
(1)

GAUHATI UNIVERSITY

Centre for Distance and Online Education

SECOND SEMESTER

(under CBCS)

M.Sc.- IT

Paper: INF 2026

 ALGORITHMS AND COMPLEXITY THEORY

Contents:

BLOCK I: ANALYSIS OF ALGORITHMS

Unit 1 : Introduction to Algorithms

Unit 2 : Asymptotic notations I

Unit 3 : Asymptotic notations II

Unit 4 : Recurrences

Unit 5 : Amortized Analysis

BLOCK II: ALGORITHM DESIGN TECHNIQUES

Unit 1 : Algorithm Design Techniques I

Unit 2 : Algorithm Design Techniques II

Unit 3 : Overview of More Algorithm Design Techniques

BLOCK III: GRAPH ALGORITHMS

Unit 1 : Introduction to Graph

Unit 2 : Minimum Spanning Tree

Unit 3 : Single Source Shortest Path Problem

BLOCK IV: THEORY OF NP COMPLETENESS AND LOWER

BOUND THEORY

Unit 1 : Theory of NP Completeness I

Unit 2 : Theory of NP Completeness II

Unit 3 : Lower Bound Theory

M.Sc.-IT-19-II-2026

(2)

SLM Development Team:

HoD, Department of Computer Science, GU

Programme Coordinator, MSc-IT, GUCDOE (GUIDOL)

Prof. Shikhar Kr. Sarma, Department of IT, GU

Dr. Khurshid Alam Borbora, Assistant Professor, GUCDOE (GUIDOL)

Dr. Swapnanil Gogoi, Assistant Professor, GUCDOE (GUIDOL)

Mrs. Pallavi Saikia, Assistant Professor, GUCDOE (GUIDOL)

Dr. Rita Chakraborty, Assistant Professor, GUCDOE (GUIDOL)

Mr. Hemanta Kalita, Assistant Professor, GUCDOE (GUIDOL)

Contributors:

Dr. Tarali Kalita (Block I : Unit- 1)
Asstt. Prof., NERIM, Guwahati

Dr. Utpal Barman (Block I: Unit- 2)
Asstt. Prof., GIMT, Azara

Ms. Pinki Pathak (Block I: Unit: 3, Block II: Units: 1,2, & 3)
Asstt. Prof., Pragjyotish College

Dr. Swapnanil Gogoi (Block I : Unit- 4)
Asstt. Prof., GUCDOE

Dr. Sarat Kumar Chettri (Block III: Units- 1, 2 & 3)
Asstt. Prof., Assam Don Bosco
University, Azara

Mrs. Syeda Shamim Shabnam (Block IV: Units- 1 & 2)
Asstt. Prof., Pragjyotish College

Mr. Mridul Jyoti Roy (Block IV: Unit- 3)
Asstt. Prof., Dept.. of Computer
Science and Engineering, Assam
Engineering College, Guwahati

Course Coordination:

Director CDOE, Gauhati University
Prof. Anjana Kakoti Mahanta Prof., Dept. Computer Science, G.U.
Dipankar Saikia Editor SLM, GUCDOE

Content Editing:

Dr. Kshirod Sarmah Asstt. Prof., Deptt. of Computer
Science, PDUAM, Goalpara, Assam

Cover Page Designing:

Bhaskar Jyoti Goswami CDOE, Gauhati University

ISBN:

May, 2023

© Copyright by GUCDOE. All rights reserved. No part of this work may be
reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise.
Published on behalf of Gauhati University Centre for Distance and Online
Education by the Director, and printed at Gauhati University Press, Guwahati-
781014.

