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BLOCK I:  

ANALYSIS OF ALGORITHMS 
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Space for learners: 

UNIT 1: INTRODUCTION TO ALGORITHMS 

Unit Structure: 

1.1 Introduction 

1.2 Unit Objectives 

1.3 Algorithms 

1.3.1 Characteristics of Algorithms 

1.3.2 Advantages of an Algorithm 

1.3.3 Disadvantages of an Algorithm 

1.3.4 Need of Algorithm 

1.4 Concept in algorithm analysis 

1.5 Time and Space complexity 

1.6 Analyzing algorithms 

1.7 Analysis of insertion sort 

1.7.1 INSERTION_SORT in the best case 

1.7.2 INSERTION_SORT in the worst case 

1.7.3 INSERTION_SORT in the average case 

1.8 Rate of Growth 

1.9 Summing up 

1.10 Answers to Check Your Progress 

1.11 Possible Questions 

1.12 References and Suggested Readings 

 

 

1.1 INTRODUCTION 

This unit gives an overview of algorithms and their place in modern 

computing systems. In this unit you will learn what an algorithm is and 

reasons to learn algorithms. Also you can learn advantages and 

disadvantages of the algorithm. In this unit, you will see the first 

algorithms, which solve the problem of sorting a sequence of n 

numbers. For sorting we examine insertion sort and pseudocode of the 

insertion sort written here, which is used to analyze the algorithm in 
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Space for learners: three cases namely the best case, average case and worst case. This unit 

also gives an idea about the rate of growth of algorithm. 

1.2 UNIT OBJECTIVES 

After going through this unit, you will be able to, 

 Understand the concept of algorithm with its pros and cons. 

 Learn about the needs of algorithm. 

 Calculate the running time for algorithm 

 Analyzing an algorithm in best case, average case and worst 

case. 

 Based on running time calculate the order of growth of an 

algorithm. 

1.3 ALGORITHMS 

The word algorithm has been derived from the Persian author's name, 

Abu Ja 'far Mohammed ibn Musa al Khowarizmi (c. 825 A.D.), who has 

written a textbook on Mathematics. The word is taken based on 

providing a special significance in computer science. The algorithm is 

understood as a method that can be utilized by the computer as when 

required for providing solutions to a particular problem. 

An algorithm is a well-defined computational procedure that 

takes some value or set of values as input and produces some value or 

set of values as output. Therefore, an algorithm is a sequence of 

computational steps that transform the input into the output. 

In mathematics and computer science, an algorithm is a finite 

sequence of well-defined, computer-implementable instructions, used to 

solve a class of specific problems or to perform a computation. 

Algorithms are always unambiguous and are used for 

performing calculations, data processing, automated reasoning, and 

other tasks.  

For example, we might need to sort a sequence of numbers into 

increasing order. This problem arises frequently in practice and 

provides fertile ground for introducing many standard design techniques 

and analysis tools. Here we are formally define the sorting problem: 
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Space for learners: Input: A sequence of n elements {A1, A2, A3,……………. An}. 

Output: A permutation (reordering) {a1, a2, a3,……………. an} of the 

input sequence such 

that a1≤ a2≤ a3≤……………. ≤an. 

For example, given the input sequence (35, 42, 69, 16, 42, 78), a 

sorting algorithm returns as output the sequence (16, 35, 42, 42, 69, 78). 

Such an input sequence is called an instance of the sorting problem. In 

general, an instance of a problem consists of the input (satisfying 

whatever constraints are imposed in the problem statement) needed to 

compute a solution to the problem. 

Because many programs use it as an intermediate step, sorting is 

a fundamental operation in computer science. Hence as a result, we 

have a large number of good sorting algorithms at our disposal. For a 

given application which algorithm is best depends on factors like the 

number of items to be sorted, the extent to which the items are already 

somewhat sorted, possible restrictions on the item values, the 

architecture of the computer, and the kind of storage devices to be used 

(main memory, disks, or even tapes). 

An algorithm is said to be correct if, for every input instance, it 

terminates with the correct output. We can say that a correct algorithm 

solves the given computational problem. An incorrect algorithm might 

halt with an incorrect answer or it might not halt at all on some input 

instances. In contrast to what you might expect, incorrect algorithms 

can sometimes be useful, if we can control their error rate. Generally, 

however, we shall be concerned only with correct algorithms. An 

algorithm can be specified as a computer program, or even as a 

hardware design, written in English and the only requirement is that the 

specification must provide a precise description of the computational 

procedure to be followed. 

1.3.1  Characteristics of Algorithms 

o Input: An algorithm should externally supply zero or more 

quantities. 

o Output: An algorithm results in at least one quantity. 

o Definiteness: Every instruction should be clear and ambiguous. 



 

4 | P a g e  

 

Space for learners: o Finiteness: An algorithm should terminate after executing a 

finite number of steps. 

o Effectiveness: All instruction should be fundamental to be 

carried out, in principle, by a person using only pen and paper. 

o Feasible: An algorithm must be feasible enough to produce each 

instruction. 

o Flexibility: It must be flexible enough to carry out desired 

changes with no efforts. 

o Efficient: Efficiency is measured in terms of time and space 

required by an algorithm to implement. Thus, an algorithm must 

ensure that it takes little time and less memory space 

incorporating the acceptable limit of development time. 

o Independent: An algorithm mainly focuses on the input and the 

procedure required for deriving the output instead of depending 

upon the language. 

1.3.2  Advantages of an Algorithm 

o Effective Communication: Since it is written in a natural 

language using English, it becomes easy to understand the step-

by-step of a solution to any particular problem. 

o Easy Debugging: A well-designed algorithm facilitates easy 

debugging to detect the logical errors, occurred inside the 

program. 

o Easy and Efficient Coding: An algorithm is a blueprint of a 

program that helps develop a program. 

o Independent of Programming Language: Since it is a 

language-independent, it can be easily coded by using any high-

level language. 

1.3.3 Disadvantages of an Algorithm 

o Big and complex tasks are difficult to put in Algorithms. 

o Developing algorithms for complex problems would be time-

consuming.  
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Space for learners: o It is difficult to show Branching and Looping in Algorithms. 

1.3.4 Need of Algorithm 

Before implementing any algorithm as a program, it is better to find out 

a good algorithm in terms of time and memory. A good design can 

produce a good solution. An algorithm is needed to understand the basic 

idea of the problem and also to find an approach to solve the problem. It 

gives a clear description of requirements and goal of the problem to the 

designer. Using an algorithm we can measure the behavior (or 

performance) of the methods in all cases (best cases, worst cases, 

average cases). Also we can analyze the complexity (time and space) of 

the problems concerning input size without implementing and running 

it; it will reduce the cost of design. With the help of an algorithm, we 

can also identify the resources (memory, input-output) cycles required 

by the algorithm. An algorithm helps to convert art into a science. 

Overall, it is the best method of description without describing the 

implementation detail. 

  

STOP TO CONSIDER 

An algorithm is a well-defined computational procedure that takes 

some value or set of values as input and produces some value or set of 

values as output. An algorithm is said to be correct if, for every input 

instance, it terminates with the correct output. 

 

 

CHECK YOUR PROGRESS - I 

1) The word ____________comes from the name of a Persian 

mathematician Abu Ja’far Mohammed ibn-i Musa al Khowarizmi. 

2) An algorithm is a sequence of _____________ steps that transform 

the input into the output. 

3) The __________ of an algorithm results in at least one quantity. 

4) Efficiency is measured in terms of ________and _________ 

required by an algorithm to implement. 
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Space for learners: 5) Input of an algorithm should externally supply _______ or 

________ quantities. 

6) It is difficult to show Branching and Looping in _________. 

7) An algorithm helps to convert art into a _________. 

1.4 CONCEPT IN ALGORITHM ANALYSIS 

The term "analysis of algorithms" was coined by Donald Knuth. 

Theoretically in analysis of algorithms, it is common to estimate their 

complexity in the asymptotic sense, i.e., to estimate the complexity 

function for arbitrarily large input.  

Analysis of algorithm is an important part of computational complexity 

theory, which provides theoretical estimation for the required resources 

of an algorithm to solve a specific computational problem. Most 

algorithms are designed to work with arbitrary length of inputs. 

Algorithm analysis is the determination of the amount of time and 

space resources required to execute it. 

For using an algorithm for a specific problem, we have to develop 

pattern recognition so that similar types of problems can be solved by 

the help of this algorithm. One algorithm is often quite different from 

another, though the objective of this algorithm is the same. For 

example, we know that the sorting of a set of numbers can be done 

using different algorithms. For the same input, number of comparisons 

performed by one algorithm may vary with others. Therefore, time 

complexity of those algorithms may differ. At the same time, we need 

to calculate the memory space required for each algorithm. 

Analysis of algorithm is the process of analyzing the problem-

solving capability of the algorithm in terms of the time and size of 

memory for storage required. However, the main concern of analysis 

of algorithms is the required time or performance. In general, we 

perform the following types of analysis − 

 Worst case :- The function which performs maximum number 

of steps taken on input data of size n.  
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Space for learners:  Best case :- The function which performs minimum number of 

steps taken on input data of size n. 

 Average case :- The function which performs An average 

number of steps taken on input data of size n. 

To solve a problem, we need to consider time as well as space 

(memory) complexity as the program may run on a system where 

memory is limited but adequate space is available or may be vice-

versa.  

1.5 TIME AND SPACE COMPLEXITY 

The efficiency or running time of an algorithm is stated as a function 

relating the input length to the number of steps, known as time 

complexity, or volume of memory, known as space complexity. 

Space Complexity 

Space complexity of an algorithm means the amount of memory space 

needed the algorithm in its life cycle. Space needed for an algorithm is 

equal to the sum of the following two components:  

 A fixed part that is a space required to store certain data and 

variables (i.e. simple variables and constants, program size etc.), 

which are not dependent of the size of the problem. 

 A variable part is a space required by variables, which is totally 

dependent on the size of the problem. For example, recursion 

stack space, dynamic memory allocation etc. 

Space complexity S(P) of an algorithm P is S(P) = A + SP(I), Where A 

is represented as the fixed part and SP(I) is represented as the variable 

part of the algorithm which depends on instance characteristic I. 

Consider the following example that tries to explain the concept, 

Algorithm 

SUM(R,Q) 

Step1:- Start 

Step 2:- P R + Q + 10 



 

8 | P a g e  

 

Space for learners: Step3:- Stop 

Here three variables P, Q and R and one constant are used. Therefore 

S(P) = 1+3. Now space is dependent on data types for given constant 

types and variables and it will be multiplied accordingly. 

Time Complexity 

Time Complexity of an algorithm means, the amount of time required 

by the algorithm to execute to completion. Time requirements can be 

denoted by numerical function T(N), where T(N) can be measured as 

the number of steps, provided each step takes constant time. 

For example, in case of addition of two n-bit integers, N steps 

are used. Hence, the total computational time is T(N) = c*n, where c is 

the time consumed for addition of two bits. Here, we observe that T(N) 

grows as input size increases. 

STOP TO CONSIDER 

 The term "analysis of algorithms" was coined by Donald 

Knuth. Analysis of algorithm is the process of analyzing the 

problem-solving capability of the algorithm in terms of the time 

and size of memory for storage required. 

 Time Complexity of an algorithm means, the amount of time 

required by the algorithm to execute to completion.   

 Space complexity of an algorithm means the amount of memory 

space needed the algorithm 

 

CHECK YOUR PROGRESS - II 

8) The term "analysis of algorithms" was coined by ____________. 

9)  ____________ is the function which performs the maximum 

number of steps on input data of size n. 

10)  Average case is the function which performs an ___________ 

number of steps on input data of n elements. 

11)  Space complexity of an algorithm means the amount of 
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Space for learners: _________ needed the algorithm in its life cycle. 

12)  A __________ is a space required by variables, which is totally 

dependent on the size of the problem. 

13)  ____________ of an algorithm means, the amount of time 

required by the algorithm to execute to completion. 

1.6 ANALYZING ALGORIHMS 

Analyzing an algorithm means predicting the resources that the 

algorithm requires. Though, resources such as memory, communication 

bandwidth, or computer hardware are of primary concern, but most 

often it is computational time that we want to measure. Generally, we 

can identify a most efficient algorithm by analyzing several candidate 

algorithms for a problem. Such analysis may indicate more than one 

viable candidate, but we can often discard several inferior algorithms in 

the process. Before analyzing an algorithm, we must have a model of 

the implementation technology that we will use, including a model for 

the resources of that technology and their costs. 

Here we shall assume a generic uniprocessor, random-access 

machine (RAM) model of computation as our implementation 

technology and understand that our algorithms will be implemented as 

computer programs. In the RAM model, instructions are executed one 

after another, without any concurrent operations. We should precisely 

define the instructions of the RAM model and their costs. To do so, 

however, would be tedious and would yield little insight into algorithm 

design and analysis. Also we must be careful not to abuse the RAM 

model. For example, what if a RAM had an instruction that sorts? Then 

we could sort in just one instruction. Such RAM would be unrealistic, 

since real computers don’t have such instructions. Our guide, therefore, 

is how real computers are designed. RAM model contains instructions 

commonly found in real computers: arithmetic (add, subtract, multiply, 

divide, remainder, floor, ceiling), data movement (load, store, copy), 

and control (conditional and unconditional branch, subroutine call and 

return). Such type of instruction takes a constant amount of time. 

The data types for the RAM model are integer and floating point 

(for storing real numbers). Here we assume a limit on the size of each 
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Space for learners: word of data. For example, when we are working with inputs of size n, 

typically assume that integers are represented by c lg n bits for some 

constant c ≥ 1. We need c ≥ 1 so that each word can hold the value of n, 

enabling us to index the individual input elements, and we restrict c to 

be a constant so that the word size does not grow arbitrarily. (If the 

word size grows arbitrarily, we could store huge amounts of data in one 

word and operate on it all in constant time, clearly an unrealistic 

scenario.) 

 Real computers contain instructions not listed above, and such 

instructions represent a gray area in the RAM model. For example, is 

exponentiation a constant time instruction? In general case, no; it takes 

several instructions to compute xy (where x and y are real numbers). 

But in restricted situations, however, exponentiation is a constant-time 

operation. Most computers have a “shift left” instruction, which in 

constant time shifts the bits of an integer by k positions to the left. In 

many computers, shifting the bits of an integer by one position to the 

left is equivalent to multiplication by 2, so that shifting the bits by k 

positions to the left is equivalent 

to multiplication by 2k. Hence, such computers can compute 2k in one 

constant-time instruction by shifting the integer 1 by k positions to the 

left, as long as k is no more than the number of bits in a computer word. 

We will try to avoid such gray areas in the RAM model, but we will 

treat computation of 2k as a constant-time operation when k is a small 

enough positive integer. 

In the RAM model, we do not attempt to model the memory 

hierarchy which is common in contemporary computers. i.e., we do not 

model caches or virtual memory. Several computational models attempt 

to account for memory-hierarchy effects, and they are sometimes 

significant in real programs on real machines. Models that include the 

memory hierarchy are quite a bit more complex compared to the RAM 

model, and so they can be difficult to work with. However, RAM-model 

analyses are usually excellent predictors of performance on actual 

machines. Analyzing even a simple algorithm in the RAM model can be 

a challenge. The mathematical tools required may include 

combinatorics, probability theory, algebraic dexterity, and the ability to 

identify the most significant terms in a formula. As the behavior of an 

algorithm may be different for each possible input, we need a means for 

summarizing that behavior in simple, easily understood formulas. 
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Space for learners: Though we typically select only one machine model to analyze a given 

algorithm, we still face many choices in deciding how to express our 

analysis. We would like a way, which is simple to write and manipulate, 

shows the important characteristics of an algorithm’s resource 

requirements, and suppresses tedious details.  

Insertion sort 

Our first algorithm, insertion sort, solves the sorting problem 

introduced in 1.2: 

Input: A sequence of n elements {A1, A2, A3,……………. An}. 

Output: A permutation (reordering) { A1, A2, A3,……………. An } 

of the input sequence such 

that A1≤ A2≤ A3≤……………. ≤An. 

. 

The elements that we wish to sort are also known as the keys. 

Conceptually we are sorting a sequence, the input comes to us in the 

form of an array with n elements.  

 

 
 

Figure 1.1 Sorting a hand of cards using insertion sort 

 

We start with an efficient algorithm insertion sort, for sorting a small 

number of elements. Insertion sort works like the way many people sort 

a hand of playing cards. We start with an empty left hand and the cards 

face down on the table. Then we remove one card at a time from the 

table and insert it into the correct position in the left hand. To find the 

correct position for a card, we compare the card with each of the cards 

already in the hand, from right to left, as shown in Figure 1.1. At all the 

times, the cards held in the left hand are sorted, and these cards were 
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Space for learners: originally the top cards of the pile on the table. Here we present a 

pseudocode for insertion sort as a procedure named 

INSERTION_SORT, which takes as a parameter an array Arr[1….n] 

containing a sequence of length n that is to be sorted. (In the code, the 

number n of elements in Arr is denoted by Arr.length). The algorithm 

sorts the input elements in place: it rearranges the elements within the 

array Arr, with at most a constant number of them stored outside the 

array at any time. The input array Arr contains the sorted output 

sequence of elements when the INSERTION_SORT procedure is 

finished. 

 

 
 

Figure 1.2 The operation of INSERTION_SORT on the array Arr = 

(6,3,5,7,2,4). Array indices appear above the rectangles, and values 

stored in the array positions appear within the rectangles. From (a) to 

(e) the iterations of the for loop of lines 1–8. And (f) The final sorted 

array. 

 

INSERTION_SORT(Arr) 

1 for j = 2 to Arr.length 

2  key = Arr[j] 

3  // Insert Arr[j] into the sorted sequence Arr[1….. (j -1)]. 

4  i = j - 1 

5  while i > 0 and Arr[i] > key 

6   Arr[i+1]=Arr[i] 

7   i = i - 1 

8  Arr[i + 1]= key 
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Space for learners: Loop invariants and the correctness of insertion sort 

Figure 1.2 shows how this algorithm works for Arr = (6, 3, 5, 7, 2, 4). 

The index j indicates the “current card” being inserted into the hand. At 

the beginning of each iteration of the for loop, which is indexed by j, 

the subarray consisting of elements Arr[1…..(j -1)] constitutes the 

currently sorted hand, and the remaining subarray Arr [j+1…. n] 

corresponds to the pile of cards still on the table. In fact, elements 

Arr[1…..( j - 1)] are the elements originally in positions 1 through (j - 

1), but now in sorted order. We state these properties of Arr[1…( j – 1)] 

formally as a loop invariant: 

At the beginning of each iteration of the for loop of lines 1–8, 

the subarray Arr[1….(j – 1)] consists of the elements originally in 

Arr[1…..( j – 1)], but in sorted order. We use this loop invariants to help 

us understand why an algorithm is correct. Three things about a loop 

invariant we must show here: 

Initialization: It is true prior to the first iteration of the loop. 

Maintenance: If it is true before an iteration of the loop and it remains 

true before the next iteration. 

Termination: When the loop terminates, the invariant gives us a useful 

property that helps to show the algorithm is correct. 

The first two properties hold, the loop invariant is true prior to every 

iteration of the loop. (Of course, we are free to use established facts 

other than the loop invariant itself to prove that the loop invariant 

remains true before starting each iteration.) The similarity to 

mathematical induction, where to prove that a property holds, you prove 

a base case and an inductive step. Here, showing that the invariant holds 

before the first iteration corresponds to the base case, and also showing 

that the invariant holds from iteration to iteration corresponds to the 

inductive step. 

The third property is the most important one, since we are using the 

loop invariant to show correctness. Typically, we use the loop invariant 

along with the condition which caused the loop to terminate. The 

termination property differs from how we usually use mathematical 

induction, in which we apply the inductive step infinitely and we stop 

the “induction” when the loop terminates. 
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Space for learners: Let’s see how these properties are using for insertion sort. 

Initialization: We start by showing the loop invariant holds before the 

first loop iteration, for j = 2. In this case the subarray Arr[1……( j – 1)] 

consists of just the single element Arr[1], which is in fact the original 

element in Arr[1]. Also, this subarray is sorted (trivially, of course), 

which shows that the loop invariant holds prior to the first iteration of 

the loop. 

Maintenance: Now, we consider the second property: which shows that 

each iteration maintains the loop invariant. Here, the body of the for 

loop works by moving Arr[j – 1], Arr[j – 2], Arr[j – 3], and so on by 

one position to the right until it finds the proper position for Arr[j]  

(lines 4–7), at which point it inserts the value of Arr[j] (line 8). The 

subarray Arr[1….. j] then consists of the elements originally in 

Arr[1…j], but in sorted order. By incrementing j for the next iteration of 

the for loop preserves the loop invariant. A more formal analysis of the 

second property would require us to state and show a loop invariant for 

the while loop of lines 5–7. However, at this point, we prefer not to get 

bogged down in such formalism, and so we rely on our informal 

analysis to show that the second property holds for the outer loop. 

Termination: Lastly, we examine what happens when the loop 

terminates. The condition causing the for loop to terminate is that j > 

Arr. length = n. Since each loop iteration increases j by 1, we must have 

j = n + 1 at that time. Substituting n + 1 for j in the wording of loop 

invariant, we have that the subarray Arr [1 …… n] consists of the 

elements originally in Arr [1…. n], but in sorted order. Observing that 

the subarray Arr [1…… n] is the entire array, so we conclude that the 

entire array is sorted. Therefore, the algorithm is correct. 

 

STOP TO CONSIDER 

RAM (Random Access Machine) model measures the rum time of an 

algorithm by summing up the number of steps needed to execute the 

algorithm on a set of data. 
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Space for learners: CHECK YOUR PROGRESS - III 

14)  __________ an algorithm means predicting the resources that the 

algorithm requires. 

15)  In the___________, instructions are executed one after another, 

without any concurrent operations. 

16)  The INSERTION_SORT algorithm sorts the input elements 

___________. 

17) _____________ means to set a starting value of a variable. 

 

1.7. ANALYSIS OF INSERTION SORT 

The time taken by the INSERTION_SORT procedure depends on the 

input, for example sorting a thousand numbers takes longer than sorting 

three numbers. INSERTION_SORT can take different amounts of time 

for sorting two different input sequences of the same size depending on 

how nearly sorted they already are. In general, the time taken for an 

algorithm grows with the size of the input, so it is conventional to 

describe the running time of a program as a function of the size of its 

input. For that, we need to define the terms “running time” and “size of 

input” more carefully. 

The input size of a problem depends on the problem being used. For 

sorting or computing discrete Fourier transforms, the most natural 

measure is the “number of items in the input” (for example, the array 

size n for sorting.) For other problems, like multiplying two integers, 

the best measure of input size is the “total number of bits” needed to 

represent the input in ordinary binary notation. For another instance, if 

the input to an algorithm is a graph, the input size can be described by 

the numbers of vertices and edges in the graph.  

The running time of an algorithm on a particular input is the number of 

steps executed. Let us consider a viewpoint, a constant amount of time 

is required to execute each line of our pseudocode. Each line may take a 

different amount of time, but we assume that each execution of the ith 

line takes time ci, where ci is a constant. This viewpoint is keep in the 
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Space for learners: RAM model, and it also reflects how the pseudocode would be 

implemented on most actual computers. 

Here, we are presenting the INSERTION_SORT procedure with 

time “cost” of each statement and the number of times each statement is 

executed. For each j = 2, 3, …….n, where n = Arr.length, we let tj 

denote the number of times the while loop test in line 5 is executed for 

that value of j. When a for or while loop exits in the usual way, the test 

is executed one time more than the loop body. As comments are not 

executable statements, and so they take no time. 

 

INSERTION_SORT(Arr)     cost   

 times 

1. for j = 2 to Arr.length     c1  

 n  

2.  key = Arr[j]       c2                

 n - 1 

3.  // Insert Arr[j] into the sorted 

sequence A[1 …… (j – 1)]   0       

 n - 1 

4.  i = j -1        c4       

 n - 1  

5. while i > 0 and A[i] > key    c5  

 ∑ tj�
���  

6.   A[i + 1] = A[i]     c6              

∑ (tj − 1)�
���  

7.   i = i - 1      c7              

∑ (tj − 1)�
���  

8. A[i + 1] = key       c8   

 n – 1 

 

The running time of the algorithm is the sum of running times for each 

statement executed. A statement that takes ci steps to execute and 

executes n times will contribute ci n to the total running time. To 

compute the running time T(n) for INSERTION_SORT on the input of 

n values, we will sum the products of the cost and times columns, and 

we will get as follows:- 
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Space for learners: T(n) = c1n + c2(n – 1) + c4 (n - 1) + c5 ∑ tj�
���  + c6 ∑ (tj − 1)�

���   

+ c7 ∑ (tj − 1)�
��� + c8 (n - 1) 

For inputs of a given size, an algorithm’s running time may depend on 

which input of that size is given. We can analyze the 

INSERTION_SORT in three cases, best case, worst case and average 

case. 

1.7.1 Insertion_Sort in the Best Case 

In INSERTION_SORT, the best case occurs when the array is already 

sorted. For each j = 2, 3, ……, n, we then find that A[i] ≤ key in line 5 

when i has its initial value of j - 1. Thus tj = 1 for j = 2, 3, ……., n, and 

the running time in the best case is, 

  

T(n) = c1n + c2(n – 1) + c4 (n - 1) + c5 (n - 1) + c8 (n - 1). 

        = (c1 + c2 + c4 + c5 + c8) n – (c2 + c4 + c5 + c8). 

We can express the above running time as An + B for constants A and 

B that depend on the statement costs ci, it is thus a linear function of n. 

1.7.2 Insertion_Sort in the Worst Case 

INSERTION_SORT in the worst case means, if the array is in reverse 

sorted order —that is, in decreasing order. In this situation, we must 

compare each element A[j] with each element in the entire sorted 

subarray A[1, 2, …… ( j – 1)], and so tj = j for j = 2, 3, ……, n. Noting 

that 

 ∑  j�
���  =

�(���)

�
 -1  and  ∑ ( j −�

���

1) =
�(���)

�
  

 

Now the running time for the INSERTION_SORT in the worst case is, 

 

T(n) = c1n + c2(n – 1) + c4 (n - 1) + c5 (
�(���)

�
 -1) + c6 (

�(���)

�
 ) + c7 

(
�(���)

�
 ) + c8 (n - 1) 
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Space for learners: = (c5/2 + c6/2 + c7/2) n2 + (c1 + c2 + c4 + c5/2 - c6/2 - c7/2 + c8 ) n – (c2 + 

c4 + c5 + c8) 

We can express the above running time as An2 + Bn + C for constants 

A, B and C that again depend on the statement costs ci, it is thus a 

quadratic function of n. 

The worst-case running time of an algorithm gives us an upper bound 

on the running time for any input.  It provides a guarantee that the 

algorithm will never take any longer. Moreover, we need not make 

some educated guess about the running time and hope that it never gets 

much worse.  

For some algorithms, the worst case occurs differently. For example, 

searching for a particular piece of information in a database, the 

searching algorithm’s worst case will often occur when the information 

is not present in the database. Also, in some applications, searches for 

absent information may be frequent. 

1.7.3 Insertion_Sort in the Average Case 

The “average case” is as bad as the worst case. Suppose that we 

randomly choose n numbers and apply insertion sort. On average case , 

half the elements in A[1.….. (j – 1)] are less than A[j], and half the 

elements are greater than A[j]. In this case, therefore, we check half of 

the subarray A[1….. (j – 1)] , and so tj is about j / 2.  

 

Here, 

         ∑  j�
��� /2 =(

�(���)

�
 -1)/2  and 

 ∑ ( j − 1)/2�
���  =(

�(���)

�
 )/2 

 

Now the running time for the INSERTION_SORT in the average case 

is, 

T(n) = c1n + c2(n – 1) + c4 (n - 1) + c5 (
�(���)

�
 -1)/2 + c6 (

�(���)

�
 )/2 + 

 c7 (
�(���)

�
 )/2 + c8 (n - 1) 

= (c5/4 + c6/4 + c7/4) n2 + (c1 + c2 + c4 + c5/4 - c6/4 - c7/4 + c8 ) n –  

(c2 + c4 + c5/4  + c8) 
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Space for learners: Just like worst case here also we can express the above running time as 

An2 + Bn + C for constants A, B and C that again depend on the 

statement costs ci, it is thus a quadratic function of n. 

STOP TO CONSIDER 

 Best case: Best case is the function, which performs the minimum 

number of steps on input data of n elements. 

 Average case: Average case is the function, which performs the 

average number of steps on input data of n elements. 

 Worst case: Worst case is the function, which performs the 

maximum number of steps on input data of n elements. 

 

CHECK YOUR PROGRESS - IV 

18)  The __________ of a problem depends on the problem being used. 

19)  The __________of an algorithm on a particular input is the number 

of steps executed. 

20)  An algorithm can take __________ amounts of time for sorting 

two different input sequences 

1.8 RATE OF GROWTH 

Suppose we are analyzing two algorithms and expressed their run times 

in terms of the size of the input. Algorithm A takes n2 + n + 1steps to 

solve a problem with size n and algorithm B takes 100 n + 1 steps. The 

following table shows the run time of these two algorithms for different 

problem sizes: 

 

Input Size Runtime of 

algorithm A 

Runtime of Algorithm 

B 

10 111 1001 

100 10101 10001 

1000 1001001 100001 

10000 >1010 1000001 
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Space for learners: For n=10, Algorithm B looks pretty bad as it takes almost 10 times 

longer than Algorithm A. But at n =100 they are about the same, and for 

larger values B is much better. The main reason is that for large values 

of n, any function that contains an n2 term will grow faster than a 

function whose leading term is n. The leading term denotes the term 

with the highest exponent. Algorithm A does better than B for small n, 

since for Algorithm B, the leading term has a large coefficient, 100. But 

other than the coefficients, there will always be some value of n where a 

n2 > b n.  

Generally, we expect an algorithm with a smaller leading term to be a 

better algorithm for large problems, but for smaller problems, there may 

be a crossover point where another algorithm is better. The location of 

the crossover point depends on the details of the algorithms such as, the 

inputs, and the hardware and hence it is usually ignored for purposes of 

algorithmic analysis. If two algorithms have the same leading order 

term, it is hard to say which is better and again, the result depends on 

the details. Therefore for the analysis of algorithm, functions with the 

same leading term are considered equivalent, even if they have different 

coefficients. 

A rate of growth or order of growth is a set of functions whose 

asymptotic growth behavior is considered equivalent. For example, 3n, 

1000n and n + 1 belong to the same order of growth, which is 

written O(n) in Big-Oh notation and often called linear because every 

function in the set grows linearly with n. In another example, n2, 2n2 + 

n + 1, 100n2 + 1 are belong to same order of growth, written as O(n2) 

and they are called quadratic for functions with the leading term n2. 

The following table shows some of the rate of growth that appear most 

commonly in algorithmic analysis. 
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Space for learners: Rate of growth Name 

O(1) Constant 

O(logb n) logarithmic (for any b) 

O(n) Linear 

O(n logb n) “en log en” 

O(n2) Quadratic 

O(n3) Cubic 

O(cn) Exponential (for any c) 

For the logarithmic terms, the base of the logarithm doesn’t matter and 

changing bases is the equivalent of multiplying by a constant, which 

doesn’t change the rate of growth. Likewise, all exponential functions 

belong to the same order of growth regardless of the base of the 

exponent. Since exponential functions grow very quickly, therefore 

exponential algorithms are only useful for small problems. 

1.9 SUMMING UP 

 An Algorithm is a step-by-step process to solve a problem. 

Every computerized device uses algorithms, which cut the time 

required to do things manually. 

 RAM (Random Access Machine) model measures the rum time 

of an algorithm by summing up the number of steps needed to 

execute the algorithm on a set of data. 

 An analysis of algorithm is a technique that’s used to measure 

the performance of the algorithms. Analysis of algorithm can be 

done in three case; best case, average case and worst case. Best 

case of an algorithm performs the minimum number of steps on 

input data of n elements. Average case of an algorithm performs 

the average number of steps on input data of n elements. Worst 

case of an algorithm performs the maximum number of steps on 

input data of n elements. 

 Complexity of an algorithm measures the amount of time and/or 

space required by an algorithm for an input of a given size (n). 
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Space for learners: Time Complexity of an algorithm means, the amount of time 

required by the algorithm to execute to completion.  Space 

complexity of an algorithm means the amount of memory space 

needed the algorithm. 

 A rate of growth or order of growth is a set of functions whose 

asymptotic growth behavior is considered equivalent. 

1.10 ANSWERS TO CHECK YOUR PROGRESS 

1) Algorithm 

2) Computational 

3) Output 

4) Time, space 

5) Zero, more 

6) Algorithms 

7) Science 

8) Donald Knuth 

9) Worst case 

10) Average 

11) Memory space 

12) Variable part 

13) Time Complexity 

14) Analyzing 

15) RAM model 

16) In place 

17) Initialization 

18) Input size 

19) Running time 

20) Different 

 

 

 



 

23 | P a g e  

 

Space for learners: 1.11 POSSIBLE QUESTIONS AND ANSWERS 

Short Answer type Questions: 

1. What do you mean by Algorithm? 

2. What is the need for an algorithm? 

3. Define time complexity of algorithm. 

4. Define space complexity of algorithm. 

5. Why analysis of algorithms required? 

6. What do you mean by order of an algorithm? 

Long Answer type Questions: 

1. Define Algorithm with an example. 

2. Write a note on the advantages and disadvantages of Algorithm. 

3. What are the various cases to analyze an algorithm? 

4. Find out the order of growth for following:- 

a) n3 + n2 

b) 1000000 n3 + n2 

c) n3 + 1000000 n2 

d) 20n2 + n 

e) (n2 + n) . (n+1) 

5. Write down the algorithm for bubble sort and analyze in best 

case, average case and worst case. 

6. Write down the algorithm for selection sort and analyze in best 

case, average case and worst case. 

7. Differentiate best case and worst case time complexity. 

1.12 REFERENCES AND SUGGESTED READING 

1. Thomas H. Cormen, Charlese E . Leiserson, Ronald L. Rivest, 

Clifford Stein. “INTRODUCTION TO ALGORITHMS”, PHI 

publication. 

2. Aditya Bhargava “Grokking Algorithm: An illustrated guide for 

programmers and other curious people”. 
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Space for learners: UNIT 2: ASYMPTOTIC NOTATIONS I 

Unit Structure: 

2.1 Introduction 

2.2 Unit objectives 

2.3 Asymptotic Notations (O, o, θ, ω, Ω)  

2.4 Common Mathematical functions and complexity analysis 

2.5 Example of Asymptotic notation 

2.6 Summing Up 

2.7 Answers to Check Your Progress 

2.8 Possible Questions 

2.9 References and Suggested Readings  

2.1   INTRODUCTION 

An algorithm is a collection of steps of different operations to solve 

a specific problem. An algorithm is an effective method to solve a 

problem within a finite amount of time and space. It is the best way 

to represent the solution of a specific problem in a very simple and 

well-organized way. An algorithm for a specific problem can be 

implemented in any programming language. Algorithm analysis is 

an important part of computational complexity theory and it is can 

be used to find the best possible. The algorithms are designed to 

work with inputs of arbitrary length and it is analyzed based on the 

amount of time and space requires to execute them. Different growth 

functions and notations are used to present the functional value of an 

algorithm such as O, o, θ, ω, Ω. The notation is used for the different 

case-based analyses of an algorithm using mathematical induction 

and other methods. 
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Space for learners: 2.2 UNIT OBJECTIVES 

After going through this unit, you will be able to know 

i) About different asymptotic notations. 

ii) About the common mathematical function and 

complexity analysis 

iii) About examples of complexity analysis 

2.3 ASYMPTOTIC NOTATIONS (O, O, Θ, Ω, Ω)  

The term algorithm complexity defines the amount of time and 

space required to execute the steps of an algorithm. It evaluates the 

order of count of operations executed by an algorithm as a function 

of input data size. To assess the complexity, different notations are 

used which are known as Asymptotic notation. Let’s O (f) notation 

represents the complexity of an algorithm, the Asymptotic notation 

is "Big O" notation and f corresponds to the function whose size is 

the same as that of the input data. The complexity of the asymptotic 

computation O(f) determines in which order the resources such 

as CPU. The complexity of an algorithm may find in any form such 

as constant, logarithmic, linear, n*log (n), quadratic, cubic, 

exponential, etc. It is nothing but the order of constant, logarithmic, 

linear, and so on, the number of steps encountered for the 

completion of a particular algorithm. We are calling it as the term 

running time of the algorithm.  

Generally, the running time of an algorithm falls under three 

different cases. 

 Best Case –the Minimum time required for a program to 

execute its line of codes. 

 Average Case − the average time required for a program to 

execute its line of codes. 

 Worst case − the maximum time required for a program to 

execute its line of codes. 

The following are the commonly used asymptotic notations to 

calculate the running time complexity of an algorithm. 

 Ο Notation (Big-Oh) 

 Ω Notation (Omega) 
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Space for learners:  θ Notation (Theta) 

Big Oh (Ο) Notation 

The asymptotic notation Ο(n) is used to prompt the upper bound of 

the running time of an algorithm. Generally, it is used to measure 

the worst-case time complexity of an algorithm but not all the time 

because any asymptotic notation can be used for worst-case 

analysis. Case-based algorithm analysis is not similar to the 

asymptotic notation. 

 
Fig 2.1. Graphical view of Big-Oh (Ο) Notation 

Mathematically, it is explained as for a function f(n), the Ο(f(n)) = 

{g(n): there exists k > 0 and n0 such that f(n) ≤ k.g(n) for all n > n0.} 

Omega Notation (Ω) 

The asymptotic notation omega Ω(n) is used to express the lower 

bound of an algorithm's running time. Though it is used for the best 

case time complexity of an algorithm other asymptotic notations are 

also used for best-case analysis. As mentioned above, any 

asymptotic notation can be used for any case-based analysis. 

Mathematically, it is defined as follows. For example, for a 

function f(n), the omega f(n)) ≥ Ω{g(n): there exists c > 0 and n0 

such that g(n) ≤ k.f(n) for all n > n0} 
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Space for learners: 

 

Fig 2.2. Graphical view of Omega (Ω) Notation 

Theta Notation (θ) 

The notation theta θ(n) is another way to express both the lower 

bound and the upper bound of an algorithm's running time. It is 

represented as follows.  θ(f(n)) = { g(n) if and only if g(n) =  Ο(f(n)) 

and g(n) = Ω(f(n)) for all n > n0.  

 

Fig 2.3. Graphical view of thetaθ(n) Notation 

Along with the above three notations, another two notations such as 

o and ω are also used in complexity analysis. A Ο is used as a tight 

upper bound on the growth of an algorithm, whereas the little ο 

notation is also used for the upper bound but it is not tight.Let f(n) 

and g(n) be functions and f(n) = ο(g(n)) if for any real constant c > 

0, there exists an integer constant n0 ≥ 1 such that 0 ≤ f(n) < 

k*g(n).It means that o() means loose upper-bound of f(n). Little o is 

a rough estimate of the maximum order of growth whereas Big-Ο 

may be the actual order of growth. 
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Space for learners: 

 

Fig 2.4. Graphical view of Small o and ωNotation 

The relationship between Big Omega (Ω) and Little Omega (ω) is 

similar to that of Big-. The ω is looking at the lower bounds that are 

not asymptotically tight. Let f(n) and g(n) be functions that map 

positive integers to positive real numbers. We say that f(n) is ω(g(n)) 

for any real constant c > 0, there exists an integer constant n0 ≥ 1 

such that f(n) > c * g(n) ≥ 0 for every integer n ≥ n0. As f(n) has a 

higher growth rate than g(n) so main difference between Big Omega 

(Ω) and little omega (ω) lies in their definitions. In the case of Big 

Omega f(n)=Ω(g(n)) and the bound is 0<=cg(n)<=f(n), but in case of 

little omega, it is true for 0<=c*g(n)<f(n). 

We use ω notation to denote a lower bound that is not 

asymptotically tight. And f (n) ∈ ω (g (n)) if and only if g(n) ∈ 

ο((f(n)). 

 

 

 

 

 

 

CHECK YOUR PROGRESS - I 

1. What is an algorithm? 

2. What do you mean by asymptotic notation? 

3. True or False 

i) 3n3 + 6n2 + 6000 = Θ(n3)  
ii) f(n) = 2n²+5 is O(n²)  

iii) If f(n) = 2n²+5 is O(n²) then 7*f(n) = 7(2n²+5) = 

14n²+35 is also O(n²). 
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Space for learners: 2.4 COMMON MATHEMATICAL FUNCTIONS 

FOR COMPLEXITY ANALYSIS 

The common mathematical functions used for complexity analysis 

are presented below. 

 constant: Θ(1) 

 logarithmic: Θ(log N) 

 linear: Θ(N) 

 polynomial: Θ(N^2) 

 exponential: Θ(2^N) 

 factorial: Θ(N!) 

2.5 EXAMPLES OF ASYMPTOTIC NOTATION 

Let’s understand the asymptotic notations with the following 

examples.Express the following functional value of an algorithm in 

terms of O, θ, Ω 

i) F(n) = 2n + 5 

ii) F(n) = 2n2 + 5 

Solution:  

i) Here, the functional value is F(n) = 2n + 5 

For O, the definition is the f(n) = O{g(n)}, where f(n) ≤ c.g(n) for 

all n > n0. 

So,  

f(n) = 2n+ 5 < 3n                              ---------- (1) 

Here, the 3n >2n+5 for some values of n. To check its validity, put n 

= 1, 2, 3, 4,5,6, ------ 

for n=1, the LHS is 2*1+5 = 7. Again RHS 3*1 = 3. For this 3<7, so 

it is invalidfor the O definition 

for n=2, the LHS is 2*2+5 = 9. Again RHS 3*2 = 6.For this 6<9, so 

it is invalidfor the O definition 

for n=3, the LHS is 2*3+5 = 11. Again RHS 3*3 = 9. For this 9<11, 

so it is invalidfor the O definition 
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Space for learners: for n=4, the LHS is 2*4+5 = 13. Again RHS 3*4 = 12. For this 

12<13, so it is invalidfor the O definition 

for n=5, the LHS is 2*5+5 = 15. Again RHS 3*5 = 5. For this 15 = 

15, so it is valid for the O definition. 

for n=6, the LHS is 2*6+5 = 17. Again RHS 3*6 = 18. For this 18 

>15, so it is valid for the O definition. 

 

If you put any value of n starting from 5 then the  

f(n) ≤ c.g(n) where f(n) = 2n+5, c = 3 and n = {5, 6, …} 

so, the equation is 2n+5 ≤ 3n. So, the O notation is f(n) = O (n), 

where g(n) = n, c= 3, and n = {5, 6, …} 

 

Now For Ω, the definition is thef(n) ≥ Ω {g(n)for all n > n0. 

So,  

f(n) = 2n+ 5 > 2n                              ---------- (2) 

Here, the 2n < 2n+5. To check its validity, put n = 1,2,3, 4,5,6, ------ 

For n=1, the LHS is 2*1+5 = 7. Again RHS 2*1 = 2. For this 2<7, so 

it is valid for the Ω definition 

For n=2, the LHS is 2*2+5 = 9. Again RHS 2*2 = 4. For this 4<9, so 

it is valid for the Ω definition 

If you put any value of n starting from 1then the  

f(n) ≥ Ω {g(n)where f(n) = 2n+5, c = 2 and n = {1,2,3, ….} 

so, the equation is 2n+5> 2n. So, the Ω notation is f(n) = Ω (n), 

where g(n) = n, c= 2, and n = {1,2,3, ….} 

Now Forθ,  

2n < f(n) = 2n+ 5 < 3n 

So, the n= 5 and c1= 2, and c2 = 3, the equation is valid and it cn 

expressed as f (n) = θ (n). 

ii) Here, the functional value is F(n) = 2n2 + 5 

For O, the definition is the f(n) = O{g(n)}, where f(n) ≤ c.g(n) for 

all n > n0. 

So,  
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Space for learners: f(n) = 2n2 + 5<= 3n2                   ---------- (3) 

Here, the 3n2> 2n2+5 for some values of n. To check its validity, put 

n = 1,2,3, 4,5,6, ------ 

for n=1, the LHS is 2*1+5 = 7. Again RHS 3*1 = 3. For this 3<7, so 

it is invalid for the O definition 

for n=2, the LHS is 2*22+5 = 13. Again RHS 3*22 = 12.For this 

12<13, so it is invalid for the O definition 

for n=3, the LHS is 2*32+5 = 23. Again RHS 3*32 = 27. For this 

27>23, so it is valid for the O definition 

If you put any value of n starting from 3 then the f(n) ≤ c.g(n) where 

f(n) = 2n2 + 5, c = 3 and n = {3, 4, …}so, the equation is 2n2 + 5≤ 

3n2. So, the O notation is f(n) = O (n), where g(n) = n, c= 3, and n = 

{3, 4, …} 

Now For Ω, the definition is the f(n) ≥ Ω {g(n)for all n > n0. 

So,  

f(n) = 2n2 +5 >=2n2                                           ---------- (4) 

Here, the 2n2 + 5>=2n2. To check its validity, put n = 1,2,3, 4,5,6, ---

--- 

For n=1, the LHS is 2*1+5 = 7. Again RHS 2*1 = 2. For this 7>2 so 

it is valid for the Ω definition 

If you put any value of n starting from 1 then the  

f(n) ≥ Ω {g(n)where f(n) = 2n2 +5, c = 2 and n = {1,2,3, ….} 

so, the equation is 2n2 +5 >2n2   . So, the Ω notation is f(n) = Ω (n), 

where g(n) = n, c= 2, and n = {1,2,3, ….} 

Now Forθ,  

                                   2n2< f(n) = 2n2 + 5<= 3n2 

So, the n= 3 and c1= 2, and c2 = 3, the equation is valid and it can 

expressed as f (n) = θ (n). 
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Space for learners:  

 

 

 

 

 

 

 

 

2.6 SUMMING UP 

i) An algorithm is a collection of steps of different operations to 

solve a specific problem. An algorithm is an effective method 

to solve a problem within a finite amount of time and space. 

ii) The term algorithm complexity defines the amount of time 

and space required to execute the steps of an algorithm. It 

evaluates the order of count of operations executed by an 

algorithm as a function of input data size. 

iii) Generally, the running time of an algorithm falls under 

three different cases. 

a. Best Case –the Minimum time required for a program to 

execute its line of codes. 

b. Average Case − the Average time required for a program 

to execute its line of codes. 

c. Worst case − the Maximum time required for a program 

to execute its line of codes. 

iv) The following are the commonly used asymptotic 

notations to calculate the running time complexity of an 

algorithm. 

a. Ο Notation (Big-Oh) 

b. Ω Notation (Omega) 

c. θ Notation (Theta) 

CHECK YOUR PROGRESS - II 

4. Arrange the following complexity function in ascending 

order. 

O(logn),O(n), O(2n) 

5. True or False 

iv) 1. If f(n) = Θ(g(n)) and g(n) = Θ(h(n)), then h(n) 

= Θ(f(n)) 

v) If f(n) = O(g(n)) and g(n) = O(h(n)), then h(n) = 

Ω(f(n)) 

vi) n/ 100 = Ω(n) 
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Space for learners: v) Mathematically, Big Oh O is explained as for a 

function f(n), the Ο(f(n)) = {g(n): there exists c > 0 and n0 

such that f(n) ≤ c.g(n) for all n > n0.} 

vi) Mathematically, omega is explained as for a function f(n), 

the omega f(n)) ≥ Ω{g(n): there exists c > 0 and n0 such 

that g(n) ≤ c.f(n) for all n > n0.} 

vii) θ(f(n)) = { g(n) if and only if g(n) =  Ο(f(n)) and g(n) = 

Ω(f(n)) for all n > n0.  

viii) Let f(n) and g(n) be functions and f(n) = ο(g(n)) if for any 

real constant c > 0, there exists an integer constant n0 ≥ 1 

such that 0 ≤ f(n) < c*g(n). 

ix) Let f(n) and g(n) be functions that map positive integers to 

positive real numbers. We say that f(n) is ω(g(n)) for any 

real constant c > 0, there exists an integer constant n0 ≥ 1 

such that f(n) > c * g(n) ≥ 0 for every integer n ≥ n0. 

2.7 ANSWER TO CHECK YOUR PROGRESS 

1) An algorithm is a collection of steps of different operations 

to solve a specific problem. An algorithm is an effective 

method to solve a problem within a finite amount of time and 

space. 

2) The term algorithm complexity defines the amount of time 

and space required to execute the steps of an algorithm. To 

assess the complexity, different notation are used which are 

known as Asymptotic notation 

3) i)True ii) True  iii) True 

4) O(log)< O(n) < O(2n) 

5) i) True  ii) True iii) True 

2.8 POSSIBLE QUESTIONS 

Short Answer type Questions: 

i) What do you mean by an algorithm? 

ii) What are the properties of a good algorithm? 
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Space for learners: iii) What do you mean by asymptotic notation? 

iv) What are the different asymptotic notations are used? 

v) What are the different case-based analyses present? 

vi) What is the definition of Big-Oh? 

vii) What is the definition of omega? 

viii)  What is the definition of theta?  

Long Answer type Questions: 

i) Express the following notation in Big Oh, Small O, 

omega, and theta notation  

a. F(n) = 3n + 2n 

b. F(n) = 2n2 + 5 

ii) Express the following notation in Big Oh, Small O, 

omega, and theta notation  

a. F(n) = 2n /5 

b. F(n) = log n 

2.9 FURTHER READINGS 

 Introduction to the algorithm- MIT press- Thomas H 

Coleman 
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Space for learners: 

UNIT 3: ASYMPTOTIC NOTATIONS II 

Unit Structure: 

1.1 Introduction 

1.2 Relational Properties of Asymptotic Notations 

  1.2.1 General Properties 

1.2.2 Reflexive Properties 

1.2.3 Transitive Properties 

1.2.4 Symmetric Properties 

1.2.5 Transpose Symmetric Properties 

1.2.6 Some More Properties 

1.3 Asymptotic behaviors of Polynomials 

1.4 Relative Asymptotic Growth 

1.4.1 Order of Growth and Big-O Notation 

1.4.2 Comparing Orders of Growth 

1.5 Ordering functions by Asymptotic Growth Rates 

  1.6 Summing Up 

  1.7 Answers to Check Your Progress 

  1.8 Possible Questions 

  1.9 References and Suggested Readings 

 

1.1 INTRODUCTION 

The efficiency and performance in a meaningful way is determined by 

Asymptotic Notation. Often, we get complex polynomial at the time of 

calculating the complexity of an algorithm. We use asymptotic notation 

to simplify this complex polynomial. 
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Space for learners: The notations we use to describe the asymptotic running time of an 

algorithm are defined in terms of functions whose domains are the set of 

natural numbers N={ 0,1,2,…..}. Such notations are convenient for 

describing the worst case running time function T(n), which usually is 

defined only on integer input sizes. We sometimes find it convenient, 

however, to abuse asymptotic notation in a variety of ways. For 

example: we might extend the notation to the domain of real numbers or 

alternatively, restrict it to a subset of the natural numbers [1]. 

Primarily we use asymptotic notation to describe the running times of 

algorithm. When we use asymptotic notation to apply to the running 

time of an algorithm, we need to understand which running time we 

mean. Sometime we are interested in the worst- case running time. 

Often, we wish to characterize the running time no matter what the 

input.  

1.2 RELATIONAL PROPERTIES OF ASYMPTOTIC 

NOTATIONS 

In previous unit we discussed about Asymptotic Notations and its uses 

in calculating time complexity. Here, we will discuss various relational 

properties. Many of the relational properties of real numbers apply to 

asymptotic comparisons as well. For the following, assume that f(n) and 

g(n) are asymptotically positive [1]. 

1.2.1 General Properties  

If f(n) is O(g(n)) then a*f(n) is also O(g(n)) ; where a is a constant 

Example: 

f(n) = 2n²+5 is O(n²) 

then 2*f(n) = 2(2n²+5)= 4n²+10, is also O(n²) 

Similarly, this property satisfies both Θ and Ω notation. We can say 

If f(n) is Θ(g(n)) then a*f(n) is also Θ(g(n)); where a is a constant. 

If f(n) is Ω (g(n)) then a*f(n) is also Ω (g(n)); where a is a constant. 
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Space for learners: 1.2.2 Reflexive Properties 

If f(n) is given then f(n) is O(f(n)). 

Example: f(n) = n² ; O(n²) i.e O(f(n)) 

Similarly, this property satisfies both Θ and Ω notation. We can say 

If f(n) is given then f(n) is Θ(f(n)). 

If f(n) is given then f(n) is Ω (f(n)). 

1.2.3 Transitive Properties 

If f(n) is O(g(n)) and g(n) is O(h(n)) then f(n) = O(h(n)) . 

Example: if f(n) = n , g(n) = n² and h(n)=n³ 

n is O(n²) and n² is O(n³) then n is O(n³) 

Similarly this property satisfies for both Θ and Ω notation. We can say 

If f(n) is Θ(g(n)) and g(n) is Θ(h(n)) then f(n) = Θ(h(n)) . 

If f(n) is Ω (g(n)) and g(n) is Ω (h(n)) then f(n) = Ω (h(n)) 

If f(n) is o(g(n)) and g(n) is o(h(n)) then f(n) = o(h(n)) 

If f(n) is ω(g(n)) and g(n) is ω(h(n)) then f(n) = ω(h(n)) 

1.2.4 Symmetric Properties 

If f(n) is Θ(g(n)) then g(n) is Θ(f(n)) . 

Example: f(n) = n² and g(n) = n² then f(n) = Θ(n²) and g(n) = Θ(n²) 

Similarly this property satisfies for both O and Ω notation. We can say 

If f(n) is O (g(n)) then g(n) is O (f(n)) 

If f(n) is Ω (g(n)) then g(n) is Ω (f(n)) 

1.2.5 Transpose Symmetric Properties 

If f(n) is O(g(n)) then g(n) is Ω (f(n)). 

Example: f(n) = n , g(n) = n² then n is O(n²) and n² is Ω (n) 

Since these properties hold for asymptotic notations, analogies can be 

drawn between functions f(n) and g(n) and two real numbers a and b. 
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Space for learners: g(n) = O(f(n)) is similar to a ≤ b 

g(n) = Ω(f(n)) is similar to a ≥ b 

g(n) = Θ(f(n)) is similar to a = b 

g(n) = o(f(n)) is similar to a < b 

g(n) = ω(f(n)) is similar to a > b 

 We can say that f(n) is asymptotically smaller than g(n) if f(n) = 

o(g(n)), and f(n) is asymptotically larger than g(n) if f(n) = ω(g(n)) 

1.2.6 Some More Properties 

1. If f(n) = O(g(n)) and f(n) = Ω(g(n)) then f(n) = Θ(g(n)) 

2. If f(n) = O(g(n)) and d(n)=O(e(n)) 

then f(n) + d(n) = O( max( g(n), e(n) )) 

Example:  f(n) = n    i.e. O(n) 

d(n) = n²    i.e. O(n²) 

then f(n) + d(n) = n + n² i.e. O(n²) 

3.If f(n)=O(g(n)) and d(n)=O(e(n)) 

then f(n) * d(n) = O( g(n) * e(n) ) 

Example:  f(n) = n    i.e. O(n) 

d(n) = n²    i.e. O(n²) 

then f(n) * d(n) = n * n² = n³  i.e. O(n³) 

1.3 ASYMPTOTIC BEHAVIORS OF 

POLYNOMIALS 

Given a nonnegative integer d, a polynomial in n of degree d is a 

function p (n) of the form 

���� =  � ��
�

��
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Space for learners: Where the constants ��, ��, … … … . , ��   are the coefficients of the 

polynomial and �� ≠ 0. A polynomial is asymptotically positive if and 

only if �� > 0. For an asymptoticallypositive polynomial p(n) of degree 

d, we have p (n)= Θ(nd). For any real constant a≥0, the function na is 

monotonically increasing, and for any real constant a≤0, the function na 

is monotonically decreasing. We say that a function f(n) is polynomially 

bounded if f(n)= O (nk) for some constant k. 

