
(7)

BLOCK III:

ADVANCED CONCEPTS OF PARALLEL

ARCHITECTURES

Unit 1 : Basic Parallel Architecture and Instruction Pipeline

Unit 2 : Vector Processing

Unit 3 : Advanced Concepts of Computer Architecture

Implicit Parallelism

Unit 4 : Advanced Concepts of Pipeline schedule

Unit 5 : Advanced CPU Architecture



 

237 | P a g e  
 

Space for learners: UNIT 1: BASIC PARALLEL ARCHITECTURE AND 
   INSTRUCTION PIPELINE 

Unit Structure: 

1.1 Introduction 
1.2 Unit Objectives 
1.3 Flynn’s Classification of Computer Architecture 

1.3.1 SISD 
1.3.2 SIMD 
1.3.3 MISD 
1.3.4 MIMD 

1.4 Type of Processors 
1.4.1 Scalar Processor 
1.4.2 Superscalar Processor  
1.4.3 Pipelined Processor 
1.4.4 Vector Processor 

1.5 Pipelining 
1.6 Instruction pipelining  
1.7 Dependency in Pipelined Processors 

1.7.1 Structural Dependency or Resource Conflict 
1.7.2 Control Dependency or Branch Hazard 
1.7.3 Data Dependency or Data Hazard 
1.7.4 Pipeline Bubbles 

1.8 Summing Up 
1.9 Answers To Check Your Progress  
1.10 Possible Questions 
1.11 References and Suggested Readings 

 
 

1.1 INTRODUCTION 
 
The chapter reviews architectural evolution of computers starting 

from uniprocessor systems to multiprocessor system through 

Flynn’s classification of computer architecture. The chapter also 

compares various processors types like scalar processor, superscalar 

processor, pipelined processor and vector processor. The basic 

concept of pipelining and the working of instruction pipeline is 



 

238 | P a g e  
 

Space for learners: discussed in detail. Finally, the chapter ends with discussion on the 

types of dependencies that exists in pipelined processors which if 

not taken care of will affect the overall performance of the system. 

The three dependencies discussed are resource conflict, branch 

hazard and data hazard. 

 
1.2 UNIT OBJECTIVES 

After going through this unit, you will be able to: 

 Classify computer architecture based on the notion of instruction 

and data stream. 

 Compare different types of processors and their characteristics. 

 Explain the basic concept of pipelining and the types of 

pipelining. 

 Explain how pipelining improves the performance of a system. 

 Explain how multiple instructions are executed in an overlapped 

fashion in instruction pipelining. 

 Identify the types of dependencies in pipelined processors and 

ways to resolve the dependencies. 

 

1.3 FLYNN’S CLASSIFICATION OF COMPUTER 

ARCHITECTURE 

With the increase in the number of processing units and 

segmentation of a job/program into multiple segments where in each 

of the segment is placed on a different processing unit for 

concurrent execution has resulted in classification of systems. 

Flynn's classification or Flynn’s taxonomy of computer 

architectures is proposed by Michael J. Flynn in the year 1972. The 

classification is based on the notion of instruction stream and data 

stream. A stream refers to sequence of instruction or data operated 

by the computer system. The flow of instruction from memory to 



 

239 | P a g e  
 

Space for learners: processor is called instruction stream and the flow of data between 

processor and memory is called data stream. 

 

Figure 1.1: Flynn’s classification of Computer Architecture 

 

The Figure 1.1 shows four categories in which Flynn has classified 

computer architecture based on instruction and data stream. A 

conventional uniprocessor system is called SISD (Single instruction 

stream Single data stream) computers. A vector /array of processors 

is called SIMD (Single instruction stream Multiple data stream) 

computers. In MISD (Multiple instruction stream Single data 

stream) computers, different instructions work on the same data. 

Finally, in MIMD (Multiple instruction stream Multiple data stream) 

computers, multiple processors each working on different data 

increases the overall performance of the system. 

 

1.3.1 SISD 
 

A Single instruction stream single data stream (SISD) system as 

shown in Figure 1.2 is a uniprocessor system. Such systems work on 

 Instruction Stream 

D
at

a 
St

re
am

 

 Single Multiple 

Si
ng

le
 SISD 

Traditional Von Neumann Single 
Processor Architecture 

MISD 
Systolic Arrays 

M
ul

tip
le

 

SIMD 
Vector processor/Array processor 

fine grained parallel computer 

MIMD 
Multiprocessor Systems, 

Multi Core systems 



 

240 | P a g e  
 

Space for learners: a single instruction stream and single data stream at a time. 

Instructions in SISD systems are processed in a sequential order and 

are therefore known as sequential computers. Conventional systems 

were of SISD architecture. Processing in SISD systems involve 

storing both instructions and data in primary memory. Processing 

speed of such systems depends on internal data transfer rate. 

However, performance of such systems can be improved with the 

help of multiple functional units or pipelining. Example of SISD 

systems includes CDC 6600, IBM PC. 

 

Figure 1.2: SISD Architecture 

 

1.3.2 SIMD 

A single instruction stream multiple data stream (SIMD) system as 

shown in Figure 1.3 are multiprocessor systems capable of working 

on different data streams through a single instruction stream. SIMD 

systems are used in scientific computation involving vector 

operations. They are also known as vector processors or array 

processors. There are n number of processing units each having its 

own memory and stream of data. All the n processing units receive 

the same instruction from the control unit. Example of SISD 

systems includes CRAY vector computers. 

 

 

 

I/O 

IS 

Control Unit Processing Unit Memory Unit 
IS DS 



 

241 | P a g e  
 

Space for learners:  

 

Figure 1.3: SIMD Architecture 

 

1.3.3 MISD 

A multiple instruction stream single data stream (MISD) system as 

shown in Figure 1.4 is a multiprocessor system which executes 

different instructions on different processing unit but data set is 

same for all the instructions. MISD systems are not practical in the 

majority of the application and therefore are not available 

commercially. One such example of MISD system is systolic array. 

 

Figure 1.4: MISD Architecture 

I/O 

IS 
DS 

IS IS 

DS 

IS IS Control 
Unit 1 

Processing 
Unit 1 

Memory 
(Program & 

Data) 

Control 
Unit 2 

Processing 
Unit 2 

Control 
Unit n 

Processing 
Unit n 

IS 

DS 

DS 

DS 

DS 

DS 

DS 

DS 

Control Unit 

Processing Unit 1 Memory Unit 1 

Processing Unit 2 Memory Unit 2 

Processing Unit n Memory Unit n 

IS 

IS 



 

242 | P a g e  
 

Space for learners: 1.3.4 MIMD 
 

A multiple instruction stream multiple data stream (MIMD) system 

is a multiprocessor system capable of executing different sets of 

instructions each working on a different set of data simultaneously. 

Figure 1.5 shows MIMD architecture. Multiple SIMD systems 

connected together can be viewed as a MIMD system. MIMD 

systems can be classified into shared-memory MIMD and 

distributed-memory MIMD based on processing unit-main memory 

connections. 

 

The shared memory MIMD system also known as tightly coupled 
multiprocessor system, are the one where all the processing units are 
connected to a single shared memory. Any form of communication 
between processing unit takes place with the help of shared 
memory. Changes done to data in shared memory by one processing 
unit is visible to all other processing units. In distributed memory, 
MIMD systems or loosely coupled multiprocessor systems, all 
processing units have their own local memory. The communication 
between processing units takes place through the interconnection. 

 

    Figure 1.5: MIMD Architecture 

IS 

DS IS 
I/O 

I/O 

IS DS 

DS IS 
Control Unit 

1 
Processing Unit 

1 
 

 

 

Shared 
Memory 

Control Unit 
2 

Processing Unit 
2 

Control Unit 
n 

Processing Unit 
n 

IS 

IS 



 

243 | P a g e  
 

Space for learners: 1.4 TYPE OF PROCESSORS 
 

There are several types of processors. A brief description of each of 

these are provided below. 

 
1.4.1 Scalar processor 

A scalar processor also known as Single Instruction Stream Single 

Data Stream (SISD) can process a single data item at a time. Scalar 

processor can process either integer or floating point operands. The 

simplest scalar processor uses floating point unit to process integer 

operands. However scalar processor may have separate integer and 

floating point units for handling integer and floating point operands. 

AMD 2900, Motorola 68040, Intel 386, Intel 486, M88100 are some 

examples of scalar processor. 

1.4.2 Superscalar Processor 
 
Superscalar processors are found in parallel computing architecture 

to improve the performance of the system by executing multiple 

instructions in parallel. A superscalar processor manages multiple 

instruction pipelines to execute multiple instructions concurrently in 

a clock cycle. The performance of superscalar processor is highly 

dependent on the instruction dependency quotient. If the instructions 

to be executed are independent, then high performance is achieved. 

Figure 1.6 shows a superscalar pipeline of degree 2 (i.e.  Two 

instructions can be executed in parallel). There are five stages in the 

pipeline namely fetch, decode, operand fetch, execute and write. It 

can be observed from the Figure 1.6 that the superscalar pipeline has 

two units each of fetch, decode, operand fetch, execute and write, 

therefore two instructions can be simultaneously executed. In the 

first clock cycle instruction (1, 2) are fetched, in the second clock 

cycle next two instructions i.e. (3, 4) are fetched and the process 



 

244 | P a g e  
 

Space for learners: continues. Pentium, DEC Alpha, PowerPC are some of the example 

of superscalar processor computers. 

 

 1 2 3 4 5 6 7 8 

Instruction 1 F D OF E W    

Instruction 2 F D OF E W    

Instruction 3  F D OF E W   

Instruction 4  F D OF E W   

Instruction 5   F D OF E W  

Instruction 6   F D OF E W  

Instruction 7    F D OF E W 

Instruction 8    F D OF E W 
 

Figure 1.6: A superscalar pipeline of degree two. 

 
1.4.3 Pipelined Processor 

 
There are four types of pipelined processors namely Scalar Pipeline, 

Superscalar Pipeline, Superpipeline, Superpipeline Superscalar as 

shown in Figure 1.7 depending upon the following criterions. It is 

assumed that all the pipelined processors are of k stages. 

 

 Machine Pipeline Cycle (MPC): Time taken by each stage 

to process an instruction. 

 Instruction Issue Rate (ISR): Number of instructions that 

can be issued simultaneously. 

 Instruction Issue Latency (ISL): Time interval between issue 

of two instructions. 

 Instruction Level Parallelism (ILP): Number of instructions 

that can be executed simultaneously in the pipeline. 

 



 

245 | P a g e  
 

Space for learners: Machine 
Type 

Scalar 
Pipeline 

Superscalar 
Pipeline 

Super 
pipeline 

Super pipeline 
Superscalar 

MPC 1 1 1/n 1/n 

ISR 1 m 1 m 

ISL 1 1 1/n 1/n 

ILP 1 m n mn 

 

Figure 1.7: Parameters of Pipelined Processor. 

 

1.4.4 Vector processor 

Vector processors are found mainly in supercomputers combining 

pipelining and interleaved memory unit. It is used mainly in 

scientific and multimedia applications involving processing of huge 

volume of data. It is capable of processing entire vector in single 

instruction. The operands in the instructions are vectors instead of a 

single element. One of the advantages of vector processors is less 

number of fetch and decode instructions.  

Vector processor uses many optimization schemes to improve 

performance of the system such as use of memory banks to reduce 

load/store latency, use of strip mining technique to adjust the size 

mismatch between vector operands and vector registers, vector 

chaining to resolve data dependency between vector instructions etc.  

Advantages of Vector processing: 

 Programs are smaller in size as the number of instructions is 

quite less. 

 As each data in registers is actually used by the vector 

processor therefore wastage in memory access is 

significantly less compared to cache memory. 

 Requirement of power is limited to only functional unit and 

register buses during vector operation. 



 

246 | P a g e  
 

Space for learners: Based on how operands are fetched in vector processors is 

categorized into two types: 

 Vector register Processor 

 Memory-Memory Vector Processor 

 

Vector-Register Processor 

It requires that all the operations performed in the vector processor 

use the source operands and destination operands as vector registers. 

However, there is a small disadvantage initially that is vector data in 

memory must be divided into fixed length segments so that can be 

placed in vector register. But once the pipelining starts this 

disadvantage is nullified. 

Memory-Memory Vector Processor 

Such processors allow source operand and destination operand to be 

routed directly to the arithmetic logic unit (ALU). Once the 

processing is completed in the ALU, the result is routed back to 

memory. However due to memory latency the time between 

initializing the first instruction and the getting the first output from 

the pipeline is quite large. 

 

1.5 PIPELINING 

A pipeline is similar to an assembly line in a production factory. A 

product has to go through multiple stages in the assembly line 

before the final product is manufactured. At a time, all the stages 

work simultaneously but on different phases of the product. This 

process is referred to as pipelining. Pipelining is also referred to as 

execution of multiple jobs/instructions parallelly in an overlapped 

fashion. 



 

247 | P a g e  
 

Space for learners: Let us look at a real life example that works on the concept of 

pipelining. Consider a packaged drinking water plant having the 

following 3 stages and each stage takes 1 minute to complete its 

operation. 

 Filling (F)--- Stage 1 
 Sealing (S) --- Stage 2 
 Labeling (L) --- Stage 3 

In a non-pipelined operation if we have to do the packaging of 4 

bottles, it will take 12 min to complete the operation as shown in 

Figure 1.8. Each bottle spending 1 min in each of the filling, sealing 

and labeling stage respectively.  

The bottle reaches stage-1 where it is filled and after 1 minute it 

moves to the stage-2 where it is sealed. At this point stage-1 is in 

idle state. Now after staying in stage-2 for 1 minute the bottle is 

moved to stage-3 where it is labeled. At this point stage-1 and stage-

2 is in idle state as shown in the figure 1.8. This process of 

packaging does not utilize the time as the stages remain in idle state 

during the operation. To overcome the issue and to utilize the stages 

to its maximum limit, pipelining is used.  

 
Time in minute 

1 2 3 4 5 6 7 8 9 10 11 12 
Bottle 

1 F S L          

Bottle 
2    F S L       

Bottle 
3       F S L    

Bottle 
4          F S L 

Figure 1.8: Non Pipelined Operation 



 

248 | P a g e  
 

Space for learners: Now, in a pipelined operation if we have to do the packaging of 4 

bottles, it will take 6 min to complete the operation as shown in 

Figure 1.9. Compared to 12 minutes taken in non-pipelined 

operation.  

As it can be observed in Figure 1.9, when the first bottle is in stage-

2 (Sealing), the second bottle is placed in stage-1(Filling). Similarly, 

when the first bottle is in stage-3(Labeling), second bottle is placed 

in stage-2(Sealing) and third bottle is placed in stage-1(Filling). 

Thus, none of the stages are idle at any moment. All the stages are 

working on a different bottle at a time. This process of working in 

an overlapped fashion to utilize the stages of a pipeline to its fullest 

is called pipelining. 

 
Time in minute 

1 2 3 4 5 6 7 8 9 10 11 12 
Bottle 

1 F S L          

Bottle 
2  F S L         

Bottle 
3   F S L        

Bottle 
4    F S L       

Figure 1.9: Pipelined Operation 

 
1.6 INSTRUCTION PIPELINING  

In a computer system the technique of executing multiple 

instructions in an overlapped fashion is known pipelining. A 

pipeline consists of many stages and these stages are connected to 

one another in a pipe like structure. An instruction enters one end of 

the pipeline, goes through several stages before exiting from another 

end. Pipelining improves the overall throughput of the system. 



 

249 | P a g e  
 

Space for learners: In a pipeline system, each stage uses register to hold the output of 

that stage. Output of one stage is applied as input to the next stage.  

 

 

Figure 1.10: Five stage Instruction Pipeline 

 

Figure 1.10 shows an example of five stage instruction pipeline 

consisting of fetch, decode, operand fetch, execute and write stages. 

Here streams of instructions are executed in overlapped fashion 

thereby increasing the throughput of the computer system. 

Figure 1.11 shows the timing diagram of an instruction pipeline. 

While the instruction pipeline reads one instruction from the 

memory, previous instruction is executed in other stage of the 

pipeline. Thus, multiple instructions are executed simultaneously. 

From the Figure 1.11, it can be observed that while the first 

instruction started at time period one, the second instruction started 

at time period two and so on.  Up to time period four, not all stages 

were working simultaneously but from time period five onwards all 

the five stages are working simultaneously. Therefore, from 

instruction number five onwards each stage is working on a 

different instruction as: 

Instruction 1: Write 
Instruction 2: Execute 
Instruction 3: Operand Fetch 
Instruction 4: Decode 
Instruction 5: Fetch 

                         Time  
 1 2 3 4 5 6 7 8 9 10 11 
Instruction 1 F D OF E W       
Instruction 2  F D OF E W      

EXECUT
E 

WRITE FETCH DECO
DE 

OPERAND 
FETCH Input Output 



 

250 | P a g e  
 

Space for learners: Instruction 3   F D OF E W     
Instruction 4    F D OF E W    
Instruction 5     F D OF E W   
Instruction 6      F D OF E W  
Instruction 7       F D OF E W 

 

Figure 1.11: Timing diagram for Instruction Pipeline Operation 

If there are k number of stages and n number of instructions, then 

total time T taken to execute n instructions can be given as T = k + 

(n -1). 

 

1.7 DEPENDENCY IN PIPELINED 
PROCESSOR 

A pipelined processor may be affected due to the following 

dependencies, which may also result in the stalls in the pipeline. A 

stall is a pipeline cycle with no operation or no new input. 

 Structural Dependency or Resource Conflict 
 Control Dependency or Branch Difficulty 
 Data Dependency or Data Hazard 

 
1.7.1 Structural Dependency or Resource Conflict 

Structural dependency is the result of resource conflict in the 

pipeline. When several instructions in the same cycle try to access 

the same resource, a resource conflict arises. A resource can be a 

register, memory, or ALU. 

                         Time  
 1 2 3 4 5 6 7 8 9 10 11 
Instruction 1 F D OF W        
Instruction 2  F D OF W       
Instruction 3   F D OF W      
Instruction 4    F D OF W     
Figure 1.12: Timing diagram of a 4-Stage Instruction Pipeline 



 

251 | P a g e  
 

Space for learners: In cycle 4 of the Figure 1.12, instruction 1 is trying to do the write 

operation on memory and instruction 4 is trying to fetch from 

memory. As both the instructions are trying to access same resource 

i.e. memory at the same time, it introduces a resource conflict 

between the two instructions. Such situation can be avoided by 

keeping the instruction 2 in wait state until the required resource 

becomes available. 

1.7.2 Control Dependency or Branch Hazard 

A pipeline achieves its maximum utilization if all the stages of the 

pipeline take equal amount of time to process and there is no branch 

instruction in the program. However, if the program contains branch 

instruction, the pipeline suffers from branch penalty. 

The timing diagram of a 4 stage instruction pipeline containing 

branch instruction is shown in Figure 1.13 where instruction 1,2,3 

and 4 are non-branch instruction and instruction 5 is a branch 

instruction. 

                         Time                                                          |Branch 
Penalty| 
 1 2 3 4 5 6 7 8 9 1

0 
1
1 

1
2 

1
3 

1
4 

Instructio
n 1 

F D O
F 

E           

Instructio
n 2 

 F D O
F 

E          

Instructio
n 3 

  F D O
F 

E         

Instructio
n 4 

   F D O
F 

E        

Instructio
n 5 
(brancht
o  
instructio
n 25) 

    F D O
F 

E       



 

252 | P a g e  
 

Space for learners: Instructio
n 6 

     F D O
F 

      

Instructio
n 7 

      F D       

Instructio
n 25 

       F D O
F 

E    

Instructio
n 26 

        F D O
F 

E   

Figure 1.13: Timing diagram for Instruction Pipeline Operation 

 

The pipeline executes instruction 1, 2, 3 and 4 sequentially, 

followed by instruction 5 (branch instruction). By the time 

instruction 5 is decoded by the pipeline decode stage, instruction 6 

and instruction 7 enters the pipeline. At this point, the pipeline 

realized that it should have placed instruction 25 after the branch 

instruction 5 instead of instruction 6. 

So the pipeline discards the instructions 6 and 7, that is the pipeline 

cycle at time period 6 and 7 are wasted. This is known as branch 

penalty as the processor could not anticipate the branch. So 

instruction 25 is assumed to be the instruction to be executed on the 

branch and starts at time period eight. 

 

1.7.3 Data Dependency or Data Hazard 

In a pipeline, there can be a situation where output of first 

instruction acts as an input to the second instruction. Such situation 

exhibits data dependency where the second instruction must wait in 

the pipeline for the first instruction to complete its execution. 

Otherwise the second instruction may be working on an invalid data. 

This dependency between the instructions is known as data 

dependency or data hazard. So the order of execution of the 

instructions does matter. 



 

253 | P a g e  
 

Space for learners: There are mainly three types of data hazards: 

 Read after Write (RAW) Hazard or Flow dependency 

 Write after Read(WAR)Hazard or Anti-Data dependency 

 Write after Write (WAW) Hazard or Output dependency 

Read after Write (RAW) Hazard:   
Instruction 1: R3  R4 + R5 

Instruction 2: R6  R3 + R4 

Here, the instruction 2 is reading a value in register R3 that is being 

produced by instruction 1. So instruction 2 should execute after 

instruction 1 completes its execution. 

Write after Read(WAR) Hazard:  
Instruction 1: R3 R4 + R5 

Instruction 2: R4 R6 + R7 

Here the instruction 2 is writing a value in register R4 that is being 
read before by instruction 1. So instruction 2 should execute after 
instruction 1 completes its execution. 

Write after Write (WAW) Hazard:  

Instruction 1: R1 R2 + R3 

Instruction 2: R1 R4 + R5 

Here the instruction 2 is overwriting the value in register R1 that is 

being produced by instruction 1. So instruction 2 should execute 

after instruction 1 completes its execution. 

 

1.7.4 Pipeline bubbles 

A bubble or a pipeline bubble represents a stage in the pipeline that 

cannot perform any useful operation due to the lack of data from 

previous stage of the pipeline. It is a method to prevent structural, 

data and branch hazards. Pipeline control logic analyzes if a hazard 



 

254 | P a g e  
 

Space for learners: could arise while instructions are fetched. If this is the case, no 

operations (NOPs) are added to the pipeline by the control logic. As 

a result, before the next instruction runs, the previous one would 

have enough time to complete and avert the hazard. 

 

 
CHECK YOUR PROGRESS 

i. CRAY systems are an example of______________. 
a) SISD 
b) SIMD 
c) MISD 
d) MIMD 

 
ii. Pentium, DEC Alpha, PowerPC are some of the example of 

_____________computers. 
a) superscalar processor  
b) Super pipeline 
c) Scalar 
d) Superscalar Super pipeline 

 
iii. To _________data in between the pipeline stages, registers 

are used. 
a) Write  
b) Process 
c) Read 
d) Hold 

 
iv. Motorola 68040 is an example of ____________ 

a) Scalar processor 
b) Superscalar processor 
c) Super pipeline processor 
d) Pipelined processor 

v. A superscalar pipeline (5 stages) of degree 3 will need 
__________ cycles to complete 9 instructions. 
a) 6 
b) 7 
c) 8 
d) 9 



 

255 | P a g e  
 

Space for learners:  
vi. Instruction Issue Latency (ISL) in a pipelined processor 

means___ 
a) Time interval between issuing of first and last 

instruction. 
b) Time interval between completion of first and second 

instruction. 
c) Time taken to complete execution of first instruction. 
d) Time interval between issuing of two instructions. 

 
vii. Instruction Level Parallelism in a pipelined processor 

means____________ 
a) Number of instructions in the pipeline. 
b) Number of instructions that can be completed 

simultaneously in the pipeline. 
c) Number of instructions that can be executed 

simultaneously in the pipeline. 
d) None of the above 

 
viii. Vector processors or Array processors are also known 

as__________ systems 
a) SISD 
b) MISD 
c) SIMD 
d) MIMD 

 
ix. The time period when the pipeline unit remains idle is called 

as _____ 
a) Hazards 
b) Bubbles 
c) Stalls 
d) Both b) and c) 

 
x. In pipelining, memory access speedup is achieved through 

_______ 
a) Cache 
b) Buffers 
c) Memory Registers 
d) Special Registers 

 
xi. In a pipeline branch instructions are handled by __________ 



 

256 | P a g e  
 

Space for learners: a) Pipeline flush operation 
b) Pipeline Freeze operation 
c) Pipeline Depth operation 
d) Both a) and b) 

 
xii. If second instruction tries to do a write operation before the 

first instruction can write on the same data, it is called as 
_____________ dependency. 
a) Data  
b) Anti 
c) Flow 
d) Output 

 
 

xiii. If second instruction tries to do a read operation after the 
first instruction does a write on the same data, it is called as 
_____________ hazard. 
a) RAW  
b) WAR 
c) Data 
d) Control 
 

xiv. Time taken by a 7 stage instruction pipeline to complete 
execution of 10 instructions is___________________. 
a) 70 
b) 32 
c) 16 
d) 17 
 

xv. Time taken by a 3 stage superscalar pipeline of degree 2 to 
execute 10 instructions is _______. 
a) 10 
b) 9 
c) 8 
d) 7 

 
1.8 SUMMING UP 

 
 Flynn has classified computer architecture based on 

instruction and data stream and are SISD, SIMD, MISD, and 
MIMD. 



