions given to the computer system
to do some specific task. A program in execution is called a

CHECK YOUR PROGRESS
Multiple Choice Questions:
1. A program in execution is called

(A) Process (B) Instruction (C) Procedure
 (D) Function

2. Which of the following is not a fundamental process state

(A) ready (B) terminated (C) executing
(D) blocked

3. A scheduler which selects processes from secondary storage device
is called

(A) Short term scheduler. (B) Long term scheduler.
(C) Medium term scheduler. (D) Process scheduler.

4. Program ‘preemption’ is

(A) forced de allocation of the CPU from a program which is
executing on the CPU.
(B) release of CPU by the program after completing its task.
(C) forced allotment of CPU by a program to itself.
(D) a program terminating itself due to detection of an error.

5. Interval between the time of submission and completion of the job
is called

(A) Waiting time (B) Turnaround time
(C) Throughput (D) Response time

88 | P a g e

Space for learners: process. In order to accomplish its task, process needs the
computer resources like memory and processor.

 A process operates in either user mode or kernel mode. In user
mode, a process executes application code with the machine in a
nonprivileged protection mode.

 When a process requests services from the operating system
with a system call, it switches into the machine’s privileged
protection mode via a protected mechanism and then operates in
kernel mode.

 When a program is loaded into the memory and it becomes a
process, it can be divided into four sections ─ stack, heap, text
and data.

 A Process Control Block is a data structure maintained by the
Operating System for every process. The attributes of the
process are used by the Operating System to create the process
control block (PCB) for each of them. This is also called context
of the process.

 The process, from its creation to completion, passes through
various states. The minimum number of states is five which are
New, Ready, Running, Block or Wait, and Termination.

 A thread is a flow of execution through the process code, with
its own program counter that keeps track of which instruction to
execute next, system registers which hold its current working
variables, and a stack.

 A thread is also called a lightweight process. Threads provide a
way to improve application performance through parallelism.

 User Level Threads – These types of threads are user managed
threads.

 Kernel Level Threads -- These types of threads are operating
system managed threads acting on kernel, an operating system
core.

 Through appropriate system calls, such as fork or spawn,
processes may create other processes. The process which
creates other process, is termed the parent process of the other
process, while the created sub-process is termed its child
process.

89 | P a g e

Space for learners: By making the exit (system call), typically returning an int,
processes may request their own termination.

 Process Scheduling is an operating system task that schedules
processes of different states like ready, waiting, and running.
Process scheduling allows OS to allocate a time interval of CPU
execution for each process.

 Long term scheduler is also known as job scheduler. It chooses
the processes from the pool (secondary memory) and keeps
them in the ready queue maintained in the primary memory.

 Short term scheduler is also known as CPU scheduler. It selects
one of the Jobs from the ready queue and dispatch to the CPU
for the execution.

 Medium term scheduler takes care of the swapped out
processes. If the running state processes needs some IO time for
the completion then there is a need to change its state from
running to waiting.

 Process Scheduling Queues help us to maintain a distinct queue
for each and every process states and PCBs.

 In non-preemptive scheduling, once the CPU has been allocated
to a process, the process keeps the CPU until it releases the
CPU either by terminating or by switching to the waiting state.

 In premptive scheduling, the tasks are usually assigned with
priorities. At times it is necessary to run a certain task that has a
higher priority before another task although it is running.

 Context switch means switching the CPU to another process
requires saving the state of the old process and loading the
saved state for the new process.

 An interrupt refers to an external event that needs immediate
attention from the processor. An interrupt signals the processor,
indicating the need of attention, and requires interruption of the
current code the processor is executing.

 An electronic signal sent from an external device or hardware to
communicate with the processor indicating that it requires
immediate attention.

 The processor itself requests a software interrupt after executing
certain instructions or if particular conditions are met.

90 | P a g e

Space for learners: A virtual processor is a representation of a physical processor
core to the operating system of a logical partition that uses
shared processors. This allows the operating system to calculate
the number of concurrent operations that it can perform.

4.16 ANSWERS TO CHECK YOUR PROGRESS

 1(A), 2(D), 3(C), 4(A), 5(B)

4.17 POSSIBLE QUESTIONS

Short Type Questions:
1. What is process? How it differ from a program?

2. What do you mean by PCB in a process?

3. What are the different states of a process?

4. What is a thread? How it differ from a process?

5. What is process scheduler? What are its different categories?

Long Answer Type Questions:
1. Explain different attributes found in PCB in a process.

2. Explain the three types of process schedulers with its
functions.

3. Explain the different criteria of process scheduling.

4. What do you mean by interrupt? Explain its different
categories.

4.18 REFERENCES AND SUGGESTED READINGS

 Avi Silberschatz, Greg Gagne and Peter Baer Galvin,
OPERATING SYSTEM CONCEPTS, WILEY
PUBLICATION.

 William Stallings, OPERATING SYSTEMS, INTERNALS
AND DESIGN PRINCIPLES, SEVENTH EDITION,
PEARSON PUBLICATION.

91 | P a g e

Space for learners: UNIT 5: SYSTEM CALLS

Unit Structure:

5.1 Introduction

5.2 Unit Objectives

5.3 What is System Call?

5.4 System Calls for Process Management

5.5 System Calls for File Management

5.6 Summing Up

5.7 Answers to Check Your Progress

5.8 Possible Questions

5.9 References & Suggested Readings

5.1 INTRODUCTION

System call is a mechanism through which user programs are
offered the services of the operating system. It basically an
interface between a process and the Operating System (O/S).

5.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 know the basics of system call,

 understand the different system calls in Linux O/S.,

 gain a hands-on experience using system calls.

5.3WHAT IS SYSTEM CALL?

System Calls are basically a set of extended instructions provided
by the O/S for communications between the user programs and the
O/S. These varies form O/S to O/S but the basic concepts are
almost similar. System Calls are low level functions of O/S and
are basically written in high level language C or C++.Here, in this
unit we will basically discuss the System Calls of Linux O/S.

92 | P a g e

Space for learners: When we call a library function (suppose in C++) to perform
certain task the underlying system call(s) is/are invoked and this is
illustrated in Fig. 5.1.

Fig. 5.1: Invocation of System Call

In the above illustration (Fig. 5.1), within the C++ program cin
(from C++ standard library) statement is used read data. And there
is a system call, read(), in linux for reading data from source.
When the cin statement is executed and in turn the read() system
call gets invoked.

System Calls are mostly used through an interface known as API
(Application Programming Interface) rather than direct use. Few
examples of API are:

 POSIX API for Unix, Linux, Mac OS

 Win32 API for Windows

Traditionally, the system calls are divided in to two broad
categories and they are:

 System Calls for Processes Management
 System Calls for File System Management

Let’s discuss the system calls related to the above two categories.

STOP TO CONSIDER
In Linux, there are about 60 system calls and most of them are
written in C language.

User Space

void main()
{
 int a;
 ………..
 ………..
cin>>a;
 ………..
 ………..
}

Kernel Space

read()
System Call

C
+
+

L
i
b
r
a
r
y

93 | P a g e

Space for learners:
5.4 SYSTEM CALLS FOR PROCESS

MANAGEMENT

Before plunging into more detail, let’s understand few basic
concepts/terminologies which will be very much related to our
discussion taking Linux O/S as an example.

 A program in execution is termed as Process.

 Each process is assigned with a Process Id.

 A shell, also known as command interpreter, is basically a
process which reads the command issued to a linux terminal.

 A process can create other processes and these are termed as
Child Process.A child process is also assigned a process id.

Here, in this section we will discuss the few system calls related to
Process Management.

5.4.1 exit() System Call

exit() system call is used to end a process. The syntax for the
system call is:

 void exit(status);

The status is an integer between 0 to 255 whichis returned to the
parent process.It is useful when one process requires to tell its
parent that how it ends. The status value ‘0’ means the process
have not encountered any problem.In general, the parent of all the
processes in linux is init() with Process Id 1.

Program-1:Example ofexit() system call.

int main()
{
 printf(“Program Ends….”);
 exit (0); //End the Process
}

In the above program, the exit value is set to 0.

5.4.2 fork() System Call
fork() system call is used to create a new process. The process
from which the fork() system call is invoked is termed as Parent

94 | P a g e

Space for learners: and the new process is termed as Child. The syntax of the fork()
system call is:
 pid_t fork();

The header files for pid_t and fork() are “sys/types.h” and
“unistd.h” respectively. The points, which are important while
working with fork system call, are mentioned below:

 fork() creates an exact duplicate copy of the original process.

 The variables, declared before the execution fork(), are also
exist in child process.

 After the execution of fork(), different memory space is
allocated forthe child and both of them are executed
simultaneously. Thus, the operations performed by both the
processes, in spite of having the same content, do not affect
each other.

 The return value of fork(), inside the parent, is the process id
of the child. But inside the child it is 0 (zero).

 Process ids for both the processes, parent and child, are
different.

Program-2:Write a C program which creates a child process and
then wait for the child to terminate.
#include<stdio.h>
#include<unistd.h>
#include<sys/types.h>

int main()
{

pid_t process_id;
process_id = fork();
if(process_id<0)
{
 printf(“Error in creating child process using fork system call…”);
 exit(-1);
}
else if(process_id == 0)
{
 printf(“Child Process is running…”);
}
else
{
 printf(“Parent Process is running…”);

wait();

95 | P a g e

Space for learners: printf(“Child Process terminates…”);
 exit(0);
}

}

Ideal Output(if fork()executes successfully):
Child Process is running…

Parent Process is running…

Child Process Terminates…

Ideal Output (if fork() does not execute successfully):
Error in creating child process using fork system call…

Explanation:

 The code within the dotted box is actually the child process’
code (if fork executes successfully).

 The other codes are for the parent process.

 The variable, process_id, declared before the fork also exists in
the child process.

 When fork executes,

o and if successful, it returns an integer greater than 0
(zero).

o and if unsuccessful, it returns and integer less than 0
(zero).

 After successful execution of fork, the values of process_id
inside the parent process is an integer and inside child process
is 0 (zero).

Now, the Program-2 is executed and suppose the fork executes
successfully and hence a child process is created.

 Considering the ideal situation after fork,

o the created child process start execution which displays
“Child Process is running…”.

o Process switching occurs and parent continues its
execution, which displays “Parent Process is running…”.

STOP TO CONSIDER
The output of a program (consisting of both parent & child)
depends on the processes’ switching.

96 | P a g e

Space for learners: o The wait() executes and parent suspended(blocks) itself
until the child terminates.

o Again, process switching occurs and child gets its turn
and since there is no other statements to execute, the child
exit.

o After receiving the termination signal by the child, the
parent resumes and displays “Child Process terminates…”
and then exit() function gets executed and parent is
terminated.

Now, the Program-2 is executed and suppose the fork executes
unsuccessfully and will display “Error in creating child process
using fork system call…”and the process gets terminated due to
the execution of the exit() function call.

5.4.3 wait() System Call

The wait() is a very important system call. As already mentioned
in the above explanation. It make the parent process to wait for a
process (child) to be terminated created by fork() system call.

The syntax of the wait() system call is:

 pid_t wait(int *status);

If we call wait() inside a program without a child then it returns -
1. But if the process has a child, it will wait for the child to exit
and when it happens it will return the child’s process id.

The argument, status is optional. This is a pointer to the integer
where the unix/linux stores the value returned by the child process.

Program-3: Write a C program which creates a child. The child
calculates the summation of all the even nos. between 1 and 100
and then displays it. The parent should wait till the child exit.
#include<stdio.h>
#include<unistd.h>
#include<sys/types.h>

int main()
{

pid_t process_id;
int i, sum;
process_id = fork();
if (process_id<0)

97 | P a g e

Space for learners: {
 printf(“Error in creating child process using fork system call…”);
 exit(-1);
}
else if (process_id == 0)
{
 for(i=1, sum=0; i<=100; i++)
 {
 if((i%2) == 0)
 sum = sum + i;
 }
printf(“The summation = %d”, sum);
}
else
{
 printf(“Parent Process is running…”);

wait();
printf(“Child Process terminates…”);

 exit(0);
}

}

Ideal Output (if fork() executes successfully):
Parent Process is running…

The summation = 2550

Child Process Terminates…

But suppose, a process has more than one child then how will the
wait() work???In this kind of situation, when wait() executes, it
will wait for any of the child processes to exit. Thus, when one of
the child processes exits the wait ends. And if this is so then what
will happen to the remaining child processes as the parent itself
dies after the termination of one of its childs??? In this kind of
situation, the remaining child processes, termedas Orphan
Processes, becomes the child of the init process (process ID 1).

5.4.4 System Calls for Process Identification: getpid(),
getppid()

The getpid() and getppid() system calls are used to get the process
ids.As we all know that Processes create Processes and thus every
process has their Process Id as well as their Parent Process Id.
getpid() system call is used to get the process id of the current

98 | P a g e

Space for learners: process and getppid() system call is used to get the process id of
the parent process of the currently running process.