Let, ���� =  ∑ �����  

Where if �� > 0, �� � ������ �   polynomial in n, and let k be a 

constant. By using definitions of the asymptotic notations, we can prove 

the following properties: 

a. If k=d, then  p(n)=Θ(nk) 

b. If k ≥d, then p(n)=O(nk) 

c. If k ≤d, then p(n)=Ω(nk) 

a. Theta or Asymptotic Bound: 

Analytical Approach: 

The largest term in the polynomial is ����, so the polynomial cannot 

grow neither slower nor faster than nd. Hence, p(n)=Θ(nk) 

Mathematical Approach: 

The polynomial can be written as: 

���� = � ��
�

��
 

= ���� +  � ��
�!�

��
 

= ���� + �� � ��!�
�!�

��
 

= ���� + ��"# 

= ����� + "#� 

Where, "# = ∑ ��!��!���  
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Space for learners: Now note that Qn is the sum of powers of n multiplied by some 

constants, and the powers of n are all less than or equal to -1. This 

follows from the fact that (i−d)≤−1. Now for sufficiently large n, Qn

approaches zero. And that in turn means, before it reaches zero, we can 

find a positive integer n0, such that: |Qn∣≤0.5ad for alln≥n0. 

Now,  

−0.5 �� ≤ "# ≤ 0.5 �� 

�� − 0.5 �� ≤  �� +  "# ≤ �� + 0.5�� 

����� − 0.5 ��� ≤ ����� +  "#� ≤ ����� + 0.5 ��� 

0.5�� . �� ≤ ����� + "#� ≤ 1.5��. �� 

0.5 �� . �� ≤ ���� ≤ 1.5��. �� 

 

So, if we pick (� = 0.5 �� ��� () = 1.5 �� , *� ℎ�,� (��� ≤ ���� ≤
()�� 

In other words, ���� = -���� 

And when       . = �, it means ���� =  -��/� 

b. Asymptotic Upper Bound: 

Analytically as . ≥ �, asymptotically �/  grows faster or at same rate 

than ��for sufficiently large n. Hence, ���� = 0 ��/� 

Mathematically, from c we can write: 

0 ≤ ���� ≤ 1.5��. �� ≤ 1.5 ��. �/ 

 So, if we pick (� = 1.5 ��, *� ℎ�,� 0 ≤ ���� ≤ (��/ 

In other words, � ��� = 0 ��/� 

c. Asymptotic Lower Bound: 

Analytically, as  . ≤ �,   asymptotically �/  grows slower or at same 

rate than �� for sufficiently large �. 12342, 5�3� =  6�37� 

 

Mathematically, from c we can write: 

0 ≤ 0.5�� . �/ ≤ 0.5��. �� ≤ ���� 
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Space for learners: So, if we pick (� = 0.5 ��, *� ℎ�,� 0 ≤ (��/ ≤ ���� 

 

In other words, � ��� = 6 ��/� 

1.4 RELATIVE ASYMPTOTIC GROWTH 

There may be many algorithms for solving any problem and obviously 

we would like to use the most efficient one. Analysis of algorithm is 

required to compare these algorithms and recognize the best one. 

Algorithms are generally analyzed on their time and space 

requirements. 

One way of comparing algorithms is to compare the exact running time 

of all algorithms. But the running time is dependent on the language and 

machine used for implementing the algorithm. Even if the machine and 

language are kept same, calculation of exact time would be very 

difficult as it would require the count of instructions executed by the 

hardware and the time taken to execute each instruction. So the time 

efficiency is not measured in time units like seconds or microseconds 

[2]. 

The running time generally depends on the size of input, for example 

any soring algorithm will take less time to sort 10 elements and more 

time for 100000 elements. So the time efficiency is generally expressed 

in terms of size of input. If the size of input is n, then f(n) which is a 

function of n denotes the time complexity. Thus to compare any two 

algorithms we will find out this function for both algorithms and then 

compare the rate of growth of these two functions. It is important to 

compare the rates of growth because an algorithm may seem better for 

small input but as the input becomes large it may take more time than 

others [2]. 

The function f(n) may be found out by identifying some key operations 

in the algorithm which account for most of the running time. Other 

operations are not counted as they take very little time as compared to 

these key operations and not executed more often than the key 

operations. For example, in searching we may count the number of 

comparisons and in sorting we may count the swaps in addition to 
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Space for learners: comparisons. We are interested only in the growth rate of functions so 

the exact computation of f(n) is not necessary [2]. 

Let us take an example where time complexity is given by the following 

function: 

8��� = 5�) + 6� + 12 

If  n=10 

% of running time due to the term 5�): < =��
=��>?�>�)@ ∗ 100 =

87.41% 

% of running time due to the term 6�: < ?�
=��>?�>�)@ ∗ 100 =

10.49% 

% of running time due to the term 12: < �)
=��>?�>�)@ ∗ 100 =

2.09% 

The following table shows the growth rate of all the terms of 

function 

8��� = 5�) + 6� + 12 

n 5�) 6n 12 

1 21.74% 26.09% 52.17% 

10 87.41% 10.49% 2.09% 

100 98.79% 1.19% 0.02% 

1000 99.88% 0.12% 0.0002% 

10000 99.99% 0.01% 2.4E-06% 

We can see that n grows, the dominant term n2 accounts for most of the 

running time and we can ignore the smaller terms. Calculating exact 

function f(n) for the time complexity may be difficult. So the terms 

which do not significantly change the magnitude of function can be 

dropped from the function. In this way we can get an approximation of 

the time efficiency and we are satisfied with this approximation because 

this is very close to the exact value when n becomes large. This 

approximate measure of complexity is known as asymptotic complexity. 

There are some standard functions whose growth rates are 

known, we find out the complexity of our algorithm and compare it with 

these known functions whose growth rates are known. The growth rates 

of some known functions are shown in the table: 
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Space for learners: 

n 

G(n) 

log) � n 
n 

log) � 
�) �J 2# 

1 0 1 0 1 1 2 

2 1 2 2 4 8 4 

4 2 4 8 16 64 16 

8 3 8 24 64 512 256 

16 4 16 64 256 4096 65536 

32 5 32 160 1024 32768 4.29E+09 

64 6 64 384 4096 262144 1.84E+19 

From the table we see that some functions grow faster than others. The 

growth rate of ���� =  log) �  is least and the function ���� = 2#  

grows very fast. The function ���� = �  grows faster than log) �but 

slower than nlog) �  or �), �J, 2#.  To compare the growth rate of 

function 

8���*KLℎ Lℎ�M� ML������ 8N�(LKO�M, *� (�� NM� �K� 0 �OL�LKO�. 
The order of growth of the running time of an algorithm gives a simple 

characterization of the algorithm's efficiency and also allows us to 

compare the relative performance of alternative algorithms. Once the 

input size n becomes large enough, merge sort, with its (n lg n) worst-

case running time, beats insertion sort, whose worst-case running time 

is (n2). Although we can sometimes determine the exact running time 

of an algorithm, the extra precision is not usually worth the effort of 

computing it. For large enough inputs, the multiplicative constants and 

lower-order terms of an exact running time are dominated by the effects 

of the input size itself. 

The asymptotic efficiency of algorithms is required when we look at 

input sizes large enough to make only the order of growth of the 

running time relevant. That is, we are concerned with how the running 

time of an algorithm increases with the size of the input in the limit, as 

the size of the input increases without bound. Usually, an algorithm that 

is asymptotically more efficient will be the best choice for all but very 

small inputs. 

Here we discussed several standard methods for simplifying the 

asymptotic analysis of algorithms.  
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Space for learners: Asymptotic growth means the rate at which the function grows. 

Growth rate means the complexity of function or the amount of resource 

it takes up to compute (i.e. time + memory). Classification of growth: 

a) Growing with the same rate 

b) Growing with the slower rate 

c) Growing with a faster rate 

There are mainly three asymptotic notation are used to analyze function 

growth and to represent time complexity of an algorithm. The functions 

need not necessarily be about algorithms, and indeed asymptotic 

analysis is used for many other applications. 

Asymptotic analysis of algorithms requires: 

1. Identifying what aspect of an algorithm we care about, such 

as: 

o runtime 

o use of space 

o possibly other attributes such as communication 

bandwidth 

2. Identifying a function that characterizes that aspect 

3. Identifying the asymptotic class of functions that this 

function belongs to, where classes are defined in terms of 

bounds on growth rate. 

The different asymptotic bounds we use are analogous to equality and 

inequality relations: 

 O   ≈   ≤ 

 Ω   ≈   ≥ 

 Θ   ≈   = 

 o   ≈   < 

 ω   ≈   > 

In practice, most of our analyses will be concerned with run time. 

Analyses may examine: 

 Worst case 
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Space for learners:  Best case 

 Average case (according to some probability distribution across 

all possible inputs) 

1.4.1 Order of Growth and Big-O Notation 

In estimating the running time of insertion sort (or any other program) 

we don't know what the constants c or k are. We know that it is a 

constant of moderate size, but other than that it is not important; we 

have enough evidence from the asymptotic analysis to know that 

a merge sort is faster than the quadratic insertion sort, even though the 

constants may differ somewhat [3]. 

We may not even be able to measure the constant c directly. For 

example, we may know that a given expression of the language, such 

as if, takes a constant number of machine instructions, but we may not 

know exactly how many numbers. For these reasons, we usually ignore 

constant factors in comparing asymptotic running times. 

For hiding the constant factor, convenient notation are used. We 

write O(n) instead of ''cn for some constant c.'' Thus an algorithm is said 

to be O(n) or linear time if there is a fixed constant c such that for all 

sufficiently large n, the algorithm takes time at most cn on inputs of 

size n. An algorithm is said to be O(n2) or quadratic time if there is a 

fixed constant c such that for all sufficiently large n, the algorithm takes 

time at most cn2 on inputs of size n. O(1) means constant time. 

Polynomial time means nO(1), or nc for some constant c. Thus any 

constant, linear, quadratic, or cubic (O(n3)) time algorithm is a 

polynomial-time algorithm.This is called big-O notation. It concisely 

captures the important differences in the asymptotic growth rates of 

functions. 

One important advantage of big-O notation is that it makes algorithms 

much easier to analyze, since we can conveniently ignore low-order 

terms. For example, an algorithm that runs in time 

10n3 + 24n2 + 3n log n + 144 

is still a cubic algorithm, since 
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Space for learners: 10n3 + 24n2 + 3n log n + 144 

<= 10n3 + 24n3 + 3n3 + 144n3 

<= (10 + 24 + 3 + 144)n3 

= O(n3). 

Since we are ignoring constant factors, any two linear algorithms will 

be considered equally good by this measure. There may even be some 

situations in which the constant is so huge in a linear algorithm that 

even an exponential algorithm with a small constant may be preferable 

in practice. This is a valid criticism of asymptotic analysis and big-O 

notation. However, as a rule of thumb it has served us well. Just be 

aware that it is only a rule of thumb--the asymptotically optimal 

algorithm is not necessarily the best one. 

Some common orders of growth seen often in complexity analysis are: 

O(1) constant 

O(log2  n) logarithmic 

O(n) linear 

O(n log2  n) "n log2  n" 

O(n2) quadratic 

O(n3) cubic 

1.4.2 Comparing Orders of Growth 

Big O notation: 

When we have only an asymptotic upper bound, we use O-notation. 

Let f and g be functions from positive integers to positive integers. We 

say  

f is O(g(n)) if g is an upper bound on f:  there exists a fixed 

constant c and a fixed n0 such that for all n≥n0,f(n) ≤ cg(n). i.e. 

O(g(n)) = {f(n) :  positive constants c and n0, such that n   n0, 

we have 0 f(n) cg(n) } 

Equivalently, f is O(g(n)) if the function f(n)/g(n) is bounded above by 

some constant. 
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Space for learners: Intuitively: Set of all functions whose rate of growth is the same as or 

lower than that of g(n). 

 

 

 

 

 

 

 

Some examples: 

 
These are all O(n2): These are not: 

 n2 

 n2 + 1000n 

 1000n2 + 

1000n 

 n1.99999 

 n 

 n3 

 n2.00001 

 n2 lg n 

Omega Ω notation: 

Just as O-notation provides an asymptotic upper bound on a function, 

-notation provides an asymptotic lower bound. 

We say that f is Ω(g(n)), if g is a lower bound on f for large n. Formally, 

f is Ω(g) if there is a fixed constant c and a fixed n0 such that for 

all n>n0,cg(n) ≤ f(n) 

i.e. (g(n)) = {f(n) :  positive constants c and n0, such that n   n0, 

we have 0  cg(n)f(n)} 
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Space for learners:  

 

 

 

 

 

For example, any polynomial whose highest exponent is nk is Ω(nk). 

If f(n) is Ω(g(n)) then g(n) is O(f(n)). If f(n) is o(g(n)) 

then f(n) is not Ω(g(n)). 

Intuitively: Set of all functions whose rate of growth is the same as or 

higher than that of g(n). 

Some examples: 

These are all Ω(n2): These are not: 

 n2 

 n2 + 1000n   (It's 

also O(n2)!) 

 1000n2 + 1000n 

 1000n2 - 1000n 

 n3 

 n2.00001 

 n1.99999 

 n 

 lg n 

Theta Θ notation: 

Just like others, Θ notation provides an asymptotically tight bound. 

We say that f is Θ(g(n)) if g is an accurate characterization of f for 

large n: it can be scaled so it is both an upper and a lower bound of f. 

That is, f is both O(g(n)) and Ω(g(n)). Expanding out the definitions 

of  Ω and O, f is Θ(g(n)) if there are fixed constants c1 and c2 and a 

fixed n0 such that for all n>n0,c1g(n) ≤ f(n) ≤ c2 g(n) 

i.e. (g(n)) = {f(n) :   positive constants c1, c2, and n0, such that n   n0, 

we have 0 c1g(n) f(n) c2g(n)} 
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Space for learners:  

 

 

 

 

 

 

Intuitively: Set of all functions that have the same rate of growth as 

g(n). 

For example, any polynomial whose highest exponent is nk is  Θ(nk). 

If f is Θ(g), then it is O(g) but not o(g). Sometimes people use O(g(n)) a 

bit informally to mean the stronger property Θ(g(n)); however, the two 

are different. 

Here are some examples: 

 n + log n is O(n) and Q(n), because for all n > 1, n < n + log n 

< 2n. 

 n1000 is o(2n), because n1000/2n tends to 0 as n tends to infinity. 

 For any fixed but arbitrarily small real number c, n log 

n is o(n1+c), since n log n / n1+c tends to 0. To see this, take the 

logarithm 

log(n log n / n1+c) 

= log(n log n) - log(n1+c) 

= log n + log log n - (1+c)log n 

= log log n - c log n 

and observe that it tends to negative infinity. 

The meaning of an expression like O(n2) is really a set of functions: all 

the functions that are O(n2). When we say that f(n) is O(n2), we mean 

that f(n) is a member of this set. It is also common to write this as f(n) 

= O(g(n)) although it is not really an equality. 
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Space for learners: We now introduce some convenient rules for manipulating expressions 

involving order notation. These rules, which we state without proof, are 

useful for working with orders of growth. They are really statements 

about sets of functions. For example, we can read #2 as saying that the 

product of any two functions in O(f(n)) and O(g(n)) is in O(f(n)g(n)). 

1. cnm = O(nk) for any constant c and any m ≤ k. 

2. O(f(n)) + O(g(n)) = O(f(n) + g(n)). 

3. O(f(n))O(g(n)) = O(f(n)g(n)). 

4. O(cf(n)) = O(f(n)) for any constant c. 

5. c is O(1) for any constant c. 

6. logbn = O(log n) for any base b. 

All of these rules (except #1) also hold for  as well. 

Some examples: 

These are all Θ(n2): These are not 

 n2 

 n2 + 1000n 

 1000n2 + 1000n + 

32,700 

 1000n2 - 1000n - 

1,048,315 

 n3 

 n2.00001 

 n1.99999 

 n lg n 

Small o notation: 

We say f is o(g(n)) if for all arbitrarily small real c > 0, for all but 

perhaps finitely many n, 

f(n) ≤ cg(n). 

i.e. 

o(g(n)) = {f(n): c> 0, n0> 0 such that  n n0, we have0 

f(n)<cg(n)}. 

f(n) becomes insignificant relative to g(n)as n approaches infinity: 

   lim [f(n) / g(n)] = 0 

   n       

g(n) is anupper bound for f(n)that is not asymptotically tight 
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Space for learners: Equivalently, f is o(g) if the function f(n)/g(n) tends to 0 as n tends to 

infinity. That is, f is small compared to g. If f is o(g) then f is also O(g) 

Small -notation: 

For a given function g(n) 

(g(n)) = {f(n): c> 0, n0> 0 such that  n n0, we have0 cg(n) 

<f(n)}. 

f(n) becomes arbitrarily large  relative to g(n)as n approaches infinity: 

    lim [f(n) / g(n)] = . 

n 

g(n) is alower bound for f(n)that is not asymptotically tight. 

Example of Relative Asymptotic Growth:  

Indicate, for each pair of expressions (A,B) in the table below, whether 

A is 0, O, Ω, Q O� - O8 R.  Assume that . ≥ 1, ∈> 0 ��� ( >
1 ��� (O�ML��LM.Now following table contain possible “yes” or “no” in 

the respective boxes: 

A B O o Ω ω Θ 

log/ � �∈ Yes Yes No No No 

�/ (# Yes Yes No No No 

√� �UVW # No No No No No 

2# 2# )X  No No Yes Yes No 

�YZ[ \ (YZ[ # Yes No Yes No Yes 
log �! log �# Yes No Yes No Yes 

1.5 ORDERING FUNCTIONS BY ASYMPTOTIC GROWTH 

RATES 

When we use asymptotic notation to express the rate of growth of an 

algorithm's running time in terms of the input size n. Suppose that an 

algorithm took a constant amount of time, regardless of the input size 

[4].For example, if you were given an array that is already sorted into 

increasing order and you had to find the minimum element, it would 

take constant time, since the minimum element must be at index 0. 

Since we like to use a function of n in asymptotic notation, we could say 
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Space for learners: that this algorithm runs in Θ(n0), because n0 =1, and the algorithm's 

running time is within some constant factor of 1. 

Now suppose an algorithm took Θ(log10n) time. Whenever the base of 

the logarithm is a constant, it doesn't matter what base we use in 

asymptotic notation because there's a mathematical formula that says 

^_`a 3 = ^_`b 3
^_`b a 

for all positive numbers a, b and c. Therefore, if a and b are constant, 

then logc � ��� logd � 

Differ only by a factor of logd � and that is a costant factor which we 

can ignore in asymptotic notation [4]. 

Worst case running time of binary search is -�logc �� for any positive 

constant a. The no of guesses is at mostlog) � + 1 , generating and 

testing each guess takes constant time and setting up and returning take 

constant time. In practice we write binary search takes -�log) �� time. 

Now suppose, a and b are two constant and a<b, then a running time 

-��c� grows more slowly than a running time of �d . For example, a 

running time of ��� , which is -����grows more slowly than a running 

time of -��)� . The exponents don’t have to be integers. For example, a 

running time of -��)�  grows more slowly than a running time of 

-��)√�, *ℎK(ℎ KM -��).=�. 

Following graph compares the growth of �, �) ��� �).= 
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Space for learners: Logarithms grow more slowly than polynomials, i.e. -�log) �� grows 

more slowly than-��c) for any positive constant a. But since the value 

of log) � increases as n increases, θ�log) �� grows faster than -�1�. 
Following graph compares the growth of 1, n, and log) �: 

A 

list of functions in asymptotic notation that we often encounter when 

analyzing algorithms is given below (ordered by slowest to fastest 

growing): 

1. -�1� 

2. - log) � 

3.-��� 

4. -(nlog) �� 

5. -��)� 

6. -(�)log) �� 

7. -��J� 

8. -�2#� 

9. -��!� 

[Note that an exponential function an, where a>1, grows faster than any 

polynomial function nb, where b is any constant]. 

Example:Rank these functions according to their growth, from slowest 

growing to fastest growing. 

8�) 
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 64 

log) � 

 � log) � 

logf � 

 6�J 

 4� 

8)# 

Solution: 

We have several different types of functions here, so we start by 

thinking about the general properties of those function types and how 

their rate of growth compares. Here's a reminder of different function 

types shown here, in order of their growth: 

1. Constant functions (for e.g. 64) 

2. Logarithmic functions (for e.g. logf � , log) �) 

3. Linear functions (for e.g. 4n) 

4. Linearithmic functions (for e.g. � log) �, � logf �) 

5. Polynomial functions (for e.g. 8n2, 6n3) 

6. Exponential functions (for e.g. 82n) 

We have several types where there are multiple functions - logarithmic 

functions, linearithmic functions, and polynomial functions, so we have 

to look more closely at each of them to compare their growth within the 

class. Within the logarithmic functions, the lesser bases grow more 

quickly than the higher bases – so log) �  will grow more quickly 

thanlogf �. Following graph shows the scenario: 
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The linearithmic functions are those that multiply linear terms by a 

logarithm, of the form � log/ �.  With the n being the same in both, then 

the growth is dependent on the base of the logarithms. The lesser bases 

grow more quickly than the higher bases – so� log) � will grow more 

quickly than � log? �. We can see that in the following graph: 

 

 

 

 

 

 

 

Within the polynomial functions, 8n2 will grow more slowly than 6n3, 

since it has a lesser exponent. We don't even have to look at the 

constants in front, since the exponent is more significant. 

So, the correct order of the functions would be: 

64 

logf � 
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4� 

� log? � 

 � log) � 

 8�), 6�J 

8)# 

CHECK YOUR PROGRESS 

Answer the following: 

1. For the functions, �/��� (# , what is the asymptotic relationship 

between these functions? Assume that k ≥ 1 and c > 1 ��� (O�ML��L 

[A]  nk is O�cW� 

[B] nk is Ω�cW� 

[C] nk is Θ�cW� 

[D] nk is o�cW� 

2. For the functions, 8Wand4W , what is the asymptotic relationship 

between these functions: 

[A]  8W is O�4W� 

[B] 8W is Ω�4W� 

[C] 8W is Θ�4W� 

[D] 8W is o�4W� 

3. For the functions, log) � ���   logf �, what is the asymptotic 

relationship between these functions? 

[A] log) �  KM 0�logf �� 

[B] log) � KM Ω�logf �� 

[C] log) �  KM Θ�logf �� 

[D] log) � KM O�logf �� 

4. Consider the following functions from positive integer’s real 

numbers: 
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Space for learners:                               10, p�,  �, log) � , 100/� 

The correct arrangement of the above functions in increasing order of 

asymptotic complexity is: 

 [A] log) � , ���
# , 10, √�,  � 

 [B] 
���

# , 10, log) � , √�,  � 

 [C] 10, 100/�, √�, log) � , � 

 [D] 
���

# , log) � , 10, √�,  �  
5. Consider the following three functions 

 8� = 10#8) = �rst #8J = �√#  

 Which one of the following options arranges the functions in 

increasing order of asymptotic growth rate? 

 [A] 8�, 8), 8J 

 [B] 8), 8�, 8J 

[C] 8J, 8), 8�  

[D] 8), 8J, 8� 

 

1.6 SUMMING UP 

 Asymptotic notation is used to simplify complex polynomial 

 If f(n) is O(g(n)) then a*f(n) is also O(g(n)) ; where a is a constant 

 If f(n) is given then f(n) is O(f(n)) 

 If f(n) is O(g(n)) and g(n) is O(h(n)) then f(n) = O(h(n)) 

 If f(n) is Θ(g(n)) then g(n) is Θ(f(n)) 

 If f(n) is O(g(n)) then g(n) is Ω (f(n)) 

 The asymptotic efficiency of algorithms is required when we look 

at input sizes large enough to make only the order of growth of 

the running time relevant. 
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Space for learners:  Asymptotic growth means the rate at which the function grows. 

Growth rate means the complexity of function or the amount of 

resource it takes up to compute. 

 When we have only an asymptotic upper bound, we use O-

notation 

 When we have only an asymptotic upper bound on a function, -

notation provides an asymptotic lower bound 

 -notation provides an asymptotically tight bound 

1.7 ANSWERS TO CHECK YOUR PROGRESS 

1. [A]    

2. [B]   

3. [A], [B], [C]   

4. [B]   

5. [D] 

1.8 POSSIBLE QUESTIONS 

Solve the following problems: 

1. Let, p�n� =  ∑ aVnVvV��  

Where if �� > 0, �� � ������ �  polynomial in n, and let k be a 

constant. By using definitions of the asymptotic notations, prove the 

following properties: 

a. If k >d, then  p(n)=o(nk) 

b. If k <d, then  p(n)=ω(nk) 

2. Rank these functions according to their growth, from slowest 

growing (at the top) to fastest growing (at the bottom). 

1, n3, n2, (3/2)n, n, 2n 
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Space for learners: 3. Which kind of growth best characterizes each of these functions? 

 Constant Linear Polynomial Exponential 

2n3     

(3/2)n     

(3/2)n     

1     

2n     

3n     

1000     

3n2     

[Hints: 1 and 1000 are constant, 3n and (3/2)n are linear, 2n3  and 3n2 

are polynomial, 2n and (3/2)n are exponential] 
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UNIT 4: RECURRENCES 
 

Unit Structure: 

4.1 Introduction 

4.2 Objective 

4.3   Recurrences 

4.4 Substitution Method 

  4.4.1 Examples of Solving Recurrences using Substitution 

Method 

  4.4.2   Advantages and Limitations of Substitution Method 

4.5 Recursion Tree Method 

4.5.1 Examples of Solving Recurrences using Recursion Tree 

Method 

4.5.2 Advantages and Limitations of Recursion Tree Method 

4.6 Master Method 

4.6.1 Examples of Solving Recurrences using Master Theorem 

4.6.2 Advantages and Limitations of Recursion Master Method 

4.7 Summing Up 

4.8 Answers to Check Your Progress 

4.9 Possible Questions 

4.10 References and Suggested Readings 

4.1 INTRODUCTION 

In Unit 1, analysis of algorithms has been already discussed where the 

algorithms without recursive calls to themselves are considered as 

examples. In case of algorithms with recursive calls to themselves, 

recurrences are used to express them. In this unit, we are going to learn 

about recurrences. We will also examine the methods to solve 

recurrences so that the run-time complexities of algorithms described by 

the recurrences can be estimated. 
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Space for learners: 4.2 UNIT OBJECTIVES 

After reading this unit you are expected to be able to learn: 

 Definition of recurrences 

 About Substitution method to solve recurrences. 

 About advantages and limitations of Substitution method. 

 About Recursion Tree Method to solve recurrences. 

 About advantages and limitations of Recursion Tree method. 

 About the Master Theorem to solve recurrences. 

 About advantages and limitations of Master Theorem. 

4.3 RECURRENCES 

A recurrence can be defined as an inequality or equation which 

demonstrates the run time of an algorithm in terms of its values on 

lesser inputs. Algorithms with recursive calls to themselves are 

demonstrated by recurrences. For example: The run time of Quick sort 

algorithm with best case partitioning is represented by the following 

recurrence. 

 F (n) ≤ 2 F (n / 2) + C n 

In the above recurrence, n is the number of inputs and it is greater than 

n1 where n1 is a constant. On the other hand C is a constant. The run 

time of Quick sort algorithm, F (n) is demonstrated in terms of two F (n 

/ 2) in this recurrence. 

By solving a recurrence of an algorithm, the run-time complexity of the 

algorithm can be estimated. In the process of solving recurrences, 

usually we have to make some assumptions. For example, if F (n) is the 

runtime of an algorithm then n must be an integer. We can also consider 

F (n) = Ө (1) in case of sufficiently small value of n. The floors, ceilings 

and boundary conditions are usually ignored to solve recurrences. 

There are three methods available to solve recurrences that are 

Substitution method, Recursion tree method and Master method. 
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4.4 SUBSTITUTION METHOD 

The substitution method is a simple but powerful technique used for 

solving recurrences. It consists of two steps as mentioned below. 

Step 1:  At first the solution of a particular recurrence is 

assumed. 

Step 2:   Secondly, mathematical induction is used to prove that 

the assumed solution is correct or valid.  

 
 

 

 

4.4.1 Examples of Solving Recurrences using 

Substitution Method 

In this section, we are going to solve two recurrences using Substitution 

method. 

(a)  F (n) = 2 F (n / 2) + Θ (n) 

Solution: 

In step 1, we have to guess the solution of the given recurrence. So, let 

us guess the solution of the given recurrence as     O (n lg n). 

In the second step, using mathematical induction, we have to prove that 

F(n) ≤ t n lg n, where t is a constant and it is greater than 0. 

Let us assume that the solution O (n lg n) is true for n/2.  

Now we can state that F (n/2) ≤ t  (n/2) lg(n/2) is true. 

STOP TO CONSIDER 

The run time of Quick sort algorithm with worst case partitioning 

is represented by the following recurrence. 

         F (n) = F (n-1) + Θ (n) 

STOP TO CONSIDER 

The substitution method can be used to estimate both upper and 

lower bounds on recurrences. 
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Space for learners: Then substituting the F (n/2) in the given recurrence, we can have the 

following expressions. 

 F (n) ≤   2  t (n/2) lg(n/2) + n 

                ≤   t n (lg n – lg 2) + n 

                    ≤   t n (lg n -1) + n 

                    ≤   t n lg n – t n + n  

                    ≤   t n lg n – n ( t - 1) 

 For t ≥ 1, we can have,    F (n) ≤  t n lg n 

Now according to mathematical induction, we also have to prove the 

assumed solution to be correct for the boundary conditions. In this 

process, we are required to prove F (n) ≤  t n lg n for boundary 

conditions where n ≥ c and c is a constant. 

Let, F (1) = 1 , c ≥ 2 

Then for n = 2, we have, 

                      F (2) =  2 F(2/2) + 2                    

                               =  4             

                   t n lg n = 2 * 2 * lg 2          [ For t = 2] 

                               = 4 

So, it can be stated that F (2) ≤  2 * 2 * lg 2 

Again, for n = 3, we have 

         F (3) =  2 F(3/2) + 3 

                             =  5 

                 t n lg n = 2 * 3 * lg 3            [ For t = 2] 

                             ≅ 6 
So, it can be stated that F (3) ≤  2 * 3 * lg 3 

From the above observations, it is proved that the assumed solution O (n 

lg n) is true for the boundary conditions of n = 2 and       n = 3 with any 

choice of t ≥ 2. 
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Space for learners: Finally, using mathematical induction, it is proved that           O ( n lg n) 

is the correct assumption as a solution for the recurrence      F (n) = 2 F 

(n / 2) + Θ (n). 

(b)  F (n) = F (n-1) + Θ (n) 

Solution: 

In step 1, we have to guess the solution of the given recurrence. So, let 

us guess the solution of the given recurrence as     O (n2). 

In the second step, using mathematical induction, we have to prove that 

F (n) ≤ t n2, where t is a constant and it is greater than 0. 

Let us assume that the solution O (n2) is true for (n – 1).  

Now we can state that F (n-1) ≤ t (n-1)2 is true. 

Then substituting the F (n-1) in the given recurrence, we can have the 

following expressions. 

 F (n) ≤    t (n-1)2 + n 

                    ≤    t (n2 – 2 n + 1) + n 

                    ≤    t n2 – 2 t n + t + n 

                    ≤    t n2 –(2 t n - t - n) 

 For t ≥ 1, we can have,    F (n) ≤  t n2   

Now according to mathematical induction, we also have to prove the 

assumed solution to be correct for the boundary conditions. In this 

process, we are required to prove F (n) ≤ t n2 for boundary conditions 

where n ≥ c and c is a constant. 

Let, F (1) = 1 , c ≥ 2 

Then for n = 2, we have, 

                          F (2) = F (2-1) + 2                    

                                   =  3             

                            t n2  = 2 * 22          [ For t = 2] 

                                    = 8 

So, it can be stated that F (2) ≤  2 * 22            

Again, for n = 3, we have 
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Space for learners:     F (3) = F (3-1) + 3 

                        = F (2) + 3 

                        = 6 

                 t n2  = 2 * 32          [ For t = 2] 

                        = 18 
So, it can be stated that F(3) ≤ 2 * 32           

From the above observations, it is proved that the assumed solution O 

(n2) is true for the boundary conditions of n = 2 and n = 3 with any 

choice of t ≥ 2. 

Finally, using mathematical induction, it is proved that O (n2) is the 

correct assumption as a solution for the recurrence                     F (n) = F 

(n-1) + Θ (n). 

4.4.2 Advantages and Limitations of Substitution Method 

Advantages of Substitution method: 

 The substitution method is a simple and powerful technique to solve 

recurrences.  

 Appropriate solution of a recurrence can be easily estimated by using 

this method. 

 Approximately all recurrences can be solved by Substitution method.  

Limitations of Substitution method: 

 Substitution method can be effective only when the assumption of 

the solution for particular recurrence is a correct or valid one. So, the 

main problem is that we don’t have a standard approach to make a 

good assumption of an appropriate solution for a particular 

recurrence. As a result, it may be difficult to guess an appropriate 

solution for a complex recurrence. 

 In some cases, it may happen that the assumption of the solution of a 

recurrence is correct but it may not be proved by mathematical 

induction. For example: O (n) is a correct assumption as the solution 

of the recurrence, F (n) = 2F (n/2) + 1. But using mathematical 

induction, it cannot be proved. 
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Space for learners: CHECK YOUR PROGRESS 
 

1. Multiple Choice Questions: 

A.  Which of the following is not an example of recurrence? 

 (i) F (n) = 2 F (n/2) + O (n) 

 (ii) F (n) = T (n/2) + 1 

 (iii) F (n) = F (n-1) + O (n) 

 (iv) None of the above 

B.  Which of the following algorithm is not described by a 

recurrence? 

 (i) Linear search 

 (ii) Binary search 

 (iii) Merge sort 

 (iv) All of the above 

C.  Which of the recurrence can be used to describe binary search 

algorithm? 

 (i) F (n) = 2 F (n/2) + 1 

 (ii) F (n) = F (n/3) + 1 

 (iii) F (n) = F (n/2) +1 

 (iv)  None of the above 

D. Which of the following is not true in case of substitution method? 

 (i)  Mathematical induction is used in substitution method. 

 (ii) Substitution method is used to solve recurrences. 

 (iii) Substitution method is a complex technique. 

 (iv) None of the above. 

E. Which of the following is a drawback of substitution method? 

(i)  Assumption of a proper solution for complex recurrences 

may be difficult. 

 (ii)  It is a complex method for beginners.  

(iii) Appropriate solution of a recurrence cannot be easily 

estimated by using this method. 

 (iv)  None of the above 
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Space for learners: 4.5 RECURSION TREE METHOD  

Recursion Tree is a tree structure where each node represents the cost of 

a particular recursive sub-problem which is a part of an algorithm with 

recursive calls. So, recursion tree can be used to represent recurrences in 

terms of costs associated with each recursive calls. The recursion tree 

can be used to solve a recurrence and this technique is referred as 

Recursion tree method.  

The steps of the Recursion tree method are stated as follows: 

Step 1:  At first, an appropriate recursion tree for a particular 

recurrence has to be drawn. 

Step 2:  In the second step, cost associated with each level other 

than the last level in the tree is estimated by adding 

costs represented by each node available in each level. 

Step 3:  In the third step, total number of levels and the total 

number of nodes in the last level are estimated. 

Step 4:  In the fourth step, cost associated at the last level is 

estimated. 

Step 5:  In the final step, summation of all costs associated with 

all the levels in the recursion tree is performed to obtain 

an expression to represent the total cost of the particular 

recurrence. Then asymptotic notation is determined by 

simplifying this estimated expression. 

 

  

 

 

 

 

 

 

 

 

 

 

STOP TO CONSIDER 

Recursion tree method can also be used to estimate a possible 

solution for a particular recurrence and this estimated solution can 

be verified using Substitution method. 
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Space for learners: 4.5.1 Examples of Solving Recurrences using Recursion 

Tree Method 

  

In this section, we are going to solve three recurrences using Recursion 

tree method. 

(a)  F (n) = 2 F (n / 2) + Θ (n) 

Solution:  

 The given recurrence can also be written as,  

  F (n) = 2 F (n / 2) + C n,  

where C is a constant coefficient and it is greater than 0.  

At first, we have to construct an appropriate recursion tree for the given 

recurrence.  

Construction of the recursion tree for the recurrence,                

F (n) = 2 F (n / 2) + C n, is shown in figure 4.1 and 4.2.  

 

 

Figure 4.1: Recursion tree for the recurrence, 

F (n) = 2 F (n / 2) + Θ (n) 
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Figure 4.2: Recursion tree with cost at each node for the recurrence,  

F (n) = 2 F (n / 2) + Θ (n) 

In the second step, we have to estimate costs associated with each level 

in the recursion tree. 

From the given recurrence, it is observed that the cost of one sub-

problem with input n is C n where C > 0. 

So, from the recursion tree in figure 4.2, we can have, 

The cost at the root node or the 0th level =  C n 

The cost at the 1st level =  C n/2 + C n/2 

                                      =  C n 

The cost at the 2nd level = C n/22 +  C n/22 +  C n/22 +  C n/22   

                                       = C n 

It is observed that the input sizes of the sub-problems decrease as the 

number of levels in the recursion tree increases. As a result, the input 

size of each node in the last level becomes 1. Now if we let L be the 

number of the last level in the recursion tree then the following equation 

can be stated.      

               

  n / 2L = 1 

      ⇒   n   =  2L 

      ⇒  lg n = lg 2L 

      ⇒  lg n = L 
 
So, the total number of levels in the recursion tree = lg n +1 
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Space for learners:   The total number of nodes in the last level of the recursion tree = 

2lg n 

  So, the cost at the last level = C + C + C +…………+ C 

 

 

 

                                                         = 2lg n C 

                                                         = C n lg 2 

                                                         = C n 

 

  Now, finally summing up the costs of all levels in the recursion 

tree, we can have the following expression. 

 

  F(n)  = C n + C n + C n +…………+C n 

 

 

                    

           = C n ( lg n +1) 

                     = C n lg n + C n 

                     = C n lg n + Θ (n) 

                     = O (n lg n) 

 So, we can state that O (n lg n) is the asymptotic upper bound of 

the recurrence F (n) = 2 F (n / 2) + Θ (n) . 

(c)  F (n) = 2 F (n / 2) + O (n2) 

Solution:  

The given recurrence can also be written as,  

F (n) = 2 F (n / 2) + C n2,  

where C is a constant coefficient and it is greater than 0.  

At first, we have to construct an appropriate recursion tree for the given 

recurrence. 

Construction of the recursion tree for the recurrence,                

F (n) = 2 F (n / 2) + C n2, is shown in figure 4.3 and 4.4.  

 

2lg n 

lg n +1 
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Figure 4.3: Recursion tree for the recurrence, F (n) = 2 F (n / 2) + O (n2) 

 

Figure 4.4:  Recursion tree with cost at each node for the recurrence, 

F (n) = 2 F (n / 2) + O (n2) 

In the second step, we have to estimate costs associated with each level 

in the recursion tree. 

From the given recurrence, it is observed that the cost of one sub-

problem with input n is C n2 where C > 0. 

  So, from the recursion tree in figure 4.4, we can have, 

   The cost at the root node or the 0th level =  C n2 

  The cost at the 1st level =  C n2/22 + C n2/22 

                                                  =  C n2/2 

  The cost at the 2nd level = C n2/24 + C n2/24 + C n2/24 + C n2/24   
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Space for learners:                                                    = C n2/22 

It is observed that the input sizes of the sub-problems decrease as the 

number of level in the recursion tree increases. As a result, the input 

size of each node in the last level becomes 1. Now if we let L be the 

number of the last level in the recursion tree then the following equation 

can be stated.      

                              

  n / 2L = 1 

      ⇒   n   =  2L 

      ⇒  lg n = lg 2L 

      ⇒  lg n = L 
 
So, the total number of levels in the recursion tree = lg n +1 

The total number of nodes in the last level of the recursion tree = 2lg n 

So, the cost at the last level = C + C + C +…………+ C 

 

 

 

                                                         = 2lg n C 

                                                         = C n lg 2 

                                                         = C n 

 

Now, finally summing up the costs of all levels in the recursion tree, we 

can have the following expression. 

  F (n)  = C �� + C 
��
�  + C 

��
�� +…………+ C 

��
��� ��� + C n 

           = C �� ∑ �
��

� �!�"#$  + C n 

                     < C �� ∑ �
��%"#$  + C n 

                     =  ��& ' �
�!�

�
( + C n 

                     = O (n2) 

So, we can state that O (n2) is the asymptotic upper bound of the 

recurrence F (n) = 2 F (n / 2) + O (n2) . 

 

 

2lg n 
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Space for learners: (d)  F (n) = 3 F (n / 4) + O (n) 

Solution:  

The given recurrence can also be written as,  

 F (n) = 3 F (n / 4) + C n,  

where C is a constant coefficient and it is greater than 0.  

At first, we have to construct an appropriate recursion tree for the given 

recurrence. 

Construction of the recursion tree for the recurrence,                

F (n) = 3 F (n / 4) + C n, is shown in figure 4.5 and 4.6.  

 

Figure 4.5: Recursion tree for the recurrence, F (n) = 3 F (n / 4) + O (n) 
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Space for learners: 

 

Figure 4.6:  Recursion tree with cost at each node for the recurrence,         

F (n) = 3 F (n / 4) + O (n) 

 

In the second step, we have to estimate costs associated with each level 

in the recursion tree. 

From the given recurrence, it is observed that the cost of one sub-

problem with input n is C n where C > 0. 

So, from the recursion tree in figure 4.6, we can have, 

The cost at the root node or the 0th level =  C n 

The cost at the 1st level =  C n/4 + C n/4  + C n/4    

                                      =  C n (3/4) 

The cost at the 2nd level = C n/42 + C n/42 + C n/42 + C n/42 + C n/42 + 

C n/42 + C n/42 + C n/42 + C n/42     

                                        = C n ( 32/42) 

It is observed that the input sizes of the sub-problems decrease as the 

number of level in the recursion tree increases. As a result, the input 

size of each node in the last level becomes 1. Now if we let L be the 

number of the last level in the recursion tree then the following equation 

can be stated.      

                              

  n / 4L = 1 

      ⇒   n   =  4L 

      ⇒  log* � = log* 4, 

      ⇒  log* � = L 
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Space for learners:  
So, the total number of levels in the recursion tree = log* � +1 

The total number of nodes in the last level of the recursion tree = 3�- . �  

So, the cost at the last level = C + C + C +…………+ C 

 

 

 

                                                         = 3�- . � C 

                                                         = C ��- . / 

                                                         = Θ (��- . /) 

   

Now, finally summing up the costs of all levels in the recursion tree, we 

can have the following expression. 

F(n)  = C n + C n (3/4) + C n ( 32/42)+……+C n ( 3�- . �!�/4�- . �!�) + 

Θ (��- . /) 

          = C n ∑ (3"/4")�- . �!�"#$  + Θ (��- . /) 

 

             < C n ∑ (3"/4")%"#$  + Θ (��- . /) 

            =  n C ' �
�!1

.
( + Θ (��- . /) 

 

            = O (n) 

So, we can state that O (n) is the asymptotic upper bound of the 

recurrence, F (n) = 3 F (n / 4) + O (n). 

4.5.2 Advantages and Limitations of Recursion Tree 

Method 

Advantage of Recursion tree method: 

Recursion tree method is a straightforward and standard approach to 

estimate an appropriate solution or a proper assumption of solution for a 

particular recurrence. 

 

 

3�- . � 
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Space for learners: Limitations of Recursion tree method: 

 It may be difficult to draw a proper recursion tree for complex 

recurrences.  

 We have to be very watchful to draw recursion trees and summing 

costs for recurrences. Otherwise we cannot able to estimate correct 

or valid solutions or proper assumptions of solutions for recurrences. 

   

4.6 MASTER METHOD 

The Master method to solve recurrences is based on the Master 

theorem. So, at first we have to know the Master theorem that is 

presented below. 

Master theorem: 

Let F (n) be a recurrence defined as follows: 

  F (n) = x F (n/y) + f (n) , 

Where x and y are two constants such that x ≥ 1 and y > 1. f(n) is a 

function and n is a nonnegative integer. n/y can be considered as either 

floor of n/y or ceiling of n/y. 

Now according to the Master theorem, three cases are presented below 

to bound F(n) with asymptotic notations. 

Case 1:  If f (n) = O (��- 7 8!∈), where ∈ is a constant and it is 

greater than 0 then F (n) = Θ (��- 7 8). 

Case 2:   If f (n) = Θ (��- 7 8), then F (n) = Θ (n�- : ; lg n). 

Case 3:  If f (n) = Ω (��- 7 8=∈), where ∈ is a constant and it is 

greater than 0 and if xf(n/y) ≤ d f(n) for some constant 

d<1 and all adequately large n, then  F(n) = Θ(f(n)). 
If we can establish a recurrence with any of the above cases then using 

the Master theorem, we can directly find out the solution of the 

recurrence.  
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Space for learners: 4.6.1   Examples of Solving Recurrences using Master 

Theorem 

In this section, we are going to solve four recurrences using Master 

method.  

(a)  F (n) = 4F (n/2) + n 

Solution:  

From the given recurrence, it is observed that x = 4, y = 2 and f (n) = n. 
So, ��- 7 8 = ��- � * = n2 

               f (n) = n = n1 = n2-1 = O(��- � *!∈), where ∈ = 1 

From the above observations, we can apply case 1 from the Master 

theorem. 

According to case 1 from Master Theorem we can state that           

 F (n) = Θ (��- 7 8) that means F (n) = Θ (n2). 

(b)  F (n) = 4F (n/2) + n2 

Solution:  

From the given recurrence, it is observed that x = 4, y = 2 and f(n) = n2. 
So, ��- 7 8 = ��- � * = n2 

               f (n) =  n2 = Θ (��- � *) = Θ (��- 7 8) 

From the above observations, we can apply case 2 from the Master 

theorem. 

According to case 2 from Master Theorem we can state that           

 F (n) = Θ (��- 7 8 lg n) that means F (n) = Θ (�� lg n) 

(c)  F (n) = 4 F (n/2) + n3 

Solution:  

From the given recurrence, it is observed that x = 4, y = 2 and f(n) = n3. 
So, ��- 7 8 = ��- � * = n2 

               f (n) =  n3 = Ω (��- � *=�) = Ω (��- 7 8=∈), where ∈ = 1 
Again, xf(n/y) = 4(n3/23)=(1/2)n3 = (1/2)f(n) 
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Space for learners:        Here d = ½ and so, d < 1      
From the above observations, we can apply case 3 from the Master 

theorem. 

According to case 3 from Master Theorem we can state that           

 F (n) = Θ (f (n)) that means F (n) = Θ (n3). 

(d)  F (n) = F (n/2) + Θ (1) 
Solution:  

From the given recurrence, it is observed that x = 1, y = 2 and          
f (n) = 1. 

So, ��- 7 8 = ��- � � = n0 = 1 
               f (n) =  1 =  n0 = Θ (��- � �) = Θ (��- 7 8) 

From the above observations, we can apply case 2 from the Master 

theorem. 

According to case 2 from Master theorem we can state that           

 F (n) = Θ (��- 7 8 lg n) that means F (n) = Θ ( lg n) 

4.6.2 Advantages and Limitations of Master Method 

Advantage of Master method: 

The Master method is a very simple and direct way to estimate solutions 

for recurrences. 

Limitations of Master Method: 

The main problem of Master method is that all types of recurrences 

cannot be solved by using this method. There are some recurrences 

available where Master theorem cannot be applicable. For example: 

Consider the following recurrence.   

 F (n) = 2F (n/2) + n/log n  
From the above recurrence, it is observed that x = 2, y = 2 and f(n) = 
n/log n. 
So, ��- 7 8 = n  and  ��- 7 8/ f(n) = log n 
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Space for learners: From the above observations, it is found that f(n) is asymptotically 

smaller than ��- 7 8 and so according to the Master theorem case 1 

should be applicable to the above recurrence. But it is also observed 

that f (n) is not polynomially smaller than  ��- 7 8 and as a result case 

1 is not applicable in this case. 

 

CHECK YOUR PROGRESS 
 

2. Multiple choice questions: 

 

A. Which of the following is true in case of Recursion tree method? 

     (i) Construction of an appropriate recursion tree for a recurrence 

is the most important part to solve the recurrence using 

Recursion tree method. 

     (ii) Cost at each level in a recursion tree is estimated by 

mathematical induction. 

    (iii) Recursion tree method cannot be used to find out the solution 

of all types of recurrences. 

    (iv) None of the above. 

  

B. Which of the following recurrences can have a recursion tree 

where each parent node linked with three child nodes? 

 (i) F (n) = 2F (n/3) + n 

 (ii) F (n) = 4F (n/2) + n 

 (iii) F (n) = 3F (n/4) + n 

 (iv) None of the above 

C. Which of the following recurrences can have a recursion tree 

where the cost at the root is C n2 ? 

 (i) F (n) = 2F (n/3) + O (n lg n) 

 (ii) F (n) = 3F (n/3) + O (n2) 

 (iii) F (n) = 4F (n/3) + O (n) 

 (iv) None of the above 

 D. Which of the following is not true in case of Master method? 

 (i)  Master method is based on Master theorem. 

 (ii) Master method is a direct way to solve recurrences. 

     (iii) Solution estimated by Master method need not be proved by 

substitution method. 

 (iv) All kind of recurrences can be solved by Master method. 
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Space for learners: E.  Which of the following recurrences cannot be solved by Master 

method? 

       (i) F (n) = 2F (n/2) + n lg n  
      (ii) F (n) = 2F (n/2) + n   
     (iii) F (n) = 3F (n/4) + n lg n   

(iv) All of the above 

  

4.7 SUMMING UP 

 A recurrence is an inequality or equation which express the run 

time of an algorithm in terms of its values on lesser inputs.              

For example: F (n) = 3F (n/3) + n. 

 Substitution method, Recursion tree method and Master method 

are the methods that can be used to solve recurrences. 

 In Substitution method, at first the solution of a recurrence is 

assumed and then mathematical induction is used to prove that 

the assumed solution is correct or valid.  

 In Recursion tree method, at first proper recursion tree is 

constructed for a recurrence. Then cost is estimated at each level 

of the recursion tree. Finally, all the costs associated with all the 

levels are added to find out the total cost of the particular 

recurrence. 

 The Master method is based on Master theorem. All recurrences 

cannot be solved by Master method.  

4.8 ANSWER TO CHECK YOUR PROGRESS 

1 .  A. (ii)  ,  B. (i) ,  C.  (iii) ,  D.  (iii) ,  E. (i) 

2. A.  (i) ,  B. (iii)  ,  C.  (ii) ,  D. (iv),  E. (i)    
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Space for learners: 4.9 POSSIBLE QUESTIONS 

1) Explain Substitution method with examples. 

2) Solve the following recurrence using Substitution method. 

F (n) = 3 F (n / 4) + O (n) 

3) Explain Recursion tree method with examples. 

4) Solve the following recurrence using Recursion tree method. 

F (n) = F (n-1) + Θ (n) 

 

5) Write down the Master theorem. 

6) Solve the following recurrences using Master method. 

(a) F (n) = 9F (n/3) + Θ (n) 

(b) F (n) = F (2n/3) + Θ (1) 

(c) F (n) = 3F (n/4) + O (n lg n) 

 

7) Write down the limitations of Substitution method and Master 

method. 
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(2009). Introduction to algorithms. MIT press. 
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Space for learners: 

UNIT 5: AMORTIZED ANALYSIS 

Unit Structure: 

 5.1 Introduction 

 5.2 Unit Objectives 

 5.3 Amortized Analysis 

  5.3.1 Features of Amortized Analysis. 

 5.4 Different approaches to amortized analysis 

  5.4.1 Aggregate analysis method. 

  5.4.2 Accounting method. 

  5.4.3 Potential function method. 

 5.5 Case Studies 

  5.5.1 Stack 

  5.5.2 Binary Counter   

 5.6 Summing Up 

 5.7 Answers to Check Your Progress 

 5.8 Possible Questions 

 5.9 Suggested Readings 

 

 

5.1 INTRODUCTION 

Several different kinds of operations are supported by data 

structures. Each operation has its own cost in terms of time and 

space. Amortized analysis says that some of these operations can be 

very expensive and can be performed as it does not increase the 

overall average cost of each operation. As we are mainly interested 

in the asymptotic behaviour of the algorithm so we only consider the 

worst-case average cost per operation in a sequence of many 

operations.  
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Space for learners: 5.2 UNIT OBJECTIVES 

After going through this unit, you will be able to : 

 understand the fundamental concepts of amortized analysis. 

 differentiate between amortized analysis and worst case 

analysis of an algorithm. 

 understand the different approaches to amortized analysis. 

 perform amortized analysis of a given algorithm. 

5.3 AMORTIZED ANALYIS 

Asymptotic analysis of algorithms gives us the worst case analysis 

of each operation without considering the effect of one operation 

over the other, whereas amortized analysis can be applied to a 

sequence of operations giving us precise and detailed analysis. 

Amortized analysis is applied on data structures that support many 

operations where the sequence of operations and the multiplicity of 

each operation is application specific or the associated algorithm 

specific. 

As many operations are involved as part of the amortized analysis, 

our objective is to perform efficiently as many operations as possible 

without leaving very few costly operations. Generally, the worst 

case time of each operation is given by taking into account in 

calculating the average cost in the worst case. For calculating the 

amortized cost of an operation, we take the average over all the 

operations.  

In an amortized analysis, the time required to perform a sequence of 

data-structure operations is averaged over all the operations 

performed. We can use amortized analysis to show if we average 

over a sequence of operations then the average cost of an operation 

is small even if a single operation within the sequence may be 

expensive. Amortized analysis does not involve probability making 

it different from average-case analysis. But amortized analysis 

makes sure the average performance of each operation in the worst 

case. 
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Space for learners: 5.3.1 Features of Amortized Analysis 

Features of Amortized analysis: 

 Amortized analysis is applied to algorithms where most of 

the operations are fast but only a few occasional operations 

are very slow. 

 Amortized analysis involves analyzing a sequence of 

operations and guarantees that the worst case average time 

will be lower than the worst case time of a particular 

expensive operation.  

 Amortized analysis gives an upper bound as it the average 

performance of each operation in the worst case. 

 Amortized analysis does not mention anything about the cost 

of a specific operation in the sequence rather it gives the 

overall cost of a sequence of operations. 

 Amortized analysis may consist of both inexpensive and 

expensive operations however, amortized analysis will 

always give that the average cost of an operation is less 

expensive. 