 

257 | P a g e  
 

Space for learners:  SISD systems are processed in a sequential order and are 

therefore known as sequential computers.  

 SIMD systems are multiprocessor systems capable of 

working on different data streams through a single 

instruction stream. 

 MISD system is a multiprocessor system which executes 

different instructions on different processing unit but data set 

is same for all the instructions.  

 MIMD system is a multiprocessor system capable of 

executing different sets of instructions each working on a 

different set of data simultaneously. 

 Superscalar processors are found in parallel computing 

architecture to improve the performance of the system by 

executing multiple instructions concurrently in a clock cycle.  

 Pipelined processors namely Scalar Pipeline, Superscalar 

Pipeline, Super pipeline, Super pipeline Superscalar. 

 Vector processors are used mainly in scientific and 

multimedia applications involving processing of huge 

volume of data. It is capable of processing entire vector in 

single instruction.  

 Pipelining is also referred to as execution of multiple 

instructions parallelly in an overlapped fashion. 

 Structural dependency is the result of resource conflict in the 

pipeline. When several instructions in the same cycle try to 

access the same resource, a resource conflict arises.  

 If the program contains branch instruction, the pipeline 

suffers from branch penalty.  

 Dependency between the instructions is known as data 

dependency or data hazard. Order of execution of the 

instructions does matter. 



 

258 | P a g e  
 

Space for learners:  There are mainly three types of data hazards Read after 

Write (RAW), Write after Read (WAR), and Write after 

Write (WAW). 

 A bubble or a pipeline bubble represents a stage in the 

pipeline that cannot perform any useful operation due to the 

lack of data from previous stage of the pipeline.  
 
 

1.9 ANSWERS TO CHECK YOUR PROGRESS  

i. b ii. a iii. d iv. a v. b 
vi. d vii. c viii. c ix. d x. a 
xi. d xii. d xiii. a xiv.c xv.d 

 
 

1.10 POSSIBLE QUESTIONS 
 

1. Discuss Flynn’s classification of computer architecture. 

2. According to Flynn's classification, the architecture which is of 

theoretical interest but no real-world system has been developed 

on it? 

3. Differentiate between shared memory and distributed memory 

MIMD systems. 

4. Explain how pipelining can increase the performance of a 

system compared to a single processor system. 

5. Differentiate between superscalar processor and Super pipeline 

processor. 

6. Briefly describe the parameters on which different pipelined 

processors are measured in terms of their performance. 

7. Discuss the types of processors that is helpful in parallel 

processing. 

8. Discuss the factors that affect the performance of a pipeline. 

9. Define instruction pipeline with the help of an example. 

10. Discuss resource conflict in pipelining. 



 

259 | P a g e  
 

Space for learners: 11. Discuss Data hazard in pipelining. 

12. What is a pipeline bubble? In what situation a pipeline bubble is 

used? 

 

1.11 REFERENCES AND SUGGESTED READINGS 
 
 Advanced Computer Architecture, 3e, Kai Hwang, 

Naresh Jotwani; McGraw-Hill Education, 2016 

 Computer Organization and Architecture: Designing for 

Performance 10 Edition, by William Stallings, Pearson. 

 Computer System Architecture Third Edition, M. Morris 

Mano, Rajib Mall, Pearson 

 Computer Organization Fifth Edition, Carl Hamacher, 

McGraw Hill 

 

 

 



 

260 | P a g e  
 

Space for learners: UNIT 2: VECTOR PROCESSING 

Unit Structure: 

2.1 Introduction 
2.2 Unit Objectives 
2.3 Vector Computing 
2.4 Vector Processor  
 2.4.1 Some important facts on a vector processor 

2.4.2 Advantages of Vector Processor 
2.4.3 Applications of Vector Processors 
2.4.4 Cost of Vector Processor  
2.4.5 Classification of Vector Processor 

2.4.5.1 Memory to memory architecture 
2.4.5.2 Register to Register Architecture 

2.5 Superscalar processor  
2.6 Vector Computer 
 2.6.1 Vector registers 

2.6.2 Scalar registers 
2.7 Array Processors 
 2.7.1 Types of Array Processors 
  2.7.1.1 Attached Array Processors 
  2.7.1.2 SIMD Array Processors 
 2.7.2 Advantages of Array Processor 
2.8 Pipelining 
 2.8.1 Types of Pipeline 
  2.8.1.1 Arithmetic Pipeline 
  2.8.1.2 Instruction Pipeline 
 2.8.2 Pipeline Conflicts 
 2.8.3 Advantages of Pipelining 
 2.8.4 Disadvantages of Pipelining 
2.9 Chaining Technique 
2.10 Gather-scatter Operation 
 2.10.1 The basic concepts of Gather-scatter  
 2.10.2 Different Gather-scatter applications 
2.11 Summing up 
2.12 Answer to Check Your Progress  
2.13 Possible Questions 
2.14References and Suggested Readings 
 



 

261 | P a g e  
 

Space for learners: 2.1 INTRODUCTION 

A normal processor sometimes called scalar processor, which works 

on simple instruction at a time, which operates on single data items. 

Standard von Neumann machine is based on the instruction and data 

are stored in memory, that has one operation at a time, maximum 

speed of the system is limited by the memory bandwidth(bits/sec or 

bytes/sec). It means normal processing having limitation on memory 

bandwidth; which the memory is shared by CPU and I/O. But in 

today's world, this technique is proved to be highly inefficient, as 

the overall processing of instructions will be very slow.  

There is a class of computational problems that are beyond the 

capabilities of a conventional computer. These problems require 

vast number of computations on multiple data items that will take a 

conventional computer (with scalar processor) days or even weeks 

to complete. 

Such complex instruction, which operates on multiple data at the 

same time, requires a better way of instruction execution, which was 

achieved by vector computing technique using vector processors. 

Scalar CPUs can manipulate one or two data items at a time, which 

is not very efficient. 

 

2.2 UNIT OBJECTIVES 

After going through this unit, you will be able to: 

 Understand the basic concepts of vector computing and 

working principle of vector processor. 

 Know about the pipelining techniques applied in vector 

computing. 



 

262 | P a g e  
 

Space for learners:  Understand how arithmetic pipelining works. 

 Give the basic concept of array processor and its different 

categories. 

 Know about the vector and scalar registers used in vector 

processing. 

 Define what is a chaining and scatter-gather operation. 

 Understand about register-register and memory-memory 

vector processors. 

 

2.3  VECTOR COMPUTING 

There is a class of computational problems that are beyond the 

capabilities of a conventional computer. These problems require 

vast number of computations on multiple data items that will take a 

conventional computer(with scalar processor) days or even weeks to 

complete. 

Such complex instructions, which operate on multiple data at the 

same time, requires a better way of instruction execution, which has 

been achieved by the vector computing technique that done by 

vector processors. 

Vector processor is basically a central processing unit that has the 

ability to execute the complete vector input in a single instruction. 

So, we can say vector processing allows operation on multiple data 

elements by the help of single instruction. 

 

Scalar CPUs can manipulate one or two data items at a time, which 

is not very efficient. Also, simple instructions like ADD A to B, and 

store into C are not practically efficient. 



 

263 | P a g e  
 

Space for learners: Addresses are used to point to the memory location where the data 
to be operated will be found, which leads to added overhead of data 
lookup. So until the data is found, the CPU would be sitting ideal, 
which is a big performance issue. 

Hence, the concept of Instruction Pipeline comes into picture, in 
which the instruction passes through several sub-units in turn. These 
sub-units perform various independent functions, for example: 
the first one decodes the instruction, the second sub-unit fetches the 
data and the third sub-unit performs the math itself. Therefore, while 
the data is fetched for one instruction, CPU does not sit idle; it 
rather works on decoding the next instruction set, ending up 
working like an assembly line. 

Vector computing technique, not only use Instruction pipeline, but it 
also pipelines the data, working on multiple data at the same time. 

A normal scalar processor instruction would be ADD A, B, which 
leads to addition of two operands, but what if we can instruct the 
processor to ADD a group of numbers (from 0 to n memory 
location) to another group of numbers (let’s say, n to k memory 
location) then a scalar processor is unable to add these set values. 
This can be achieved by vector processors. 

In vector processor a single instruction, can ask for multiple data 
operations, which saves time, as instruction is decoded once, and 
then it keeps on operating on different data items. 

 

2.4VECTOR PROCESSOR  
 

Vector processor is basically a central processing unit that has the 

ability to execute the complete vector input in a single instruction. 

More specifically we can say, it is a complete unit of hardware 

resources that executes a sequential set of similar data items in the 

memory using a single instruction. 



 

264 | P a g e  
 

Space for learners: Vector processors are co-processor to general-purpose 

microprocessor. Vector processors are generally register-register or 

memory-memory. A vector instruction is fetched and decoded and 

then a certain operation is performed for each element of the 

operand vectors, whereas in a normal processor a vector operation 

needs a loop structure in the code. To make it more efficient, vector 

processors chain several vector operations together, i.e., the result 

from one vector operation are forwarded to another as operand. 

We know elements of the vector are ordered properly so as to have 

successive addressing format of the memory. This is the reason why 

we have mentioned that it implements the data sequentially. It holds 

a single control unit but has multiple execution units that perform 

the same operation on different data elements of the vector. 

Unlike scalar processors that operate on only a single pair of data, a 

vector processor operates on multiple pair of data. However, one 

can convert a scalar code into vector code. This conversion process 

is known as vectorization. So, we can say vector processing allows 

operation on multiple data elements by the help of single instruction. 

These instructions are said to be single instruction multiple data 

(SIMD) or vector instructions. The CPU used in recent time makes 

use of vector processing as it is advantageous than scalar processing. 

 

A vector processor is a processor that can operate on an entire 

vector in one instruction. The operand to the instructions are 

complete vectors instead of one element. Vector processors reduce 

the fetch and decode bandwidth as the number of instructions 

fetched are less. They also exploit data parallelism in large scientific 

and multimedia applications. Based on how the operands are 

fetched, vector processors can be divided into two categories - in 

memory-memory architecture operands are directly streamed to the 



 

265 | P a g e  
 

Space for learners: functional units from the memory and results are written back to 

memory as the vector operation proceeds. In vector-register 

architecture, operands are read into vector registers from which they 

are fed to the functional units and results of operations are written to 

vector registers. Many performance optimization schemes are used 

in vector processors. Memory banks are used to reduce load/store 

latency. Strip mining is used to generate code so that vector 

operation is possible for vector operands whose size is less than or 

greater than the size of vector registers. Vector chaining - the 

equivalent of forwarding in vector processors - is used in case of 

data dependency among vector instructions. Special scatter and 

gather instructions are provided to efficiently operate on sparse 

matrices. 

Instruction set has been designed with the property that all vector 

arithmetic instructions only allow element N of one vector register 

to take part in operations with element N from other vector registers. 

This dramatically simplifies the construction of a highly parallel 

vector unit, which can be structured as multiple parallel lanes. As 

with a traffic highway, we can increase the peak throughput of a 

vector unit by adding more lanes. 

 

2.4.1 Some Important Facts on a Vector Processor 

 

 A vector processor is an ensemble of hardware resources, 

including vector registers, functional pipelines, processing 

elements and register counters for performing register 

operations. 

 Vector processing occurs when arithmetic or logical 

operations are applied to vectors. It is distinguished from 

scalar processing which operates on one or one pair of data. 



 

266 | P a g e  
 

Space for learners: The conversion from scalar code to vector code is called 

vectorization. 

 Both pipelined processors and SIMD computers can perform 

vector operations. 

 Vector processing reduces software overhead incurred in the 

maintenance of looping control, reduces memory access 

conflicts and above all matches nicely with pipelining and 

segmentation concept to generate one result per each clock 

cycle continuously. 

 

2.4.2 Advantages of Vector Processor 

Some advantages of vector processors are given below: 

 Programs size is small as it requires less number of 

instructions. Vector instructions also hide many branches by 

executing a loop in one instruction. 

 Vector memory access has no wastage like cache access. 

Every data item requested by the processor is actually used. 

 Once a vector instruction starts operating, only the functional 

unit (FU) and the register buses feeding it need to be 

powered. Fetch unit, decode unit, ROB etc can be powered 

off. This reduces the power usage. 

 

2.4.3  Applications of Vector Processors 

Computer with vector processing capabilities are in demand in 

specialized applications. The following are some areas where vector 

processing is used: 

1. Petroleum exploration. 

2. Medical diagnosis. 



 

267 | P a g e  
 

Space for learners: 3. Data analysis. 

4. Weather forecasting. 

5. Aerodynamics and space flight simulations. 

6. Image processing. 

7. Artificial intelligence. 

 

2.4.4  Cost of Vector Processor 

The reason behind the declining popularity of vector processors are 

their cost as compared to multiprocessors and superscalar 

processors. The reasons behind high cost of vector processors are 

• Vector processors do not use commodity parts. Since they sell very 

few copies, design cost dominates overall cost. 

• Vector processors need high speed on-chip memory which are 

expensive. 

• It is difficult to package the processors with such high speed. In 

the past, vector manufactures have employed expensive designs for 

this. 

• There have been few architectural innovations compared to 

superscalar processors to improve performance keeping the cost 

low. 

 

2.4.5  Classification of Vector Processor 

The classification of vector processor relies on the ability of vector 

formation as well as the presence of vector instruction for 

processing. So, depending on these criteria, vector processing is 

classified as follows: 



 

268 | P a g e  
 

Space for learners: (i) Register to Register Architecture (Vector register 

processors)and 

(ii) Memory to Memory Architecture(Memory-memory 

vector processors) 

According to the position from where the operands are retrieved in 

a vector processor, pipe lined vector computers are classified into 

two architectural configurations: 

 

2.4.5.1  Memory to memory architecture  

 

In memory to memory architecture, source operands, intermediate 

and final results are retrieved (read) directly from the main 

memory. For memory to memory vector instructions, the 

information of the base address, the offset, the increment, and the 

vector length must be specified in order to enable streams of data 

transfers between the main memory and pipelines. The processors 

like TI-ASC, CDC STAR-100, and Cyber-205 have vector 

instructions in memory to memory formats. The main points about 

memory to memory architecture are: 

 There is no limitation of size 

 Speed is comparatively slow in this architecture 

 

2.4.5.2  Register to Register Architecture 

This architecture is highly used in vector computers. As in this 

architecture, the fetching of the operand or previous results 

indirectly takes place through the main memory by the use of 

registers. The several vector pipelines present in the vector 

computer help in retrieving the data from the registers and also 

storing the results in the desired register. These vector registers are 

user instruction programmable. In a vector-register processor, all 

vector operations—except load and store—are among the vector 



 

269 | P a g e  
 

Space for learners: registers. These architectures are the vector counterpart of a load-

store architecture. 

All major vector computers shipped since the late 1980s use a 

vector-register architecture, including the Cray Research processors 

(Cray-1, Cray-2, X-MP,YMP, C90, T90, SV1, and X1), the 

Japanese supercomputers (NEC SX/2 through SX/8, Fujitsu VP200 

through VPP5000, and the Hitachi S820 and S-8300), and the mini-

supercomputers (Convex C-1 through C-4).  

In register to register architecture, operands and results are 

retrieved indirectly from the main memory through the use of large 

number of vector registers or scalar registers. The processors 

like Cray-1 and the Fujitsu VP-200 use vector instructions in 

register to register formats. The main points about register to 

register architecture are: 

(i) Register to register architecture has limited size. 

(ii) Speed is very high as compared to the memory 

to memory architecture. 

(iii) The hardware cost is high in this architecture. 

 

2.5  SUPERSCALAR PROCESSOR  

It was first invented in 1987. It is a machine which is designed to 

improve the performance of the scalar processor. In most 

applications, most of the operations are on scalar quantities. 

Superscalar approach produces the high performance general 

purpose processors. 

A scalar processor works on one or two data items, itis a normal 

processor, which works on simple instruction at a time, which 

operates on single data items, while the vector processor works with 

multiple data items. A superscalar processor is a combination of 



 

270 | P a g e  
 

Space for learners: both. Each instruction processes one data item, but there are 

multiple execution units within each CPU thus multiple instructions 

can be processing separate data items concurrently. 

The main principle of superscalar approach is that it executes 

instructions independently in different pipelines. As we already 

know, that Instruction pipelining leads to parallel processing thereby 

speeding up the processing of instructions. In Superscalar processor, 

multiple such pipelines are introduced for different operations, 

which further improves parallel processing. 

There are multiple functional units each of which is implemented as 

a pipeline. Each pipeline consists of multiple stages to handle 

multiple instructions at a time which support parallel execution of 

instructions. 

It increases the throughput because the CPU can execute multiple 

instructions per clock cycle. Thus, superscalar processors are much 

faster than scalar processors. 

While a superscalar CPU is also pipelined, there are two different 

performance enhancement techniques. It is possible to have a non-

pipelined superscalar CPU or pipelined non-superscalar CPU. The 

superscalar technique is associated with some characteristics, these 

are given below: 

 Instructions are issued from a sequential instruction stream. 

 CPU must dynamically check for data dependencies. 

 Should accept multiple instructions per clock cycle. 

 

 

 



 

271 | P a g e  
 

Space for learners: 2.6  VECTOR COMPUTER 

The functional units of a vector computer are as follows: 

(i) IPU or instruction processing unit 

(ii) Vector register 

(iii)Scalar register 

(iv) Scalar processor 

(v) Vector instruction controller 

(vi) Vector access controller 

(vii) Vector processor 

 

Let us now understand the overall operation performed by the vector 

computer. 

As it has several functional pipes thus it can execute the instructions 

over the operands. We know that both data and instructions are 

present in the memory at the desired memory location. So, the 

instruction processing unit i.e., IPU fetches the instruction from the 

memory. 

Once the instruction is fetched then IPU determines either the 

fetched instruction is scalar or vector in nature. If it is scalar in 

nature, then the instruction is transferred to the scalar register and 

then further scalar processing is performed. 

While, when the instruction is a vector in nature then it is fed to the 

vector instruction controller. This vector instruction controller first 

decodes the vector instruction then accordingly determines the 

address of the vector operand present in the memory. 

Then it gives a signal to the vector access controller about the 

demand of the respective operand. This vector access controller then 

fetches the desired operand from the memory. Once the operand is 



 

272 | P a g e  
 

Space for learners: fetched then it is provided to the instruction register so that it can be 

processed at the vector processor. 

At times when multiple vector instructions are present, then the 

vector instruction controller provides the multiple vector 

instructions to the task system. And in case the task system shows 

that the vector task is very long then the processor divides the task 

into sub-vectors. 

These sub-vectors are fed to the vector processor that makes use of 

several pipelines in order to execute the instruction over the operand 

fetched from the memory at the same time. The various vector 

instructions are scheduled by the vector instruction controller. 

A block diagram of a modern multiple pipeline vector computer is 

shown below: 

 
 

Fig.2.1 A block diagram of a modern multiple pipeline vector 
computer 

 
 
2.6.1 Vector registers 
 
Vector registers are the storage areas in a CPU core that contain the 

operands for vector computations, as well as the results. The size of 



 

273 | P a g e  
 

Space for learners: the vector registers determines the level of SIMD instructions that 

can be supported by a given processor's CPUs. 

Each vector register is a fixed-length bank holding a single vector. 

VMIPS has eight vector registers, and each vector register holds 64 

elements. Each vector register must have at least two read ports and 

one write port in VMIPS. This will allow a high degree of overlap 

among vector operations to different vector registers. The read and 

write ports, which total at least 16 read ports and 8write ports, are 

connected to the functional unit inputs or outputs by a pair of 

crossbars. Real machines make use of the regular access pattern 

within a vector instruction to reduce the costs of the vector-register 

file circuitry. For example, the Cray-1 manages to implement the 

register file with only a single port per register. 

 

 
2.6.2 Scalar registers 
 
Scalar processors represent a class of computer processors. A scalar 

processor processes only one data item at a time, with typical data 

items being integers or floating point numbers. A scalar processor is 

classified as a single instruction, single data (SISD) processor in 

Flynn's taxonomy. 

Scalar registers can also provide data as input to the vector 

functional units, as well as compute addresses to pass to the vector 

load-store unit. These are the normal 32 general-purpose registers 

and 32 floating-point registers of MIPS. Scalar values are read out 

of the scalar register file, then latched at one input of the vector 

functional units. 

 
 
 
 



 

274 | P a g e  
 

Space for learners: 2.7 ARRAY PROCESSORS 

Array processors are also known as multiprocessors or vector 

processors. An array processor is a processor that performs 

computations on large arrays of data. Thus, they are used to improve 

the performance of the computer.  

In other words, an array processor is a CPU which implements an 

instruction set that are designed to operate efficiently and effectively 

on large one-dimensional arrays of data called vectors. 

Vector and array processing are essentially the same because, with 

slight and rare differences, a vector processor and an array processor 

are the same type of processor. A vector processor is in contrast of 

the simpler scalar processor, which handles only one piece of 

information at a time. 

2.7.1  Types of Array Processors 

There are basically two types of array processors: 

1. Attached Array Processors 

2. SIMD Array Processors 

2.7.1.1 Attached Array Processors 

An attached array processor is a processor which is attached to a 
general purpose computer and its purpose is to enhance and improve 
the performance of that computer in numerical computational tasks. 
It achieves high performance by means of parallel processing with 
multiple functional units. The objective of the attached array 
processor is to provide vector manipulation capabilities to a 
conventional computer at a fraction of the cost of supercomputer. 
 



 

275 | P a g e  
 

Space for learners: 

 

Fig.2.2 Block diagram of Attached Array Processors 

 

2.7.1.2 SIMD Array Processors 

Single-instruction, multiple data(SIMD) is the organization of a 

single computer containing multiple processors operating in parallel. 

The processing units are made to operate under the control of a 

common control unit, thus providing a single instruction stream and 

multiple data streams. 

A general block diagram of an array processor is shown below. It 

contains a set of identical processing elements (PE's), each of which 

is having a local memory M. Each processor element includes 

an ALU and registers. The master control unit controls all the 

operations of the processor elements. It also decodes the instructions 

and determines how the instruction is to be executed. 

The main memory is used for storing the program. The control unit 

is responsible for fetching the instructions. Vector instructions are 

sent to all PE's simultaneously and results are returned to the 

memory. 



 

276 | P a g e  
 

Space for learners: The best known SIMD array processor is the ILLIAC IV computer 

developed by the Burroughs corps. SIMD processors are highly 

specialized computers. They are only suitable for numerical 

problems that can be expressed in vector or matrix form and they 

are not suitable for other types of computations. 

 

Fig.2.3A general block diagram of an array processor 

2.7.2 Advantages of Array Processor 

 An array processor increases the overall instruction 
processing speed. 

 As most of the Array processors operate asynchronously 
from the host CPU, hence it improves the overall capacity of 
the system. 

 Array processors have its own local memory, hence 
providing extra memory for systems with low memory. 

 

2.8 PIPELINING 

Pipelining is the process of accumulating instruction from the 
processor through a pipeline. It allows storing and executing 
instructions in an orderly process. It is also known as pipeline 
processing. 



 

277 | P a g e  
 

Space for learners: Pipelining is a technique where multiple instructions are overlapped 

during execution. Pipeline is divided into stages and these stages are 

connected with one another to form a pipe like structure. 

Instructions enter from one end and exit from another end. 

Pipelining increases the overall instruction throughput. 

In pipeline system, each segment consists of an input register 

followed by a combinational circuit. The register is used to hold 

data and combinational circuit performs operations on it. The output 

of combinational circuit is applied to the input register of the next 

segment. 

 

Fig.2.4 A general block diagram of a pipeline system 

Pipeline system is like the modern day assembly line setup in 

factories. For example in a car manufacturing industry, huge 

assembly lines are setup and at each point, there are robotic arms to 

perform a certain task, and then the car moves on ahead to the next 

arm. 