BLOCK I:

ANALYSIS OF ALGORITHMS

1 | P a g e

Space for learners:

UNIT 1: INTRODUCTION TO ALGORITHMS

Unit Structure:

1.1 Introduction

1.2 Unit Objectives

1.3 Algorithms

1.3.1 Characteristics of Algorithms

1.3.2 Advantages of an Algorithm

1.3.3 Disadvantages of an Algorithm

1.3.4 Need of Algorithm

1.4 Concept in algorithm analysis

1.5 Time and Space complexity

1.6 Analyzing algorithms

1.7 Analysis of insertion sort

1.7.1 INSERTION_SORT in the best case

1.7.2 INSERTION_SORT in the worst case

1.7.3 INSERTION_SORT in the average case

1.8 Rate of Growth

1.9 Summing up

1.10 Answers to Check Your Progress

1.11 Possible Questions

1.12 References and Suggested Readings

1.1 INTRODUCTION

This unit gives an overview of algorithms and their place in modern

computing systems. In this unit you will learn what an algorithm is and

reasons to learn algorithms. Also you can learn advantages and

disadvantages of the algorithm. In this unit, you will see the first

algorithms, which solve the problem of sorting a sequence of n

numbers. For sorting we examine insertion sort and pseudocode of the

insertion sort written here, which is used to analyze the algorithm in

2 | P a g e

Space for learners: three cases namely the best case, average case and worst case. This unit

also gives an idea about the rate of growth of algorithm.

1.2 UNIT OBJECTIVES

After going through this unit, you will be able to,

 Understand the concept of algorithm with its pros and cons.

 Learn about the needs of algorithm.

 Calculate the running time for algorithm

 Analyzing an algorithm in best case, average case and worst

case.

 Based on running time calculate the order of growth of an

algorithm.

1.3 ALGORITHMS

The word algorithm has been derived from the Persian author's name,

Abu Ja 'far Mohammed ibn Musa al Khowarizmi (c. 825 A.D.), who has

written a textbook on Mathematics. The word is taken based on

providing a special significance in computer science. The algorithm is

understood as a method that can be utilized by the computer as when

required for providing solutions to a particular problem.

An algorithm is a well-defined computational procedure that

takes some value or set of values as input and produces some value or

set of values as output. Therefore, an algorithm is a sequence of

computational steps that transform the input into the output.

In mathematics and computer science, an algorithm is a finite

sequence of well-defined, computer-implementable instructions, used to

solve a class of specific problems or to perform a computation.

Algorithms are always unambiguous and are used for

performing calculations, data processing, automated reasoning, and

other tasks.

For example, we might need to sort a sequence of numbers into

increasing order. This problem arises frequently in practice and

provides fertile ground for introducing many standard design techniques

and analysis tools. Here we are formally define the sorting problem:

3 | P a g e

Space for learners: Input: A sequence of n elements {A1, A2, A3,……………. An}.

Output: A permutation (reordering) {a1, a2, a3,……………. an} of the

input sequence such

that a1≤ a2≤ a3≤……………. ≤an.

For example, given the input sequence (35, 42, 69, 16, 42, 78), a

sorting algorithm returns as output the sequence (16, 35, 42, 42, 69, 78).

Such an input sequence is called an instance of the sorting problem. In

general, an instance of a problem consists of the input (satisfying

whatever constraints are imposed in the problem statement) needed to

compute a solution to the problem.

Because many programs use it as an intermediate step, sorting is

a fundamental operation in computer science. Hence as a result, we

have a large number of good sorting algorithms at our disposal. For a

given application which algorithm is best depends on factors like the

number of items to be sorted, the extent to which the items are already

somewhat sorted, possible restrictions on the item values, the

architecture of the computer, and the kind of storage devices to be used

(main memory, disks, or even tapes).

An algorithm is said to be correct if, for every input instance, it

terminates with the correct output. We can say that a correct algorithm

solves the given computational problem. An incorrect algorithm might

halt with an incorrect answer or it might not halt at all on some input

instances. In contrast to what you might expect, incorrect algorithms

can sometimes be useful, if we can control their error rate. Generally,

however, we shall be concerned only with correct algorithms. An

algorithm can be specified as a computer program, or even as a

hardware design, written in English and the only requirement is that the

specification must provide a precise description of the computational

procedure to be followed.