 Amortized analysis does not involve probability as different 

from average case analysis where inputs are modelled using 

probability distribution that fits the input.  

 Amortized analysis takes care of the fact that some of the 

expensive operations may pay for future operations by 

somehow reducing its number or the cost of these operations 

that may happen in the future. 
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Space for learners: CHECK YOUR PROGRESS 

1. State whether true or false: 

a. In asymptotic analysis, we take the average over all the 

operations.  

b. Amortized analysis does not include probability calculations.  

c. Amortized analysis involves both inexpensive and expensive 

operations.  

d. Amortized analysis involves calculating the cost of a specific 

operation in the sequence.  

e. Amortized cost is less than the worst case cost of the 

operation.  

5.4 DIFFERENT APPROACHES TO AMORTIZED 

ANALYSIS 

We will now the study the different approaches to amortized 

analysis. There are mainly 3 different approaches to amortized 

analysis and these approaches are mainly meant for analysis purpose 

only. 

 1. Aggregate analysis method. 

 2. Accounting method. 

 3. Potential function method.  

5.4.1 Aggregate Analysis method 

Aggregate analysis is the simplest method which involves 

determining an upper bound T(n) on the total cost of a sequence of n 

operations then dividing T(n) by the number n of operations to 

obtain the amortized cost or the average cost in the worst case. The 

average cost per operation is T(n)/n. The average cost is taken as the 

amortized cost of each operation, so that all operations have the 

same amortized cost. For all operations the same amortized cost 

T(n)/n is assigned, even if they are of different types.  
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Space for learners: The other two methods allows for assigning different amortized 

costs to different types of operations in the same sequence. 

5.4.2 Accounting Method 

Accounting method involves assigning different costs to different 

types of operations in which some of the operations will cost more 

and some less than the actual cost. The cost associated with each 

operation is called its amortized cost. If an operation's amortized 

cost is more than the actual cost, the difference is stored as credits in 

specific objects (elements) in the data structure. These accumulated 

credits can be used to pay for operations whose amortized cost is 

less than the actual cost.  

Accounting method is similar to maintaining an account with '0' 

credits (charges). When an operation is performed, a charge / cost 

are associated. If we overcharge an operation, the excess charge will 

be deposited in the account as credit. Some operations are free 

operations for which we do not charge anything. For such operations 

we may make use of the charges which are available as credit in our 

account. This analysis ensures that the account is never at debit 

(negative balance). In this method, the amount charged for each 

operation type is the amortized cost for that type. The amortized cost 

will act an upper bound on the actual cost for any sequence of 

operations and it will be impossible for the account to be in debt as 

long as the charges are set for each operation. The amortized costs of 

operations must be chosen very carefully and it must be shown that 

these charges are sufficient to allow payment for any sequence of 

operations. 

5.4.3 Potential Function Method 

The Potential Function method of amortized analysis represents the 

work as “potential energy” or “potential” that can be used to pay for 

future operations. In the earlier method, work is stored as credit with 

specific objects (elements) in the data structure but this method 

associates potential with the whole data structure rather than with 

specific objects in the data structure. 

The analysis is done by focusing on structural parameters of a data 

structure such as the number of elements, the height, etc. After 
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Space for learners: performing any operation, the change in a structural parameter is 

noted as a function and stored in a data structure. The function that 

records the changes in parameter is termed as a potential function. If 

the change in potential is positive, then that operation is over 

charged and the excess potential will be stored in the data structure 

similar to accounting method. If the change in potential is negative, 

then that operation is under charged and is compensated by excess 

potential available in the data structure. 

Let ci be the actual cost of the ith operation and ĉi be the amortized 

cost of the ith operation. Then the ith operation has some positive 

credit if ĉi > ci and the credits ĉi − ci  will be used for future 

operations. Now the total available credits will be positive if  

∑ ĉ�
�
��� ≥ ∑ ��

�
��� .......... (1) 

In this method, a function maps a data structure onto a real valued 

non-negative number. The amortized cost is given by the actual cost 

added to the increase in potential due to that operation. 

ĉ� =  �� + �� − ���   .......... (2) 

from (1) and (2), we have  

∑ ĉ�
�
��� ≥ ∑ ��� + �� − �����

��� .......... (3) 

∑ ĉ�
�
��� ≥ �∑ ��

�
��� � + �� − ��.......... (4) 

5.5 CASE STUDIES 

We will now look into two case studies, stack and binary counter, 

for their amortized analysis using the above discussed methods. 

5.5.1 Stack 

Stack is a data structure with the property of Last In First Out 

(LIFO). It works mainly on 2 main operations: Push(x) and Pop() 

where x is an element to be pushed onto the stack. Each of this 2 

operations takes Ο(1) time respectively. Let us consider the cost of 

each operation to be 1. Then the total cost of a sequence of n Push(x) 

and Pop() operations is therefore n, and the actual running time for n 

operations is therefore θ(n). 
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Space for learners:  Push(x)       

  1. top[STACK] = top[STACK] + 1   

  2. STACK [top[STACK]] = x 

 Pop()        

  1. if top = -1      

  2.  then “underflow”    

  3. else       

  4.   top[STACK] = top[STACK] − 1  

  5. return STACK [top[STACK] + 1] 

 Multipop(k)       

  1. While  top != -1 and k ≠ 0    

  2. Pop()      

  3. k =  k − 1 

Now, let us add another stack operation, Multipop(k) which removes 

the k elements from the top of a stack if it contains at least k 

elements, or it pops the entire stack if it contains fewer than k 

elements. The worst-case cost of a Multipop(k) operation in the 

sequence of n operations is Ο(n), since the stack size is at most n. 

We will now look at all three operations from the perspective of 

amortized analysis using all the above three methods. Let us assume 

that there are n such operations being performed using Push(x), 

Pop() and Multipop(k) in some order. The actual cost for the worst 

case running time of Push(x) and Pop() is Ο(1) and for Multipop(k) 

is Ο(n) since the stack contains at most n elements. 

5.5.1.1 Aggregate analysis method 

Assuming that in a sequence of n operations, we perform a sequence 

of n Push(x), Pop() and Multipop(k) operations in any order on an 

initially empty stack. So any  sequence of n Push(x), Pop() and 

Multipop(k) operations will cost Ο(n) as each element can be 

popped at most once when it is pushed onto the stack. The number 

of times Pop() operation is called will be equal to the number of 

times Push(x) operation is called. Now, for a sequence of n Push(x), 

Pop() and Multipop(k) operations will take Ο(n) time and the 

average cost of an operation is Ο(n) / n = Ο(1). The amortized cost 

of each operation is equal to the average cost in aggregate analysis. 

Therefore, all three operations of Push(x), Pop() and Multipop(k) 

has an amortized cost of Ο(1). 
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Space for learners: 5.5.1.2 Accounting method 

In the Accounting method, credits will be assigned to the elements 

of the stack. '2' credits will charged for the Push(x) operation which 

involves inserting an element x into the stack. Out of the 2 credits, 1 

credit will be used for the Push(x) operation and the remaining 1 

credit will be stored at x which can be used later. We charge nothing 

for the Pop() operation i.e. this operation is free as we use the extra 

credit available for each element, x for performing this operation. So 

the actual cost of this operation is 1 credit which is used from the 

credit available for each element in the stack and hence we charge 

nothing for this operation for our analysis. As Pop() operation is 

always performed on a non empty stack , our account balance will 

never be in debit. Similarly for Multipop(k) operations, the overall 

charge for the operation will be nothing as there will always be 

sufficient credits available for each element, x in the stack for the k 

successive pop operations. Therefore, the amortized cost of Push(x) 

is 2 = Ο(1), Pop() is 0 = Ο(1) and Multipop(k) is 0 = Ο(1).   

5.5.1.3 Potential function method 

In this method, we need to define a potential function capturing 

some structural element. We can take the number of elements inside 

the stack as a potential function and analyze all the 3 operations viz. 

Push(x), Pop() and Multipop(k).  

 

Push(x)  

 ĉ���� =  ����� + �� + ���       

           = 1 + x + 1 − x, where x = Number of elements in S 

before push operation.            

                      = 2 

Pop()        

 ĉ���� =  ����� + �� + ���      

          = 1 + x − 1 − x             

          = 0 

Multipop(k)  
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Space for learners:  ĉ���� =  ����� + �� + ���      

          = k + n − k − n, where n = |�|               

          = 0  

Therefore, the amortized cost of Push(x) is 2 = Ο(1), Pop() is 0 = 

Ο(1) and Multipop(k) is 0 = Ο(1).  

STOP TO CONSIDER 

We can define another operation for the stack, Multipush(k) which 

pushes k elements into the stack. We can also analyze the cost of 

this operation using all the three techniques. Using aggregate 

analysis, the total cost is Ο(n) and the amortized cost is Ο(n) / Ο(1) 

which is equal to Ο(n). With accounting method, we use '2' credits 

for push and '0' for pop. So, the amortized cost is 2 * Ο(n) / Ο(1) 

which is Ο(n). For the potential function method, we give the 

amortized cost using                                                                                

                     ĉ���� =  ����� + �� + ���     

         = k + n + k − n, where n = |�|      

                    = 2k = Ο(n) 

Thus, the amortized cost for Multipush(k) is Ο(n). 

5.5.2 BINARY COUNTER 

We will now look into a binary counter with k bits, initially all k bits 

set to 0's. The basic operations defined on the binary counter are 

increment, decrement and reset. Incrementing a counter adds a bit '1' 

to the current value. Decrementing a counter subtracts a bit '1' from 

the current value whereas resetting a counter makes all k bits to 0's. 

For example, if the current value of the counter is '0010' then on 

increment the new value is '0011' and on decrement the initial value 

of '0010', the value becomes '0001'. Whereas the reset operation 

makes the current value of the counter to all 0's. We will now 

analyze the amortized costs of the following operations: 

 1. A sequence of n increment operations. 

 2. A sequence of n increment and decrement operations. 

 3. A sequence of n increment, decrement and reset 

operations. 
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Space for learners: COUNTER 

VALUE 
A [3] A [2] A [1] A [1] 

TOTAL 

COST 

0 0 0 0 0 0 

1 0 0 0 1 1 

2 0 0 1 0 3 

3 0 0 1 1 4 

4 0 1 0 0 7 

5 0 1 0 1 8 

6 0 1 1 0 10 

7 0 1 1 1 11 

8 1 0 0 0 15 

Fig 1: A 4 - bit binary counter with value goes from 0 to 8 by a 

sequence of 8 increment operations. Bits that flip to achieve the next 

value are underlined. The running cost for flipping bits is shown on 

the right as total cost. 

5.5.2.1 A sequence of n increment operations 

Aggregate Analysis : For aggregate analysis method, let us consider 

a binary counter with k bits and not all bits in the binary counter flip 

in each increment / decrement operation. Let us consider the 1st 

operation of a sequence of n increment operations in which the 

trivial analysis of the binary counter in the figure gives Ο(k) for each 

increment operation and for n such increment operations, the total 

cost will be Ο(nk) and the average cost will be Ο(k). 

The 0th bit ( rightmost bit , LSB ) flips in each increment and there 

are n flips . The 1st bit is flipped alternatively and thus there are 
�

�
 

flips in total. So, the ith bit is flipped 
�

��
 times. The total number of 

flips in a sequence of n increments will be : 

∑ ⌊
�

��
⌋

⌊�� �⌋

��0
< " ∑

�

��
∞
��0 = 2"   

The worst case time complexity for a sequence of n increments is 

Ο(n) when all the k bits of the binary counter is initially set to all 0's. 
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Space for learners: The average cost / amortized cost of each operation is therefore Ο(n) 

/ n = Ο(1). 

Accounting method: In the accounting method, credits will be 

assigned for flipping the bits ( 0 to 1 ). '2' credits will assigned for 

each flip from 0 to 1 where 1 credit is used for the actual flip and 

remaining 1 credit is stored with the bit. It is done free when the bit 

is flipped from 1 to 0 in subsequent increments. The 1 credit stored 

with the bit is used to pay for this operation and hence it is termed as 

free. The number of 1's is accumulated as credit in the counter at the 

end of each increment. The cost of flipping the bit ( 0 to 1 ) is 2 = 

Ο(1) and for flipping the bit ( 1 to 0 )  is 0 = Ο(1). Therefore, the 

amortized cost of n increments is Ο(1). 

Potential Function Method: In this method, we define the number 

of 1's in the counter as a potential function capturing some structural 

element. For the ith  iteration, the last 0 is set to 1 and after the last 0 

all 1's are set to 0. E.g. when a counter with value = '1001' is 

incremented then the new value is '1010'. Let us denote the total no 

of 1's before the ith  operation be x and the total no of 1's after the last 

0 be t . After the end of ith  operation, t no of 1's are changed to 0 and 

the last 0 is changed to 1 so there will be x – t + 1 no of 1's. Thus, 

the actual increment cost is t + 1 and the amortized cost is   

  ĉ� =  �� + �� − ���     

                 = 1 + t + (x − t + 1) − x           

      = 2 = Ο(1)      

    

5.5.2.2 A Sequence of N Increment and Decrement 

Operations 

Aggregate Analysis : For the 2nd operation of a sequence of n 

increment and decrement operations, we take a sequence of 
�

�
 

increments followed by 
�

�
 increments and decrements occurring 

alternately. Using aggregate analysis, for the 1st half of the 

operations the actual cost is Ο(n) and for the 2nd half the actual cost 

is 
�

�
 * Ο(k) . Thus, the amortized cost is Ο(k) for both increment and 

decrement operations. 

Accounting method : For the accounting method, k credits will be 

assigned to both increment and decrement operations. Therefore, the 

amortized cost is Ο(k) for both increment and decrement operations. 



 

93 | P a g e  

 

Space for learners: Potential Function Method : We define the number of 1's in the 

counter as a potential function capturing some structural element. 

Let us denote the total no of 1's before the ith  operation be x and the 

total no of 1's after the last 0 be t . So, the amortized cost of 

increment is 

  ĉ� =  �� + �� − ���      

      = 1 + t + (x − t + 1) − x           

      = 2 = Ο(1) 

Let us denote the total no of 1's before the ith  operation be x and the 

total no of 0's after the last 1 be t . So, the amortized cost of 

decrement is 

  ĉ� =  �� + �� − ���      

      = 1 + t + (x + t − 1) − x           

      = 2t = Ο(k) 

Therefore, the amortized cost of increment is Ο(1) and that of 

decrement is Ο(k). 

5.5.2.3 A Sequence of N Increment, Decrement and 

Reset Operations 

Aggregate Analysis :  For the 3rd operation of a sequence of n 

increment , decrement and reset operations,  we take a sequence of 
�

�
 

increments followed by one reset operation. The total cost would be 

Ο(n) + Ο(k). The aggregate analysis method gives Ο(1) amortized 

cost for 
�

�
 increments and Ο(k) amortized cost for the reset operation. 

Therefore, the amortized cost is Ο(k) for this sequence of operations. 

Accounting method : For the accounting method, k credits will be 

assigned to both increment and decrement operations. Reset 

operations requires flipping back all the 1's present in the current 

value of the counter back to 0's. It’s a decrement operation done 

with k credits and so the actual cost of reset operation is Ο(k).  

Therefore, the amortized cost is Ο(k) for increment , decrement and 

reset operations.  

Potential Function Method : For the potential function method, the 

analysis of increment and decrement is same as done previously and 

thus is Ο(1) amortized and Ο(k) amortized respectively. We now 

analyze the reset operation and the actual cost of reset operation is 
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Space for learners: Ο(k). Assuming that there are x 1's in the current value of the 

counter and so the amortized cost is  

  ĉ� =  �� + �� − ���      

      = k + 0 − x             

      = Ο(k) , if x = Ο(1) 

5.6 SUMMING UP 

 Amortized analysis is a worst-case analysis of a sequence of 

operations to obtain a tight bound on the overall cost per 

operation in the sequence. 

 Amortized analysis is applied when few operations of the 

algorithms are slow while rest of them are fast. 

 Amortized analysis does not involve probability calculations and 

does not give the cost of a specific operation in the sequence.  

 There are 3 different approaches to perform amortized analysis 

of an algorithm viz. aggregate analysis, accounting method and 

potential function method. 

 Aggregate analysis is the simplest and gives the upper bound on 

the total cost of a sequence of n operations. 

 Accounting method gives different costs to different types of 

operations and the cost associated with each operation is its 

amortized cost. This method involves maintaining credits for 

each operation. 

 Potential function method performs analysis as “potential 

energy” or “potential” which can be used to pay for future 

operations. The analysis is based on a structural feature of the 

data structure and this method also assigns different costs to 

different types of operations. 

 Case studies are performed on stack and binary counter to 

perform amortized analysis using the 3 different methods. 

5.7 ANSWERS TO CHECK YOUR PROGRESS 

 1. a. FALSE 

 1. b. TRUE 
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Space for learners:  1. c. TRUE 

 1. d. FALSE 

 1. e. TRUE 

5.8 POSSIBLE QUESTIONS 

 1. What is amortized analysis ? 

2.  Why amortized analysis of an algorithm is needed ? 

3. Define the features of amortized analysis ? 

4. What are the different approaches to perform amortized 

analysis ? 

5. Which technique/techniques of amortized analysis assigns 

different costs to    

     different operations?  

6. Show that if a DECREMENT operation were included in 

the k-bit counter example, n operations could cost as much as 

θ(nk). 

 7. Perform amortized analysis on dynamic tables using any 

one of the methods. 

5.9 SUGGESTED READINGS 

 Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald 

L. and Stein, Clifford. Introduction to Algorithms. 2nd 

Edition : The MIT Press, 2001.  
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UNIT 1:    ALGORITHM DESIGN 

TECHNIQUES I 

Unit Structure:  

1.1 Introduction 

1.2 Divide and Conquer 

1.2.1 General Method 

1.2.2 Recurrence Equation for Divide and Conquer 

1.2.3 Advantages and Disadvantages of Divide and 

Conquer 

1.3 Greedy Algorithm 

1.3.1 General Method 

1.3.2 Optimal Merge Patterns 

1.3.3 Minimum Spanning Tree 

1.3.4 DIJKSTRA’S Algorithm 

1.4 Dynamic Programming 

1.4.1 General Method 

1.4.2 Some Applications of the Dynamic-Programming  

1.5 Backtracking 

1.5.1 General Method 

1.5.2 Tree Organization for Solution Space in 

Backtracking  

1.5.3 The N Queens Problem 

1.5.4 Hamiltonian Cycle 

1.6 Branch and Bound 

1.6.1 General Method 

1.6.2 Travelling Salesman Problem 

 1.7 Summing Up 

 1.8 Answers to Check Your Progress 

 1.9 Possible Questions 

 1.10 References and Suggested Readings 
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1.1 INTRODUCTION 

The term algorithm comes from the name of a Persian author, Abu 

Ja’far Mohammed ibn Musa al Khowarizmi (c. 825 A. D.), who 

wrote a textbook of mathematics. This word has taken on a special 

significance in computer science, where the term “algorithm” has come 

to refer to a method that can be used by a computer for the solution of a 

problem. This makes algorithm is different from the terms such as 

process, technique or method [3]. 

Algorithm is a set of instructions to solve a particular problem. Mainly 

algorithm contains a sequence of computational steps that transform the 

input into the output. We can think an algorithm like a tool for solving a 

well specified computational problem. The statement of the problem 

specifies in general terms the desired input/output relationship. The 

algorithm describes a specific computational procedure for obtaining 

that input/ output relationship. 

All algorithms must satisfy the following criteria [1]: 

 Input: there may be zero or more externally supplied quantities  

 Output: at least one quantity or result is produced  

 Definiteness: each instruction must be clear and unambiguous;  

 Finiteness: if we trace out the instructions of an algorithm, then 

for all cases the algorithm will terminate after a finite number of 

steps;  

 Effectiveness: every instruction must be sufficiently basic that it 

can in principle be carried out by a person using only pencil and 

paper. It is not enough that each operation be definite, but it 

must also be feasible.  

No matter which programming language we use, but at the same time it 

is important to learn algorithm design techniques in data structures in 

order to be able to build scalable systems in an efficient manner. 

Selecting a proper design technique for algorithms is a complex but 

important task. We can choose from a wide range of algorithm design 

technique. Following are some of the main algorithm design techniques: 

1. Divide and Conquer 
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2. Greedy Algorithms 

3. Dynamic Programming 

4. Backtracking 

5. Branch and Bound Algorithm 

1.2 DIVIDE AND CONQUER 

The advance of scientific knowledge often involves the grouping 

together of similar objects followed by the abstraction and 

representation of their common structural and functional features. 

Generic properties of the objects in the class are then studied by 

reasoning about this abstract characterization. The resulting theory may 

suggest strategies for designing objects in the class which have given 

characteristics. One such related algorithm based on the principle of 

'divide and conquer'. 

1.2.1 General Method 

Divide and conquer is a design strategy which is well known to 

breaking down efficiency barriers. When the method applies, it often 

leads to a large improvement in time complexity. For example, from O 

(n2) to O (n log n) to sort the elements [1]. 

Divide and Conquer is one of the best-known general algorithm design 

technique. It works according to the following general plan:  

 Given a function to compute on n input the divide-and-

conquer strategy suggest splitting the input into k distinct 

subsets, 1<k<=n, yielding k subproblems. 

 These subproblems must be solved and then a method must 

be found to combine subsolution into a solution of the 

whole.  

 If the subproblems are still relatively large, then the divide-

and–conquer strategy can possibly be reapplied. 

 Often the subproblems resulting from a divide-and –conquer 

design are of the same type as the original problem. 
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 For those cases the reapplication of the divide-and-conquer 

principle is naturally expressed by a recursive algorithm. 

Divide and conquer strategy is as follows:  

 Divide the problem instance into two or more smaller 

instances of the same problem 

 Solve the smaller instances recursively, and assemble the 

solutions to form a solution of the original instance 

 The recursion stops when an instance is reached which is too 

small to divide 

 When dividing the instance, one can either use whatever 

division comes most easily to hand or invest time in making 

the division carefully so that the assembly is simplified 

The Divide and conquer algorithm involves three steps at each level 

of recursion: 

Steps 

Example: 

Divide-and-Conquer (Input: 

Problem P) 

To Solve P: 

Divide: Divide the problem into a 

number of sub problems. The sub 

problems are solved recursively.  

Divide P into smaller problems 

P1, P2, P3.....Pk 

Conquer: Conquer the 

subproblems by solving them 

recursively. If the subproblem sizes 

are small enough, however, just 

solve the subproblems in a 

straightforward manner. 

Conquer by solving the (smaller) 

subproblems recursively 

Combine: Combine the solutions 

to the subproblems into the 

solution for the original problem. 

Combine solutions to P1, P2, ...Pk 

into solution for P 
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A typical case with k=2is diagrammatically shown below: 

 

Control Abstraction for divide and conquer:  

Algorithm DAndC(P) 

{ 

if Small(P) then return S(P) 

else 

{ 

 divide P into smaller instances P1,P2,…..,Pk, k>=1; 

Apply DAndC to each of these subproblems; 

Return 

Combine(DAndC(P1),DAndC(P2),…..,DAndC(Pk)); 

} 

} 

In the above specification,  

 Initially DAndC(P) is invoked, where ‘P’ is the problem to be 

solved.  

 Small (P) is a Boolean-valued function that determines whether 

the input size is small enough that the answer can be computed 

without splitting. If this so, the function ‘S’ is invoked. 

Otherwise, the problem P is divided into smaller sub problems. 
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These sub problems P1, P2 ……Pk are solved by recursive 

application of DAndC.  

 Combine is a function that determines the solution to P using the 

solutions to the ‘k’ sub problems.  

1.2.2 Recurrence equation for Divide and Conquer 

If the size of problem ‘p’ is n and the sizes of the ‘k’ sub problems are 

n1, n2….nk, respectively, then the computing time of divide and conquer 

is described by the recurrence relation. 

Where,  

 T(n) is the time for divide and conquer method on any input of 

size n and  

 g(n) is the time to compute answer directly for small inputs.  

 The function f(n) is the time for dividing the problem ‘p’ and 

combining the solutions to sub problems. 

For divide and conquer based algorithms that produce sub problems of 

the same type as the original problem, it is very natural to first describe 

them by using recursion 

More generally, an instance of size n can be divided into b instances of 

size n/b, with a of them needing to be solved. (Here, a and b are 

constants; a>=1 and b > 1.). Assuming that size n is a power of b (i.e. 

n=bk), to simplify our analysis, we get the following recurrence for the 

running time T(n): 

 
where, f(n) is a function that accounts for the time spent on dividing the 

problem into smaller ones and on combining their solutions.  
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Analyzing divide-and-conquer algorithms: 

We often use a recurrence to express the running time of a divide-and-

conquer algorithm. 

Let T(n) = running time on a problem of size n. 

 If n is small (say n ≤ k), use constant-time brute force solution. 

 Otherwise, we divide the problem into a subproblems, each 1/b 

the size of the original. 

 Let the time to divide a size-n problem be D(n). 

 Let the time to combine solutions (back to that of size n) be 

C(n). 

We get the recurrence 

 

     c    if n ≤ k 

T(n) = 

    a T(n/b) + D(n) + C(n) if n > k 

 

Example: Merge Sort 

For simplicity, assume n = 2k. 

For n = 1, the running time is a constant c 

For n ≥ 2, the time taken for each step is: 

Divide: Compute q = (p + r)/2; so, D(n) = � (1). 

Conquer: Recursively solve 2 subproblems, each of size n/2; so, 

2T(n/2) 

Combine: MERGE two arrays of size n; so, C(n) = � (n) 

More precisely, the recurrence for MERGE-SORT is 

 

     c   if n ≤ 1 

T(n) = 

    2 T(n/2) + f(n) if n > 1 
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where the function f(n) is bounded as d’ n ≤ f(n) ≤ d n for suitable 

constants d, d’> 0 

1.2.2.1 Guess-and –test (Substitution Method) 

Guess an expression for the solution. The expression can contain 

constants that will be determined later. Use induction to find the 

constants and show that the solution works. 

Or 

[Substitution Method: This method repeatedly makes substitution for 

each occurrence of the function T in the right-hand side until all such 

occurrences disappears.] 

Let us apply this method to MERGE-SORT 

The recurrence of MERGE-SORT implies that there exist two constants 

c, d > 0 such that 

 

     c    if n = 1 

T(n) ≤ 

    2 T(n/2) + dn   if n > 1 

 

Guess: There is some constant a > 0 such that T(n) ≤ an lg n for all n ≥ 

2 that are powers of 2 

Solving the MERGE-SORT recurrence by guess-and-test 

Test: For n=2k , by induction on  k 

Base case: k=1 

 

T(2) = 2c + 2d ≤ a 2 lg 2   if a ≥ c + d 

 

Inductive step: assume T(n) ≤ an log n for n = 2k. 

Then, for n′ = 2k+1 we have: 

����� ≤ 2	 
�

� lg 
�

� + ���  

= 	�′���′ − 	�′ �� 2 + ��′ 
≤ 	���� ��             �� 	 ≥ � 
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In summary: choosing a ≥ c + d ensures T(n) ≤ an lg n, and thus T(n) = 

O(n log n). 

A similar argument can be used to show that ���� = Ω � log � 

Hence, T(n) = � (n log n) 

1.2.2.2 The Recursion Tree 

Guess-and-test is great, but sometime it is difficult to guess. One way is 

to use the recursion tree, which exposes successive unfoldings of the 

recurrence. The idea is well exemplified in the case of MERGE-SORT. 

The recurrence is 

c     if n = 1 

T(n) =  

2 T(n/2) + f(n)   if n > 1 

where the function f(n) satisfies the bounds d′ n ≤ f(n) ≤ d n, for suitable 

constants d, d′ > 0 

Unfolding the recurrence of MERGE-SORT 

Assume n = 2k for simplicity 

First unfolding: cost of f(n) plus cost of two subproblems of size n/2 

 

 

 

 

 

 

Second unfolding: for each size-n/2 subproblem, cost of f(n/2) plus cost 

of two subproblems of size n/4 each 
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Continue unfolding, until the problem size (= node label) gets down to 

1: 

 

 

 

 

 

 

In total, there are lg � + 1 levels 

 Level  0 (root) has cost ����� = ���� 

 Level 1 has cost ����� = 2��

�� 

 Level 2 has cost ����� = 4��

!� 

 For � < lg �, level � has cost #���� = 2$�� 

�%� 

Note that, since ��� ≤ ���� ≤ � �, we have ��� ≤ �$��� ≤ �� 

 The last level (consisting of n leaves) has cost &' 

Analysing MERGE-SORT with the recursion tree 

The total cost of the algorithm is the sum of the costs of all levels: 

���� = ∑ �$��� + # �)* 
+�
$,�   

Using the relation ��� ≤ �$��� ≤ �� for < lg � , we obtain the bounds 

��� lg � + # � ≤ ���� ≤ �� lg � + # �  

Hence, ���� =  ��� log �� 
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1.2.2.3 The Master Theorem 

The efficiency analysis of many divide-and-conquer algorithms is 

greatly simplified by the master theorem. It states that, in recurrence 

equation T(n) = aT(n/b) + f (n), If f (n)∈ Θ (nd) where d ≥ 0 then  

 

Analogous results hold for the O and Ω notations, too. 

Problems on Substitution method and Master theorem to solve the 

recurrence relation   

Exercise 1: Solve following recurrence relation 

T(n)=2T(n/2)+n, T(1)=2, using substitution method 

Solution: T(n)= 2T(n/2)+n 

=2[2.T(n/4)+n/2] +n 

=4T(n/4)+2n 

=4[2.T(n/8)+n/4]+2n= 8T (n/8)+3n 

. 

. 

. 

=2i T(n/2i)+ ¡n, 1 ≤i ≤ log� � 

The maximum value of  i=log2n [then only we get T(1)] 

= 2 log� � . � / 

� )0*1 
2 +  �. log� � 

=n.T(1)+  �. log� � 

=�3 � �log� ��4 

Solution using Master Theorem 
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Here, a=2, b=2, f(n)=n= ��′      d=1 

Also we see that a=bd [2=2’] 

As per case 2 of master theorem  

T(n)= �/ �5  �log� ��2 

= �3 � �log� ��4 

1.2.3 Advantages and Disadvantages of Divide and 

Conquer 

Advantages  

 Parallelism: Divide and conquer algorithms tend to have a lot 

of inherent parallelism. Once the division phase is complete, the 

sub-problems are usually independent and can therefore be 

solved in parallel. This approach typically generates more 

enough concurrency to keep the machine busy and can be 

adapted for execution in multi-processor machines. 

 Cache Performance: divide and conquer algorithms also tend 

to have good cache performance. Once a sub-problem fits in the 

cache, the standard recursive solution reuses the cached data 

until the sub-problem has been completely solved. 

 It allows solving difficult and often impossible looking problems 

like the Tower of Hanoi. It reduces the degree of difficulty since 

it divides the problem into sub problems that are easily solvable, 

and usually runs faster than other algorithms would. 

 Another advantage to this paradigm is that it often plays a part in 

finding other efficient algorithms, and in fact it was the central 

role in finding the quick sort and merge sort algorithms.  

Disadvantages  

 One of the most common issues with this sort of algorithm is the 

fact that the recursion is slow, which in some cases outweighs 

any advantages of this divide and conquer process. 
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 Another concern with it is the fact that sometimes it can become 

more complicated than a basic iterative approach, especially in 

cases with a large n. In other words, if someone wanted to add a 

large amount of numbers together, if they just create a simple 

loop to add them together, it would turn out to be a much 

simpler approach than it would be to divide the numbers up into 

two groups, add these group recursively, and then add the sums 

of the two groups together. 

 Another downfall is that sometimes once the problem is broken 

down into sub problems, the same sub problem can occur many 

times. It is solved again. In cases like these, it can often be easier 

to identify and save the solution to the repeated sub problem, 

which is commonly referred to as memorization. 

1.3 GREEDY ALGORITHM 

We consider problems in which a result comprises a sequence of steps 

or choices that have to be made to achieve the optimal solution. Greedy 

programming is a method by which a solution is determined based on 

making the locally optimal choice at any given moment. In other words, 

we choose the best decision from the viewpoint of the current stage of 

the solution. Depending on the problem, the greedy method of solving a 

task may or may not be the best approach. If it is not the best approach, 

then it often returns a result which is approximately correct but 

suboptimal. In such cases dynamic programming or brute-force can be 

the optimal approach. On the other hand, if it works correctly, its 

running time is usually faster than those of dynamic programming or 

brute-force. 

A Greedy algorithm is characterized by the following two 

properties: 

1. The algorithm works in stages, and during each stage a choice is 

made which is locally optimal; 

2. The sum totality of all the locally optimal choices produces a globally 

optimal solution. 
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1.3.1 General Method 

Greedy is the most straight forward design technique. Most of the 

problems have n inputs and require us to obtain a subset that satisfies 

some constraints. Any subset that satisfies these constraints is called a 

feasible solution. We need to find a feasible solution that either 

maximizes or minimizes the objective function [1]. 

If a greedy procedure does not always lead to a globally optimal 

solution, then we will refer to it as a heuristic, or a greedy heuristic. 

Heuristics often provide a “short cut" to a solution, but not necessarily 

to an optimal solution. Hence fore, we will use the term “algorithm" for 

a method that always produces a correct/optimal solution and 

“heuristic" to describe a procedure that may not always produce the 

correct or optimal solution. 

Let us consider the problem of coin change. Suppose a greedy person 

has some 25p, 20p, 10p, 5paise coins. When someone asks him for 

some change then he wants to give the change with minimum number 

of coins. Now, let someone requests for a change of top then he first 

selects 25p. Then the remaining amount is 45p. Next, he selects the 

largest coin that is less than or equal to 45p i.e. 25p. The remaining 20p 

is paid by selecting a 20p coin. So the demand for top is paid by giving 

total 3 numbers of coins. This solution is an optimal solution. Now, let 

someone requests for a change of 40p then the Greedy approach first 

selects 25p coin, then a 10p coin and finally a 5p coin. However, the 

some could be paid with two 20p coins. So it is clear from this example 

that Greedy approach tries to find the optimal solution by selecting the 

elements one by one that are locally optimal. But Greedy method never 

gives the guarantee to find the optimal solution. 

The choice of each step is a greedy approach is done based on the 

following: 

· It must be feasible 

· It must be locally optimal 

· It must be unalterable 

There are two key ingredients in greedy algorithm that will solve a 

particular optimization problem. 
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1. Greedy choice property 

2. Optimal substructure 

1. Greedy choice property: 

A globally optimal solution can be arrived at by making a locally 

optimal (greedy) choice. In other words, when a choice is to be made, 

without considering results from the sub-problems, it looks for best 

choice in the current problem. In this algorithm choice is made that 

seems best at the moment and solve the sub-problems after the choice is 

made. The choices made by a greedy algorithm may depend on choices 

so far, but it cannot depend on any future choice or solution to the sub-

problems. The algorithm works in a top down manner, making one 

greedy choice one after another, reducing each given problem instances 

into smaller one. 

2. Optimal substructure: 

A problem is said to have optimal substructure if an optimal solution 

can be constructed efficiently from optimal solution to its sub-problem. 

The optimal substructure varies across problem domain in two ways- 

i) How many sub-problems are used in an optimal solution to the 

original problem. 

ii) How many choices we have in determining which sub-problem 

to use in an optimal solution. 

In Greedy algorithm a sub-problem is created by having made the 

greedy choice in the original problem. Here, an optimal solution to the 

sub-problem, combined with the greedy choice already made, yield an 

optimal solution to the original problem. 

1.3.2 Optimal Merge Patterns 

Optimal merge patterns can be stated as follows: 

 Two sorted file containing n and m records respectively 

could be merged together to obtain one sorted file in time O( 

n + m ). When more than two sorted files are merged 

together then merge can be done by repeatedly merging the 

sorted files in pairs. 
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For example- 

Problem 1: There are 5 sorted files F1,F2,F3,F4,F5 and each file has 

20,30,10,5,30 records respectively. 

If merge these files pair wise then- 

M1  = F1&F2 

= 20 + 30 

= 50 (i.e merging F1 and F2 

requires 50 moves) 

M2 = M1&F3 

= 50 +10 

=60 

M3 = M2&F4 

= 60 + 5 

= 65 

M4 = M3&F5 

= 65 + 30 

= 95 

Hence Total time required to moves records is – 

50+60+65+95 = 270 

 Different pairing requires different amount of computing 

time. The problem can be stated as- 

What is the optimal way to pair wise merge n sorted files? Or What is 

the minimum time needed to pair wise merge n sorted files? 

 We can solved this problem using greedy algorithm. The greedy 

algorithm attempt to find an optimal merge pattern. 
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Greedy method for optimal merge pattern: 

Sorts the list of file and at each step merge the two smallest size files 

together. 

Example: The above given problem 1 can be solved as follows- 

Sort the files according to their number of records. 

( 5,10,20,30,30 ) = ( F4,F3,F1,F2,F5 ) 

Merge the first two files- 

( 5,10,20,30,30 ) => ( 15,20,30,30 ) 

Merge the next two files- 

(15,20,30,30 ) => ( 30,30,35 ) 

Merge the next two files- 

( 30,30,35 ) => ( 35,60 ) 

Merge the last two files- 

( 35,60 ) => ( 95 ) 

Hence, total time require is 15+35+60+95= 205 

This is the optimal merge pattern for the given problem instance. This 

merging is also called two way merge pattern because each merge step 

involves merging of two files. 

The two way merge pattern can be represented by binary merge trees. 

For the above problem1 the binary merge tree representing the optimal 

merge pattern is as follows- 

Here, the leaf nodes are denoted by square and represent the five files. 

These nodes are called external nodes. The remaining nodes are drawn 

as circle and are called internal nodes. Each internal node has exactly 

two children and it represent file obtained by merging the files 

represented by its two children. The number in the each node is the 

length (i.e. the number of records) of the file represented by that record. 
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Fig 3.1 Binary merge tree representing a merge pattern 

Here a node at level i is at a distance of i -1 from the root (In the above 

tree x4 is at a distance 3 from root z4 ). 

If di is the distance from the root to external node for a file xi and qi is 

the length of the file xi , then the total number of records move for the 

binary merge tree is- 

∑ i=1..n di gi 

This sum is called the weighted external path length of the tree. An 

optimal two way merge pattern is minimum weighted external path 

length of a binary merge tree. 

 

 

CHECK YOUR PROGRESS - I 

a) _____________ is a set of instructions to solve a particular 

problem. 

b) Greedy programming is a method by which a solution is 

determined based on making the locally ______ choice at any 

given moment 

c) Divide and conquer is a design strategy which is well known 

to breaking down __________barriers 
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1.3.3 Minimum Spanning Tree 

Before going to the definition of the minimum spanning tree let us 

define what a spanning tree is: 

Spanning tree: 

A spanning tree is a connected graph, say G = (V, E) with V as set of 

vertices and E as set of edges, is its connected acyclic sub- graph that 

contain all the vertices of the graph. 

Now the minimum spanning tree can be defined as: 

Minimum spanning tree: 

A minimum spanning tree T of a positive weighted graph G is a 

minimum weighted spanning tree in which total weight of all edges are 

minimum 

6��� = ∑ 6�7, 9��:,;�<= �> ?���?�@A�  

Where w(u, v) is the cost of the edge (u, v) 

For example; 

Let us consider connected graph G given in fig 

 
Now, the minimum spanning trees are for the graph G is- 
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Application of Minimum spanning tree: 

i. In design of electric circuit network . 

ii. It is used in traveling salesman problem. 

The minimum spanning tree problem is the problem of finding a 

minimum spanning tree for a given weighted connected graph 

There are two algorithms to solve minimum spanning tree problem 

1. Kruskal algorithm 

2. Prim algorithm 

The general approaches of these algorithms are- 

o The tree is built edge by edge 

o Let T be the set of edges selected so far 

o Each time a decision is made. Include an edge e to T 

s.t. Cost (T) + w (e) is minimized, and T U {e} does 

not create a cycle 

Both these algorithms are greedy algorithm. Because at each step of an 

algorithm, one of the best possible choices must be made. The greedy 

strategy advocates making the choice that is best at the moment. Such a 

strategy is not generally guaranteed to globally optimal solution to a 

problem. 

1.3.3.1 PRIM’S Algorithm 

The prim’s algorithm uses greedy method to build the sub-tree edge by 

edge to obtain a minimum cost spanning tree. The edge to include is 
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chosen according to some optimization criterion. Initially the tree is just 

a single vertex which is selected arbitrarily from the set V of vertices of 

a given graph G. Next edge is added to the tree by selecting the 

minimum weighted edge from the remaining edges and which does not 

form a cycle with the earlier selected edges. The tree is represented by a 

pair (V’, E’) where V’ and E’ represent set of vertices and set of edges 

of the sub-tree of minimum spanning tree. 

The algorithm is as follows- 

The algorithm continuously increases the size of a tree, one edge at a 

time, starting with a tree consisting of a single vertex, until it finds all 

vertices. 

 Input: A non-empty connected weighted graph with vertices V 

and edges E (the weights are positive). 

 Initialize: V’ = {x}, where x is an arbitrary node (starting point) 

from V, 

 E’ = { } 

 Repeat until V’ = V; 

 Choose an edge (u, v) with minimal weight such that u is in V’ and 

v is not in V’ ( if there are multiple edges with the same weight, any 

of them may be picked ) 

 Add v to V’ and (u, v) to E’ if edge (u, v) will not make a cycle with 

the edges already in E’ 

 Output: V’ and E’ describe a minimal spanning tree 
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Example: 

Let us consider the following graph G 

 

Fig. 3.4 Prim’s algorithm applied on the Graph G 

Initially vertex a is selected. So, V’ will contain a. 

 

Fig. 3.5 Vertex a is selected 

V’ = {a}  

 E’ = Ø 

After first iteration, the minimum weight edge connected a and other 

vertices of V is selected. In this case from vertex a there are two edges 

ab and ad to vertex b and d. 
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Fig. 3.6 minimum weighted edge 

 

Between ab and ad weight of ab is minimum. Hence, after first iteration 

vertex b is include to V’ and edge ab is included to E’. 

 

 

Fig. 3.7 Minimum weighted edge selected 

V’ = {a, b} 

E’ ={ ab } 

In the next iteration we select the minimum weight edge, which does 

not make a cycle with previously selected edges in E’, from the edges 

not included in E’ and edges connected   one vertex from V’ and 

another vertex not in V’. Here edges from a and b to any other vertex. 
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Here, edges are ad, bd, be, bc from which we can select the minimum 

weight edge. 

Fig. 3.8 Finds the minimum weighted edge 

 

Here, weight of bc is minimum and it does not make a cycle with  ab. 

Thus bc is selected in this iteration. 

Fig. 3.9 Minimum weighted edge selected 

 

V’ = { a, b, c } 

E’ = { ab, bc } 

In the next iteration we can consider the edges that have a,b or c as one 

of the vertex . Here the edges are ad, bd, be, ce, cf. we canot consider 

ab and bd because they are already selected. 
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Fig. 3.10 Finds minimum weighted edge 

From these edges weight of bd is minimum and it does not make a 

cycle with the edge in E’. Thus bd is selected. 

Fig. 3.11 Minimum weighted edge selected 

V’ = { a, b, c, d } 

E’ = { ab, bc, bd } 

In the next iteration we consider the edges (excluding already selected 

edges) that have a, b, c, d as one vertex. Here edges are ad, be, ce, cf, 

de, dh, dg. 
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Fig. 3.12 Finds Minimum weighted edge 

The weight of dg is minimum and it does not make a cycle with the 

edges in E’. Thus, dg is selected. 

 

 

 

Fig. 3.13 Minimum weighted edge selected 

V’ = { a, b, c, d, g } 

E’ = { ab, bc, bd, dg } 

In the next iteration considered edges are ad, be, de, gh, dh, ce, cf 
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Fig. 3.14 Finds Minimum weighted edge 

Among these edges weight of gh is minimum and it does not make any 

cycle with already selected edges in E’. Thus, gh is selected. 

 
 

 

Fig. 3.15 Minimum weighted edge selected 

 V’ = { a, b, c, d, g, h } 

E’ = { ab, bc, bd, dg, gh } 

In the next iteration consider the edges that have one vertex from V’ and 

connect another vertex excluding already selected edges. Here edges 

are ad, be, ce, cf, de, dh, hf. 
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Fig. 3.16 Finds Minimum weighted edge 

Among these weights, ad and ce are minimum. If select ad then it 

make a cycle with the already selected edge ab and bd of E’. So, ad 

cannot be selected. If we select ce it will not make a cycle with the 

edges of E’. Thus ce is selected. 

 
 

Fig. 3.17 Minimum weighted edge selected 

 

V’ = {a, b, c, d, e, g, h} 

E’ = {ab, bc, bd, dg, gh, ce} 
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In the next iteration considered edges are ad, be, de, dh, cf, hf. 

 
 

 

Fig. 3.18 Finds Minimum weighted edge 

Among these weights, ad is minimum. But it makes a cycle with already 

selected edges ad and ab. So, ad is rejected. Next minimum weight is of 

edge de, be and hf. But these two edges will also make cycle. So de 

and be are also rejected. hf will not make a cycle. Thus hf is 

considered. 

 

Fig. 3.19 Minimum weighted edge selected 

V’ = { a, b, c, d, e, f, g, h } 

E’ = { ab, bc, bd, dg, gh, ce, hf } 
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Next, the edges be, de, cf, ad, dh cannot included to form the tree 

because they make a cycle with already selected edges. Hence the final 

spanning tree is- 

 

Fig. 3.20 Final spanning tree of graph G 

1.3.3.2 KRUSKAL Algorithm 

Another method of finding minimum spanning tree is Kruskal 

algorithm. In this algorithm the edges of the graph are considered in 

non-decreasing order. The result is a forest of trees that grows until all 

the trees in a forest (all the components) merge in a single tree. 

The algorithm is as follows- 

 create a forest F (a set of trees), where each vertex in the graph 

is a separate tree 

 create a set S containing all the edges in the graph 

 while S is nonempty and F is not yet spanning 

 remove an edge with minimum weight from S 

 if that edge connects two different trees, then add it to the forest, 

combining two trees into a single tree 

 Otherwise discard that edge. 
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KRUSKAL ALGORITHM EXAMPLE: 

1.3.4 DIJKSTRA’S Algorithm 

For a given weighted and directed graph G= (V, E), the shortest path 

problem is the problem of finding a shortest path between any two 

vertex v ϵ V in graph G. The property of the shortest path is such that a 

shortest path between two vertices contains other shortest path within it 

i.e any other sub-path of a shortest path is also a shortest path. 

Single source shortest path problem: 

In a single source shortest path problem, there is only one source vertex 

S in the vertex set V of graph G = (V, E). Now this single source 

shortest path problem finds out the shortest path from the source vertex 

S to any other vertex in v € V. 

Optimal substructure of a shortest path: 

Optimal substructure of a shortest path can be stated that any other sub-

path of a shortest path is also a shortest path. Here is the lemma- 

Lemma: 

Given a weighted directed graph G=(V, E) with weight function w: E  

R, let p = ( v1,v2 , vk ) be a shortest path from vertex v1 to vertex vk, and 

for any i and j such that 1 ≤ i ≤ j ≤ k, let Pij = ( v1,vi+1, ------,vj ) be the 
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sub-path of P from vertex vi to vertex vj. Then Pij is a shortest path from 

vi to vj. 

Dijsktra algorithm solves the single source shortest path problem. But 

the algorithm works only on a directed and positive weighted graph. 

Positive weighted graph means where weights of all edges are non-

negative i.e. G = (V, E) is a positive weighted graph then w( u, v) ≥ 0. 

Dijsktra algorithm is a greedy algorithm. 

 

 

 

 

 

 

 

 

Example of Dijkstra’s algorithm: 

Apply Dijkstra’s algorithm for the following graph G 
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d 
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a 

b 
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Step 4 

Step 5 
Step 6 
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After applying Dijkstra’s algorithm we found F={s,b,d,a,c} [distance is 

9] 

 

 

 

 

 

 

Step 9 

Step 7 

6 

6 

6 

6 

Step 8 

CHECK YOUR PROGRESS - II 

d) The ________ algorithm uses greedy method to build the 

sub-tree edge by edge to obtain a minimum cost spanning 

tree. 

e) In Kruskal’s algorithm the edges of the graph are 

considered in _________order. 

f) List two applications of Minimum Spanning Trees. 
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1.4 DYNAMIC PROGRAMMING 

The Dynamic Programming (DP) is the most powerful design technique 

for solving optimization problems. The term dynamic programming 

refers to this bottom-up approach. It was invented by mathematician 

named Richard Bellman inn 1950s. The DP in closely related to divide 

and conquer techniques, where the problem is divided into smaller sub-

problems and each sub-problem is solved recursively. The Dynamic 

Programming differs from divide and conquer in a way that instead of 

solving sub-problems recursively, it solves each of the sub-problems 

only once and stores the solution to the sub-problems in a table. The 

solution to the main problem is obtained by the solutions of these sub- 

problems.  

The steps of Dynamic Programming technique are: 

Dividing the problem into sub-problems: The main problem is 

divided into smaller sub- problems. The solution of the main problem is 

expressed in terms of the solution for the smaller sub-problems.  

Storing the sub solutions in a table: The solution for each sub-

problem is stored in a table so that it can be referred many times 

whenever required.  

Bottom-up computation: The DP technique starts with thesmallest 

problem instance and develops the solution to sub instances of longer 

size and finally obtains the solution of the original problem instance. 

1.4.1 General Method 

Dynamic Programming is an algorithm design method that can be used 

when the solution to a problem can be viewed as the result of a 

sequence of decisions. 

When developing a dynamic programming algorithm, we follow a 

sequence of four steps: 

1. Characterize the structure of an optimal solution 

2. Recursively define the value of an optimal solution 

3. Compute the value of an optimal solution, typically in 

bottom-up fashion 
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4. Construct an optimal solution from computed information. 

Characteristics of Dynamic Programming: 

 The Problem can be divided into stages, with a policy 

decision at each stage 

 Each stage consist of a number of states associated with it 

 Decision at each stage convert the current stage in to a state 

associated with next stage 

 The state of the system at a stage is described by state 

variable 

 When the current state is known, an optimal policy for the 

remaining stages is independent of the policy of the previous 

ones 

 The solution procedure begins by finding the optimal 

solution of each state from the optimal solutions of its 

previous stage 

1.4.2 Some Applications of the Dynamic-Programming 

Matrix Chain Multiplication: Given a sequence of matrices that must 

be multiplied, parenthesize the product so that the total multiplication 

complexity is minimized. 

0-1 Knapsack: Given items x1,……, xn , where item xi has weight wi 

and profit pi (if its placed in the knapsack), determine the subset of 

items to place in the knapsack in order to maximize profit, assuming  

that the sack has capacity M. 

Longest Common Subsequence: Given an alphabet Σ, and two words 

X and Y whose letters belong to Σ , find the longest word Z which is a 

(non-contiguous) subsequence of both X and Y. 

Optimal Binary Search Tree:  Given a set of keys k1,…….., kn and 

weights w1, …………., wn, where wi reflects how often ki is accessed, 

design a binary search tree so that the weighted cost of accessing a key 

is minimized. 
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1.5 BACKTRACKING 

The name backtrack was first coined by D. H. Lehmer in the 1950s. 

Backtracking is a modified depth first search of a tree. Many problem 

which deal with searching for a set of solutions or which ask for an 

optimal solution satisfying some constraints can be solved using the 

backtracking formula. This algorithm tries to construct a solution to a 

computational problem incrementally, one small piece at a time. 

Whenever the algorithm needs to decide between multiple alternatives 

to the next component of the solution, it recursively evaluates every 

alternative and then chooses the best one [4]. 

1.5.1 General Method 

Many application of the backtrack method the desired solution is 

expressible as an n tuple (x1, x2 ...xn) where the xi are chosen from some 

finite set si. Often the problem to be solved calls for finding one vector 

that maximizes or minimizes a criterion function p(x1, x2 ...xn). 

Many application of the backtrack method the desired solution is 

expressible as an n-tuple (x1, x2 ...xn) where the xi are chosen from some 

finite set Si. Often the problem to be solved calls for finding one vector 

that maximizes or minimizes a criterion function P(x1, x2 ...xn ). 

Sometimes it seeks all vectors that saitisfy P. 

Problems, which are solving using the method backtracking required 

that all the solutions satisfy a complex set of constraints. For any 

problem these constraints can be divided into two categories [1]: 

1. Explicit Constraints are rules that restrict each CD to take on values 

only from a given set. The explicit constraints depend on the particular 

instance I of the problem being solved. All tuples that satisfy the 

explicit constraints define a possible solution space for I. 

Example: 

CD ≥ 0    FG HD = {	�� �F��A�	J�9A GA	� �7?KAG}  

CD = 0 FG 1   HD = {0,1}  

�D ≤ CD ≤ 7D     FG  HD = {	: �D ≤ 	 ≤ 7D}  
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2. Implicit constraints are rules that determine which of the tuples in 

the solution space of I satisfy the criterion function. Thus implicit 

constraints describe the way in which the CD must related to each other. 

There are two types of solution space tuple formulation: 

1. Variable size tuple: 

In this method for the solution vector ( x1, x2,…..,xk ), xi will represent 

indices of ith choices for 1 ≤ i ≤ k. Here size of the solution vector can 

varies for a problem. 

2. Fixed sized tuple: 

In this method for solution vector( x1, x2, x3,…..xn ), xi € { 0,1 } and 1 ≤ 

i ≤ n, such that xi is 0 if ith element not chosen and 1 otherwise. Here 

solution vector sizes are same for a problem. 

The backtracking algorithm 

Backtracking is quite simple. We “ explore” each node, as follows” 

 To “explore” node N 

o Step 1: If N is a goal node return “success” 

o Step 2: If N is a leaf node, return “ failure” 

o Step 3: For each child C of N, 

 Step 3.1: Explore C 

 Step 3.1.1: If C was successful, 

return “success” 

o Step 4: Return “failure” 

A backtracking algorithm need not actually create a tree. Rather, it only 

needs to keep track of the values in the current branch being 

investigated. This is the way we implement backtracking algorithm. We 

can say that the state space tree exists implicitly in the algorithm 

because it is not actually constructed. Main mechanism is that, after 

determining that a node can lead to nothing but dead end, we go back 

(backtrack) to the nodes parent and proceed with the search on the next 

child.  
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Example: 

Suppose we given a maze to find a path from start to finish. 

To solve this, at each intersection, we have to decide between three or 

fewer choices: 

 Go straight 

 Go left 

 Go right 

We don’t have enough information to choose correctly. 

Each choice leads to another set of choices.  

One or more sequences of choices may (or may not) lead to a solution. 

These types of maze problems can be solved with backtracking. 

1.5.2 Tree Organization for Solution Space in 

Backtracking 

Backtracking method determine solution of a problem by searching for 

the solution set in the solution space. This searching can be organized in 

a tree called State Space Tree. Terminologies used in State Space Tree 

are given below: 
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 Problem State is the state where each node in the DFS tree 

 Solution State is the state are the problem states “S” for which 

the path from a root node to “S” defines a tuple in the solution 

space 

 Live node is an node which has been generated and all of whose 

children have not generated yet 

 E-node is the live node whose children are currently being 

generated 

 Dead node is the node which is not expanded further or all of 

whose children have been generated 

 DFS is the depth first node generation with bounding function is 

called backtracking 

 In state space tree 

i. root of the tree represent 0 choices 

ii. 1st level node represents 1st choices 

iii. 2nd level node represent 2nd choice. 

iv. nth level node represent nth choices. 