In summary, we can say Pipelining is a technique of  
 

 Decomposing a sequential process into sub-operations 
(segments). 



 

278 | P a g e  
 

Space for learners:  Divide the processor into segment processors each one is 

dedicated to a particular segment. 

 Each segment is executed in a dedicated segment processor 

operates concurrently with all other segments. 

 Information flows through these multiple hardware 

segments. 

 The overlapping of computation is made possible by 

associating a register with each segment in the pipeline. 

 The registers provide isolation between each segment so that 

each can operate on distinct data simultaneously. 

2.8.1 Types of Pipeline 

It is divided into two categories: 

1. Arithmetic Pipeline 
2. Instruction Pipeline 

2.8.1.1 Arithmetic Pipeline 

Arithmetic pipelines are usually found in most of the computers. 

They are used for floating point operations, multiplication of fixed 

point numbers etc. For example: The input to the Floating Point 

Adder pipeline is: 

Suppose X=A*2^a and Y=B*2^b 

Here A and B are mantissas (significant digit of floating point 
numbers), while a and b are exponents. 

The floating point addition and subtraction is done in 4 parts: 

1. Compare the exponents. 
2. Align the mantissas. 
3. Add or subtract mantissas 
4. Produce the result. 



 

279 | P a g e  
 

Space for learners: Registers are used for storing the intermediate results between the 

above operations. 

An arithmetic pipeline divides an arithmetic problem into various 

sub problems for execution in various pipeline segments. It is used 

for floating point operations, multiplication and various other 

computations. The process or flowchart arithmetic pipeline for 

floating point addition is shown in the below diagram. 

 

 
Fig 2.5 Pipelining for floating point addition and subtraction. 

 
Floating point addition using arithmetic pipeline  
 
The following sub operations are performed in this case: 

1. Compare the exponents. 
2. Align the mantissas. 
3. Add or subtract the mantissas. 
4. Normalise the result 



 

280 | P a g e  
 

Space for learners: First of all the two exponents are compared and the larger of two 

exponents is chosen as the result exponent. The difference in the 

exponents then decides how many times we must shift the smaller 

exponent to the right. Then after shifting of exponent, both the 

mantissas get aligned. Finally the addition of both numbers take 

place followed by normalisation of the result in the last segment. 

Example: 
Let us consider two numbers, 
X=0.3214*10^3 and Y=0.4500*10^2  

Explanation: 
First of all the two exponents are subtracted to give 3-2=1. Thus 3 

becomes the exponent of result and the smaller exponent is shifted 1 

times to the right to give 

Y=0.0450*10^3  

Finally the two numbers are added to produce 

Z=0.3664*10^3  

As the result is already normalized the result remains the same. 

 

2.8.1.2 Instruction Pipeline 

In this a stream of instructions can be executed by 

overlapping fetch, decode and execute phases of an instruction 

cycle. This type of technique is used to increase the throughput of 

the computer system. 

An instruction pipeline reads instruction from the memory while 

previous instructions are being executed in other segments of the 

pipeline. Thus we can execute multiple instructions simultaneously. 

The pipeline will be more efficient if the instruction cycle is divided 

into segments of equal duration. 



 

281 | P a g e  
 

Space for learners: In this a stream of instructions can be executed by overlapping 

fetch, decode and execute phases of an instruction cycle. This type 

of technique is used to increase the throughput of the computer 

system. An instruction pipeline reads instruction from the memory 

while previous instructions are being executed in other segments of 

the pipeline. Thus we can execute multiple instructions 

simultaneously. The pipeline will be more efficient if the instruction 

cycle is divided into segments of equal duration. 

In the most general case computer needs to process each instruction 

in following sequence of steps: 

1. Fetch the instruction from memory (FI) 

2. Decode the instruction (DA) 

3. Calculate the effective address 

4. Fetch the operands from memory (FO) 

5. Execute the instruction (EX) 

6. Store the result in the proper place 

The flowchart for instruction pipeline is shown below. 

 
Fig 2.6 Flowchart for instruction Pipelining. 



 

282 | P a g e  
 

Space for learners:  

Let us see an example of instruction pipeline. 

Example: 
 

 
 

Here the instruction is fetched on first clock cycle in segment 1. 

Now it is decoded in next clock cycle, then operands are fetched and 

finally the instruction is executed. We can see that here the fetch and 

decode phase overlap due to pipelining. By the time the first 

instruction is being decoded, next instruction is fetched by the 

pipeline. 

In case of third instruction we see that it is a branched instruction. 

Here when it is being decoded 4th instruction is fetched 

simultaneously. But as it is a branched instruction it may point to 

some other instruction when it is decoded. Thus fourth instruction is 

kept on hold until the branched instruction is executed. When it gets 

executed then the fourth instruction is copied back and the other 

phases continue as usual. 

2.8.2  Pipeline Conflicts 

There are some factors that cause the pipeline to deviate its normal 

performance. Some of these factors are given below: 

 



 

283 | P a g e  
 

Space for learners: (i) Timing Variations 

All stages cannot take same amount of time. This problem generally 

occurs in instruction processing where different instructions have 

different operand requirements and thus different processing time. 

(ii) Data Hazards 

When several instructions are in partial execution, and if they 

reference same data then the problem arises. We must ensure that 

next instruction does not attempt to access data before the current 

instruction, because this will lead to incorrect results. 

(iii) Branching 

In order to fetch and execute the next instruction, we must know 

what that instruction is. If the present instruction is a conditional 

branch, and its result will lead us to the next instruction, then the 

next instruction may not be known until the current one is 

processed. 

(iv)  Interrupts 

Interrupts set unwanted instruction into the instruction stream. 

Interrupts effect the execution of instruction. 

(v) Data Dependency 

It arises when an instruction depends upon the result of a previous 

instruction but this result is not yet available. 

2.8.3  Advantages of Pipelining 

1. The cycle time of the processor is reduced. 
2. It increases the throughput of the system 
3. It makes the system reliable. 



 

284 | P a g e  
 

Space for learners: 2.8.4  Disadvantages of Pipelining 

1. The design of pipelined processor is complex and costly to 
manufacture. 

2. The instruction latency is more. 

 
2.9  CHAINING TECHNIQUE 

In computing, chaining is a technique used in computer architecture 

in which scalar and vector registers generate interim results which 

can be used immediately, without additional memory references 

which reduce computational speed. 

Chaining allows the results of one vector operation to be directly 

used as input to another vector operation. A convoy is a set of vector 

instructions that can potentially execute together. Only structural 

hazards cause separate convoys as true dependences are handled via 

chaining in the same convoy. 

2.10  GATHER-SCATTER OPERATION 

Gather and scatter are two fundamental data-parallel operations, 

where a large number of data items are read (gathered) from or are 

written (scattered) to given locations. 

Gather-scatter is also a type of memory addressing operation that 

often arises when addressing vectors in sparse linear algebra  

operations. It is the vector-equivalent of register indirect addressing, 

with gather involving indexed reads and scatter indexed 

writes. Vector processors (and some SIMD units in CPUs) 

have hardware support for gather-scatter operations, providing 

instructions such as Load Vector Indexed for gather and Store 

Vector Indexed for scatter. 

 



 

285 | P a g e  
 

Space for learners: 2.10.1 The basic concepts of Gather-scatter  

We are generally used to organizing our memories by row. Caches 

are built from rows so if we want one piece of data, we get the 

whole row. If we want to manage our performance tightly, then we 

try to have as many related variables as possible on the same row so 

that we get more bangs for our caching buck and reduce our cache 

misses. 

The nice thing about a row of memory is that, especially with vector 

structures like SIMD (single-instruction, multiple data), we can 

operate on multiple pieces of data at the same time, in parallel. At 

the very least, if we can’t do it in parallel, then we can loop along 

the row for the operation without further fetching hassles. 

But there are several contexts where the world doesn’t cooperate 

with this row-by-row structure. What if we want to be able to do is 

exactly that same thing, but without the requirement that addresses 

be contiguous? 

This isn’t so easy to do, since we need lots of fetches to populate a 

vector; we can’t just copy over a chunk of memory and get busy 

operating on it. The idea is to find a way to “gather” data from far-

flung locations, work with them as a single vector, and then, if we 

desired, take the results and “scatter” them back out into their 

original far-flung locations. 

2.10.2 Different gather-scatter applications 

Some application of gather-scatter operations are given below: 

 A single block of in-memory data may represent data from a file 

that has been fractured into various sectors across the storage 

medium. 



 

286 | P a g e  
 

Space for learners:  A single in-memory buffer, if too large, may cause problems due 

to memory fragmentation. It can be more easily managed if it is 

stored in smaller fragments, but this requires management to 

make them look contiguous. 

 Network traffic streams may be split up as they arrive, with 

various buckets in memory. This is referred to as “Scatter/gather 

I/O.” In a way, this is the reverse of other applications. In other 

applications, scattered data is brought together in the processor. 

With this streaming version, it’s a unified stream that then gets 

scattered about as it arrives at the processor. 

 Embedded systems may require low-level access to data that’s 

scattered throughout DRAM, treating it as contiguous. The 

illustrations above reflect this application. As we’ll see, vision is 

a major driver of this usage. 

CHECK YOUR PROGRESS 

Multiple Choice Questions: 

1. A processor, which works on simple instruction at a time, which 
operates on single data items is known as 

(A) Scalar   (B) Vector  
(C) Array   (D) Superscalar 

 
2.A processor that has the ability to execute the complete vector 
input in a single instruction is called 

(A) Scalar   (B) Vector  
(C) Normal   (D) Superscalar 

 
3.In memory to memory architecture, source operands, 
intermediate and final results are retrieved (read) directly from  
 

(A) Main memory   (B) Register 
(C)Cache    (D) Secondary memory 

 
4. SIMD means 

(A)Single Instruction Many Data 
(B)Simple Instruction Multiple Data 
(C)Single-Instruction, Multiple Data 



 

287 | P a g e  
 

Space for learners: (D) None of above 
 
5. A technique where multiple instructions are overlapped during 
execution is known as 

(A)Gathering    (B) Scattering 
(C) Chaining   (D) Pipelining 

 

2.11 SUMMING UP 

 Vector processor is basically a central processing unit that 
has the ability to execute the complete vector input in a 
single instruction. So, we can say vector processing allows 
operation on multiple data elements by the help of single 
instruction. 

 Scalar CPUs can manipulate one or two data items at a time, 

which is not very efficient. Also, simple instructions 

like ADD A to B, and store into C are not practically 

efficient. 

 Vector computing technique, not only use instruction 

pipeline, but it also pipelines the data, working on multiple 

data at the same time. 

 Vector processor is basically a central processing unit that 

has the ability to execute the complete vector input in a 

single instruction. More specifically we can say, it is a 

complete unit of hardware resources that executes a 

sequential set of similar data items in the memory using a 

single instruction. 

 Vector processing occurs when arithmetic or logical 

operations are applied to vectors. It is distinguished from 

scalar processing which operates on one or one pair of data. 

The conversion from scalar code to vector code is called 

vectorization. 



 

288 | P a g e  
 

Space for learners:  Programs size is small as it requires less number of 

instructions. Vector instructions also hide many branches by 

executing a loop in one instruction. 

 Vector processors need high speed on-chip memory which 

are expensive. 

  It is difficult to package the processors with such high 

speed. In the past, vector manufactures have employed 

expensive designs for this. 

 The classification of vector processor relies on the ability of 

vector formation as well as the presence of vector instruction 

for processing. So, depending on these criteria, vector 

processing is classified as follows: 

(iii) Register to Register Architecture (Vector register 

processors) and 

(iv) Memory to Memory Architecture (Memory-memory 

vector processors) 

 In memory to memory architecture, source operands, 

intermediate and final results are retrieved (read) directly 

from the main memory. 

 Register to register architecture is highly used in vector 

computers. As in this architecture, the fetching of the 

operand or previous results indirectly takes place through the 

main memory by the use of registers. 

 In Superscalar processor, multiple such pipelines are 

introduced for different operations, which further improves 

parallel processing. 

 Vector registers are the storage areas in a CPU core that 

contain the operands for vector computations, as well as the 

results. The size of the vector registers determines the level 

of SIMD instructions that can be supported by a given 

processor's CPUs. 



 

289 | P a g e  
 

Space for learners:  Scalar registers can also provide data as input to the vector 

functional units, as well as compute addresses to pass to the 

vector load-store unit. 

 An array processor is a CPU which implements an 

instruction set that are designed to operate efficiently and 

effectively on large one-dimensional arrays of data called 

vectors. 

 An attached array processor is a processor which is attached 

to a general purpose computer and its purpose is to enhance 

and improve the performance of that computer in numerical 

computational tasks. 

 The objective of the attached array processor is to provide 

vector manipulation capabilities to a conventional computer 

at a fraction of the cost of supercomputer. 

 Single-instruction, multiple data(SIMD) is the organization 

of a single computer containing multiple processors 

operating in parallel. 

 Pipelining is the process of accumulating instruction from 

the processor through a pipeline. It allows storing and 

executing instructions in an orderly process. It is also known 

as pipeline processing. 

 Pipelining is a technique where multiple instructions are 

overlapped during execution. 

 Arithmetic pipelines are usually found in most of the 

computers. They are used for floating point operations, 

multiplication of fixed point numbers etc. 

 An instruction pipeline reads instruction from the memory 

while previous instructions are being executed in other 

segments of the pipeline. 

 In computing, chaining is a technique used in computer 

architecture in which scalar and vector registers generate 



 

290 | P a g e  
 

Space for learners: interim results which can be used immediately, without 

additional memory references which reduce computational 

speed. 

 Gather and scatter are two fundamental data-

parallel operations, where a large number of data items are 

read (gathered) from or are written (scattered) to given 

locations. 

2.12 ANSWER TO CHECK YOUR PROGRESS 

 
1 (A),2 (B), 3 (A), 4 (C), 5 (D). 
 

2.13 POSSIBLE QUESTIONS 

Short Type Questions: 
 

1. What is vector computing? How it differ from scalar 

computing? 

2. What do you mean vector processor? 

3. What are the advantages of vector processor? 

4. What is array processor? What are its different 

categories? 

5. What do you mean by pipelining in vector 

processing? 

 
Long Answer Type Questions: 
 

1. Explain about the arithmetic pipeline and instruction pipeline 

techniques. 

2. Explain how vector-register processor differs from memory 

vector processor. 

3. Explain about the working principle of array processor. 

4. What do you mean by chaining? Explain about the scatter-

gather techniques. 



 

291 | P a g e  
 

Space for learners:  
2.14 REFERENCES AND SUGGESTED READINGS 

 M. Morris Mano, “Computer System Architecture”, 3nd 

Edition, Pearson,2006. 

 William Stalling, ”Computer Organization and 

Architecture”, 8th Edition, Pearson, 2010. 

 John P. Hayes, “Computer Architecture and Organization”, 

2nd Edition, McGraw-Hill International Edition, 1988. 

 

 

---×--- 



 

292 | P a g e  

 

Space for learners: UNIT 3: ADVANCED CONCEPTS    OF   

COMPUTER ARCHITECTURE IMPLICIT 

PARALLELISM 

 

Unit Structure: 

3.1 Introduction 
3.2 Unit Objectives 

3.3 Introduction of pipeline 

 3.3.1 Register File 

 3.3.2 Datapath 

3.4 Super Pipeline 

3.5 Performance of a pipelined processor 

3.6 Superscalar architecture 

3.6.1 Structure superscalar architecture 

3.6.2 Advantages of superscalar architecture 

3.6.3 Disadvantages of superscalar architecture 

3.7 Branch prediction  

 3.7.1 Types of branch prediction 

3.8 Static branch scheme 

3.9 Dynamic branch scheme 

 3.9.1 1-bit branch prediction technique 

 3.9.2 2-bit branch prediction technique and  

 3.9.3 Correlating branch prediction technique 

3.10 Hazards in pipeliningand  its types 

3.11 Delay slot 

3.12 Out-of-order execution 

3.13 Register renaming 

 3.13.1   Advantages of registerrenaming 

3.14 Summing up 

3.15 Answers to  Check Your Progress 

3.16 Possible Questions 

3.17 References and Suggested readings 

 

 

 

 

 

 

 



 

293 | P a g e  
 

Space for learners:  
3.1 INTRODUCTION 

Implicit parallelismallows programmers to write down their 
programs without any worry about parallelism exploitation. The 
exploitation of parallelism is instead automatically performed by the 
compiler and the runtime system. Thus, the parallelism 
is transparent to the programmer, maintaining the complication of 
software development at the same level as standard sequential 
programming. Implicit parallelism generally facilitates the design of 
parallel programs and therefore substantially improves programmer 
efficiency and productivity. Different applications utilize different 
aspects of parallelism - e.g., data-intensive applications utilize high 
aggregate throughput, server applications utilize high aggregate 
network bandwidth, and scientific applications typically utilize high 
processing and memory system performance. It is important to 
realize each of these performance bottlenecks and their interacting 
effect. 

In this unit, you will learn about the pipelining technique, and the 
comparison/ discussion of super pipeline and super scalar pipeline 
will also be described in this unit. Various classes of superscalar 
architecture will be discussed in this unit. You will learn the 
measurement of the performance of pipeline architecture. Some of 
the benefits and drawbacks of the superscalar pipeline will be 
pointed out in this unit. You will learn the need for Branch 
prediction in the pipeline. Different branch prediction techniques 
(static and dynamic prediction) will be discussed with the proper 
example and diagram in this unit. You will learn various hazards 
(structural hazards, control hazards, and data hazards)that occur in 
the pipelining. Some of the delay slots will be discussed in this unit.  
You also learn the out-of-order execution and register renaming 
concept with an example at the last of the unit. 

 

3.2 UNIT OBJECTIVES 

After going  through this unit, you will be able to: 

 understand the needs of implicit parallelism techniques. 



 

294 | P a g e  
 

Space for learners:  describe the basic structure of the pipeline 
 know different  stages of instruction in the pipeline 
 understand the design concept of super pipeline and 

superscalar pipeline 
 understand the branch prediction logic 
 understand the various Hazards in the pipeline 
 know the idea of delay slots 
 Describe out-of-order execution and Register Renaming 

3.3 INTRODUCTION OF PIPELINING 
 
Pipelining is the practice of accumulating instruction from the 

processor through a pipeline. In  pipelining, storing and executing of 

the instructions allows being in an orderly process. It is also known 

as pipeline processing. Multiple instructions are overlapped during 

execution in pipelining that's why process microprocessor begins 

executing a second instruction before the first instruction has been 

completed. A pipeline is separated into stages, and these stages are 

attached to one another to form a pipe like structure. Instructions 

enter from one end and exit from another end. Pipelining improved 

the overall instruction throughput. 

In the pipeline system, each segment consists of an input register 

followed by a combinational circuit. The register is used to hold 

data and a combinational circuit performs operations on it. The 

output of the combinational circuit is applied to the input register of 

the next segment. 

A processing circuit of a given stage is connected to the input latch 

of the next stage (Figure 3.1). A clock signal is connected to each 

input latch. Every stage transfers its intermediate result to the input 

latch of the next stage on every clock pulse. This way, the final 

outcome is produced after the input data have passed through the 

whole Pipeline, finishing one stage for every clock pulse. The clock 



 

295 | P a g e  
 

Space for learners: pulse period should be large enough to grant sufficient time for a 

signal to go across through the slowest stage where the most 

extended amount of time to need complete (bottleneck stage). Also, 

there should be sufficient time for a latch to store its input signals. 

 If the clock's period, P, is expressed as P = tb + tl, then tb should be 

bigger than the utmost delay of the bottleneck stage, and tl should be 

sufficient for storing data into a latch. 

 
Figure 3.1: Basic structure of a pipeline. adapted from [1] 
 
The instruction in pipelining is divided into five subtasks likely 
 
1. Instruction Fetch (IF): In this subtask, the instruction is fetched. 

2. Instruction Decode(ID):  Here, the fetched instruction is decoded. 

3. Operand Fetch (OF): In this stage, the operand is fetched of the 
instruction. 

4. Instruction Execute (IE): In this stage,arithmetic and logical 
operations are performed on the operands to execute the instruction. 

5.Operand Store (OS): The result of the earlier stage is stored in the 
memory. 

 
 



 

296 | P a g e  
 

Space for learners: Let us visualize how pipelining is done for N numbers of 

instructions. In the Figure 3.2 given below four instructions are 

pipelined.  The instruction-1 gets completed in 5 clock cycles. After 

the first instruction is completed in every new clock, the proceeding 

instruction(i.e., Instruction 2, 3 & 4) completes its execution. 

Pipeline system is like some assembly line set up in different 

factories. For example, in an automobile manufacturing industry, 

huge assembly lines are arranged and at each point, there are robotic 

arms to perform a particular task, and then the product moves on 

ahead to the next arm. Pipeline techniques are categories into 2 

types. One is arithmetic pipeline, and the other is instruction 

pipeline. 

 Arithmetic pipeline is designed to act upon high-speed 

floating-point addition, multiplication and division. Multiple 

arithmetic logic units (ALUs) are built to perform the 

parallel arithmetic computation in various data formats in 

this Pipeline. Examples of arithmetic pipelined processors 

are Cray-1, Cyber-205, Star-100, TI-ASC.Thefloating point 

addition and subtraction is done in 4 parts: Compare the 

exponents, align the mantissas, add or subtract mantissas and 

produce the result. 

 In instruction Pipeline, the number of instructions are 

pipelined, and the subsequent instruction execution overlaps 

the execution of current instruction. It is also known as 

instruction lookahead. 



 

297 | P a g e  
 

Space for learners: 

 
 

Figure 3.2:  Pipelining of four Instructions 
 
 

3.3.1 Register File 
 

The register file is a hardware device with two read ports and one 

write port (corresponding to the two inputs and one output of the 

ALU). The register file and the ALU together comprise the two 

elements required to compute MIPS R-format ALU instructions. 

The register file is included of a set of registers that can be read or 

written by supplying a register number to be accessed, as well (in 

the case of write operations) as a write authorization bit. A block 

diagram of the register file is shown in Figure 3.3 

Since reading of a register-stored value does not change the register 

state, no "safety mechanism" is needed to prevent inadvertent 

overwriting of stored data, and we need only supply the register 

number to obtain the data stored in that register. However, when 

writing to a register, we need: 

1. A register number. 

2. An authorization bit for safety (because the write operation 

overwrites the previous contents of the register selected for 

writing). 

3. A clock pulse that controls the writing of data into the 

register. 



 

298 | P a g e  
 

Space for learners: 

 

Figure 3.3. Register with  two read ports and one write port,adapted 
from [2]. 

 

3.3.2 Datapath Design 

The datapath is the "brawn" of a processor, since it implements the 

fetch-decode-execute cycle. The general discipline for datapath 

design is to 

a. Determine the instruction classes and formats in the 

ISA,  

b. Design datapath components and interconnections for 

each instruction class or format, and 

c.  Compose the datapath segments designed in (Step 2) 

to yield a composite datapath. 

Simple datapath components include memory (stores the current 

instruction), PC or program counter (stores the address of current 

instruction), and ALU (executes current instruction). 

Theinterconnection of these simple components to form a basic 

datapath is illustrated in Figure 3.4. 



 

299 | P a g e  
 

Space for learners: 

 
Figure 3.4: Schematic high-level diagram of MIPS datapath 

from an implementation perspective, adapted from [2]. 

 
3.4. SUPER PIPELINING 

Super pipelining is another approach to reach better (faster) 

performance. Super-pipelining is the breaking of stages of a given 

pipeline into more miniature stages( thus making the pipeline deeper) 

to shorten the clock period and thus to enhance the instruction 

throughput by keeping more and more instruction in flight at a  time. 

For example, if we divide each stage into two, the clock cycle 

period t will be reduced to half, t/2; hence, at the maximum 

capacity, the pipeline produces a result every t/2 s.  

For a  given architecture and the subsequent instruction set, there is 

an optimal number of pipeline stages; increasing the number of 

stages over this boundary decrease the overall performance. 

Superscalar architecture is a solution to further improve speed. 

Given a pipeline stage time T, it may be possible to execute at a 

higher rate by starting operations at intervals of T/n. This can be 

accomplished in two ways: 

 



 

300 | P a g e  
 

Space for learners:  1. Further divide each of the pipeline stages into n sub stages.  

This  approach  requires faster logic and the capability to subdivide 

the stages into segments with consistent latency. Here also Complex 

inter-stage interlocking and stall-restart logic  are required.    