Program-4: Write a C program which creates a child. Within the
child process itself print the process id of the child and its parent.

#include<stdio.h>
#include<unistd.h>
#include<sys/types.h>

int main()
{

pid_t process_id, c_pid, p_pid;
process_id = fork();
if (process_id<0)
{
 printf(“Error in creating child process using fork system call…”);
 exit(-1);
}
else if (process_id == 0)
{
 c_pid = getpid();
 p_pid = getppid();
 printf(“Child process id = %u”, c_pid);
 printf(“\nParent process id = %u”, p_pid);
}
else
{
 printf(“Parent Process is running…”);

wait();
printf(“Child Process terminates…”);

 exit(0);
}

}

5.4.5 The exec System Call

Basically, exec is family of system calls related to process
execution. These are basically used to run system commands as
separate processes. The library file for these system calls is
unistd.h.

The system calls fall under the family are:

int execl (const char *path, const char *arg, …, NULL);

int execlp (const char *file, const char *arg, …, NULL);

int execv (const char *path, char *const argv[]);

99 | P a g e

Space for learners: int execvp (const char *file, char *const argv[]);

int execle (const char *path, const char *arg, …, NULL, char *
const envp[]);

int execve (const char *file, char *const argv[], char *const
envp[]);

Let’s discuss few of the above system calls.

 “execl” System Call

This system call takes the path of the executable file as the 1st and
2nd argument. The arguments that follow the 1st two are also
related to the task. And the last argument should be NULL. It will
return -1 if any error occurs but otherwise will return nothing. For
example:

execl("/bin/ls","/bin/ls",“-al”,“/idol”, NULL);

When the above code executes, a detailed list of files and
directories under the directory “/idol” will be displayed.

 “execlp” System Call

This system call is almost like “execl” except it takes only the
name of the executable file since it uses the PATH environment
variable to get the path of the executable. The arguments that
follow the 1st two are also related to the task. And the last
argument should be NULL. For example:

execl ("ls","ls", “-al”, “/idol”, NULL);

When the above code executes, a detailed list of files and
directories under the directory “/idol” will be displayed.

 “execv” System Call

This system call takes only two arguments. 1st argument is path of
the executable file and the 2nd argument is a list of parameters
terminated by NULL. For example:

char *arg[] = {“/bin/ls”, “-al”, “/idol”, NULL”};

execv("/bin/ls",arg);

The output of the above code will be the same as above.

 “execvp” System Call

100 | P a g e

Space for learners: The arguments to this system call are same as “execv” but we
need to mention only the name of the executable file not the whole
path as it uses the PATH environment variable. For example:

char *arg[] = {“ls”, “-al”, “/idol”, NULL”};

execvp("ls",arg);

The output of the above code will be the same as above.

5.5 SYSTEM CALLS FOR FILE MANAGEMENT

These system calls are used for handling the tasks like creating a
file/directory, opening a file, reading a file, writing to a file etc.
The header files necessary to include are - sys/types.h, sys/stat.h,
fcntl.h and unistd.h.

5.5.1 Open System Call

This system call is used to open or creating a file. The syntax is:

int open(const char *path, int flags,... /* mode_t mod */);

This will return a filed descriptor or will return -1 if fails. The 1st
argument is the path of the file to be opened. 2nd argument takes
how the file is to be opened such as read-only, write-only etc.
These flags are as follows:

O_RDONLY: means Open for reading only,
O_WRONLY: means Open for writing only,
O_RDWR: means Open for both reading and writing.
O_APPEND: means Open and writing will from the end of the
file.
O_CREAT: means if file does not exist then Create and then
Open.

These flags are defined in fcntl.h header file. The 3rd argument is
necessary while creating a new file. When file is opened a file
pointer is placed at 1st byte of the file except while opening with
O_APPEND flag where the file pointer is place at the end of the
file.

5.5.2 Creat System Call

This system call is used to create a new file. The syntax is:

101 | P a g e

Space for learners: int creat (const char *path, mode_t mod);

This will return a filed descriptor or will return -1 if fails. The 1st
argument, path, indicates the name of the file and the 2nd
argument, mod, indicates the file access rights.

5.5.3 Read System Call

Using this system call we can read data (no. of bytes) starting from
the current position, pointed by the file pointer, in a file. The
syntax is:

ssize_t read(int fd, void* buf, size_t noct);

This will return no. of bytes read or 0 for EOF (End of File) or -1
if error occurs. The 1st argument, fd, is the File Descriptor of the
file to be read. 2nd argument, buf, is the buffer (storage) where the
data after the read will be stored and 3rd argument, noct, is the no.
of bytes to be read from the file.

5.5.4 Write System Call

Using this system call we can write data (no. of bytes) at the
current position, pointed by the file pointer, in to a file. The syntax
is:

ssize_t write (int fd, const void* buf, size_t noct);

This will return no. of bytes written or -1 if error occurs. The 1st
argument, fd, is the File Descriptor of the file where data are to be
written. 2nd argument, buf, is the buffer (storage) where the data
after the read will be stored and 3rd argument, noct, is the no. of
bytes to be written to the file.

5.5.5 Close System Call

This system call is used to close an opened file. The syntax is:

int close (int fd);

The only argument to this system call is the descriptor of the file
which need to be closed. This returns 0 if successful or -1 if error
occurs and also frees the assigned file descriptor.

102 | P a g e

Space for learners: 5.5.6 lseek System Call

When reading/writing is to be done from/to a particular position in
an opened file, lseek system call should be used. In short, it is used
to position the file pointer. The syntax of this system call is:

off_t lseek (int fd, off_t offset, int ref);

This returns the current position of the file pointer or -1 if error
occurs. The file pointer positioning will be performed based on the
3rd argument, ref, which should be one from the following values:
SEEK_SET: positioning relative to the Beginning-of-File (BOF),
SEEK_CUR: positioning relative to the current file pointer

position,
SEEK_END: positioning relative to the End-of-File (EOF).

CHECK YOUR PROGRESS

1. What is System Call?

2. When a cin statement executed, what system call will be
invoked?

3. What is a Process?

4. What is Shell?

5. Write down the syntax of the fork() system call.

State TRUE or FALSE:

6. fork() system call is defined inside the unistd.h header file.

7. Win32 API is for Windows.

8. exit() system call is used to end a process.

9. fork() creates an exact duplicate copy of the original process.

10. The getpid() system call is used to get the process id of the
parent process of the current process.

103 | P a g e

Space for learners: 5.6 SUMMING UP

 System Calls are basically a set of extended instructions
provided by the O/S for communications between the user
programs and the O/S.

 System Calls are mostly used through an interface known as
API (Application Programming Interface) rather than direct
use. For example POSIX, Win32 etc.

 A program in execution is termed as Process and each process
is assigned with a Process Id.

 A process can create other processes and these are termed as
Child Process.

 exit() system call is used to end a process.

 The parent of all the processes in linux is init() with Process Id
1.

 fork() system call is used to create a new process. It creates an
exact duplicate copy of the original process.

 wait() system call makes the parent process to wait for a
process (child) to be terminated created by fork() system call.

 getpid() system call is used to get the process id of the current
process and getppid() system call is used to get the process id
of the parent process of the currently running process.

 The exec is family of system calls related to process execution.
They are – execl, execlp, execv, execp, execle, execve.

5.7ANSWERS TO CHECK YOUR PROGRESS

1. System Calls are basically a set of extended instructions
provided by the O/S for communications between the user
programs and the O/S.

2. When the cin statement is executed and in turn the read()
system call gets invoked.

3. A program in execution is termed as Process.

4. A shell, also known as command interpreter, is basically a
process which reads the command issued to a linux terminal.

5. The syntax of the fork() system call is:

104 | P a g e

Space for learners: pid_t fork();

6. True

7. False

8. True

9. True

10. False

5.8 POSSIBLE QUESTIONS

1. What is a system call? How is it invoked indirectly?
Explain.

2. What is API?

3. Write down the basic difference between a program and a
process.

4. Write short notes on:

a. exit() system call
b. fork() system call
c. wait() system call

5. Write a program in C to create a child process which will
calculate the length the string “GUIDOL” and displays it.
The parent should only terminate when the child completes
its task.

6. Discuss the OPEN system call.

7. Write a program in C to illustrate the use of creat, open,
read, write and close system calls.

5.9REFERENCES & SUGGESTED READINGS

 Tanenbaum, A.S., BOS, H., Modern Operating Systems,
PEARSON Publications.

105 | P a g e

Space for learners: UNIT 6: PROCESS SCHEDULING
ALGORITHMS-I

Unit Structure:

6.1 Introduction

6.2 Unit Objective

6.3CPU Scheduling

6.4 Process Scheduling Queues

6.5 Two State Process Model

6.6 Type of Process Schedulers

6.7 Scheduling Algorithms

 6.7.1 When Scheduling is Preemptive or non-Preemptive

 6.7.2 Important CPU scheduling Terminologies

 6.7.3 CPU Scheduling Criteria

 6.7.4 First Come First Serve (FCFS)

 6.7.5 Shortest Job Next (SJN) or Shortest Job First (SJF)

 6.7.6 Shortest Remaining Time First (SRTF)

6.8 Summing Up

6.9Answers to Check Your Progress

6.10Possible Questions

6.11 References & Suggested Readings

6.1 INTRODUCTION

In this unit you will learn the basic concept of process scheduling
which is the activity of the process manager that handles the removal
of the running process from the CPU and the selection of another
process on the basis of a particular strategy. Process scheduling is an
essential part of Multiprogramming operating systems. Such
operating systems allow more than one process to be loaded into the
executable memory at a time and the loaded process shares the CPU
using time multiplexing.

The unit will also familiarize you with key terms related to process

106 | P a g e

Space for learners: scheduling like turn-around time, burst time, waiting time etc. You
will also learn that scheduling algorithms are divided in to two
categories: preemptive and non-preemptive. The unit will
thoroughly discuss some important scheduling algorithms like:
FCFS, SJF, SRTF etc.

6.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 understand about CPU scheduling

 know various types of CPU Scheduling

 identify the important CPU scheduling Terminologies

 define CPU Scheduling Criteria

 understand various types of CPU scheduling Algorithm

In a system, there are a number of processes that are present in
different states at a particular time. Some processes may be in the
waiting state, others may be in the running state and so on. Have you
ever thought how CPU selects one process out of some many
processes for execution? Yes, you got it right. CPU uses some kind
of process scheduling algorithms to select one process for its
execution amongst so many processes. The process scheduling
algorithms are used to maximize CPU utilization by increasing
throughput. In this unit, we will learn about various process
scheduling algorithms used by CPU to schedule a process.

6.3 CPU SCHEDULING?

CPU Scheduling is a process of determining which process will
own CPU for execution while another process is on hold. The main
task of CPU scheduling is to make sure that whenever the CPU
remains idle, the OS at least select one of the processes available in
the ready queue for execution. The selection process will be carried
out by the CPU scheduler. It selects one of the processes in memory
that are ready for execution.

107 | P a g e

Space for learners: 6.4 PROCESS SCHEDULING QUEUES

Process Scheduling Queues help you to maintain a distinct queue for
each and every process states and PCBs. All the processes of the
same execution state are placed in the same queue. Therefore,
whenever the state of a process is modified, its PCB needs to be
unlinked from its existing queue, which moves back to the new state
queue.

Three types of operating system queues are:

1. Job queue – It helps you to store all the processes in the
system.

2. Ready queue – This type of queue helps you to set every
process residing in the main memory, which is ready and
waiting to execute.

3. Device queues – It is a process that is blocked because of the
absence of an I/O device.

6.5 TWO STATE PROCESS MODEL
Two-state process models are:

Running

In the Operating system, whenever a new process is built, it is
entered into the system, which should be running.

Not Running

The processes that are not running are kept in a queue, which is
waiting for their turn to execute. Each entry in the queue is a point to
a specific process.

6.6 TYPE OF PROCESS SCHEDULERS

A scheduler is a type of system software that allows you to handle
process scheduling.

There are mainly three types of Process Schedulers:

1. Long Term

2. Short Term

3. Medium Term

108 | P a g e

Space for learners: Long Term Scheduler

Long term scheduler is also known as a job scheduler. This
scheduler regulates the program and selects process from the queue
and loads them into memory for execution. It also regulates the
degree of multi-programing.

However, the main goal of this type of scheduler is to offer a
balanced mix of jobs, like processor, I/O jobs that allow managing
multiprogramming.

Medium Term Scheduler

Medium-term scheduling is an important part of swapping. It
enables you to handle the swapped out-processes. In this scheduler,
a running process can become suspended, which makes an I/O
request.

Short Term Scheduler

Short term scheduling is also known as CPU scheduler. The main
goal of this scheduler is to boost the system performance according
to set criteria. This helps you to select from a group of processes that
are ready to execute and allocates CPU to one of them.