 Non-promising node is the node, if it cannot lead to a feasible 

solution and for this node n bounding function B(n) = 0. 

Otherwise, it is called promising node and bounding function 

B(n)=1. Non-promising nodes can be bounded or kill using 

bounding function. Then for this node its sub-trees are not 

generated. 

 A state space tree is called pruned state space tree if it consist 

of only expanded node. 
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1.5.3 The N Queens Problem 

Suppose we given N-Queens and NxN chess board. Now we have to 

find a way to place all N queens on the board show that no queens are 

attacking another queen. In chess, queens can move all the way 

horizontally, vertically or diagonally (if there is no other queen in the 

way).But, no two Queen can attack each other. So, due to this 

restriction, each queen must be on a different row and column. 

Let, N = 8. Then 8-Queens Problem is to place eight queens on an 8 x 8 

chessboard so that no two “attack”, that is, no two of them are on the 

same row, column, or diagonal.  

All solutions to the 8-queens problem can be represented as 8-tuples (x1, 

. . . . , x8), where xi is the column of the ith  row where the ith queen is 

placed.  

The explicit constraints using this formulation are Si = {1, 2, 3, 4, 5, 6, 

7, 8}, 1 <i < 8. 

The implicit constraints for this problem are that no two xi’s can be the 

same (i.e., all queens must be on different columns) and no two queens 

can be on the same diagonal. 
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Backtracking strategy for 8-Queen problem is as follows- 

 Let,  in the chess board rows and columns are numbered from 1 

to 8 and also queens are numbered from 1 to 8 

 Without loss of generality, assume that ith queen can be placed in 

ith row, because no two queen can place in the same row 

 All solution can represented as 8-tuple ( x1, x2,…. x8), where xi 

is the column number of the ith row of ith queen placed 

 Here explicit constraints are Si = {1, 2, 3, 4, 5, 6, 7, 8}, 1 ≤ i ≤ 8 

and the solution space will consist of 88 8-tuple 

 According to the implicit constraints no two queen can on the 

same row 

 So, all solution are permutation of 8-tuple(1, 2, 3, 4, 5, 6, 7, 8) 

 Thus the searches is reduce to 88 8-tuple to 8! tuple 

In 8 -Queen problem all the solution can represented as 8-tuple ( x1, 

x2,….,x8 ), where xi is the column number of ith row where ith queen 

placed. These all xi’s are distinct because of the implicit constraint that 

no two queen can placed in same column. We assume already in no. 2 

that ith queen can be placed in ith row only. So, no two queen can placed 

in same row. Now, we have only to decide whether two queens are on 

the same diagonal or not. 

Suppose two queens are placed at position (i,j) and (k,l). then queens are 

on the same diagonal only if 

� − N = O − �    FG � + N = O + � 
The first equation implies                            N − � = � − O 

The second equation implies                       N − � = O − � 
Therefore two queens lie on the same diagonal if and only if |N − �| =
|� − O| 
The time complexity of this approach is O(N!) 

Visualization from a 4x4 chessboard solution  

In this configuration, we place 2 queens in the first iteration and see that 

checking by placing further queens is not required as we will not get a 

solution in this path. Note that in this configuration, all places in the 

third rows can be attacked. 
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By using backtracking method we can bound the search of the state 

space tree using some constraint so that searching require less time. 

For this problems to bound a node n constraints or bounding conditions 

B(n) are- 

 

1. No two queens can place in same row i.e xi always represents ith 

queen is in ith row. 

2. No two queen in same column i.e values of xi’s are always 

distinct. 

3. For two queen placed in (m, n) and (x, y) position in the chess , 

value of | n – y | cannot same as | m – x | 

When a node is bounded using bounding condition it will not generate 

any nodes in its sub-tree because nodes in its sub-tree will not give a 

feasible solution any more. 

 

Fig: State Space Tree 

The portion of pruned state space tree after applying bounding condition 

is as follows: 
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Fig: Pruned State Space Tree 

Here node 3 is bounded because- 

At level 1, x1=1 means first time 1st queen is placed in 1st row, 1st 

column i.e position is (1,1) 

At level 2 , x2=2 means second time 2nd queen is placed in 2nd row, 2nd 

column i.e. position(2,2) 

Thus they will place in diagonally. It will violet the implicit constraint 

or bounding condition. So this combination cannot give a feasible 

solution any more. So, the children of node 3 will not generated further. 

Hence node 3 will bound. 

Here is a path from root 1 to leaf 31 and this will generate one feasible 

solution set (2, 4, 1,  3) where x1=2, x2=4, x3=1, x4=3. 

Position of the 4 queens are (1,2), (2,4), (3,1) and(4,3) respectively. 
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Fig: State space Tree for 4 Queens problem 

 

 

 

 

 

Fig: Solution of 4 Queens problem 

A recursive backtracking function for n-Queen problem: 

/* placed search for a new queen*/ 
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void nQueen ( int k, int i ) 

{ 

for ( int i =1; i ≤ n; 

i++) if ( QPlace( k, i 

)) 

{ 

x [k] = i; 

if ( k == n ) 

{ 

for ( int m = 1; m ≤ n; m++ ) 

{cout << x [m] <<’ 

‘<<; cout<<endl; 

} 

} 

else 

nQueen ( k + 1, n ); 

} 

} 

bool QPlace ( int k, int i ) 

{ 

for ( int m = 1; m < k; m++ ) 

{ 

if (( x [m] == i ) || (abs ( x[m] – i ) == abs ( m – k )))  

return (false); 

return (true); 

} 

} 

 
/* Solution to n queen*/ 
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Here QPlace ( k, i ) will return a boolean value true or false. The 

function return true if kth queen can placed in ith column and assigned it 

to x [k]. This value x [k] = i is distinct from x [1]…… x [k-1]. It also 

ensures that no two queens is placed in same diagonal. 

Next nQueen ( k, n) will solve the n-Queen problem recursively using 

backtracking method. 

1.4.4 Hamiltonian Cycle 

Hamiltonian Path is an undirected graph, which visits each vertex 

exactly once. A Hamiltonian Cycle is a Hamiltonian Path such that 

there is an edge in the graph from the last vertex to first vertex of the 

Hamiltonian Path, i.e. each vertex visit once in graph G and return to 

the starting vertex. It is named after William Hamilton. 

Input: A 2D array graph[V][V] 

where V is the number of vertices in graph 

graph [V][V] is adjacency matrix representation of the graph 

graph[i][j]=1  if there is a direct edge from i to j 

graph[i][j]=0  otherwise 

Output: An array path[V] that should contain the Hamiltonian Path. 

Path[i] should represent the ith vertex in the Hamiltonian Path. The code 

should also return false if there is no Hamiltonian Cycle in the graph. 

For example: 

Consider the following graph and evaluate to check whether the graph is 

Hamiltonian or not. 
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Fig: A graph with 8 vertices 

 

  

 

 

 

Fig: Hamiltonian Cycle 

The Hamiltonian cycle of this graph is- 1, 2, 8, 7, 6, 5, 4, 3, 1 

Backtracking method for Hamiltonian cycle: 

Now, using backtracking method we can find out the Hamiltonian 

cycles in a graph which has n vertices. The solution set can represented 

as (x1, x2,……….,xn), where 1 ≤ i ≤ n and xi represents the ith visited 

vertex of the current considered cycle. 

We have to determine value of xi i.e possible vertex to select. For i =1, 

x1 can be any vertex chooses from n vertex. To determine value of xi we 

have already determine x1, x2, ,xi-1. Hence, the xi can be choose as 

i) any vertex v which is not assigned to x1, x2…..and xi-1 from the n 

vertices. 

ii) v is connected by an edge to xi-1 

The last vertex xn must be connected to both xn-1 and x1. 

For example: Consider the given graph and evaluate the mechanism: 
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State space tree for finding the Hamiltonian Circuit is: 

 

 

 

 

 

 

 

 

Recursive function for Hamiltonian cycle: 

/* for finding Hamiltonian cycle*/ 

void Hamiltonian ( int k ) 

{ 

do 

{ 

NextValue ( k ); 

if ( ! x [ k ] ) return; 

if ( k == n ) 

{ 

for ( int i =1; i ≤ n; i++) 

cout << x [ i ] <<” ”<<”\n”; 

1 2 

3 4 

Solution Solution 
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} 

else 

Hamiltonian ( k + 1 ) 

} 

while(1); 

} 

/* generating next vertex*/ 

void NextValue ( int k ) 

{ 

          do 

        { 

   x [ k ] = ( x [ k ] + 1 ) % ( n + 1 ); 

  if ( ! x [ k ] ) return; 

  if ( G [ x [ k – 1 ] [ x [ k ] ]) 

  { 

      if ( ( k < n ) || (( k == n ) && G [ x [ n ] ] [ x [ 1] ] )) 

           return; 

} 

        } while(1); 

        } 

This program first initializes the adjacency matrix G [ 1:n ] [ 1:n ] and x 

[ 1 ] = 1 and x [ 2:n ] = 0. 

1.6 BRANCH AND BOUND 

Branch and bound is an algorithm design technique that is often 

implemented for finding the optimal solutions in case of optimization 

problems; it is mainly used for combinational and discrete global 

optimizations of problems. 

Branch and bound is composed of two main actions. Firstly, branching, 

where we define the tree structure from the set of candidates in a 

recursive manner. Secondly, bounding, where we calculates the upper 

and lower bounds of each node from the tree. Furthermore, there is an 

additional pruning step, where depending on the values of upper bound 

and lower bound some node can be discarded from the search. 
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Branch and bound is similar to backtracking. The main difference is that 

the branch and bound is used only in case the case of optimization 

problems, whereas backtracking can’t be. Another difference is that, 

backtracking always picks one single successor from the candidates, 

while branch and bound always has the entire list of successors in the 

queue. 

1.6.1 General Method 

The branch and bound algorithm is based on an advanced breadth-first 

search, where breath- first search is performed with the help of apriority 

queue instead of the traditional list. The term branch and bound refers to 

all state search methods in which all children of the E-node are 

generated before any other live node can become the E-node. In branch-

and-bound terminology, a BFS- like state space search will be called 

FIFO(First In First Out) search as the list of live nodes is a FIFO list or 

queue. A DFS search like state space search is called LIFO search as the 

list of live nodes is a LIFO list or a stack. To avoid the generation of 

subtrees that do not contain an answer node, bounding function is the 

best method than backtracking [4]. 

In branch and bound it is crucial to understand the importance of two 

functions: g(x) and h(x). The first function, g(x), calculates the distance 

between the x node and the root node. Whereas, h(x), is a heuristic 

function because it estimates how close the x node to the solution. 

Moreover, we can say that f(x) = g(x) + h(x). The g(x) part is the path-

cost function, while the h(x) part is the admissible heuristic estimate; 

the sum of these two is the f(x). 

1.6.2 Travelling Salesman Problem 

Instead of using a Queue to perform a breadth-first traversal of the state 

space, we will use a Priority Queue and perform a "best-first" traversal. 

For the TSP we first compute the minimum possible tour by finding the 

minimum edge exiting each vertex. The sum of these edges may not 

form a possible tour, but since every vertex must be visited once and 

only once, every vertex must be exited once. Therefore, no tour can be 

shorter than the sum of these minimum edges. 
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At each subsequent node, the lower bound for a "tour in progress" is the 

length of the tour to that point plus the sum of the minimum edge 

exiting the end vertex of the partial tour and each of the minimum edges 

leaving all of the remaining unvisited vertices. If this bound is less than 

the current minimum tour, the node is "promising" and the node is 

added to the queue. Initially the minTour is set to infinity. When a node 

whose path includes all of the vertices except one is reviewed, there is 

only one possible way for the tour to complete. The remaining vertex 

and the first are added to the path and the length of the tour is the 

current length plus the length of the edge to the remaining vertex and 

the length of the edge from there back to the starting vertex. If this tour 

length is better than the current minimum, it becomes the minimum tour 

length. Once a first complete tour is discovered, nodes whose bound is 

greater than or equal to this minTour are deemed "non- promising" and 

are pruned. 

The nodes in state space must carry the following information: 

 their level in the state space tree 

 the length of the partial tour 

 the path of the partial tour 

 the bound 

 (for efficiency) the last vertex in the partial tour 

In a branch and bound algorithm, a node is judged to be promising 

before it is placed in the queue and tested again after it is removed from 

the queue. If a lower minTour is discovered during the time a node is in 

the queue, it may no longer be promising after it is removed, and it is 

discarded. Using a Priority Queue, the search traverses the state space 

tree in neither a breadth-first nor depth-first fashion, but alternates 

between the two approaches in a greedy, opportunistic fashion. In the 

example problem below, a diagram of the best-first traversal of the state 

space indicates by number when each of the nodes is removed from the 

priority queue 

Example: 

Let G be a fully connected directed graph containing five vertices that is 

represented by the following adjacency list: 



Space for learners: 

 

148 | P a g e  

 

 

We assume in the implementation of this algorithm that vertices are 

labeled by an integer number and edges contain the source and sink 

vertices and a cost or length label. The tour will start at vertex 1, and the 

initial bound for the minimum tour is the sum of the minimum outgoing 

edges from each vertex. 

Vertex 1 min (14, 4, 10, 20) = 4 

Vertex 2 min (14, 7, 8, 7) = 7 

Vertex 3 min (4, 5, 7, 16) = 4 

Vertex 4 min (11, 7, 9, 2) = 2 

Vertex 5 min (18, 7, 17, 4) = 4 

bound [1]  = 21 

Since the bound for this node (21) is less than the initial minTour (), 

nodes for all of the adjacent vertices are added to the state space tree at 

level 1. The bound for the node for the partial tour from 1 to 2 is 

determined to be: 

bound = length from 1 to 2 + sum of min outgoing edges for 

vertices 2 to 5 

= 14 + (7 + 4 + 2 + 4) 

= 31 
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After each new node is added to the PriorityQueue, the node with the 

best bound is removed and similarly processed. The algorithm 

terminates when the queue is empty. 

 

 

 

 

 

 

 

 

 

 

 

Second node placed in the priority queue, but the 8th node to be 

removed. By the time it is removed and examined, a tour of length 30 

which turns out to be the optimal tour, has already been discovered, and, 

since its bound exceeds this length, it is discarded without having to 

check any of the possible tours that extend it. 

Here is a Branch and Bound algorithm for an adjacency list 

representation of a graph. If the first vertex is numbered 1 instead of 0, 

the array bounds for mark and minEdge would have to be length N + 1 

and the loops traversing these arrays would have to be from 0  to N. 

CHECK YOUR PROGRESS - III 

g) Backtracking is a modified ________ first search of a tree 

h) Hamiltonian Path is an undirected graph, which visits each vertex 

exactly _________. 
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1.7 SUMMING UP 

 An algorithm is a sequence of computational steps that start with a 

set of input(s) and finish with valid output(s) 

 An algorithm is correct if for every input(s), it halts with correct 

output(s) 

 Divide and conquer algorithm has three steps 

 Divide the problem into smaller independent sub-problems 

 Conquer by solving these sub-problems 

 Combine these sub-problems to together 

 The sub-problems solved by a divide and conquer is non-

overlapping 

 Greedy algorithm is typically used in optimization problem 

 Optimal solution finds a given objective function which value is 

either maximizes or minimizes 

 A greedy algorithm always makes the choice that looks best at the 

moment. That is it makes a locally optimal choice that may be 

lead to a globally optimal solution 

 In Greedy algorithm choice is made that seems best at the moment 

and solve the sub-problems after the choice is made 

 Greedy algorithm progress in a top down manner 

 A greedy algorithm gives optimal solution for all subproblems, 

but when these locally optimal solutions are combined it may 

NOT result into a globally optimal solution. Hence, a greedy 

algorithm cannot be used to solve all the dynamic programming 

problems. 

 A problem is said to have optimal substructure if an optimal 

solution can be constructed efficiently from optimal solution to its 

sub-problem 

 A spanning tree is a connected graph, say G = ( V, E ) with V as 

set of vertices and E as set of edges, is its connected acyclic sub-

graph that contain all the vertices of the graph 
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 A minimum spanning tree T of a positive weighted graph G is a 

minimum weighted spanning tree in which total weight of all 

edges are minimum 

 A problem can be solved by dynamic programming only when it 

possesses optimal substructure 

 A problem is said to satisfy the principle of optimality, if the sub 

solutions of an optimal solution of the problem are themselves 

optimal solution for their sub problems 

 In dynamic programming we first solve the sub-problems and 

then use these solutions to get the optimal solution in recursive 

manner 

 Backtracking is a method for searching a set of solutions or find 

an optimal solution for satisfy some given constraint to a problem 

 In backtracking method the solution set can be represented by an 

n tuple (x1,x2,…….,xn ), where xi are chosen from some finite set 

Si 

 Backtracking method can be used for optimization problem to 

find one or more solution vector that maximize or minimize or 

satisfy a given criterion function 

 In backtracking constraint to be satisfied can be divided into two 

categories- Implicit constraint and Explicit constraint 

 Two types of tuple formulation- Variable size tuple and Fixed 

sized tuple 

 In backtracking method searching can be organized in a tree 

called state space tree 

 A solution state is a node s for which each node from root node to 

nodes together can represent a tuple in solution set 

 A live node is a generated node, for which all of its children node 

have not yet generated. 

 A E-node (Expanded node) is a live node, whose children are 

currently being generated 

 A dead node is that , which is not expanded further and all of its 

children is generated 
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 A node n is called non-promising if it cannot lead to a feasible 

solution. Otherwise, it is called promising node 

 A state space tree is called pruned state space tree if it consist of 

only expanded node 

 Backtracking method do depth first search of a state space tree 

 It is a generalized problem of 8-Queen problem. N Queens are 

placed on a chess board of size n x n, without having attack each 

other. 

 A Hamiltonian cycle of a connected undirected graph with n 

vertices is a cyclic path along n edges, such that each vertex visits 

once in graph G and return to the starting vertex 

 Branch and Bound is a state space search method in which all the 

children of a node are generated before expanding any of its 

children 

 It is similar to backtracking technique but uses BFS-like search 

 Branch and bound techniques uses the priority queue data 

structure for storing the information 

 Branch and bound technique mainly based on the value g(x) + 

h(x), where g(x) is the distance from the root to the current vertex 

and h(x) is a heuristic function. 

1.8  ANSWERS TO CHECK YOUR PROGRESS 

a) Algorithm 

b) Optimal 

c) Efficiency 

d) Prim’s 

e) Non-decreasing 

f) Two applications of Minimum Spanning Tree: 

i. In design of electric circuit network 

ii. It is used in traveling salesman problem 
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g) Depth 

h) Once  

1.9 POSSIBLE QUESTIONS 

Short Answer type Questions:  

1) What is optimal substructure? 

2) How does the greedy choice property applied in optimal merge 

pattern problem? 

3) What is minimum spanning tree? 

4) What are the algorithms to solve minimum spanning tree 

problem ? 

5) What is backtracking method? 

6) Write about state space tree organization of backtracking 

method. 

7) What is Hamiltonian cycle? 

Long Answer type questions: 

1) Explained the criteria that all algorithms must satisfy. 

2) Solve by substitution method a=1, b=2, f(n)=c 

3) Solve recurrence relation a=2, b=2, f(n)=cn 

4) Solve ���� = Q. � /

R2 +  4�S;       � ≥ 3 

5) Explain the characteristics of dynamic programming. 

6) Describe the steps of dynamic programming algorithm. 

7) Describe the method of solving travelling salesman problem 

using branch and bound strategy. 

8) How does backtracking method find Hamiltonian cycle in a 

graph? 

9) What is 8-queen problem? How can it solve using backtracking? 

10) What is the bounding condition for n-queen problem? 

11) What is minimum spanning tree? Find the minimum spanning 

tree for the following graph using Prim’s and Kruskal algorithm 
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 12) Find out the shortest path using Dijkstra algorithm for the 

following graph 
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In the previous unit we discussed about various algorithm design 

techniques. We can view an algorithm as a tool for solving a well- 

specified computational problem. The algorithm describes a specific 

computational procedure for achieving that input/output 

relationship. 

Computers may be fast, but they are not efficiently fast and memory 

may be inexpensive, but it is not free. Computing time is therefore 

bounded resource and so is space in memory. We should use those 

resources wisely and algorithms that are efficient I n terms of time 

or space will help us to do so. Different algorithms devised to solve 

the same problem often differ dramatically in their efficiency. These 

differences can be much more significant than differences due to 

hardware and software [1]. Total system performance depends on 

choosing efficient algorithms as much as on choosing fast hardware. 

Just as rapid advances are being made in other computer 

technologies, they are being made in algorithms as well. 

An algorithm is said to be correct if for every input instance, it halts 

with the correct output. Correct algorithm solves the given 

computational problem. An incorrect algorithm might not halt at all 

on some input instances, or it might halt with an incorrect answer. 

2.2 SEARCHING 

In computing locating information is important and recurring 

problem, this problem is known as searching. Searching is 

considered as one of the issue involved in algorithm design [4]. 

The information to be searched has to first be represented (or 

encoded) somehow. This is where data structures come in. Of 

course, in a computer, everything is ultimately represented as 

sequences of binary digits (bits), but this is too low level for most 

purposes. We need to develop and study useful data structures that 

are closer to the way humans think, or at least more structured than 

mere sequences of bits. 

After that we have chosen a suitable representation for information 

and then processed them. This is what leads to the need for 

algorithms. In this case, the process of interest is that of searching.  
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numbers. To begin with, let us consider: 

1. The most obvious and simple representation. 

2. Two potential algorithms for processing with that 

representation. 

Arrays are one of the simplest possible ways of representing 

collections of numbers (or strings, or whatever), so we shall use that 

to store the information to be searched. 

Suppose, for example, that the set of integers we wish to search is 

{1, 4, 17, 3, 90, 79, 4, 6, 81}. 

We can write them in an array a as 

a = [1, 4, 17, 3, 90, 79, 4, 6, 81] 

If we ask where 17 is in this array, the answer is 2, the index of that 

element. If we ask where 91 is, the answer is nowhere. It is useful to 

be able to represent nowhere by a number that is not used as a 

possible index. Since we start our index counting from 0, any 

negative number would do. We shall follow the convention of using 

the number -1 to represent nowhere. 

We can now formulate a specification of our search problem using 

that data structure: 

Given an array a and integer x, find an integer i such that 

1. If there is no j such that a[j] is x, then i is -1, 

2. Otherwise, i is any j for which a[j] is x 

The first clause says that if x does not occur in the array a 

then i should be -1, and the second says that if it does occur then i 

should be a position where it occurs. If there is more than one 

position where x occurs, then this specification allows you to return 

any of them. 

In the previous unit we introduced with Divide-and-conquer 

approach that is used in the design of algorithms. This technique is 

the basis of designing efficient algorithms for all kinds of problems, 

such as sorting like insertion sort, merge sort, quick sort and in 

searching like binary search. 
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Binary search is a well-known instance of divide and conquer 

method. For binary search divide and conquer strategy is applied 

recursively for a given sorted array is as follows: 

Divide: Divide the selected array at the middle. It creates two sub-

arrays, one left sub-array and other right sub-array. 

Conquer: Find out the appropriate sub-array. 

Combine: Check for the solution to key element. 

For a given sorted array of N element and for a given key element 

(value to be searched in the sorted array), the basic idea of binary 

search is as fallows – 

1. First find the middle element of the array 

2. Compare the middle element with the key element. 

3. There are three cases 

 If it is the key element then search is successful 

 If it is less than key element then search only the lower half 

of the array 

 If it is greater than key element then search only the upper 

half of the array 

4. Repeat 1, 2 and 3 until the key element found or sub-array sizes 

become one. 

Problem definition: 

Let ai, 1 ≤ i ≤ n be a list of elements that are sorted in non-

decreasing order. The problem is to find whether a given element x 

is present in the list or not. If x is present we have to determine a 

value j (element’s position) such that aj=x. If x is not in the list, then 

j is set to zero [5]. 

Solution: Let P = (n, ai……al, x) denote an arbitrary instance of 

search problem where n is the number of elements in the list, ai…al 

is the list of elements and x is the key element to be searched for in 

the given list. Binary search on the list is done as follows:  

Step1: Pick an index q in the middle range [i, l] i.e. q= [(n + 1)/2] 

and compare x with aq 
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Space for learners: Step 2: if x = aq i.e key element is equal to mid element, the 

problem is immediately solved.  

Step 3: if x <aq in this case x has to be searched for only in the sub-

list ai, ai+1, ……, aq- Therefore, problem reduces to (q-i, ai…aq-1, x).  

Step 4: if x >aq,x has to be searched for only in the sub-list aq+1, ...,., 

al . Therefore problem reduces to (l-i, aq+1…al, x). 

For the above solution procedure, the Algorithm can be 

implemented as recursive or non- recursive algorithm 

 

Analysis  

In binary search the basic operation is key comparison. Binary 

Search can be analyzed with the best, worst, and average case 

number of comparisons. The numbers of comparisons for the 

recursive and iterative versions of Binary Search are the same, if 

comparison counting is relaxed slightly. For Recursive Binary 

Search, count each pass through the if-then-else block as one 
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the while block as one comparison. Let us find out how many such 

key comparison does the algorithm make on an array of n elements.  

Best case – Θ (1) In the best case, the key is the middle in the array. 

A constant number of comparisons (actually just 1) are required.  

Worst case – Θ (log2 n) In the worst case, the key does not exist in 

the array at all. Through each recursion or iteration of Binary 

Search, the size of the admissible range is halved. This halving can 

be done ceiling(log2n ) times. Thus, [ log2 n] comparisons are 

required.  

Sometimes, in case of the successful search, it may take maximum 

number of comparisons] log2 n]. So worst case complexity of 

successful binary search is Θ (log2 n).  

Average case - Θ (log2n) To find the average case, take the sum of 

the product of number of comparisons required to find each element 

and the probability of searching for that element. To simplify the 

analysis, assume that no item which is not in array will be searched 

for, and that the probabilities of searching for each element are 

uniform. 

Space Complexity - The space requirements for the recursive and 

iterative versions of binary search are different. Iterative Binary 

Search requires only a constant amount of space, while Recursive 

Binary Search requires space proportional to the number of 

comparisons to maintain the recursion stack. 
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Advantages: Efficient on very big list, Can be implemented 

iteratively/recursively.  

Limitations:  

 Interacts poorly with the memory hierarchy  

 Requires sorted list as an input  

 Due to random access of list element, needs arrays instead of 

linked list 

2.2.2 Optimal Binary Search Tree 

A binary search tree is a tree where the key values are stored in the 

internal nodes, the external nodes (leaves) are null nodes, and the 

keys are ordered lexicographically, i.e. For each internal node all the 

keys in the left sub-tree are less than the keys in the node, and all the 

keys in the right sub-tree are greater. 

When we know the frequency of searching each one of the keys, it is 

quite easy to compute the expected cost of accessing each node in 

the tree. An optimal binary search tree is a binary search tree which 

has minimal expected cost of locating each node. In our problem, we 

Binary Search Example 
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Space for learners: are not concerned with the frequency of searching for a missing 

node. For example: 

 

 

 

 

 

 

 

 

 

 

 

Fig a: Optimal Binary search tree ex1. 

[ 2*1 + (1+8)*2 + (4+1+16)*3] = 83 

The expected cost of successful search is 83, is computed by 

multiplying each frequency by its level (starting w ith the root at 1). 

A different tree will have a different expected cost 

 

 

 

 

 

 

 

Fig b: Optimal Binary search tree ex2 

[ 8*1 + (1+16)*2 + (4+2)*3 + 1 *4] = 64 

 

Node ID 0 1 2 3 4 5 

Key A B C D E F 

Frequency 4 1 1 2 8 16 
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Space for learners: It's clear that the tree in fig a is not optimal. - It is easy to see that the 

nodes having higher frequencies are closer to the root, and then the 

tree will have a lower expected cost. 

In obtaining a cost function for binary search trees, it is useful to add 

an external node in place of every empty sub-tree in the search tree. 

If a binary search tree represents n identifiers, then there will be 

exactly n internal nodes and n+1 external nodes. 

If a successful search terminates at an internal node at level l, then 

the expected cost contribution from the internal node aiis p(i) * 

level(ai). 

Unsuccessful searches terminates the external nodes, let the 

unsuccessful searches terminates at node Ei, if the failure node is at 

level l, then only l-1 comparisons will be made, so the cost 

contribution of this node is q(I) * (level(Ei) -1) 

The preceding decision leads to the following formula for the 

expected cost of a binary search tree. 

∑ ���� ∗ ��	���
���� � + ∑ ���� ∗ ���	������ − 1����   

We define a optimal binary search tree for the identifier set { a1, a2, 

…., an} to be a binary search tree for which the above equation is 

minimum 

To solve this problem by dynamic programming we need to view 

the construction of such a tree as the result of a sequence of 

decisions and then observe that the principle of optimality holds 

when applied to the problem state resulting from a decision. A 

possible approach to this would be to make a decision as to which of 

the ai’s should be assigned to the root of the tree. If we choose ak, 

then it is clear that the internal nodes for a1, a2, …., ak-1 as well as 

external nodes for the classes E1, E2, …., Ek-1 will be in the left 

subtree, l, of the root. The remaining nodes will be in the right 

subtree, r. Define 

������� = ∑ ���� ∗ ��	���
�� +���� ∑ ���� ∗ ��	����� − 1�����  

������� = ∑ ���� ∗ ��	���
�� +����� ∑ ���� ∗ ��	����� − 1������  

In both cases the level is measured by regarding the root of the 

respective subtree to be at level 1. 

Using w(I,j) to represent the sum q(i) + ∑j
l=i+1 (q(I)+p(I)), we obtain 

the following as the expected cost of the search tree 
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Space for learners: p(k) + cost(I) + cost(r) + w(0, k-1) + w(k, n)  

If the tree is optimal then the above equation must be minimum. 

Hence, cost(l) must be minimum over all the binary search trees 

containing a1, a2, …., ak-1 and E1, E2, …., Ek-1. Similarly cost(r) must 

be minimum. If we use c(I,j) to represent the cost of an optimal 

binary search tree, tij, containing ai+1, ai+2, …., aj and Ei+1, Ei+2, …., 

Ej, then for the tree to be optimal, we must have cost(I) = c(0, k-1) 

and cost(r) = c(k,n). In addition k must be choose such that 

p(k) + c(0, k-1) + c(k,n) + w(0, k-1) + w(k, n) is minimum. Hence 

c(0,n) we obtain 

c(0,n) = min���{��!� + c(0, k-1) + c(k,n) + w(0, k-1) + w(k, n)}  

we can generalized this equation for any  c(i,j) as follows: 

c(i,j) = min��"{��!�+ c(i, k-1) + c(k,j) + w(i, k-1) + w(k, j)} 

c(i,j) = min��"{c�i, k − 1�  +  c�k, j�}  + w(i,j)  

This equation can be solved for c(0,n) by first computing all c(i,j) 

such that j-i=1. Next we can compute all c(i,j) such that j-i =2, then 

all c(i,j) with j-i=3, etc. if during this computation we record the root 

r(i,j) of each tree tij, then an optimal binary search tree can be 

constructed from these r(i,j). 

2.3 SORTING 

Sorting is a fundamental operation in computer science. As a result 

we have a large number of good sorting at or disposal. Which 

algorithm is best for a given application depends on other factors 

also. These are: 

(a) The no of items to be sorted 

(b) The extent to which the items are already somewhat 

sorted 

CHECK YOUR PROGRESS - I 

a) Binary search is a well-known instance of ________and 

_______method  

b) List two limitations of Binary Search 
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Space for learners: (c) Possible restrictions on the item values 

(d) The architecture of the computer 

(e) The storage device used like main memory, disks or tapes 

Formal definition of sorting problem: 

Input: A sequence of n numbers     < )*, )+, … … … . , ).> 

Output: a permutation (reordering) </*0 , /+0 , … … … . . , /10 >  of 

the input sequence such that </*0 ≤ /+0 ≤  … … … . . ≤ /10 >   

The numbers that we wish to sort are also known as the keys. 

Conceptually we are sorting a sequence, but the input comes in the 

form of an array with n elements [2]. 

For example, given the input <31, 41, 59, 26, 41, 58>, a sorting 

algorithm returns as output the sequence <26, 31, 41, 41, 58, 59>. 

Such an input sequence is called instance of the sorting problem. An 

instance of a problem consists of the input (satisfying whatever 

constraints are imposed in the problem statement) needed to 

compute a solution to the problem.  

Sorting techniques can be classified into two types: 

 Internal sorting techniques: Any sort algorithm that uses main 

memory exclusively during the sorting is called as internal sort 

algorithms. Internal sorting is faster than external sorting. Some 

example internal sorting algorithms are Insertion Sort, Bubble 

Sort, Selection Sort, Heap Sort, Shell Sort, Bucket Sort, Quick 

Sort, Radix Sort. 

 External sorting techniques: Any sort algorithm that uses 

external memory, such as tape or disk, during the sorting is 

called as external sort algorithms. Merge Sort is one of the 

external sort algorithms. 

2.3.1 Insertion Sort 

We start with insertion sort, which is an efficient algorithm for 

sorting a small number of elements. For insertion sort we used an 

incremental approach. In insertion Sort the number of comparisons 

depends on the order of the input elements.  We begin with the 

subarray of size 1, A[1], which is already sorted. Next, A[2] is 

inserted before or after A[1] depending on whether it is smaller than 

A[1] or not. Continuing this way, in the ith iteration, A[i] is inserted 
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Space for learners: in its proper position in the sorted subarray A[1..i − 1]. This is done 

by scanning the elements from index i−1 down to 1, each time 

comparing A[i]with the element at the current position. An element 

is shifted one position up to a higher index, in each iteration of the 

scan. This process of scanning, performing the comparison, and 

shifting continues until an element less than or equal to A[i] is 

found, or when all the sorted sequence so far is exhausted. At this 

point, A[i] is inserted in its proper position, and the process of 

inserting element A[i] in its proper place is complete [3]. 

 

 

 

 

 

 

 

The number of element comparisons done by Algorithm 

INSERTIONSORT depends on the order of the input elements. It is 

easy to see that the number of element comparisons is minimum 

when the array is already sorted in non-decreasing order. In this 

case, the number of element comparisons is exactly n − 1, as each 

element A[i], 2 ≤ i ≤ n, is compared with A[i − 1] only. On the other 

hand, the maximum number of element comparisons occurs if the 

array is already sorted in decreasing order and all elements are 

distinct. In this case, the number of element comparisons is 

4 � − 1 =
�

�56
4 � = 7�7 − 1�2
�9�

�5�
 

as each element A[i], 2 ≤ i ≤ n, is compared with each entry in the 

subarray A[1..i−1]. As to the number of element assignments, notice 

that there is an element assignment after each element comparison in 

the while loop. Moreover, there are n−1 element assignments of A[i] 

to x in Step 2 of the algorithm. It follows that the number of element 

assignments is equal to the number of element comparisons plus n − 

1. 

Algorithm: INSERTIONSORT 
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Space for learners: The number of element comparisons performed by Algorithm 

INSERTIONSORT is between  n−1 and n(n−1)/2. The number of 

element assignments is equal to the number of element comparisons 

plus n−1. 

Insertion Sort Example 

 

Analysis of Insertion sort: 

 Simple implementation 

 Efficient for small data sets 

 Adaptive, i.e., efficient for data sets that are already 

substantially sorted: the time complexity is O(n+d), 

where d is the number of inversions 

 More efficient in practice than most other simple quadratic 

algorithms such as selection sort or bubble sort: the average 

running time is n2/4, and the running time is linear in the best 

case 

 Stable, i.e., does not change the relative order of elements 

with equal keys 

 In-place, i.e., only requires a constant amount O(1) of 

additional memory space 

 Online, i.e., can sort a list as it receives it 

 Worst case performance: : (n2) 

 Best case performance: : (n) 

 Average case performance: : (n2) 
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Space for learners:  Worst case space complexity: : (n) total, : (1) auxiliary 

2.3.2 Merge Sort 

The merge sort algorithm closely follows the divide-and-conquer 

paradigm. Intuitively, it operates as follows: 

Divide: Divide the n-element sequence to be sorted into two 

subsequences of n/2 elements each 

Conquer: Sort the two subsequences recursively using merge sort. 

Combine: Merge the two sorted subsequences to produce the sorted 

answer. 

The recursion “bottoms out” when the sequence to be sorted has 

length 1, in which case there is no work to be done, since every 

sequence of length 1 is already in sorted order. 

The key operation of the merge sort algorithm is the merging of two 

sorted sequences in the “combine” step. We merge by calling an 

auxiliary procedure MERGE(A, p,q,r), where A is an Array  

p, q and r are indices into the array such that p<=q<r.  

The procedure assume that the subarrays A[p…q] and [Aq+1…r] 

are in sorted order. It merges them to form a single sorted subarray 

that replaces the current subarray A[p..r]. 

MERGE-SORT(A, p, r) 

Input: An integer array A with indices p < r. 

Output: The subarray A [p ... r) is sorted in non-decreasing order. 

1 if r > p + 1 

2  � = ⌊�� + ��/2⌋ 
3 MERGE-SORT (A, p, q) 

4 MERGE-SORT (A, q, r) 

5 MERGE (A, p, q, r)  

Initial Call: 

Merge Sort (A, 1, n+1) 

Input: Array A with indices p, q, r such that 

 p<q<r 
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Space for learners:  Subarrays A[p…q) and A[q…r) are both sorted 

Output: The two sorted subarrays are merged into a single sorted 

subarray in A[p….r). 

Merge Sort example 

 

 

 

 

 

 
 
 
 
 

Analysis of merge sort: 

 The worst-case running time of MERGE-SORT is : (n log 

n), much better that the worst-case running time of 

INSERTION-SORT, which was : (n2) [11]. 

 MERGE-SORT is stable, because MERGE is left-biased 

 MERGE and therefore MERGE-SORT is not in-place: it 

requires : (n) extra space 

 MERGE-SORT is not an online-algorithm: the whole array 

A must be specified before the algorithm starts running 
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Space for learners: 2.3.3 Quick Sort 

The quick sort algorithm partitions the original array by rearranging 

it into two groups. The first group contains those elements less than 

some arbitrary chosen value taken from the set and the second group 

contains those elements greater than or equal to the chosen value. 

The chosen value is known as the pivot element. Once the array has 

been rearranged in this way with respect to the pivot, the very same 

partitioning is recursively applied to each of the two subsets. When 

all the subsets have been partitioned and rearranged, the original 

array is sorted.  

The function partition () makes use of two pointers ‘i’ and ‘j’ which 

are moved toward each other in the following fashion:  

 Repeatedly increase the pointer ‘i’ until a[i] >= pivot 

 Repeatedly decrease the pointer ‘j’ until a[j] <= pivot 

 If j > i, interchange a[j] with a[i]  

 Repeat the steps 1, 2 and 3 till the ‘i’ pointer crosses the ‘j’ 

pointer. If ‘i’ pointer crosses ‘j’ pointer, the position for pivot 

is found and place pivot element in ‘j’ pointer position.  

The program uses a recursive function quicksort(). The algorithm of 

quick sort function sorts all elements in an array ‘a’ between 

positions ‘low’ and ‘high’.  

 It terminates when the condition low >= high is satisfied. 

This condition will be satisfied only when the array is 

completely sorted.  

 Here we choose the first element as the ‘pivot’. So, pivot = 

x[low]. Now it calls the partition function to find the proper 

position j of the element x[low] i.e. pivot. Then we will have 

two sub-arrays x[low], x[low+1], . . . . . . . x[j-1] and x[j+1], 

x[j+2], . . .x[high] 

 It calls itself recursively to sort the left sub-array x[low], 

x[low+1], . . . . . . . ...x[j-1] between positions low and j-1 

(where j is returned by the partition function). 

 It calls itself recursively to sort the right sub-array x[j+1], 

x[j+2], . . . . . . . . . x[high] between positions j+1 and 

high.  
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Space for learners: Algorithm QUICKSORT(low, high)  

/* sorts the elements a(low), . . . . . , a(high) which reside in the 
global array A(1 :  
n) into ascending order a (n + 1) is considered to be defined and 

must be greater than all elements in a(1 : n); A(n + 1) = + ∝ */  

{  
if low < high then  

{  
j := PARTITION(a, low, high+1);  
        // J is the position of the partitioning 
element QUICKSORT(low, j – 1);  
QUICKSORT(j + 1 , high);  

}  
} 

 
Algorithm PARTITION(a, m, p)  
{  

V a(m); i m; j p; // A (m) is the partition element 
do  
{  

loop i := i + 1 until a(i) ≥ v // i moves left to right 

loop j := j – 1 until a(j) ≤v // p moves right to left 
if (i < j) then INTERCHANGE(a, i, j)  

} while (i ≥ j);  
a[m] :=a[j]; a[j] :=V; // the partition element belongs at 

position P 
return j;  

} 
 

Algorithm INTERCHANGE(a, i, j)  
{  

P:=a[i];  
a[i] := a[j]; 
a[j] := p;  

} 
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Space for learners: Quick Sort example 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Analysis of Quicksort 

 Best-case time efficiency: split in the middle — Θ(n log n) 

 Worst-case time efficiency: sorted array! — Θ(n2) 

 Average case time efficiency: random arrays — Θ(n log n) 

 Space efficiency: not in-place — Θ(log n) with a careful 

implementation 

 Not stable 

 Improvements: 

• better pivot selection: median-of-three partitioning 

• switch to insertion sort on small sub files or just 

stopping recursive calls when unsorted subarrays 

become small (say, <10 elements) and finish sorting 

with insertion sort 
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Space for learners: These yields about 20% improvement 

 Considered the method of choice for sorting random files of 

nontrivial sizes 

2.4 MATRIX MANIPULATION PROBLEMS 

Operations on matrices are at the heart of scientific computing. 

Efficient algorithms for working with matrices are therefore of 

considerable practical interest.   

Suppose we had given a sequence of matrices to find the most 

efficient way to multiply those matrices together. The problem is not 

actually to perform the multiplications, but merely to decide in 

which order to perform the multiplications. We have many options 

to multiply a chain of matrices because matrix multiplication is 

associative. In other words, no matter how we parenthesize the 

product, the result will be the same. 

2.4.1 Matrix Chain Multiplication 

Let, we have three matrices A1, A2 and A3, with order (10 x 100), 

(100 x 5) and (5 x 50) respectively. 

Then the three matrices can be multiplied in two ways. 

(i) First, multiplying A2 and A3, then multiplying A1 with 

the resultant matrix i.e. A1(A2 A3). 

(ii) First, multiplying A1 and A2, and then multiplying the 

resultant matrix with A3 i.e. (A1A2) A3. 

The number of scalar multiplications required in case 1 is  

100 * 5 * 50 + 10 * 100 * 50 = 25000 + 50,000 

= 75,000  

CHECK YOUR PROGRESS - II 

c) In insertion Sort the number of comparisons depends on the 

order of the ____________ 

d) MERGE-SORT is stable, because MERGE is __________ 

e) The arbitrary chosen element is termed as _____________ 
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Space for learners: and the number of scalar multiplications required in case 2 is  

10 * 100 * 5 + 10 * 5 * 50 = 5000 + 2500 = 7500 

To find the best possible way to calculate the product, we 

could simply parenthesize the expression in every possible 

fashion and count each time how many scalar multiplications are 

required. Thus the matrix chain multiplication problem can be 

stated as “find the optimal parenthesization of a chain of 

matrices to be multiplied such that the number of scalar 

multiplications is minimized”. 

For example, if we had four matrices A, B, C, and D, we would 

have:  

 (ABC)D = (AB)(CD) = A(BCD) = .... 

However, the order in which we parenthesize the product affects 

the number of simple arithmetic operations needed to compute the 

product, or the efficiency. 

For example, suppose A is a 10 × 30 matrix, B is a 30 × 5 matrix, 

and C is a 5 × 60 matrix. Then,   

(AB)C = (10×30×5) + (10×5×60) = 1500 + 3000 = 4500 operations 

A(BC) = (30×5×60) + (10×30×60) = 9000 + 18000 = 27000 

operations. 

Clearly the first parenthesization requires less number of 

operations. 

Note that in the matrix chain multiplication problem, we are not 

actually multiplying matrices. Our goal is only to determine an 

order for multiplying matrices that has the lowest coast. 

Typically the time invested in determining this optimal order is 

more than paid for by the time saved later on when actually 

performing the matrix multiplications.  

2.4.2 Dynamic Programming Approach for Matrix 

Chain Multiplication 

Dynamic programming is typically applied to optimization 

problems. In such problems there can be many possible solutions. 

Each solution has a value, and we wish to find a solution with the 

optimal (minimum or maximum) value. We call such a 

solution an optimal solution to the problem, as opposed 
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Space for learners: to the optimal solution. 

Our first example of dynamic programming is an algorithm that 

solves the problem of matrix-chain multiplication [6]. 

Let us consider a chain of n matrices A1, A2……….An, where the 

matrix Ai has dimensions P[i-1] x P[i] 

Suppose we take the parenthesisation at k, this results two sub 

chains A1…….Ak and Ak+1…….An. These two sub chains must each 

be optimal for A1……An to be optimal. The cost of matrix 

chain (A1….An) is calculated as 

cost(A1……Ak) + cost(Ak+1 .. An) + cost of multiplying two resultant 

matrices together i.e. 

cost(A1……An)= cost(A1……Ak) + cost(Ak+1 An) + cost of 

multiplying two resultant matrices together. 

Here, the cost represents the number of scalar multiplications. 

The sub chain (A1….Ak) has a dimension P[0] x P[k] and the 

sub chain (Ak+1……An) has a dimension P[k] x P[n]. The 

number of scalar multiplications required to multiply two 

resultant matrices is P[0] x P[k] x P[n] 

Let m[i, j] be the minimum number of scalar multiplications 

required to multiply the matrix chain (Ai……… Aj). Then 

(i) m[i, j] = 0 if i = j 

(ii) m[i, j] = minimum number of scalar multiplications 

required to multiply (Ai….Ak) + minimum number 

of scalar multiplications required to multiply 

(Ak+1….An) + cost of multiplying two resultant 

matrices i.e. m[i, j] = m[i, k ] + m[k, j] + P[i -1]x P[k 

]x P[ j] 

However, we don’t know the value of k, for which m[i, j] is 

minimum. Therefore, we have to try all j – i possibilities. 

 

0      if i=1 

mi, j          
minm[i, k]  m[k, j]  P[i 1] P[k] P[ j]

 Otherwise

   ik  j 
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Space for learners: Therefore, the minimum number of scalar multiplications required 

to multiply n matrices A1 A2……An is 

m[1, n]  minm[1, k ]  m[k , n]  P[0] P[k ] P[n]
1k n 
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Space for learners: The dynamic programming approach for matrix chain multiplication is 

presented in the following algorithm: 

Algorithm MATRIX-CHAIN-MULTIPLICATION (P) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now let us discuss the procedure and pseudo code of the matrix chain 

multiplication. Suppose, we are given the number of matrices in the 

chain is n i.e. A1, A2………An and the dimension of matrix Ai is P[i- 1] 

×P[i]. The input to the matrix-chain-order algorithm is a 

sequenceP[n+1] = {P[0], P[1], …….P[n]}. The algorithm first 

computes m[i, i] = 0 for i = 1, 2, …….n in lines 2-3. Then, the 

algorithm computes m[i, j] for j– i = 1 in the first step to the calculation 

of m[i, j] for j – i = n -1 in the last step. In lines 3 – 11, the value of 

// P is an array of length n+1 i.e. from P[0] to P[n]. It is assumed 

that the matrix Ai has the dimension P[i-1] ×P[i]. 

{ 

for(i = 1; i<=n; i++) 

m[i, i] = 0; 

for(l = 2; l<=n; l++){ 

for(i = 1; i<=n-(l-1); i++){ 

j = i + (l-1); 

m[i, j] = ∞; 

for(k = i; k<=j-1; k++) 

q = m[i, k] + m[k+1, j] + P[i-1] P[k] P[j] ; 

if (q<m [i, j]){ 

m[i, j] = q; 

s[i, j] = k; 

} 

} 

} 

} 

return m and s 

} 
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Space for learners: m[i, j] is calculated for j – i = 1 to j –i = n – 1 recursively. At each step 

of the calculation of m[i, j], a calculation on m[i, k] and m[k+1, j] for 

i≤k<j, are required, which are already calculated in the previous steps. 

To find the optimal placement of parenthesis for matrix chain 

multiplication Ai, Ai+1, …..Aj, we should test the value of i≤k<j for 

which m[i, j] is minimum. Then the matrix chain can be divided from 

(A1 ……Ak) and (Ak+1 ……. Aj). 

Let us consider matrices A1,A2……A5 to illustrate MATRIX-CHAIN-

MULTIPLICATIONalgorithm. The matrix chain order P = {P0, P1, P2, 

P3, P4, P5} = {5, 10, 3, 12, 5, 50}. The objective is to find the 

minimum number of scalar multiplications required to multiply the 5 

matrices and also find the optimal sequence of multiplications [7]. 

The solution can be obtained by using a bottom up approach that means 

first we should calculate mii for 1≤i ≤ 5. Then mij is calculated for j – i = 

1 to j – i = 4.  

The value of mii for 1≤i ≤5 can be filled as 0 that means the 

elements in the first row can be assigned 0. Then 

For j – i = 1 

m12 = P0 P1 P2 = 5 x 10 x 3 = 150 

m23 = P1 P2 P3 = 10 x 3 x 12 = 360 

m34 = P2 P3 P4 = 3 x 12 x 5 = 180 

m45 = P3 P4 P5 = 12 x 5 x 50 = 3000 

For j – i = 2 
 

m13 = min {m11 + m23 + P0 P1 P3, m12 + m33 + P0 P2 P3} 

= min {0 + 360 + 5 * 10 * 12, 150 + 0 + 5*3*12} 
 

= min {360 + 600, 

150 + 180} = min {960, 

330} = 330 m24 = 

min {m22 + m34 + P1 P2 P4, 

m23 + m44 + P1 P3 P4} 

= min {0 + 180 + 10*3*5, 360 + 0 +10*12*5} 
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Space for learners: = min {180 + 150, 

360 + 600} = min {330, 

960} = 330 m35 = 

min {m33 + m45 + P2 P3 P5, 

m34 + m55 + P2 P4 P5} 

= min {0 + 3000 + 3*12*50, 180 + 0 + 3*5*50} 
 

= min {3000 + 1800 + 180 + 750} = min {4800, 930} = 930 
 

For j – i = 3 
 

m14 = min {m11 + m24 + P0 P1 P4, m12 + m34 + P0 P2 P4, m13+m44+P0 

P3 P4} 

= min {0 + 330 + 5*10*5, 150 + 180 + 5*3*5, 

330+0+5*12*5} 
 

= min {330 + 250, 150 + 180 + 75, 330 +300} 
 

= min {580, 405, 630} = 405 
 

m25 = min {m22 + m35 + P1 P2 P5, m23 + m45 + P1 P3 P5, m24+m55+P1 

P4 P5} 

= min {0 + 930 +10*3*50, 360+3000+10*12*50, 

330+0+10*5*50} 
 

= min {930 + 1500, 360 +3000+6000, 330+2500} 
 

= min {2430, 9360, 2830} = 2430 
 

For j - i = 4 
 

m15 = min{m11+ m25+ P0 P1 P5, m12+m35+ P0 P2 P5, m13 + m45 +P0 

P3 P5, m14+m55+P0 P4 P5 } 

= min{0+2430+5*10*50, 

150+930+5*3*50, 

330+3000+5*12*50, 

405+0+5*5*50} 

= min {2430+2500, 150+930+750, 330+3000+3000, 

405+1250} 
 

= min {4930, 1830, 6330, 1655} = 1655 
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Space for learners: Hence, minimum number of scalar multiplications required to multiply 

the given five matrices in 1655.  

To find the optimal parenthesization of A1……….A5, we find the value 

of k is 4 for which m15 is minimum. So the matrices can be splitted to 

(A1….A4) (A5). Similarly, (A1….A4) can be splitted to (A1A2) (A3 A4) 

because for k = 2, m14 is minimum. No further splitting is required as 

the sub chains (A1A2) and (A3 A4) has length 1. So the optimal 

paranthesization of A1 …….A5 in ((A1 A2) (A3 A4) ) (A5). 

From the above solution of the given problem, we can see that all 

possible ways of obtaining the parenthesization of a matrix chain 

product using dynamic programming are performed. In other words, all 

possible solutions are obtained, and from those solutions, the optimal 

solution is taken, we have selected only those solutions that provide the 

least or minimum value, which can be reflected in the minimum cost 

table, as shown in Fig. 1. The respective k values are included in the 

split table, as shown in Fig. 2. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: Minimum cost table 
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Space for learners:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Complexity of Matrix Chain Product: 

 The time complexity of matrix chain product is O(n3) 

 The space complexity of matrix chain product is O(n2) 

Tree for optimal parenthesization 

Fig 2: Split table 
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Space for learners: 

2.4.3 Divide and Conquer Strategy for Matrix 

Multiplication 

Here, we will see how divide and conquer technique work as a new 
algorithm for multiplying matrix. 

 
Let X and Y be n × n matrices 

 

X= @A�� A�6 A��A6� A66 A��A�� A�6 A��
B 
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Space for learners:  We want to compute Z=X.Y 
 C�" = ∑ D�� . E�"��5�   

 

 Naive method uses n2.n=:�7�F operations 

 
Divide-and-Conquer solution: 

 

Z= GH IJ KL . G� MN OL = P�H. � + I. N� �H. M + I. O��J. � + K. N� �J. M + K. O Q 

  

 The above naturally leads to divide-and-conquer solution: 
o Divide X and Y into 8 sub-matrices A, B, C, and D 
o Do 8 matrix multiplications recursively 
o Compute Z by combining results (doing 4 matrix 

additions) 

 Let’s assume n = 2c for some constant c and let A, B, C and D be 
n/2 × n/2 matrices 

o Running time of algorithm is T(n) = 8T(n/2) + : (n2) )  

 T(n) = : 
(n3) 

2.4.3.1 Strassen’s Matrix Multiplication 

By using divide-and-conquer approach proposed by Strassen in 1969, 

we can reduce the number of multiplications. 

The usual way to multiply two n x n matrices A and B, yielding result 

matrix ‘C’ as follows :  

for i := 1 to n do  

for j :=1 to n do  

c[i, j] := 0;  

for K: = 1 to n do  

c[i, j] := c[i, j] + a[i, k] * b[k, j]; 

This algorithm requires n3 scalar multiplication’s (i.e. multiplication of 

single numbers) and n3 scalar additions. So we naturally cannot improve 

upon. We apply divide and conquer to this problem. 
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Space for learners: For example, let us considers three multiplications like: 

 

R = GH IJ KL . G� MN OL = P�S� + S6 − ST + SU� �ST + SV��SU + SW� �S6 + SF + SV − SW�Q  

 

S1 = (B − D) · (G + H) 

S2 = (A + D) · (E + H) 

S3 = (A − C) · (E + F) 

S4 = (A + B) · H 

S5 = A · (F − H) 

S6 = D · (G − E) 

S7 = (C + D) · E 

Let’s test that S6 + S7 is really C · E + D · G 

S6 + S7  = D · (G − E) + (C + D) · E 

= DG − DE + CE + DE 

= DG + CE 

This leads to a divide-and-conquer algorithm with running time T(n) = 

7T(n/2) + : (n2) 

– We only need to perform 7 multiplications recursively. 