2. Make available n pipelines that are overlapped. 

This approach could be viewed in a sense as staggered superscalar 

operation, and has associated with it all of the same requirements 

except that instructions and data could be fetched with a slight offset 

in time.  

Unavoidably, super  pipelining is controlled by the speed of logic, 

and the frequency of unpredictable branches. The Stage time cannot 

effectively grow shorter than the interstage latch time, and 

accordingly this is a limit for the number of stages. The MIPS 

R4000 is sometimes called a super pipelined machine, although its 8 

stages really only split the I-fetch and D-fetch stages of the pipe and 

add a tag check stage. Nevertheless, the further stages enable it to 

operate with higher throughput. The UltraSPARC's 9-stage pipe 

definitely qualifies it as a super pipelined machine, and in fact it is a 

Super-Super design because of its superscalar issue. The Pentium 4 

splits the pipeline into 20 stages to enable increased clock rate. The 

benefit of such extensive pipelining is really only gained for very 

regular applications such as graphics. On more irregular 

applications, there is little performance advantage. 



 

301 | P a g e  
 

Space for learners: 

 

Figure 3.5: Comparison of normal pipeline and Super pipeline. 

 
 
3.5 PERFORMANCE OF A PIPELINED PROCESSOR 
 
Consider a K  segment pipeline with clock cycle time as Tp and  N 

tasks to be completed in the pipelined processor.  

Here, the first instruction is about to take K cycles to come out of 

the Pipeline but the other N–1instructions will take only one cycle 

each, i.e., a total of N-1 cycles. So, time is taken to N instructions in 

a pipelined processor:  

 
ETP = K + N – 1cycles 
= (K + N – 1) TP  
In the same case, the Execution time of  N instructions in  a non-
pipelined processor,  will be: 
ETNP= N * K * TP.   

 

Here ETP  stands for estimate time taken in pipeline processor and 

ETNP  stands for estimate time taken in non- pipeline processor. 

Therefore,  speedup(S) of the pipelined processor over the non-

pipelined processor, when N tasks are executed on the same 

processor is:  



 

302 | P a g e  
 

Space for learners:  

S= 
        

 
 
Since the performance of a processor is inversely proportional to the 
execution time, we have, 
 S = ETNP / ETP  

 => S =
  ∗  ∗(    – )  

      S = 
  ∗   (    – )  

 
We can ignore (K-1) When the number of tasks N  are considerably 
larger than K, that is,  N >> K   
 

S = 
 ∗  

S = K,   where K is the number of stages in the Pipeline.  
Theoretically, maximum speedup ratio will be k where k are the 
total number of segments in which process is divided. 
Again, 
Efficiency =    Given speed up Max speed up ⁄  = S / SMax 

 
 We already  know that SMax = K   
as a result,  Efficiency =  
 

Throughput =  
          

 
hence, Throughput = N / (K + N – 1) * TP =N/TP 

 

In ideal case as N -> 1 the throughout is equal to 1/ TP   that is equal 
to frequency. Thus  
maximum  throughput is obtained is there is one output per clock 
pulse. 
 
Problem 1: A non-pipeline system takes 60 ns to process a task. 
The same task can be processed in six segment pipeline with a clock 
cycle of 10 ns. Determine the speedup ratio of the pipeline for 100 
tasks. What is the maximum speed up that can be achieved?  



 

303 | P a g e  
 

Space for learners: Solution: 
Total time taken by for non pipeline to complete 100 task is  
= 100 * 60 = 6000 ns  
Total time taken by pipeline configuration to complete 100  task  is 
= (100 + 6 –1) *10 = 1050 ns  
Thus speed up ratio will be = 6000 / 1050 = 4.76  
The maximum speedup that can be achieved for this process is = 60 
/ 10 = 6  
Thus, if total speed of non pipeline process is same as that of total 
time taken to complete a  
process with pipeline than maximum speed up ratio is equal to 
number of segments. 
 
 
3.6  SUPERSCALAR  ARCHITECTURE 

Superscalar architecture is a system of parallel computing used in 

many processors together. In a superscalar computer, the central 

processing unit manages multiple instruction pipelines to execute 

several instructions concurrently during a clock cycle. It is achieved 

by feeding the different pipelines through several execution units 

within the processor. To successfully implement a superscalar 

architecture, the CPU's instruction fetching mechanism must 

intelligently retrieve and allot instructions. Otherwise, pipeline stalls 

may occur, resulting in execution units that are often inactive.  

With each instruction that a superscalar processor issues, it must 

check the instruction's operands get in the way with the operands of 

any other instruction in flight. Once an instruction is independent of 

all other ones in flight, the hardware must also decide precisely 

when and on which available functional unit to execute the 

instruction. To fully utilize a superscalar processor of degree N must 

issue N instructions per cycle to execute in parallel at all times. This 

situation may not be accurate in every clock cycle. In that case,  

some of the pipelines may be stalling in a wait state. The simple 

operation latency should require only one cycle in a 



 

304 | P a g e  
 

Space for learners: superscalarprocessor, as in the base scalar processor. The 

superscalar processor depends more on an optimizing compiler to 

exploit parallelism to achieve a higher degree of instruction-level 

parallelism in program. 

 
Figure 3.6: Pipeline structure of superscalar processor of degree-3 

 
 

3.6.1 Structure Superscalar Architecture 

Consider a machine organization capable of issuing more than one 

instruction per cycle depicted in Figure 3.7. Assume that the 

instruction set executed by the processor is I = (I1, I2,.....IN)  and 

that at most k instructions can be issued per cycle described by the 

k-tuple        P = (i1, i2.... ik ), with ijє I,  j = 1,2,....k. Furthermore, 

assume that at least k instructions are fetched into an instruction 

buffer and that a decision is reached on whether or not a k-

instruction tuple can be issued and executed in parallel. This 

decision-making process is performed by the “Decode & Issue” 

logic. It is usually based on: the opcodes of the instructions, on 

availability of resources, and the structural and data dependencies. 



 

305 | P a g e  
 

Space for learners: 

 

Figure 3.7: Basic Superscalar Architecture 

We can classify superscalar processors into some classes of varying 
complexity. 

 1. Static Superscalar — This processor issue and execute 

program instructions in order. So, for example, in a degree 3 

machine, it is possible to issue and execute three instructions 

simultaneously: given instructions i1,i2 and i3, we may choose to 

issue all, or only i1 (depending on the presence of hazards). We 

may not just issue i2 or i3. The instruction issues look dynamic 

because the hardware has a choice about issuing instructions. 

However, as the actual execution of instructions is in order, we state 

that scheduling is static. 

 2. Dynamic Superscalar — These types of machines permit 

out-of-order program execution, but they usually 

still issue instructions in program order. Since we can potentially re-

order the execution, so we now state scheduling is dynamic. 

3. Dynamic with Speculation — These machines add the 

capability to speculate beyond branches, using different techniques. 

 

 



 

306 | P a g e  
 

Space for learners: 3.6.2 Advantages of Superscalar Architecture 

 The compiler can keep away from many hazards through 
well-judged choice and order of instructions. 

 The compiler should make every effort to interleave floating-
point instructions and integer instructions. This would 
facilitate the dispatch unit to maintain both the integer units 
and floating-point units active most of the time. 

 On the whole, high performance is achieved if the compiler 
can arrange program instructions to take maximum assistance 
of the available hardware units. 

 
 
3.6.3 Disadvantages of Superscalar Architecture 
 
 In a Superscalar processor, the unfavorable effect on the 

performance of various hazards becomes even more 
pronounced. 

 The problem in scheduling can occur because of this complex 
architecture. 

 
 
 
 
 
 
 
 
 
 
 
 
3.7 BRANCH PREDICTION 
 
The existence of program transfer instructions, e.g., JMP, RET, 

CALL, etc., can reduce the gain produced by pipelining. These 

instructions change the sequence causing all the other  instructions 

that entered the pipelining after program transfer instructions are 

CHECK YOUR PROGRESS-I 

1. What is pipelining?  

2. What are the 5 pipeline stages? 

3. What is meant by ILP?  

4. Define Superscalar processor. 
 



 

307 | P a g e  
 

Space for learners: worthless.  Thus no effort is done as the pipeline stages are 

reloaded. 

 
To keep away from this trouble, Pentium uses a scheme called 

Dynamic Branch Prediction.  In this process, a prediction is 

prepared for the branch instruction currently within the pipeline. 

The prediction will either be taken or not taken. If the prediction 

became true, then the pipeline will not be flushed, and no clock 

cycles will be gone astray. If the prediction is false, then the 

pipeline is flushed and starts over with the present instruction. 

Mainly Branch Prediction predicts two problems one is Direction 

predicting and other one is calculating the target address.  

 

3.7.1 Types of Branch Prediction 

Basically there are two types of Branch prediction schemes : 

1. Static branch schemes and 

2. Dynamic branch schemes. 

 

3.8. STATIC BRANCH SCHEME 

A static branch scheme is a software-based technique which is very 

simple and easy. This scheme assembles the more significant part of 

the data/information earlier to the program's execution or during the 

compile time and it does not need any hardware. In the Static branch 

prediction technique, underlying hardware assumes that either the 

branch is not always taken or the branch is always taken. 

 
Let us understand branch prediction with an example code: 



 

308 | P a g e  
 

Space for learners: 

 

Output:  
Let us consider that underlying hardware has assumed that branch is 

taken constantly. The output predicted through underlying hardware, 

and actual output is shown in figure3.8. 

 

Figure 3.8: Prediction result of static branch prediction 

 

3.9 DYNAMIC BRANCH SCHEME 

A dynamic branch scheme is hardware-based technique based on the 

hardware and assembles the information during the program's run-

time. Dynamic schemes are more assorted as they keep track during 

run-time of the program execution. In Dynamic branch prediction 

technique, prediction by underlying hardware is not rigid, rather it 



 

309 | P a g e  
 

Space for learners: changes dynamically. The accuracy of this technique is higher than 

the static technique. 

Some of the dynamic branch prediction  techniques are listed below: 

a. 1-bit branch prediction technique 

b. 2-bit branch prediction technique and  

c. Correlating branch prediction technique 

3.9.1  1-Bitbranch prediction technique 

In this technique, hardware changes its assumption immediately 

after one false assumption. For instance if hardware assumes branch 

to be taken but in reality, branch is not taken, then after that step, 

hardware assumes branch to be not taken. Similarly, if hardware 

assumes branch not to be taken but in reality, branch is taken, then 

after that step, hardware assumes branch to be taken. 

1-bit branch prediction Technique is shown in the Fig 3.8 below: 

Figure3.9: Transition diagram of 1-bit prediction technique 

Explanation – 

In the beginning, let us declare hardware assume branch  to be taken 

and so at number=0, branch is taken. 

At number=1, hardware assumes branch to be taken but branch is 

not taken. 



 

310 | P a g e  
 

Space for learners: So now at number=2 hardware assumes branch not to be taken and 

also  branch is not taken.  

At  number =3 hardware assumes branch not to be taken but branch 

is taken. 

At number=4 hardware assumes branch to be taken but branch is not 

taken. 

At number=5 hardware assumes branch not to be taken and branch 

is not taken. 

In this way, the prediction is made till  number=9. 

The output predicted  through underlying hardware, and actual 

output is shown in Figure 3.9: 

3.9.2  2-bit branch prediction technique 

This predictor changes its earlier prediction only on two successive 

mispredictions occur and vice-versa. Two bits called as history Bit 

are maintained in the prediction buffer and there are 4-different 

states where Two states related to a taken state and two related to 

not taken state. 

2-bit branch prediction technique   is  shown in the figure: 

 

Figure 3.10: Transition diagram of 1-bit prediction technique 



 

311 | P a g e  
 

Space for learners: Explanation – 

1. Let's assume that when number=0, everything is reset(00), so 
hardware assumes branch strongly not to be taken and the 
real branch is taken. As a result, the current state is  (01). 

2. When number =1, hardware assumes branch weakly not 
taken and in the real branch is not taken. Therefore the 
current state is (00). 

3. When number =2, hardware assumes branch strongly not to 
be taken and branch is not taken in real. As a result, the 
current state remains (00). 

4. When number =3, hardware assumes branch strongly not to 
be taken and in the real, branch is taken. As a result, the 
current state is (01). 

5. When number =4, hardware assumes branch weakly not 
taken and in the real branch is not taken. So the current state 
is (00) 

6. When number =5, hardware assumes branch strongly not to 
be taken and in the real branch is not taken. So the current 
state is (00). In this way, the prediction is done till  
number=9. 

The comparison of the performance of Branch prediction schemes 
are given in the fig below: 

 

Figure 3.11: Comparison of performance of  static,1-bit and 2-bit 
prediction scheme. 



 

312 | P a g e  
 

Space for learners: 3.9.3 Correlating Branch Prediction Technique 
 
Due to interference with other branches, it is impossible to get 

significant accuracy from the 2-bit branch predictor. So correlating 

branch prediction comes into the picture whose prediction accuracy 

is enhanced as it considers the recent activities of other branches. It 

uses k least significant bits of branch target address which is fetched 

before. Also, it uses local history table (LHT), a table of shift 

registers where shift register refers to the last effect of m branches 

having similar k least significant bits. It also uses local prediction 

table(LPT)  to predict the result depending on its present state. 

 
 
 
 
 
 
 
 
 
 
3.10 HAZARDS IN PIPELINING AND ITS TYPES 

The situation that prevents the next instruction in the instruction 

stream from executing during its selected clock cycle is Hazard. 

Hazards decrease the performance from the ideal speedup gained by 

pipelining. 

 Structural Hazards: Structural Hazards arises from resource 

conflicts when the hardware cannot support all possible 

combinations of instructions in the pipeline requiring the same 

resource due to some functional unit not being fully pipelined. Then 

the sequence of instructions using that un-pipelined unit cannot 

proceed at one per clock cycle rate.  This generally isn't a problem 

with simple pipelines, but if some instructions take longer than 

CHECK YOUR PROGRESS-II 

5. Define Branch prediction. 

6. Define register file. 

7. Define static branch prediction. 

8. Define Dynamic branch prediction. 



 

313 | P a g e  
 

Space for learners: others, this can become a problem. Another common way that it 

may appear is when some resources are not duplicated enough to 

allow all combinations of instructions in the Pipeline to execute. So 

by fully pipelining the stages and duplicating resources will avoid a 

structural Pipeline. 

 Data hazards: Data hazards occur when instructions that show 

signs of data dependence modify data in different stages of a 

pipeline. This hazard cause delays in the pipeline., Data hazards 

occur when the Pipeline changes the order of read/write accesses to 

operands so that the order differs from the order seen by 

sequentially executing instructions on an un-pipelined processor. It 

can be minimized by a simple hardware technique called forwarding 

or by adding stalls.  

There are generally three types of data hazards: 

1) Read after Write (RAW) 
2) Write after Read  (WAR)  
3) Write after Write (WAW) 

 
Let , there be two instructions I1 and I2, such that I2 follow I1.  
 
Then, 
 RAW Hazard occurs when instruction I2 tries to read data 

before instruction I1 writes it. 
E.g.,: 
 
I1: R2 ← R1 + R3 
I2: R4 ← R2 + R3 

 WAR hazard occurs when instruction I2 tries to write data 
before instruction I1 reads it. 
E.g.: 
I1: R2 ← R1 + R3 
I2: R3 ← R4 + R5 

 WAW hazard occurs when instruction I2 tries to write output 
before instruction I1 writes it. 
E.g.: 



 

314 | P a g e  
 

Space for learners: I1: R2 ← R1 + R3 
I2: R2 ← R4 + R5 
 

WAR and WAW hazards occur during the out-of-order execution 
of the instructions. 
 

Control hazards: It is caused by a delay between the fetching of 

instructions and decisions about changes in control flow (branches 

and jumps). Here instruction depends on the results of previous 

instruction in a way exposed by the overlapping of instructions in 

the pipeline. Control Hazards are also known as Branch Hazards. 

The simplest method to handle branches hazard is to freeze or flush 

the pipeline, holding or deleting any instructions after the branch 

until the branch destination is identified. In this case branch penalty 

is fixed and cannot be reduced by software. The other scheme is the 

predicted-not-taken or predicted-untaken and delayed branch. The 

number of stalls introduced during the branch operations in the 

pipelined processor is known as branch penalty. 

 

3.11 DELAY SLOT 

An instruction slot being executed devoid of the effects of a 

preceding instruction is known as a delay slot. The most familiar 

form is a particular arbitrary instruction located without delay after 

a branch instruction on a DSP or RISC  architecture; this instruction 

will execute even if the prior branch is taken. In that way, by design, 

the instructions appear to execute in an incorrect or illogical order. It 

is usual for assemblers to automatically rearrange instructions by 

default, hiding the unease from assembly developers and 

compilers.[3] 

 



 

315 | P a g e  
 

Space for learners: Load Delay Slot  
In pipelined architecture, the load word instruction loads a word 

from memory to the specified register. The next instruction executes 

concurrently with the current instruction; if the following instruction 

uses the LW destination register as one of its source registers, it 

cannot continue before the LW data is fetched from memory and 

written back to the destination register; otherwise, it will read 

invalid data.  

 
Branch Delay Slot 
The branch delay slot is also a consequence of the branch hazard. A 

simple design would insert stalls into the pipeline after a branch 

instruction until the new branch target address is computed and 

loaded into the program counter. Each cycle where a stall is inserted 

is considered one branch delay slot. A more sophisticated design 

would execute program instructions that are not dependent on the 

branch instruction. This optimization can be performed 

in software at compile time by moving instructions into branch 

delay slots in the in-memory instruction stream if the hardware 

supports this. Another side effect is that special handling is needed 

when managing breakpoints on instructions and stepping 

while debugging within branch delay slot[3]. 

 

3.12 OUT-OF-ORDER EXECUTION 

A processor that executes the instructions one after the other may 

use the resources inefficiently, leading to poor performance of the 

processor. To improve the performance of the processor, this can be 

done in two ways. One is by executing different sub-steps of 

sequential instructions simultaneously, and others execute the 

instructions entirely simultaneously. Additionally, improvement in 

the processor can be achieved through out-of-order execution by 



 

316 | P a g e  
 

Space for learners: executing the instruction in a diverse from the original order they 

appear. Out-of-order execution can be achieved. The approach of an 

out-of-order execution,used in high-performance microprocessors. 

This approach efficiently uses instruction cycles and minimized 

costly delay. As an alternative of the original order of the 

instructions, a processor will execute the instructions in an order of 

accessibility of data or operands. The processor will avoid being idle 

while data is retrieved for the next instruction in a program. In other 

words, a processor that uses multiple execution units completes the 

processing of instructions in the wrong order. For example, I1 and I2 

are the two instructions where I1 comes first, then I2. In the out-of-

order execution, a processor can execute I2 instruction before I1 

instruction has been executed. This flexibility of allowing execution 

with less waiting time will improve the performance of the 

processor. The main benefit of the out-of-order processor is it avoids 

instruction waits when the data needs to perform an operation is 

unavailable. 

 

 

 

 

 

 

 

 

 

STOP TO CONSIDER 

Differentiate in-Order Execution from Out-of-Order execution. 

Out-of-order execution is a situation in pipelined execution when 
an instruction is blocked from executing does not cause the 
following instructions to wait. It preserves the data flow order of 
the program.  

In-order execution requires the instruction fetch and decode unit 
to issue instructions in order, which allows dependences to be 
tracked, and requires the commit unit to write results to registers 
and memory in program fetch order. This conservative mode is 
called in-order commit. 



 

317 | P a g e  
 

Space for learners:  

 

 

 

 

 

3.13 REGISTER RENAMING 

To deal with data dependences in pipelining between instructions by 

renaming their register operands is known as register renaming. 

Renaming replaces architectural register names by, in effect, value 

names with a new value name for each instruction destination 

operand. This process eliminates the name dependences (anti-

dependences and output dependences) between instructions and 

automatically recognizes true dependences. An assembly language 

programmer or a compiler specifies these operands using 

architectural registers - the registers are explicit in the instruction 

set architecture. 

The identification of true data dependences between instructions 

allows a more flexible life cycle for instructions. Maintaining a 

status bit for each value indicating whether or not it has been 

computed yet allows the execution phase of two instruction 

operations to be performed out of order when there are no true data 

dependences between them.     

Being more explicit about the action precise by an instruction data 

dependences can be realized. The action specified by an instruction 

is more apparent if we illustrate instructions in terms of values 

rather than registers. We have to name the values in a manner that 

captures changes in register contents over time. 

CHECK YOUR PROGRESS-III 

9. Define hazard and its types. 

10. Define data hazard. 

11. What is meant by delayed branch? 

12. What is pipeline stall? 



 

318 | P a g e  
 

Space for learners: By replacing register names in all operands with value names, we 

can confine the intent of a sequence of instructions. For this, we use 

a table that records the value names assigned to each register name. 

Then we apply the following algorithm. 

i. Replace each source operand with the most recent value 
name in the designated register column. 

ii. Replace the destination operand with a new name and place 
the new name in the designated register column. 

It is essential that step i is done first. Otherwise, when the same 

register is used both as a source operand and a destination operand, 

we indicate that the instruction execution phase cannot begin until 

its result is ready. This makes it impossible for the execution phase 

to begin.[4] 

 

For an Example: 

We will start with the following instructions.  

MUL  R6, R0, R2 
DIV  R4, R2, R0 
ADD  R0, R6, R2 
 
 

Instruction R0 R2 R4 R6 Renamed 
Instruction 

Initial values P0 P1 P2 P3 ----- 

MUL  R6, R0, 
R2 

   P4 MUL P4, P0, P1 

DIV  R4, R2, 
R0 

  P5  DIV  P5, P1, P0 

ADD  R0, R6, 
R2 

P6    ADD  P6,P4,P1 

 
 
 



 

319 | P a g e  
 

Space for learners: 3.13.1 Advantages of register renaming 

The instructions with value names capture the intent of a sequence 

of instructions by specifying relationships between register values 

rather than just registers. This simplifies determining when the 

execution of an instruction can begin. We only need to check if its 

source operand values have been computed. The name dependencies 

no longer complicate the picture. 

To determine when source operands have been computed, the value 

registers contain a status bit in addition to a data value. The status 

bit is initialized to 0 (not ready) when the value register is allocated 

for an instruction. It is set to 1 when a functional unit writes a 

result.[4] 

 

3.14  SUMMING UP 

In this unit, efforts have been made to acquaint you with the 

advanced concept of computer architecture implicit parallelism. 

Here in this unit, you learn the basic pipeline structure. Pipeline 

techniques are categories into two types. One is arithmetic pipeline, 

and the other is instruction pipeline. Super-pipelining is the breaking 

of stages of a given pipeline into more miniature stages to shorten the 

clock period and thus to enhance the instruction throughput by 

keeping more and more instruction in flight at a  time. Superscalar 

architecture is a system of parallel computing used in many 

processors together. Here the central processing unit manages 

multiple instruction pipelines to execute several instructions 

concurrently during a clock cycle. Here in this unit you learned the 

different branch prediction techniques. In the static branch 

prediction technique, underlying hardware assumes that either the 

branch is not always taken or the branch is always taken. A dynamic 



 

320 | P a g e  
 

Space for learners: branch scheme is hardware-based technique based on the hardware 

and assembles the information during the program's run-time. The 

comparison of static prediction,1- bit branch  prediction and 2-bit 

branch prediction also elaborate with an example.  Hazard is the 

situation that prevents the next instruction in the instruction stream 

from executing during its selected clock cycle. An instruction slot 

being executed devoid of the effects of a preceding instruction is 

known as a delay slot. Here we discuss the out-of-order execution 

that avoids instruction waits when the data needs to perform an 

unavailable operation. At the last of the unit you learned the register 

renaming process, which deals with data dependences. 

 

3.15 ANSWERS TO CHECK YOUR PROGRESS 

1. "Pipelining, also known as "pipeline processing", is the process of 

collecting instruction from the processor through a pipeline. It stores and 

executes instructions in an orderly process." 

 
2. The 5 stages of instruction execution in a pipelined processor are:  

a. Instruction Fetch (IF) 
b. Instruction Decode(ID) 
c. Operand Fetch (OF) 
d. Instruction Execute (IE) 
e.  Operand Store (OS) 
 

3. Pipelining exploits the potential parallelism among instructions. 

This parallelism is called instruction-level parallelism (ILP). There 

are two primary methods for increasing the potential amount of 

instruction-level parallelism. a. Increasing the depth of the pipeline 

to overlap more instructions. b. Multiple issue. 

4. There are processors which are capable of achieving an 

instruction executing throughput of more than one instruction per 

cycle. They are known superscalar processor. 