6.7 SCHEDULING ALGORITHMS

A Process Scheduler schedules different processes to be assigned to
the CPU based on particular scheduling algorithms. There are six
popular process scheduling algorithms which we are going to
discuss in this unit:

 First-Come, First-Served (FCFS) Scheduling
 Shortest-Job-Next (SJN) Scheduling
 Priority Scheduling
 Shortest Remaining Time
 Round Robin(RR) Scheduling
 Multiple-Level Queues Scheduling

These algorithms are either non-preemptive or preemptive. Non-
preemptive algorithms are designed so that once a process enters
the running state; it cannot be preempted until it completes its
allotted time, whereas the preemptive scheduling is based on
priority where a scheduler may preempt a low priority running

109 | P a g e

Space for learners: process anytime when a high priority process enters into a ready
state.

Preemptive Scheduling is a CPU scheduling technique that works
by dividing time slots of CPU to a given process. The time slot
given might be able to complete the whole process or might not be
able to it. When the burst time of the process is greater than CPU
cycle, it is placed back into the ready queue and will execute in the
next chance. This scheduling is used when the process switch to
ready state.

Algorithms that are backed by preemptive scheduling are round-
robin (RR), priority, SRTF (Shortest Remaining Time First).

Non-preemptive Scheduling is a CPU scheduling technique the
process takes the resource (CPU time) and holds it till the process
gets terminated or is pushed to the waiting state. No process is
interrupted until it is completed, and after that processor switches to
another process.

Algorithms that are based on non-preemptive Scheduling are non-
preemptive priority and Shortest Job First.

Preemptive Vs Non-Preemptive Scheduling

Preemptive Scheduling Non-Preemptive Scheduling

Resources are allocated according
to the cycles for a limited time.

Resources are used and then held
by the process until it gets
terminated.

The process can be interrupted,
even before the completion.

The process is not interrupted
until its life cycle is complete.

Starvation may be caused, due to
the insertion of priority process in
the queue.

Starvation can occur when a
process with large burst time
occupies the system.

Maintaining queue and remaining
time needs storage overhead.

No such overheads are required.

110 | P a g e

Space for learners: 6.7.1 When Scheduling is Preemptive or Non-
Preemptive

To determine if scheduling is preemptive or non-preemptive,
consider these four parameters:

1. A process switches from the running to the waiting state.

2. Specific process switches from the running state to the ready
state.

3. Specific process switches from the waiting state to the ready
state.

4. Process finished its execution and terminated.

Only conditions 1 and 4 apply, the scheduling is called non-
preemptive.

All others scheduling are preemptive.

6.7.2 Important CPU scheduling Terminologies

Various times related to process are

1. Arrival time
2. Waiting time
3. Response time
4. Burst time
5. Completion time
6. Turn Around Time
7. Gant Chart

 1) Arrival Time (AT)

The time when the process arrives into the running state is called as
the Arrival time of the process. In simple words, the time at which
any process enters the CPU is known as the arrival time.

2) Waiting Time (WT)

It is the time for which a process waits for going into the running
state. It is the sum of the time spent by the process in the ready state
and the waiting state. Another way of calculating it is as follows:

 Waiting Time= Turn Around Time – Burst Time
 WT = TAT – BT

111 | P a g e

Space for learners: 3) Response Time

The time difference between the first time a process goes into the
running state and the arrival time of the process is called the
response time of the process.

4) Burst Time (BT)

The time for which the process needs to be in the running state is
known as the burst time of the process. We can also define it as the
time which a process requires for execution is the Burst time of the
process.

5) Completion Time (CT)

The time when the Process is done with all its execution and it enters
the termination state is called as the completion time of the process.
It can be also defined as the time when a process ends.

6) Turnaround Time (TAT)

Turn Around time can be defined as the total time the process
remains in the main memory of the system. The Ready state, waiting
for state and the Running State, together make up the main memory
of the system. So, the time for which the process remains in these
states is known as the turnaround time of the process. In simple
words, it is the time that a process spends after entering the ready
state and before entering the termination state.

It can be calculated as follows:

 Turn Around Time = Completion Time – Arrival Time

 TAT = CT - AT

7) Gant Chart

The Gant chart is used to represent the currently executing process at
every single unit of time. This time unit is the smallest unit of time
in the processor.

6.7.3 CPU Scheduling Criteria

A CPU scheduling algorithm tries to maximize and minimize the
following:

112 | P a g e

Space for learners:

Fig 6.1 Scheduling Criteria

Maximize:

CPU utilization: CPU utilization is the main task in which the
operating system needs to make sure that CPU remains as busy as
possible. It can range from 0 to 100 percent. However, for the
RTOS, it can be range from 40 percent for low-level and 90 percent
for the high-level system.

Throughput: The number of processes that finish their execution
per unit time is known Throughput. So, when the CPU is busy
executing the process, at that time, work is being done, and the work
completed per unit time is called Throughput.

Minimize:

Waiting time: Waiting time is an amount that specific process
needs to wait in the ready queue.

Response time: It is an amount to time in which the request was
submitted until the first response is produced.

Turnaround Time: Turnaround time is an amount of time to
execute a specific process. It is the calculation of the total time spent
waiting to get into the memory, waiting in the queue and, executing
on the CPU. The period between the time of process submission to
the completion time is the turnaround time.

6.7.4 First Come First Serve (FCFS)

First Come First Serve (FCFS) is an operating system scheduling
algorithm that automatically executes queued requests and processes
in order of their arrival. It is the easiest and simplest CPU scheduling
algorithm. In this type of algorithm, processes which request the
CPU first get the CPU allocation first. This is managed with a FIFO
queue. The full form of FCFS is First Come First Serve.

113 | P a g e

Space for learners: As the process enters the ready queue, its PCB (Process Control
Block) is linked with the tail of the queue and, when the CPU
becomes free, it should be assigned to the process at the beginning
of the queue. It supports both non-preemptive and pre-emptive
scheduling algorithm.

Example of FCFS scheduling

A real-life example of the FCFS method is buying a movie ticket on
the ticket counter. In this scheduling algorithm, a person is served
according to the queue manner. The person who arrives first in the
queue first buys the ticket and then the next one. This will continue
until the last person in the queue purchases the ticket. Using this
algorithm, the CPU process works in a similar manner.

Advantages-

 It is simple and easy to understand.

 It can be easily implemented using queue data structure.

 It does not lead to starvation.

 Disadvantages-

 It does not consider the priority or burst time of the
processes.

 It suffers from convoy effect.

How FCFS Works? Calculating Average Waiting Time

Problem-01:Consider the set of 5 processes whose arrival time and
burst time are given below-

Table 6.1

Process Id Arrival time Burst time

P1 3 4

P2 5 3

P3 0 2

P4 5 1

P5 4 3

If the CPU scheduling policy is FCFS, calculate the average waiting
time and average turnaround time.

114 | P a g e

Space for learners: Solution- Here, the Gantt Chart-

0 2 3 7 10
 13 14

P3 P1 P5 P2 P4

Fig 6.2 Gannt chart

Here, black box represents the idle time of CPU.
Now, we know that-
Turn Around time = Exit time – Arrival time
Waiting time = Turn Around time – Burst time

Table 6.2

Process Id Exit time Turn Around time Waiting time

P1 7 7 – 3 = 4 4 – 4 = 0

P2 13 13 – 5 = 8 8 – 3 = 5

P3 2 2 – 0 = 2 2 – 2 = 0

P4 14 14 – 5 = 9 9 – 1 = 8

P5 10 10 – 4 = 6 6 – 3 = 3

Average Turn Around time = (4 + 8 + 2 + 9 + 6) / 5 = 29 / 5 = 5.8
unit

Average waiting time = (0 + 5 + 0 + 8 + 3) / 5 = 16 / 5 = 3.2 unit

6.7.5 Shortest Job Next (SJN) or Shortest Job First
(SJF)

Shortest Job First (SJF) is an algorithm in which the process having
the smallest execution time is chosen for the next execution. This
scheduling method can be preemptive or non-preemptive. It
significantly reduces the average waiting time for other processes
awaiting execution. The full form of SJF is Shortest Job First.

There are basically two types of SJF methods:Non-Preemptive SJF
and Preemptive SJF.

Characteristics of SJF Scheduling

115 | P a g e

Space for learners: It is associated with each job as a unit of time to complete.

 This algorithm method is helpful for batch-type processing,
where waiting for jobs to complete is not critical.

 It can improve process throughput by making sure that
shorter jobs are executed first, hence possibly have a short
turnaround time.

 It improves job output by offering shorter jobs, which should
be executed first, which mostly have a shorter turnaround
time.

Advantages-

 Preemtive-SJF is optimal and guarantees the minimum average
waiting time.

 It provides a standard for other algorithms since no other
algorithm performs better than it.

 Disadvantages-

 It cannot be implemented practically since burst time of the
processes cannot be known in advance.

 It leads to starvation for processes with larger burst time.

 Priorities cannot be set for the processes.

 Processes with larger burst time have poor response time.

6.7.5.1.Non-Preemptive SJF

In non-preemptive SJF scheduling, once the CPU cycle is allocated
to process, the process holds it till it reaches a waiting state or
terminated.

Consider the following five processes each having its own unique
burst time and arrival time.

Table 6.3

Process Queue Burst time Arrival time
P1 6 2
P2 2 5
P3 8 1
P4 3 0
P5 4 4

116 | P a g e

Space for learners:
Step 0) At time=0, P4 arrives and starts execution.

Step 1) At time= 1, Process P3 arrives. But, P4 still needs 2
execution units to complete. It will continue execution.

Step 2) At time =2, process P1 arrives and is added to the waiting
queue. P4 will continue execution.

Step 3) At time = 3, process P4 will finish its execution. The burst
time of P3 and P1 is compared. Process P1 is executed because its
burst time is less compared to P3.

Step 4) At time = 4, process P5 arrives and is added to the waiting
queue. P1 will continue execution.

Step 5) At time = 5, process P2 arrives and is added to the waiting
queue. P1 will continue execution.

Step 6) At time = 9, process P1 will finish its execution. The burst
time of P3, P5, and P2 is compared. Process P2 is executed because
its burst time is the lowest.

Step 7) At time=10, P2 is executing and P3 and P5 are in the waiting
queue.

Step 8) At time = 11, process P2 will finish its execution. The burst
time of P3 and P5 is compared. Process P5 is executed because its
burst time is lower.

Step 9) At time = 15, process P5 will finish its execution.

Step 10) At time = 23, process P3 will finish its execution.

Step 11) Let's calculate the average waiting time for above example.

Wait time of,

P4= 0-0=0

P1= 3-2=1

P2= 9-5=4

P5= 11-4=7

P3= 15-1=14

Average Waiting Time= 0+1+4+7+14/5 = 26/5 = 5.2

117 | P a g e

Space for learners: 6.7.5.2 Preemptive SJF

In Preemptive SJF Scheduling, jobs are put into the ready queue as
they come. A process with shortest burst time begins execution.
Even, ifa process with a shorter burst time arrives, the current
process is removed or preempted from execution, and the shorter job
is allocated CPU cycle.

Consider the table 6.3 with the five processes.

Step 0) At time=0, P4 arrives and starts execution.

Step 1) At time= 1, Process P3 arrives. But, P4 has a shorter burst
time. It will continue execution.

Step 2) At time = 2, process P1 arrives with burst time = 6. The
burst time is more than that of P4. Hence, P4 will continue
execution.

Step 3) At time = 3, process P4 will finish its execution. The burst
time of P3 and P1 is compared. Process P1 is executed because its
burst time is lower.

Step 4) At time = 4, process P5 will arrive. The burst time of P3, P5,
and P1 is compared. Process P5 is executed because its burst time is
lowest. Process P1 is preempted.

Step 5) At time = 5, process P2 will arrive. The burst time of P1, P2,
P3, and P5 is compared. Process P2 is executed because its burst
time is least. Process P5 is preempted.

Step 6) At time =6, P2 is executing.

Step 7) At time =7, P2 finishes its execution. The burst time of P1,
P3, and P5 is compared. Process P5 is executed because its burst
time is lesser.

Step 8) At time =10, P5 will finish its execution. The burst time of
P1 and P3 is compared. Process P1 is executed because its burst time
is less.

118 | P a g e

Space for learners: Step 9) At time =15, P1 finishes its execution. P3 is the only process
left. It will start execution.

Step 10) At time =23, P3 finishes its execution.

Step 11) Let's calculate the average waiting time for above example.

Wait time
P4= 0-0=0
P1= (3-2) + 6 =7
P2= 5-5 = 0
P5= 4-4+2 =2
P3= 15-1 = 14
Average Waiting Time = 0+7+0+2+14/5 = 23/5 =4.6

6.7.6. Shortest Remaining Time First (SRTF)

This Algorithm is the preemptive version of SJF scheduling. In
SRTF, the execution of the process can be stopped after certain
amount of time. At the arrival of every process, the short term
scheduler schedules the process with the least remaining burst time
among the list of available processes and the running process.