– Division/Combination can still be performed in :(n2) time. 

Let’s solve the recurrence using the iteration method 
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Space for learners: 

 

Now we have the following: 

 

 

 

 

 

 

 

 

 

 

 

Or, in general: 
XYZ[ �=: 7XYZ[ � 

So the solution is T(n) = : (n log 7) = : (n2.81...) 

So, concluding that Strassen’s algorithm is asymptotically more 

efficient than the standard algorithm. 
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Space for learners: 2.5 KNAPSACK PROBLEM 

The knapsack problem is an example of a combinational optimization 

problem, a topic in mathematics and computer science about finding the 

optimal object or finite solution where an exhaustive search is not 

possible among a set of objects. The problem can be found real-world 

scenarios like resource allocation in financial constraints or even in 

selecting investments and portfolios; and also be found in fields such as 

applied mathematics, complexity theory, cryptography, combinatorics 

and computer science. 

In the knapsack problem, the given items have two attributes at 

minimum – an item’s value, which affects its importance, and an item’s 

weight or volume, which is its limitation aspect. Since an exhaustive 

search is not possible, one can break the problems into smaller sub-

problems and run it recursively. This is called an optimal sub-structure. 

This deals with only one item at a time and the current weight still 

available in the knapsack. The problem solver only needs to decide 

whether to take the item or not based on the weight that can still be 

accepted. However, if it is a program, re-computation is not independent 

and would cause problems. This is where dynamic programming 

techniques can be applied. Solutions to each sub-problem are stored so 

that the computation would only need to happen once [8]. 

There are n items, ith item is worth vi dollars and weight wi pounds, 

where vi and wi are integers. Select item to put in knapsack with total 

weight is less than W, So that the total value is maximized. This 

problem is called knapsack problem. This problem finds which items 

should choice from n item to obtain maximum profit and total weight is 

less than W. 

The problem can be explained as follows- 

“A thief robbing a store finds n items, the ith item is worth vi dollar and 

weight w pounds, where vi and wi are integers. He wants to take as 

valuable load as possible, but he can carry atmost W pounds in his 

knapsack, where W is an integer. Which item should he take” 

There are two types of knapsack problem. 

1. 0-1 knapsack problem: 
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Space for learners: In 0-1 knapsack problem each item either be taken or left behind. 

2. Fractional knapsack problem: 

In fractional knapsack problem fractions of items are allowed to 

choose. 

2.5.1 Greedy Strategy Applied in 0-1 KNAPSACK 

Problem 

The greedy algorithm in 0-1 knapsack problem can be applied as 

follows- 

1. Greedy choice: 

Take an item with maximum value per pound. 

2. Optimal substructure: 

Consider the most valuable load that weights atmost W pounds. These 

W pounds can be choose from n item. If jth item is choose first then 

remaining weight W-wi can be choose from n-1 remaining item 

excluding j. 

2.5.2 Greedy Strategy Applied in Fractional KNAPSACK 

Problem 

The greedy algorithm in fractional Knapsack problem can be applied as 

follows- 

1. Greedy choice:  

Take an item or fraction of item with maximum value per pound. 

2. Optimal substructure: 

If we choose a fraction of weight w of the item j, then the remaining 

weight atmost W-w can be choose from the n-1 item plus wi-w pounds 

of item j. 

Although, both the problems are similar, the fractional knapsack 

problem is solvable by greedy strategy, but 0-1 knapsack problem are 

not solvable by greedy algorithm. 
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Space for learners: Consider the following problem- 

There are 3 items. The knapsack can hold 50 pounds. Item1 weight 10 

pounds and its worth is 60 dollar, item2 weight 20 pounds and its worth 

100 dollars, item3 weight 30 pounds and its weight 120 dollars. Find 

out the items with maximum profit which the knapsack can carry. 

Solution: 

Here, 

W = 50 pounds 

Item 
Weight 

(w pound) 

Worth 

(v dollar) 

Item1 10 60 

Item2 20 100 

Item3 30 120 

 

Let, an item I has weight wi pounds and worth vi dollar 

Value per pound of I = vi / wi . 

Thus, value per pound for- 

Item1 = w1 / v1 

= 60 dollars / 10 pounds 

= 6 dollars/pounds 

Item2 = w2 / v2 

= 100 dollars / 20 pounds 

= 5 dollars/pounds 

Item3 = w3 / v3 

= 120 dollars / 30 pounds 

= 4 dollars/pounds 

We can select maximum of 50 pounds. 
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Space for learners: So, using greedy strategy in 0-1 knapsack problem 

1st choice is Item1. 

2nd choice is Item2. 

 

Total weight = 10 + 20 pounds 

= 30 pounds 

Total worth = 60 +100 dollars 

=160 dollars 

But this is not the optimal choice. 

The optimal choice will choose item 2 and 3. Then, 

Total weight = 20 + 30 pounds 

= 50 pounds 

Total worth = 100 + 120 dollars 

= 220 dollars 

Hence, 0-1 knapsack problem is not solved by greedy strategy. 

Now, using greedy strategy in fractional knapsack problem – 

1st choice is item1. 

2nd choice is item2 

Total weight = 30 pounds 

But the size of the knapsack is 50 pounds. 

So, it will take remaining 20 pounds from item3 (fraction of 

item3) and its worth is 4 x 20=80 dollars. 

Hence, 

Total weights = 50 pounds. 
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Space for learners: Total worth = 60+100+ 80 dollars 

=240 dollars. 

Hence, an optimal solution can be obtained from fractional knapsack 

problem using greedy strategy. 

2.5.3  Dynamic Programming applied in 0/1 KNAPSACK 

Problem 

In the above topic, we have discussed about the Knapsack problem, and 

found that fractional knapsack problem can be solved by using greedy 

strategy. The 0-1 knapsack problem can only be solved by using 

dynamic programming. Below we will discuss methods for solving 0-1 

knapsack problem.  

The naive way to solve this problem is to cycle through all 2n subsets of 

the n items and pick the subset with a legal weight that maximizes the 

value of the knapsack. But, we can find a dynamic programming 

algorithm that will usually do better than this brute force technique. 

Our first attempt might be to characterize a sub-problem as follows: 

Let Sk be the optimal subset of elements from {I0, I1,...Ik}. But what we 

find is that the optimal subset from the elements {I0, I1,... Ik+1} may not 

correspond to the optimal subset of elements from {I0, I1,...Ik} in any 

regular pattern. Basically, the solution to the optimization problem for 

Sk+1 might NOT contain the optimal solution from problem Sk. 

To illustrate this, consider the following example: 

 

Item Weight Value 

I0 3 10 

I1 8 4 

I2 9 9 

I3 8 11 
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Space for learners: The maximum weight the knapsack can hold is 20. 

The best set of items from {I0, I1, I2} is {I0, I1, I2} but the best set of 

items from {I0, I1, I2, I3} is {I0, I2, I3}. In this example, note that this 

optimal solution, {I0, I2, I3}, does NOT build upon the previous optimal 

solution, {I0, I1, I2}. Instead it builds upon the solution, {I0, I2}, which is 

really the optimal subset of {I0, I1, I2} with weight 12. 

So, now, let us rework on our example with the following idea 

Let B[k, w] represents the maximum total value of a subset Sk with 

weight w. Our goal is to find B[n, W], where n is the total number of 

items and W is the maximal weight, the knapsack can carry. 

Using this definition, we have B[0, w] = w0, if w ≥ w0. 

= 0, otherwise 

Now, we can derive the following relationship that B[k, w] obeys: B[k, 

w] = B[k - 1,w], if wk> w 

= max { B[k - 1,w], B[k - 1,w - wk] + vk} 

In general: 

1) The maximum value of a knapsack with a subset of items from 

{I0, I1, ...Ik} with weight w is the same as the maximum value of 

a knapsack with a subset of items from {I0, I1, ... Ik- 1} with 

weight w, if weights of item k is greater than W. 

Basically, we can NOT increase the value of our knapsack with 

weight w if the new item we are considering weighs more than 

W – because it WON'T fit!!! 

2) The maximum value of a knapsack with a subset of items from 

{I0, I1, ... Ik} with weight w could be the same as the maximum 

value of a knapsack with a subset of items from {I1, I2, ... Ik-1} 

with weight w, if item k should not be added into the knapsack. 

3) The maximum value of a knapsack with a subset of items from 

{I0, I1, ... Ik} with weight w could be the same as the maximum 

value of a knapsack with a subset of items from {I0, I1, ... Ik-1} 

with weight w-wk, plus item k. 
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Space for learners: You need to compare the values of knapsacks in both case 2 and 3 and 

take the maximal one. 

Recursively, we will still have an O(2n) algorithm. But, using dynamic 

programming, we simply perform in just two loops - one loop running n 

times and the other loop running W times. 

Here is a dynamic programming algorithm to solve the 0/1 Knapsack 

problem: 

Input: S, a set of n items as described earlier, W the total weight of the 

knapsack. (Assume that the weights and values are stored in separate 

arrays named w and v, respectively.) 

Output: The maximal value of items in a valid knapsack. int i, k; 

for (i=0; i<= W; i++) 

   B[i] = 0 

   for (k=0; k<n; k++) 

   { 

      for (i = W; i>= w[k]; i--) 

     { 

         if (B[i – w[k]] + v[k]> B[i]) 

              B[i] = B[i – w[k]] + v[k] 

     } 

} 

Clearly the run time of this algorithm is O(nW), based on the nested 

loop structure and the simple operation inside of both loops. When 

comparing this with the previous O(2n), we find that depending on W, 

either the dynamic programming algorithm is more efficient or the brute 

force algorithm could be more efficient. 
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Space for learners: 2.5.4 Backtracking Method for  0-1 KNAPSACK  

 

Problem Given n positive weights wi, n positive profits pi, and a 

positive number m that is the knapsack capacity, the problem calls for 

choosing a subset of the weights such that:  

∑ ]�A� ≤ ^      
7_ ∑ �̀A�  �� ^
A�^�C�_ ���  ���   

The xi’s constitute a zero–one-valued vector.  

The solution space for this problem consists of the 2n distinct ways to 

assign zero or one values to the xi’s. 

Bounding functions are needed to kill some live nodes without 

expanding them. A good bounding function for this problem is obtained 

by using an upper bound on the value of the best feasible solution 

obtainable by expanding the given live node and any of its descendants. 

If a upper bound for a live node is not higher than the value of the best 

solution then the node can bounded or kill. 

 If we consider for a node Z the values of xi, 1 < i < k, have already 

been determined, then an upper bound for Z can be obtained by relaxing 

the requirements xi = 0 or 1. 

A recursive function for 0-1 knapsack using backtracking: 

/* bounding function for 0-1 knapsack*/ 

float Bound ( float cp, float cw, int k ) 

{ 

float b = cp, c = cw; 

for ( int i = k + 1; i ≤ n; i++ ) c 

= c + w [ i ]; 

if ( c < m ) 

b = b + p [ i ]; else 

 

return ( b + ( 1 - ( c – m ) / w [ i ] * p [ i ] ); 

} 

return(b); 

} 

 

/* Backtracking method for 0-1 knapsack*/ 
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Space for learners: void Knap( int k, float cp, float cw) 

{ 

if ( cw + w [ k ] ≤ m ) 

y [ k ] = 1; 

if ( k < n ) 

Knap ( k + 1, cp + p [ k ], cw + w [ k ] ); 

if (( cp + p [ k ] > fp ) && ( k == n )) 

{ 

fp = cp + p [ k ]; fw = 

cw + w [ k ]; 

for ( int j = 1; j ≤ k ; j++) x [ 

j ] = y [ j ]; 

} 

} 

if ( Bound (cp, cw, k ) ≥ fp ) 

{ 

y [ k ] = 0; 

if ( k < n ) 

Knap ( k + 1, cp, cw ); 

if (( cp > fp ) &&( k == n )) 

{ 

fp = cp; fw = 

cw ; 

for ( int j = 1; j ≤ k; j++) 

 

 

x [ j ] = y [ j ]; 

} 

} 

} 

Here,  

cp = current total profit of the chosen items 

cw = current total weight of all chosen items 

k = index of last considered item 

m = capacity of knapsack 

w[i] = weight of ith item 
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Space for learners: p[i] = profit of ith item. 

P[i]/w[i] ≥ p[i+1]/w[i+1], for all 1≤i<n 

n= total item numbers 

fw= final total weights in knapsack 

fp= final maximum profit 

x[k] ==0, if w[k] is not in knapsack, 

== 1 ,Otherwise 

The above method to determine an upper bound for a node at level k+1 

of state space tree, function Bound(cp, cw, k) is used. 

Initially fp is set to -1. This method s invoked by Knap(1,0,0). When fp 

!= -1 , x[k],1≤k<n , is such that ∑ �a�bAa�b = c��5�….�   

The path y[j],1 ≤ j ≤ k is the path to the current node. The current 

weight 

�] = � = ∑ ]a�bda�b�5�……�9�   

The current profit cp = ∑ �a� bda�b�5�….�5�  

2.5.5 Solving Knapsack Problem using Branch and 

Bound 

Let us consider a knapsack of size K and we want to select a set of 

objects from n objects , where the ith object has size si and value vi such 

that it maximizes the value contained in the knapsack with the contents 

of the knapsack less than or equal to K. 

Suppose that K = 16 and n = 4, and we have the following set of objects 

ordered by their value density. 

i vi si vi/si 

1 $45 3 $15 
2 $30 5 $ 6 

3 $45 9 $ 5 
4 $10 5 $ 2 
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Space for learners: Firstly we begin the state space tree with the root consisting of the 

empty Knapsack. The current weight and value are obviously. To find 

the maximum potential value we consider the problem as if it was the 

fractional knapsack problem and we were using the greedy algorithmic 

solution to that problem. We have already discussed that the greedy 

approach to the fractional knapsack problem yields an optimal solution. 

We place each of the remaining objects, into the knapsack until the next 

selected object is too big to fit into the knapsack. We then use the 

fractional amount of that object that could be placed in the knapsack to 

determine the maximum potential value. 

totalSize = currentSize + size of remaining objects that can be fully 

placed 

bound (maximum potential value) = currentValue + value of 

remaining objects fully placed + (K - totalSize) * (value density of item 

i.e partially placed) 

In general, for a node at level i in the state space tree the first i items 

have been considered for selection and for the kth object as the one that 

will not completely fit into the remaining space in the knapsack, these 

formulae can be written: 

totalsize= currentsize + ∑ S��9�"5"e�  

bound= currentvalue+ ∑ f� + �g − ���
���C�� ∗ �f��9�"5"e� S�� 

For the root node currentSize = 0 and currentValue = 0 

totalSize  = 0 + s1 + s2 = 0 + 3 + 5 = 8 

bound  = 0 + v1 + v2 + (K - totalSize) * (v3/s3) 

= 0 + $45 + $30 + (16 - 8) * ($5) 

= $75 + $40 

= $115 

The computation of the bound and the selection criteria for promising 

nodes is the same as before. We must replace the depth-first traversal of 

the state space tree with a breadth first traversal. In the depth-first 

traversal the auxiliary data structure used to store the nodes was the 
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Space for learners: stack. In breath-first traversal, the auxiliary data structure is explicitly 

the queue. 

2.6 JOB SEQUENCING WITH DEADLINE 

Now, we will discuss about the job sequencing problem. The problem is 

stated as below- 

1. There are n jobs to be processed on a machine 

2. Each job i has a deadline di ≥ 0 and profit pi ≥ 0 

3. pi is earned iff the job is completed by its deadline 

4. To complete the job, it is processed in one machine for a unit of 

time 

5. Only one machine is available for processing job 

6. Only one job is processed at a time on the machine 

7. A feasible solution is a subset of job J such that each job is 

completed by its deadline 

8. An optimal solution is a feasible solution with a maximum profit 

This problem can be solved by greedy algorithm. For the optimal 

solution, after choosing a job, it will add the next job to the subset such 

that ∑ ��� € i   , increases and resulting subset become feasible. pi is the 

total profit of ith subset of jobs. In other words we have to check all 

possible feasible subset J with their total profit value, for a given set of 

jobs. 

Feasible solution for a set of job J is such that, if the jobs of set J can be 

processed in the order without violating any deadline then J is a feasible 

solution. 

Algorithm for job sequencing: 

Input: A is the array of jobs with deadline 
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Space for learners:                 1. Begin 

     2. Sort all the jobs based on profit Pi so 

    3. P1 > P2 > P3 …………………………….>=Pn 

    4. d = maximum deadline of job in A 

    5. Create array J[1,…………………,d] 

    6. For i=1 to n do 

        7. Find the largest job x 

        8. For j=i to 1 

            9. If ((J[j] = 0) and (x deadline<= d)) 

            10. Then  

                11. J[x] = i; 

                12. Break; 

            13. End if 

        14. End for 

    15. End for 

  16. End 

Output: Profit J array will be the output 

Greedy Algorithm is adopted to determine how the next job is selected 

for an optimal solution. The greedy algorithm described below always 

gives an optimal solution to the job sequencing problem-  

Step-01: 

 Sort all the given jobs in decreasing order of their profit  

Step-02:  

 Check the value of maximum deadline 
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Space for learners:  Draw a Gantt chart where maximum time on Gantt chart is the 

value of maximum deadline. 

Step-03: 

 Pick up the jobs one by one 

 Put the job on Gantt chart as far as possible from 0 ensuring that 

the job gets completed before its deadline 

Time complexity: Job sequencing problems has the time complexity of 

O(n2) 

Example : 

Let , there are n=4 nos. of job and jobs are 1, 2, 3, 4 

profit (p1,p2,p3,p4) = (100,10,15,27) 

deadline (d1,d2,d3,d4) = (2,1,2,1) 

Find the optimal solution set. 

Jobs Profit Deadline 

1 p1 100 d1 2 

2 p2 10 d2 1 

3 p3 15 d3 2 

4 p4 27 d4 1 

Solution: 

Step 1: Sorting all jobs according to profit 

Jobs Profit Deadline 

2 p2 10 d2 1 

3 p3 15 d3 2 

4 p4 27 d4 1 

1 p1 100 d1 2 

Step 2: Here maximum deadline is 2 

Now we draw a Gantt chart with maximum time on Gantt chart = 2 

units. 

Now, 

 We take each job one by one in the order they appear in Step-01. 

 We place the job on Gantt chart as far as possible from 0. 
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Space for learners:  Step 3: 

 We take job p4. 

 Since its deadline is 1 and has the maximum profit than p2 

(which has also deadline=1, so we place it in the first empty cell 

before deadline 1 as- 

  

0 1 

p4  

Step 4: 

 We take job p1. 

 Since its deadline is 2 and has the maximum profit than p3 

(which has also deadline=1, so we place it in the first empty cell 

before deadline 2 as- 

 0 1 

p4 p1 

The optimal schedule is- p4, p1 

This is the required order in which the jobs must be completed in order 

to obtain the maximum profit.  

Maximum earned profit 

= Sum of profit of all the jobs in optimal schedule 

= Profit of job p4 + Profit of job p1 

= 27+100 

=127 units 

Following is a table with all possible feasible solution with processing 

sequences and profit of each sequence. From this table now we can 

understand that why (p4, p1) is the best optimal solution and why other 

combinations were not considered as optimal. 
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Space for learners: Sl. No. Feasible Solution Processing Sequence Profit 

1 ( 2,1 ) (1,2 ) 110 

2 ( 1,3 ) ( 1,3 ) or( 3,1 ) 115 

3 ( 1,4 ) ( 4,1 ) 127 

4 ( 2,3 ) ( 2,3 ) 25 

5 ( 3,4 ) ( 4,3 ) 42 

6 ( 1 ) ( 1 ) 100 
7 ( 2 ) ( 2 ) 10 

8 ( 3 ) ( 3 ) 15 

9 ( 4 ) ( 4 ) 27 

Here solution 3 is optimal. The optimal solution is got by processing the 

job 1 and 4 in the order job 4 followed by job 1. The maximum profit is 

127. Thus, the job 4 begins at time zero and job 1 end at time 2. 

Consider solution 3 i.e maximum profit job subset J = ( 1, 4 ) 

Here , at first J= Ø and ∑ ��� € i =0. 

Job 1 is added to J as it has the largest profit and is a feasible solution. 

Next add job 4 .Then also J = ( 1,4 ) is feasible because if the job 

processes in the sequence ( 4,1 ) then job 4 will start in zero time and 

job 1 will finish in 2 time within its deadline. 

Next if job 3 is added then j=(1,3,4) is not feasible because all the job 

1,3,4 cannot be completed within its deadline. So job 3 is not added to 

the set. 

Similarly after adding job 2 J= (1,2,4) is not feasible. 

Hence J = ( 1, 4 ) is a feasible solution set with maximum profit 127. 

This is an optimal solution.  

2.7 SET MANIPULATION PROBLEM 

The set union problem has been widely studied during the past decades. 

Here we will discuss the use of forests in the representation of sets [2]. 

Some applications involve grouping n distinct elements into a collection 

of disjoint sets. These applications often need to perform two operations 

in particular: 

 Finding the unique set that contains a given element 

 Uniting two sets 
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Space for learners: 2.7.1 Disjoint-Set Operation 

A disjoint-set data structure maintains a collection of set S= { S�, S6 … … … . . S�} of disjoint dynamic sets [1]. We identify each set by 

a representative, which is some member of the set. Some application 

doesn’t mind about which member is used as the representative; only 

have to care that if we ask for the representative of a dynamic set twice 

without modifying the set between the requests, we get the answer both 

times. Other application may require a pre-specified rule for choosing 

the representative, such as choosing the smallest member in the set. 

Here we will assume that the elements of the sets are the numbers 

1,2,3,….n. These numbers indicates into a symbol table in which the 

names of the elements are stored. We assume that the sets being 

represented are pairwise disjoint (i.e. if Si and Sj, � ≠ k, are two sets 

then there is no element that is in both Si and Sj). 

For example, when n=10, the elements can be partitioned into three 

disjoint sets, S� = {1,7,8,9}, S6 = {2,5,10}
7_ SF = {3,4,6} . 

Following fig., shows one possible representation for these sets: 

 

Possible tree representation of sets S�, S6, SF 

Here the usual method for representing child- parent relationship is not 

used; instead the links are maintained from child to parent. Now the 

operations we wish to perform on these sets are: 

1. Disjoint set union: If Si and Sj are two disjoint sets, then their union S� ∪ S" = all elemets x such that x is in S��� S" . Thus S� ∪ S6 = 

{1,7,8,9,2,5,10}. Since we have assume that all sets are disjoint, we can 

assume that following the union of S� 
7_ S" , the sets S�
7_ S" do not 

exist independently, i.e. they are replaced by S� ∪ S" in the collection of 

sets. 
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Space for learners: 2. Find(u�: Given the element � , find the set containing �. Thus, 4 is in 

set SF and 9 is in set S�. 

2.7.2 Union and Find Operation 

Suppose, we wish to obtain the union of S� 
7_ S6 from the fig 1. Since 

we have linked the nodes from children to parent, we simply make one 

of the trees a subtree of the other. S� ∪ S� could then have one of the 

representation as shown int the following fig. 

 

Possible tree representation of  S� ∪ S6 

To obtain the union of two sets, we have to set the parent field of one of 

the roots to the other root. This can be accomplished easily if, with each 

set name, we keep a pointer to the root of the tree representing that set. 

If each root has a pointer to the set name, them to determine which set 

an element is currently in, we follow parent links to the root of its tree 

and use the pointer to the set name. The data representation for v*, v+, vw may then take the following form shown in fig 3. 

 

Data representation for S�, S6, 
7_ SF 
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Space for learners: Since the set elements are numbered 1 through n, we can represent, the 

tree nodes using an array p [1 : n], where n is the maximum number of 

elements. The ith element of this array represents the tree node that 

contains element i. The array elements give the parent pointer of the 

corresponding tree node. Fig 4 shows representation of sets v*, v+, ).x vw, where the root node have parent -1. 

I [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] 

p -1 5 -1 3 -1 3 1 1 1 5 

Array representation of S�, S6, 
7_ SF  of fig 1 

Now we can implement Find(i), by following the indices, starting at i 

until we reach a node with parent value -1. For example Find(6) starts at 

6 and then moves to 6’s parent 3. Since p[3] is –ve, we have reached the 

root. The operation Union(i, j) is also equally simple, we pass the two 

trees root i and j, by adopting the convention first tree become the sub-

tree of the second, the statement p[i]=j; accomplished the union. 

An algorithm for “union and find” gives the description of the union 

and find operation. Although these two algorithms are very easy to 

state, their performance characteristics are not very good. For instance, 

if we start with q elements each in a set of its own (i.e. S� = {�}, 1 ≤ � ≤��, them the initial configuration comnsists of a forest with q nodes, and �a�b = 0,1 ≤ � ≤ �. 
 Algorithm: Simple algorithms for union 

vyz{ *: Algorithm SimpleUnion(i,j) 

Step 2: { 

vyz{ w: �a�b = k;  
vyz{ }: } 

Algorithm: Simple algorithms for find 

vyz{ *: Algorithm SimpleFind(i) 

Step 2: { 

vyz{ w: ]ℎ��� ��a�b ≥ 0   _�  � ≔ �a�b;  
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Space for learners: vyz{ }: return i; 

Step 5: } 

Since the time taken for a union is constant, the n-1 unions can be 

processed in time ��.�. However, each find requires following a 

sequence of parent pointers from the element to be found to the root. 

Since the time required to process a find for an element at level � of a 

tree is ����, the total time needed to process the n finds is ��∑ u�.u5* =��.+�. 
2.8 DYNAMIC STORAGE ALLOCATION 

Dynamic memory allocation has been a fundamental part of most 

computer systems since roughly 1960, and memory allocation is widely 

considered to be either a solved problem or an insoluble one. 

Many algorithms require dynamic allocation of memory while the 

program is running. For example, a text editor may choose to store text 

a line at a time. Typically, each line would be allocated as it is created 

or modified, so that it only consumer as much space as required, 

without imposing arbitrary restrictions on the length of lines. Or it may 

choose to allocate and store the file in even smaller contiguous pieces, 

to minimize the number of characters that need to be moved in memory 

after an update. Similarly, many numerical programs will need to 

allocate sections of memory whose size or number depends on the 

particular input to the program [9]. 

Dynamic memory allocation is when an executing program requests that 

the operating system give it a block of main memory. The program then 

uses this memory for some purpose. Usually the purpose is to add a 

node to a data structure. In object oriented languages, dynamic memory 

allocation is used to get the memory for a new object. 

The memory comes from above the static part of the data segment. 

Programs may request memory and may also return previously 

dynamically allocated memory. Memory may be returned whenever it is 

no longer needed. Memory can be returned in any order without any 

relation to the order in which it was allocated. The heap may develop 
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Space for learners: "holes" where previously allocated memory has been returned between 

blocks of memory still in use. 

 

 

 

 

 

 

 

 

 

 

 

A new dynamic request for memory might return a range of addresses 

out of one of the holes. But it might not use up all the hole, so further 

dynamic requests might be satisfied out of the original hole. 

If too many small holes develop, memory is wasted because the total 

memory used by the holes may be large, but the holes cannot be used to 

satisfy dynamic requests. This situation is called memory 

fragmentation. Keeping track of allocated and deallocated memory is 

complicated. A modern operating system does all this. 

2.8.1 Garbage Collection 

"Garbage Collection, also known as automatic memory management, is 

the automatic recycling of heap memory. Garbage Collection is 

performed by a garbage collector which recycles memory that it can 

prove will never be used again. Systems and languages which 

use Garbage Collection can be described as garbage-collected." 
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Space for learners: Garbage refers to those memory blocks that are allocated but not in use, 

these objects are dead. The garbage collection technique is used to 

recognize garbage blocks and automatically free them. Garbage 

collection is also known as automatic memory management, as the 

dynamically allocated memory is automatically reclaimed by the 

garbage collector, and there is no need for the programmer to de-

allocate it explicitly. The main work of a garbage collector is to 

differentiate between garbage and non-garbage blocks and return the 

garbage blocks to the free list [10].  

Advantages of Garbage Collection:  

(i) Faster memory allocation 

Simple pointer bumping 

(ii) Increased cache performance 

No need for headers 

(ii) Better page locality 

Compacts data and reduces fragmentation 

Disadvantages of Garbage Collection: 

(i) Additional process to run 

(ii) Degrades cache performance 

(iii) Degrades page locality 

(iv) Increase in memory needs  

The two common approaches of garbage collection are: 

(i) Reference counting: Each allocated block contains a reference 

count which indicates the number of pointers pointing to this block. 

This count is incremented each time we created or a copy a pointer to 

the block and is decremented each time when a pointer to the block is 

destroyed. When the reference count of an object becomes zero, it 

become unreachable and is considered as garbage. This garbage block is 

immediately made reusable by placing it on the free list.  
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Advantages: (i) In reference counting a block of memory is 

freed as soon as it becomes garbage. 

(ii) Very easy to implement. 

Disadvantages: (i) Reference counting cannot handle cyclic 

reference correctly. A cyclic reference occurs 

when an object references itself indirectly, for 

example when some block A references block B 

and block B references block A. The reference 

count of blocks A and B will never become zero. 

So reference counting mechanism fails to 

recognize cyclic data structures as garbage and is 

not able to free them. 

(ii) Reference counts have to be frequently 

updated thereby increasing processing cost. 

(ii) Can be slow if a large collection is initiated. 

(ii)  Mark and Sweep: The mark and sweep garbage collector is 

run when the system is very low on memory and it is not possible to 

allocate any space for user. All the application programs come to a halt 

temporarily when this garbage collector runs and resume when all the 

garbage blocks are reclaimed. This garbage collection takes place in two 

phases: 

(a) The first phase is the mark phase in which all the non-

garbage blocks are marked  
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Space for learners: (b) Second is the sweep phase, in which the collector sweeps 

over the memory and returns all the unmarked i.e. garbage 

blocks to the free list. 

A root is a program variable which directly points to a block on the 

heap and the set of all the roots is called the root set. These roots may be 

local variables on stack frames, register variables, global variables or 

static variables. A block is live or reachable if it is directly or indirectly 

accessible by the root set. The directly accessible blocks are those 

which are pointed to by any root, and the indirectly accessible blocks 

are those which are pointed to by any pointer from within a live block. 

Hence all the reachable blocks can be found out by following pointers 

from the root set 

So the first task that is to be done is to find out the root set. For this all 

the program variables are scanned and pointers to dynamic memory 

(heap) are identified as roots. All the blocks that are directly and 

indirectly referenced by these roots are visited and marked. This is like 

DFS traversal of a graph and can be implemented recursively. The 

traversal starts from the set of roots and all the reachable blocks are 

visited. Whenever a block is visited, its marked field is set to true. So 

after the first phase all live blocks are marked and garbage blocks are 

not. 

In the sweep phase, the garbage collector sequentially scans all the 

blocks on the heap and reclaims all the unmarked ones by placing them 

on the free list. The marked blocks are unmarked for the next run of the 

garbage collector. There is no movement of blocks. 

In each memory block a boolean field is taken to differentiate between 

the marked and unmarked nodes. This mark field will be true if the 

block is marked and false if it is unmarked. 

Advantages:  (i) A mark and sweep garbage collector can 

recognize blocks that have already been marked 

and so there is no problem in the case of cyclic 

references. 

(ii) There is no overhead of maintaining 

reference variables as in the reference 

count method. 
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Space for learners: Disadvantages: (i) This method uses a stop-the-world approach 

i.e. all programs need to stop when garbage 

collection takes place. This may be undesirable in 

interactive and real time applications. 

(iii) Thrashing occurs when most of the memory is being used. In this 

case the collector is able to reclaim very less memory which is 

exhausted in a short duration. This causes the garbage collector to 

be called again, and this time also it reclaims only little space. So 

the garbage collector is called again and again this case. 

2.9 SUMMING UP 

 Union operation on set combine two set by making one of the 

root as the child of the other root 

 Find operation on set returns the set-name of the set where 

the node belongs 

 For binary search divide and conquer strategy is applied 

recursively for a given sorted array 

 Merge sort is a recursive algorithm that splits the array into 

two subarrays , sorts each subarray , and then merges the two 

sorted arrays into a single sorted array. The array is divided 

until its size becomes 0 or 1. 

 Merge sort is an external sorting algorithm 

CHECK YOUR PROGRESS 

f) Dynamic programming is typically applied to ___________ 

problem 

g) In the knapsack problem, the given items have two attributes at 

minimum – an item’s ________and ____________ 

h) ___________ is also known as automatic memory management 

i) List two advantages of Garbage Collection. 
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Space for learners:  In merge sort in divide step sub-problems are divided into 

two halves 

 In conquer step sub-problems are sorted individually 

 In combine Step sub-problems are combine to find the 

resultant sorted array 

 Quick sort is an internal sorting algorithm. In its basic form it 

was developed by C.A.R Hoare in 1960. 

 In merge sort , the list to be sorted is divided at its midpoint 

into subarrays which are independently sorted and later 

merged. In quick sort, the division to the sorted subarrays is 

made, so that the sorted subarrays do not need to merged 

later. 

 The quick sort algorithm stop when there is only one element 

in the subarray to be sorted or if there is no element in the 

subarray to be sorted 

 Knapsack problem: There are n items, ith item is worth vi 

dollars and weight wi pounds, where vi and wi are integers. 

Select item to put in knapsack with total weight is less than 

W, So that the total value is maximized 

 There are two types of knapsack problem 

 0-1 knapsack problem 

 fractional knapsack problem 

 In 0-1 knapsack problem each item either be taken or left 

behind 

 In fractional knapsack problem fractions of items are 

allowed to choose 

 The fractional knapsack problem is solvable by greedy 

strategy, but 0-1 knapsack problem are not solvable by greedy 

algorithm 

 In the job sequencing with deadline problem, a feasible 

solution is a subset of job J such that each job is completed by 

its deadline and optimal solution is a feasible solution with a 

maximum profit 
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Space for learners:  the optimal way to pair wise merge n sorted files 

 the optimal way to pair wise merge n sorted files 

 Two algorithm to solve minimum spanning tree problem are- 

Kruskal algorithm and Prim algorithm. 

2.10  ANSWERS TO CHECK YOUR PROGRESS 

a) Divide and Conquer 

b) The two limitations of Binary Search: 

a. Interacts poorly with the memory hierarchy  

b. Requires sorted list as an input  

c) Input elements 

d) Left-biased 

e) Pivot element 

f) Optimization 

g) Value, weight or volume 

h) Garbage collection 

i) Two advantages of Garbage Collection: 

a. Faster memory allocation 

b. Simple pointer bumping 

2.11 POSSIBLE QUESTIONS 

Short Answer type Questions: 

1) What is external and internal sorting? Give examples. 

2) How does the binary search algorithm follow the divide and 

conquer method? Explain with an example. 

3) Explain, what optimal binary search tree is. 

4) Write a recursive and non-recursive function for binary search 

algorithm. 
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Space for learners: 5) How does merge sort follow the divide and conquer strategy? 

Give one example. 

6) What are the differences between quick sort and merge sort 

algorithm? 

7) Write a recursive function to sort elements using merge sort. 

8) Write quick sort algorithm and explain with an example. 

9) What is greedy strategy for knapsack problem? 

Long Answer type Questions: 

1) Write briefly about knapsack problem. Explain with an example that 

greedy algorithm does not work for 0-1 knapsack problem. 

2) What is optimal substructure for 0-1 knapsack and fractional 

knapsack problem? 

3) With an example explain how 0/1 knapsack problem can be solved 

by using dynamic programming. 

4) Sort the following element by using Insertion sort algorithm  

18, 19, 13, 16, 11, 9, 14, 12, 6 15, 22, 27, 3 

5) Sort the following element by using Merge sort algorithm  

14, 20, 19, 13, 12, 6, 15, 22, 27, 3, 16, 11, 1 

6) Sort the following element by using Quick sort algorithm  

3, 16, 11, 1, 4, 20, 16, 13, 12, 6, 15, 23, 27 

7) Suppose A is an array of 7 elements. Search an element 9 in the 

array using binary search. 

 

 

9) Consider the following job sequencing problem. Find the feasible 

solution set. 

Job 1 2 3 4 

Profit 10 20 15 5 

Deadline 2 3 3 2 

0 1 2 3 4 5 6 

2 7 8 9 13 17 24 
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Space for learners: 10) What is optimal substructure for 0-1 knapsack and fractional 

knapsack problem? 

11) With help of an example show how 0/1 knapsack problem can be 

solved by using branch and bound technique. 
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Space for learners: 
UNIT 3: GENETIC ALGORITHM AND 

NEURAL NETWORK 

Unit Structure: 

3.1 Introduction    

3.2 Genetic Algorithm 

3.2.1 Terms related to Genetic Algorithm 

3.2.2 Genetic Algorithm Requirements 

3.2.3 Genetic algorithms operations 

3.2.4 The Principle Structure of a Genetic Algorithm 

3.2.5 General Algorithm for Genetic Algorithm 

3.2.6 Some areas where we can use Genetic Algorithm 

3.2.7 Advantages of Genetic Algorithm 

3.2.8 Limitations of Genetic Algorithm 

3.2.9 Genetic Algorithms Application Areas 

3.2.10 Some Examples of Genetic Algorithm 

3.3 Neural Network 

3.3.1 Classification based on connection type or 

topology 

3.3.2 Processing of information in neural network unit 

3.3.3 Learning Paradigms 

3.3.4 Artificial Neural Network 

3.3.5 Why we use Artificial Neural Network 

3.3.6 How Artificial Neuron work 

3.3.7 The main elements or blocks of an artificial 

neural network 

3.3.8 Properties of Artificial Neural Network 

3.3.9 Artificial Neural Network Models 

3.3.10 Applying Genetic Algorithm to neural networks 

3.3.11 Advantage and disadvantage 

3.3.12 Application of Neural Network 

 3.4 Summing Up 

 3.5 Answers to Check Your Progress 

 3.6 Possible Questions 

 3.7 References and Suggested Readings 
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Space for learners: 3.1 INTRODUCTION 

Before going to start Neural Network (NN) and Genetic Algorithm 

(GA), let’s start with the concept of Optimization. Optimization is the 

process of having a set of inputs to finding the values of inputs in such a 

way that we can get the best output values i.e. making something better. 

The term “best” varies from time to time depending on the problem, but 

mathematical term, it is defined as maximizing or minimizing one or 

more objective functions, by varying the input parameters. 

Neural networks and genetic algorithms are the techniques for 

optimization and learning, each with its own strengths and weaknesses. 

The two have generally evolved along separate paths. However, 

recently there have been attempts to combine the two technologies. 

Davis (1988) showed how any neural network can be rewritten as a type 

of genetic algorithm called a classifier system and vice versa.  

Both Neural Network and Genetic Algorithm were invented in the spirit 

of a biological metaphor. The biological metaphor for neural networks 

is the human brain. Like the brain, this computing model consists of 

many small units that are interconnected. These units (or nodes) have 

very simple abilities. Hence, the power of the model derives from the 

interplay of these units. It depends on the structure of their connections. 

3.2 GENETIC ALGORITHM 

A genetic algorithm (or GA) is a search technique used in computing to 

find true or approximate solutions to optimization and search problems. 

Genetic algorithms are categorized as global search heuristics. GAs are 

a particular class of evolutionary algorithms that use techniques inspired 

by evolutionary biology such as inheritance, mutation, selection, and 

crossover (also called recombination). 

Dr. David Goldberg, 1989 offered the following definition: 

"Genetic algorithms are search algorithms based on the mechanics 

of natural selection and natural genetics"[4]. 
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This method combines Darwinian style survival of the fittest among 

binary string "artificial creatures" with a structured, yet randomized 

information exchange. 

Genetic algorithms are implemented as a computer simulation in which 

a population of abstract representations (called chromosomes or the 

genotype or the genome) of candidate solutions (called individuals, 

creatures, or phenotypes) to an optimization problem evolves toward 

better solutions. Traditionally, solutions are represented in binary bit 

strings of 0s and 1s, but other encodings can also be taken. The 

evolution usually starts from a population of randomly generated 

individuals and happens in generations. In each generation, the fitness 

of every individual in the population is evaluated, multiple individuals 

are selected from the current population (based on their fitness), and 

modified (recombined and possibly mutated) to form a new population. 

The new population is then used in the next iteration of the algorithm. 

Commonly, the algorithm terminates when either a maximum number 

of generations has been produced, or a satisfactory fitness level has 

been reached for the population. If the algorithm has terminated due to a 

maximum number of generations, a satisfactory solution may or may 

not have been reached [7]. 

3.2.1 Terms Related to Genetic Algorithm 

 Individual - Any possible solution  

 Population - Group of all individuals  

 Search Space - All possible solutions to the problem  

 Chromosome - Blueprint for an individual  

 Trait - Possible aspect (features) of an individual 

 Allele - Possible settings of trait (black, blond, etc.) 

 Locus - The position of a gene on the chromosome  

 Genome - Collection of all chromosomes for an individual  

 Genotype - Particular set of genes in a genome 
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 Phenotype - Physical characteristic of the genotype (smart, 

beautiful, healthy, etc.) 

3.2.2 Genetic Algorithm Requirements 

 A typical genetic algorithm requires two things to be 

defined: 

 A genetic representation of the solution domain, and 

 A fitness function to evaluate the solution domain 

 A standard solution is represented by an array of bits. Arrays 

of other types and structures can also be used in essentially 

the same way 

 The main property that makes these genetic representations 

convenient is that their parts are easily aligned due to their 

fixed size, which facilitates simple crossover operation 

 Variable length representations may also be used, but 

crossover implementation is more complex in this case  

 Tree-like representations are explored in Genetic 

programming 

 Chromosomes could be: 

 Bit strings     (0101 ... 

1100) 

 Real numbers    (43.2 -33.1 

... 0.0 89.2)  

 Permutations of element   (E11 E3 E7 

... E1 E15) 

 Lists of rules    (R1 R2 R3 

... R22 R23) 
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Space for learners:  Program elements    (genetic 

programming) 

 The fitness function is defined over the genetic 

representation and measures the quality of the represented 

solution. The fitness function is always problem dependent. 

For instance, in the knapsack problem we want to 

maximize the total value of objects that we can put in a 

knapsack of some fixed capacity.  

 A representation of a solution might be an array of bits, 

where each bit represents a different object, and the value of 

the bit (0 or 1) represents whether or not the object is in the 

knapsack.  

 Not every such representation is valid, as the size of objects 

may exceed the capacity of the knapsack.  

 The fitness of the solution is the sum of values of all objects 

in the knapsack if the representation is valid or 0 otherwise. 

In some problems, it is hard or even impossible to define the 

fitness expression; in these cases, interactive genetic 

algorithms are used. 

 

 A fitness function 
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The GA’s are used for maximization problem. For the maximization 

problem the fitness function is same as the objective function. But, for 

minimization problem, one way of defining a ‘fitness function’ is:  F (x) 

= 1/f(x), where f(x) is an objective function. 

3.2.3 Genetic Algorithms Operations 

Genetic algorithms have three main operations:  

a) Reproduction (or Selection) 

b) Crossover 

c) Mutation 

a) Reproduction is a process in which individual strings are copied 

according to their fitness. Whose fitness value is more that is having 

more chances to survive in next generation.  

b) Crossover is a process that can be divided in two steps. First, pairs 

of bit strings will be mated randomly to become the parents of two new 

bit strings. The second part consists of choosing a place (crossover site) 

in the bit string and exchanges all characters of the parents after that 

point. The process tries to artificially reproduce the mating process 

where the DNA of two parents determines the DNA for the newly born.  

In the above figure, crossover site is 7 so after 7th bit the values of 

Parent1 and Parent2 get interchanged and results as Child1 and Child2. 

c) Mutation is included, not because the previous process of 

reproduction and recombination are not sufficient, but because of the 

probability that a certain bit can't be changed by the previous operations 



 

221 | P a g e  

 

Space for learners: 
due to its absence from the generation, either by a random chance or 

because it has been discarded. It only implies the change of a 0 for a 1 

and vice versa.  

In the above figure, mutation takes place at bit 7 (here 7th bit’s value 

changes from 1 to 0). 

3.2.4  The Principle Structure of a Genetic Algorithm 

 

 

 

 

 

 

 

 

 

3.2.5 General Algorithm for Genetic Algorithm: 

 Initialization: Initially many individual solutions are randomly 

generated to form an initial population. The population size 

depends on the nature of the problem, but typically contains several 

hundreds or thousands of possible solutions. Traditionally, the 

population is generated randomly, covering the entire range of 

possible solutions (the search space). Occasionally, the solutions 

may be "seeded" in areas where optimal solutions are likely to be 

found. 



 

222 | P a g e  

 

Space for learners: 
 Selection: During each successive generation, a proportion of the 

existing population is selected to breed a new generation. 

Individual solutions are selected through a fitness-based process, 

where fitter solutions (as measured by a fitness function) are 

typically more likely to be selected. Certain selection methods rate 

the fitness of each solution and preferentially select the best 

solutions. Other methods rate only a random sample of the 

population, as this process may be very time-consuming. Most 

functions are stochastic and designed so that a small proportion of 

less fit solutions are selected. This helps keep the diversity of the 

population large, preventing premature convergence on poor 

solutions. Popular and well-studied selection methods include 

roulette wheel selection and tournament selection. 

In roulette wheel selection, individuals are given a 

probability of being selected that is directly proportionate to their 

fitness. Two individuals are then chosen randomly based on these 

probabilities and produce offspring. 
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 Reproduction: The next step is to generate a second generation 

population of solutions from those selected through genetic 

operators: crossover (also called recombination), and/or mutation. 

For each new solution to be produced, a pair of "parent" solutions 

is selected for breeding from the pool selected previously. By 

producing a "child" solution using the above methods of crossover 

and mutation, a new solution is created which typically shares 

many of the characteristics of its "parents". New parents are 

selected for each child, and the process continues until a new 

population of solutions of appropriate size is generated. These 

processes ultimately result in the next generation population of 

chromosomes that is different from the initial generation. 

Generally the average fitness will have increased by this 

procedure for the population, since only the best organisms from 

the first generation are selected for breeding, along with a small 

Roulette Wheel’s Selection Pseudo Code: 

  

 for all members of population 

  sum += fitness of this individual 

 end for  

 for all members of population  

  probability = sum of probabilities + (fitness / sum)  

  sum of probabilities += probability  

 end for  

 loop until new population is full  

  do this twice  

   number = Random between 0 and 1  

   for all members of population 

    if number > probability but less than next probability then 

     you have been selected  

   end for  

  end 

   create offspring  

 end loop  
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proportion of less fit solutions, for reasons already mentioned 

above. 

 Crossover: The most common type is single point crossover. In 

single point crossover, you choose a locus at which you swap the 

remaining alleles from on parent to the other. This is complex and 

is best understood visually. As you can see, the children take one 

section of the chromosome from each parent. The point at which 

the chromosome is broken depends on the randomly selected 

crossover point. This particular method is called single point 

crossover because only one crossover point exists. Sometimes 

only child 1 or child 2 is created, but oftentimes both offspring are 

created and put into the new population. Crossover does not 

always occur, however. Sometimes, based on a set probability, no 

crossover occurs and the parents are copied directly to the new 

population. The probability of crossover occurring is usually 60% 

to 70%. 

 Mutation: After selection and crossover, you now have a new 

population full of individuals. Some are directly copied, and 

others are produced by crossover.  In order to ensure that the 

individuals are not all exactly the same, you allow for a small 

chance of mutation. You loop through all the alleles of all the 

individuals, and if that allele is selected for mutation, you can 

either change it by a small amount or replace it with a new value. 

The probability of mutation is usually between 1 and 2 tenths of a 

percent. Mutation is fairly simple. You just change the selected 

alleles based on what you feel is necessary and move on. 

 Termination: This generational process is repeated until a 

termination condition has been reached. Common terminating 

conditions are: 

 A solution is found that satisfies minimum criteria  

 Fixed number of generations reached  

 Allocated budget (computation time/money) reached  

 The highest ranking solution's fitness is reaching or has reached a 

plateau such that successive iterations no longer produce better 

results  
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Genetic Algorithm Pseudo-code 

Choose initial population 

 Evaluate the fitness of each individual in the population  

 Repeat  

 Select best-ranking individuals to reproduce 

 Breed new generation through crossover and mutation 

(genetic operations) and give birth to offspring 

 Evaluate the individual fitness of the offspring  

 Replace worst ranked part of population with offspring  

 Until <terminating condition> 

 Manual inspection  

 Any Combinations of the above 

 

3.2.6 Some Areas of Usage of Genetic Algorithm 

 Genetic Algorithms can be applied to virtually any problem that 

has a large search space. 

 Al Biles uses genetic algorithms to filter out 'good' and 'bad' riffs 

for jazz improvisation. 

 The military uses GAs to evolve equations to differentiate 

between different radar returns 

 Stock companies use GA-powered programs to predict the stock 

market 
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Genetic Algorithm has various advantages, Some of these include − 

 Does not require any derivative information (which may not be 

available for many real-world problems) 

 Faster and more efficient as compared to the traditional methods 

 Very good parallel capabilities 

 Optimizes both continuous and discrete functions and also 

multi-objective problems 

 Provides a list of “good” solutions and not just a single solution 

 Always gets an better answer over the time to the problem 

 Useful when the search space is very large and there are a large 

number of parameters involved 

3.2.8 Limitations of Genetic Algorithm 

Genetic Algorithm also suffers from a few limitations. These include − 

 Not suited for all problems, especially problems which are 

simple and for which derivative information is available 

 Fitness value is calculated repeatedly which might be 

computationally expensive for some problems 

 Sometimes, there are no guarantees on the optimality or the 

quality of the solution 

 If not implemented properly, the Genetic Algorithm may not 

converge to the optimal solution 

3.2.9 Genetic Algorithms - Application Areas 

Genetic Algorithms are primarily used in optimization problems of 

various kinds, but they are frequently used in other application areas as 
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well. Here, some of the areas in which Genetic Algorithms are 

frequently used are listed below:  

 Optimization − Genetic Algorithms are most commonly used 

in optimization problems wherein we have to maximize or 

minimize a given objective function value under a given set of 

constraints. The approach to solve Optimization problems has 

been highlighted throughout the tutorial. 

 Economics − GAs are also used to characterize various 

economic models like the cobweb model, game theory 

equilibrium resolution, asset pricing, etc. 

 Neural Networks − GAs are also used to train neural 

networks, particularly recurrent neural networks. 

 Parallelization − GAs also have very good parallel 

capabilities, and prove to be very effective means in solving 

certain problems, and also provide a good area for research. 

 Image Processing − GAs are used for various digital image 

processing (DIP) tasks as well like dense pixel matching. 

 Vehicle routing problems − with multiple soft time windows, 

multiple depots and a heterogeneous fleet. 

 Scheduling applications − GAs are used to solve various 

scheduling problems as well, particularly the time tabling 

problem. 

 Machine Learning − as already discussed, genetics based 

machine learning (GBML) is a niche area in machine learning. 

 Robot Trajectory Generation − GAs have been used to plan 

the path which a robot arm takes by moving from one point to 

another. 

 Parametric Design of Aircraft − GAs have been used to 

design aircrafts by varying the parameters and evolving better 

solutions. 
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structure of DNA using spectrometric data about the sample. 

 Multimodal Optimization − GAs are obviously very good 

approaches for multimodal optimization in which we have to 

find multiple optimum solutions. 

 Traveling salesman problem and its applications − GAs 

have been used to solve the TSP, which is a well-known 

combinatorial problem using novel crossover and packing 

strategies 

3.2.10    Some Examples of Genetic Algorithm 

Example 1: Encode the solution using GA: 

f(x) = {MAX(x2): 0 <= x <= 32 } 

For encoding solution, initially we use 5 bits (1 or 0) 

 Step 1: Generate initial population 

A 0 1 1 0 1 

B 1 1 0 0 0 

C 0 1 0 0 0 

D 1 0 0 1 1 

 

 Step 2: Evaluate each solution against objective 

Sol. String Fitness 
% of 

Total 

A 01101 169 14.4 

B 11000 576 49.2 

C 01000 64 5.5 

D 10011 361 30.9 
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 Step 3: Create next generation of solutions 

 Probability of “being a parent” depends on the fitness 

Ways for parents to create next generation 

 Reproduction 

 Use a string again unmodified 

 Crossover 

 Cut and paste portions of one string to another 

 Mutation 

 Randomly flip a bit 

 COMBINATION of all of the above 

Example 2: P = (C1, C2, C3, ..., Cn) means the salesmen move from 

city C1 to C2, C2 to C3, C3 to Cn. There are five cities that a 

salesperson will pass. The cities are A, B, C, D, and E. The journey 

starts from A and ends at A as well. The distance between cities is 

shown in Figure below [8]: 

 

 

 

 

 

 

 

 

 

 



 

230 | P a g e  

 

Space for learners: Sl. No. City 1 City 2 Distance 

1 A B 7 

2 A C 5 

3 A D 9 

4 A E 9 

5 B C 7 

6 B D 2 

7 B E 8 

8 C D 4 

9 C E 3 

10 D E 6 

 

Initial Chromosomes: 

 

 

 

 

 

Initial fitness: 
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Selection: The chromosome selection is made because of the TSP 

problem desirably that chromosomes with smaller fitness will have a 

higher probability of being reelected. 

 

 

 

Crossover: Crossover is done to produce children from two mothers 

who are mated. The resulting chromosomes are expected to increase the 

value of fitness. The number of chromosomes that experience crossover 

is determined by crossover probability. The crossover probability value 

is 0.25. 
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Mutation: Mutation works to exchange genes for genes on other 

chromosomes. Expected results increase the value of fitness to be 

achieved. If a gene is exchanged at the end of a chromosome, this gene 

will be exchanged for the first gene. There is a parameter to determine 

how many genes will be mutated. The mutation rate is 0.2. 
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Fitness Values: 

In the first generation, it has been seen that there is the smallest fitness 

value that does not change. If the calculation is continued up to the Nth 

generation, then it is assumed that the lowest fitness value will remain 

unchanged. Although the calculation is sufficiently elaborated up to the 

1st generation, a near-optimal solution has been found, from the genetic 

algorithm process above, the final result the route with the shortest 

optimal distance is A, B, D, E, C, A. 

 

  

CHECK YOUR PROGRESS 

a) The ___________is defined over the genetic representation 

and measures the quality of the represented solution 

b) Define crossover 

c) List two limitations of Genetic Algorithm 

d) Mention two application areas of Genetic Algorithm 
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Neural Networks are algorithms optimization and learning based 

loosely on the concept inspired by research into the nature of the brain.  

A neural network is a computational model consisting of a number of 

connected elements, known as neurons. A neuron is a processing unit 

that receives input from outside the network and/or from other neurons, 

applies a local transformation to that input, and provides a single output 

signal which is passed on to other neurons and/or outside the network. 

Each of the inputs is modified by a value associated with the 

connection. This value is referred to as the connection strength, or 

weight, and roughly speaking, represents how much importance the 

neuron attaches to that input source. The local transformation is referred 

to as the activation function and is usually sigmoidal in nature. 