1.3.1 Characteristics of Algorithms

o Input: An algorithm should externally supply zero or more

quantities.

o Output: An algorithm results in at least one quantity.

o Definiteness: Every instruction should be clear and ambiguous.

4 | P a g e

Space for learners: o Finiteness: An algorithm should terminate after executing a

finite number of steps.

o Effectiveness: All instruction should be fundamental to be

carried out, in principle, by a person using only pen and paper.

o Feasible: An algorithm must be feasible enough to produce each

instruction.

o Flexibility: It must be flexible enough to carry out desired

changes with no efforts.

o Efficient: Efficiency is measured in terms of time and space

required by an algorithm to implement. Thus, an algorithm must

ensure that it takes little time and less memory space

incorporating the acceptable limit of development time.

o Independent: An algorithm mainly focuses on the input and the

procedure required for deriving the output instead of depending

upon the language.

1.3.2 Advantages of an Algorithm

o Effective Communication: Since it is written in a natural

language using English, it becomes easy to understand the step-

by-step of a solution to any particular problem.

o Easy Debugging: A well-designed algorithm facilitates easy

debugging to detect the logical errors, occurred inside the

program.

o Easy and Efficient Coding: An algorithm is a blueprint of a

program that helps develop a program.

o Independent of Programming Language: Since it is a

language-independent, it can be easily coded by using any high-

level language.

1.3.3 Disadvantages of an Algorithm

o Big and complex tasks are difficult to put in Algorithms.

o Developing algorithms for complex problems would be time-

consuming.

5 | P a g e

Space for learners: o It is difficult to show Branching and Looping in Algorithms.

1.3.4 Need of Algorithm

Before implementing any algorithm as a program, it is better to find out

a good algorithm in terms of time and memory. A good design can

produce a good solution. An algorithm is needed to understand the basic

idea of the problem and also to find an approach to solve the problem. It

gives a clear description of requirements and goal of the problem to the

designer. Using an algorithm we can measure the behavior (or

performance) of the methods in all cases (best cases, worst cases,

average cases). Also we can analyze the complexity (time and space) of

the problems concerning input size without implementing and running

it; it will reduce the cost of design. With the help of an algorithm, we

can also identify the resources (memory, input-output) cycles required

by the algorithm. An algorithm helps to convert art into a science.

Overall, it is the best method of description without describing the

implementation detail.

STOP TO CONSIDER

An algorithm is a well-defined computational procedure that takes

some value or set of values as input and produces some value or set of

values as output. An algorithm is said to be correct if, for every input

instance, it terminates with the correct output.

CHECK YOUR PROGRESS - I

1) The word ____________comes from the name of a Persian

mathematician Abu Ja’far Mohammed ibn-i Musa al Khowarizmi.

2) An algorithm is a sequence of _____________ steps that transform

the input into the output.

3) The __________ of an algorithm results in at least one quantity.

4) Efficiency is measured in terms of ________and _________

required by an algorithm to implement.

6 | P a g e

Space for learners: 5) Input of an algorithm should externally supply _______ or

________ quantities.

6) It is difficult to show Branching and Looping in _________.

7) An algorithm helps to convert art into a _________.

1.4 CONCEPT IN ALGORITHM ANALYSIS

The term "analysis of algorithms" was coined by Donald Knuth.

Theoretically in analysis of algorithms, it is common to estimate their

complexity in the asymptotic sense, i.e., to estimate the complexity

function for arbitrarily large input.

Analysis of algorithm is an important part of computational complexity

theory, which provides theoretical estimation for the required resources

of an algorithm to solve a specific computational problem. Most

algorithms are designed to work with arbitrary length of inputs.

Algorithm analysis is the determination of the amount of time and

space resources required to execute it.