Once all the processes are available in the ready queue, No
preemption will be done and the algorithm will work as SJF
scheduling. The context of the process is saved in the Process
Control Block when the process is removed from the execution and
the next process is scheduled. This PCB is accessed on the next
execution of this process.

Advantages:
SRTF algorithm makes the processing of the jobs faster than SJN
algorithm.
Disadvantages:
The context switch is done a lot more times in SRTF than in SJN,
and consumes CPU’s valuable time for processing.

Example: In this Example, there are five jobs P1, P2, P3. Their
arrival time and burst time are given below in the table.

119 | P a g e

Space for learners: Table 6.4

Process Burst Time Arrival Time
P1 7 0
P2 3 1
P3 4 3

Fig 6.2Gantt Chart

Explanation

 At the 0th unit of the CPU, there is only one process that
is P1, so P1 gets executed for the 1 time unit.

 At the 1st unit of the CPU, Process P2 arrives. Now,
the P1 needs 6 more units more to be executed, and
the P2 needs only 3 units. So, P2 is executed first by
preempting P1.

 At the 3rd unit of time, the process P3 arrives, and the burst
time of P3 is 4 units which is more than the completion time
of P2 that is 1 unit, so P2 continues its execution.

 Now after the completion of P2, the burst time of P3 is 4
units that mean it needs only 4 units for completion while P1
needs 6 units for completion.

 So, this algorithm picks P3 above P1 due to the reason that
the completion time of P3 is less than that of P1

 P3 gets completed at time unit 8, there are no new process
arrived.

 So again, P1 is sent for execution, and it gets completed at
the 14th unit.

As Arrival Time and Burst time for three processes P1, P2, P3 are
given in the above diagram. Let us calculate Turnaround time,
completion time, and waiting time.

120 | P a g e

Space for learners:
Table 6.5

Average waiting time is calculated by adding the waiting time of all
processes and then dividing them by no. of processes.

average waiting time = waiting for time of all processes/ no.of
processes

average waiting time=7+1+1=9/3 = 3ms

CHECK YOUR PROGRESS

A. Multiple Choice Questions:

1. Which of the following scheduling algorithm is non-preemtive?
 a) SJF
 b) FCFS
 c) SRTF
 d) none of the mentioned

2. The processes that are residing in main memory and are ready and
waiting to execute are kept on a list called _____________
 a) job queue
 b) ready queue
 c) execution queue
 d) process queue

3. The interval from the time of submission of a process to the time
of completion is termed as ____________
 a) waiting time
 b) turnaround time
 c) response time
 d) throughput

Process Arrival
Time

Burst
Time

Completion
Time

Turn
Around

Time

Waiting
Time

P1 0 7 14 14-0=14 14-7=7

P2 1 3 5 5-1=4 4-3=1

P3 3 4 8 8-3=5 5-4=1

121 | P a g e

Space for learners: 4. Which scheduling algorithm allocates the CPU first to the process
that requests the CPU first?
 a) first-come, first-served scheduling
 b) shortest job scheduling
 c) priority scheduling
 d) none of the mentioned

5. Scheduling algorithms that work on complex:
 a). uses few resources
 b). uses most resources
 c). are suitable for large computers
 d). all of the mentioned

6. Scheduling algorithm which allocates the CPU first to the process
which requests the CPU first?
 a). FCFS scheduling
 b). priority scheduling
 c). shortest job scheduling
 d). none of the mentioned

7. In an operating system, the portion of the process scheduler that
forward processes is concerned with :
 a). running processes are assigning to blocked queue
 b). ready processes are assigning to CPU
 c). ready processes are assigning to the waiting queue
 d). all of the mentioned

8. CPU performance is measured through ________.

 a. Throughput

 b. MHz

 c. Flaps

 d. None of the above

9. FCFS maintains a __________

 a. Queue

 b. Stack

 c. Tree

 d. List

10. Full form of FCFS is-

 a). First Come First Save

122 | P a g e

Space for learners: b). Frequently Come First Save

 c). First Come First Serve

 d). First Come Final Serve

B. Fill in the Blanks:

1. Waiting Time=Turn Around Time - _________________.
2. _________ Chart is used to represent the currently

executing process at every single unit of time.
3. Turn Around Time= Completion Time- ______________.
4. The Time difference between the first time a process goes

into the running state and arrival time of the process is called
__________________.

5. The OS maintains all PCBs in process scheduling
_____________.

6. __________ scheduler determines which programs are
admitted to the system for processing.

7. ___________ scheduling method can be managed with a
FIFO queue.

8. ___________ is sometimes called SRTF scheduling.
9. __________ is the full of SJF algorithm.
10. __________ method selects the process with the shortest

execution time for execution next.
C. State whether TRUE or FALSE

1. CPU scheduling is a process of determining which process
will own CPU for execution while another process is on
hold.

2. In Preemptive Scheduling, the tasks are mostly assigned with
their shortest.

3. In the Non-preemptive scheduling method, the CPU has been
allocated to a specific process.

4. Burst time is a time required for the process to wait.

5. CPU utilization is the main task in which the operating
system needs to make sure that CPU remains as busy as
possible.

6. The number of processes that finish their execution per unit
time is known scheduler.

123 | P a g e

Space for learners: 7. Waiting time is an amount that specific process needs to wait
in the ready queue.

8. Waiting time is an amount to complete the execution.

9. Turnaround time is an amount of time to execute a specific
process.

10. The CPU uses scheduling not to improve its efficiency,

D. Match Column A with Column B

 Column A Column B
1. CPU performance is measured

through
A. First Come First

Serve
2. amount of time to execute a

specific process
B. Shortest job next

3. SNF C. turnaround time
4. SJF D. Shortest remaining

time first
5. FCFS E. preemtive
6. can be managed with a FIFO

queue
F. Grantt chart

7. smallest unit of time in the
processor

G. troughput

8. ______ method is the simplest
and Easy to understand

H. Shortest job first

9. SRTF I. Non-preemtive
10. No such overheads are required

in _______ scheduling
J. Waiting time

6.8 SUMMING UP

 CPU scheduling is a process of determining which process will
own CPU for execution while another process is on hold.

 In Preemptive Scheduling, the tasks are mostly assigned with
their priorities.

 In the Non-preemptive scheduling method, the CPU has been
allocated to a specific process.

 Burst time is a time required for the process to complete
execution. It is also called running time.

124 | P a g e

Space for learners: CPU utilization is the main task in which the operating system
needs to make sure that CPU remains as busy as possible

 The number of processes that finish their execution per unit
time is known Throughput.

 Waiting time is an amount that specific process needs to wait in
the ready queue.

 It is an amount to time in which the request was submitted until
the first response is produced.

 Turnaround time is an amount of time to execute a specific
process.

 Timer interruption is a method that is closely related to
preemption,

 A dispatcher is a module that provides control of the CPU to the
process.

 Some popular process scheduling algorithms are: 1) First Come
First Serve (FCFS), 2) Shortest-Job-First (SJF) Scheduling 3)
Shortest Remaining Time 4) Priority Scheduling etc.

 In the First Come First Serve method, the process which
requests the CPU gets the CPU allocation first.

 In the Shortest Remaining time, the process will be allocated to
the task, which is closest to its completion.

 In Shortest job first the shortest execution time should be
selected for execution next

 The CPU uses scheduling to improve its efficiency.

6.9 ANSWERS TO CHECK YOUR PROGRESS

A.Answers: 1. (b), 2.(b), 3.(b), 4(a), 5(c), 6(a), 7(b), 8(a), 9(a), 10(c)

B.Answers: 1. Burst time, 2. grantt, 3. arrival, 4. response, 5. queue,
6. Job scheduler, 7. FCFS, 8. Preemtive SJF, 9.
Shortest Job First, 10. SJF

C. Answers: 1. True, 2. False, 3. True, 4. False, 5. True, 6. False, 7.
True, 8. False, 9. True, 10. false

125 | P a g e

Space for learners: D.Answers: 1. G, 2. C, 3. B, 4. H, 5. A, 6. A, 7. F, 8. A, 9. D, 10. E

6.10 POSSIBLE QUESTIONS

Short-Answer Questions:

1. What is process scheduling?
2. What is the need of process scheduling?
3. What is preemptive and non-preemptive scheduling?
4. What are the various scheduling criteria for CPU scheduling?
5. Define throughput.
6. What is turnaround time?
7. What is waiting time in CPU scheduling?
8. What is response time in CPU scheduling?
9. What is Gantt Chart?
10. What are the advantages of FCFS algorithm?

Long-Answer Questions:

1. Discuss the FCFS scheduling algorithm with illustration.
2. Explain SJF scheduling algorithm with illustration.
3. Explain shortest remaining time next scheduling algorithm

with illustration.
4. Consider the set of 5 processes whose arrival time and burst

time are given below:

Process No Arrival Time Burst Time
P1 3 1
P2 1 4
P3 4 2
P4 0 6
P5 2 3

If the CPU scheduling policy is SJF non-preemptive,
calculate the average waiting time and average turnaround
time.

5. Consider the set of 6 processes whose arrival time and burst
time are given below:

Process No Arrival Time Burst Time
P1 3 4
P2 5 3

126 | P a g e

Space for learners: P3 0 2
P4 5 1
P5 4 3
P6 7 5

If the CPU scheduling policy is STRF, calculate the average
waiting time and average turnaround time.

6. Discuss the various key terms used in process scheduling.
7. Discuss the criteria for a scheduling algorithm can be

preemptive or non-preemptive.
8. Discuss the importance of scheduling algorithms.
9. Explain the various scheduling criteria for CPU scheduling.
10. Compare the preemptive and non-preemptive scheduling

algorithms.

6.11 REFERENCES & SUGGESTED READINGS

 lberschatz, Galvin, and Gagne's Operating System Concepts,
Seventh Edition.

127 | P a g e

Space for learners: UNIT 7: PROCESS SCHEDULING

ALGORITHMS-II

Unit Structure:

7.1 Introduction

7.2 Unit Objectives

7.3 Round Robin Scheduling

7.4 Priority CPU Scheduling

7.4.1 Pre-emptive Priority Scheduling

7.4.2 Non-Preemptive Priority Scheduling

7.4.3 Problem with Priority Scheduling Algorithm

7.4.4 Using Aging Technique with Priority Scheduling

7.5 Multilevel Queue Scheduling

7.6 Implementation Of Concurrency Primitives

7.6.1 Problems In Concurrency

7.6.2 Advantages of Concurrency

7.6.3 Drawbacks of Concurrency

7.6.4 Issues Of Concurrency

7.6.5 Process Synchronization

7.6.6 Race Condition

7.6.7 Critical Section Problem

7.6.8 Semaphore

7.7 Scheduling In Real Time System

7.8 Summing Up

7.9 Answers to Check Your Progress

7.10 Possible Questions

7.11 References & Suggested Readings

128 | P a g e

Space for learners: 7.1 INTRODUCTION

CPU scheduling is a technique that allows one process to use the
CPU while another's execution is halted (in a waiting state) due to
the lack of a resource such as I/O, allowing the CPU to be fully
utilised. I/O and CPU time are both used in a typical procedure.
Time spent waiting for I/O in a uni-programming system like MS-
DOS is wasted, and CPU is free during this time. One process can
use the CPU while another waits for I/O in multiprogramming
systems. This is only possible with process scheduling. CPU
scheduling is the foundation of a multi-programmed operating
system. The OS can make a computer more productive by switching
the CPU among the processes. The operating system must choose
one of the processes in the ready queue to execute whenever the
CPU becomes idle. The short-term scheduler is in charge of the
selecting process (or CPU scheduler). The scheduler chooses from
among the ready-to-run processes in memory and assigns the CPU
to one of them. A multiprogramming system allows multiple
processes to run at the same time. When a process must wait, the OS
takes the CPU away from that process and assigns it to another. This
pattern persists. Multiprogramming's goal is to keep at least one
process running at all times in order to maximise CPU utilisation.
Only one process can execute at a time on a single processor system;
any other processes must wait until the CPU is free and can be
rescheduled. CPU scheduling is to make the system more efficient,
quick, and fair.

The introduction and objective portion of Process scheduling
algorithm were discussed in the previous Process scheduling
algorithm Unit 6 with different scheduling algorithm. As a result,
another five scheduling algorithms, such as Round Robin
Scheduling, Priority CPU Scheduling, Multilevel Queue Scheduling,
Multilevel Queue Scheduling, and Scheduling in Real Time System,
have been discussed in this Unit 7.

7.2 UNIT OBJECTIVES

After going through this unit, you will be able to:
 understand about Round Robin scheduling
 understand about various types of priority CPU scheduling

129 | P a g e

Space for learners: know about Multilevel Queue Scheduling
 explain various issues related to the implementation of

concurrency primitives
 explain scheduling in real time system

7.3 ROUND ROBIN SCHEDULING

The RR scheduling algorithm was created with time-sharing systems
in mind. It's the same as FCFS scheduling, but with the addition of
pre-emption to switch between processes. Every process is given a
small unit of time called a quantum or time slice. The duration of a
time quantum is typically 10 to 100 milliseconds. When a process
has completed its execution for the specified amount of time, it is
pre-empted and another process executes for the specified amount of
time. The CPU scheduler goes around the ready queue, allocating
the CPU to every process for 1 time quantum intervals. A circular
queue is used to treat the ready queue.