An important difference between Neural Network and Genetic 

Algorithm is that, in a genetic algorithm only those items of data that 

have value in predicting the outputs are retained as inputs to the system. 

A neural network, on the other hand, does not exclude irrelevant data 

inputs from the final system. It nullifies the effects of such data inputs 

by assigning a low weight to them in the decision process. 

 

 

 

 

 

 

 

 

 

Neural Network mainly consists of five components: 
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1. Directed graph, also known as the network topology whose arcs 

are refer to as links 

2. State variable is associated with each node 

3. Real- valued weight associated with each link 

4. Real- valued bias associated with each link 

5. Transfer Function determines the state of a node as a function of 

a) its bias b, b) the weights, wt of its incoming links, and c) the 

states, x of the nodes connected to it by these links [1]. 

A simple neural network may be illustrated with the help of following 

figure: 

 

 

 

 

 

 

 

 

This network consists of:  

 Five units or neurons or nodes (the circles) 

 Six connections (the arrows) 

 The number next to each connection is called weight; it 

indicates the strength of the connection 

 Connections with a positive weight are called excitatory 

 Connections with a negative weight are called inhibitory 

The constellation of neurons and connection is called the architecture of 

the network, which is also called the topology. This is a feed-forward 

Fig: A Neural Network 
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network, because the connections are directed in only one way, from 

top to bottom. There are no loops or circles. [6] 

In a strictly layered network, the nodes are arranged several layers. 

Connections may only exist to the nodes of the following layer. Yet in 

our case, there is a connection from the input layer to the output layer. It 

is, however, not a strictly layered network, but we may call it a layered 

network, because the nodes of each layer are not interconnected.  

3.3.1 Classification Based on Connection Type or 

Topology 

1. Single layer feed-forward networks: 

– Input layer projecting into the output layer 

 

 

 

 

 

2. Multi-layer feed-forward networks: 

– One or more hidden layers. 

– Input projects only from previous layers onto a layer. 

Typically, only from one layer to the next 
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3. Recurrent networks: 

– A network with feedback, where some of its inputs are 

connected to some of its outputs (discrete time) [2] 

 

 

 

 

 

 

3.3.2 Processing of Information in Neural Network Unit 

The node receives the weighted activation of other nodes through its 

incoming connections. Firstly, these are added up (summation). The 

result is passed through activation function; the outcome is the 

activation of the node. For each of the outgoing connections, this 

activation value is multiplied with the specific weight and transferred to 

the next node [5]. 

 

 

 

 

 

 

Information processing in Neural Network unit 

 

A few different threshold functions are used. It is important that a 

threshold function is non-linear; otherwise a multilayer network is 

equivalent to a one layer net. The most widely applied threshold 

function is the logistic sigmoid: 
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There are a few other activation functions in use: scaled sigmoid, 

gaussian, sine, hyperbolic tangent, etc. It has some benefits for back-

propagation learning, the classical training algorithm for feed-forward 

neural networks. 

 

Back-Propagation Learning 

 

At the beginning the weights of a network are randomly set or 

otherwise predefined. However, only little is known about the 

mathematical properties of neural networks. Especially, for a given 

problem, it is basically not possible to say which weights have to be 

assigned to the connections to solve the problem. Since NN follow the 

non-declarative programming paradigm, the network is trained by 

examples, so called patterns. Back-propagation is one method to train 

the network.  The training is performed by one pattern at a time. The 

training of all patterns of a training set is called an epoch. The training 

set has to be a representative collection of input-output examples. 

 

Size of the training set: 

 No one‐fits‐all formula 

 Over fitting can occur if a “good” training set is not chosen 

 What constitutes a “good” training set? 

  Samples must represent the general population. 

 Samples must contain members of each class. 

 Samples in each class must contain a wide range of 

variations or noise effect. 

 The size of the training set is related to the number of hidden 

neurons 

 

Back-propagation strategy: 

 N is a neuron. 

 Nw is one of N’s inputs weights 

 Nout is N’s output. 

 Nw = Nw +Δ Nw 

 Δ Nw = Nout * (1‐ Nout)* NErrorFactor 

 NErrorFactor = NExpectedOutput – NActualOutput 
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 This works only for the last layer, as we can know the actual 

output, and the expected output. [5] 

 

3.3.3 Learning Paradigms 

 Supervised learning: In supervised learning a network is fed 

with a set of training samples (inputs and corresponding output), 

and it uses these samples to learn the general relationship between 

the inputs and the outputs. This relationship is represented by the 

values of the weights of the trained network. 

 Unsupervised learning: In unsupervised learning no desired 

output is associated with the training data. It is faster than 

supervised learning. This learning used to find out structures within 

data either by Clustering or by Compression 

 Reinforcement learning: Like supervised learning, but weights 

adjusting is not directly related to the error value. The error value is 

used to randomly, shuffle weights. Relatively slow learning due to 

‘randomness’. 

3.3.4 Artificial Neural Network 

An Artificial Neural Network (ANN) is composed of many artificial 

neurons that are linked together according to specific network 

architecture.  

Computational model of Artificial Neural Network is inspired by the 

human brain. ANN is massively parallel, distributed system and made 

up of simple processing units (neurons). Synaptic connection strengths 

among neurons are used to store the acquired knowledge. Knowledge is 

acquired by the network from its environment through a learning 

process. 
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Artificial Neural Network 

 

An ANN is either a hardware implementation or a computer 

program which strives to simulate the information processing 

capabilities of its biological exemplar. ANNs are typically composed of 

a great number of interconnected artificial neurons. The artificial 

neurons are simplified models of their biological counterparts. ANN is a 

technique for solving problems by constructing software that works like 

our brains 

3.3.5 Usage Artificial Neural Network 

There are basically two reasons why we are interested in building 

artificial neural networks (ANN): 

 Biological viewpoint: ANNs can be used to simulate and replicate 

components of human or animal brain, so that it can gives us 

insight into natural information processing. 

 Technical viewpoint: Character recognition or the predictions of 

future states of a system require massively parallel and adaptive 

processing. ANNs made it easy. 
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Let us start with the model of an artificial neuron 
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Neural Network 

a) The computing element (called an artificial neuron or simply neuron)  

b) The connection pattern among the elements (structure or 

architecture)  

c) The process used for training the neural network (learning algorithm) 

3.3.8 Properties of Artificial Neural Network 

 Learning from examples 

o labeled or unlabeled 

 Adaptions  

o changing the connection strengths to learn things 

 Non-linearity 

o the non-linear activation functions are essential 

 Fault tolerance 

o if one of the neurons or connections is damaged, the whole 

network still works quite well 

Thus, they might be better alternatives than classical solutions for 

problems characterized by high dimensionality, noisy, imprecise or 

imperfect data; and a lack of a clearly stated mathematical solution or 

algorithm. 

 

CHECK YOUR PROGRESS 

e) A neural network is a computational model consisting of a 

number of connected elements, known as ______ 

f) The training of all patterns of a training set is called an 

_________ 

g) _________ used to find out structures within data either by 

Clustering or by Compression 

h) Mention two properties of Artificial Neural Network 
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 Deep Learning Architectures 

 Multilayer feed-forward networks (Multilayer perceptron) 

 Radial Basis Function networks 

 Self-Organizing Networks 

3.3.10   Applying Genetic Algorithm to Neural Networks 

Combining Neural Network with Evolutionary Algorithms leads to 

Evolutionary Artificial Neural Networks (EANNs). One can use 

Evolutionary Algorithms like the GA to train Neural Network, choose 

their structure or design related aspects like the function of their 

neurons.  

3.3.10.1     Using Genetic Algorithm to Train Neural 

Network 

GA will train the network no matter how it is connected - whether it’s a 

feed-forward or a feedback network [4]. Furthermore, it can train 

general networks which are mixture of the two types.  

a) How to create a string or chromosome from simple neural 

network 
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All the weights in the network are joined to make one string. This string 

is then used in the GA as a member of the population. Each string 

represents the weights of a complete network. Following figure 

represent the value of chromosome obtained from the above fig: simple 

neural network. 

a b c d e f 

String or Chromosome 

 

b) How to evaluate Fitness  

Fitness is measured by calculating the error (target – output)  

i.e. fitness= 1/error (the lower the error the higher the fitness) 

Example:  

The target for a network with a particular input is 1. The outputs are 

shown below, calculate their fitness.  

Population member Output 

1 0.4 

2 0.2 

3 1.6 

4 -0.9 

 

One can complete the entities below by first calculating the error as 

described above. Then making all the errors positive and finally 

working out a fitness (low errors have a high fitness) by using fitness = 

1 / error. 

Population 

member 
Output Error (T-O) Positive Fitness 

1 0.4 0.6 0.6ss 1.67 

2 0.2 0.8 0.8 1.26 

3 1.6 -0.6 0.6 1.67 

4 -0.9 1.9 1.9 0.53 

 

So members 1 and 3 (which are closest to the target) have the highest 

fitness. 
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By using genetic algorithm one can evaluate the how neurons are 

connected with one another in a network. [4] 

Case 1: Simple Neural Network  

Consider a simple neuron network. If there is a connection of one 

neuron with other neuron, it will be represented by 1 otherwise 0. 

 

 

 

 

 

 

 

In this figure, consider the connections from neuron 1. These may be 

represented by the string: 

   0 0 1 1 0 

The first 0 represents the fact that neuron 1 is not connected to itself 

The second 0 represent that neuron 1 is not connected to neuron 2 

The third 1 means that neuron 1 is connected to neuron 3, and so on. 

The complete network may be represented by the matrix shown in 

figure below: 

 

00110 Neuron 1 

00101 Neuron 2 

00011 Neuron 3 

00000 Neuron 4 

00000 Neuron 5 

Matrix representing the complete network 

 

Where matrix element Mjk is 0 if there is no connection between 

neuron j and k; if the matrix element is a 1, then there is a connection. 

 

It is possible to concatenate the matrix into one string from this figure:  

0 0 1 1 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 

Each string represents the connection pattern of a whole network. 

 

 



 

247 | P a g e  

 

Space for learners: 
Case 2: Neural Network with weights 

 

 

 

 

 

 

 

 

 

 

 

Matrix representing network as: 

 

Connections Weights 

0 0 1 1 0 +0.0 +0.0 +0.5 -0.1 +0.0 

0 0 1 0 1 +0.0 +0.0 +0.8 +0.0 +0.4 

0 0 0 1 1 +0.0 +0.0 +0.0 -0.9 +0.2 

0 0 0 0 0 +0.0 +0.0 +0.0 +0.0 +0.0 

0 0 0 0 0 +0.0 +0.0 +0.0 +0.0 +0.0 

 

This corresponds to the string:  

0 0 0 0.5 0.1 0 0 0 0 0.8 0 0.4 0 0 0 0 -0.9 0.2 0 0 0 0 0 0 0 0 0 0 0 0  

In this case, a weight of zero simply means that no connection exists 

between these neurons. 

 

3.3.11 Advantages and Disadvantages 

 Advantages 

o Adapt to unknown situations 

o Powerful, it can model complex functions and can perform 

tasks that a linear program cannot 

o Ease of use, learns by example, and very little user domain‐

specific expertise needed and does not need to be 

reprogrammed 

o It can be implemented in any application 
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o The neural network needs training to operate 

o Not exact 

o Large complexity of the network structure as it requires high 

processing time for large neural networks 

3.3.12 Application of Neural Network 

 Pattern recognition 

 Investment analysis 

 Control system and monitoring 

 Mobile computing 

 Market and financial application 

 Forecasting like sales, market research etc. 

3.4 SUMMING UP 

 Neural networks and genetic algorithms are the techniques for 

optimization and learning 

 Genetic algorithms are search algorithms based on the 

mechanics of natural selection and natural genetics 

 A typical genetic algorithm mainly requires two things to be 

defined, a genetic representation of the solution domain, and a 

fitness function to evaluate the solution domain 

 The fitness function is defined over the genetic representation 

and measures the quality of the represented solution 

 Genetic algorithms have three main operations: Reproduction 

(or Selection), Crossover, Mutation 

 A neural network is a computational model consisting of a 

number of connected elements, known as neurons 

 A neuron is a processing unit that receives input from outside 

the network and/or from other neurons, applies a local 

transformation to that input, and provides a single output signal 

which is passed on to other neurons and/or outside the network 

 The constellation of neurons and connection is called the 

architecture of the network, which is also called the topology 
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artificial neurons that are linked together according to specific 

network architecture 

 Artificial Neural Networks are an imitation of the biological 

neural networks, but much simpler ones. 

 The computing would have a lot to gain from neural networks. 

Their ability to learn by example makes them very flexible and 

powerful furthermore there is need to device an algorithm in 

order to perform a specific task. 

 Neural networks also contribute to area of research such as 

neurology and psychology. They are regularly used to model 

parts of living organizations and to investigate the internal 

mechanisms of the brain. 

 Many factors affect the performance of ANNs, such as the 

transfer functions, size of training sample, network topology, 

weights adjusting algorithm. 

3.5 ANSWERS TO CHECK YOUR PROGRESS 

a) Fitness function  

b) Crossover is a process that can be divided in two steps. First, 

pairs of bit strings will be mated randomly to become the 

parents of two new bit strings. The second part consists of 

choosing a place (crossover site) in the bit string and exchanges 

all characters of the parents after that point. The process tries to 

artificially reproduce the mating process where the DNA of two 

parents determines the DNA for the newly born. 

c) Two limitations of Genetic Algorithms: 

a. Fitness value is calculated repeatedly which might be 

computationally expensive for some problems 

b. Sometimes, there are no guarantees on the optimality or 

the quality of the solution 

d) Two application areas of Genetic Algorithms: 

a. Image Processing − GAs are used for various digital 

image processing (DIP) tasks as well like dense pixel 

matching. 

b. Vehicle routing problems − with multiple soft time 

windows, multiple depots and a heterogeneous fleet. 
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e) Neurons. 

f) Epoch 

g) Unsupervised learning  

h) Two properties of Artificial Neural Network 

a. Learning from examples whether labeled or unlabelled 

b. Fault tolerance: If one of the neurons or connections is 

damaged, the whole network still works quite well 

3.6 POSSIBLE QUESTIONS 

Short Answer type Questions: 

Define the following terms: 

1. Chromosome  2. Genotype   3. Genome 

4. Phenotype 

5. Fitness function   6. Mutation   7. Neuron 

8. Topology. 

Long Answer type Questions: 

1. What do you mean by Genetic Algorithm? Write down the main 

steps involve in Genetic Algorithm. 

2. Explain some areas where we can use Genetic Algorithm. 

3. Let,  P = (C1, C2, C3, ..., Cn) means the salesmen move from city C1 

to C2, C2 to C3, C3 to Cn. There are four cities that a salesperson will 

pass. The cities are A, B, C and D. The journey starts from A and ends 

at A as well. The distance between cities is shown in Figure below: 

 

 

 

 

 

 

A 

D C 

B 
5 

2 8 

9 

7 

3 
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4. What do you mean by Neural Network? Explained components 

associated with it. 

5. Explain some properties of Artificial Neural Network. 
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UNIT 1  INTRODUCTION TO GRAPHS 
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1.4.1 Adjacency Martix 
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_________________________________________________________________ 

1.1 INTRODUCTION 
_________________________________________________________________ 

In this unit, you will learn the concept of graph, and its different ways of 

representation: Adjacency matrix and Adjacency List. You will also learn 

the different graph traversal techniques namely Depth-first search (DFS) 

and Breadth-first search (BFS). How the DFS and BFS techniques along 

with the algorithms and the data structures used to accomplish the task. 

The time complexity of the algorithms will be discussed in this unit along 

with few demonstrations of the techniques. You will also learn about one 

of the popular sorting techniques i.e. Topological Sort along with its time 

complexity analysis. 

_________________________________________________________________ 

1.2 UNIT OBJECTIVES 
_________________________________________________________________ 

After going through this unit, you will be able to: 

 Understand the fundamental concept of Graphs. 

 Know different ways of representing a graph. 

 Define graphs and its types. 

 Analyze the time complexities of graph traversal techniques. 

 Describe Topological sort. 

_________________________________________________________________ 

1.3 BASIC TERMS AND THEIR DEFINITIONS 
_________________________________________________________________ 

Graph is a nonlinear ADT (Abstract Data Type) which can be used as a 

modeling tool to represent non-hierarchical relationship. A graph is 

encountered often in our daily lives like social networks, road networks, 

computer networks and so on. For instance, road networks or social 

networks etc can be easily modeled using a graph (See Fig 1.1). When you 

say graph is a non-linear ADT, it implies that the data stored are 

distributed and should not be stored contiguously like Arrays etc. Unlike 

Trees, in a graph, there can be any number of predecessors and successors 

and a node can have multiple parents and descendants. To understand the 

graph, you need to get an introduction of the basic terms and 

terminologies associated with the graph. Some, of the basic terms in graph 
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theory are given in the subsequent subsections. 

 

  

 

 

 

Fig. 1.1: Sample graph 

i) Graph 

A graph is a non-linear data structure that consists of finite set of 

nodes V and a finite set of edges E that connects the vertices. 

Mathematically, a graph can be represented as G(V,E). The nodes are also 

called as vertices and edges as arcs. A Graph G (V, E) with 4 vertices, set of 

vertices V = {A, B, C, D} and six edges i.e. set of edges E = {(A, B), (A, C), 

(A, D), (B, C), (C, D), (D, B)} is shown in the Figure 1.2. 

ii) Order of a Graph 

The total number of nodes/vertices represents the order and edges 

represents the size of a graph G(V, E). The size of a graph is denoted as |E|. 

iii) Directed Graph 

A directed graph is a set of vertices and a set of links between the 

vertices, i.e. the vertices of the graph are connected by the edges and where 

all the edges are directed from one vertex to another as shown in Fig. 1.2. A 

directed graph is also referred to as a digraph or a directed network. 

 

  

 

 

Fig. 1.2: Directed graph 

Space for learners 

notes 
Delhi 

Chennai 

Guwahati 

Gujarat 

A 

B 

C 

D 



255 | P a g e  

 

iv) Undirected Graph 

An undirected graph is a set of vertices and a set of links between the 

vertices, i.e., the vertices of the graph are connected by the edges and where 

the edges are not associated with the directions with them as shown in Fig. 

1.3. Every edge in a undirected graph is equivalent to two edges connecting 

two vertices. 

 

 

 

 

Fig. 1.3: Undirected graph 

Here, V = {A, B, C, D} and E = {(A,C), (A,B), (A,D), (B.A), (B,C), (B,D), 

(C,A), (C,B), (C,D), (D,A), (D,B), (D,C)}. It can be observed that and 

undirected graph can be replaced by two directed edges. 

v) Walk 

When we traverse a graph we get a walk. In other words a walk is a 

sequence of vertices and edges of a graph where vertex can be repeated and 

edges cannot be repeated. If the last vertex and first vertex are same then it is 

known as closed walk, otherwise the walk is referred to as open walk. There 

are no restrictions in the number of edges and vertices in a walk. In Fig. 1.3 

the traversing of graph in a manner A-> B -> C -> D -> A is a closed walk, 

and A-> B -> C -> D-> is an open walk. 

vi) Trail 

A walk is known as a trail, if no edges appear more than once in a 

walk, however vertex can be repeated.  

vii) Circuit 

When a graph is traversed in such a manner that no edge is repeated 

but vertex is repeated, it is known as a circuit. It is a closed trail. For instance 

in Fig. 1.3 the A-> B -> C -> D -> A->C is a circuit. 
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viii) Path 

A path can be defined as the sequence of vertices that are followed in 

order to reach some destination vertex v from the initial vertex u where, we 

do not repeat a vertex and nor we repeat an edge while we traverse the 

graph. A path is an open walk. 

ix) Closed Path 

A path is known as a closed path if the initial vertex u is same as 

terminal vertex v. A path will be closed path if v = u. 

x) Simple Path 

A path P is called as closed simple path if all the vertices of the 

graph are distinct with an exception v = u. then such. Where, v is the 

destination vertex and u is the initial vertex. 

xi) Cycle 

A cycle can be defined as the path where no edges are repeated 

neither vertices except the first and last vertices i.e. to get a cycle we can 

repeat the starting and ending vertex only. In simple terms, in cycle both the 

vertices and edges are not repeated. If all the vertices of a graph are visited 

only once except the first vertex, the cycle is known as Hamiltonian cycle. 

xii) Loop 

 A loop is an edge that connects a vertex to itself. It is also known as 

a self loop or buckle. A graph that does not contain any loops or multiple 

edges is called a simple graph. 

xiii) Digraph 

A digraph is a directed graph in which each edge of the graph is 

associated with a certain direction and traversing is only possible in that 

direction. 

xiv) Complete Graph 

 A complete graph is the one in which each pair of vertices is 

connected by an edge. A complete graph contain n(n-1)/2 edges where n is 

the number of vertices in the graph. The Figure 1.4 as shown is a complete 

graph, where there are 5 vertices and 10 edges.  
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               Fig. 1.4: Complete graph 

xv) Degree of a Vertex 

 The number of edges connecting to a vertex of a graph is the 

degree of that vertex. A vertex with a degree zero is known as an isolated 

vertex. 

CHECK YOUR PROGRESS 

1. Graph is a __________________ data structure which can be 

used as a modeling tool to represent ____________relationship. 

2. The total number of edges represents the _________ of a graph. 

3. In a _______________edge cannot be repeated but vertex can be 

repeated. 

4. In a _______________no edge and vertex can be repeated except 

the first and last vertices. 

5. A ______________is an edge that connects a vertex to itself in a 

graph. 

6. If there are n vertices in a graph then a complete graph can 

contain _____________ number of edges. 

7. In an _______________ graph, the edges are not associated with 

the directions with them. 

8. In a _______________ graph, the edges are associated with the 

directions with them. 
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_________________________________________________________________ 

1.4 GRAPH REPRESENTATIONS 
_________________________________________________________________ 

When we say "graph representation”, we just mean the approach that 

will be utilized to store a graph in the computer's memory. A graph G(V,E) 

can be represented in the following two ways: 

a) Adjacency Matrix. 

b) Adjacency List. 

_________________________________________________________________ 

1.4.1 Adjacency Martix  

_________________________________________________________________ 

In this type of representation, a graph is represented as a matrix M of 

dimension n x n where n = |V|, number of vertices. It is a sequential 

representation of graph. An entry Mij in the adjacency matrix representation 

of a graph G will be 1 if there exists an edge between any two vertices vi and 

vj. It can be represented as follows: 

���, �� = � 1 �� �ℎ��� ������ ��� ���� ������� �� and �� 0      �ℎ������                                                               
For example, consider the graph shown in Figure 1.5(a) and its 

corresponding adjacency matrix as shown in Figure 1.5(b). 

  

 

 

 

Fig, 1.5 (a): Sample undirected graph. (b): Adjacency matrix 

 A B C D 

A 0 1 0 1 

B 1 0 1 0 

C 0 1 0 1 

D 1 0 1 0 
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It is to be observed that the sample graph shown in Figure 1.5 (a) is an 

undirected graph. In case of undirected graphs M[i, j] = M[j, i], i.e. it 

holds the symmetry property. 

For directed graph, the adjacency graph representation is shown in 

Figure 1.6 (a) and 1.6 (b). 

 

  

 

 

Fig. 1.6 (a): Sample directed graph 

 A B C D 

A 0 1 1 0 

B 0 0 0 0 

C 0 1 0 1 

D 1 0 0 0 

Fig. 1.6 (b): Adjacency matrix representation of the sample directed 

graph 

The entry in the matrix, M [i, j] =1 only when there is an edge directed 

from vertex vi and vj otherwise it is 0. 

Adjacency matrix can also be used to represent weighted graphs. In 

weighted graph, a weight is associated to every edge connecting any pair 

of vertices. The length of the path is equal to the sum of weights that fall 

in that path. 

In case of weighted graphs the non-zero entries in adjacency matrix M 

are represented by the weight of respective edges instead of filling it 

with 1 and filled with infinite otherwise. It can be represented as 

follows: 

���, �� = ���! �� �ℎ��� ������ ��� ���� ������� �� and �! ∞      �ℎ������                                                               
In Figure 1.7(a) a weighted graph is shown and its adjacency matrix 

representation is shown in Figure 1.7(b). 
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Fig. 1.7 (a): Sample weighted graph 

 

  

 

 

Fig. 1.7 (b): Adjacency matrix representation of the sample weighted 

graph 

It is observed that adjacency matrix is sparse if there are lesser number of 

edges compared to the maximal possible number of edges. Thus, this kind of 

representation consumes memory space. It is ideal if the graph is dense 

otherwise, the adjacency list representation of graph is preferable to 

represent a sparse graph. 

_________________________________________________________________ 

1.4.2 Adjacency List 

_________________________________________________________________ 

An adjacency list is another kind of graph representation where a linked list 

is used to represent the neighbors of a vertex.  

For each node in the graph, an adjacency list is kept, which contains the 

node value as well as a pointer to the node's next adjacent node. If all 

neighbouring nodes have been traversed, store NULL in the list's last node's 

pointer field. In an undirected graph, the sum of the lengths of adjacency 

lists is equal to twice the number of edges of the graph. 

Consider the directed graph shown in Figure 1.8(a) and check the adjacency 

list representation of the graph in the Figure 1.8(b). 

Space for learners 

notes 

 A B C D 

A ∞ 2 14 ∞ 

B ∞ ∞ ∞ ∞ 

C ∞ 21 ∞ 1 

D 1 ∞ ∞ ∞ 

A 

B 

C 

D 

21 

14 

2 
1 

27 



261 | P a g e  

 

  

 

 

 

Fig. 1.8 (a): Sample directed graph 

 

                                                                            

 

 

 

 

 

 

Fig. 1.8 (b): Adjacency list representation of the sample directed graph 

CHECK YOUR PROGRESS 

9. There are two ways of representing a graph ________________ 

and ______________________. 

10. Define weighted graph. 

11. In adjacency list representation of graph a ______________ is 

used to represent the neighbors of a vertex. 

12. In adjacency matrix, the entry in the matrix is equal to _____ 

only when there is an edge directed from vertex vi and vj 

otherwise it is entered as _________. 

13. In case of weighted graphs the non-zero entries in adjacency 

matrix are represented by the _________of respective edges. 
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_____________________________________________________________ 

1.5 GRAPH TRAVERSAL TECHNIQUES 
______________________________________________________________ 

Graph traversal is a way of processing the vertices/nodes of a graph such 

that every vertex is visited only once. There are basically two types of graph 

traversal techniques: 

a) Depth-first Search (DFS) and 

b) Breadth-first Search (BFS). 

These techniques are used to search or traverse a graph in linear time. Both 

the techniques can take directed and undirected graph and produce DFS and 

BFS trees, respectively. The two techniques are discussed in the subsequent 

subsections. 

___________________________________________________________________ 

1.5.1 Depth-first Search 

___________________________________________________________________ 

Depth-first search (DFS) algorithm is a systematic way of traversing 

the nodes of a directed or undirected graph G. The nodes are traversed in 

such a way that every node is visited only once. It starts with an initial node 

to process and then goes deeper to process its descendants before processing 

the adjacent nodes. It goes deeper and deeper to process the descendants or 

children of subsequent nodes until the target node or the node with no 

descendant is found. Once a dead end is encountered, the algorithm, then 

backtracks towards the most recent node that is yet to be explored 

completely. The DFS algorithm uses stack data structure to keep track of the 

nodes to be used to start the search when dead ends occur. The searching is 

continued till the stack becomes empty which implies that all the nodes of 

the graph are fully explored or processed.  

A DFS algorithm can be applied recursively or non-recursively. The steps 

followed in the iterative DFS algorithm are as follows: 

Step 1: Initialize an empty stack and mark the status of every node as 

unvisited in the graph. 

Step 2: Explore a node and mark its status as visited and push it into the 
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stack and display it. 

Step 3: Pop a node from the stack if no adjacent node of it whose status 

is unvisited is found. 

Step 4: Repeat the Steps 2 and 3 until the stack is empty. 

Example: Let us try to understand with an example. Consider an 

undirected graph having four nodes A, B, C and D connected by the 

edges. We need to traverse the graph using DFS algorithm. The 

illustration of the algorithm is shown below: 

Traversal Description of Step 

 Initialize a stack and mark 

the status of the nodes of 

the graph as unvisited. 

 Take node A as starting 

node and push it into the 

stack. Mark its status as 

visited and display it. 

Explore the adjacent nodes 

of A whose status is 

unvisited. Here, there are 

two adjacent unvisited 

nodes B and D. You can 

take any of them to explore 

further. 

 We took the adjacent node 

B to explore. Mark it as 

visited and push it into the 

stack and display B. Now, 

you explore the adjacent 

node of B. So, next explore 

node C. 
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Traversal Description of Step 

 Mark node C as visited and 

push it into the stack and 

display it. Now, you 

explore the adjacent nodes 

of C. You will get nodes B 

and D. Both the nodes are 

the adjacent nodes, but 

node D will be considered 

next to be explored due to 

its unvisited status. 

 Mark node D as visited and 

push it into the stack and 

display it. The adjacent 

nodes of D are A and C but 

both are visited, so it 

cannot be explored further. 

So, now you backtrack 

with the help of the stack. 

It is to be observed that the node D does not have any further adjacent nodes 

yet to be explored, so you need to backtrack by popping out D from the 

stack and keep popping until you find any node which is not yet fully 

explored or in other words whose status is unvisited. In this case, there are 

no nodes with the unvisited status, so pop the nodes one by one until the 

stack becomes empty. Hence, all the four nodes of the graph are traversed. 

The printing sequence of the graph will be as A -> B - > C -> D.  

Time complexity analysis of DFS algorithm 

Let us consider, a graph with n number of nodes and m number of edges 

(directed or undirected). As you know that in DFS algorithm every node is 

visited only once therefore the total time taken to traverse or visit all the 

nodes of the graph is n. However, the edges of the graph is traversed twice, 

as you can observe from the illustration, thus the total time to traverse all the 

edges will be 2m. Hence, we can say that the total time taken to traverse the 

graph using DFS algorithm is n + 2m which can be stated using asymptotic 

notation as O (n + m).  
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_______________________________________________________________ 

1.5.2 Breadth-first Search 

_______________________________________________________________ 

Breadth-first search is an algorithm is a systematic way of traversing the 

nodes of a directed or undirected graph G. It differs with the depth-first 

search technique is that the BFS processes the nodes of the graph in a 

level wise manner, in other words the nodes at the same level are 

explored first before exploring the nodes at the next level. The algorithm 

first selects a node to be a root node to start with and then explores the 

nodes nearer to the root node. The BFS algorithm uses a queue data 

structure to keep track of the nodes to be explored. The queue is used to 

store the sibling nodes of the current node being explored and uses the 

queue to get the next node to be explored once it encounters a dead-end 

in any iteration. The searching is continued till the queue becomes 

empty which implies that all the nodes of the graph are fully explored or 

processed.  

Like a DFS algorithm, BFS also can be applied recursively or non-

recursively. The steps followed in the iterative BFS algorithm are as 

follows: 

Step 1:  Initialize an empty queue and mark the status of every node as 

unvisited in the graph. 

Step 2: Select a start node to visit, mark its status as visited and enqueue 

it into the queue. 

Step 3:  Dequeue a node from the queue, display it and explore its 

adjacent unvisited node. 

Step 4: Enqueue the explored adjacent node it into the queue. 

Step 5: Repeat the Steps 3 and 4 until the queue is empty. 

Example: Let us try to understand with an example. Consider an 

undirected graph having four nodes A, B, C and D connected by the 

edges. We need to traverse the graph using BFS algorithm. The 

illustration of the algorithm is shown below: 
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Traversal Description of Step 

 Initialize a queue and mark 

the status of the nodes of 

the graph as unvisited. 

 Take node A as starting 

node and enqueue it into 

the queue. Mark its status 

as visited.  

 

 

 

 Dequeue node A, display it 

and explore its adjacent 

nodes whose status is 

unvisited. Here, nodes B 

and D are the adjacent 

nodes of A. Enqueue the 

nodes B and D into the 

queue. Mark them as 

visited. 
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Traversal Description of Step 

  

 

 

 

 

 

Dequeue node B from the 

queue as it is pointed by 

front pointer of the queue. 

Display it and explore its 

adjacent nodes. Here, 

nodes A and C are the 

adjacent nodes of B but 

node A is already visited. 

So, enqueue node C into 

the queue and mark it as 

visited. 

 Dequeue node D from the 

queue as it is pointed by 

front pointer of the queue. 

Display it and explore its 

adjacent nodes. Here, 

nodes A and C are the 

adjacent nodes of D but 

both the nodes are already 

visited.  

 Dequeue node C from the 

queue as it is pointed by 

front pointer of the queue. 

Display it and explore its 

adjacent nodes. Here, 

nodes B and D are the 

adjacent nodes of C but 

both the nodes are already 

visited. So, stop the 

exploration as queue is 

empty and all the nodes are 

fully explored. 

Hence, all the four nodes of the graph are traversed. The printing 

sequence of the graph will be as A -> B - > D -> C. It is to be noted that 

in both DFS and BFS methods the printing sequence of the nodes differs 

with the selection of the initial starting node. 
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Time complexity analysis of BFS algorithm 

Let us consider, a graph with n number of nodes and m number of edges 

(directed or undirected). As you know that in BFS algorithm every node is 

visited only once therefore the total time taken to traverse or visit all the 

nodes of the graph is n. However, the edges of the graph is traversed twice, 

as you can observe from the illustration, thus the total time to traverse all the 

edges will be 2m. Hence, we can say that the total time taken to traverse the 

graph using BFS algorithm is n + 2m which can be stated using asymptotic 

notation as O (n + m). Thus, the time complexity of both the DFS and BFS 

algorithm to traverse a given graph is same.  

_________________________________________________________________ 

1.5.3 Difference between DFS and BFS Algorithm  

_________________________________________________________________ 

Both the Depth-first search and Breadth-first search algorithms are used to 

traverse a graph. The time complexity of both the algorithms is O (|V| + |E|), 

if we use adjacency list to represent the graph, otherwise it is O (|V|2) if we 

use adjacency matrix for graph representation. However, the main difference 

between them is their approach in traversing the graph. Some of the 

differences between the two methods are given below: 

S. No Depth-first Search Breadth-first Search 

1 DFS uses stack data 

structure. 

BFS used queue data structure. 

2 DFS explores the child nodes 

before the sibling nodes. 

BFS explores the sibling nodes in a 

level by level manner. Where all 

nodes in a particular level are 

explored first before moving into 

the next level. 

3 Best suited to find nodes 

which are far away from the 

source node. 

Best suited to find nodes which are 

nearer to the source node. 

4 The outcome can be a forest. The outcome is a tree (BFS tree). 
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STOP TO CONSIDER 

Breadth-first search and Depth-first search are two graph traversal 

algorithms. Both are useful in many graph algorithms and can be applied 

into directed or undirected graph. Some of the applications of these 

algorithms are finding single source shortest path in a graph, detect 

cycles in undirected graphs, job scheduling and so on.  

_______________________________________________________________ 

1.6 TOPOLOGICAL SORT 

_______________________________________________________________ 

Topological sorting is a sorting technique of the nodes of a graph. The 

technique works only with directed acyclic graph (DAG). The ordering 

of the nodes is done in such a way that if there exist any edge directed 

from the node u and node v, then topological sort outputs u before v. As 

the graph as to be acyclic the topological sort guarantees the ordered 

output of the nodes however there may be more than one output and 

may not be unique always. 

To begin with topological sort, you need to consider few of the 

following terms and concepts: 

i). Cyclic Graph 

A graph that consists of at least one cycle in a graph. We know that in a   
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graph a cycle is formed whenever the starting and ending vertices are 

repeated in a path. Figure 1.9 shows a cyclic graph with having a path from 

node A back to itself (A->C->B->A). 

 

 

  

 

Fig. 1.9: A sample cyclic graph 

ii). Acyclic Graph 

A graph that do not consist of any cycle in it which means that no node of 

the graph can be traversed back to itself. Figure 1.10 shows an acyclic 

graph. 

 

  

 

 

 

Fig. 1.10: A sample acyclic graph 

iii). Directed Acyclic Graph (DAG) 

A directed graph, which does not consist of any cycle, is known as directed 

acyclic graph (DAG). The graph shown in Figure 1.10 can also be referred 

to as directed acyclic graph. 

iv). Indegree of a Node 

In a directed graph, the number of edges leading into the node gives us the 

indegree of the node. If we consider the DAG shown in Figure 1.10, the 

indegree of the nodes are: Node A has indegree 1 as there is only one edge 

coming into the node from node B. The indegree of node B is 0,as there are   
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no edge leading into it. Similarly, the indegrees of the node C, D, E and 

F are 1, 2, 1 and 2 respectively.  

A node with degree 0 is also known as an isolated node. And root node 

always has indegree 0. 

v). Outdegree of a Node 

In a directed graph, the number of edges leading away from the node 

gives us the outdegree of the node. If we consider the DAG shown in 

Figure 1.10, the outdegree of the nodes are: Node A has outdegree 1 as 

there is only one edge coming out of the node towards node C. 

Similarly, the outdegree of the nodes B, C, D, E and F are 2, 2, 1, 1 and 

0 respectively. 

Topological Sort Algorithm 

Topological sort graph traversal algorithm which does the linear 

ordering of nodes of a graph. It works only with directed acyclic graph 

(DAG) and there is at least one topological ordering of a DAG.  Now, 

given a directed acyclic graph G (V, E), to begin with topological sort 

perform the following steps: 

Step 1: Count indegree of nodes of the graph and get the node with 

indegree 0 and insert into a list. 

Step 2: Remove a node from the list and display it. 

Step 3: Delete the node and every edge coming out of it from the graph 

and get a new subgraph. 

Step 4: Repeat the steps 1 to 3 until all the nodes are traversed and the 

list becomes empty. 

Here, a list is used to keep track of the nodes however you may use 

stack or queue data structure also to perform the task. 

Example: Let us try to understand topological sort with an example. 

Consider an directed acyclic graph (DAG) having six nodes A, B, C, D, 

E and F and seven directed edges. We need to traverse the graph using 

topological sort. The illustration of the algorithm is shown below: 
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Traversal Description of Step 

  

 

 

 

 

Count the indegree of 

nodes of the graph and get 

the node with indegree 0. 

Here, node B has indegree 

0. Insert it into the list. 

 Remove node B from the 

list and display it. We get a 

new subgraph by deleting 

the node B and edges 

coming out of the node.  

 

 

 

 Count the indegree of 

nodes of the subgraph and 

get the node with indegree 

0. Now, node A has 

indegree 0. Insert it into the 

list.  
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Traversal Description of Step 

  

 

 

 

 

 

Remove node A from the 

list and display it. We get a 

new subgraph by deleting 

node A and edge coming 

out of the node.  

 

 Count the indegree of 

nodes of the subgraph and 

get the node with indegree 

0. Now, node C has 

indegree 0. Insert it into the 

list. 

 Remove node C from the 

list and display it. We get a 

new subgraph by deleting 

node C and edges coming 

out of the node.  

 

 

 

 Count the indegree of 

nodes of the subgraph and 

get the node with indegree 

0. Now, nodes D and E has 

indegree 0. Insert them into 

the list. 
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Traversal Description of Step 

 Remove node D from the 

list and display it. We get a 

new subgraph by deleting 

node D and edge coming 

out of the node.  

 

 Remove node E from the 

list and display it. We get a 

new subgraph by deleting 

node E and edge coming 

out of the node.  

 

 

 Count the indegree of 

nodes of the subgraph and 

get the node with indegree 

0. Now, node F is left and 

with indegree 0. Insert it 

into the list. 

 Remove node F from the 

list and display it. Stop 

now as we have exhausted 

traversing all the nodes of 

the graph and the list is 

empty.  

Hence, all the six nodes of the graph are traversed. The printing sequence of 

the graph will be as B, A, C, D, E, F. It is to be noted that the ordered 

sequence of the nodes can also be B, A, C, E, D, F. Thus, we get more than 

one unique order of nodes using topological sort algorithm. 
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Time complexity analysis of Topological sort algorithm 

Let us consider, a directed acyclic graph G (V, E) with n = |V| and m = 

|E|. In the topological sort algorithm, every node is visited only once 

therefore the total time taken to traverse or visit all the nodes of the 

graph is n. Similarly, the edges of the graph is traversed as you can 

observe from the illustration, thus the total time to traverse all the edges 

will be m. Hence, we can say that the total time taken to traverse the 

graph is n + m which can be stated using asymptotic notation as O (n + 

m). Thus, the time complexity of topological sort algorithm to traverse a 

given graph is linear. 

Why Topological sort algorithm cannot be applied to cyclic graph? 

To answer this question let us consider the directed cyclic graphs shown in 

Figures 1.11 (a) and 1.11 (b).   

 

   

 

 

 

Fig. 1.11: (a) Sample cyclic graph                  (b) Sample cyclic graph 

If you observe carefully, the directed graph in Figure 1.11 (a), there is a 

cycle consisting of the nodes A, C, D, B. There is no node in the graph 

shown with indegree 0, so topological sort algorithm cannot be applied 

in it. If you consider the directed graph shown in Figure 1.11 (b), there is 

one node A whose indegree is 0, however, once we delete the node and 

the edge coming out of it, we are left with a subgraph consisting of node 

B, C and D forming a cycle. Hence, you cannot carry on the topological 

sorting further as no nodes will have an indegree 0. 
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CHECK YOUR PROGRESS 

14. With adjacency list representation of graph, the time complexity 

of BFS algorithm is _____________. 

15. The time complexity of topological sort algorithm is ________. 

16. Define indegree and outdegree of a node. 

17. DFS algorithm traverses the _______ nodes before the 

_________ nodes. 

18. A _______ graph has at least one cycle in it. 

19. State whether the following statements are true or false: 

a. Topological sort algorithm can produce only one order of 

the nodes of a graph. 

b. In BFS algorithm, we use queue data structure. 

c. Topological sort algorithm can be performed in directed 

acyclic graph (DAG) only. 

_____________________________________________________________ 

1.7 SUMMING UP 
__________________________________________________________________ 

 A graph G(V,E) is a non-linear data structure that consists of finite set of 

nodes V and a finite set of edges E that connects the vertices.  

 A non-linear data structure is one in which the data pieces are not placed 

in any particular order and are instead distributed across the plane. 

 For implementation, we need to represent the graph in the computer's 

memory, and there are two ways to do so: adjacency matrix and 

adjacency list. 

 Traversing a graph or searching a graph implies visiting every nodes or 

vertices of a graph. 

Space for learners 

notes 



277 | P a g e  

 

 There are basically two types of graph traversal techniques: 

Depth-first Search (DFS) and Breadth-first Search (BFS) and both 

traverse a graph in linear time. 

 A graph is represented as a matrix M of dimension n x n in 

adjacency matrix representation, with n = |V|. It represents a graph in 

sequential order. If an edge exists between any two vertices vi and vj, the 

item Mij in the adjacency matrix representation of the graph G will be 1 

otherwise 0. 

 An adjacency list is a type of graph representation that uses a 

linked list to represent a vertex's neighbours. 

 BFS explores the nodes of the graph in a level-by-level fashion, 

that is, nodes at the same level are explored first, followed by nodes at 

the next level. 

 The DFS method begins by exploring an initial node then 

continues deeper to process its descendants before moving on to its 

adjacent node. 

 The linear ordering of nodes in a graph is accomplished using the 

topological sort algorithm. It can only be used with directed acyclic 

graphs (DAGs) and have at least one topological ordering. 
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_____________________________________________________________ 

1.8 ANSWERS TO CHECK YOUR PROGRESS 
______________________________________________________________ 

1. non linear, non-hierarchical 

2. size 

3. trail 

4. cycle 

5. loop 

6. n(n-1)/2 

7. undirected 

8. directed 

9. adjacency matrix, adjacency list 

10.  A weighted graph is a graph where every edge (directed or undirected) 

is assigned some numerical weight. 

11.  linked list 

12. 1, 0 

13. weight 

14. O(|V|+|E|) 
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15. O(|V|+|E|) 

16.  In a directed graph, the number of edges leading into a node 

gives the indegree of the node and the number of edges leading away 

from a node gives the outdegree of the node. 

17. child, adjacent 

18. cyclic 

19.  a). False  b). True   c). True 

_______________________________________________________________ 

1.9 POSSIBLE QUESTIONS 

_______________________________________________________________ 

Short Answer Type Questions 

1. What is a graph? 

2. What is the purpose of graph representation? 

3. What are the different types of graph representation? 

4. Define an acyclic graph. 

5. Define a complete graph. 

6. What do you mean by graph traversal? 

7. What are the different types of graph traversal techniques? 

8. Draw a graph with five nodes and seven edges where one edge 

should be a loop. 

9. Define a connected graph. 

10. How do you get the size of a graph? 

11. Define indegree of a node. 

12. What is an ADT? 

13. Define DAG. 

14. Define outdegree of a node. 

15. What is a circuit in graph? 

16. What data structure is used in Depth-first search technique? 

Space for learners 

notes 



280 | P a g e  

 

17. Why do we use queue data structure in Breadth-first search? 

18. What is the output of topological sort method? 

19. What is non-linear data structure? 

 

Long Answer Type Questions 

1. Explain the adjacency matrix representation of a graph with a 

suitable example. 

2. Explain the adjacency list representation of a graph with an example. 

3. Differentiate between connected and non-connected graph. 

4. Consider the graphs shown in Figure 1.12 (a) (b) and do the 

following: 

a. Perform the BFS traversal. 

b. Perform the DFS traversal. 

 

  

 

 

 

Fig. 1.12. (a): A directed graph 

  

 

 

 

Fig. 1.12. (b): An undirected graph 
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5. Explain the advantages and disadvantages of adjacency matrix 

representation of a graph. 

6. Explain the advantages and disadvantages of adjacency list 

representation of a graph. 

7. Using the DAG as shown in Fig. 1.12 (a), perform the 

topological sort in the graph. 

8. “Topological sort can be applied only to directed acyclic graph”. 

Justify the statement with a suitable example. 

9. Describe the various components of a graph. 

10. Draw a directed graph using the following adjacency matrix: 

 U V W X 

U 1 0 1 0 

V 1 0 1 0 

W 0 0 0 1 

X 0 1 0 0 

  Also find the adjacency list representation of the graph. 

11. Explain the Breadth-first search algorithm. Derive its time 

complexity. 

12. Explain the Depth-first search algorithm. Derive its time 

complexity. 

13. Explain the procedure to determine the presence of a cycle in a 

graph. 

14. Differentiate between BFS and DFS algorithms. 

 

_______________________________________________________________ 
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UNIT 2  MINIMUM SPANNING TREE 

Unit Structure: 

 

2.1 Introduction 

2.2 Unit Objectives 

2.3 Basic Terms and Their Definitions 

2.4 Minimum Spanning Tree 

2.5 Kruskal’s Algorithm 

2.6 Prim’s Algorithm 

2.7 Practice Problems 

2.8 Summing Up 

2.9 Answers to Check Your Progress 

2.10 Questions and Answers 

2.11 References and Suggested Readings 
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_________________________________________________________________ 

2.1 INTRODUCTION 
_________________________________________________________________ 

In this unit, you will learn the concept of spanning trees, weighted graph 

and minimum spanning tree. You will also learn the algorithms to find 

minimum spanning tree: Kruskal’s and Prim’s algorithm. These 

algorithms are basically optimal graph algorithms that use the concept of 

Greedy technique to solve the optimization problems. You will learn the 

important concepts of greedy techniques and optimization problem and 

about the data structures used to accomplish the task. The time complexity 

of the algorithms will be discussed in this unit along with some 

demonstrations of the techniques.  

_______________________________________________________________ 

2.2 UNIT OBJECTIVES 
_________________________________________________________________ 

The unit is an attempt to learn the concepts of spanning trees. After going 

through this unit, you will be able to: 

 Understand the fundamental concept of minimum spanning tree. 

 Know different algorithms to find minimum spanning tree. 

 Analyze the time complexities of algorithms used to find the 

minimum spanning trees. 

 Discuss greedy approach and optimization problems. 

_________________________________________________________________ 

2.3 BASIC TERMS AND THEIR DEFINITIONS 
_________________________________________________________________ 

The problem of minimum spanning or MST was first formulated in the 

year 1926 by a Czech mathematician named Otaker Boruvka. Then in 

1930 Vojtech Jarnik had developed an algorithm for the MST problem. 

Later, it was rediscovered by Joseph Kruskal in the year 1956 and Robert 

Prim in 1957 and Edsger W. Dijkstra in 1958. A spanning tree is subgraph 

of a graph G(V,E ) and minimum spanning tree is a spanning tree 

satisfying certain properties. The MST problem is an optimization 

problem in graph whose solutions uses the greedy approach. The greedy 

approach is also used in developing algorithms for finding the shortest 

path problems.  
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To understand the MST, you need to get an introduction of the basic terms 

and terminologies associated with it. Some of the basic terms and their 

definitions related to MST are given below:  

 

.i) Tree 

A tree is basically a data structure consisting of nodes and edges 

connecting the nodes in a hierarchical manner. In graph theory it is defined 

as an undirected graph where any two nodes are connected by only one 

undirected edge not forming any cycle. A tree with 5 nodes and 4 edges is 

shown in the Figure 2.1. 

 

 

 

 

Fig. 2.1: A tree with 5 nodes and 4 edges 

ii) Subgraph 

Given a graph G(V, E) a subgraph G(V’, E’) is the subset of the graph 

where its edges E’⊆ E  and vertices V’⊆ V.  One may obtain a subgraph by 

deleting vertices and edges of a graph. A graph may have more than one 

subgraphs. 

iii) Weighted graph 

A weighted graph is graph, where a weight is associated to every 

edge connecting any pair of vertices of the graph. The graph may be directed 

or undirected graph. 

iv) Spanning Tree 

Given a graph G(V, E), spanning tree is a subgraph G(V’, E’) which 

includes all the vertices of the graph G connected by the edges without 

forming any cycle. Consider the graph shown in Figure 2.2 (a) and its 

corresponding subgraph in Figure 2.2 (b). A graph can have more than one 

spanning trees. A connected graph with n vertices can have nn-2 number of 

spanning trees. A spanning tree has n-1 edges. The graph shown in Figure 

2.2 (a) has 4 vertices, so it can have 44-2 = 16 number of spanning trees.  

Space for learners 

notes 

A C 

E B 

D 



284 | P a g e  

 

 

 

 

 

 

Fig. 2.2 (a): Undirected graph 

  

 

 

 

Fig. 2.2 (b): Spanning tree of the graph 

v) Minimum Spanning Tree 

. A minimum spanning tree (MST) is a spanning tree obtained from a 

weighted graph such that the sum of the weight W of its edges is the least. For 

a graph G(V,E), the minimum spanning tree T can be represented 

mathematically as: 

�(�) = ��	
 � �(�, �)(�,�)∈� � 

vi) Optimization Problem 

Optimization problem can be defined as a problem to get the best 

solutions from the available potential solutions. The main objective is to 

mimimize or maximizes some values. For instance to find a shortest route 

between two vertices of a graph etc. 

vii) Forest 

In graph theory, forest is collection of trees, in other words it an 

undirected acyclic graph whose components are connected trees.   
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viii) Shortest Path 

A path followed to reach some destination vertex v from the initial 

vertex u of weighted graph G, such that the sum of the weights of the edges 

along the path is minimal. For example, look at the graph shown in Figure 

2.3. 

 

 

 

 

          Fig. 2.3: A weighted graph 

Here, if you want to find a path between vertex P and Q of the graph, there 

are multiple paths available with different sum of the weights. The paths are 

P->Q with total weight 5, path P->S->Q with total weight 5, P->R->Q with 

total weight 3 and path P->R->T->Q with total weight 11. Although, all 

these paths takes you from vertex P to Q, but the  path with minimum 

weight is P->R->Q. Thus, it is taken as the shortest path between the two 

vertices. 

The problem of finding the shortest path between any two vertices of a 

graph is known as shortest path problem or single-pair shortest path 

problem. It can be defined in both directed and undirected graph. The 

problem has variations as: 

 Single-source shortest path problem. 

 Single-destination shortest path problem. 

 All-pairs shorted path problem. 

ix) Greedy Technique 

Greedy technique in an algorithmic approach where any decision is 

taken by considering the information available currently without thinking 

what would be the impact of the current decision in future. A greedy method 

may provide locally optimal solutions but man not be globally optimized. 

For example, solution to change making problem may be locally optimal 

solution only. 
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CHECK YOUR PROGRESS 

1. The problem of minimum spanning or MST was first formulated 

in the year 1926 by _____________. 

2. The MST problem is an               problem in graph whose 

solutions uses the                      approach. 

3. A tree is a data structure consisting of nodes and edges 

connecting the nodes in a                    manner 

4. A connected graph with n vertices can have                 number of 

spanning trees. 

5. State whether the following statements are true or false: 

a. A spanning tree with n vertices can have n-1 edges. 

b. The problem of finding the shortest path between all the 

vertices of a graph is known as single-pair shortest path 

problem. 

c. A forest is a union of disjoint collection of trees. 

d. A graph may have more than one subgraphs. 

e. A weighted graph can be directed or undirected. 

6. Define optimization problem.  

7. What is globally optimal solution? 

8. What is locally optimal solution? 

9. Define a spanning tree. 

10. Construct at least two spanning trees of the graph shown below: 

. 
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_________________________________________________________________ 

2.4 MINIMUM SPANNING TREE 
_________________________________________________________________ 

A minimum spanning tree (MST) is a spanning tree obtained from a 

weighted graph such that the sum of the weight W of its edges is the least. 

The cost of an MST is calculated by summing up the weights of its edges. 

There can be more than one MST of a graph. For a graph G(V,E), the 

minimum spanning tree T can be represented mathematically as: 

�(�) = ��	
 � �(�, �)(�,�)∈� � 

Here, W(T) is the total weight of cost of the MST, i.e the sum of the weights 

of all the edges in the MST and W(u, v) is the weighted associated to the 

edge connecting vertex u and v.  

The properties of a minimum spanning tree are as follows: 

1. A minimum spanning tree must have minimal cost. 

2. A minimum spanning tree should not have any cycle. 

3. All the vertices of the graph are present in an MST connected by the 

edges. 

To find an MST is an optimization problem. A greedy approach is applied to 

find an MST. Prim’s and Kruskal’s algorithms are the popular algorithms to 

find MST. However, there are other algorithms which use greedy approach 

to solve some other problems such as Graph coloring problem, Job 

scheduling problem, Knapsack problem and so on.  

Besides the use of MST in computer science, there are plenty of applications 

of minimum spanning tree in real life.  

 

 

  

 

                Fig. 2.4: Flight routes graph 
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For example, say a domestic airline company has several flights in five 

different cities of a country. Now if the company want to finds an 

optimal network connecting all the airports in those cities with the 

shortest distance travelled so that less possible routes need to be 

travelled covering all the destinations, a minimum spanning tree can be 

a solution to such a problem. The problem can be modeled into a graph 

as shown in Figure 2.4 where we have 5 vertices representing cities 

connected to each other by edges (flight routes). As you see, there are 5 

vertices in the graph, so you can have 55-2 = 125 spanning trees. In this 

manner, once the number of cities grows, the number of potential 

spanning trees will also grow. So, the time required finding the spanning 

tree whose cost is minimum or MST will rise. Thus, practically, 

applying brute force technique to find the MST will not be feasible; in 

fact we need some better algorithms to construct MSTs. 