 

321 | P a g e  
 

Space for learners: 5. It is a technique for reducing the branch penalty associated with 

conditional branches is to attempt to predict whether or not a 

particular branch will be taken. 

6. The processor‘s 32 general-purpose registers are stored in a 

structure called a register file. A register file is a collection of 

registers in which any register can be read or written by specifying 

the number of the register in the file. The register file contains the 

register state of the computer.  

7. The branch prediction decision is always the same every time a 

given instruction is executed. Any approach that has this 

characteristic is called static branch prediction.  

8. The branch prediction where decision may change depending on 

execution history is called Dynamic branch prediction. 

9. Any condition that causes the pipeline to stall is called a hazard. 

Its types are:  

 a. Data hazard  
 b. Instruction hazard 
 c. Structural hazard  
 

10. A data hazard is any condition in which either the source or the 

destination operands of an instruction are not available at the time 

expected in the pipeline. A data hazard is a situation in which the 

pipeline is stalled because the data to be operated on are delayed for 

some reason. 

11. Delayed branch is a type of branch where the instruction 

immediately following the branch is always executed, independent 

of whether the branch condition is true or false. 

12. Pipeline stall, also called bubble, is a stall initiated in order to 

resolve a hazard. They can be seen elsewhere in the pipeline. 

 



 

322 | P a g e  
 

Space for learners: 3.16 POSSIBLE QUESTIONS 

Multiple Choice Questions: 
1. Arithmetic Pipeline is used for 

a. floating point operations 
b. integer operations 
c. character operations 
d. None of the above 
 

2. Which of the following is not a Pipeline Conflicts 
a. Timing Variations 
b. Branching 
c. Load Balancing 
d. Data Dependency 
 

3. How many types of Pipelining exist 
a. 2 
b. 3 
c. 4 
d. 5 
 

4. Which of the following is disadvantage of Pipelining 
a. cycle time of the processor is reduced. 
b. The design of pipelined processor is complex and costly to 
manufacture. 
c. The instruction latency is more. 
d. Both b and c 
 

5. Which of the following is an advantage of pipelining 
a. Instruction throughput increases. 
b. Faster ALU can be designed when pipelining is used. 
c. Pipelining increases the overall performance of the CPU. 
d. All of the above 
 

6. In arithmetic pipeline, the floating point addition and 
subtraction is done in ____________ parts. 
a. 2 
b. 3 
c. 4 
d. 5 



 

323 | P a g e  
 

Space for learners: 7.  ______ have been developed specifically for pipelined 
systems. 
a. Utility software 
b. Speed up utilities 
c. Optimizing compilers 
d. None of the above 
 

8. The pipelining process is also called as ______ 
a. Assembly line operation 
b. Von Neumann cycle 
c. Superscalar operation 
d. None of the above 

9. Each stage in pipelining should be completed within 
___________ cycle. 
a. 1 
b. 2 
c. 3 
d. 4 

10. The periods of time when the unit is idle is called as _____ 
a) Stalls 
b) Bubbles 
c) Hazards 
d) Both Stalls and Bubbles 
 

Fill in the blanks: 

1.  The situation wherein the data of operands are not available is 

called ______. 

2.   The contention for the usage of a hardware device is called 

______ 

3.  Each stage in pipelining should be completed within 

___________ . 

4.  The fetch and execution cycles are interleaved with the help 

of ________. 

5.   The pipelining process is also called as ______ . 

6.  A pipeline ______ is a delay in execution of an instruction 

in order to resolve a hazard. 



 

324 | P a g e  
 

Space for learners: 7.  The number of stalls introduced during the branch 

operations in the pipelinedprocessor is known as  ______  . 
Short answer type questions: 

1. What do you mean by implicit parallelism? 
2. Write a brief note on pipelining. 

3. Explain Basic structure of pipelining technique. 

4. Write short notes on arithmetic pipeline and  instruction 

pipeline. 

5. How do you calculate performance of a pipeline. 

6. Short note on  super pipelining techniques. 

7. Differentiate between  normal pipeline  and super pipeline. 

8. Compare super pipeline with superscalar architecture. 

9. What are the advantages and disadvantages of  superscalar 

architecture? 

10. write down different type of superscalar processor. 

11. Why do we require branch prediction? 

12. What are the types of branch prediction scheme? 

13. What is static branch prediction? 

14. What is dynamic branch prediction? 

15. What are the different types of dynamic branch prediction? 

16. Write a short note on correlating branch prediction. 

17. What do you mean by hazards in pipeline ? 

18. What are the different types of hazard in the pipeline? 

19. What do you mean by delay slot. 

20. What is the need of register renaming? 

Long answer type questions: 

1. Explain pipeline structure with diagram. 

2. How many sub-tasks of instruction are there in pipeline. 

Explain. 



 

325 | P a g e  
 

Space for learners: 3. Explain super pipeline technique. What are the benefit over 

normal pipeline. 

4. Explain  basic structure of superscalar architecture. 

5. Explain 1-bit branch and 2-bit branch prediction technique 

with example. 

6. Explain different type of hazards occurs in pipeline. 

7. Explain data hazard with their types. 

8. Explain different delay slots in pipeline. 

9. Describe out-of-order execution. 

10. What is register renaming? Explain how register renaming is 

done. 

3.17  REFERENCES AND SUGGESTED READINGS 

[1] Pipelining. cs.siu.edu/~cs401/Textbook/ch3.pdf 

[2] Course Notes, Mafla, E.  CDA3101, at cise.ufl.edu/~emafla/  

[3] Delay slot - WikiMili, The Best Wikipedia Reader. 
wikimili.com/en/Delay_slot 

[4] Register Renaming ,University of Minnesota,d. umn.edu/ 
~gshute/arch/register-renaming.html 

[5]  "Advanced Computer Architecture"  Hwang ,Publisher Tata 
McGraw-Hill Education, 2003 ISBN:007053070X, 
9780070530706 

[6]  "Computer Organization and Design – The Hardware / 
Software Interface", David A. Patterson and John L. 
Hennessy, 4th.Edition, Morgan Kaufmann, Elsevier, 2009. 

[7]  "Computer system Architecture", Mano, M. Morish, 3rd 
Edition, Pearson Education,1993 

 



 

326 | P a g e  

 

Space for learners: UNIT 4:ADVANCED CONCEPTS OF PIPELINE  

SCHEDULE 

 

Unit Structure: 

4.1 Introduction 

4.2 Unit Objectives 

4.3  Pipelining 

 4.3.1  Types of Pipeline 

  4.3.1.1  Arithmetic Pipelining 

  4.3.1.2  Instruction Pipelining 

4.4 Pipelining Processor 

 4.4.1  Scalar Processor 

 4.4.2  Vector (Array) Processor 

4.5  Advantages of Pipelining 

4.6  Disadvantages of Pipelining 

4.7  Pipelining Scheduling 

 4.7.1  Data Dependency 

4.8   Dynamic Scheduling 

 4.8.1  Out-Of-Order Completion 

 4.8.2  Dynamic Scheduling Algorithms 

  4.8.2.1  Earliest Deadline First 

  4.8.2.2  Least Slack Time First 

 4.8.3  Advantages of Dynamic Scheduling 

 4.8.4  Disadvantages of Dynamic Scheduling 

4.9  Static Scheduling 

 4.9.1  Static Scheduling Algorithms 

  4.9.1.1  The Rate Monotonic 

  4.9.1.2  The Shortest Job First 

4.10Tomasulo’s Algorithm 

 4.10.1  Out-Of-Order Execution Implementation 

  4.10.1.1  Reservation Stations 

  4.10.1.2  Register Renaming 

  4.10.1.3  Common Data Bus 

  4.10.1.4  Score boarding 

4.11  Reorder Buffer 



 

327 | P a g e  
 

Space for learners: 4.12  Summing Up 
4.13   Answers to Check Your Progress 
4.14  Possible Questions 
4.15  References and Suggested Readings 
 

 

4.1.  INTRODUCTION 

In this unit, you will get to learn in detail about pipelining scheduling 

which is a very important concept of parallelism in computer 

organization and architecture (COA). As you already know that in 

pipelining, the instructions are accumulated through a pipeline from the 

processor. Many instructions are overlapped with each other. 

Performances of the CPU are improved due to the use of pipelines. So 

we will discuss the main concepts of pipelining through the dynamic 

scheduling approaches.  

After going through the chapter, you will get to learn some of the 

important concepts of pipelining scheduling such as 

 DATA DEPENDENCY – Data dependency is a concept that is 

applied to check whether a block works properly even if the 

instructions present in that block are rearranged. 

 SCOREBOARD – When the data dependencies are not present 

and when sufficient resources are present in the system, the 

score-boarding technique allows the execution of out-of-order 

performances. 

 SLACK TIME – When the time of a process gets delayed 

without other processes getting delayed, is termed slack time. 

 RATE MONOTONIC – Rate monotonic (RM)is a type of 

static scheduling algorithm in which the instructions that have 



 

328 | P a g e  
 

Space for learners: the smallest job or rate are given more priority than the bigger 

jobs. 

 

4.2.   UNIT OBJECTIVES  

Studying this unit, you will be able to: 

 Understand the concept of pipelining and pipeline scheduling. 
 Discuss the different data structures related to pipelining 

processes.  
 Know the different dynamic and static scheduling algorithms.  

 

4.3.   PIPELINING 

Pipelining is a technique where instruction overlapping occurs at the 

time of execution. Instructions are accumulated from a processor into 

the input registers through a pipeline, and therefore this process is 

known as pipelining. The order in which the instructions are stored and 

executed is defined as the pipelining processing [1]. Different stages are 

linked together to form a single-stage pipeline and the instructions enter 

through one end of the pipeline and come out through the other end. 

Each stage of the pipeline consists of some input registers which hold 

the instructions at every stage and are then operated by some 

combinational circuit. When a combinational circuit works on a 

register, the output of it is shifted to the next registers present in the 

lined-up segments. All the instruction inside the pipeline works 

concerning some clock time[1].  

 

 

 



 

329 | P a g e  
 

Space for learners: 4.3.1.  Types of Pipeline 

Since instructions encountered in the pipeline are of different types, so 
to cope up with this situation, the pipeline is split into two types. They 
are Arithmetic Pipelining and Instruction Pipelining, which are 
explained as follows [1]: 

4.3.1.1.   Arithmetic Pipelining 

When arithmetic operations come as instruction into the pipeline they 
are then stored in the Arithmetic Pipeline. Arithmetic operations may 
include addition, subtraction, operations on floating-point numbers, etc. 
[1].  

4.3.1.2.    Instruction Pipelining 

Instruction pipelining helps in increasing the throughput of the system. 
Fetch, execute and decode instructions are overlapped in the instruction 
cycle. When a new instruction is present in the memory then it is read 
by an instruction pipeline, and the instructions that were already 
existing are executed in the segments present in the pipeline. The 
efficiency of the pipeline will increase if the instruction cycle is split 
into the equal time clock. By doing this we execute multiple 
instructions simultaneously. That is, we can say that parallel processing 
occurs in the pipeline thus increasing the efficiency of the system along 
with an increasing throughput [1].  

 

4.4.  PIPELINING PROCESSOR 

Depending upon the work it follows, the pipelining processors are 
divided into two categories, one is the scalar processor and the other is 
the vector(array) processor [1].  

 

4.4.1.  Scalar Processor 

The simple processor which executes one instruction at a time and that 
too simple instructions are known as the scalar processor. But as it 



 

330 | P a g e  
 

Space for learners: works on single instruction at a time therefore it proves to be an 
inefficient processor. The speed of the processor is also very slow.  

For example, we need to add two numbers and store the answer in the 
third location which requires only simple calculation[1].  

ADD B, D and store it in E. 

 

4.4.2.  Vector (Array) Processor 

When complex instructions are executed on numerous data 
synchronously, then a vector processor is used.  This processor executes 
the instructions very fast as compared to the scalar processor and has 
much efficiency.  

In the Instruction pipelining, at a particular time, different works are 
performed by the processor on the different data. Vector processor uses 
the instruction pipeline for data processing. Here the CPU remains busy 
all the time[1]. 

 

4.5.  ADVANTAGES OF PIPELINING [1] 

 Using pipelining, the total time of the processor's instruction 
cycle gets reduced thereby increasing the throughput of the 
instruction. In an actual case, multiple instructions are executed 
simultaneously and it looks like that the total time gets reduced.  

 The time delay in between two instructions is greatly reduced 
hence increasing the throughput. 

 Nowadays, for a faster and more complex Arithmetic and design 
Logic Unit the pipeline is developed into several stages.  

 Performance of the pipeline increases, meaning the clock cycle 
also increases.  

 The speed at which the clock cycle of the RAM works is much 
lower than the clock cycle of the pipelining processor hence 
increasing the performance. 
 



 

331 | P a g e  
 

Space for learners: 4.6.  DISADVANTAGES OF PIPELINING [1] 

 Branching delay can occur in a pipelined processor. For 
reducing this branching delay, address of the target branch need 
to be pre-fetched at the stage of decoding. Doing this the delay 
occurred may be reduced until 1 clock cycle.  

 The flip-flops that are inserted between the data modules 
increase the latency in the instructions.  

 In pipelined processing, you may get some unexpected 
performances.  

 When there are many branches in the stages of the pipeline, then 
the throughput gets reduced.  

 Memory delay can occur in the pipelined processor. Cache miss 
occurs when searched data or instructions are not present in the 
cache memory and therefore searched in the main memory 
which then consumes more number of the instruction cycle. This 
is known as the Memory delay which becomes the reason for 
the delay for the other data or instructions that are lined up.  

 When the pipeline does not validate the assumptions of the 
instructions, then incorrect behavior of the program might 
occur, which leads to hazards.  

4.7.  PIPELINING SCHEDULING 

Pipeline scheduling is a type of mechanism where executions are 
overlapped for different inputs and the computations are performed at 
different stages. It improves the performances of the machine that have 
parallel instructions usually termed as instruction pipelines. Let us 
explain this pipelining scheduling with the help of the following 
example. Suppose you have to manufacture a washing machine by 
developing two models[2]. 

a) For model 1, suppose you have designed the washing machine 
in such a way it washes (W), dries (D), and iron (I) one cloth at a time 
(T). That is, for performing the mentioned operations on(n) number of 
clothes, the time required would be (n.T). 



 

332 | P a g e  
 

Space for learners:  

 

  

 

Figure 4.1: Model 1 for pipelining example 

 

b) For model 2, suppose you have split the work of one washing 
machine into different machines that can wash (W), dry (D), and iron 
(I) the clothes separately. For each separate machine, the mentioned 
work is performed on more than one number of clothes in time (T). 
Now the time, that is required by each machine to perform the above 
task (for 1 cloth at a time) will be (T/3)[2]. And the time required for 
performing the operations on (n) number of clothes will be 

{T3= (2 + n). T/3}. 

For a larger number of clothes, (2 + n) will become ‘n’. Then the time 
required will be  

{T3 = n. T/3} 

 

 

 

 

Figure 4.2: Model 2 for pipelining example 

Here, model 2 explains the pipelining process. Let us explain this as 
follows[2]. 

 For time T/3, the cloth is washed in the machine.  
 After it finishes the process of washing, it enters the second 

stage that is the dry stage, and works there for time T/3. When 

WASH DRY IRON 

T/3 T/3 T/3 

WASH + DRY + IRON 

 
T 



 

333 | P a g e  
 

Space for learners: the second cloth was in the dry stage another cloth has entered 
the washing stage and took the same time T/3. It is being 
pipelined. 

 When the first cloth entered the iron stage for time T/3, the 
second cloth is in the dry stage for time T/3 (it is being 
pipelined) and the third cloth is in the washing stage for time 
T/3 (it is being pipelined).  

 Then cloth one finishes its task, cloth two is pipelined and enters 
into the iron stage. Meanwhile, cloth 3 enters into the dry stage 
and new cloth 4 enters into the washing stage. 

 Simultaneously all the machines are working having each time 
T/3.  

 In this way, all the machines are working keeping themselves 
busy without remaining idle. 

 By keeping in mind the formula (T3 = (2 + n). T/3), where n is 
several clothes. 

 We can say that Cloth one took (for all the three stages) time  
T = (2 + 1) T/3 = 3T/3 

 
 Cloth two took time;                    T = (2 + 2) T/3 = 4T/3 
 Cloth three took time;                  T = (2 + 3) T/3 = 5T/3and so 

on. 

This explains the pipelining process. 

4.7.1.  Data Dependency 

Data dependency is a concept that is applied to check whether a block 
works properly even if the instructions present in that block are 
rearranged. As said, there are three types of data dependencies[4].  

 Read After Write (RAW) – At first, suppose Instruction 1 
writes an instruction. That same instruction is read by 
Instruction 2 later. After Instruction 1 writes the value, then 
only Instruction 2 will read, therefore Instruction 1 must be 
written first otherwise instead of reading the new value, 
Instruction 2 will read the old value.  



 

334 | P a g e  
 

Space for learners:  Write After Read (WAR) – At first, the location of a value is 
read by Instruction 1. After that Instruction 2 again rewrites the 
value. Instruction 1 must be written first, otherwise, instead of 
reading the new value, Instruction 2 will read the old value.   

 Write After Write (WAW) – Both Instruction 1 and 2 when 
write a value in the same location, then this dependency is 
termed as write after write and it must be in the same order as 
the original order.   

 

4.8. DYNAMIC SCHEDULING 

At the time of compilation, sometimes some dependencies occur in the 
system and we are unable to recognize these dependencies. In this case, 
handling of the dependencies is performed by the dynamic scheduler 
and hence the process is termed dynamic scheduling. For instructions 
having simple pipelining techniques, the major drawback is that all 
instructions are scheduled in some order, and once the instructions are 
pipelined then no new instructions or instructions after the scheduled 
instructions can be executed earlier than the pipelined instructions. If 
two or more instructions are spaced closely and have the same 
dependencies, then it might so happen that the instructions might come 
to a halt or become idle[3]. When hardware is taken into account, 
dynamic scheduling comes into force.  

 

4.8.1.   Out of Order Completion 

The WAR and WAW hazards create the possibility of out-of-order 
execution. For handling the exceptions, major complications are created 
by the out-of-order completion. There are two possible cases where 
non-precise exceptions might occur[3].  

 Suppose there are many instructions in a pipeline and it may so 
happen that one instruction present in the pipeline can cause 
exceptions. The possibility of a non-precise exception might 
occur when instructions that are present after the ‘exception 
instruction’ have been executed first[3].   



 

335 | P a g e  
 

Space for learners:  Another possibility might occur where there are many 
instructions present in a pipeline and it may so happen that one 
instruction present in the pipeline can cause exceptions. The 
possibility of a non-precise exception might occur when some 
instructions present in the pipeline before the ‘exception 
instruction’ are not executed at all[3].  

Execution of out-of-order is allowed if the five stages pipeline is 
transformed into two stages in the following ways[3]. 

 Issue – Instruction decoding and to check whether any structural 
hazards are present in the pipeline or not. 

 Read operands – The pipeline will wait till no data hazards are 
encountered and then the operands will be read.  

For the dynamic scheduling, the instruction in the pipeline should pass 
in an ordered way through the Issue stage and then into the read 
operands, which is the second stage. 

4.8.2.Dynamic Scheduling Algorithms 

As the name suggests, a dynamic scheduler helps in making efficient 
decisions during the runtime of the system. Therefore, the system that 
works on dynamic scheduling is more flexible but at the same time 
calculation overhead also occurs. It checks which instruction has the 
most priority than the other and simultaneously works on that 
instruction at first. As it takes instruction during the runtime therefore 
the priority of executing the instruction might also change 
accordingly[5]. There are many dynamic scheduling algorithms based 
on different approaches, some of them are discussed below. 

4.8.2.1.  Earliest Deadline First (EDF) 

EDF is a type of dynamic scheduling algorithm in which the 
instructions that have the nearest deadline to complete are given the 
task of highest priority and are executed first. When the current process 
gets completed and new processes are scheduled then this algorithm is 
worked upon. It is applicable for real-time systems. The CPU is utilized 
fully making sure that all the tasks are completed. An optimal feasible 
schedule is processed where all the tasks are executed within the 



 

336 | P a g e  
 

Space for learners: stipulated deadline. The task must mention its deadline once it is made 
ready for execution and given a fixed CPU burst timing. Preemption 
can occur in EDF, and any instances that are scheduled for later but are 
engaged with an earlier deadline get ready for execution and becomes 
active[5]. 

But there are some limitations of the Earliest Deadline First Algorithm 
such as 

 Overloading problems for the transient might occur. 
 There might be some problems when resources are shared. 
 Sometimes implementations are not done efficiently.  

Let us explain the EDF algorithm with the help of an example by taking 
a flowchart[5]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Flowchart of the Earliest Deadline First Algorithm 

 

IS THE READY 
QUEUE FILLED? 

NEW PROCESS 

YES 
WAI

THE LISTS OF THE PROCESSES ARE BEING 
PREPARED AND PRIORITY HAS BEEN ASSIGNED 

GIVING THEM SOME DEADLINE 

THE PROCESSES HAVING THE SMALLEST DEADLINE 
ARE EXECUTED FIRST WITH THE HIGHEST 

PRIORITY 

NO 



 

337 | P a g e  
 

Space for learners: 4.8.2.2.  Least Slack Time First (LST) 

LST is a type of dynamic scheduling algorithm in which the 
instructions that have the smallest slack time are given the task of 
highest priority and are executed first. When the time of a process gets 
delayed without other processes getting delayed, is termed as the slack 
time. Like that of the EDF, when the current process that has the lowest 
slack time gets completed and new processes are scheduled then this 
algorithm is worked upon. For the slack time to be given as l, starting 
time is given as t, deadline interval is given to be d, and the remaining 
execution time is given to be c, the formula is given as (l = d – c – t) 
[5]. The algorithm is somewhat complex therefore requires extra 
information like the deadline and the execution timing. In real-time 
systems, it is sometimes difficult to predict the burst time. If the 
processes have the same slack time, then first cum first serve (FCFS) 
algorithm is applied together with LST.  

Let us explain the LST algorithm with the help of an example by taking 
a flowchart [5] 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Flowchart of the Least Slack Time Algorithm. 

IS THE READY 
QUEUE FILLED? 

NEW 

YES 
WAIT 

THE LISTS OF THE PROCESSES ARE BEING 
PREPARED AND PRIORITY HAS BEEN ASSIGNED 

by USING (l = d – c – t) 

THE PROCESSES HAVING THE SMALLEST 
SLACK TIME ARE EXECUTED FIRST UNTIL NEW 

PROCESSES ARRIVE 

NO 



 

338 | P a g e  
 

Space for learners:  

4.8.3.  Advantages of Dynamic Scheduling[6] 

 Unknown dependencies during compile time are handled by 
dynamic scheduling because memory references are included.  

 It simplifies the performance of the compiler. 
 Codes on a pipeline are compiled so efficiently that they can run 

on different pipelines. 
 Hardware speculations are often built on dynamic scheduling. 

4.8.4.  Disadvantages of Dynamic Scheduling[7] 

 The complexities of the hardware increase substantially. 

 Dynamic scheduling surely complicates exception handling. 

 WAW and the WAR dependencies are created for out-of-order 

execution as well as out-of-order completion.  

4.9.  STATIC SCHEDULING 

In static scheduling, all the processes are fixed for a particular stage of 
the pipeline. Before the execution takes place, the processes are given 
the tasks. They are usually processor non-preemptive. The overall time 
of the execution is minimized by the static algorithm. It tries to indicate 
the behavior of the execution of the program such as the execution time, 
process, and communication delays during the compile time. The 
smaller tasks are partitioned for reducing the communication costs. 
Processes are allocated to the processors. Static scheduling has a more 
efficient execution time environment as compared to the dynamic 
scheduling algorithm [5].  

4.9.1.  Static Scheduling Algorithms 

Just like the dynamic scheduler, the priority scheduler works on the 
tasks that have more priority than the other but the value of the priority 
does not change. The static scheduler can make an efficient decision 
before runtime as well. There are many static scheduling algorithms, 
some of them are discussed below[5]. 



 

339 | P a g e  
 

Space for learners: 4.9.1.1.  The Rate Monotonic (RM) 

RM is a type of static scheduling algorithm in which the instructions 
that have the smallest job or rate are given more priority than the bigger 
jobs. The size or rate of the job is already scheduled in the RTOS. 
When the current process that has the smallest job gets completed and 
new processes are scheduled then this algorithm is worked upon[5]. The 
priorities are assigned just before the execution and remain the same 
throughout its execution period. Rate monotonic works based on the 
preemption, that is, during the execution time, if a shorter job is 
encountered by the system, then that job is given more priority for the 
execution. A job that has more time period has less priority and a job 
that has a lesser time period have more priority. The implementation of 
it is very much easy.  