The ready queue is kept as a FIFO queue of processes to execute RR
scheduling. New processes are added to the ready queue's tail. The
CPU scheduler selects the first process from the ready queue, sets
the timer to interrupt after one time quantum, and dispatches it. Then
two cases may arise; the process may have a CPU burst of less than
1 time quantum, in which case the process will surrender the CPU
voluntarily. After that, the scheduler will move on to the next
process in the ready queue. Another scenario is that if the current
operating process's CPU burst is longer than one time quantum, the
timer will go off, causing an OS interrupt. A context switch is
performed, and the process is pushed to the back of the ready queue.
The CPU scheduler will then choose the next available process from
the ready queue.

For example: suppose time quantum is 5ms and the process
P1,P2,P3 and P4 are scheduled by using RR scheduling

Process Burst Time

P1 20

P2 2

P3 6

P4 2

130 | P a g e

Space for learners: GANTT chart

P1 P2 P3 P4 P1 P3 P1 P1

Process P1 receives the first 5 milliseconds, but because it requires
another 15 milliseconds, it is pre-empted after the first time
quantum, and the CPU is given to process P2. P2 finishes its
execution before the 5ms time limit expires. The CPU is
subsequently allocated to the third process, P3.it is pre-empted after
first time quantum, and the CPU is given to the next process p4. P4
does not require 5ms and exits before reaching its time quantum.
The following process, P1, receives the CPU and it is pre-empted
after the second time quantum, and the CPU is given to process
P3.P3 finishes its execution before the 5ms time limit expires. The
following process, P1, receives the CPU.

Average waiting time is calculated by adding the waiting time of all
processes and then dividing them by no. of processes.

Average waiting time = waiting time of all processes/ no. of
processes

Processes
Burst

Time

Turn Around

Time

Turn Around

Time =

Completion Time

– Arrival Time

Waiting Time

Waiting Time

= Turn

Around Time

– Burst Time

P1 20 30-0=32 30-20=10

P2 2 7-0=7 7-2=5

P3 6 20-0=21 20-6=14

P4 2 14-0=15 14-2=12

0 5 7 12 14 19 20 25 30

131 | P a g e

Space for learners: Average waiting time= (10+5+14+12)/4 = 44/4= 10.25ms

If the ready queue has n processes and the time quantum is q, each
process receives 1/n of the CPU time in chunks of at most q time
units. Each process must wait (n-1) x q time units before proceeding
to the next time quantum.

The magnitude of the time quantum determines the RR policy; if the
time quantum is extremely big, the RR policy is the same as FCFS;
if the time quantum is extremely tiny, the RR technique is known as
processor sharing.

7.4 PRIORITY CPU SCHEDULING

A priority is associated with each process, and the CPU is allocated
to the process with the highest priority. Equal priority processes are
scheduled in FCFS order. The priority of a process in the Shortest
Job First scheduling technique is generally the inverse of the CPU
burst time, i.e. the larger the burst time the lower is the priority of
that process.

Assume that low numbers indicate high priority in this case.

GANTT chart

P2 P1 P4 P3

The average waiting time will be (0+2+22+24)/4=12 ms

Priorities can be established both internally and externally. Internally
specified priorities compute the priority of a process using some
measurable quantity or quantities. The priority of process, when
internally defined, can be decided based on memory requirements,
time limits, number of open files, ratio of I/O burst to CPU burst etc.

Process Burst Time Priority

P1 20 2

P2 2 1

P3 6 4

P4 2 3

0 2 22 30 24

132 | P a g e

Space for learners: External priorities, on the other hand, are determined by factors
outside of the operating system, such as the importance of the
process, the funds paid for the usage of computer resources, the
department sponsoring the activity, and other frequently political
concerns. Types of Priority Scheduling Algorithm

Priority scheduling can be of two types:

7.4.1 Pre-emptive Priority Scheduling

If a new process arrives at the ready queue with a higher priority
than the presently running process, the CPU is pre-empted, which
means the current process's processing is halted and the incoming
new process with the higher priority is given the CPU for execution.

7.4.2 Non-Preemptive Priority Scheduling

If a new process comes with a higher priority than the currently
running process in a non-preemptive priority scheduling algorithm,
the incoming process is placed at the front of the ready queue, which
means it will be executed after the current process has completed.

7.4.3 Problem with Priority Scheduling Algorithm

A major problem with priority scheduling algorithm is indefinite
blocking or starvation. A process is considered blocked when it is
ready to run but has to wait for the CPU as some other process is
running currently.

But in case of priority scheduling if new higher priority processes
keeps coming in the ready queue then the processes waiting in the
ready queue with lower priority may have to wait for long durations
before getting the CPU for execution.

7.4.4 Using Aging Technique with Priority Scheduling

Aging is a solution to the problem of low priority processes being
blocked indefinitely. Aging is a method of progressively boosting
the priority of processes that have been waiting for a long period in
the system.

For example, if we decide the aging factor to be 0.5 for each day of
waiting, then if a process with priority 10(which is comparatively

133 | P a g e

Space for learners: low priority) comes in the ready queue. After one day of waiting, its
priority is increased to 9.5 and so on.

7.5 MULTILEVEL QUEUE SCHEDULING

For circumstances when processes can be easily categorised into
separate groups, a new family of scheduling algorithms has been
developed.

Foreground (or interactive) processes are distinguished from
background (or batch) processes. These two processes have varying
response times and, as a result, may have different scheduling
requirements. Furthermore, foreground processes could take
precedence over background processes.

The ready queue is divided into numerous different queues using a
multi-level queue scheduling technique. The processes are assigned
to one queue indefinitely, usually depending on some property of the
process, such as memory size, priority, or kind. Each queue has its
own method for scheduling. Separate queues could be used for
foreground and background processes, for example. The Round
Robin algorithm may be used to schedule the foreground queue,
while an FCFS algorithm may be used to schedule the background
queue. In addition, the queues must be scheduled, which frequently
did using fixed-priority pre-emptive scheduling. The foreground
queue, for example, may have absolute precedence over the
background queue.

Consider the following example of a five-queue multilevel queue
scheduling algorithm:

 System Processes

 Interactive Processes

 Interactive Editing Processes

 Batch Processes

 Student Processes

Each queue has absolute precedence over ones with lower priority. If
the queues for system processes, interactive processes, and
interactive editing processes were all empty, no process in the batch
queue could run. The batch process will be pre-empted if an

134 | P a g e

Space for learners: interactive editing process enters the ready queue while a batch
process is running.

Only the processes on the lower priority queues will run if there are
no processes on the higher priority queue. Consider the following
Example: Once processes on the system queue, the Interactive
queue, and Interactive editing queue become empty, only then the
processes on the batch queue will run. The processes in the above
diagram are described as follows:

 System Process: The operating system has its own set of
processes to run, which are referred to as System Processes.

 Interactive Process: The Interactive Process is one in which
all participants should participate in the same way.

 Batch Processes: Batch processing is a mechanism in the
operating system that gathers programmes and data into a
batch before processing begins.

 Student Process: The system process is always given top
priority, whereas student processes are always given lowest
priority

System Processes

Interactive Processes

Interactive Editing Processes

Batch Processes

Student Processes

Highest Priority

Lowest Priority

135 | P a g e

Space for learners: There are numerous processes in an operating system, and we can't
put them all in a queue to get the desired outcome; consequently,
multilevel queue scheduling is used to overcome this problem. We
may use this scheduling to apply various types of scheduling to
various types of processes:

For System Processes: First Come First Serve (FCFS) Scheduling.

For Interactive Processes: Shortest Job First (SJF) Scheduling.

For Batch Processes: Round Robin (RR) Scheduling

The problem of starvation for lower-level processes is the
fundamental drawback of Multilevel Queue Scheduling. Lower-level
processes are either never executed or have to wait a long period due
to lower priority or higher priority processes requiring a long time
due to starvation.

Example:

Suppose there are three queues.

Q0-RR with a 10-millisecond time quantum

Q1-RR with a 20-millisecond time quantum

Q2-FCFS

Scheduling:

 A new job is added to queue Q0, which is handled by FCFS.
Job receives 10 milliseconds when it gains CPU. If it takes
longer than 10 milliseconds to complete, the job is pushed to
queue Q1.

 In Q1, the work is served FCFS for the second time and is
given an additional 20 milliseconds. It gets pre-empted and
pushed to queue Q2 if it still does not complete.

7.6 IMPLEMENTATION OF CONCURRENCY
PRIMITIVES

Multiple instruction sequences are executed at the same time, which
is known as concurrency. This occurs when numerous process
threads are running in parallel in the operating system. Message
passing or shared memory is used by the running process threads to
communicate with one another. Concurrency causes resource
sharing, which leads to issues like as deadlocks and resource

136 | P a g e

Space for learners: starvation. It aids with approaches such as coordinating execution of
processes, memory allocation, and execution scheduling in order to
maximise throughput.

7.6.1 Problems in Concurrency

 Sharing global resources –If two processes use the same global
variable and conduct read and write operations on it, the order
in which those operations are performed is critical.

 Optimal allocation of resources –It is difficult for the operating
system to manage the allocation of resources optimally.

 Locating programming errors –Because reports are rarely
reproducible, finding a programming error might be
challenging.

 Locking the channel –The operating system may find it
inefficient to simply lock the channel and prohibit other
processes from using it.

7.6.2 Advantages of Concurrency

 Running of multiple applications –It allows you to execute
many programmes at the same time.

 Better resource utilization –It allows resources that aren't being
used by one application to be used by other application.

 Better average response time –Without concurrency, one
application must be completed before moving on to the next.

 Better performance –When one application only utilises the
processor and another only uses the disc drive, the time it takes
to complete both applications concurrently is less than the time
it takes to complete each application sequentially.

7.6.3 Drawbacks of Concurrency

 Multiple applications must be protected from each other.

 Additional mechanism is necessary to coordinate various
applications.

137 | P a g e

Space for learners: Switching between programmes necessitates additional
performance overheads and complications in the operating
system.

 Sometimes running too many applications concurrently leads
to severely degraded performance.

7.6.4 Issues of Concurrency

 Non-atomic –Operations that are non-atomic but interruptible
by multiple processes can cause problems.

 Race conditions –A race condition occurs of the outcome
depends on which of several processes gets to a point first.

 Blocking –Processes can block waiting for resources. A
process could be blocked for long period of time waiting for
input from a terminal. If the process is required to periodically
update some data, this would be very undesirable.

 Starvation –It occurs when a process does not obtain service to
progress.

 Deadlock –It occurs when two processes are blocked and
hence neither can proceed to execute.

7.6.5 Process Synchronization

Processes are classified into one of two categories based on their
synchronisation:

 Independent Process: Execution of one process does not affect
the execution of other processes

 Cooperative Process: The execution of one process has an
impact on the execution of others.

Process synchronization problem arises in the case of Cooperative
process also because resources are shared in Cooperative processes.

7.6.6 Race Condition

A race condition is an undesirable scenario that arises when a device
or system seeks to perform two or more operations at the same time,
yet the activities must be performed in the correct sequence due to

138 | P a g e

Space for learners: the nature of the device or system. When several processes access
and process the same data at the same time, the outcome is
determined by the order in which the access takes place.

A race condition is an occurrence that can happen within a critical
section. This occurs, when the result of multiple thread execution in
the critical region varies depending on the sequence in which the
threads run.

If the critical section is regarded as an atomic instruction, race
situations in critical sections can be avoided. Race problems can also
be avoided by employing thread synchronisation techniques such as
locks or atomic variables.

7.6.7 Critical Section Problem

A critical section is a code segment that only one process can access
at a time. In a critical section, atomic action is required, which
means that only one process can run in that region at a time. All the
other processes have to wait to execute in their critical sections.

The critical section is given as follows:

 do {

 Entry Section

 Critical Section

 Exit Section

 Remainder Section

} while (TRUE);

In the above code, the entry section handles the entry into the critical
section. It obtains the resources required for the process's execution.
The exit section handles the exit from the critical section. It frees up
resources while also informing other processes that a critical section
is now available.

The process asks entrance into the Critical Section at the entry
section.

Any solution to the problem of the critical section must meet three
criteria:

139 | P a g e

Space for learners: Mutual Exclusion: If a process is running in its crucial
section, no other processes are permitted to run in that
section.

 Progress: If a process isn't using the critical section, it
shouldn't prevent other processes from using it.

 Bounded Waiting: Bounded waiting implies that each
process must have a set amount of time to wait. It should not
have to wait indefinitely to get to the critical section.