Similar problems like designing a circuit board by connecting the 

transistors with minimum number of wires, designing networks (like 

cable network, water supply networks, computer networks etc), and so 

on can be modeled in to graph and an optimal MST can be designed to 

solve such problems. 

_______________________________________________________________ 

2.5 KRUSKAL’S ALGORITHM 
_______________________________________________________________ 

Kruskal’s algorithm is used to find an MST using greedy 

approach. For a given weighted graph G(V, E), the algorithm first sorts 

the edges in the increasing order of its weights and then adds the sorted 

edges one by one only if it does not form any cycle. The algorithm keeps 

adding the edges until all the vertices are connected and creates an 

acyclic graph. It is to be noted that the edge which forms a cycle is 

discarded.  

To keep track of a cycle, the Kruskal’s algorithm uses the disjoint-set 

data structure. The disjoint-set data structure stores the partitions of a set 

into non-overlapping subsets. The intersection of these subsets results in 

an empty set, thus they are non-overlapping subsets or in other words we 

can say that they have no elements in common. The find operation of the 

disjoint-set helps to identify whether an edge connecting two different 

trees in a forest forms any cycle. Thus, edges which connect only the 

disconnected components are considered in developing an MST.  
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 The steps of Kruskal’s algorithm are given as follows: 

Algorithm Steps 

1. Sort the edges of the graph based on its increasing order of weights. 

2. Take a smallest edge from the sorted list and check that it does not 

forms any cycle then add it into the spanning tree else discard it. 

3. Repeat Step 2 as long as all the vertices are connected. 

4. Calculate the cost of the spanning tree by summing up all the 

weights of the edges to get an MST. 

Let us try to understand the Kruskal’s algorithm with an illustration given as 

under: 

Example: Consider the undirected weighted graph shown in Figure 2.5. 

Now, apply the Kruskal’s algorithm to construct a minimum spanning tree 

of the given graph. 

 

 

 

 

 

Fig. 2.5: A weighted graph 

To construct an MST using Kruskal’s algorithm, the first step is to sort the 

edges of the graph based on its weights. The sorted edges are shown in table 

2.1. 

   Table 2.1: Sorted order of edges and their status 

Edge Cost (Weight) Status 

P – R 1 Accepted 

P – S 2 Accepted 

R – Q 2       Accepted 

S – Q 3 Discarded 

Q – T 4 Accepted 

P – Q 5 Discarded 

R – T 6 Discarded 
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Step for Constructing MST Description of the Step 

  

Take the first edge (P – R) from 

the sorted list. As it does not form 

any cycle, so take it to construct an 

MST. 

 

 

 

 

  

 

Take the next edge (P – S) from 

the sorted list. As it does not form 

any cycle, so add it into the 

spanning tree. 

 

 

 

 

  

Take the next edge (R – Q) from 

the sorted list. As it does not form 

any cycle, so add it into the 

spanning tree. 

  

Take the next edge (S – Q) from 

the sorted list. Now if you observe 

it forms a cycle so discard it.  Take 

the next edge (Q – T) from the 

sorted list, as it does not forms any 

cycle, so add it into the spanning 

tree. 
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Step for Constructing MST Description of the Step 

 

 

 

 

 

 

 

 

 

 

 

 

Take the next edge (P – Q) from 

the sorted list. Now if you observe 

it forms a cycle so discard it.  

Similarly, the next edge (R – T) is 

discarded as it forms a cycle. Now, 

all the vertices are connected and 

|V|-1 edges are obtained the 

algorithm stops here. Now, obtain 

the cost of the obtained MST. 

 

You may observe that for any given graph G (V, E), the number of edges in 

an MST is | V | - 1, i.e the number of edges will be one less than the total 

number of vertices in the MST of any given graph.  So, from the above 

illustration, at the end we obtain an MST from the resulting spanning tree. 

The cost of the MST obtained in the above illustration is 1 + 2 + 2 + 4 = 9. 

Time complexity analysis of Kruskal’s algorithm 

One may also use priority queue data structure to keep track of the cycles. 

Here, we have used disjoint-set data structure in the algorithm. Given a graph G (V, 

E), the algorithm first sorts the edges in increasing order of the weights of the 

edges.  So, time required to sort the edges can be expressed as O (n log n), where n 

= | E |. To detect a cycle, a disjoint-set data structure is used where find operation is 

applied to perform the task. So, the time required determining whether a particular 

edge is to be taken or not by checking its cycle formation can be at most 2n. 

Therefore, the time complexity of Kruskal’s algorithm can be expressed as O (| E | 

log | V |). 

 

SAQ 

1. Explain with a suitable example, how a cycle in an undirected graph 

can be detected in a disjoint-set data structure. 

2. “A graph can have several MSTs having same cost”. Justify the 

statement. 

3. “Greedy technique provides locally optimal solutions”. Justify the 

statement. 
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CHECK YOUR PROGRESS 

11. Kruskal’s algorithm is used to find a minimum spanning tree 

using _________ approach. 

12. The time complexity of Kruskal’s algorithm can be expressed as  

______________, 

13. Define disjoint-set data structure. 

14. Define a minimum spanning tree. 

15. State whether the following statements are true or false: 

a. A minimum spanning tree must have minimal cost. 

b. In Kruskal’s algorithm, the edge of the graph which forms a 

cycle is discarded.  

c. There cannot be more than one MST of a given graph. 

 

 

_______________________________________________________________ 

2.6 PRIM’S ALGORITHM 
_______________________________________________________________ 

Prim’s algorithm is another way of constructing a minimum 

spanning tree which also uses the greedy approach as in the case with 

Kruskal’s algorithm. However, the technique used in Prim’s algorithm 

constructing an MST is different as compared with the Kruskal’s 

algorithm. The difference between the Prim’s and Kruskal’s algorithm is 

given in Table 2.2.  

The Prim’s algorithm finds the spanning tree of a graph whose sum of 

the weights of the edges is minimum. The basic idea followed here is to 

start constructing an MST by initially taking any vertex of a graph. Then 

one by one the vertices of the graph are taken subsequently and added to 

the spanning tree. Before adding any new vertex to the spanning tree, it 

checks whether any cycle is formed or not. If it finds that a cycle is 

formed then it discards the edge in the same way as we have seen in the 

Kruskal’s algorithm. It means  
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Table 2.2: Differences between Kruskal’s and Prim’s algorithm 

S.No Kruskal’s Algorithm Prim’s Algorithm 

1 The algorithm initially sorts 

the edges in the increasing 

order of their weights and then 

takes the first edge to start 

constructing a spanning tree. 

The algorithm does not sort the 

edges of the graph. In fact it 

randomly takes any vertex to be 

the root and starts constructing the 

spanning tree. 

2 It traverses a vertex only once 

to get the minimum cost 

It traverses a vertex more than 

once to get the minimum cost  

3 It saves time finding the next 

edge to be considered as it 

initially sorts the edges. 

It saves memory space, as no 

sorted list of edges is required. 

4 It generates forest at any 

iteration of the algorithm and 

then connects the 

disconnected components 

(trees). 

It generates connected graph at 

any iteration of the algorithm. 

5 Preferred to construct an MST 

for a sparse graph, 

Preferred to construct an MST for 

a dense graph, 

6 Time complexity of Kruskal’s 

algorithm is O (| E | log | V |). 

Time complexity of Prim’s 

algorithm is O (| V |2), if adjacency 

list is used. 

For a given undirected weighted graph G (V, E), the Prim’s algorithm 

arbitrarily takes any vertex v to be considered as a root and starts 

constructing the MST. It then explores the vertex v to find the adjacent 

vertices connected by an edge with minimum weight. It adds the new vertex 

into the minimum spanning tree by checking the presence of any cycle.  
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If it finds any cycle, then it discards the edge.  In this way, one after 

other vertices are added subsequently with their connecting edges into 

the minimum spanning tree. The process of adding new vertices stops 

when all vertices are added to the minimum spanning tree.  

The steps in Prim’s algorithm are as follows: 

Algorithm Steps 

1. Choose a vertex v as a source vertex for constructing a spanning tree. 

2. Explore the vertex, to find the adjacent vertices. 

3. Select the adjacent vertex connected by the edge with least weight 

and add it to the spanning tree by checking if the edge connecting 

with the adjacent vertex does not forms a cycle, otherwise discard it. 

4. Consider the spanning tree as a node and explore all its adjacent 

vertices to construct the spanning tree. 

5. Repeat steps 3 and 4 till there are n - 1 edges in the spanning tree, 

where n = | V |. 

Let us try to understand the Prim’s algorithm with an illustration given 

as under: 

Example: Consider the undirected weighted graph shown in Figure 2.6. 

Now, apply the Prim’s algorithm to construct a minimum spanning tree 

of the given graph. 

 

 

 

 

 

Fig. 2.6: A weighted graph 

To construct an MST using Prim’s algorithm, the first step is to select a 

source vertex, here we have selected vertex S as the source vertex. The 

following steps to construct the MST with description are as follows: 
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Step for Constructing MST Description of the Step 

  

A vertex S has been chosen to be 

the source vertex, i.e. the vertex to 

start with constructing an MST. 

 

 

 

 

 
The vertex S is explored and two 

adjacent vertices are found: P and 

Q connected by the edges S – P 

and S – Q respectively. The weight 

of edge S – P is 2 and S – Q is 3. 

So, applying the greedy approach, 

where edge with minimum weight 

is selected, thus, edge S – P will be 

considered for adding to the 

spanning tree and it does not form 

any cycle. So, adjacent vertex P 

gets connected to the spanning 

tree. 

  

The spanning tree is considered as 

a node and all its adjacent vertices 

are explored via their connecting 

edges.  The adjacent vertices are Q 

and R. The weight of the 

connecting edges S – Q is 3, P – R 

is 1 and P – Q is 5. Now, while 

comparing, the edge P – R has the 

least weight and does not form any 

cycle, thus it will be considered 

and vertex R is added to the 

spanning tree.  
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Step for Constructing MST Description of the Step 

  

 

 

 

 

 

The spanning tree is considered as 

a node and all its adjacent vertices 

are explored via their connecting 

edges.  The adjacent vertices are  

Q and T. The weight of the 

connecting edges R – Q is 2, P – 

Q is 5, S – Q is 3 and R – T is 6. 

Comparing all these edges, the 

edge R – Q has the least weight 

and does not form any cycle, thus 

it will be considered and vertex Q 

is added to the spanning tree. 

  

 

 

 

 

 

 

  

The spanning tree is considered as 

a node and all its adjacent vertices 

are explored via their connecting 

edges.  The adjacent vertex is T. 

The weight of the connecting 

edges Q – T is 4 and R – T is 6. 

Comparing all these edges, the 

edge Q – T has the least weight 

and does not form any cycle, thus 

it will be considered and vertex T 

is added to the spanning tree. The 

algorithm stops here, as we have 

got | V | - 1 edges in the 

constructed minimum spanning 

tree. 

You may observe that in Prim’s algorithm too, for any given graph G (V, 

E), the number of edges in an MST is | V | - 1, i.e. the number of edges 

will be one less than the total number of vertices in the MST of any 

given graph.  So, from the above illustration, at the end we obtain an 

MST from the resulting spanning tree. The cost of the MST obtained in 

the above illustration is 1 + 2 + 2 + 4 = 9.  
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The cost of the MST for a given weighted graph will be same irrespective of 

the algorithm applied (Prim’s or Kruskal’s algorithm). Both the algorithms 

applies the greedy approach by considering the available edge having least 

weight which does not forms any cycle. However, their approach to 

construct an MST is different. The Prim’s algorithm constructs an MST by 

growing a single tree whereas Kruskal’s algorithm constructs an MST by 

growing forest of trees. The basic differences between Kruskal’s and Prim’s 

algorithms are already shown in Table 2.2. 

Time complexity analysis of Prim’s algorithm 

The Prim’s algorithm can be applied using a priority queue data structure. 

Given a graph G (V, E), the algorithm at first arbitrarily selects a source 

vertex v.  It grows the spanning tree to construct an MST by adding vertex 

to the tree one by one. Time required to perform the insertion of vertices not 

yet included in the MST (or not visited vertices) in the priority queue can be 

expressed as O (| V | log | V |). Other insertion and deletion operations in 

Prim’s algorithm will take O (| E | log | E |) time. Therefore, the time 

complexity of Prim’s algorithm can be expressed as O (| V | log | V | + | E | 

log | E |) = O (| E | log | V |).  

Thus, the time complexity to construct an MST is same using Prim’s 

algorithm and the  Kruskal’s algorithm. You may observe that the value of | 

E | = O (| V |2) in case of dense graph and | E | = O (| V |) in case of sparse 

graph, so we can consider O ( log | V | ) and O (log |E|) as same. Therefore, 

the total time complexity of Prim’s and Kruskal’s algorithm to construct an 

MST can be expressed as O (| E | log | V |) or O (| E | log | E |). 

STOP TO CONSIDER 

Prim’s and Kruskal’s algorithm are the two algorithms to find a 

minimum spanning tree for a given graph. Both the can be applied into a 

weighted graph which is undirected. However, Prim’s algorithm is 

preferred if the graph is graph and Kruskal’s algorithm is preferred 

while constructing an MST for a dense graph. 
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CHECK YOUR PROGRESS 

16. Prim’s algorithm is used to find a minimum spanning tree using 

________ approach. 

17. The time complexity of Prim’s algorithm can be expressed as  

______________. 

18. Define a priority queue. 

19. State whether the following statements are true or false: 

a. An MST may not have minimum cost always. 

b. In Prim’s algorithm, the edge of the graph which forms a 

cycle is discarded.  

c. A Prim’s algorithm may produce more than one MST of a 

given graph with different costs. 

d. Like Kruskal’s, Prim’s algorithm also sorts the edges. 

 

 

SAQ 

 

1. Can you find an MST in a weighted graph which is directed? Justify 

your answer. 

2. State the differences between Prim’s and Kruskal’s algorithm. 

3. Analyse the time complexity of Prim’s algorithm if Fibonacci heap 

is used. 

 

_______________________________________________________________ 

2.7 PRACTICE PROBLEMS 
_______________________________________________________________ 

Exercise 1. Construct a minimum spanning tree for the given weighted graph 

(Fig, 2.6) using Kruskal’s Algorithm. 
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Fig. 2.6: A weighted graph 

Solution:  

Sorted list of edges: 

Edge Weight 

A – C 11 

B – E 11 

A – E  12 

A – B 13 

B – D 15 

D – E 15 

E – G 16 

A – D 19 

A – F 20 

B – F 21 

D – G 22 

C – D 25 

 

 

 

 

 Step 1 

 

        Step 2 
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Step 3      Step 4 

 

 

 

 

 

 

Step 5 

 

 

 

 

 

 

 

Step 6 

Cost of the MST is 11 + 11 + 12 + 15 + 16 + 20 = 85 

Space for learners 

notes 

11 

C 

A 

11 
E 

B 

12 

11 

C 

A 

11 
E B 

12 

15 

D 

11 

C 

A 

11 
E B 

12 

15 

D 

16 

G 

11 

C 

A 

11 
E B 

12 

15 

D 

16 

G 

20 

F 



301 | P a g e  

 

Exercise 1. Construct a minimum spanning tree for the given weighted graph (Fig, 

2.7) using Prim’s Algorithm 

  

 

 

 

 

 

 

 

Fig. 2.7: A weighted graph 

Solution: 

  

  

 

Step 1      Step 2   

 

 

 

 

 

Step 3     Step 4  
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Step 5 

 

 

 

 

Step 6 

 

 

 

 

 

 

Step 7  

 

 

 

 

 

 

 

Step 8 
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The cost of the minimum spanning tree is 12 + 12 +13 + 13 + 16 + 19 +.23 

= 108. 

______________________________________________________________ 

2.8 SUMMING UP 
___________________________________________________________________ 

 A spanning tree is a subgraph of a graph G(V,E ) and minimum spanning 

tree is a spanning tree satisfying certain properties.  

 A graph can have more than one spanning trees. A connected graph with 

n vertices can have nn-2 number of spanning trees. A spanning tree has n-

1 edges. 

 The properties of a minimum spanning tree are as follows: 

1. A minimum spanning tree must have minimal cost. 

2. A minimum spanning tree should not have any cycle. 

3. All the vertices of the graph are present in an MST connected by the 

edges. 

 A minimum spanning tree (MST) is a spanning tree obtained from a 

weighted graph such that the sum of the weight W of its edges is the 

least. 

 The MST problem is an optimization problem in graph whose solutions 

uses the greedy approach. 

 Kruskal’s algorithm is used to find an MST using greedy approach. For 

a given weighted graph G(V, E), the algorithm first sorts the edges in the 

increasing order of its weights and then construct an MST by adding the 

sorted edges one by one only if it does not form any cycle. 

 For a given graph G (V, E), the number of edges in an MST is | V | - 1, 

i.e. the number of edges will be one less than the total number of 

vertices in the MST of any given graph. 

 For a given undirected weighted graph G (V, E), the Prim’s algorithm 

arbitrarily takes any vertex v to be considered as a root and starts 

constructing the MST. 
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 The Prim’s algorithm constructs an MST by growing a single 

tree whereas Kruskal’s algorithm constructs an MST by growing forest 

of trees. 

 The cost of the MST for a given weighted graph will be same 

irrespective of whether you apply Prim’s or Kruskal’s algorithm. Both 

the algorithms applies the greedy approach by considering the available 

edge having least weight which does not forms any cycle. 

Subgraph: A subgraph G(V’, E’) for a given graph G(V, E) is the subset 

of the graph where its edges E’⊆ E  and vertices V’⊆ V.  One may 

obtain a subgraph by deleting vertices and edges of a graph. 

Spanning Tree: A spanning tree is a subgraph G(V’, E’) for a given 

graph G(V, E) that contains all the vertices of the graph connected by the 

edges without forming any cycle. 

Minimum Spanning Tree: A minimum spanning tree (MST) is a 

spanning tree obtained from a weighted graph such that the sum of the 

weight W of its edges minimum. For a graph G(V,E), the minimum 

spanning tree T can be represented mathematically as: 

�(�) = ��	
 � �(�, �)(�,�)∈� � 

Optimization Problem: An optimization problem is one in which the 

goal is to find the optimal answer from a set of viable solutions. The 

main goal is to minimize or maximize certain values. For example, to 

identify the shortest path between two vertices of a graph, etc. 

Forest: A forest is collection of trees, in other words it an undirected 

acyclic graph whose components are connected trees.   
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_____________________________________________________________ 

2.9 ANSWERS TO CHECK YOUR PROGRESS 
_____________________________________________________________ 

 

1. Otaker Boruvka 

2. optimization, greedy 

3. hierarchical 

4. nn-2  

5.  

a. True. 

b. False 

c. True 

d. True  

e. True 

6. An optimization problem is one in which the goal is to find the 

optimal answer from a set of viable solutions. The main goal is to 

minimize or maximize certain values.  

7. A global optimal solution of an optimization problem is a solution 

that is most favorable or optimal among all the possible solutions. 

8. A local optimal solution of an optimization problem is a solution that 

is most favorable or optimal in the vicinity but possibly not favorable 

globally. 

9. A spanning tree is a subgraph G(V’, E’) for a given graph G(V, E) 

that contains all the vertices of the graph connected by the edges 

without forming any cycle. 

10. The two spanning trees of the given graph are:  
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(a) Spanning Tree 1    (b) Spanning Tree 2 

11. greedy 

12. O (| E | log | E |) 

13. A disjoint-set data structure is a data structure that store 

components that have nothing in common, in other words a 

collection of non-overlapping sets whose intersection results in an 

empty set.   

14. A minimum spanning tree (MST) is a spanning tree obtained 

from a weighted graph such whose sum of the weight of its edges 

is minimum. 

15. : 

a. True. 

b. True  

c. False. 

16. Greedy 

17. O (| E | log | V |) 

18. A priority queue is a special type of queue data structure where 

every element has a priority associated with it. The element with 

high priority is given first preference followed by the element 

with lower priority. 

19.  

a. False.  

b. True. 
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c. False  

d. False  

__________________________________________________________________ 

2.10 POSSIBLE QUESTIONS 

__________________________________________________________________ 

Short Answer Type Questions 

1. Define a tree. 

2. What is a spanning tree? 

3. Define minimum spanning tree. 

4. What is an MST problem? 

5. How do you find the cost of a spanning tree? 

6. How many spanning tree can a graph have? 

7. How many minimum spanning trees can a graph have? 

8. What do you mean optimization problem? 

9. Give some examples of optimization problem in real life. 

10. Define a forest. 

11. Define disjoint-set data structure. 

12. What is a priority queue? 

13. What is the time complexity of Kruskal’s algorithm? 

14. What is the time complexity of Prim’s algorithm? 

15. Define local optimality with a suitable example. 

16. Define global optimality with a suitable example. 

17. What do you mean by feasible solution? 

18. What is the characteristic of greedy technique? 

19. Define single-source shortest path problem. 

Space for learners 

notes 



308 | P a g e  

 

Long Answer Type Questions 

1. Explain the minimum spanning tree along with its properties 

with suitable example.  

2. Consider the graphs shown in Figure 2.8 (a) (b) and do the 

following: 

a. Find the MST using Prim’s algorithm. 

b. Find the MST using Kruskal’s algorithm. 

 

 

 

 

 

 

Fig. 2.8 (a): A weighted graph 

 

  

 

 

 

Fig. 2.8 (b): A weighted graph 

3. Differentiate between Prim’s and Kruskal’s algorithm. 

4. Explain Prim’s algorithm to construct a minimum spanning tree.  

5. Perform the time complexity analysis of Prim’s algorithm. 

6. Explain Prim’s algorithm to construct a minimum spanning tree. 

7. Perform the time complexity analysis of Kruskal’s algorithm. 

8. Give some instances of real-life problems where it can be 

modeled into an MST problem. 

9. Explain greedy technique with a suitable example. 
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10. Draw a complete graph with vertices and find all its spanning trees. 

11. Does Kruskal’s algorithm always yield an optimal MST of a given 

undirected weighted graph? Explain. 

12. Does Prim’s algorithm always yield an optimal MST of a given 

undirected weighted graph? Explain. 

13. Do greedy algorithms always give an optimal solution? Justify your 

answer. 

14. Does the Prim’s algorithm can construct an MST of a graph having 

negative weights? Explain. 

__________________________________________________________________ 
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UNIT 3  SINGLE SOURCE SHORTEST PATH 

PROBLEM 

Unit Structure: 

 

3.1 Introduction 

3.2 Unit Objectives 

3.3 Basic Terms and Their Definitions 

3.4 Single Source Shortest Path 

3.5 Dijkstra’s Algorithm 

3.6 Practice Problems 

3.7 Summing Up 

3.8 Answers To Check Your Progress 

3.9 Questions And Answers 

3.10 Suggested Readings 
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_________________________________________________________________ 

3.1 INTRODUCTION 
_________________________________________________________________ 

In this unit, you will learn the concept of directed acyclic graph, and 

single-source shortest path problem on a weighted graph. You will learn 

the concept of Dijkstra’s algorithm and how the single-source shortest 

path problem can be solved using the Dijkstra’s algorithm.  The time 

complexity of the algorithm will be discussed in this unit along with few 

demonstrations of the technique. You will also learn whether Breadth-first 

search and Depth-first search algorithms can solve the problem of finding 

the single-source shortest path on a directed weighted graph. 

_________________________________________________________________ 

3.2 UNIT OBJECTIVES 
_________________________________________________________________ 

After going through this unit, you will be able to: 

 Know the directed acyclic graph. 

 Understand the fundamental concept of single source shortest path 

problem. 

 Define basic terms and terminologies associated with single-source 

shortest path problem. 

 Describe Dijkstra’s algorithm. 

 Analyze the time complexities of Dijkstra’s algorithm. 

_________________________________________________________________ 

3.3 BASIC TERMS AND THEIR DEFINITIONS 
_________________________________________________________________ 

Single source shortest path problem is a problem which is applicable in 

real life. For instance, one may always need to find the shortest distance to 

reach his destination. Suppose a traveler wants to visit a place in a city. He 

has got a road map, now in order to reach the place from where he is now, 

he need to plan a road map which will help him to reach his destination by 

determining the shortest route or the fastest way to reach place B from 

place A. The same problem can be modeled as finding a shortest path from 

a source vertex to any other vertex of a graph. 

Space for learners 

notes 



312 | P a g e  

 

To understand it further, let us first look at some of the basic terms and 

terminologies associated to single source shortest path problem in the 

following subsections. 

i) Graph 

A graph is a non-linear data structure that consists of finite set of 

nodes V and a finite set of edges E that connects the vertices. 

Mathematically, a graph can be represented as G (V, E). The nodes are also 

called as vertices and edges as arcs.  

ii) Directed Weighted Graph 

A directed weighted graph as shown in Figure 3.1 is a set of vertices 

and a set of weighted directed links between the vertices, i.e. the vertices of 

the graph are connected by the edges and where all the edges has weights 

associated to it and are directed from one vertex to another.  

 

 

 

 

 

Fig. 3.1: A sample directed weighted graph 

iii). Directed Acyclic Graph (DAG) 

A directed graph, which does not consist of any cycle, is known as 

directed acyclic graph (DAG). The graph shown in Figure 3.2 is a sample 

DAG. 

 

  

 

 

Fig. 3.2: A sample directed acyclic graph 
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iv). Path 

A path can be defined as the sequence of vertices that are followed in 

order to reach some destination vertex v from the initial vertex u where, we do 

not repeat a vertex and nor we repeat an edge while we traverse the graph.   

v). Shortest Path 

 A path between any two vertices in a graph such that the sum of 

the weights of its constituent edges is minimum. 

vi). Single-source Shortest Path  

The shortest path between a source vertex of a graph to all other 

vertices of the graph. 

____________________________________________________________________ 

3.4 SINGLE SOURCE SHORTEST PATH  
____________________________________________________________________ 

Single source shortest path problem state the problem of finding a path from 

the source vertex u to a target vertex v of a weighted graph (directed or 

undirected) such that the sum of the weights of the edge is minimum over the 

path. Formally, we can define it as: For a given weighted graph G (V, E, W), 

where V is the set of vertices, E is the set of edges and W is the set of real-

valued weights. We need to find the shortest path from a given source vertex u 

∈ V to every vertex v ∈ V where the shortest path is calculated by summing up 

the weights associated with edges along the path. 

There are some variants of the shortest path problem: 

1. Single pair shortest path problem: Given a weighted Graph G (V, E, 

W), we need to find the shortest path from a given source vertex u ∈ V to a 

target vertex v ∈ V. 

2. Single destination shortest path problem: Given a weighted Graph 

G (V, E, W), we need to find the shortest path to a given target vertex v ∈ V 

from every source vertex u ∈ V. 

3. All pairs shortest paths problem: Given a weighted Graph G (V, E, 

W), we need to find the shortest paths for every pair of vertices u ∈ V to v ∈ V. 
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The shortest path problem can be solved using the following different 

algorithms: 

 Breadth-first Search Algorithm 

 Dijkstra’s Algorithm 

 Bellman-Ford Algorithm and 

 Floyd-Warshall Algorithm 

In the following section, we will discuss about an algorithm which uses the 

greedy approach to solve the problem. The algorithm is known as Dijkstra’s 

algorithm. It was first proposed by Edgser Wybe Dijkstra. He was a Dutch 

computer Scientist and his contribution is well known in the field of 

computer science. 

CHECK YOUR PROGRESS 

1. A                         graph is a set of vertices and a set of weighted 

directed links between the vertices. 

2. A directed graph, which does not consist of any cycle, is known 

as                                        . 

3. The shortest path between a source vertex of a graph to all other 

vertices of the graph is known as ______________. 

4. Dijkstra’s algorithm was first proposed by                              . 

5. Define all pairs shortest paths problem. 

6. Define single pair shortest path problem. 

7. What is a shortest path problem? 

8. State whether the following statements are true or false: 

a. A shortest path is a path between any two vertices in a graph 

such that the sum of the weights of its constituent edges is 

minimum. 

b. A DAG can consist of a cycle. 

c. A graph is a linear data structure. 
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_______________________________________________________________ 

3.5 DIJKSTRA’S ALGORITHM  
_______________________________________________________________ 

Dijkstra’s algorithm is a graph search algorithm used to solve the 

single source shortest path problem. The algorithm is similar to Prim’s 

algorithm however, there are basic differences between Dijkstra’s and 

Prim’s algorithm. In Prim’s algorithm, the main objective is to find a 

minimum spanning tree where we find a subgraph of a given graph 

where the sum of the weights of the edges of the subgraph is minimum. 

Whereas, in Dijkstra’s algorithm we find paths from a source vertex to 

every other vertex of the graph, where the path length from the source 

vertex to any other vertex is minimum. So, you can say that Dijkstra’s 

algorithm constructs a shortest path tree and a shortest path tree may not 

be necessarily a minimum spanning tree. The cost of a shortest path tree 

may be much larger than the cost of an MST. 

The Dijkstra’s algorithm also applies greedy approach, as at every step 

of the algorithm, it tries finding the shortest path between the source and 

the target vertices of a graph. As said, the main goal of the algorithm is 

to construct a shortest path tree where shortest paths from a source 

vertex of a graph to the remaining vertices are determined. The 

algorithm works with both directed and undirected graph, however the 

weights associated to the edges have to be non-negative. As Dijkstra’s 

algorithm cannot work with graphs (directed and undirected) having 

edges of negative weights. To solve the shortest path problem with 

graphs (directed and undirected) having negative edge weights, there are 

other algorithms namely Bellman-Ford algorithm and Floyd-Warshall 

algorithm. Breadth-first search algorithm can also solve the shortest path 

problem but it assumes the edge weight to be 1. 

Given a graph G(V, E, W), the general steps of Dijkstra’s algorithm to 

solve the single source shortest path problem of the graph are as follows: 

Step 1: Form a distance table T and allocate infinite distance values to 

every vertex from a source vertex s except assigning the distance value 

of 0 to s itself. 

Step 2: Mark the vertex s as visited and all the remaining vertices as 

unvisited. 
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Step 3: Calculate the distance from the current vertex to all its adjacent 

vertices which are unvisited. If the calculated distance is found to be 

minimum than the previously stored distance than update it in the distance 

table T. i.e. follow the following rule to update the distance: 

 If (d(u) + c(u, v) < d(v)) Then 

      d(v) = d(u) + c(u, v)  

Where, u and v are the vertices, d(u) is the distance of vertex u from the 

source vertex, d(v) is the is the distance of vertex v from the source vertex 

and c(u,v) is the distance between vertex u and v. 

Step 4: Compare the updated distances and select the vertex v with least 

distance and mark it as visited. 

Step 5: Take the vertex v and repeat the steps 3 and 4 until all the vertices 

are marked as visited. 

Example: Let us try to understand with an example. Consider an undirected 

graph shown in Figure 3.3 having four vertices A, B, C and D connected by 

the edges bearing positive weights. We need to find the shortest path from a 

source vertex to all other vertices of the graph. The illustration of the 

Dijkstra’s algorithm is shown below: 

 

 

 

 

 

               Fig. 3.3: An undirected weighted graph 

Iteration 1: Let us take vertex A as source vertex and construct a distance 

table by assigning infinite distance values to every vertex from the source 

vertex A except assigning the distance value of 0 to A itself. The distance 

table and labeling of distance of every vertex from source vertex A in the 

graph is shown as follows: 
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 A B C D 

A 0 ∞ ∞ ∞ 

     

     

     

 

 

 

 

 

 

Iteration 2: Now, calculate the distances of the directly connected 

vertices from A which are unvisited. As the calculated distance of the 

adjacent vertices B, C and D are found to be lesser than the previously 

stored distance i.e. ∞ , we update it in the distance table. The distances 

from A to B, A to C and A to D are updated as 7, 5 and 4 respectively. 

 A B C D 

A 0 ∞ ∞ ∞ 

  7 5 4 
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Iteration 3: Based on the current known distances, vertex D is selected as 

the next vertex to be explored as it is found to have least distance from A. It 

is marked as visited. After exploring vertex D we find, the path lengths: A – 

D – C is 4 + 3 = 7, A – D – B is 4 + 10 = 14. The newly calculated distances 

are found to be greater than previously stored distance. So, no updating of 

distances is done. 

 A B C D 

A 0 ∞ ∞ ∞ 

D  7 5 4 

  7 5  

     

Iteration 4: Now the vertex C is selected as the next vertex to be explored 

as it is found to be nearer to A. It is marked as visited. After exploring 

vertex C we find, the path lengths: A – C – B is 5 + 1 = 6 and D has been 

already visited so it is ignored. 

The newly calculated distance of vertex B from A following the path A – C 

– B is found to be lesser than previously stored distance i.e. 7. So, we update 

the distance of vertex B from A as 6. 

 A B C D 

A 0 ∞ ∞ ∞ 

D  7 5 4 

C  7 5  

  6   

 

 

 

 

 

 

 

Iteration 5: Now the vertex B is selected as the next vertex to be explored.  
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It is marked as visited. After exploring vertex B we find, the adjacent 

vertices of B are already visited, so all are ignored. So, distances are not 

updated. 

 

 

 

 

With this, we observe that the all the vertices are visited and thus, we 

have got the shortest paths from the source vertex A to all other vertices 

of the graph. This solves the shortest path problem of the graph using 

the Dijkstra’s algorithm and the shortest path tree for the given graph is 

shown in Figure 3.4. 

 

 

 

 

 

Fig. 3.4: A shortest path tree of the graph shown in Fig. 3.3 

The shortest distances and shortest paths from the source vertex A to 

every other vertices of the given graph are shown below: 

Source Vertex Destination 

Vertex 

Shortest 

Distance 

Shortest Path 

A 

B 6 A – C – B 

C 5 A – C 

D 4 A – D 

 

Time Complexity Analysis of Dijkstra’s Algorithm 

The Dijkstra’s algorithm can be implemented using an array or linked 

list data structure. In that case the time complexity of the algorithm can 

be represented as O ( | V |2 + | E | ) = O( | V |2).  

Space for learners 

notes 

 A B C D 

A 0 ∞ ∞ ∞ 

D  7 5 4 

C  7 5  

B  6   
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In case of sparse graph, then it becomes efficient to represent the it using 

adjacency list and use priority queue or binary heap, in that case the running 

time of Dijkstra’s algorithm becomes O (( | V | + | E | ) log V = O( | E |logV ). 

 

 

CHECK YOUR PROGRESS 

9. Dijkstra’s algorithm is a graph search algorithm used to solve the 

______________   problem. 

10. Sate at least one difference between Dijkstra’s and Prim’s 

algorithms. 

11. State whether the following statements are true or false: 

a. Dijkstra’s algorithm cannot work with graphs having negative 

weight edges. 

b. Bellman-Ford algorithm can solve the shortest path problem with 

graphs (directed and undirected) having edges of negative 

weights. 

c. Prim’s and Dijkstra’s algorithm both applies greedy approach. 

 

 

 

  Space for 

learners notes 

STOP TO CONSIDER 

The Dijkstra’s algorithm uses a greedy approach, in which it tries to 

discover the shortest path between the source and target vertices of a graph 

at each step. The algorithm's main purpose is to construct a shortest path 

tree in which shortest pathways from a graph's source vertex to the 

remaining vertices are determined. The approach can be used with both 

directed and undirected graphs, but the edge weights must be non-negative. 
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SAQ 

 

1. Why Dijkstra’s algorithm cannot work on a graph having negative 

weight edges? Explain 

2. How Dijkstra’s algorithm is different from Breadth-first search 

algorithm in solving the single source shortest path problem? 

3. Analyse the time complexity of Dijkstra’s algorithm. 

______________________________________________________________ 

3.6 PRACTICE PROBLEMS 
___________________________________________________________________ 

Exercise 1. Consider the graph shown in Figure 3.5 and construct a shortest path 

tree using A as the source vertex using Dijkstra’s algorithm. 

 

 

 

 

 

 

Fig. 3.5: An undirected weighted graph 

Solution:  

 A B C D E F G 

A 0 ∞ ∞ ∞ ∞ ∞ ∞ 

B  5 11 9  ∞ 7 ∞ 

F   11 9 15 7 ∞ 

D   11 9 15  ∞ 

C   10  14  24 

E     14  24 

G       20 
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Exercise 2. Find the shortest paths from the vertex A to all other vertices of the 

graph as shown in Fig. 3.6 using Dijkstra’s algorithm. 

 

 

 

 

 

 

 

 

 

Fig. 3.6: A directed weighted graph 

Solution:  

 A B C D E F 

A 0 ∞ ∞ ∞ ∞ ∞ 

C  ∞ 3 10 ∞ ∞ 

D  ∞  8 ∞ ∞ 

E  ∞   12 ∞ 

B  23    ∞ 

F      31 
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__________________________________________________________ 

3.7 SUMMING UP 
_______________________________________________________________ 

 A directed graph, which does not consist of any cycle, is known 

as directed acyclic graph (DAG). 

 Single source shortest path problem state the problem of finding 

a path from the source vertex u to a target vertex v of a weighted graph 

(directed or undirected) such that the sum of the weights of the edge is 

minimum over the path. 

 Dijkstra’s algorithm is a graph search algorithm used to solve the 

single source shortest path problem. 

 Dijkstra’s algorithm cannot work with graphs (directed and 

undirected) having edges of negative weights.  

 To solve the shortest path problem with graphs (directed and 

undirected) having negative edge weights, there are other algorithms 

namely Bellman-Ford algorithm and Floyd-Warshall algorithm. 
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Path: A path can be defined as the sequence of vertices that are followed in 

order to reach some destination vertex v from the initial vertex u where, we 

do not repeat a vertex and nor we repeat an edge while we traverse the 

graph.   

Shortest Path: A path between any two vertices in a graph such that the 

sum of the weights of its constituent edges is minimum. 

Single-source Shortest Path: The shortest path between a source vertex of 

a graph to all other vertices of the graph. 

All pairs shortest paths problem: Given a weighted Graph G (V, E, W), 

we need to find the shortest paths for every pair of vertices u ∈ V to v ∈ V. 

_____________________________________________________________ 

3.8 ANSWERS TO CHECK YOUR PROGRESS 
______________________________________________________________ 

1. directed weighted. 

2. directed acyclic graph. 

3. single-source shortest path. 

4. Edgser Wybe Dijkstra. 

5. The problem can be defined as given a weighted Graph G (V, E, W), we 

need to find the shortest paths for every pair of vertices u ∈ V to v ∈ V. 

6. The problem can be defined as given a weighted Graph G (V, E, W), we 

need to find the shortest path from a given source vertex u ∈ V to a 

target vertex v ∈ V. 

7. The problem to find a path between any two vertices in a graph such that 

the sum of the weights of its constituent edges is minimum.  

8.   a. True. 

  b. False 

Space for learners 

notes 
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12. single source shortest path . 

13. Dijkstra’s algorithm finds a shortest path tree of a graph whereas 

Prim’s algorithm constructs a minimum spanning tree of a graph. 

14.  

a. True. 

b. True. 

c. True. 

_______________________________________________________________ 

3.9 POSSIBLE QUESTIONS 

_______________________________________________________________ 

Short Answer Type Questions 

1. Define a path. 

2. What is single source shortest path problem? 

3. What is Dijkstra’s algorithm? 

4. What data structure is used to implement Dijkstra’s algorithm? 

5. What is the time complexity of Dijkstra’s algorithm? 

6. In what kind of graph we cannot apply Dijkstra’s algorithm? 

7. What is all pairs source shortest path problem? 

8. State two applications of Dijkstra’s algorithm. 

Long Answer Type Questions 

1. Explain the shortest path problem and its variants. 

2. Explain the Dijkstra’s algorithm. 

3. Differentiate between Dijkstra’s algorithm and Prim’s 

Algorithm. 

4. “Dijkstra’s algorithm applies the Greedy approach”. Explain the 

statement with a suitable example. 

5. Perform the time complexity analysis of Dijkstra’s algorithm. 

6. Consider the graph shown in Figure 3.7 to construct a shortest 

path tree using Dijkstra’s algorithm. 

 

Space for learners 

notes 
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Fig. 3.7: A directed weighted graph 

7. Find the shortest paths from vertex A to all other vertices of the 

graph shown in Figure 3.8 using Dijkstra’s algorithm. 

 

 

 

 

 

 

   Fig. 3.8: An undirected weighted graph 

8. Explain with an appropriate example, where Dijkstra’s algorithm 

fails. 

___________________________________________________________ 

3.10 REFERENCES AND SUGGESTED READINGS 

_______________________________________________________________ 

 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and 

Clifford Stein, Introduction to Algorithms, 3rd Edition, MIT Press. 

 Sridhar S., Design and Analysis of Algorithms, Oxford University 

Press, 2014. 
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UNIT 1: THEORY OF NP COMPLETENESS I 
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Space for learners: 1.1   INTRODUCTION 

In computer science Theory of Formal Languages has a number of 

applications. In early 1950’s Linguists were trying hard to bring 

some mathematical way to describe formal languages. In 1956 

Noam Chomsky an American linguist, philosopher, cognitive 

scientist, historian, social critic, and political activist, who is 

Sometimes called "The Father Of Modern Linguistics", gave a 

mathematical model of grammar which comes out useful for 

computer languages. 

1.2   UNIT OBJECTIVES 

To ascertain the amount of computational resources required to 

solve important computational problems, and to classify problems 

according to their difficulty is the main purpose of complexity 

theory. The most often discussed resource is computational time. 

There are certain problems that cannot be solved without expending 

large amounts of resources. It is much more difficult to prove that 

any interesting problems are hard to solve then to prove that 

inherently difficult problems exist. The mathematical arguments of 

intractability rely on the notions of Completeness and reducibility. 

Before understanding reducibility and completeness, one must know 

the notion of a complexity class. But before going to complexity 

first we have to know about Formal Languages. 

1.3 FORMAL LANGUAGE 

According to Chomsky’s classification of Languages, languages can 

be divided into four (4) types. They are namely Unrestricted 

Language, Context-sensitive Language, Context-free Language and 

Regular Language. 

 

Type 0 : Type 0 grammar is a phase structure grammar without any 

restriction. All grammars are Type 0 grammar.  

For Type 0 grammar, the production rules are in the format  

{(��)(��)(��)} → {String of Ts or NTs or both} 

Lc : Left context; Rc : Right context; NT: Non-terminal. 

 

Type 1: Type 1 grammar is called context-sensitive grammar. 
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Space for learners: For Type 1 grammar, all production rules are in the format of 

context sensitive if all rules in P are of the form�� → ��, 

where A  NT (i.e. A is a single NT), α, β  (NT  Σ)*  

(i.e. α and β are strings of NTs and Ts) and γ e (NT  Σ)+ (i.e. γ is a 

non-empty string of NTs and Ts).  

 

Type 2: Type 2 grammar is called context-free grammar. In the left-

hand side of the production, there will no left or right context. 

For Type 2 grammar, all the production rules are in the format 

of(��) →  �, where |NT| = 1 and �  (��  �) ∗, NT is non-

terminal and T is terminal. 

 

Type 3: Type 3 grammar is called regular grammar. Here all the 

productions will be in the following forms: � →  �  or � →  ��, 

where A, B  NT and α  T. 

 

The Chomsky classification is called the Chomsky Hierarchy. This 

can be represented diagrammatically 

From this diagrammatical representation, we can say that all regular 

grammars are context-free grammar. All context-free grammars are 

context-sensitive grammar. All context-sensitive grammar are 

unrestricted grammar. 

 

STOP TO CONSIDER 

NTs i.e Non-Terminals are those which can be replaced either by 

Non-Terminals or by terminals or combination of both. And denoted 

by A, B , C......,Z i.e. English Alphabets in uppercase.  

T  i.e Terminal is that which cannot be replaced and denoted by a, b, 

c, .......,z and 0,1 i.e e English Alphabets in lowercase and binary 

digits. 
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Space for learners:  

 

 

 

 

 

 

 

 

Fig 1.1: Chomsky’s Classification of Languages 

Grammar Languages Machine Format 

Type 0 Unrestricted Turing Machine(TM) 

Type 1 
Context-

sensitive 

Linear Bound 

Automata (LBA) 

Type 2 Context-free 
Push Down 

Automata(PDA) 

 

Type 3 

 

Regular Finite Automata(FA) 

     Fig 1.2 : Languages and Machine Format of different Grammar 

Using Type 3 Grammar, Regular language can be formed which are 

precisely accepted by Finite Automata. Again from Type 2 

Grammar, Context Free languages can be formed which are 

accepted by Push down Automata(PDA) and from Type 1 Grammar, 

Context-sensitive languages can be formed which are accepted by 

Linear Bound Automata(LBA) and lastly from Type 0 Grammar, 

unrestricted languages can be formed which are accepted by Turing 

Machine(TM). From the figure 1.1 we can say that all languages are 

of unrestricted type. 

Type 0 or Unrestricted Language 

Type 1 or Context-sensitive  

Type 2 or Context-free 

Type 3 or 

Regular 
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Space for learners:  

 

 

 

 

 

 

 

1.4 TURING MACHINE 

In early stage of 1930’s mathematicians were trying to give different 

effective methods of computation. Different models using the 

concept of Turing machines, combinatory logic ,JL-calculus, post-

systems and p-recursive functions, were given by  a mathematician 

,Alan Turing in 1936, , S.C. Kleene in 1935, Alanzo Church in 

1933, Schonfinkel 

 

in 1965. From all these different concepts, Turing’s Concept is 

accepted as model of computation or algorithm. According to 

Church-Turing’s thesis any algorithm that a human or computer can 

carried out can be solved by a Turing Machine. Now it has been 

universally accepted that an ideal theoretical model of computer can 

be provided by Turing machine. Turing machine accepted type 0 or 

unrestricted languages. Turing machine can be used to determine 

decidability of certain languages, measuring time and space 

complexity of problems. 

1.5 COMPLEXITY OF ALGORITHM 

How many steps are required by the algorithm to solve a given 

problem is algorithm complexity. The function of input data size is 

evaluated the order of count of operations executed by an algorithm. 

The order of count of operation is always considered to assess the 

complexity instead of counting the exact steps. O(f) notation 

represents the complexity of an algorithm and is termed as an 

Asymptotic notation or "Big O" notation. The order in which 

resources such as CPU time, memory, etc. are consumed by the 

algorithm ids determined by the complexity of the asymptotic 

STOP TO CONSIDER 

Is there any difference between Formal language and the 

languages we know or we speak? 

The answer is NO and YES. Formal Languages works as the 

languages we used to communicate. Our languages have certain 

sets of rules which are called grammar, and it is same in the case 

of Formal language. Formal Languages are used in Computer, 
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Space for learners: computation O(f). Constant, logarithmic, linear, n ∗ log(n), 

quadratic, cubic, exponential, etc etc are the form of complexity. 

1.6 COMPLEXITY CLASSES 

A complexity class is defined by 3 ways. They are: (1) model of 

computation,     (2) resource (or collection of resources), and (3) 

function known as the complexity bound for each resource. The 

complexity classes can be defined by using models into two main 

categories: (a) machine based models, and (b) circuit-based models. 

Random-access machines (RAMs) and Turing machines (TMs) are 

the two principal families of machine models. The complexity 

problems that we are trying to understand are because of the model 

of nondeterministic Turing machines. Nondeterministic machines do 

model real computational problems instead of model physical 

computation devices.  

A problem is decidable; it means that the problem is 

computationally solvable in principle. It may not be solvable in 

practical, means it may require enormous amount of memory and 

computation time. In this chapter we discuss the computational 

complexity of a problem; The proofs of decidability/undecidability 

are quite rigorous, as they depend solely on the definition of a 

rigorous mathematical techniques and Turing machine. The proof 

and the discussion in complexity theory based on the assumption 

that P ≠ NP. The computer scientists and mathematicians strongly 

believe that P ≠NP but this is still debatable.  The class of problems 

that 

 

Can be solved by a deterministic algorithm in polynomial time is 

represented by P  

(i.e. by a Turing machine) and for the class of problems that can be 

solved by a nondeterministic algorithm in polynomial time  is 

represented by  NP (that is, by a nondeterministic TM). Here P 

means for polynomial and NP for nondeterministic polynomial. 

Another important class is the class of NP-complete problems which 

is a subclass of NP. 

 

 

1.6.1 The Class P and NP 
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Space for learners: Time Complexity: A Turing machine M is said to be of time 

complexity T(n) if the following holds: Given an input ‘w’ of length 

n,  M halts after making at most T(n) moves. 

 

Class P:  A language L is in class P if there exists some polynomial 

T(n) such that L = T(M) for some deterministic TM M of time 

complexity T(n). 

 

Class NP: A language L is in class NP if there is a nondeterministic 

TM  M and a polynomial time complexity T(n) such that L = T(M) 

and M executes at most t(n) moves for every input w of length n. 

1.7 NECESSITY OF FOCUSING ON THESE 

CLASSES 

Many familiar problems such as finding shortest paths in networks, 

parsing context-free grammars, sorting, matrix multiplication, and 

linear programming; that can be solved efficiently are in class P. In 

fact, P contains all problems that can be solved by programs of 

reasonable worst-case time complexity. There are problems whose 

best algorithms have time complexity n10^500 are also in class P. The 

four important reasons for which they could be included these 

problems as it seems unreasonable to say that such problems are 

computationally feasible. 

 

1. The main goal of proving lower bounds is that, it is sensible 

to have an overly generous notion of the class of feasible 

problems. If we show that a problem is not in P, then we 

have shown in a very strong way that solution via 

deterministic algorithms is impractical. 

 

2. “If functions f and g are both easy to compute, then the 

composition of f and g should also be easy to compute”, the 

theory of complexity-bounded reducibility is predicated on 

this simple notion. If we want to allow algorithms of time 

complexity n2 to be considered feasible, then we are 

immediately led to regard running times n4, n8 ...as also 

being feasible. In other words, the choice is either to lay 

down an arbitrary and artificial limit on feasibility (and to 

forgo the desired property that the composition of easy 
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Space for learners: functions be easy), or to go with the natural and overly-

generous notion given by P. 

 

3. The intellectual boundary between feasible and infeasible 

problems is served well by Polynomial time. Logically, 

problems of time complexity n10^500 do not arise, while 

problems of time complexity O(n4), and those proved or 

believed to be Ω(2n), occur often. Moreover, once a 

polynomial-time algorithm for a problem is found, and a 

base of mathematical and algorithmic techniques can be 

used to improve the algorithm. The best known example is 

Linear programming. The breakthrough O(n8) time 

algorithm of [Khachiyan, 1979], for n x n instances, was 

impractical, but it helped in an innovation by [Karmarkar, 

1984] that produced an algorithm whose running time of 

about O(n3) on all cases competes well commercially with 

the simplex method. It runs in O(n3) time in most of the 

cases but in some cases it takes 2n time. Of course, if it 

should turn out that the Hamiltonian circuit problem (or 

some other NP-complete problem) has complexity n10^500, 

then the theory would need to be fixed but as of now it 

seems unlikely. 

 

4. We would like our fundamental notions to be independent 

of arbitrary choices. It is arbitrary and historically accidental 

in the prevalent choice of the Turing machine as the 

standard model of computation. This choice does not affect 

the class P itself, however, because the natural notions of 

polynomial time for essentially all models of sequential 

computation that have been invented yield the same class. 

 

By analogy to the famous Church-Turing thesis, which states that 

the definition of a (partial) recursive function captures the intuitive 

notion of a computable process, several authorities have proposed 

the following:- 

 

Polynomial-Time Church-Turing Thesis : The class P captures 

the true notion of those problems that are computable in polynomial 

time by sequential machines, and is the same for any physically 

relevant model and minimally reasonable time measure of sequential 

computation that will ever be devised. This thesis extends also to 
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Space for learners: parallel models if “time” is replaced by the technologically 

important notion of parallel work .Another way in which the concept 

of P is robust is that P is characterized by many concepts from logic 

and mathematics that do not mention machines or time.  

 

The class NP can also be defined by means other than 

nondeterministic Turing machines. NP equals the class of problems 

whose solutions can be verified quickly, by deterministic machines 

in polynomial time. Equivalently, NP comprises those languages 

whose membership proofs can be checked quickly. 

 

For example, one language in NP is the set of composite numbers, 

written in binary.  

 

 Proof 

 A number z is composite can consist of two factors z1 ≥2 and z2 ≥ 

2 whose product z1z2 equals z. This proof is quick to check if z1 

and z2 are given, or guessed. Correspondingly, one can design a 

nondeterministic Turing machine N that on input z branches to write 

down “guesses” for z1 and z2, and then deterministically multiplies 

them to test whether z1z2 = z. Then L(N), the language accepted by 

N, equals the set of composite numbers, since there exists an 

accepting computation path if and only if z really is composite. Note 

that N does not really solve the problem; it just checks the candidate 

solution proposed by each branch of the computation. 

 

Example: Construct the time complexity T(n) for the Turing 

machine that accepts {0n1n| n≥1} 

 

Solution: 

 The given TM step (i) consists of going through the input string 

(0n1n) forward and backward and replacing the leftmost 0 by x and 

the leftmost 1 by y. SO we require at most 2n moves to match a 0 

with a 1. Step (ii) is repetition of step (i) n times. Hence the number 

of moves for accepting 0n1n is at most (2n)(n). For strings not of the 

form 0n1n, TM halts with less than 2n2 steps. Hence T(M) = O(n2). 

 

We can also define the complexity of algorithms. In the case 

ofalgorithms. T(n) denotes the running time for solving a problem 

with an input of size n. using this algorithm. 
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Example: Find the running time for the Euclidean algorithm for 

evaluating gcd(a,b) where a and b are positive integers expressed in 

binary representation. 

Solution 

The Euclidean algorithm has the following steps: 

1. The input is (a,b) 

2.  Repeat until b = 0 

3. Assign a  a mod b 

4. Exchange a and b 

5. Output a. 

 

Step 3 replaces a by a mod b. If a/2 ≥ b, then a mod b< b ≤a/2. If 

a/2 < b, then a < 2b. Write a = b + r for some r < b. Then a mod b = 

r < b < a/2. Hence a mod b ≤ a/2. So a is reduced by at least half in 

size anther application of step 3. Hence one iteration of step 3 and 

step 4 reduces a and b by at least half in size. So the maximum 

number of times the steps 3 and 4 reduces a and b by at least half in 

size. So the maximum number of times the steps 3 and 4 are 

executed is min {[log2a], [log2b]}. If n denotes  

the maximum of the number of digits of a and b. that is 

max{{[log2a], [log2b] } then the number of iterations of steps 3 and 

4 is O(n). We have to perform step 2 at most min 

{{[log2a], [log2b] } times or n times. Hence �(�)  =  ��(�)  =
 �(�) 

 

**Note: The Euclidean algorithm is a polynomial algorithm. 

 

We know that for a deterministic TM M1 simulating a non 

deterministic TM M exists .If T(n) is the complexity of M, then the 

complexity of the equivalent deterministic TM M1 is 20(T(n)). This 

can be justified as follows.  

The processing of an input string w of length n by M is equivalent to 

a ‘tree’ of computations by M1. Let k be the maximum of the 

number of choices forced by the nondeterministic transition 

function. (It is max| δ(q, x)| , the maximum taken over all states q 

and all tape symbol X). Every branch of the computation tree has a 

length T(n) or less. Hence the total number of leaves is at most 

kT(n). Hence the complexity of M1 is at most 20(T(n)) . 

It is not known whether the complexity of M1 is less than 20(T(n)). 