Let us explain the rate monotonic algorithm with the help of an 
example by taking a flowchart [5] 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Flowchart of the Rate Monotonic algorithm 

IS THE READY 
QUEUE FILLED? 

NEW PROCESS 

YES 
WAI

THE LISTS OF THE PROCESSES ARE BEING 
PREPARED AND THE PROCESS WITH THE 

LOWEST TIME PERIOD IS IDENTIFIED 

THE PROCESSES HAVING THE SMALLEST PERIOD 
TIME ARE EXECUTED FIRST UNTIL NEW 

PROCESSES ARRIVE 

NO 



 

340 | P a g e  
 

Space for learners:  

4.9.1.2.  The Shortest Job First (SJF) 

SJF is a type of static algorithm in which the instructions that have the 
smallest execution time are executed first. The time of the job is already 
scheduled in the RTOS. It is kept as the CPU time. When the current 
process that has the smallest job time gets completed and new processes 
are scheduled then this algorithm is worked upon[5]. This algorithm is 
suitable for a processor having batch-type processing and the waiting 
time for the jobs is not critical. SJF can be applied in both preemptive 
and non-preemptive scheduling algorithms. Starvation of the processes 
might occur if the processes have a larger burst time.  

Let us explain the SJF algorithm with the help of an example by taking 
a flowchart [5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Flowchart of the Shortest Job First algorithm 

IS THE READY 
QUEUE FILLED? 

NEW PROCESS 

YES 
WAI 

THE LISTS OF THE PROCESSES ARE BEING 
PREPARED AND THE PROCESS WITH THE 
LOWEST EXECUTION TIME IS IDENTIFIED 

THE PROCESSES HAVING THE LOWEST 
EXECUTION TIME ARE EXECUTED FIRST 

UNTIL NEW PROCESSES ARRIVE 

NO 



 

341 | P a g e  
 

Space for learners: 4.10.  TOMASULO’S ALGORITHM 

A scientist named Robert Tomasulo invented the Tomasulo Algorithm 
to be used in IBM 360/91.Tomasulo’s algorithm is a type of hardware 
algorithm in computer architecture that is used for implementing 
dynamic scheduling allowing out-of-order execution and enabling 
multiple execution units. The hardware includes the reservation 
stations, the register renaming, and a common data bus (CDB) for 
carrying the values towards the reservation stations. Because of the 
presence of this hardware architecture, parallel processing is possible. 
WAR and WAW hazards are removed using register renaming. And 
this register renaming is done through reservation stations. Register 
Renaming is implemented through reservation stations. Tomasulo’s 
algorithm work in some stages which are discussed below [8]. Here 
reservation station provides the register renaming.  

1) The Issue stage – Instructions are present in a queue (FIFO 
queue) in which all the instructions are given some space with 
some deadline. When one instruction completes its job, the next 
instruction remains at the head of the queue. The work of the 
Issue stage is to call the instruction from the queue that is 
present at the head of the queue. If the reservation station 
matches the called instruction, then the instruction is issued 
some operand values in the renaming register [3]. One 
condition is that; the reservation station must remain free when 
the instruction is called. If the reservation station is not free, 
then the instruction stalls, and subsequently structural hazards 
occur. If there is a problem in issuing one instruction, then the 
instructions that are lined up in the queue will not get executed. 
Another case may occur; the instruction waits in the reservation 
stations if the values of the operands are not found from the 
common data bus [9].  
 

2) The Execution stage – If all the values of the operands are 
available by the CDB into the reservation stations, then 
execution of the processes takes place. Until and unless operand 
values are not available, execution does not occur [3].With the 
help of effective addressing, load and store are maintained. 



 

342 | P a g e  
 

Space for learners: Executions are not initiated by the instructions until and unless 
the previous instructions are completed that were in order [9].  
 

3) The Write Result stage– Once the results are obtained through 
execution, the result is written on the CDB and then transferred 
into the registers and then into the reservation stations that 
contain the store buffers. At this write result step, the data is 
written into the memory. As soon as the data values and 
addresses are present the data is transferred to the memory and 
in this stage, the storage gets completed[3]. 

4.10.1.  Out-of-Order Execution Implementation 

For the complexities of the pipeline to be enhanced, the out-of-order 
processor needs to be implemented. Now the WAR and WAW hazards 
can be tackled because the system can reorder the instructions. The 
following are some of the issues that have been tackled in the pipelining 
structure and which are very important for Tomasulo’s algorithm. 

 

4.10.1.1.  Reservation Stations 

Reservation stations are one of the features of the CPU which permits 
the register renaming and Tomasulo's algorithm uses these reservation 
stations for use in dynamic scheduling. Reservation stations work as the 
data buffer that fetches and stores the instruction operand values as 
soon as they are made available and it does not allow the data to get 
stored in the register. One instruction specifies a single reservation 
station and the operands once available are sent for its execution and 
the completed instructions are stored in the buffer of the reservation 
stations. When there are many instructions and when all of their needs 
to write in the same register than by the terms, logically only the last 
instruction can be written in that same register[10].  

Sequential instructions are issued to the reservation stations in 
Tomasulo's algorithm that helps in buffering the instructions. 
Reservation stations checks the common data bus for the availability of 
the data operand and if it is available in the buffer then only the 
instructions get activated.  



 

343 | P a g e  
 

Space for learners: There are some fields of register present in the reservation stations 
which are explained as follows[3] 

 Op – Op is the operations that need to be performed on the 
operand data. It is the functional unit of the associated 
reservation station. The functional unit can be the arithmetic as 
well as the logical interpretations such as {AND, OR, NOT, 
ADD, SUBTRACT, etc.). 

 Qj, Qk–In these fields of the reservation station, the source 
operands are produced and the value of zero indicates that the 
reservation station has delivered the value to its corresponding 
source. It produces the source registers.  

 Vj, Vk – The source operands have some actual values depicted 
as Vj and Vk. The actual values will be only valid if the Qj and 
Qk have the value zero which indicates that the value of the 
source has arrived in the reservation station. 

 A – The ‘A’ field holds the address of the memory information 
for a load or a store. Until and unless effective address 
computation occurs, instructions containing in the immediate 
field only hold.  

 Busy – It works in two Boolean conditions that are True or 
False. If the condition is True that means the reservation station 
is occupied or busy. And if the condition is False that means the 
reservation station is not occupied. The value 1 indicates that the 
station is busy and o indicates that the station is not busy.  

 Qi –all the results of the reservation station are stored in this 
register. If the value is 0 that means the value present in the 
register is the actual value of that register. At this point, the 
register is not renamed.  

4.10.1.2.  Register Renaming 

Instruction results that are stored in the registers are particularly 
renamed. There may be more than one type of name in the registers that 
might be used in the system hardware. The reservation stations and the 
registers are mapped after which the renaming is performed. For 
correctly performing the out-of-order executions, the register renaming 
is usually applied by Tomasulo's algorithm[11]. 



 

344 | P a g e  
 

Space for learners: It is a pipelining technique that renames the register operands by 
dealing with the dependences of the data. The operands are specified 
with the help of a compiler using the architectural registers that are 
explicit instructions. The renaming register restores the name of these 
architectural registers by a new value name for the operands of each 
instruction. It recognizes the true dependencies automatically. It 
removes the WAR and WAW hazards by dynamically assigning values 
to the registers [11].  

4.10.1.3.  Common Data Bus 

The functional units and the reservation stations are connected directly 
with the help of the common data bus (CDB). Tomasulo's algorithm 
depicts that the CDB "preserves precedence while encouraging 
concurrency". It can be in two different structures [11]. 

 Operation results can be accessed by the functional unit without 
demanding any register with a floating-point and allow multiple 
functional units to access the register file [11].  

 In CDB, control execution and hazard detection are distributed 
while controlling of the execution of the instruction are done by 
the reservation stations rather than by a hazard unit [11]. 

4.10.1.4.  Scoreboarding 

The scoreboard also follows the dynamic scheduling technique or we 
can say helps in implementing it so that the execution of the out-of-
order can be performed with the condition that no conflicts occur and 
there is the availability of the hardware. During scoreboard, if data 
dependencies occur then it is tracked, logged, and observed very often. 
The scoreboard monitors the system every time to check whether any 
instruction got stalled or not and tries to resolve the dependencies 
before any instruction gets stalled[12]. It monitors every instruction that 
waits for it to get dispatched.  

The scoreboard keeps all the latest information into its registers and 
also determines the time period when the instruction will begin and end. 
The scoreboard contains some stages in which the instruction must pass 
through it. The stages are given as follows[13]. 



 

345 | P a g e  
 

Space for learners: a) Issue – In the issue stage, the scoreboard checks whether any 
hazards such as the WAW hazards are available or not. If it is present, 
then the instruction gets stalled[13].   
 
b) Read operands – The scoreboard reads or finds whether any 
source operands are available or not. If it is present, the functional units 
are instructed by the scoreboard to check the register file and read the 
operands so that it can start its execution. The RAW hazards are 
corrected in this stage.  If instructions do not write or use any operand, 
then that operand is said to be free or available and is present in the 
register file. If multiple instructions come to the register file, then 
ambiguity might occur as to which instruction will get the preference to 
write the operand[13].  
 
c) Execution – The scoreboard gets notified here by the functional 
unit as to when the execution gets over[13]. 
 
d) Write result – As soon as the scoreboard gets notified from the 
execution stage that the execution has finished, the scoreboard 
investigates whether any WAR hazards are present or not. If WAR 
hazards are present, then the functional unit is instructed to get stall by 
the scoreboard until the hazards are being cleared[13].  

 The main difference between Tomasulo's algorithm and 
scoreboarding is that there is no distribution system in scoreboarding. 
Scoreboarding keeps the track of all instructions and information within 
itself and is the sole control unit. Whereas Tomasulo's algorithm is a 
distributed system. All the functional control is distributed among 
different registers. 

 

4.11.  REORDER BUFFER (ROB) 

The reorder buffer creates an apparition to the Users that their 
instructions are working in order. When a system encounters an 
instruction, the instruction gets renamed and decoded and then gets 
transferred to the ROB as well as the issue queue and simultaneously 
marked as busy. ROB receives the information once the instruction gets 



 

346 | P a g e  
 

Space for learners: executed and the ROB is marked as not busy. Not busy means that it is 
now 'committed' and the architectural state gets visible. But if an 
exceptional instruction remains at the head of the ROB then the 
architectural changes are not visible[14].  

The structure of the ROB is normally a circular buffer that keeps the 
track of all instructions in order, while the commit head points to the 
oldest instruction and simultaneously new instructions will be managed 
within the ROB.  

Like the other forms, reorder buffer has also some stages that help in 
the smooth working of it. They are explained as follows[14]: 

a) Exception State –The oldest instruction in the pipeline when 
gets encountered by the ROB and is pointed to the head pointer then an 
exception is thrown by the system. A single bit is used to depict the 
instruction that has entered the ROB or not but the oldest exception 
instruction is only tracked by the additional exception state. By doing 
this saves space[14]. 
 
b) PC Storage – Branch and Jump instruction are used to access the 
information into the ROB’s PC file at the time of register read[14].   
 
c) Commit Stage – When the head of the ROB does not contain 
any instruction then it can be committed which means that any changes 
that occur in the system are made available. ROB releases single 
instruction in the pipeline but does not check for multiple instructions to 
get committed. The instruction gets stored into the memory only when 
the commit is performed. After commit, the instruction physically 
releases the register[14]. 
 
d) Exception and flushes – When ROB contains the instruction at 
the commit head then only exceptions are handled. The ROB gets 
emptied by flushing the pipeline. Reset of the rename map table must 
be done. Control status register (CSR) receives the accepting instruction 
if the instruction is an architectural exception and if it is a micro-
architectural exception re-fetching is done of the failing instructions and 
execution can begin afresh[14].   
 



 

347 | P a g e  
 

Space for learners: e) Point of no return – For marking the instruction for which 
exception might be generated, another pointer head runs just in front of 
the ROB commit head which is known as the point-of-no-return. It 
includes memory operations that are untranslated and branches that are 
unresolved. RoCC instructions that do not tolerate miss peculation are 
nowadays used by the PNR which means that instruction that has 
passed the PNR head only gets issued by the ROB[14]. 

 

CHECK YOUR PROGRESS 

Fill in the following blanks.: 

1. Pipelining is a technique where instruction overlapping occurs at the 
time of its ____________. 

2. The efficiency of the pipeline will ________ if the instruction cycle 
is split into the equal time clock. 

3. ____________ delay can occur in pipelined processor. 

4. The flip-flops that are inserted between the data modules increases 
the __________ in the instructions. 

5.  ______________ algorithm is a type of hardware algorithm in 
computer architecture that is used for implementing dynamic 
scheduling allowing out-of-order execution and enabling multiple 
execution units. 

6.   If the reservation station matches the called instruction, then the 
instruction is issued some operand values in the _______________. 

7.  Reservation Stations checks the _________________ for the 
availability of the data operand. 

8.  The reservation stations and the registers are mapped after which the 
_________________ is performed. 

9.  The structure of the ____________ is normally a circular buffer that 
keeps the track of all instructions in order. 

10.  _________________ receives the excepting instruction if the 
instruction is architectural exception. 



 

348 | P a g e  
 

Space for learners:  

4.12.  SUMMING UP 

 The order in which the instructions are stored and executed is 
defined as pipelining processing. 

 All the instruction inside the pipeline works concerning some clock 
time. 

 When arithmetic operations come as instruction into the pipeline 
they are then stored in the arithmetic pipeline. 

 When complex instructions are executed on numerous data 
synchronously, then a vector processor is used.  This processor 
executes the instructions very fast as compared to the scalar 
processor and has much efficiency.  

 The time delay in between two instructions in a pipeline is greatly 
reduced hence increasing the throughput. 

 Branching delay can occur in a pipelined processor. 

 Data dependency is a concept that is applied to check whether a 
block works properly even if the instructions present in that block 
are rearranged. 

 If two or more instructions are spaced closely and have the same 
dependencies, then it might so happen that the instructions might 
come to a halt or become idle. 

 The WAR and WAW hazards create the possibility of out-of-order 
execution. 

 If the processes have the same slack time, then first cum first serve 
(FCFS) algorithm is applied together with LST. 

 

 

 

 

 



 

349 | P a g e  
 

Space for learners:  

4.13  ANSWERS TO CHECK YOUR PROGRESS 

1. Execution, 2. Increase, 3. Branching, 4. Latency, 5. Tomasulo, 6. 

Renaming Register, 7. Common Data Bus, 8. Renaming, 9. Reorder 

Buffer, 10. Control Status Register.  

 

4.14  POSSIBLEQUESTIONS  

Short Type Questions: 

1) What do you mean by pipelining? 
2) What is pipelining processing? 
3) What are the two types of a pipeline? 
4) Explain in brief the data dependency. 
5) Explain in brief the dynamic scheduling. 
6) What are the different types of dynamic scheduling and static 

scheduling algorithms? 
7) Write the function of the Issue stage in Tomasulo's algorithm.  
8) What is a reservation station? 
9) How does the register renaming work in the pipelining 

schedule? 
10) What do you mean by reorder buffer? 
11) What is the function of a common data bus? 
12) What do you mean by scoreboarding? Explain in brief. 
13) What are the different dependency hazards? 
14) What do you understand by point of no return? Explain in brief. 

Long Type Questions: 

1)      What do you mean by pipelining? Explain the different types of 
pipelines. 

2)       Discuss the advantages and disadvantages of pipelining.  

3)       Explain the pipelining scheduling with a relevant example.  



 

350 | P a g e  
 

Space for learners: 4)       What are the different types of data dependencies? 

5)    What are the advantages and disadvantages of dynamic 
scheduling? 

6)       Explain the earliest deadline first algorithm. 

7)       Explain the least slack time first algorithm. 

8)       Explain the rate monotonic algorithm. 

9)       Explain the shortest job first algorithm. 

10)     Explain Tomasulo's algorithm. 

11)     What do you mean by reservation station? Explain all its stages. 

12)     What do you mean by register renaming? 

13)      What do you understand by reorder buffer?  

 

4.15  REFERENCES AND SUGGESTED READING 

[1] https://www.lkouniv.ac.in/site/writereaddata/siteContent/20200
4221613338445rohit_engg_pipelining_and_hazzard.pdf 

[2] https://www.quora.com/What-is-pipelining-scheduling-in-
computer-architecture 

[3] https://www.brainkart.com/article/Dynamic-Scheduling_8832/ 

[4] https://en.wikipedia.org/wiki/Instruction_scheduling 

[5] Teraiya, J., & Shah, A. (2020). Analysis of dynamic and static 
scheduling algorithms in soft real-time system with its 
implementation. In Soft Computing: Theories and 
Applications (pp. 757-768). Springer, Singapore. 

[6] https://www.cs.umd.edu/~meesh/411/CA-
online/chapter/advanced-concepts-of-ilp-dynamic-
scheduling/index.html 

[7] COMPUTER ORGANIZATION AND ARCHITECTURE 
DESIGNING FOR PERFORMANCE EIGHTH EDITION, BY 



 

351 | P a g e  
 

Space for learners: WILLIAM STALLINGS, published by Prentice Hall (an 
imprint of Pearson) 

[8] https://www.cse.iitk.ac.in/users/biswap/CS422/L12-
Tomasulo.pdf 

[9] http://www.cs.umd.edu/~meesh/411/CA-
online/chapter/dynamic-scheduling example/index.html 

[10] https://www.cs.umd.edu/~meesh/cmsc411/website/projects/dyn
amic/tomasulo.html 

[11] https://en.wikipedia.org/wiki/Tomasulo_algorithm 

[12] https://en.wikipedia.org/wiki/Scoreboarding 

[13] https://www.cs.umd.edu/~meesh/cmsc411/website/projects/dyn
amic/scoreboard.html 

[14] https://docs.boom-core.org/en/latest/sections/reorder-buffer.html 
 



 

352 | P a g e  

 

Space for learners: UNIT 5 – ADVANCED CPU ARCHITECTURE 

 

Unit Structure: 

5.1 Introduction 

5.2 Unit Objectives 

5.3 Introduction to Advanced CPU architectures 

5.3.1 Classification of Instruction Set Architectures: 

5.4 VLIW Architecture 

5.4.1 Example of VLIW code: 

5.4.2 Examples of VLIW Processors: 

5.4.3 Advantages of VLIW 

5.4.4 Disadvantages of VLIW 

5.4.5 Applications of VLIW Processors 

5.5 EPIC Architecture: 

5.5.1 EPIC vs VLIW 

5.5.2 EPIC architectural details  

5.6 Part 2: Introduction to Multiprocessor Systems: 

5.6.1 Classification of Multiprocessors: 

5.7 Interconnection Types: 

5.8 Cache Memory: Uniprocessor vs Multiprocessor: 

5.8.1 Cache Coherence Problem: 

5.8.2. The “All-is-well” Solution: 

5.8.3. Software-based solutions: 

5.8.4. Hardware Solutions:  

5.9 Summing Up 

5.10 Answers to Check Your Progress 

5.11 Possible Questions 

5.12 References and Suggested Readings 

 

5.1 INTRODUCTION 

In last three decades, the architectures of CPU design have been 

implemented on an unprecedented scale on a single chip due to the 

advancement of Integrated Circuit fabrication technology. So, this 

becomes very much relevant for you to learn about different 

instruction set architectures. Moreover, it is also very important to 

know about the interconnection between multiple processors & 

cache memory and the cache coherence problem which may arise 

with such interconnections. 



 

353 | P a g e  
 

Space for learners: This unit is divided into two parts. In the first part, we will take a 
close look at CPU architectures. Our primary focus is Very Large 
Instruction Word (VLIW)architecture. You will get a brief 
introduction to different instruction set architectures like CISC and 
RISC, which are implemented in superscalar processors. The 
detailed architecture of VLIW processors will be discussed in this 
unit along with basic working, instruction format, advantages and 
disadvantages. Additionally, the implementation details of 
Explicitly Parallel Instruction Computing (EPIC) architecture will 
also be discussed, which is a VLIW inspired architecture, developed 
by HP and Intel. You will learn how EPIC differs from VLIW and 
how EPIC overcomes certain limitations of VLIW.  

The second part of the unit focuses on the concept of Multiprocessor 
Systems, which is based on Multiple Instruction stream, Multiple 
Data stream (MIMD)design scheme. We will discuss about the 
different classification of multiprocessors – namely tightly coupled 
and loosely coupled. You will also learn about different 
interconnection structures between multiprocessors along with pros 
and cons of each of the structure. We will also discuss how cache 
memory is used in uniprocessor and multiprocessor systems to 
increase the performance along with the cache coherence problem. 
We will also look into different hardware and software-based 
solutions to the cache coherence problem.  

 

5.2 UNIT OBJECTIVES 

The objective of this unit is to give an introduction to advanced 
CPU architectures and multiprocessor systems. After completing 
this unit, you will be able to  

 Learn about the VLIW architecture and how it differs from 
the superscalars 

 Know the EPIC architectures and how it differs from VLIW 
 Learn the concept of multiprocessor systems and its types 
 Understand the different interconnection structures in 

multiprocessor systems with pros and cons. 
 Define cache coherence problem and its solutions. 

 

 



 

354 | P a g e  
 

Space for learners: 5.3 INTRODUCTION TO ADVANCED CPU  
ARCHITECTURES 

In the field of Computer Science, an abstract model of a computer 
system is defined by Instruction Set Architecture (ISA),also known 
as Computer Architecture. Implementation of ISA corresponds to 
the realization of ISA, such as CPU, registers, main memory, data 
types to be supported, etc. An ISA is like a contract between the set 
of microprocessor implementation of an architecture and the class of 
programs that are written for that architecture. ISA defines a basic 
set of operations that must be performed by the system and serves as 
boundary between hardware and software. The set of operations 
may include arithmetic, logical, branching and memory operations. 
The ISA provides details about how a machine code over the 
implementation of a particular instruction set architecture doesn’t 
depend on the prime characteristics of that implementation. Thus, it 
allows multiple implementations of ISA, which may differ in 
physical size, overall performance and prices, but can run the same 
machine code or software.  

 

5.3.1 Classification of Instruction Set Architectures: 

1. Complex Instruction Set Computer (CISC):In CISC 
architecture, there are hundreds of instructions or commands 
of variable lengths, that instructs the system to perform 
addition of numbers, storing and displaying results. This 
approach is carried out in order to save the memory since all 
instructions of same length will contribute to wastage of 
memory. Here, simple commands may require 8-bits and 
complex commands may require 120 bits. An 
implementation of CISC architecture is Intel x86, which was 
introduced in 1978. CISC provides convenient addressing 
modes and enables copying the block of instructions through 
support for functions using CALL instructions. Thus, in 
CISC, it is easy to expand the ISA. 
 

2. Reduced Instruction Set Computer (RISC): In RISC 
architecture, the computer system uses sets of instructions 
which are highly optimized and CPU design focuses on raw 
performance.  In contrast to CISC, RISC uses relatively 
simple, fixed length instructions of 32-bits. Although fixed 



 

355 | P a g e  
 

Space for learners: length instructions may mean more space wastage, however 
the instructions are faster & easier to execute. Moreover, in 
terms of CPU design perspective, RISC integrated chips 
requires a smaller number of transistors as compared to 
CISC, since RISC implementation deals with only handful 
types of instructions and delivers high performance. 
However, due to short instruction size, a greater number of 
instructions are executed compared to CISC, in order to 
accomplish a given function. Example of RISC architectures 
includes Sun Microsystem’s SPARC, IBM/Motorola’s 
PowerPC, Hewlett-Packard’s PA-RISC,SGI’s MIPS, ARM 
architecture, etc. In recent times, almost all low-end portable 
devices are based on ARM architecture, which includes most 
Android-based systems, Apple’s iPhone and iPads, 
Nintendo’s video gaming console Switch, Raspberry Pi and 
many more.  

Please note that the simplicity of RISC allows to easily design 
superscalar processor that can execute more than one command or 
instruction at a time. This concept is known as Instruction-level 
parallelism (ILP). In modern times, almost all CISC & RISC 
processors are superscalar in nature, however, this has introduced 
new levels of design complexity for CPU architects.  