7.6.8 Semaphore

A semaphore is a signalling mechanism and a thread that is waiting
on a semaphore can be signalled by another thread. This is different
than a mutex as the mutex can be signalled only by the thread that
called the wait function.

A semaphore uses two atomic operations, wait and signal for process
synchronization.

The wait operation decrements the value of its argument S, if it is
positive. If S is negative or zero, then no operation is performed.

wait(S){

 while (S<=0);

 S--;

}

The signal operation increments the value of its argument S.

signal(S){

 S++;

}

There are two types of semaphores: Binary Semaphores and
Counting Semaphores

 Binary Semaphores: They can only be either 0 or 1. They are
also known as mutex locks, as the locks can provide mutual
exclusion. All the processes can share the same mutex
semaphore that is initialized to 1. Then, a process has to wait
until the lock becomes 0. Then, the process can make the

140 | P a g e

Space for learners: mutex semaphore 1 and start its critical section. When it
completes its critical section, it can reset the value of mutex
semaphore to 0 and some other process can enter its critical
section.

 Counting Semaphores: They can have any value and are not
restricted over a certain domain. They can be used to control
access to a resource that has a limitation on the number of
simultaneous accesses. The semaphore can be initialized to the
number of instances of the resource. Whenever a process
wants to use that resource, it checks if the number of
remaining instances is more than zero, i.e., the process has an
instance available. Then, the process can enter its critical
section thereby decreasing the value of the counting
semaphore by 1. After the process is over with the use of the
instance of the resource, it can leave the critical section
thereby adding 1 to the number of available instances of the
resource.

7.7 SCHEDULING IN REAL TIME SYSTEM

In real-time computing, scheduling analysis refers to the
examination and testing of the scheduler system and the algorithms
used in real-time applications. Real-time systems are those that do
tasks in real time. Real-time scheduling analysis is the examination,
testing, and verification of the scheduling system and algorithm used
in real-time activities in the field of computer science. A real-time
system's performance must be evaluated and certified before it can
be used in essential tasks.

The scheduler, clock, and processing hardware components make up
a real-time scheduling system. Hard real-time tasks and soft real-
time tasks are two types of real-time activities. A hard real-time task
must be completed within a certain amount of time, or massive
losses may occur. A defined deadline can be missed in soft real-time
jobs. This is due to the fact that the task can be rescheduled (or)
performed after the deadline.

The scheduler, which is often a short-term task scheduler, is the
most significant component in real-time systems. Instead of dealing
with the deadline, the main goal of this scheduler is to lower the
response time connected with each of the linked processes. If a pre-

141 | P a g e

Space for learners: emptive scheduler is employed, the real-time task must wait until the
time slice for its related task has finished. Even if the task is given
the highest priority, a non-preemptive scheduler must wait until the
current task is completed before moving on to the next one. This
task may be slow (or) of the low priority, resulting in a lengthier
delay.

Combining pre-emptive and non-preemptive scheduling creates a
more effective strategy. This can be accomplished by incorporating
time-based interrupts into priority-based systems, which implies that
the presently operating process is interrupted on a time-based
interval, and if a higher priority process exists in a ready queue, it is
performed by pre-empting the current process.

Analysis of the algorithm execution times is used to undertake
performance verification and execution on a real-time scheduling
algorithm. Testing the scheduling algorithm under various test
situations, including the worst-case execution time, will be required
to verify the performance of a real-time Scheduler. To evaluate the
algorithm's performance, these testing scenarios encompass worst-
case and unfavourable circumstances.

In a real-time system, different ways can be used to test a scheduling
system. Input/output verifications and code analysis are two
examples of techniques. One way involves putting each input
condition to the test and observing the results. Depending on how
many inputs there are, this method could take a lot of effort.A risk-
based strategy, in which representative critical inputs are selected for
testing, is another faster and more cost-effective alternative. This
method is more cost-effective, but if the wrong approach is utilised,
it may result in less-than-optimal findings about the system's
validity. After changes to the scheduling system, retesting
requirements are considered on a case-by-case basis. Real-time
system testing and verification should not be restricted to
input/output and code verifications, but should also include testing
and verification of operating applications employing intrusive and
non-intrusive methods.

142 | P a g e

Space for learners:

CHECK YOUR PROGRESS

Multiple Choice Questions:
1: On receiving an interrupt from an I/O device, the CPU

(A) Halts for predetermined time.
(B) Branches off to the interrupt service routine after
completion of the current instruction.
(C) Branches off to the interrupt service routine immediately.
(D) Hands over control of address bus and data bus to the
interrupting device.

2: The problem of indefinite blockage oflow-priority jobs in general
priority scheduling algorithm can be solved using:

(A) Parity bit
(B) Aging
(C) Compaction
(D) Timer

3: Consider n processes sharing the CPU in round robin fashion.
Assuming that each process switch takes s seconds, what must be
the quantum size q such that the overhead resulting from process
switching is minimized but, at the same time each process is
guaranteed to get its turn at the CPU at least every t seconds?

(A) 𝑞 ≤

(B) 𝑞 ≥

(C) 𝑞 ≤

(D) 𝑞 ≥

4: A CPU generally handles an interrupt by executing an interrupt
service routine

(A) As soon as an interrupt is raised
(B) By checking the interrupt register at the end of fetch cycle
(C) By checking the interrupt register after finishing the

executing the current instruction
(D) By checking the interrupt register at fixed time intervals

5: Pre-emptive scheduling is the strategy of temporarily suspending
a gunning process

143 | P a g e

Space for learners: (A) Before the CPU time slice expires
(B) To allow starving processes to run
(C) When it requests I/O
(D) To avoid collision

6: In round robin CPU scheduling as time quantum is increased the
average turnaround time

(A) Increases
(B) Decreases
(C) remains constant
(D) Varies irregularly

7: Which of the following scheduling algorithm could result in
starvation?

(A)First-come, first-served
(B)Shortest job first
(C) Round robin
(D) Priority

8: Switching the CPU to another process requires performing a state
save of the current process and a state restore of a different process.
This task is known as a

(A) Swapping
(B) Context switch
(C) Demand paging
(D) Page fault

9: Consider the 3 processes, P1, P2 and P3 shown in the table.
Process Arrival time Time Units Required
 P1 0 5

 P2 1 7
 P3 3 4

The completion order of the 3 processes under the policies
FCFS and RR2 (round robin scheduling with CPU quantum
of 2 time units) are

(A) FCFS: P1, P2, P3 RR2: P1, P2, P3
(B) FCFS: P1, P3, P2 RR2: P1, P3, P2
(C) FCFS: P1, P2, P3 RR2: P1, P3, P2
(D) FCFS: P1, P3, P2 RR2: P1, P2, P3

144 | P a g e

Space for learners:

7.8 SUMMING UP

 Context Switching: The process of switching the CPU from one
process or task to another is known as context switching. The
kernel suspends the execution of the process that is in the
running state, and the CPU executes another process that is in
the ready state.

 Multiprogramming :A computer that can execute multiple
programmes at the same time (like running Excel and Firefox
simultaneously).

 Multiprocessing: A computer that uses multiple CPUs at the
same time.

 Multitasking: Tasks sharing a common resource (like 1 CPU).

 Multithreading: Itis an extension of multitasking.

 Pre-emptive Scheduling: Pre-emptive Scheduling is a style of
scheduling in which jobs are largely assigned according to their
priority. Even if the lower priority task is still running, it is
sometimes necessary to run a higher priority task before a lower
priority task. The lower priority task is put on hold for a while
and then resumes when the higher priority task is completed.

 Non-preemptive Scheduling: Once the CPU has been allocated
to a process in non-preemptive scheduling, the process holds the
CPU until it releases it, either by terminating or transitioning to
the waiting state. It does not interrupt a process executing on the
CPU in the middle of its execution while using non-preemptive
scheduling. Instead, it waits until the process has finished its
CPU burst period before allocating the CPU to another process.

 Starvation: Starvation is the problem that occurs when high
priority processes keep executing and low priority processes get
blocked for indefinite time.

 Aging: To prevent starvation of any process, we can use the
concept of aging where we keep on increasing the priority of
low-priority process based on the its waiting time.

 Round Robin Scheduling: Round Robin is the pre-emptive
process scheduling algorithm. Each process is provided a fix

145 | P a g e

Space for learners: time to execute, it is called a quantum. Once a process is
executed for a given time period, it is pre-empted and other
process executes for a given time period. Context switching is
used to save states of pre-empted processes.

 Priority CPU Scheduling: Priority scheduling is a non-
preemptive method that is one of the most widely used in batch
systems. A priority is assigned to each process. The process
with the highest priority will be carried out first, and so on. On a
first-come, first-served basis, processes of the same priority are
executed.

 Multilevel Queue Scheduling: The ready queue has been
separated into seven different queues by the multilevel queue
scheduling method. These processes are permanently assigned
to one queue based on their priority, such as memory size,
process priority, or process kind. Each queue has its own
method for scheduling. Some queues are utilised for the
foreground process, while others are used for the background
process.

 Scheduling in Real time system: Real-time systems are those
that do tasks in real time. Real-time scheduling analysis is the
examination, testing, and verification of the scheduling system
and algorithm used in real-time activities in the field of
computer science. A real-time system's performance must be
evaluated and certified before it can be used in essential tasks.

 Throughput: Throughput is the amount of work completed in a
unit of time. In other words throughput is the processes
executed to number of jobs completed in a unit of time. The
scheduling algorithm must look to maximize the number of jobs
processed per time unit.

 Turnaround time: The turnaround time is the period between
when a process is submitted and when it is completed. The total
time spent waiting in the ready queue, executing on the CPU,
and performing I/O is the turnaround time.

 Waiting time: The CPU scheduling technique has no effect on
the amount of time a process executes or performs I/O; it only
impacts the amount of time the ready queue is active. The total
amount of time spent waiting in the ready queue is referred to as
waiting.

146 | P a g e

Space for learners: Response time: The time it takes from submitting a request to
receiving the first response. That is, reaction time refers to the
time it takes to initiate a response rather than the time it takes to
complete the response.

7.9 ANSWERS TO CHECK YOUR PROGRESS

1.Ans: (B)

2.Ans: (B)

3.Ans: (A)

Explanation: When the CPU is performing the same job while
also receiving an interrupt,

i. It will first complete the current task.

ii. It will branch off to the interrupt service function after the
current instruction is completed.

ISR stands for interrupt service routine or also known as an
interrupt handler. It is a software process invoked by an interrupt
request from a hardware device. It handles the request and sends it
to the CPU i.e. interrupting the active process. When the ISR is
complete, the process is resumed.

Aging is a solution to the problem of low-priority processes being
blocked indefinitely. Aging is a method of gradually raising the
priority of processes that have been waiting for a long time in the
system.

Explanation: Each process will get CPU for q seconds and each
process wants CPU again after t seconds.

Thus, there will be (n-1) processes once after current process gets
CPU again. Each process takes s seconds for context switch.

(P1)(s)(P2)(s)(P3)(s)(P1)

It can be seen that since P1 left and arrived again, there have been
n context switches and (n-1) processes. Thus, equation will be:

q*(n-1) + n*s <= t

q*(n-1) <= t - n*s

q <= (t-n.s) / (n-1)

147 | P a g e

Space for learners:

4.Ans: (C)

5.Ans: (A)

6.Ans. (D)

Explanation: A CPU handles interrupt by executing interrupt
service subroutine by checking interrupt register after execution of
each instruction.

In preemptive scheduling tasks are usually assigned with priorities.
At times it is necessary to run a certain task that has a higher
priority before another task although it is running. Therefore, the
running task is interrupted for some time and resumed later when
the priority task has finished its execution. This is called
preemptive scheduling.

In non-preemptive scheduling, a running task is executed till
completion. It cannot be interrupted.

Explanation:-There are few criteria are used for measuring the
performance of a particular scheduling algorithm.

The turnaround time is the interval of time between the submission
of a process and its completion.

The wait time is the amount of time a process has been waiting in
the ready queue.

The response time is the time taken between the process
submission and the first response produced.

In RR algorithm, the value of time quantum or the time slice, plays
a crucial role in deciding how effective the algorithm is. If the time
quantum is too small, there could be lot of context switching
happening which could slow down the performance. If the time
quantum is too high, then RR behaves like FCFS. If the time
quantum is increased, the average response time varies irregularly.
If you take any comprehensive material on operating system, you
will come across a graph which depicts this behavior. So the
answer is option D.

148 | P a g e

Space for learners:

7.Ans. (B)

8.Ans.(B)

Q.9.Ans. (C)

7.10POSSIBLE QUESTIONS

1. What is round robin scheduling? Explain with an example.

2. Explain Priority CPU scheduling with example.

Shortest job first could cause starvation. Priority is always given to
the shortest job meaning that a job in queue which is long could
constantly be starved by arrival of jobs which are shorter than that
job.

In computing, a context switch is the process of storing the state of
a process or thread, so that it can be restored and resume execution
at a later point. ... In a multitasking context, it refers to the process
of storing the system state for one task, so that task can be paused
and another task resumed.