Once again an answer to this question will prove or disprove P ≠ 
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Space for learners: NP. But there do algorithms exist where T(n) lies between a 

polynomial and an exponential function. 

 

1.8 POLYNOMIAL TIME REDUCTION AND NP-

COMPLETENESS 

If P1 and P2 are two problems and P2 ϵ P, then we can decide 

whether 

P1 ϵ P by relating the two problems P1 and P2 . If there is an 

algorithm for obtaining an instance of P2 given any instance of P1, 

then we can decide about 

the problem P1 . Intuitively if this algorithm is a polynomial one, 

then the problem P1 can be decided in polynomial time. 

 

Theorem 1.1 :  If there is a polynomial time reduction from P1  to 

P2 and if P2 is in P then P1 is in P. 

 

Proof :   

Let m denote the size of the input of P1 . As there is a polynomial 

time reduction of P1  to P2  the corresponding instance of P2 can be 

got in polynomial-time. Let it be O(nk), So the size of the resulting 

input of P2 is at most C nk  for some constant c. As P2  is in P, the 

time taken for deciding the membership in  P2 is O(mj), n being the 

size of the input of P2. So the total 

time taken for deciding the membership of m-size input of P1 is the 

sum of the time taken for conversion into an instance of P2, and the 

time for decision 

of the corresponding input in P2. This is O[nk + ( nk)j] which is the 

same as O(nfj). So P1 is in P. 

 

CHECK YOUR PROGRESS 

a) Type 1 grammar is called ______________. 

b) According to Church-Turing’s thesis any algorithm that a 

human or computer can be carried out can be solved by a 

______________ 

c) _____________ and ____________ are the two principal 

families of machine models. 
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Space for learners: Definition 1.1: Let L be a language or problem in NP. Then L is 

NPcomplete 

if 

1. L is in NP 

2. For every language L' in NP there exists a polynomial-time 

reduction of L' to L. 

  

Theorem 1.2 :  If P1 is NP-complete, and there is a polynomial-time 

reduction of P1 to P2, then P2 is NP-complete. 

 

Proof: 

 If L is any language in NP, we show that there is a polynomial-time 

reduction of L to P2. As P1 is NP-complete, there is a polynomial-

time reduction of L to P1. So the time taken for converting an n-size 

input string w in L to a string x in P1 is at most p1(n)  for some 

polynomial p1 .  As there is a polynomial-time reduction of P1 to P2 , 

there exists a polynomial P2 such that the input x to P1 is transferred 

into input y to P2 in at most P2(n) time. So the time taken for 

transforming w to y is at most p1(�) +  p2 "p1(�)#. As p1(�)  +
 p2 (p1(�))is a polynomial, we get a polynomial-time reduction of 

L to P2. Hence P2 is NP-complete.  

 

Theorem1.3  : If some NP-complete problem is in P, then P =NP. 

 

Proof :  

Let P be an NP-complete problem and PϵP. Let L be any NP-

complete problem. By definition, there is a polynomial-time 

reduction of L to P. As P is in P, L is also in P by Theorem 1. Hence 

NP = P. 

 

 

 

 

 

 

1.9 SATISFIABILITY PROBLEM (SAT) is NP-

COMPLETE 

 

Another important language in NP is the set of satisfiable Boolean 

formulas, called SAT.  
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Boolean formula Φ is satisfiable if there exists a way of assigning 

true or false to each variable such that under this truth assignment, 

the value of Φ is true. For example, the formula x ᴧ (x& v y) is 

satisfiable, but x ᴧ y&  ᴧ (x& v y)is not satisfiable. A nondeterministic 

Turing machine N, after checking the syntax of Φ and counting the 

number n of variables, can non deterministically write down an n-bit 

0-1 string a on its tape, and then deterministically (and easily) 

evaluate Φ for the truth assignment denoted by a. The computation 

path corresponding to each individual a accepts if and only if Φ (a) 

= true, and so N itself accepts Φ if and only if Φ is satisfiable; i.e. 

L(N)  =  SAT. 

Again, this checking of given assignments differs significantly from 

trying to find an accepting assignment. 

 

The above characterization of NP as the set of problems with easily 

verified solutions is formalized as follows:  

 

A ϵ NP if and only if there exist a language A׳ϵ P and a polynomial 

p such that for every x, x ϵ A if and only if there exists a y such 

that |y| ≤ p(|x|) and(x, y) ϵ A׳. Here, whenever x ϵ A, y is 

interpreted as a positive solution to the problem represented by x, or 

equivalently, as a proof that x ϵ A. NP represents all sets of 

theorems with proofs that are short (i.e., of polynomial length), and 

P represents the statements that can prove or disproved quickly from 

scratch. 

 

The theory of NP-completeness, together with the many known NP-

complete problems, is perhaps the best justification for interest in 

the classes P and NP. All of the other canonical complexity classes 

listed above have natural and important problems that are complete 

for them. Further motivation for studying L, NL, and PSPACE, 

comes from their relationships to P and NP. L and NL are the largest 

space-bounded classes known to be contained in P, and PSPACE is 

the smallest space-bounded class known to contain NP. (It is worth 

mentioning here that NP does not stand for “non-polynomial time”; 

the class P is a subclass of NP.) 

 

The satisfiability problem for boolean expressions (whether a 

boolean expression is satisfiable) is NP-complete and it was the first 

problem to be proved NP-complete.  
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Space for learners: 1.9.1 Cook's Theorem 

Theorem 1.4  (Cook's theorem) SAT is NP-complete. 

 

Proof: 

 

SAT ϵ NT 

 

If the encoded expression E is of length n, then the number of 

variables is [n/2]. Hence, for guessing a truth assignment t we can 

use multi tape TM for E. The time taken by a multi tape NTM M is 

O(n). Then M evaluates the value of E for a truth assignment t. This 

is done in O(n2) time. An equivalent single-tape TM takes 

0(�4) time. Once an accepting truth assignment is found, M accepts 

E and M and halts. Thus we have found a polynomial time NTM for 

SAT. Hence SAT ϵ NP. 

1.9.2 Other NP-Complete Problems 

It is difficult to prove the NP-completeness of any problem. But 

after getting one NP-complete problem such as SAT P’ by obtaining 

a polynomial reduction of SAT to P' we can prove the NP-

completeness of the problem. The polynomial reduction of SAT to 

P' is relatively easy. Here we will have a list of NP-complete 

problems without proving their NP-completeness. Many of the NP-

complete problems are of practical interest.  

 

1. CSAT- Given a Boolean expression in CNF (conjunctive normal 

form *), is it satisfiable? 

 

We can prove that CSAT is NP-complete by proving that CSAT is 

in NP and getting a polynomial reduction from SAT to CSAT 

 

 

* A formula is in conjunctive normal form(CNF) if it is a product of 

elementary sums. 

 If a is in disjunctive normal form, then ¬ a is in conjunctive 

normal form. (This can be seen by applying the DeMorgan's laws.) 

So to obtain the conjunctive normal form of a, we construct the 

disjunctive normal form of  ¬ a and use negation. 
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2. Hamiltonian circuit problem - Does G have a Hamiltonian circuit 

(i.e.a circuit passing through each edge of G exactly once)? 

 

3. Travelling salesman problem (TSP)-Given n cities, the distance 

between them and a number D, does there exist a tour programme 

for a salesman to visit all the cities exactly once so that the distance 

travelled is at most D? 

 

4. Vertex cover problem-Given a graph G and a natural number k, 

does there exist a vertex cover for G with k vertices? (A subsets C of 

vertices of G is a vertex cover for G if each edge of G has an odd 

vertex in C.) 

 

5. Knapsack problem-Given a set � =  {a1, a2, a3, . . . . . . . . . , an} of 

nonnegative integers. and an integer K, does there exist a subset B of 

A such that ∑ bj78ϵ9  =K? 

 

This list of NP-complete problems can be expanded by having a 

polynomial reduction of known NP-complete problems to the 

problems which are in NP and which are suspected to be NP-

complete. 

1.10 USE OF NP-COMPLETENESS 

NP-complete prevent us from wasting our time and energy over 

finding polynomial or easy algorithms for that problem. Also we 

may not need the full generality of an NP-complete problem. 

Particular cases may be useful and they may admit polynomial 

algorithms. Also there may exist polynomial algorithms for getting 

an approximate optimal solution to a given NP-complete problem. 

 

For example, the travelling salesman problem satisfying the 

triangular inequality for distances between cities (i.e.:;< ≤  :;= +
 :=; for all i, <, =) has approximate polynomial algorithm such that 

the ratio of the error to the optimal values of total distance travelled 

is less than or equal to 1/2. 
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Space for learners: 1.11 ANSWERS TO CHECK YOUR PROGRESS  

a) Context-sensitive grammer 

b) Turing Machine 

c) Random Access Memory, Turing Machine 

1.12 POSSIBLE QUESTIONS 

1) Define Language and grammar. 

 

2) Describe Chomsky Hierarchy with examples. 

 

3) The set of all languages whose complements are in NP is 

called CO-NP. Prove that NP = CO-NP if and only if there 

is some NP-complete problem whose complement is in NP. 

 

4) Is A(B, C, �, d)  = (B v C v �) ᴧ(B v C v :) satisfiable? 
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UNIT 2: THEORY OF NP COMPLETENESS 

II 
 

 

Unit Structure: 

 

2.1 Introduction 

2.2 Reducibility Relations 

2.3 NP-Complete Problems and Completeness Proofs 

2.4 NP-Completeness by Combinatorial Transformation 

2.5 Significance of NP-Completeness 

2.6 Strong NP-completeness for numerical problems 

2.7 Coping with NP-hardness 

2.8 Beyond NP-Hardness 

2.9 Answers to Check Your Progress 

2.10 Possible Questions 

2.11 References and Suggested Readings 

 

2.1 INTRODUCTION 

Whether the most useful tool that is delivered by complexity theory 

is the notion of reducibility or not is a little doubtful. Many 

computational problems such as Travelling Salesman Problem, their 

deterministic time or space complexity are still not briefly known. 

Here we cannot say whether class P and NP are distinct till now. But 

still it’s useful for new problem whose complexity is needed to 

calculate, say X and can be say that the complexity of X and 

Travelling Salesman are same by showing some efficient ways of 

reducing each problem o the other. In the cases where the exact 

complexity cannot be pinpoint, there showing problems equivalent 

in such way can solve the problem. According to reducibility 
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Space for learners: relation the number of real world computational problem which are 

similar must be of a large number but surprisingly the number is 

very less. Therefore complexity of any problem can be classified as 

it must be equivalent to any of the sort listed representative problem, 

which was originally not expected.  The complexity classes of these 

representative problems were discussed in the previous chapter 

using Turing machines, a small set of abstract machine concepts. 

 

With some time defining and space bounding simple functions, the 

complexity of major computational problems are possible to 

characterise though most problems have no similarity with any 

questions of Turing machines. This technique is way more 

successful than anyone can expect.  Because of this we are forced to 

believe that, the problems being placed under one class is not an 

accident and all the classes are distinct in nature and the 

classification is real. Nondeterministic Turing machines, has ability 

to soar through huge search spaces, and it is appear to be way more 

powerful than mundane deterministic machines, and this strengthen 

our belief.  Until P vs. NP and other long-standing questions of 

complexity theories are completely resolved, to understand the 

complexity of real-world problems the best way will be reducibility 

of classification. 

2.2 REDUCIBILITY RELATIONS 

In mathematics, the simplest way to solve a new problem, the 

problem must reduce to a problem which has been solved 

previously. To interpret the solution of a new problem, the problem 

must express in terms of a prior problem. This type of reduction is 

called many-one reducibility.  

 

Using the subroutine of the prior problem the new problem can be 

solved. For example, we can solve a optimisation problem that has a 

feasible solution and it maximises the value of an objective function 

f by repeatedly calling a subroutine that solves the corresponding 

decision problem of whether there exists a feasible solution y whose 

value f(y) satisfies f(y)  ≥ k. This reduction is called Turing 

reducibility, 
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Space for learners: Let L1 and L2 be languages. L1 is many-one reducible to L2, 

andL1 ≤  L2, if there exists a total recursive function f such that for 

all y, where y ϵ L1 if and only iff(y) ϵ L2. The function f is called 

the transformation function. L1 is Turing reducible to L2, 

writtenL1 ≤  T L2, if L1 can be decided by a deterministic oracle 

Turing machine M using L2 as its oracle, i.e., L1 = L (MA2) (The 

oracle for L2 models a hypothetical efficient subroutine for L2).  

 

In above case if M or f consumes too much space or time then the 

computed reduction will not helpful. The study of complexity 

classes which are defined by bounds on time and space resources, 

resource-bound reducibility must be consider. Let L1 and L2 be 

languages. 

 

  L1 is Karp reducible to L2 and written as L1 ≤ 
p
m

L2, if L1 is 

many-one reducible to L2 via a transformation function 

which is computable deterministically in polynomial time. 

 

 L1 is Cook reducible to L2, and written as L1≤
  �
�

 L2, if L1 

is Turing reducible to L2 via a deterministic oracle Turing 

machine of polynomial time complexity. 

 

The term “polynomial-time reducibility" usually refers to Karp 

reducibility. If L1 ≤ 
p
m

L2 and L2≤ 
p
m

L1, then we can say that L1 and 

L2 are equivalent under Karp reducibility. Similarly the Equivalence 

under Cook reducibility is defined. 

 

To find the  relationships between languages of high complexity, 

Karp and Cook reductions are useful but in case of distinguishing 

between problems in P Karp and Cook reductions are not at all 

useful as all the problems which are in P, are equivalent under Karp 

(and hence Cook) reductions. 

 

The preserve polynomial-time feasibility is the key property of Cook 

and Karp reductions. Suppose L1 ≤ 
p
m

L2 via a transformation g. If 

M2 decides L2, and Mg computes g, then to decide whether an input 

word y is in L1, we may use Mg to compute g(y), and then run M2 

on input g(y). If the time complexities of M2 and Mg are bounded by 

polynomials r2 and rg , respectively, then on inputs y of length n 
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Space for learners: =|�|, the time taken by this method of deciding L1 is at most  

rg(n)+r2(rg(n)), which is also a polynomial in n. It can be summaries 

as, if L2 is feasible, and there is an efficient reduction from L1 to 

L2, then L1 is also feasible. Even though this is just a simple 

observation, but this fact is significant enough to state as a theorem. 

Here we need the concept of “closure." 

 

A class of languages A is closed under a reducibility ≤ r if for all 

languages L1 and L2, Whenever L1 ≤ r L2 and L2 ϵ A, necessarily 

L1 ϵ A. 

 

Theorem 2.1  P is closed under both Cook and Karp reducibility. 

 

This is an instance of an idea that motivated our identification of P 

with the class of “feasible” problems, that the composition of two 

feasible functions should be feasible. 

 

Theorem 2.2 Karp reducibility and Cook reducibility are transitive, 

that is : 

 

1. If L1 ≤ 
p
m

L2 and L2 ≤ 
p
m

L3, then L1 ≤ 
p
m

L3.  

2. If L1≤
  �
�

 L2 and L2≤
  �
�

 L3, then L1≤
  �
�

 L3. 

3 Complete Languages and Cook's Theorem 

 

Let A be a class of languages that represent computational problems. 

A language L0 is C-hard under a reducibility ≤r if for all L in A, L ≤r 

L0. A language L0 is C-complete under ≤r if L0 is C-hard, and L0 ϵ 

A. Informally, if L0 is C-hard, then L0 represents a problem that is at 

least as difficult to solve as any problem in A. If L0 is C-complete, 

then in a sense, L0 is one of the most difficult problems in A. 

 

Completeness can be viewed in other ways. Completeness provides 

the tight lower bounds on complexity of problems. For complexity 

class A, if a language L is complete, then there will be a lower 

bound on its complexity. L is as hard as the most difficult problem 

in A, assuming that the complexity of the reduction itself is small 

enough. As L is in A, the lower bound is tight i.e, the upper bound 

matches the lower bound. 
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Space for learners: In the case A = NP, the reducibility ≤r is usually taken to be Karp 

reducibility unless stated otherwise .Thus we can say: 

 

 A language L0 is NP-hard if L0 is NP-hard under Karp 

reducibility. 

 A0 is NP-complete if A0 is NP-complete under Karp 

reducibility. 

 

 However, many sources take the term “NP-hard” to refer the Cook 

reducibility. 

 

Some implications of the statement “L0 is NP-complete," and also 

some things this statement doesn't mean. 

 

If there exists a deterministic Turing machine that decides L0 in 

polynomial time, i.e if L0 ϵ P, then as P is closed under Karp 

reducibility, and it would follow that NP ⊆ P, therefore P = NP. In 

real, the question that whether P is the same as NP reduced to the 

question whether any particular NP-complete language is in P or 

not. Or in other word we can say that, if any one of all NP-complete 

languages which are fall together is in P, then all the remaining NP- 

complete languages are in P and similarly if one language is not in P 

then others are also not in P. Another implication, that follows by a 

almost similar closure argument applied to co-NP, is that if L0 ϵ co-

NP then NP = co-NP. But it is also believed that it’s unlikely to be 

NP=co-NP. A theorem given by Lander [Ladner, 1975b] shows that 

N≠NP if and only if there exist a language L0in NP-P such that L0 is 

not NP-complete. Therefore, if P ≠ NP, then L0 is a contradiction to 

the “definition”.  

 

Another misconception that arises from the statement “If L0 is NP 

complete, then L0 is one of the most difficult problems in NP" due 

to the misinterpretation of the statement. This interpretation is true 

up to one level. The NP-complete language L0 is a kind of problem 

where it is not in P but is in NP.  
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Space for learners: 2.3  NP-COMPLETE PROBLEMS AND 

COMPLETENESS PROOFS 

To solve a computational problem where we do not know how to 

solve it but want to know how hard it is, the following steps will let 

us know the answer and may help to know the problem that are well 

brought-up even if the problem is NP-hard for general cases. The 

steps are: 

 

1. State the problem in general mathematical terms, and formalize 

the statement. 

2. Verify whether the problem belongs to NP. 

3. If yes, then try to find it in a compendium of known NP-complete 

problems. 

4. If no, then try to construct a reduction from a related problem that 

is known to be NP-complete or NP-hard. 

5. Try to identify special cases of your problem that are (i) hard, (ii) 

easy, and/or (iii) the ones you need.  

6. Even if your cases are NP-hard, they may still be amenable to 

direct attack by sophisticated methods on high-powered hardware. 

 

These steps are combined with a traditional “theorem-proof" 

presentation and several long examples, but the same sequences are 

to be maintained 

 

Step 1:  Give a formal statement of the problem.  

It must State without using any terms that are specific to one 

particular discipline. It is advisable to use common terms from 

mathematics and data objects in computer science, e.g. graphs, trees, 

matrices, vectors, alphabets, strings, logical formulas, mathematical 

equations. For example, a problem in evolutionary biology which 

will state by a Phylogenist would state in terms of “species" and 

“characters" and “cladograms" can be stated in terms of trees and 

strings, using an alphabet that represents the taxonomic characters. 

Standard notions of size, depth, and distance in trees can express the 

objectives of the problem. 

 

If the problem involves computing a function that produces a lot of 

output, look for associated yes/no decision problems, because 



 

349 | P a g e  

 

Space for learners: decision problems have been easier to characterize and classify. For 

example, if we need to compute matrices of a certain kind, we have 

to look for whether the essence of the problem can be captured by 

yes/no questions about the matrices or not. Many optimization 

problems who looks for a solution of a certain minimum cost or 

maximum value can be turned into decision problems by including a 

target cost/value “x" as an input parameter, and phrasing the 

question of whether a there exists a solution of cost less than (or 

value greater than) the target x.  

 

By ignoring or removing some particular elements from the 

problem, the problem can be present in over simplified form. It can 

help in verifying the category which is closest to the problem. In the 

process, we may learn some useful information about the problem. 

 

Step 2.   

When we have an adequate formalization, then first we must ask 

ourselves whether our decision problem belongs to NP? This is true 

if and only if candidate solutions that would bring a “yes" answer 

can be tested in polynomial time. If it answer belongs to NP, then 

that's good. If not, we may proceed to determine if it is NP-hard. 

The problem may be complete for a class such as PSPACE that 

contains NP. 

 

 

Step 3. 

 Check whether our problem is already listed in a compendium of 

(NP-) complete problems. The book [Garey and Johnson, 1988] lists 

hundreds of NP-complete problems arranged according to category. 

A small example from Garey and Johnson, 1988: 

 

VERTEX COVER 

Instance: A graph G1 and an integer n. 

Question: Does G1 have a set Z of n vertices such that every edge in 

G1 is incident on a vertex in Z? 

 

CLIQUE 

Instance: A graph G1 and an integer n. 

Question: Does G1 have a set N of n vertices such that every two 

vertices in N are adjacent in G1? 
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Space for learners: HAMILTONIAN CIRCUIT 

Instance: A graph G1. 

Question: Does G1 have a circuit that includes every vertex exactly 

once? 

 

3-DIMENSIONAL MATCHING 

Instance: Sets A, B, C with  |A| = |B| = |C| = p and a subset  � ⊆

� × � × �  

Question: Is there a subset � ′ ⊆ � of size q such that no two triples 

in � ′ agree in any coordinate? 

 

PARTITION 

Instance: A set W of positive integers. 

Question: Is there a subset � ′ ⊆ � such that the sum of the 

elements of � ′equals the sum of the elements of� − � ′? 

 

INDEPENDENT SET 

Instance: A graph G1 and an integer n. 

Question: Does G1 have a set A of n vertices such that no two 

vertices in Aare adjacent in G1? 

 

GRAPH COLOURABILITY 

Instance: A graph G1 and an integer n. 

Question: Is there an assignment of colours to the vertices of G1 so 

that no two adjacent vertices receive the same colour, and at most n 

colours are used overall? 

 

TRAVELLING SALESPERSON (TSP) 

Instance: A set of n “cities" C1,C2, C3,.......Cm, with a distance d(j,k) 

between every pair of cities Cj and Ck , and an integer K. 

Question: Is there a tour of the cities whose total length is at most K, 

i.e., a permutation c1,c2,.....,cn of {12,.....,n} such that d(c1,c2) + ......+ 

d(cn-1, cn) + d(cn,c1) ≤ K? 

 

KNAPSACK 

Instance: A set F = {f1,f2,......,fn} of objects, each with an integer 

size size(fj) and an integer profit profit(uj), a target size t0, and a 

target profit q0. 

Question: Is there a subset �′ ⊆ � whose total cost and total profit 

satisfy   
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Space for learners: ∑  !"# ($%&'∈)′ ) ≤t0 and ∑ *+,$!- ($%&'∈)′ ) ≥q0 

 

The languages that are in these problems are seen to belong to NP. 

For example, to show that TSP is in NP, one can build a 

nondeterministic Turing machine that simply guesses a tour and 

checks that the tour's total length is at most K. 

 

Some comments on the last two problems are relevant to steps 1 and 

2 above. Travelling Salesperson provides a single abstract form for 

many concrete problems about sequencing a series of test examples 

so as to minimize the variation between successive items. The 

Knapsack problem models the filling of a knapsack with items of 

various sizes, with the goal of maximizing the total value (profit) of 

the items. Many scheduling problems for multiprocessor computers 

can be expressed in the form of Knapsack instances, where the 

“size" of an item represents the length of time a job takes to run, and 

the size of the knapsack represents an available block of machine 

time. 

 

If our problem is on the list of NP-complete problems then we can 

skip Step 4, and the compendium may give us further information 

for Steps 5 and 6. We may still wish to pursue Step 4 if we need 

more study of particular transformations to and from our problem. 

If our problem is not on the list, it may still be close enough to one 

or more problems on the list to help with the next step. 

 

Step 4.  

Construct a reduction from an already-known NP-complete 

problem. Karp reductions come in three kinds. 

 A restriction from your problem to a special case that is 

already known to be NP-complete. 

 A minor adjustment of an already-known problem 

 A combinatorial transformation. 

 

The first two kinds of reduction are usually quite easy to do, and we 

give several examples before proceeding to the third kind. 
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Space for learners: Example. Partition ≤
*

  .
 Knapsack, by restriction: Given a Partition 

instance with integers aj, the corresponding instance of Knapsack 

takes size(fj) = profit(fj) = aj (for all j), and sets the targets a0 and p0 

both equal to (∑j aj)/2. The condition in the definition of the 

Knapsack problem of not exceeding a0 nor being less than p0 

requires that the sum of the selected items meet the target (∑j aj)/2 

exactly, which is possible if and only if the original instance of 

Partition is solvable. 

 

In this way, the Partition problem can be regarded as a restriction or 

special case of the Knapsack problem. Note that the reduction itself 

goes from the more-special problem to the more general problem, 

even though one thinks of the more-general problem as the one 

being restricted. The implication is that if the restricted problem is 

NP-hard, then the more-general problem is NP-hard as well, not 

vice-versa. 

 

Example. Hamiltonian Circuit ≤
*

  .
TSP by restriction: Let a 

graph G be given as an instance of the Hamiltonian Circuit problem, 

and let G have n vertices v1, v2 ,..., vn. These vertices become the 

“cities" of the TSP instance that we build. Now define a distance 

function as follows: 

/(!, %) = { 
1             if (vi, vj) is an edge in G

< + 1                                   ,-ℎ#+?! #
  

 

Set K = n. Clearly, k and K can be computed in polynomial 

time from G. If G has a Hamiltonian circuit, then the length of the 

tour that corresponds to this circuit is exactly n. Conversely, if there 

is a tour whose length is at most m, then each step of the tour must 

have distance 1, not n+1. Then each step corresponds to an edge of 

G, so the corresponding sequence of vertices forms a Hamiltonian 

circuit in G. Thus the function f defined by f (G) = ({/(!, %): 1 ≤

!, % ≤ <}, B) is a polynomial-time transformation from Hamiltonian 

Circuit to TSP. 
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Space for learners: 

2.4  NP-COMPLETENESS BY COMBINATORIAL 

TRANSFORMATION 

Theorem 2.3 Independent Set is NP-complete. Hence also Clique 

and Vertex Cover are 

NP-complete. 

 

Proof. We have remarked already that the languages of these three 

problems belong to NP, and shown already that Independent Set  

≤
*

  .
  Clique and Independent ≤

*
  .

Vertex Cover. 

It suffices to show that 3SAT ≤
*

  .
 Independent Set. 

Construction. Let the Boolean formula Φ be a given instance of 

3SAT with variables a1,a2,.....,am and clauses C1,C2,.....,Cn. The 

graph G Φ we build consists of a “ladder" on 2m vertices labelled 

y1,yC1,y2, yC2,........,ym, �Cm with edges (yi,�Ci) for 1 ≤ i≤ m forming the 

“rungs," and n “clause components." 

Here the component for each clause Cj has one vertex for 

each literal yi or �Ci  in the clause, and all pairs of vertices within 

each clause component are joined by an edge. Finally, each clause 

component node with a label yi is connected by a “crossing edge" to 

the node with the opposite label �Ci in the ith “rung," and similarly 

each occurrence of �Ci in a clause is joined to the rung node yi. This 

finishes the construction of GΦ. 

Also set p = m + n. Then the reduction function f is defined 

for all arguments Φ by f(Φ) =(GΦ; p). 

Complexity. It is not hard to see that f is computable in polynomial 

time given (a straightforward encoding of) Φ. 

 

 

CHECK YOUR PROGRESS 

a) What is many one reducibility? 

b) What is a transformation function? 

c) Completeness provides the tight ____________ bounds on 

complexity of problems. 

d) A language L0 is NP-hard if L0 is NP-hard 

under__________ 
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Space for learners: 

 
Figure 2.1: Construction in the proof of NP-completeness of 

Independent Set for the formula (y1 ⋁ y2 V �C3) ∧ (y1 V �C2 V y3). 

The independent set of size 5 corresponding to the satisfying 

assignment y1 = false, y2 = true, and y3 = true is shown by nodes 

marked I. 

 

Correctness. To complete the proof, we need to argue that Φ is 

satisfiable if and only if GΦ has an independent set of size m + n. To 

see this, first note that any independent set I of that size must 

contain exactly one of the two nodes from each “rung," and exactly 

one node from each clause component - because the edges in the 

rungs and the clause component prevent any more nodes from being 

added. And if I selects a node labelled yi in a clause component, 

then I must also select yi i in the ith rung. If I selects �Ci in a clause 

component, then I must also select �Ci in the rung. In this manner I 

induces a truth assignment in which yi= true and yi = false, and so on 

for all variables. This assignment satisfies Φ, because the node 

selected from each clause component tells how the corresponding 

clause is satisfied by the assignment. Going the other way, if Φ has a 

satisfying assignment, then that assignment yields an independent 

set I of size m +n in like manner. 

 

Since the Φ in this proof is a 3SAT instance, every clause 

component is a triangle. The idea, however, also works for CNF 

formulas with any number of variables in a clause, such as the Φy in 

the proof of Cook's Theorem. 
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Space for learners: Now we modify the above idea to give another example of an NP-

completeness proof by combinatorial transformation. 

 

Theorem 2.4 Graph Colorability is NP-complete 

 

Proof. 

Construction: Given the 3SAT instance Φ, we build GΦ similarly to 

the last proof, but with several changes. See Figure 4.2. On the left, 

we add a special node labelled “B" and connect it to all 2n rung 

nodes. On the right we add a special node “G" with an edge to B. In 

any possible 3-coloring of GΦ, without loss of generality B will be 

coloured “blue" and the adjacent G will be coloured “green." The 

third colour “red" stands for literals made true, whereas green stands 

for falsity. 

Now for each occurrence of a positive literal xi in a clause, 

the corresponding clause component has two nodes labelled yi and 

yi׳ with an edge between them; and similarly an occurrence of a 

negated literal �Cj gives nodes �Cj and �Cj׳ with an edge between them. 

The primed (“inner") nodes in each component are connected by 

edges into a triangle, but the unprimed (“outer") nodes are not. Each 

outer node of each clause component is instead connected by an 

edge to G. Finally, each outer node yi is connected by a “crossing 

edge" to the rung node �H i and each outer node  �H j to rung node yj , 

exactly as in the Independent Set reduction. This finishes the 

construction of GΦ. 

 

 
 

Figure 2.2 : Construction in the proof of NP-completeness of Graph 

Colourability for the formula (y1 ⋁ y2 V �C3) ∧ (y1 V �C2 V y3) . The 
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Space for learners: nodes shown colour R correspond to the satisfying assignment y1 = 

false, y2 = true, and y3 = true, and these together with G and B 

essentially force a 3-coloring of the graph, which the reader may 

complete. Note the resemblance to Figure 2.1. 

 

Complexity. The function f that given any Φ outputs GΦ also fixing 

k = 3, is clearly computable in polynomial time. 

 

Correctness. The key idea is that every three-colouring of B, G, and 

the rung nodes, which corresponds to a truth assignment to the 

variables of Φ, can be extended to a 3-coloring of a clause 

component if and only if at least one of the three crossing edges 

from the component goes to a green rung node. If all three of these 

edges go to red nodes, then the links to G force each outer node in 

the component to be coloured blue, but then it is impossible to three-

color the inner triangle since blue cannot be used. Conversely, any 

crossing edge to a green node allows the outer node yi or �Cj to be 

coloured red, so that one red and two blues can be used for the outer 

nodes, and this allows the inner triangle to be coloured as well. 

Hence GΦ is 3-colorable if and only if Φ is satisfiable. 

 

2.4.1 Disjoint Connecting Paths 

 

Instance: A graph G with two disjoint sets of distinguished vertices 

v1, v2,.....,vj and u1,u2,.....,uj where j ≥ 1. 

 

Question: Does G contain paths P1P2,......,Pj with each Pk going from 

vk to uk, such that no two paths share a vertex? 

 

 

Theorem 4.3 Disjoint Connecting Paths is NP-complete. 

 

Proof. First, it is easy to see that Disjoint Connecting Paths belongs 

to NP: one can design a polynomial-time nondeterministic Turing 

machine that simply guesses j paths and then deterministically 

checks that no two of these paths share a vertex. Now let Φ be a 

given instance of 3SAT with n variables and m clauses. Take j = n + 

m. 

 

Construction and complexity. The graph GΦ we build has 

distinguished path-origin vertices v1, v2,.....,vn for the variables and 
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Space for learners: V1,V2,......,Vm  for the clauses of Φ. GΦ also has corresponding sets 

of path-destination nodes u1,u2,.....,un and U1,U2,.....,Um. The other 

vertices in GΦ are nodes bij for each occurrence of a positive literal 

yi in a clause Cj , and nodes aij for each occurrences of a negated 

literal �Ci in Cj . For each i, 1 ≤ i≤ n, GΦ is given the edges for a 

directed path from vi through all bij nodes to ui, and another from vi 

through all aij nodes to ui. (If there are no occurrences of the positive 

literal xi in any clause then the former path is just an edge from vi 

right to ui, and likewise for the latter path if the negated literal �Ci 

does not appear in any clause.) Finally, for each j, 1 ≤ j ≤ m, GΦ has 

an edge from Vj to every node bij or aij for the jth clause, and edges 

from those nodes to Uj . Clearly these instructions can be carried out 

to build GΦ in polynomial time given Φ. (See Figure 2.3.) 

 

Correctness. The first point is that for each i, no path from vi to ui 

can go through both a “b-node" and a “a-node." Setting yi true 

corresponds to avoiding b-nodes, and setting yi false entails avoiding 

a-nodes. Thus the choices of such paths for all i represent a truth 

assignment. The key point is that for each j, one of the three nodes 

between Vj and Uj will be free for the taking if and only if the 

corresponding positive or negative literal was made true in the 

assignment, thus satisfying the clause. Hence GΦ has the n + m 

required paths if and only if Φ is satisfiable.  

 

 
 

Figure 2.3: Construction in the proof of NP-completeness of 

Disjoint Connecting Paths for the formula (y1 ⋁ y2 V �C3) ∧ 

(y1 V �C2 V y3). 
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Space for learners: 2.5 SIGNIFICANCE OF NP-COMPLETENESS 

 

Suppose that you have proved that your problem is NP-complete. 

What does this mean, and how should you approach the problem 

now? 

 

Exactly what it means is that your problem does not have a 

polynomial-time algorithm, unless every problem in NP has a 

polynomial-time algorithm; i.e., unless NP ≠P. We have discussed 

above the reasons for believing that NP ≠P. In practical terms, you 

can draw one definite 

 

Conclusion: Don't bother looking for a “magic bullet" to solve the 

problem. A simple formula or an easily-tested deciding condition 

will not be available; otherwise it probably would have been spotted 

already during the thousands of person-years that have been spent 

trying to solve similar problems. For example, the NP-completeness 

of Graph 3-Colorability effectively ended hopes that an efficient 

mathematical formula for deciding the problem would pop out of 

research on “chromatic polynomials" associated to graphs. Notice 

that NP-hardness does not say that one needs to be “extra clever" to 

find a feasible solving algorithm, it says that one probably does not 

exist at all. 

  

The proof itself means that the combinatorial mechanism of the 

problem is rich enough to simulate Boolean logic. The proof, 

however, may also unlock the door to finding saving graces in Steps 

5 and 6. 

 

Step 5. Analyze the instances of our problem that are in the range of 

the reduction. We may tentatively think of these as “hard cases" of 

the problem. If these differ markedly from the kinds of instances 

that you expect to see, then this difference may help you refine the 

statement and conditions of your problem in ways that may actually 

define a problem in P after all. 

 

To be sure, avoiding the range of one reduction still leaves wide-

open the possibility that another reduction will map into your 

instances of interest. However, it often happens that special cases of 
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Space for learners: NP-complete problems belong to P- and often the boundary between 

these and the NP-complete cases is sudden and sharp. For one 

example, consider SAT. The restricted case of three variables per 

clause is NP-complete, but the case of two variables per clause 

belongs to P. 

 

For another example, note that the proof of NP-completeness for 

Disjoint Connecting Paths given above uses instances in which j = 

m+n; i.e., in which j depends on the number of variables. 

The case j = 2, where you are given G and v1, v2, u1, u2 and need to 

decide whether there are vertex- disjoint paths from v1 to u1 and 

from v2 to u2, belongs to P. (The polynomial-time algorithm for this 

case is nontrivial and was not discovered until 1978, as noted in 

[Garey and Johnson, 1988].) 

 

However, one must also be careful in one's expectations. Suppose 

we alter the statement of Disjoint Connecting Paths by requiring 

also that no two vertices in two different paths may have an edge 

between them. Then the case j = 2 of the new problem is NP-

complete. (Showing this is a nice exercise; the idea is to make one 

path climb the “variable ladder" and send the other path through all 

the clause components.) 

 

2.6 STRONG NP-COMPLETENESS FOR 

NUMERICAL PROBLEMS 

 
An important difference between hard and easy cases applies to 

certain NP-complete problems that involve numbers. For example, 

above we stated that the Partition problem is NP-complete; thus, it is 

unlikely to be solvable by an efficient algorithm. Clearly, however, 

we can solve the Partition problem by a simple dynamic 

programming algorithm, as follows. 

 

For an instance of Partition, let S be a set of positive {s1, s2,....., sm } 

and let s* be the total, s* = ∑  I
JKL i . Initialize a linear array B of 

Boolean values so that B[0] = true, and each other entry of B is 

false. For i = 1 to m, and for t = s* down to 0, if B[t] = true, then set 

B[t + si] to true. After the ith iteration, B[t] is true if and only if a 
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Space for learners: subset of {s1, s2,....., si } sums to t. The answer to this instance of 

Partition is “yes" if B[s*/2] is ever set to true. 

 

The running time of this algorithm depends critically on the 

representation of S. If each integer in S is represented in binary, then 

the running time is exponential in the total length of the 

representation. If each integer is represented in unary - that is, each 

si is represented by si consecutive occurrences of the same symbol- 

then total length of the representation would be greater than s*, and 

the running time would be only a polynomial in the length. Put 

another way, if the magnitudes of the numbers involved are bounded 

by a polynomial in m, then the above algorithm runs in time 

bounded by a polynomial in m. Since the length of the encoding of 

such a low-magnitude instance is O(mlogm), the running time is 

polynomial in the length of the input. The bottom line is that these 

cases of the Partition problem are feasible to solve completely. 

 

A problem is NP-complete in the strong sense if there is a fixed 

polynomial p such that for each instance x of the problem, the value 

of the largest number encoded in x is at most p(|M|). That is, the 

integer values are polynomial in the length of the standard 

representation of the problem. By definition, the 3SAT, Vertex 

Cover, Clique, Hamiltonian Circuit, and 3-Dimensional Matching 

problems defined in Section 4 are NP-complete in the strong sense, 

but Partition and Knapsack are not. The Partition and Knapsack 

problems can be solved in polynomial time if the integers in their 

statements are bounded by a polynomial in n- for instance, if 

numbers are written in unary rather than binary notation. 

The concept of strong NP-completeness reminds us that the 

representation of information can have a major impact on the 

computational complexity of a problem. 

 

2.7  COPING WITH NP-HARDNESS 

Step 6. Even if we cannot escape NP-hardness, the cases we need to 

solve may still respond to sophisticated algorithmic methods, 

possibly needing high-powered hardware. 
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Space for learners: There are two broad families of direct attack that have been made on 

hard problems. Exact solvers typically take exponential time in the 

worst case, but provide feasible runs in certain concrete cases. 

Whenever they halt, they output a correct answer- and some exact 

solvers also output a proof that their answer is correct. Heuristic 

algorithms typically run in polynomial time in all cases, and often 

aim to be correct only most of the time, or to find approximate 

solutions. They are more common. Popular heuristic methods 

include genetic algorithms, simulated annealing, neural networks, 

relaxation to linear programming, and stochastic (Markov) process 

simulation. Experimental systems dedicated to certain NP-complete 

problems have recently yielded some interesting results- an 

extensive survey on solvers for Travelling Salesperson is given by 

[Johnson and McGeogh, 1997]. 

 

There are two ways to attempt to use this research. One is to find a 

problem close to yours for which people have produced solvers, and 

try to carry over their methods and heuristics to the specific features 

of your problem. The other (much more speculative) is to construct 

a Karp reduction from your problem to their problem, ask to run 

their program or machine itself on the transformed instance, and 

then try to map the answer obtained back to a solution of your 

problem. 

 

The hitches are (1) that the currently-known Karp reductions f tend 

to lose much of the potentially helpful structure of the source 

instance x when they form f(x), and (2) that approximate solutions 

for f(x) may map back to terribly sub-optimal or even infeasible 

answers to x.  All of this indicates that there is much scope for 

further research on important practical features of relationships 

between NP-complete problems 

2.8  BEYOND NP-HARDNESS 

If our problem belongs to NP and we cannot prove that it is NP-

hard, it may be an ‘“NP intermediate" problem; i.e., neither in P nor 

NP-complete. According to the theorem of Ladner that NP-

intermediate problems exist, assuming NP ≠ P. However, very few 

natural problems are currently counted as good candidates for such 

intermediate status: factoring, discrete logarithm, graph-
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Space for learners: isomorphism, and several problems relating to lattice bases form a 

very representative list. The vast majority of natural problems in NP 

have resolved themselves as being either in P or NP-complete. 

Unless we uncover a specific connection to one of those four 

intermediate problems, it is more likely offhand that our problem 

simply needs more work. 

 

The observed tendency of natural problems in NP to “cluster" as 

either being in P or NP complete, with little in between, reinforces 

the arguments made early in this chapter that P is really different 

from NP. 

 

Finally, if our problem seems not to be in NP, or alternatively if 

some more-stringent notion of feasibility than polynomial time is at 

issue, then we may desire to know whether our problem is complete 

for some other complexity class. 

2.9 ANSWERS TO CHECK YOUR PROGRESS 

a) In mathematics, the simplest way to solve a new problem, 

the problem must reduce to a problem which has been solved 

previously. To interpret the solution of a new problem, the 

problem must express in terms of a prior problem. This type 

of reduction is called many-one reducibility. 

b) Let L1 and L2 be languages. L1 is many-one reducible to L2, 

andL1 ≤  L2, if there exists a total recursive function f such 

that for all y, where y ϵ L1 if and only iff(y) ϵ L2. The 

function f is called the transformation function 

c) Lower 

d) Karp reducibility 

2.10 MODEL QUESTIONS 

1. Is f(y,y1,y2,y3)= (y1 ⋁ y2 V �C3) ∧ (y1 V �C2 V y3) satisfiable? 

2. What does reducibility mean in NP-problems and why is it 

required? 

3. What was the first problem proved as NP-Complete? 

4. Multiple Choice Questions  
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Space for learners: i) Ram and Laxman have been asked to show that a certain problem 

∏ is in NP-complete. Ram shows a polynomial time reduction rom 

3-SAT problem to ∏, and Laxman shows a polynomial time 

reduction from ∏ to 3-SAT. Which of the following can be inferred 

from these reductions? 

a) ∏ is NP-complete     

b) ∏ is NP, but is not NP-complete 

c) ∏ is neither NP-hard, nor in NP    

d) ∏ is NP-hard not NP-complete  

 

ii) Consider the following two problems of graph 1) given a graph; 

find if the graph has a cycle that visits every vertex once except the 

first visited vertex which must visit again to complete the cycle. 2) 

Given a graph, find if the graph has a cycle that visits every edge 

exactly once. Which of the following is true about above two 

problems? 

 

a) Both problems belongs to P set    

b) Both problem belongs to NP-complete set  

c) Problem 1 belongs to P and problem 2 belongs to NP- complete  

d) Problem 1 belongs to NP- complete and problem 2 belongs to P 

 

iii)  _____ is the class of decision problems that can be solved by 

non-deterministic polynomial algorithms? 

a) NP   b) P   c) Hard   d) Complete 

 

iv) How many conditions have to be met if an NP- complete 

problem is polynomially reducible? 

a) 1   b) 2   c) 3   d) 4 

 

v) Which of the following problems is not NP complete? 

a) Hamiltonian Circuit  b) Bin packing 

c) Partition problem   d) Halting problem 

 

 

vi) To which class does Euler’s circuit problem belongs 

a) Decidable  b) Unpredictable 

c) Complete  d) Trackable 
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Space for learners: vii) Halting is an example for? 

a) Decidable   b) Undecidable 

c) Trackable   d) Untrackable  
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Space for learners: UNIT 3: LOWER BOUND THEORY 

Unit Structure: 

 3.1 Introduction 

 3.2 Unit Objectives 

 3.3 Lower Bound Theory 

 3.4 Techniques to Find Lower Bound Theory 

  3.4.1 Comparisons Trees 

  3.4.2 Oracle and Adversary Argument 

  3.4.3 State Space Method 

 3.5 Summing Up 

 3.6 Answers to Check Your Progress 

 3.7 Possible Questions 

 3.8 References and Suggested Readings 

 

3.1 INTRODUCTION 

For many problems, algorithms are designed and analysed to give 

correct and efficient solutions. However, a problem can be solved in 

various ways and we can have different algorithms for the same 

problem where one algorithm may be better than the others based on 

comparing the time complexities. But we cannot claim that this is 

the best algorithm for the problem. There might exist a faster 

algorithm with a better time complexity. 

Lower Bound Theory provides those techniques to establish a given 

algorithm is an efficient one or not. We use a function g(n) as a 

lower bound on the time complexity and any algorithm that solves 

the given problem should have this bound otherwise asymptotically 

we do not have a better solution. Lower bounds of various problems 

are still unknown as finding the lower bound of a particular problem 

is harder.   
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Space for learners: 3.2 UNIT OBJECTIVES 

After going through this unit, you will be able to : 

 understand the fundamental concepts of lower bound theory. 

 analyze lower bound of an algorithm using different 

techniques. 

 define and create comparison trees for comparison based 

algorithms.  

 develop state space diagram for different algorithms. 

3.3 LOWER BOUND THEORY 

In problem solving, we design algorithms with the purpose of 

getting a correct and efficient solution. But the search for a fast and 

better algorithm continues even after discovering an efficient 

algorithm. We use the concept of Lower Bound Theory to establish 

that a given algorithm is the most efficient one. Lower Bound 

Theory gives the minimum time required for executing an 

algorithm. 

Using Lower Bound Theory, our main aim is to find out the 

minimum number of comparisons required while executing an 

algorithm. Lower Bound Theory uses a number of techniques or 

methods to find the lower bound of a problem. 

Lower bound, L(n) can be defined as the property of a particular 

problem i.e. searching, sorting, matrix multiplication. Lower Bound 

Theory says that no algorithm can take lesser time than the time of 

L(n) for any given input, n. So, lower bound theory is a method to 

check that the given algorithm for the problem solution is the most 

efficient one. To do so, we take a function g(n) which is a lower 

bound on the time that any algorithm will take to solve the given 

problem. If our algorithm takes the same computing time in the 

same order as g(n) then asymptotically we cannot be better. 

Let the time complexity of some algorithm for solving a given 

problem be f(n) then the lower bound on f(n) is given by f(n) = 

Ω(g(n)) i.e. there exists positive constants c and n0 such that |f(n)| >= 

c|g(n)|for all n > n0. It is easier to write efficient algorithms but more 
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Space for learners: challenging to derive good lower bounds. As the lower bound gives 

a fact about all possible algorithms for solving a given problem. So, 

lower bound proofs are difficult to obtain as we cannot analyze all 

such algorithms. 

Self Asking Questions ( SAQ ) 

1. What is lower bound theory. 

2. What sort of problems requires us to find the lower bound of 

a problem. 

3. Why is difficult to find the lower bound of a problem. 

 

3.4 TECHNIQUES TO FIND LOWER BOUND 

THEORY 

There are various techniques to find the lower bound theory is: 

  1. Comparisons Trees. 

  2. Oracle and adversary argument. 

  3. State Space Method. 

3.4.1 Comparisons Trees 

This method is very easy and a popular computational model for 

determining the lower bounds for a given problem. Sorting and 

searching problems uses this method since comparison trees for 

sorting and searching problems is based on comparison of the 

elements and models all possible outcomes. This model is designed 

to work on a large number of sorting and searching problems. 

3.4.1.1 Sorting Algorithm 

Assuming that all input elements are distinct in the list containing n 

elements and the input sequence be <��, ��, ��, . . . . . . . . , ��>. Any 

comparison between �� and �	 between any two elements in the 
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Space for learners: input sequence will be given by�� 
 �	, �� � �	, ��  �	,�� � �	,�� �

�	to determine the relative ordering between them forming a binary 

comparison tree. Each internal node in the comparison tree is 

represented by an ellipse and represents comparison between �� and 

�	 whereas the leaf node is represented by a rectangle and contains 

elements in sorted order either in increasing or decreasing order. The 

leaves also indicate the terminating state of the algorithm with root 

being the starting state. 

 

 

 

 

 

 

Fig 3.1: Decision Tree (sort 3 elements) 

Analysis: 

 Let,  

T(n) = Minimum number of comparisons to sort n numbers in the 

worst case. 

K = Maximum height of the tree. 

Now, let us assume that all the internal nodes are at level < K. 

Therefore, maximum numbers of leaves are 2K. Then we have 

    2���� � �!  ( Stirling's formula ) 

   =>���� � ����! 

   =>����  ����� � �
����

� �
�

���� � ��1� 

   =>���� � ����� 

   =>���� �  ������� 

Thus, any comparison based sorting algorithm for n elements runs in 

Ω (n log n) time. 
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Space for learners: 3.4.1.2 Linear Searching 

In linear searching, an unordered list L contains n elements. If an 

element,x is to be found in L then we need to compare x with every 

element of (L – x) i.e. x is compared with L[1], L[2], L[3], ............. 

L[n]. If x is present at the ith position i.e. x = L[i] then searching 

terminates after ith  comparisons. Otherwise, searching continues as x 

is compared with rest of the elements in L. When x is found, search 

is successful otherwise it’s a failure. In this case also, the 

comparison tree is a binary tree too. The leaves contain either 

failure(F) or success(S) and the internal nodes give the position,i of 

x in L. Depending on the number of comparisons, we can derive 3 

different cases. 

Best Case: If x is present at the root, then time complexity is 

minimum and it is Ω (1). 

Average Case: If x is present at any other position except at the root 

node and the leaf node then search algorithm gives average time 

complexity. So, the average number of comparisons are
�
�
and the 

time complexity, T(n) = Ω (n).  

Worst Case: In this case, search continues till the end of the list i.e. 

x is present at the last position of the list or it is not present in L. So, 

total number of comparisons = n – 1 and the worst case time 

complexity, 

 T(n) = Maximum number of comparisons = n – 1 = Ο(n) 

Also, any algorithm that searches a sorted sequence of n elements 

must perform at least (log n + 1) comparisons in the worst case.  

STOP TO CONSIDER 

We can also use the comparison tree to find the lower bound of a 

binary search. The minimum number of comparisons needed to 

perform a search on n elements using binary search,���� �
������ � 1�. 
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Space for learners: 3.4.2 Oracle and Adversary Argument 

The second method for finding lower bound takes the help of oracles 

and adversaries. The oracle will tell us the outcome of each 

comparison for some model of estimation e.g. comparison trees. The 

oracles make the algorithm to work hard in order to get a good lower 

bound. The outcome of the next analysis is decided to determine the 

final answer. A worst case lower bound of the problem can be 

derived by keeping track of the work that has been finished. 

The job of the adversary is almost the same as it also makes the 

algorithms cost high. The adversary is allowed to reorder the input 

to the algorithm in order to drive the cost of the algorithm higher. 

The adversary is not an entity in the program nor does it modify the 

program, it simply used for analysis only. 

Suppose there are two sorted lists given to us , M[1 : m] and N[1 : n] 

where the elements are in ascending order. Let L be the merged list 

of M and N containing m + n elements also in the ascending order. 

We know that there are!"
#$%ways to merge M and N i.e. it is 

possible that every element of M can be interleaved with every 

element of N in all possible ways in L and vice versa. 

 Assuming, M = <a,b> and N = <c,d,e> then there  

are!"
"$&ways =!"

'ways = 10 ways to merge M and N. These are : 

   (a) a, b, c, d, e     (f) c, a, b, d, e 

   (b) a, c, b, d, e     (g) c, a, d, b, e 

   (c) a, c, d, b, e     (h) c, a, d, e, b 

   (d) a, c, d, e, b     (i) c, d, a, b, e 

   (e) c, d, e, a, b     (j) c, d, a, e, b 

Now, if we use comparison tree as model of computation for 

merging M and N then there are!#
#$%external nodes and 

atleast���(!#
#�%)comparisons on the tree that uses any comparison 

based algorithms. However, using conventional technique of 

merging requires only (m + n - 1) 

comparisons.Therefore,���(!#
#�%) � *+,�+�*, �� � �* � � �

1�where merge(m,n) is the minimum number of comparisons 

required to merge m elements with n elements. 
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Space for learners:  If m = 1, we need fewer comparisons. 

 If m = n, we have optimal number of comparisons for 

conventional merging and that’s the lower bound too. Therefore, 

merge(m,n) = 2m – 1,* � 1. 

3.4.3 State Space Method 

This method gives a set of rules of an algorithm from a single 

comparison of a given state showing all possible states ( n-tuples ). 

We can now derive the lower bounds once the state transitions are 

known. This is possible because the finished state cannot be reached 

with lesser transactions. This approach requires counting the number 

of changes in state where a state is a collection of attributes. This 

will help us in finding out the smallest and biggest items using this 

method by comparison. 

Our algorithm is modelled to define a state that an algorithm will be 

in at any given instant. In this way, we can define the start state, the 

end state and the transition states that the algorithm will traversal 

while moving from the start state to the end state. Thus, we can 

derive the minimum number of states the algorithm goes through 

from the start to the end to have a state space lower bound. 

CHECK YOUR PROGRESS 

1. State whether true or false : 

a. Mostly searching and sorting algorithms use state space 

method for finding the lower bound.  

b. Comparison trees are the most common method for finding 

the lower bound.  

c. State space method shows all the possible states of an 

algorithm starting from the start to the end.  

d. Oracle method for finding the lower theory gives a 

prediction of each comparison outcome.  
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Space for learners: e. Finding the lower bound is considered to be an easier task as 

compared to finding the worst case time of an algorithm. 

3.5 SUMMING UP 

 Lower bound for a problem is the tightest (highest) lower bound 

that can be proved for all possible algorithms solving the given 

problem. 

 There can be theoretically infinite number solutions to a problem 

but it is not possible to know all the algorithms for any problem. 

 We try to give a simple lower bound based on the amount of 

input that can be examined. 

 Lower bound of an algorithm can be found using 3 techniques: 

Comparison trees, Oracle and adversary arguments; and state 

space method. 

3.6 ANSWERS TO CHECK YOUR PROGRESS 

 1. a. FALSE 

 1. b. TRUE 

 1. c. TRUE 

 1. d. TRUE 

 1. e. FALSE 

3.7 POSSIBLE QUESTIONS 

1. Define lower bound of a problem. 

2. What is the difference between worst case lower bound and 

average case lower bound? 

3. Give the trivial lower bounds for the following: 

(a) Finding the transpose of a m x n matrix. 
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Space for learners: (b) Finding the median of n elements. 

4. Prove that the lower bound of sorting a sequence of n elements 

using comparison based sorting algorithm is n log n. 

5. Draw the decision tree for the following algorithms: 

(a) Linear search on seven elements. 

(b) Merge sort on five elements. 

6. Let X and Y be two sorted lists of n elements each. Find the 

minimum number of comparisons to merge X and Y in the worst 

case.   
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