 

 
 
 
 
 

 

 

 

 

Fig. 5.1. Classification of ILP Processor Architecture 

Now, there are two most significant types of ILP processors, namely 
Superscalar processors and Very Long Instruction Word (VLIW) 
processors. We have already come across superscalar processors, an 
implementation for ILP processor architectures in which programs 

CISC 

ILP 
Processor 

Architectur

Super Scaler Very Long Instruction 
Word 

RISC EPIC VLIW 



 

356 | P a g e  
 

Space for learners: doesn’t have any explicit information about parallel execution of 
instruction and it is the responsibility of the system hardware to 
detect and construct action plans for any ILPs to be exploited for 
parallelism. On the other hand, VLIW processors are built on an 
architecture in which programs contain explicit information about 
parallelism and it is the responsibility of the software, called 
compiler to identify and communicate it to the hardware by 
specifying all the independent operations. Thus, the hardware 
doesn’t have to check further on the operations which can execute in 
the same cycle, since the information is already provided by the 
compiler. Let’s explore VLIW architecture in details in next section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4 VLIW ARCHITECTURE 

In the early 1980s, John Fisher, a faculty from Yale University, 
invented the architectural concept and coined the term VLIW among 
his research group. He later joined HP Labs. VLIW refers to a 
processor architecture designed to take advantage of instruction-
level parallelism (ILP). It is less complex approach to allow higher 

CHECK YOUR PROGRESS-I 

1. An abstract model of a computer system is defined by 
___________________________ 

2. What type of operations are defined by an instruction set 
architecture? 

3. What are the different class of Superscalars based on 
Instruction Set Architecture?  

4. RISC stands for _______________________________ 

5. Give one example each for implementation of CISC and RISC 
architecture. 

State TRUE or FALSE: 

6. CISC uses simple, fixed length instructions. 

7. In RISC, CPU design focuses on raw performance and the 
instructions are highly optimized. 

8. Instruction-level parallelism is the ability of a processor to 
execute more than one instruction at a time. 



 

357 | P a g e  
 

Space for learners: performance i.e., multiple operations are performed simultaneously 
or level of parallelism increases.  

In VLIW Processor,  
 Instruction consists of multiple independent operations 

grouped together.  
 There are multiple independent functional units. 
 Each operation in the instruction is assigned to different 

functional units. 
 All functional units share the use of a common large register 

file. 

For example –  
ADD R1, R2; SUB R5, R6; LD R7, data; STR R8, data; 

In this example, there are four operations. ADD (Addition) and SUB 
(Subtraction) are arithmetic operations, which corresponds to 
Arithmetic & Logic Unit (ALU). Similarly, LD (Load) and STR 
(Store) are memory operations, which corresponds to Memory Unit 
(MU).  Here, we can see that independent operations are grouped 
together in a single instruction word. Now, the CPU will assign each 
of these operations to different independent functional units to 
execute the operations parallelly, thus to achieve instruction level 
parallelism (ILP) and higher performance. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.2 (a). A typical VLIW Processor 

Operation #1                Operation #2                            Operation #n-1         
Operation #n       

Single multi-operation 
instruction 

Register File 

Load/ 
Store 
Unit 
(FU) 

Floating 
Point 
Add 
Unit 

Integer 
ALU 

(FU) 

Branch 
Unit 

(FU) 

Instruction 
Fetch Unit 

  
 

 

Multi-operation 
 instruction 

(FU) Functional Unit 
Data 
Instruction/control 

Memory 
(Main/Cache) 



 

358 | P a g e  
 

Space for learners:  

 

 

Fig. 5.2 (b). A VLIW Instruction Format 

In VLIW Processor, compiler is responsible for static scheduling of 
instructions i.e., compiler finds out which operations can be 
executed in parallel in the program. Compiler groups together these 
independent operations in a single instruction (VLIW) which is the 
VLIW. It also makes sure that before the operands are ready, an 
operation is not issued. 

VLIW instruction contains operands & operations to be performed 
by the various functional units. One VLIW instruction encodes at 
least one operation for each functional (or execution) unit on each 
cycle. So, length of the instruction increases with the number of 
functional (or execution) units. For example, as we have seen earlier 
if we have two ALU and two Load/Store functional units in our 
VLIW architecture, then VLIW instructions length will be four. 
These operations are assigned to functional units by the position in 
the given fields within the long instruction word. This is known as 
slotting. 

 

 

 

 

 

 

 

 

 

 

 

 

 Load / Store   Floating-Point      Floating-Point            Branch                                Integer 
            Addition           Multiplication    ALU 
 

Stop to Consider 

 The instructions within a VLIW instruction are issued and 
executed in parallel.  

 Since in VLIW processor, one VLIW instruction word 
encodes multiple operations, which allows them to be 
initiated in a single clock cycle.  

 The start of execution of the operations is bound by the 
VLIW instruction in which it appears, and all the 
operations in a VLIW start executing together in parallel 

 VLIW instructions are at least around 64 bits wide and 
1024 wide in some architecture. 



 

359 | P a g e  
 

Space for learners: 5.4.1 Example of VLIW code: 

RISC Code VLIW Code 
MUL R1, R3, 3 
LD R4, 0(R1) 

ADD R2, R2, R4 
SUB R3, R3, 1 
BNEZ R3, -4 

MUL R1, R3, 3 
LD R4, 0(R1) 
NOP 
ADD R2, R2, R4 

SUB R3, R3, 1 
NOP 
NOP 
BNEZ R3, -4 

 
In the above example for RISC Code, content of Register R3 is 
multiplied by 3 and is stored in R1. The R4 is loaded with the data 
stored in the address that R1 contains. Then the content of registers 
R2 and R4 are added and stored in R2. The content is R3 acts as 
counter and is decremented by 1. BNEZ instruction is a conditional 
branch which checks if content of R3 is not equal zero and if the 
condition satisfies, the control is passed back to -4 instructions from 
the top i.e., to the MUL instruction at the beginning. In VLIW code, 
this sequence is divided by the compiler in such a way that similar 
task can be carried out parallelly on different execution or functional 
units to achieve high performance.  

5.4.2 Examples of VLIW Processors: 

 VLIW Mini Supercomputers – Multiflow TRACE 7/300, 
14/300 and 28/300 

 Single Chip VLIW Processors – Philip’s LIFE Chips 
 DSP Processors - Analog Devices’ SHARC DSP, Texas 

Instruments’ C6000 DSP family 
 Intel’s Itanium IA-64 EPIC (embedded & nonembedded) 
 TileraTILEPro 

 

5.4.3 Advantages of VLIW 

1. Compiler determines data dependency checks and other 
instruction issues; it becomes a lot simpler.  

2. Reduces hardware complexity 
3. Compiler is used to schedule according to functional units. 
4. Compiler issues instructions corresponding to the position of 

functional units.  
5. Ensures low power consumption due to reduction of 

hardware complexity. 
6. Increases potential clock rate. 



 

360 | P a g e  
 

Space for learners: 5.4.4 Disadvantages of VLIW 

1. Higher complexity of the compiler, which are hard to 
design.’ 

2. VLIW processors cannot react on dynamic or unscheduled 
events. It can work only on static instructions. Unscheduled 
events, for example a cache miss could lead to a stall which 
will stall the entire processor. 

3. Large memory bandwidth & more registers for software 
pipelining, etc. 

4. Increased program code size. 
5. The number of instructions in a VLIW instruction word is 

usually fixed. 
6. If issued bandwidth is not met, padding of VLIW instruction 

word is needed, which results in increase in code size. 
7. In case of un-filled opcodes in a VLIW, padding of VLIW 

instructions with No-Ops (No Operations) is required, for 
which there is waste of memory space and instruction 
bandwidth. 

5.4.5 Applications of VLIW Processors 

 It is suitable for Digital Signal Processing Applications. 
 It is used for tasks, which involves processing of media data, 

like compression /decompression of image and speech data.  
 

5.5 EPIC Architecture: 

Explicitly Parallel Instruction Computing (EPIC)is a term proposed 
by Hewlett Packard & Intel, which formed an alliance in early 90s 
for the research and implementation of Intel Itanium architecture 
(IA-64). In 2001, IA-64 was launched as a collection of 64-bit Intel 
Itanium microprocessors. Though the original ISA specifications 
were by HP, but it was later evolved and implement as a new 
processor micro architecture by Intel. 

5.5.1 EPIC vs VLIW 

EPIC is inspired by VLIW architecture at roots, so it permits 
execution of instructions in parallel using a compiler instead of 
complex circuits, which were earlier used to control instruction level 
parallelism (ILP). In contrast to VLIW, apart from identifying and 
grouping the independent operation in a single instruction, the 



 

361 | P a g e  
 

Space for learners: compiler communicates this via explicit information in the 
instruction set. That’s why EPIC is also known as “independence 
architecture” (Fisher & Rau). Unlike VLIW, EPIC retains backward 
compatibility across different implementations like superscalars, but 
doesn’t need any hardware for dependency checks like superscalars. 
EPIC is a mix of software & hardware, incorporating the advantages 
of both superscalars and VLIW architectures, while fixing several 
shortcomings of VLIW.  

1. VLIW instructions had a backward compatibility issue 
between wider and narrower implementations. Wider 
implementation uses greater number of execution units (EU), 
which also increases the size of an instruction since the 
number of operations to run in parallel also increases. Such a 
wider instruction set doesn’t work well with narrower 
implementations with lesser number of execution units. 

2. The static scheduling by the compiler for load instructions 
became quite difficult since memory operations need to 
work with several devices from memory hierarchy, like CPU 
cache memory and DRAM, which doesn’t have any 
deterministic delay for load responses. In other words, the 
compiler couldn’t predict the delay in response time 
efficiently for the load instructions using different memory 
technologies. 

So, although EPIC evolved from VLIW architecture, it tries to retain 
some properties from superscalar architecture. There are several 
additions to features of EPIC architecture in contrast of VLIW as 
discussed in next section. 

 

5.5.2 EPIC architectural details 

In EPIC architecture, we have a “bundle” of multiple software 
instructions. Each of these bundles includes a stop bit to indicate if 
there is some interdependencies between two subsequent bundles. 
The dependency information is calculated by the compiler. This 
information could help in issuance of multiple bundles in future 
implementations. Typically, a bundle is of 128 bits, with thee 41-bit 
instructions per bundle and only two bundles can be issued at once. 
For data prefetch, software prefetch instruction is used, which not 
only increases cache hit for load operation, but also indicates the 



 

362 | P a g e  
 

Space for learners: requirements of temporal locality in different cache levels. For these 
purpose, two types of load instructions, namely speculative load 
instruction and check load instructions are used in EPIC to bypass 
control and data dependencies. 

Moreover, EPIC follows a fully predicated instruction set 
architecture, that enables predicated execution, which decreases the 
occurrence of branching and increase speculative execution of 
instructions.   

 

 

 

 

 

 

 

 

 Speculation: 
“Speculative execution is an optimization technique where a 
computer system performs some tasks that may not be 
needed. Work is done before it is known whether it is 
actually needed, so as to prevent a delay that would have to 
be incurred by doing the work after it is known that it is 
needed. If it turns out the work was not needed after all, 
most changes made by the work are reverted and the results 
are ignored. The objective is to provide more concurrency if 
extra resources are available. This approach is employed in a 
variety of areas, including branch prediction in pipelined 
processors, value prediction for exploiting value locality, 
prefetching memory and files, etc.” – Speculation (on 
Wikipedia) 

 Register renaming: 

Register renaming is a technique of managing data 
dependencies between the instructions in the pipeline by 
renaming the register operands. 

Stop to Consider 

 Predication: 
“In computer science, Predication is an architectural 
feature that provides alternative to conditional transfer 
of control, implemented by machine instructions such as 
conditional jump, conditional call, conditional return and 
branch tables. It means if a register condition bit is set, 
the instruction is executed; if the bit is clear, it is not.” – 
Predication (on Wikipedia) 
 



 

363 | P a g e  
 

Space for learners: In this architecture, the register files are very large and there are 
wide range of registers at disposal to avoid register renaming. 
Registers include 128 integer and floating-point registers, 128 
additional registers for loop unrolling & optimization, 8 indirect 
branch registers and other miscellaneous registers. Moreover, 
predication (or multi-way branch instruction) improves the 
prediction of branch instruction by combining branches as alternate 
instruction in one bundle. 

Lastly, let us revise the difference between Superscalars, EPIC & 
VLIW. 

 Grouping of 
instructions 
(Checking 

dependencies 
between 

instructions to 
find group able 
instructions for 

parallel 
execution) 

Assigning of 
functional unit 

 
(Assigning 

instructions to 
the functional 
or execution 
units of the 
hardware) 

Initiation of 
execution 

 
(Determining 

when the 
execution starts 
or instructions 
are initiated) 

Superscalar Hardware Hardware Hardware 
EPIC Compiler Hardware Hardware 
VLIW Compiler Compiler Compiler 

 

 

 

 

 

 

 

 

 

 

 

CHECK YOUR PROGRESS-II 

9. EPIC stands for___________________________ 
10. The first implementation of EPIC architecture is ___________ 
family of processors. 
11. In VLIW, _________issues instructions corresponding to the 
position of functional units. 
12. EPIC is developed as a joint collaboration between 
____________________________ 
13.EPIC follows a fully _____________ instruction set 
architecture 
State TRUE or FALSE: 
14. VLIW is inspired by EPIC architecture  
15. In EPIC, the functional units are assigned by compiler. 



 

364 | P a g e  
 

Space for learners: 5.6 INTRODUCTION TO MULTIPROCESSOR  
SYSTEMS 

A multiprocessor system is a computer system with more than one 
processor (typically two or more), where each processor is linked 
with one another. The connection between these processors is 
known interconnection network. The primary focus of a 
multiprocessor system is to achieve parallel processing, which 
enhances the overall performance. Apart from high performance, the 
multiprocessor system focusses on – 

1. Fault Tolerance and graceful degradation: These systems 
have high fault tolerance since multiple processors are at 
play. In case of system failure, the system can continue to 
run in low power, until it stops completely.  

2. Scalability and modular growth: The number of processors, 
memory units, etc. can be added or removed at any point of 
time. This modularity allows for scalable enhancements in 
future.  

Multiprocessor system falls under MIMD architecture. It isone of 
the types of parallelism as per Flynn’s classification of computer 
organization. The MIMD refers to multiple control units and 
multiple execution units or processors.  There are multiple 
instruction and data steams as shown in figure below. 

 

 

  

 

 

 

 

 

 

 

Fig. 5.3. MIMD with shared memory 

Shared Memory 

CU CU 

PR PR 

Instruction 
Streams 

Data Streams 



 

365 | P a g e  
 

Space for learners:  

 

 

 

 

 

 In multiprocessor systems, there is a single operating system, 
which provides interaction between processors and all the 
components of the system cooperate in the solution of a 
problem. 

 In multicomputer system, each computer has a separate 
operating system, however these computers work together as 
a single entity. 

 

5.6.1 Classification of Multiprocessors 

The following figure shows different types of multiprocessors. They 
are primarily divided into two-types: tightly coupled system and 
loosely coupled system. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.4 Classification of Multiprocessors 

Multiprocessor 
Architecture 

Tightly coupled Lightly coupled 

Stop to Consider 

 Please note that multiprocessor and multicomputer 
systems may sound similar, but there exists an important 
difference. 

 Both of them support concurrent operations, but a 
multicomputer system is a system with multiple 
computers and a multiprocessor system is a system with 
multiple processors. 

Shared Memory Distributed Memory 

UMA NUMA CLUSTER 



 

366 | P a g e  
 

Space for learners: A tightly coupled multiprocessor, also known as shared memory 
multiprocessor system, share information between multiple 
processors via a shared or global memory. Here, all processors share 
a single memory address space and communicate among themselves 
through shared variable in memory. Each of the processors can 
access any location in the shared memory. Apart from shared 
memory, each processor can also have a dedicated local memory 
which other processors cannot access. Please note that all the 
processors in the multiprocessors system communicate to perform 
tasks in a highly synchronized fashion.  

 

 

 

 

 

 

 

 

 

 

Fig. 5.5 Tightly coupled multiprocessor system 

In tightly-coupled multiprocessors, we have Uniform Memory 
Access (UMA). In a UMA multi-processor system, the access time 
of memory is equal for all the processors irrespective of which 
processor accesses which portion of the common memory. Although 
the access time of memory is almost equal, the memory access in 
UMA is bit slow due to the use of a single memory controller. We 
also have Symmetric Multiprocessor (SMP) system, which is an 
UMA multi-processor system with identical, homogenous 
processors, which are capable of performing similar functions and 
utilizes a centralised shared main memory.  

There is also another type of tightly-coupled multi-processor system 
known as Non-Uniform Memory Access (NUMA) system. In 
NUMA multi-processor systems, the memory area is virtually 

Interconnection Network 

PR1 PR2 PRn 

MM MM 

Global Main Memory 



 

367 | P a g e  
 

Space for learners: divided into faster access area and slower access area. The faster 
access areas are assigned to the processors and the slower common 
area is used for the exchange of data. Several memory controllers 
are used for this purpose for allowing local faster memories to be 
used as actual main memories. This enables NUMA to manage 
workloads to achieve higher performance than UMA multi-
processor systems. These systems are also known as Distributed 
Shared Memory (DSM). In DSM multiprocessor system, the 
processors have a shared address space for all the memories.  

A loosely coupled multiprocessor system, also known as the 
distributed memory multi-processor system, doesn’t share 
information between multiple processors via a shared memory, since 
each processor has its local dedicated memory, which together 
forms a distributed memory. Please note that all the processors in 
the multiprocessors system do not communicate to perform tasks in 
a highly synchronized fashion. Processors communicate and share 
explicit information among each other using a common message 
passing protocol via interconnection network, for which the 
overhead of data exchange is high. 

 

 

 

 

 

 

 

 

 

 

Fig. 5.6 Loosely coupled multiprocessor system 

The loosely coupled multiprocessor system has physically 
distributed memories like in the case of cluster. A cluster consists of 
a set of computers connected over a local area network (LAN) 
which function as a single large multiprocessor.  In the cluster 

Interconnection Network 

PR1 PR2 PRn 

MM1 MMn 

Local Private Memory 

MM2 



 

368 | P a g e  
 

Space for learners: system, there is no sharing of address space and each cluster node 
works together, although it can also work independently. Since a 
cluster act like a multiprocessor, it can provide the benefits of 
multiprocessor system along with additional benefits like load 
sharing and better fault tolerance. 

 

 

 

 

 

 

 

 

 

5.7 INTERCONNECTION TYPES 

In multiprocessor systems, the components like CPU and I/O Ports 
are connected to I/O devices and a memory unit, which can be 
shared or distributed in nature. The interconnection between the 
components be of different physical configurations, described as 
follows: 

a) Time-Shared Common Bus Structure: 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 5.7 Time-shared common bus structure 

System 
bus 

controller 

CPU Local 
Memor

y 

IOP 

Local Bus 

System 
bus 

controller 
CPU Local 

Memor
y 

IOP 

Local Bus 

System 
bus 

controller 
CPU Local 

Memor
y 

IOP 

Local Bus 

Common 
Shared 

Memory 

System Bus System Bus 

Stop to Consider 

 Tightly-coupled multiprocessor systems use a shared memory 
(can be a virtually distributed shared memory) and Loosely-
coupled multiprocessor systems use physically dedicated 
distributed memory.  

 In literature, the terms UMA and SMP are used 
interchangeably, since access to shared memory is balanced 
in both the cases. 

 NUMA can be considered as a tightly coupled form of 
cluster. 

 Cluster is not same as a Computer Network. The primary 
objective of a computer network is resource sharing but for 
Cluster, it is parallel computing. 



 

369 | P a g e  
 

Space for learners: In this structure, all the processors in the microprocessor system are 
connected to shared memory and other common resources using a 
common interconnecting path, called as common system bus. In this 
structure, only one processor out of others can communicate with 
the shared memory or any other processor over the system bus at a 
given time, thus time-shared. Each processor can also have a local 
bus to communicate with its local memory and local I/O. The 
benefit of this is while one processor is working on system bus, 
other processors can communicate with local memory and local I/O 
through local bus. Please note that a part of local memory can be 
designed as cache and can be attached to CPU to reduce the average 
access time of the local memory. 

Pros 
1. The design is simple due to the use of single common 

system bus. 
2. It is a cheap and affordable structure. 
 
Cons 
1. Since only one processor at a time can transfer or 

communicate over the system bus, the communication is 
quite slow. It means when one processor is accessing the 
shared memory using the bus, others can’t perform any 
other operation using the bus.  
 

b) Multiport Memory Structure: 
In this structure, the system has separate buses between each 
memory module and the processors. For example, if we have 
4 processors and 4 memory modules, then each memory 
module will have 4 ports each connecting to each of the 
processor bus. The processor bus consists of data, address 
and control lines. Each of the memory module has an 
internal control or priority logic to determine which 
processor request will be granted i.e., which port will have 
access to memory module at a given time, when there is a 
conflict of simultaneous requests from multiple processors in 
the system. Generally, a fixed priority is assigned to each 
memory ports to avoid memory access conflicts. Moreover, 
each processor is associated with a priority of the memory 
access, which is determined by the physical position of the 
port that the processor bus occupies in each module. So, 
processor P1 will have the highest priority and priority of the 
processor P4 will be the lowest. 



 

370 | P a g e  
 

Space for learners:  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.8 Multiport memory structure 

Pros 
1. Due to multiple paths between the processors and 

memory modules, multiple processors can 
simultaneously access the memory, thus, high transfer 
rate can be achieved through this organization. 
 
 

Cons 
1. It requires a huge number of interconnecting cables to 

connect all the processors with memory modules. Thus, 
it is suitable for systems with small number of 
processors.  

2. It also requires large hardware in memory modules in the 
form of memory control logic, which is very expensive 
in cost.  

 
c) Crossbar Switch Structure: 

In this structure, a number of crosspoints are placed at the 
intersection of memory paths and processor buses. At each 
crosspoint, there is a control logic to set the desired path 
between a memory module and a processor. This control 
logic is basically a switch, which is an electronic circuit. A 
switch can also resolve the conflict of simultaneous requests 
from multiple processors to access same memory module in 
the system based on a fixed priority basis. The following 
figure shows a crossbar switch interconnection for a system 
with 4 processors and 4 memory modules with 16 switches 
represented by small-squares marked by S1 to S16. 

MM2 MM3 MM4 

Memory Modules 

MM1 

P1 

P1 

P3 

P4 

Multi
ple 
Proces
sors 



 

371 | P a g e  
 

Space for learners:  
 
 
 
 
 
 
 
 
 
 

 

Fig. 5.9 Crossbar switch structure 

Pros 
1. Since there exists a separate path associated with each 

memory module, simultaneous transfer from all memory 
module is possible. 

Cons 
1. The entire connection here relies on switches. So, if large 

number of processors are present, then the design & 
implementation of switch requires large hardware and 
becomes complex. 

d) Multistage Switching Network Structure 
In this structure, we use a switch which can interchange two-
inputs, two-outputs, in contrast to that of crossbar switches, 
which allows one stage of electronic switches – either input 
or output - to determine the path between multiple 
processors and multiple memory modules. Hence the name, 
multistage switching network since it allows to build 
different possible stages for different combination of inputs 
& outputs.  Let us take the example of 2 x 2 interchange 
switch, which has 2 inputs – X & Y and 2 outputs – 0 and 1. 
 
 
 
 

X is connected to 0  X is connected 
to 1 

 
 

Y is connected to 0   Y is connected to 1 

                       Fig. 5.10 Interchange switch states 

MM2 MM3 MM4 

Memory Modules 

MM1 

P1 

P1 

P3 

P4 

Multiple 
Processors 

S1 S2                 S3                      S4 

S5 S6 S7 S8 

S9 S10 S11 S12 

S13 S14 S15 S16 

 X    0 

Y    1 
 X    0 

Y    1 

 X    0 

Y    1 
 X    0 

Y    1 



 

372 | P a g e  
 

Space for learners: You can see that how four different states are possible in a 
single switch. Now, in place of X & Y, if we have two 
processors connected say P1 and P2, then we can have 
definite control to reach a particular memory module from a 
processor. These interchange switches allow to connect a 
source to a destination through multiple stages using a 
control logic. 
A very popular topology is called omega switching network 
which allows exactly one path from each source to any 
particular destination. Simultaneous connections by two 
sources to two destinations connected to same switch is 
prohibited. 

 

 

 

 

 

 

 

Fig. 5.11 An 8 x 8 Omega Multistage Switching Network 

Pros: 
1. The structure is cost effective since we can connect 

multiple sources to multiple destinations with less 
amount of wiring compared to crossbar switch structure. 