Explanation:

The GANTT chart for the FCFS scheduling algorithm is

P1 P2 P3

The completion order for FCFS is P1→P2→P3

The GANTT chart for the RR scheduling algorithm is

P1 P2 P1 P3 P2 P1 P2 P3 P1

The completion order for RR is:P1→P3→P2

0 5 12 16

0 2 4 6 8 10 11 13 15 16

149 | P a g e

Space for learners: 3. Define Pre-emptive and non-pre-emptive Priority Scheduling.

4. Explain multilevel queue scheduling.

5. What is concurrency? What are problems associated with
concurrency. What are the advantages of concurrency? Explain.

6. Define process synchronisation.

7. Define race condition.

8. Explain critical section.

9. Define semaphore.

10. How scheduling is done in real time system. Explain.

7.11REFERENCES & SUGGESTED READINGS

 lberschatz, Galvin, and Gagne's Operating System Concepts,
Seventh Edition.

150 | P a g e

Space for learners: UNIT 8: CONCURRENT PROCESS
 MANAGEMENT

Unit Structure:

8.1 Introduction
8.2 Unit Objectives
8.3 Inter-process Communication Mechanism

8.3.1 First issue in inter-process communication
8.3.2 Second issue in inter-process communication
8.3.3 Third issue in inter-process communication
8.3.4 Design Issues for Message Passing Systems

8.4 Summing Up
8.5 Answers to Check Your Progress
8.6 Possible Questions
8.7 References & Suggested Readings

8.1 INTRODUCTION

In this unit you will learn about the mechanism of inter-process
communication. In inter-process communication two or more
processes communicating with each other using shared memory or
message passing system. There are many issues associated with a
shared memory system. When two processes use shared memory
simultaneously then race condition may occur. Mutual exclusion is
a way to avoid this race condition. The piece of code by using
which a process accesses the shared memory is known as critical
region. One can achieve mutual exclusion by restricting the use of
this critical region by a process. Different methods to achieve
mutual exclusion in shared memory environment have been
discussed here. Again, in message passing system processes
communicate with each other using two procedures called send()
and receive(). The design issues associated with message passing
system have been discussed here.

151 | P a g e

Space for learners: 8.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 understand the concept of inter-process communication

mechanism

 know about shared memory and message passing

methods

 learn about race condition, critical region and mutual

exclusion

 learn about different ways to achieve mutual exclusion

with and without busy waiting

 learn about the variable semaphore

8.3 INTER-PROCESS COMMUNICATION

MECHANISM

Inter Process Communication (IPC) is a mechanism that involves

communication of one process with another process. A process is

independent if it cannot be affected by the other processes

executing in the system. A process is cooperating if it can affect

or be affected by the other processes executing in the systems.

Any process that shares data with other processes is a cooperating

process. Cooperating processes need inter-process communication

(IPC) mechanism that will allow them to exchange data and

information.

In Interposes Communication or IPC, the system has to deals with

three issues-

8.3.1First Issue in Inter-Process Communication

The first issue of inter-process commutation deals with how

information is passed between processes.

8.3.1.1 Shared Memory

It is a region of memory that is shared by cooperating processes.

Processes can change information by reading and writing data to

the shared region Shared memory allows multiple processes to

share virtual memory space. This is the fastest but not necessarily

152 | P a g e

Space for learners: the easiest way for processes to communicate with one another. In

general, one process creates or allocates the shared memory

segment. The size and access permissions for the segment are set

when it is created. The process then attaches the shared segment,

causing it to be mapped into its current data space. If needed, the

creating process then initializes the shared memory. Once created,

and if permissions permit, other processes can gain access to the

shared memory segment and map it into their data space. Each

process accesses the shared memory relative to its attachment

address. While the data that these processes are referencing is in

common, each process uses different attachment address values.

For each process involved, the mapped memory appears to be no

different from any other of its memory addresses.

8.3.1.2 Message Passing

In message passing system communication takes place by means

of messages exchanged between the cooperating processes. -

Message Passing is useful for exchanging smaller amounts of data

and easier to implement for inter-computer communication.

Message Passing provides a mechanism for processes to

communicate and to synchronize their actions without sharing the

same address space. This method of inter-process communication

uses two primitives, send and receive, which are system calls

rather than language constructs. As such, they can easily be put

into library procedures, such as

send(destination, &message);

receive(source, &message);

The former call sends a message to a given destination and the

latter one receives a message from a given source (or from ANY, if

the receiver does not care). If no message is available, the receiver

could block until one arrives. Alternatively, it could return

immediately with an error code.

8.3.2 Second Issue in Inter-Process Communication

The second issue is to proper sequencing of processes when

dependencies are present: if process A produces data and process

153 | P a g e

Space for learners: B prints it, B has to wait until A has produced some data before

starting to print.

8.3.2.1 Race Condition

In some operating systems, processes that are working together

may share some common storage that each one can read and write.

The shared storage may be in main memory (possibly in a kernel

data structure) or it may be a shared file; the location of the shared

memory does not change the nature of the communication or the

problems that arise.

Let us see how inter-process communication works. Suppose a

process wants to print a file in printer spooler. The process enters

the file names in a special spooler directory that has a large

number of slots, numbered 0, 1, 2, ..., etc to store the file names.

Another process printer daemon periodically checks and removes

the file name of next file to be printed from the spooler directory.

Suppose there are two shared variables, out, which points to the

next file to be printed, and in, which points to the next free slot in

the spooler directory. At a certain instant, slots 0 to 3 are empty

(the files have already been printed) and slots 4 to 6 are full (with

the names of files to be printed). More or less simultaneously,

processes A and B decide they want to queue a file for printing.

Process A reads in and stores the value, 7, in a local variable called

next_free_slot. Just then a clock interrupt occurs and the CPU

decides that process A has run long enough, so it switches to

process B. Process B also reads in, and also gets a 7, so it stores

the name of its file in slot 7 and updates in to be an 8. Then it goes

off and does other things. Eventually, process A runs again,

starting from the place it left off last time. It looks at

next_free_slot, finds a 7 there, and writes its file name in slot 7,

erasing the name that process B just put there. Then it computes

next_free_slot+ 1, which is 8, and sets in to 8. The spooler

directory is now internally consistent, so the printer daemon will

not notice anything wrong, but process B will never receive any

output. User B will hang around the printer room for years,

wistfully hoping for output that never comes. Situations like this,

where two or more processes are reading or writing some shared

data and the final result depends on who runs precisely when, are

called race conditions.

154 | P a g e

Space for learners: 8.3.3. Third Issue in Inter-Process Communication

The third issue is to prevent two or more processes from accessing

the critical section simultaneously when shared memory is in used.

8.3.3.1 Mutual Exclusion

The key to avoid race condition is prohibiting more than one

process from reading and writing the shared data at the same time.

To achieve this, we need mutual exclusion mechanism. Mutual

exclusion is a way to make sure that if one process is using a

shared variable or file, the other processes will be excluded from

accessing that shared variable or file. That part of the program

where the shared memory is accessed is called the critical region

or critical section. Thus if no two processes were ever in their

critical regions at the same time, we could avoid race conditions.

Although this is a key to avoid race condition, but this is not

sufficient for having parallel processes cooperate correctly and

efficiently using shared data.

Hence, the necessary and sufficient conditions to hold to have a

good solution are-

1. No two processes may be simultaneously inside their critical

regions.

2. No assumptions may be made about speeds or the number of

CPUs.

3. No process running outside its critical region may block other

processes.

4. No process should have to wait forever to enter its critical

region.

8.3.3.2 Methods to Achieve Mutual Exclusion with

Busy Waiting

In this section we will discuss about various methods for

achieving mutual exclusion, so that while one process is updating

a shared variable in its critical region, no other processes will enter

its critical region.

155 | P a g e

Space for learners: Disabling Interrupts

Different kinds of interrupts are used to switch the CPU between

processes. Therefore, one solution to achieve mutual exclusion is

each process disables all interrupts just after entering its critical

region and re-enable them just before leaving it. With interrupts

turned off the CPU will not be able to switched between

processes. But it is not a good idea to give a user process

permission to turn off interrupts. Suppose that one of them did,

and then never turned them on again? If an interrupt occurred

while the list of ready processes, for example, was in an

inconsistent state, race conditions could occur. Again in

multiprocessor system disabling interrupts in one CPU will not

affect other CPUs. Thus disabling interrupt by user process is not

an appropriate way for mutual exclusion.

 Lock Variables

Consider a shared variable lock which can take the value either 0

or 1. The value of variable lock is 0 means no process is in its

critical region and a 1 means some process is in its critical region.

Initially the value of the variable lock is set to 0. Before entering

critical region, the process checks the value of lock and set it to 1

if it is already 0. Otherwise it will wait until the value of lock

becomes 0.

Now suppose one process reads the lock and sees that it is 0.

Before it can set the lock to 1, another process is scheduled, runs,

and sets the lock to 1. When the first process runs again, it will

also set the lock to 1, and two processes will be in their critical

regions at the same time.

Again the first process can be reading out the lock value, then

checking it again just before storing into it, but that really does not

help. The race now occurs if the second process modifies the lock

just after the first process has finished its second check.

 Strict Alternation

In this approach a spin lock called turn is used whose value

initially set to 0. A lock that uses busy waiting is called a spin lock

and continuously testing a variable until some value appears is

called busy waiting. The variable turn keeps track of whose turn it

is to enter the critical region. Initially the value of turn is set to 0.

Initially, process 0 examines turn, finds it to be 0, and enters its

156 | P a g e

Space for learners: critical region. At this time if Process 1 checks the value of turn

and finds it to be 0, it will continuously testing turn to see when it

becomes 1. When process 0 leaves the critical region, it sets turn

to 1, to allow process 1 to enter its critical region.

while (TRUE) { while (TRUE) {

while (turn != 0); while (turn != 1);

critical_region(); critical_region();

turn = 1; turn = 0;

noncritical_region(); noncritical_region();

 } }

 (a) Process 0 (b) Process 1.

When one of the processes is much slower than the other then this

method may not work. Suppose that process 1 finishes its critical

region quickly, so both processes are in their noncritical regions,

with turn set to 0. Now process 0 executes its critical region and

leave it by setting turn to 1. At this point turn is 1 and both

processes are executing in their noncritical regions. Now suppose

process 0 finishes its noncritical region quickly and tries to enter

its critical region. Unfortunately, it is not permitted to enter its

critical region now, because turn is 1 and process 1 is busy with its

noncritical region. This situation violates condition 3 discussed

previously: process 0 is being blocked by a process not in its

critical region.

 Peterson’s Solution

Before using the shared variables (i.e., before entering its critical

region), each process calls enter_regionwith its own process

number, 0 or 1, as the parameter. This call will cause it to wait, if

need be, until it is safe to enter. After it has finished with the

shared variables, the process calls leave_regionto indicate that it is

done and to allow the other process to enter, if it so desires.

#define FALSE 0

#define TRUE 1

#define N 2 /* number of processes */

int turn; /* whose turn is it? */

int interested[N]; /* all values initially 0 (FALSE) */

157 | P a g e

Space for learners:

void enter_region(int process) /* process is 0 or 1 */

{

 int other; /* number of the other process */

 other = 1 −process; /* the opposite of process */

 interested[process] = TRUE;

 turn = process;

 while (turn == process && interested[other] == TRUE);

 }

 void leave_region(int process) /* process: who is leaving */

 {

 interested[process] = FALSE;

 }

Initially, process 0 calls enter_region as neither process is in its
critical region. It indicates its interest by setting its array element
and sets turn to 0. Since process 1 is not interested,
enter_regionreturns immediately. If process 1 now calls
enter_region, it will hang there until interested [0] goes to FALSE.
Now consider the situation in which both processes call
enter_regionalmost simultaneously. Both processes will store their
process number in turn. Whichever store it last will reflect in turn;
the first one will lost. Suppose that process 1 stores last, so turn is
1. When both processes come to the while statement, process 0
executes it zero times and enters its critical region. Process 1 loops
and does not enter its critical region.

 The TSL (Test and Set Lock) Instruction

Many computers, especially those designed with multiple
processors in mind, have an instruction

158 | P a g e

Space for learners: TSL RX, LOCK

The above Test and Set Lock instruction will read the contents of
the memory word LOCK into register RX and then stores a
nonzero value at the memory address LOCK. This LOCK is a
shared variable. No interrupt will occur during the execution of
this instruction. When LOCK is 0, any process may set it to 1
using the TSL instruction and then read or write the shared
memory. When it is done, the process sets LOCK back to 0 using
an ordinary move instruction. Now, a process can enter and leave
critical region using the following instruction subroutine.

enter_region:

 TSL REGISTER, LOCK

 CMP REGISTER,#0 | was LOCK zero?

JNE enter_region| if it was non zero, LOCK was set, so loop

 RET | return to caller; critical region entered

leave_region:

 MOVE LOCK,#0 | store a 0 in LOCK

RET | return to caller

Before entering its critical region, a process calls enter_region. In
enter_region, the first instruction copies the old value of LOCK to
the register and then sets LOCK to 1. Then the old value of LOCK
is compared with 0. If it is nonzero, the lock was already set, so
the program just goes back to the beginning and tests it again.
When a process currently in its critical region is done with its
critical region it calls leave_region, which stores a 0 in LOCK and
the subroutine returns, with the lock set.

8.3.3.3 Methods to Achieve Mutual Exclusion
Without Busy Waiting

Both Peterson’s solution and the solution using TSL are correct,
but both have the defect of requiring busy waiting. Not only does
this approach waste CPU time, but it can also have unexpected
effects. Some other situation for achieving mutual exclusion
without busy waiting have been discussed below-

159 | P a g e

Space for learners:

 Solving Producer consumer problem using Sleep() and
Wakeup() system calls

Instead of wasting CPU time in busy waiting, a process can be
blocked when it is not allowed to enter its critical region. The
available system calls that can be used for this purpose are- sleep()
and wakeup(). The sleep() system call is used to block the caller
process and the wakeup() system call is used to wake up a blocked
process.

Let us consider the producer-consumer problem (also known as
the bounded buffer problem). Two processes share a common,
fixed-size buffer. One of them, the producer, puts information into
the buffer, and the other one, the consumer, takes it out.

Suppose the maximum number of items the buffer can hold is N
and a variable count keeps track of the number of items in the
buffer. Now what will happen when the producer wants to put a
new item in the buffer. The producer will first check if count is N.
If it is, the producer will go to sleep; if it is not, the producer will
add an item into the buffer using the procedure insert_item() and
increment count. Again if consumer wants to remove an item from
the buffer then it will first check the value of count. If it is 0 then
consumer will go to sleep. If it is nonzero then consumer will
remove an item from the buffer using the procedure
remove_item() and decrement the count. Each of the processes
also tests to see if the other should be sleeping, and if not, wakes it
up. But this method could lead to race condition, because access to
count is unconstrained.

#define N 100 /* number of slots in the buffer */
int count = 0; /* number of items in the buffer */
void producer(void)
{
int item;
while (TRUE) { /* repeat forever */
item = produce_item(); /* generate next item */
if (count == N) sleep(); /* if buffer is full, go to sleep */
insert_item(item); /* put item in buffer */
count = count + 1; /* increment count of items in buffer */
if (count == 1) wakeup(consumer); /* was buffer empty? */

160 | P a g e

Space for learners: }
}
void consumer(void)
{
int item;
while (TRUE) { /* repeat forever */
if (count == 0) sleep(); /* if buffer is empty, got to sleep */
item = remove_item(); /* take item out of buffer */
count = count −1; /* decrement count of items in buffer */
if (count == N −1)
wakeup(producer); /* was buffer full? */
consume_item(item); /* print item */
}
}

Suppose the buffer is empty and the consumer has just read count
to see if it is 0. At that instant, the scheduler decides to stop
running the consumer temporarily and start running the producer.
The producer enters an item in the buffer, increments count, and
notices that it is now 1. Reasoning that count was just 0, and thus
the consumer must be sleeping, the producer calls wakeup to wake
the consumer up. Unfortunately, the consumer is not yet logically
asleep, so the wakeup signal will have lost. When the consumer
next runs, it will test the value of count it previously read, find it
to be 0, and go to sleep. Sooner or later the producer will fill up
the buffer and also go to sleep. Both will sleep forever.

 Solving Producer consumer problem using Semaphores

Semaphores are integer variables that are used to solve the critical
section problem by using two operations, down and up that are
used for process synchronization. To solving synchronization
problems and avoiding race conditions all the actions happening
inside each of these down and up operations must be done as
single atomic action. Hence, once a semaphore operation has
started, no other process can access the semaphore until the
operation has completed or going to sleep. The operating system
briefly disables all interrupts while it is executing down or up
operation on a semaphore. If multiple CPUs are being used, each
semaphore should be protected by a lock variable, with the TSL
instruction used to make sure that only one CPU at a time
examines the semaphore.

161 | P a g e

Space for learners: There are two main types of semaphores-
i. Counting semaphores
ii. Mutexes or Binary semaphores

 Counting semaphores

These are integer value semaphores and have an unrestricted value
domain. In producer consumer problem a semaphore could have
the value 0, indicating that no wakeups were saved or some
positive value if one or more wakeups were pending.

The down operation on a counting semaphore (s) checks to see if
the value is greater than 0. If the value is greater than 0 then it
decrements the value and continues. If the value is 0, the process
is put to sleep or block without completing the down for the
moment.

The up operation on the counting semaphore increments the value
of the semaphore addressed. If one or more processes were
sleeping on that semaphore, unable to complete an earlier down
operation, one of them is chosen by the system randomly and is
allowed to complete its down.

 Mutexes or Binary semaphores

The mutexes or binary semaphores are like counting semaphores
but their value is restricted to 0 and 1. The down operation only
works when the semaphore is 1 and the up operation only works
when the semaphore is 0.

To solve produce consumer problem this solution uses three
semaphores-

full: This semaphore is used for counting the number of slots that
are full. Full is initially 0. It ensures that the producer stops
running when the buffer is full.
empty: This semaphore is used for counting the number of slots
that are empty. empty is initially equal to the number of slots in the
buffer. It ensures that the consumer stops running when the buffer
is empty.

162 | P a g e

Space for learners: mutex: The mutex semaphore is used for mutual exclusion. This
semaphore is used to make sure that the producer and consumer do
not access the buffer at the same time. mutex is initially 1.

If each process does a down just before entering its critical region
and an up just after leaving it, mutual exclusion is guaranteed.

#define N 100 /* number of slots in the buffer */
typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full = 0;
void producer(void)
{
int item;
while (TRUE)
 {
item = produce_item(); /* generate something to put in buffer */
down(&empty);
down(&mutex
insert_item(item);
up(&mutex);
up(&full);
}
}
void consumer(void)
{
int item;
while (TRUE) {
down(&full);
down(&mutex);
item = remove_item();
up(&mutex);
up(&empty);
consume_item(item);
}
}

 Monitors

163 | P a g e

Space for learners: A monitor is a collection of procedures, variables, and data
structures that are all grouped together in a special kind of module
or package. Processes may call the procedures in a monitor
whenever they want to, but they cannot directly access the
monitor’s internal data structures from procedures declared
outside the monitor. Figure 2-15 illustrates a piece of code for a
monitor.

monitor example
integer i;
condition c;
procedure producer(x);
...
end;
procedure consumer(x);
...
end;
end monitor;

Monitors have a key property that makes them useful for
achieving mutual exclusion: only one process can be active in a
monitor at any instant. Monitors are a programming language
construct, so the compiler knows they are special and can handle
calls to monitor procedures differently from other procedure calls.
Typically, when a process calls a monitor procedure, the first few
instructions of the procedure will check to see if any other process
is currently active within the monitor. If so, the calling process
will be suspended until the other process has left the monitor. If no
other process is using the monitor, the calling process may enter.

8.3.4 Design Issues for Message Passing Systems

Message passing systems have many challenging problems and
design issues that do not arise with semaphores or monitors,
especially if the communicating processes are on different
machines connected by a network. For example, messages can be
lost by the network. To guard against lost messages, the sender
and receiver can agree that as soon as a message has been
received, the receiver will send back a special acknowledgement
message. If the sender has not received the acknowledgement
within a certain time interval, it retransmits the message.

164 | P a g e

Space for learners: Now consider what happens if the message itself is received
correctly, but the acknowledgement is lost. The sender will
retransmit the message, so the receiver will get it twice. It is
essential that the receiver can distinguish a new message from the
retransmission of an old one. Usually, this problem is solved by
putting consecutive sequence numbers in each original message. If
the receiver gets a message bearing the same sequence number as
the previous message, it knows that the message is a duplicate that
can be ignored. Message systems also have to deal with the
question of how processes are named, so that the process specified
in a send or receive call is unambiguous. Authentication is also
an issue in message systems: how can the client tell that he is
communicating with the real file server, and not with an imposter?
At the other end of the spectrum, there are also design issues that
are important when the sender and receiver are on the same
machine. One of these is performance. Copying messages from
one process to another is always slower than doing a semaphore
operation or entering a monitor. Much work has gone into making
message passing efficient.

CHECK YOUR PROGRESS

State TRUE or FALSE:
1. Mutual exclusion is a way to avoid race condition.
2. Counting semaphore is also known as mutex.
3. In producer consumer problem we can have N producer and
 N consumer.
4. Both the solutions Peterson’s and TSL are correct to achieve
 mutual exclusion without busy waiting.
5. The primitives of message passing system are-send () and
 receive ().

165 | P a g e

Space for learners: 8.4 SUMMING UP

 Inter-Process Communication (IPC) is a mechanism that
involves communication of one process with another process.

 In inter-process commutation information are passed between
processes using shared memory or message passing.

 Shared memory is a region of memory that is shared by
cooperating processes

 In message passing system communication takes place by
means of messages exchanged between the cooperating
processes. This method of inter-process communication uses
two primitives, send and receive.

 When two or more processes are reading or writing some
shared data and the final result depends on who runs precisely
are called race conditions.

 The key to avoid race condition is mutual exclusion.

 Mutual exclusion is a way to make sure that if one process is
using a shared variable or file, the other processes will be
excluded from accessing that shared variable or file.

 The part of the program where the shared memory is accessed
is called the critical region or critical section.

 The necessary and sufficient conditions to hold mutual
exclusion are-

1. No two processes may be simultaneously inside their
critical regions.
2. No assumptions may be made about speeds or the
number of CPUs.
3. No process running outside its critical region may block
other processes.
4. No process should have to wait forever to enter its
critical region.

 One solution to achieve mutual exclusion is each process
disables all interrupts just after entering its critical region and
re-enable them just before leaving it. But disabling interrupt
by user process is not an appropriate way for mutual
exclusion.

166 | P a g e

Space for learners: Another one solution for mutual exclusion is using a shared
lock variable. But this solution may sometimes lead to race
condition.

 Strict alternation is an another solution to achieve mutual
exclusion. It uses a spin lock called turn.

 In Peterson’s solution before using the shared variables each
process calls enter_regionwith its own process number, 0 or
1, as the parameter. This call will cause it to wait, if need be,
until it is safe to enter. After it has finished with the shared
variables, the process calls leave_regionto indicate that it is
done and to allow the other process to enter, if it so desires.

 Test and Set Lock (TSL) is a hardware solution to achieve
mutual exclusion.

 All the above methods for mutual exclusion have
disadvantage of busy waiting. Instead of wasting CPU time
in busy waiting, a process can be blocked when it is not
allowed to enter its critical region. The available system
calls that can be used for this purpose are- sleep() and
wakeup().

 In producer-consumer problem (also known as the
bounded buffer problem), two processes share a common,
fixed-size buffer. One of them, the producer, puts
information into the buffer, and the other one, the consumer,
takes it out.

 To achieve mutual exclusion in the producer consumer
problem, we can use the system calls sleep() and wakeup().
But this solution may sometimes leads to race condition.

 Semaphores are integer variables that are used to solve the
critical section problem by using two operations, down and
up that are used for process synchronization.

 Another solution to achieve mutual exclusion in producer
consumer problem uses semaphore to process
synchronization.

 A monitor is a collection of procedures, variables, and data
structures that are all grouped together in a special kind of
module or package.

167 | P a g e

Space for learners: 8.5 ANSWERS TO CHECK YOUR PROGRESS

1. True.

2. False.

3. True.

4. False.

5. True

8.6 POSSIBLE QUESTIONS

Short answer type questions:

1. Give the differences between shared memory system verses
message passing system.

2. What is mutual exclusion? What are the necessary and
sufficient conditions to achieve mutual exclusion?

3. Why disabling interrupt is not a good solution for mutual
exclusion?

4. Mention how TSL instruction works.

5. What is producer consumer problem? How sleep() and
wakeup() system calls avoid busy waiting in mutual
exclusion?

6. What is semaphore? What are the operations that can be
applied on a semaphore? Briefly describe about counting
semaphore and binary semaphore.

7. Briefly describe about monitor.

Long answer type questions:

1. Briefly describe race condition with an example.

2. Briefly describe about how the following methods achieve
mutual exclusion

 a) Lock variable

b) Strict alternation

 c) Peterson’s solution

 d) Test-and-Set Lock instruction

168 | P a g e

Space for learners: 3. Give a solution to producer consumer problem using
semaphore.

4. Briefly discussed on the design issues of message passing
system.

8.7 REFERENCES & SUGGESTED READINGS

 “Operating System Concepts” by Avi Silberschatz and Peter
Galvin.

 “Operating Systems: Internals and Design Principles” by
William Stallings.

 “Operating Systems: A Concept-Based Approach” by D M
Dhamdhere.

 “Modern Operating Systems” by Andrew S Tanenbaum.