Cons: 
1. There is a restriction on the number of simultaneous 

connections, since simultaneous connections by two 
sources to two destinations connected to same switch is 
prohibited. 

e) Hypercube Network Structure 
In this structure, a loosely coupled system is realized with 
the help of a concept called hypercube. A hypercube 
structure is comprised of N = 2n numbers of processors 
interconnected to each other in a N-dimensional cube. This 
structure is also known as a binary N-node multiprocessor  
structure. A node of the cube is represented by a processor 
and an edge of the cube is a communication path connection 
two nodes. Moreover, there exists dedicated paths or edges 
for a processor to communicate with the neighbouring nodes.  
 
 

P1 
P2 

P3 
P4 

P5 
P6 

P7 
P8 

MM1 
MM2 

MM3 
MM4 

MM5 
MM6 

MM7 
MM8 

Stage 1  Stage 2  Stage 3 



 

373 | P a g e  
 

Space for learners:  
 
 
 
 
 
 
 

 

 

Fig.5.12 Hypercube structures 

Pros: 
1. It is easy to scale the current network to higher 

configurations simply by increasing the value of n which 
is the dimension of the cube. 

2. Since it is a loosely coupled system, intelligent 
communication protocols could be easily implemented.  

 
Cons: 
1. The multiple paths between processors increases the 

routing complexity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P2 

 

 

P1 

P2     P4 

 

 

P1     P3 

P3     P6 

 

 

P1     P5 

P4     P8 

 

 

P2     P7 

n=1, N=2 
Binary two-node 

cube 
(One Dimensional) 

n=2, N=4 
Binary four-node 

cube 
(Two Dimensional) 

n=3, N=3 
Binary 8-node cube 
(Three Dimensional) 

CHECK YOUR PROGRESS-III 

16. MIMD stands for_____________________________ 

17. Uniform Memory Access corresponds to ______________ 
multiprocessors and Clusters corresponds to ______________ 
multiprocessors. 

18. A hypercube contains ________ numbers of processors.  

State TRUE or FALSE: 

19. In multistage switching network, an interchange switch has 
two-inputs, two-outputs. 

20. In multiport memory structure with 3 processors, one 
memory module will have 3 ports connecting to each processor. 



 

374 | P a g e  
 

Space for learners: 5.8 CACHE MEMORY: UNIPROCESSOR VS 
MULTIPROCESSOR 

A cache memory is a faster memory which sits in between a 
processor and main memory. Its primary role is to reduce the 
average access time for a particular data. In a system without a 
cache memory, the processor might have to higher access time given 
that the access to a particular data is needed on consecutive 
execution of instructions. The cache tends to hold those data in itself 
which has high probability of being asked by processor in next 
cycle. Also note that cache is also realised as a random-access 
memory, so the time taken to access any part of cache is almost 
same. Both this factor makes cache memory quite efficient solution 
to reduce the average access time. 

In a system with single processor, the read and write operation on 
cache works as follows. During a read operation, a word from cache 
line is sent to the processor, the main memory is not involved in the 
transfer. During the write operation, two widely-used policies – 
write back and write through – are used. In write back, the cache 
memory is regularly updated after every write operation and all the 
changes made in cache are marked and is updated on main memory 
later. On the other hand, in write through, the cache and the main 
memory are updated simultaneously.  

However, in a multiprocessor system, we can have a common 
shared main memory among all the processors. Each processor can 
also have local cache memory in order to reduce the average access 
time on an instruction cycle time. We already know for a processor 
writes its cache memory during a write operation. During the 
execution of an instruction, if any processor locally writes its cache, 
the new values must be made available to the all the other 
processors to maintain the consistency of the system. In case if the 
new value is not updated in common shared memory, then the other 
processors will receive and use the old values in their cache, which 
should not be allowed. Thus, when any of the processor makes 
modification in its cache,  

a. All the other processors should either update their cache with 
the new modified value, or 

b. Mark the old data in their cache as invalid. 

 

 

 

 

Stop to Consider 

 In a uniprocessor system, the main memory is for use by a 
single processor. In multiprocessor, the main memory is 
shared among all the processors.  

 Each processor has its own cache memory and can 
incorporate either write through or write back policy to 
update its own cache. 



 

375 | P a g e  
 

Space for learners: 5.8.1 Cache Coherence Problem: 

Cache coherence is a condition which states that all the cache lines 
with a particular shared main memory block must contain same 
information at any given point of time. This ensures that a 
multiprocessor system can perform memory operation correctly, by 
keeping identical multiple copies of information in the caches of the 
processors involved in execution of a particular instruction. Cache 
coherence problem occurs when cache coherence is not maintained, 
i.e., a processor updates its cache and other processors doesn’t get 
an updated copy of newly modified data in their cache. This 
hampers the uniformity of data in all the caches of processors. 
Cache coherence problem happens in a multiprocessor system, since 
multiple processor access and works on non-identical multiple 
copies of data. Now as the cache coherence problem has been 
discussed, let’s see the solutions for this problem. 

 

 

 

 

 

 

 

 

Fig. 5.13 Cache configuration after variable X = 10 is loaded from 
Main Memory  

 

 

 

 

 

 

 

Fig. 5.14 Write-through policy. Modified value X=50 in Cache & 
Main Memory 

X = 10 

P1 

X = 10 

P2 

X = 10 

P3 

X = 10 Main Memory 

Caches 

Processors 

Bus 

X = 50 

P1 

X = 10 

P2 

X = 10 

P3 

X = 50 Main Memory 

Caches 

Processors 

Bus 

Caches are 
incoherent 

Caches are 
coherent 



 

376 | P a g e  
 

Space for learners:  

 

 

 

 

 

 

Fig. 5.15 Write-back policy. Modified value X=50 only in Cache, 
MM to be updated later.  

5.8.2. The “All-is-well” Solution: 

One of simple scheme can be to restrict the association of local 
caches for each processor and force them to use a shared cache 
memory instead. However, this simply overshadows the idea of 
having cache memory close to the processor, since a common cache 
will increase the average access time as compared to local cache. 
Thus, this scheme simply ignores cache coherence problem. 

Considering the significance of performance, it is better to allow 
local caches in each processor and move towards more practical 
software & hardware solutions. 

 

5.8.3. Software-based solutions: 

The compiler is used to analyse the source code as the object code is 
generated in order to identify the parts of the program which uses 
shared items. These writable shared items are marked with a tag as 
non-cacheable, i.e., processors cannot write non-cacheable data into 
their local caches and have to access it directly from main memory 
for both read and write operations. A shared item can be identified 
by the processors using the tags associated with it. This is cheap to 
implement and can be achieved during the compilation process. 
However, it increases the average access time since during 
execution of an instruction, the processors have to access the main 
memory instead of their local caches. It is also an extra overhead on 
the software which also affects the system’s performance. Please 
note that the program also uses non-sharable and read-only items, 

X = 50 

P1 

X = 10 

P2 

X = 10 

P3 

X = 50 Main Memory 

Caches 

Processors 

Bus 

Caches are 
incoherent 



 

377 | P a g e  
 

Space for learners: 

Stop to Consider 

 The all-is-well approach is not a viable solution for cache 
coherence solution, since a common cache memory in 
multiprocessor system decreases performance. 

 The software-based solutions for cache coherence problem 
are cheap but slow. 

 The hardware-based solutions for cache coherence 
problems are costly but fast. 

which are marked as cacheable i.e., these data are allowed to be 
stored in the local cache of the processor. Only non-cacheable items 
remain in main memory. 

 

 

 

 

 

 

 

5.8.4. Hardware Solutions:  

1. Cache Snooping Protocol: 

Here, a bus controller is assigned to each processor, which monitors 
the write operations on the bus by other processors. This bus 
controller is known as snoopy cache controller. The snoopy cache 
controller is responsible to identify if a shared item is being 
modified by any processor and ensures that all other cache 
controllers have the most recent updated copy of the shared item to 
avoid the usage of outdated information from their caches. There are 
two methods as discussed below, which can either be followed as a 
snooping cache protocol.  

a) Write-update protocol (or Write-broadcast protocol):  
In this protocol, whenever a processor writes to a shared 
item in its cache, it broadcasts to all the other cache 
controllers about the updated value of the shared item 
through the system bus. All the cache controllers update 
their local cache accordingly. This scheme makes the update 
value readily available in caches of other processors, thus 
consumes more bandwidth in terms of memory. A solution 
to this over consumption of memory bandwidth is to keep 
tracks of the shared items to avoid unnecessary re-
broadcasts. An example of write-update protocol is Firefly 
Protocol, which is used by SPARC center 2000. 
 

b) Write-invalidate protocol: 



 

378 | P a g e  
 

Space for learners: In this protocol, whenever a processor (let’s say P1) writes 
into a shared item (word) in its cache, it informs all the other 
cache controller about the location (let’s say 3000) of the 
updated word in its cache. All the cache controllers’ snoops 
on the bus for write operation. They will check if they have a 
copy of the word which has been overwritten by P1. If yes, 
then they mark the location of that word in their cache as 
invalid for future reference and removes the word from their 
caches. Afterwards, whenever another processor (let’s say 
P2) tries to access the invalid word (which was a copy of the 
word from location 3000), it will result in a cache miss and 
any one of the following operations will 

i. If the cache follows write-through policy, then the 
updated item will be transferred to processor P2 from 
the main memory. Here, the updated item will be 
available in both - cache memory of processor P1 and 
main memory, but main memory is the preferred 
choice in an event of cache miss. 

ii. If the cache follows write-back policy, then the 
updated item will be transferred from the cache 
memory of Processor P1 to Processor P2 via main 
memory, since at any time, the latest value of the 
word will only be available in cache of P1 and will 
be updated in main memory later.   

An example of write-invalidate protocol is MESI protocol 
(Modified Exclusive Shared Invalid), which is used by Intel 
Pentium 4 and PowerPC. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5.16 Cache Snooping Protocol 

Dirty 

Cache Tag
s 

Processor 

Sno
op 
H/
W 

Cache Ta
gs 

Processor 

Sno
op 
H/
W 

Cache Tag
s 

Processor 

Sno
op 
H/
W 

Memory Address/Data 



 

379 | P a g e  
 

Space for learners:  
2. Directory Protocol: 

Here, a centralized approach is considered by maintaining a 
directory in the main memory. We define one directory per cache to 
keep track of state (or information) of every block of main memory 
present in that cache. In other words, the information in a directory 
is about the cache memories of processors containing same block 
from main memory and the state of the block - either valid or 
invalid. In order to prevent bottleneck in a directory, the entries in 
the directory can be distributed.  

Whenever an information in the cache is modified by a processor, it 
the responsibility of the directory controller to check the directory 
and identify the affected processors. Then the affected processor 
receives an explicit information from the directory controller about 
the appropriate action to be taken in order to avoid any incoherency 
in cache. 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.17 Distributed Directory Protocol 

 

 

 

 

Processors 

Processors 

Interconnection Network 

Cache 

P1 

DirectorMain 

Cache 

P2 

Directory Main 

Main 

Cache 

P4 

Directory Main 

Cache 

P3 

Directory 



 

380 | P a g e  
 

Space for learners:  

5.9 SUMMING UP 

 Instruction Set Architecture (ISA) defines a basic set of 
operations - like arithmetic, logical, branching and memory 
operations, that must be performed by the system and also 
provides details about how a machine code doesn’t depend 
on the prime characteristics of the implementation of a 
particular ISA. Based on architectural complexity, ISA can 
be classified into CISC and RISC. 

 CISC stands for Complex Instruction Set Computer. This 
approach attempts to reduce the number of instructions per 
program. In order to do so, the number of cycles per 
instruction increases. CISC takes several clock cycles to 
execute instruction. In CISC architecture, the instructions are 
of variable lengths (from 8-bits to 120-bits) 

 RISC stands for Reduced Instruction Set Computer. This 
approach is needed to minimize the cycles per instruction. In 
order to do so, the number of instructions per program 
increases. RISC takes single clock cycle to execute an 
instruction In RISC architecture, the instructions are of fixed 
lengths (32-bits) 

 In modern times, almost all CISC & RISC processors are 
superscalar in nature. Superscalar is an implementation for 
ILP processor architectures in which programs doesn’t have 
any explicit information about parallel execution of 
instruction and it is the responsibility of the system hardware 
to detect and construct action plans for any ILPs to be 
exploited for parallelism. 

 VLIW processors are built on an architecture in which 
programs contain explicit information about parallelism and 
it is the responsibility of the software, called compiler to 
identify and communicate it to the hardware by specifying 
all the independent operations. 

 In VLIW Processor, Instruction consists of multiple 
independent operations grouped together. There are multiple 
independent functional units. Each operation in the 
instruction is assigned to different functional units. All 
functional units share the use of a common large register file. 



 

381 | P a g e  
 

Space for learners:  One VLIW instruction encodes at least one operation for 
each functional unit on each cycle. So, length of the 
instruction increases with the number of functional units. 
These operations are assigned to functional units by the 
position in the given fields within the long instruction word. 
This is known as slotting. 

 EPIC stands for Explicitly Parallel Instruction Computing 
and is implemented by Hewlett Packard & Intel as Intel 
Itanium architecture (IA-64). EPIC is a mix of software & 
hardware, incorporating the advantages of both superscalars 
and VLIW architectures.  

 Like VLIW, EPIC it permits execution of instructions in 
parallel using a compiler. However, in EPIC apart from 
identifying and grouping the independent operation in a 
single instruction, the compiler communicates this via 
explicit information in the instruction set. That’s why EPIC 
is also known as “independence architecture”.  

 Unlike VLIW, EPIC retains backward compatibility across 
different implementations like superscalars, but doesn’t need 
any hardware for dependency checks like superscalars.  

 A multiprocessor system is a computer system with more 
than one processor (typically two or more), where each 
processor is linked with one another via interconnection 
network. The focus of a multiprocessor system is to achieve 
parallel processing, Fault Tolerance, graceful degradation, 
scalability and modular growth. Multiprocessor system falls 
under MIMD architecture (Multiple Instruction stream, 
Multiple Data stream). They are primarily divided into two-
types: tightly coupled system and loosely coupled system. 

 A tightly coupled multiprocessor, also known as shared 
memory multiprocessor system, share information between 
multiple processors via a shared or global memory. Example 
of tightly-coupled multiprocessor system - Unform Memory 
Access (UMA) and Non-Uniform Memory Access (NUMA). 
Symmetric Multiprocessor (SMP) system is an UMA multi-
processor system with identical, homogenous processors, 
which are capable of performing similar functions and 
utilizes a centralised shared main memory. 

 A loosely coupled multiprocessor system, also known as the 
distributed memory multi-processor system, doesn’t share 
information between multiple processors via a shared 



 

382 | P a g e  
 

Space for learners: memory, since each processor has its local dedicated 
memory, which together forms a distributed memory. 
Example of loosely-coupled multiprocessor system - 
Clusters. A cluster consists of a set of computers connected 
over a local area network (LAN) which function as a single 
large multiprocessor.  

 In multiprocessor systems, the components like CPU and I/O 
Ports are connected to I/O devices and a memory unit, which 
can be shared or distributed in nature. The interconnection 
between the components be of different physical 
configurations - Time-Shared Common Bus, Multiport 
Memory, Crossbar Switch, Multistage Switching Network, 
Hypercube Network 

 In time-shared common bus structure, all the processors in 
the microprocessor system are connected to shared memory 
and other common resources using a common 
interconnecting path, called as common system bus. Only 
one processor at a time can communicate over the bus. The 
design is simple due to the use of single common system 
bus. It is a cheap and affordable structure. Since only one 
processor at a time can transfer or communicate over the 
system bus, the communication is quite slow. 

 In multiport memory structure, the system has separate buses 
between each memory module and the processors. Each of 
the memory module has an priority logic to resolve conflict 
of simultaneous requests from multiple processors. A fixed 
priority is assigned to each memory ports to avoid memory 
access conflicts. Due to multiple paths between the 
processors and memory modules, multiple processors can 
simultaneously access the memory with high transfer rate. 
But it is expensive in cost due to huge interconnecting cables 
requirements. 

 In crossbar switch structure, a number of crosspoints are 
placed at the intersection of memory paths and processor 
buses. At each crosspoint, there is a control logic to set the 
desired path between a memory module and a processor. 
This control logic is basically a switch, which is an 
electronic circuit. A switch can also resolve the conflict of 
simultaneous requests from multiple processors to access 
same memory module in the system based on a fixed priority 
basis. 



 

383 | P a g e  
 

Space for learners:  In multistage switching network structure, we use a switch 
which can interchange two-inputs, two-outputs to determine 
the path between multiple processors and multiple memory 
modules. Hence the name, multistage switching network 
since it allows to build different possible stages for different 
combination of inputs & outputs. A very popular topology is 
called omega switching network which allows exactly one 
path from each source to any particular destination. The 
structure is cost effective since we can connect multiple 
sources to multiple destinations with less amount of wiring. 
But there is a restriction on the number of simultaneous 
connections to two destinations connected to same switch is 
prohibited. 

 In hypercube structure, a loosely coupled system comprised 
of N = 2n numbers of processors are interconnected to each 
other in a N-dimensional cube. A node of the cube is 
represented by a processor and an edge of the cube is a 
communication path connection two nodes. The advantage 
of hypercube is that is easy to scale the current network to 
higher configurations and intelligent communication 
protocols could be easily implemented. However, the 
multiple paths between processors increases the routing 
complexity. 

 Cache coherence is a condition which states that all the 
cache lines with a particular shared main memory block 
must contain same information at any given point of time. 
This ensures that a multiprocessor system can perform 
memory operation correctly, by keeping identical multiple 
copies of information in the caches of the processors 
involved in execution of a particular instruction.  

 Cache coherence problem occurs when cache coherence is 
not maintained, i.e., a processor updates its cache and other 
processors doesn’t get an updated copy of newly modified 
data in their cache. This hampers the uniformity of data in all 
the caches of processors. Cache coherence problem happens 
in a multiprocessor system, since multiple processor access 
and works on non-identical multiple copies of data. 

 All-is-well approach One of simple scheme can be to restrict 
the association of local caches for each processor and force 



 

384 | P a g e  
 

Space for learners: them to use a shared cache memory. This scheme simply 
ignores cache coherence problem and moreover increases 
average access time. 

 In software-based solution, the compiler is used to mark data 
as cacheable and non-cacheable. The cacheable items are 
allowed to be stored in the local cache of the processor but 
the non-cacheable items can't be stored in cache and remain 
in main memory. All the non-sharable & read-only items are 
tagged as cacheable and the writable shared items are tagged 
as non-cacheable. 

 The cache snooping protocol is a hardware-based solution. 
Here a bus controller is assigned to each processor, which 
monitors the write operations on the bus by other processors. 
This bus controller is known as snoopy cache controller. The 
snoopy cache controller is responsible to identify if a shared 
item is being modified by any processor and ensures that all 
other cache controllers have the most recent updated copy of 
the shared item to avoid the usage of outdated information 
from their caches. There is two ways to implement this 
protocol - write-update protocol (or Write-broadcast 
protocol) and write-invalidate protocol. 

 In write-update/write-broadcast protocol, whenever a 
processor writes to a shared item in its cache, it broadcasts 
all the other cache controllers about the updated value of the 
shared item through the system bus. All the cache controllers 
update their local cache accordingly. 

 In write-invalidate protocol, whenever a processor writes 
into a shared word in its cache, it informs all the other cache 
controller about the location of the updated word in its 
cache. All the cache controllers’ checks if they have a copy 
of that old word. If yes, then they mark the location of that 
word in their cache as invalid for future reference and 
removes the word from their caches. Afterwards, whenever 
another processor tries to access the invalid word, there will 
be cache miss and actions will be taken depending on 
whether write-back or write-through policy is followed. 

 Directory Protocol is also a hardware solution for cache 
coherence problem. Here, a centralized approach is 
considered by maintaining a directory in the main memory. 



 

385 | P a g e  
 

Space for learners: We define one directory per cache to keep track of state 
(either valid or invalid) of every block of main memory 
present in that cache. The entries in the directory can be 
distributed. A central memory controller checks the directory 
to find affected processors in case of any modification of 
shared data in its cache by a processor and sends explicit 
instruction to the affected processors to avoid cache 
incoherence.  

 

5.10 ANSWERS TO CHECK YOUR PROGRESS 

1. Instruction Set Architecture 
2. The set of operation defined by instruction set architecture 

may include arithmetic, logical, branching and memory 
operations. 

3. RISC & CISC 
4. Reduced Instruction Set Computer 
5. Example of CISC: Intel x86, Example of RISC: ARM 
6. False 
7. True 
8. True 
9. Explicitly Parallel Instruction Computing 
10. Intel Itanium 
11. Compiler 
12. Hewlett Packard (HP) & Intel 
13. Predicated 
14. False 
15. False 
16. Multiple Instruction stream, Multiple Data stream 
17. Tightly-coupled, Loosely-coupled 
18. 2n 
19. True 
20. True 

 

5.11  POSSIBLE QUESTIONS 

1. What is instruction-set architecture? Why is it important?  
2. Explain the different types of ISAs. 
3. Define Instruction-level parallelism (ILP). How VLIW takes 

advantage of ILP? 



 

386 | P a g e  
 

Space for learners: 4. Explain the VLIW architecture and the instruction format. 
5. State the advantages, disadvantages and applications of 

VLIW architecture. 
6. What is EPIC? How does it differ from VLIW? 
7. Write a short note of EPIC architecture. 
8. Explain in brief about multiprocessor system. How does it 

differ from multicomputer system? 
9. Differentiate between tightly-coupled and loosely-coupled 

microprocessor 
10. How does uniform memory access differ from non-uniform 

memory access? 
11. Explain in brief about different interconnection structures in 

multiprocessor systems. 
12. What is the difference between the cross-switch and 

multistage-switch?  
13. What are the two widely-used policies of cache write 

operation? 
14. What is the software-based approach to solve the cache 

coherence problem? 
15. Write a short note of hardware-based solutions for cache 

coherence problem. 
 

5.12   REFERENCES AND SUGGESTED READINGS 

1. Mano, M. Morris. Computer System Architecture, 3E.  Pearson 
Education India, 2007. 

2. Govindarajalu, B. Comp Arch and Org, 2E. Tata McGraw-Hill 
Education, 2010. 

3. Hamacher, V. Carl, Zvonko G. Vranesic, and Safwat G. 
Zaky. Computer organization and Embedded Systems, 6E. 
McGraw-Hill, Inc., 2012. 

4. Al-Hothali, Samaher. "Snoopy and directory-based cache 
coherence protocols: A critical analysis." Journal of 
Information & Communication Technology (JICT) 4.1 (2010): 
11. 

5. Semiconductors, Philips. "An introduction to very-long 
instruction word (VLIW) computer architecture." Philips 
Semiconductors (1997). 

6. Smotherman, Mark. "Understanding EPIC architectures and 
implementations." 40th Annual Southeast ACM Conference. 
2002. 



 

387 | P a g e  
 

Space for learners: 7. Halfhill, Tom R. “VLIW Microprocessors” Computerworld 
India, 14 Feb. 2000, 
https://www.computerworld.com/article/2593626/vliw-
microprocessors.html. 

8. “Instruction set architecture” Wikipedia, 
https://en.wikipedia.org/wiki/Instruction_set_architecture. 
Accessed 01 Aug. 2021. 

9. “Very long instruction word” Wikipedia, 
https://en.wikipedia.org/wiki/Very_long_instruction_word. 
Accessed 01 Aug. 2021. 

10. “Explicitly Parallel Instruction Computing" Wikipedia, 
https://en.wikipedia.org/wiki/Explicitly_parallel_instruction_co
mputing. Accessed 01 Aug. 2021. 

11. Zaccone, Giancarlo. Python parallel programming cookbook. 
Packt Publishing Ltd, 2015. 

12. Beckmann, Nathan. “Static Scheduling & VLIW.” Carnegie 
Mellon University, 
https://www.cs.cmu.edu/afs/cs/academic/class/15740-
s17/www/lectures/13-static-scheduling.pdf. Accessed 02 Aug. 
2021 

13. Shanthi, A. P. “Multiple Issue Processors II” Univeristy of 
Maryland,https://www.cs.umd.edu/~meesh/411/CA-
online/chapter/multiple-issue-processors-ii/index.html. 
Accessed 01 Aug. 2021. 

14. "VLIW Processors" Slideshare, 
https://www.slideshare.net/shudhanshu29/vliw-processors. 
Accessed 01 Aug. 2021. 

15. Schlansker, Michael S., and B. Ramakrishna Rau. EPIC: An 
architecture for instruction-level parallel processors. Hewlett-
Packard Laboratories, 2000. 

 

 

 