For using an algorithm for a specific problem, we have to develop

pattern recognition so that similar types of problems can be solved by

the help of this algorithm. One algorithm is often quite different from

another, though the objective of this algorithm is the same. For

example, we know that the sorting of a set of numbers can be done

using different algorithms. For the same input, number of comparisons

performed by one algorithm may vary with others. Therefore, time

complexity of those algorithms may differ. At the same time, we need

to calculate the memory space required for each algorithm.

Analysis of algorithm is the process of analyzing the problem-

solving capability of the algorithm in terms of the time and size of

memory for storage required. However, the main concern of analysis

of algorithms is the required time or performance. In general, we

perform the following types of analysis −

 Worst case :- The function which performs maximum number

of steps taken on input data of size n.

7 | P a g e

Space for learners: Best case :- The function which performs minimum number of

steps taken on input data of size n.

 Average case :- The function which performs An average

number of steps taken on input data of size n.

To solve a problem, we need to consider time as well as space

(memory) complexity as the program may run on a system where

memory is limited but adequate space is available or may be vice-

versa.

1.5 TIME AND SPACE COMPLEXITY

The efficiency or running time of an algorithm is stated as a function

relating the input length to the number of steps, known as time

complexity, or volume of memory, known as space complexity.

Space Complexity

Space complexity of an algorithm means the amount of memory space

needed the algorithm in its life cycle. Space needed for an algorithm is

equal to the sum of the following two components:

 A fixed part that is a space required to store certain data and

variables (i.e. simple variables and constants, program size etc.),

which are not dependent of the size of the problem.

 A variable part is a space required by variables, which is totally

dependent on the size of the problem. For example, recursion

stack space, dynamic memory allocation etc.

Space complexity S(P) of an algorithm P is S(P) = A + SP(I), Where A

is represented as the fixed part and SP(I) is represented as the variable

part of the algorithm which depends on instance characteristic I.

Consider the following example that tries to explain the concept,

Algorithm

SUM(R,Q)

Step1:- Start

Step 2:- P R + Q + 10

8 | P a g e

Space for learners: Step3:- Stop

Here three variables P, Q and R and one constant are used. Therefore

S(P) = 1+3. Now space is dependent on data types for given constant

types and variables and it will be multiplied accordingly.

Time Complexity

Time Complexity of an algorithm means, the amount of time required

by the algorithm to execute to completion. Time requirements can be

denoted by numerical function T(N), where T(N) can be measured as

the number of steps, provided each step takes constant time.

For example, in case of addition of two n-bit integers, N steps

are used. Hence, the total computational time is T(N) = c*n, where c is

the time consumed for addition of two bits. Here, we observe that T(N)

grows as input size increases.

STOP TO CONSIDER

 The term "analysis of algorithms" was coined by Donald

Knuth. Analysis of algorithm is the process of analyzing the

problem-solving capability of the algorithm in terms of the time

and size of memory for storage required.

 Time Complexity of an algorithm means, the amount of time

required by the algorithm to execute to completion.

 Space complexity of an algorithm means the amount of memory

space needed the algorithm

CHECK YOUR PROGRESS - II

8) The term "analysis of algorithms" was coined by ____________.

9) ____________ is the function which performs the maximum

number of steps on input data of size n.

10) Average case is the function which performs an ___________

number of steps on input data of n elements.

11) Space complexity of an algorithm means the amount of

9 | P a g e

Space for learners: _________ needed the algorithm in its life cycle.

12) A __________ is a space required by variables, which is totally

dependent on the size of the problem.

13) ____________ of an algorithm means, the amount of time

required by the algorithm to execute to completion.

1.6 ANALYZING ALGORIHMS

Analyzing an algorithm means predicting the resources that the

algorithm requires. Though, resources such as memory, communication

bandwidth, or computer hardware are of primary concern, but most

often it is computational time that we want to measure. Generally, we

can identify a most efficient algorithm by analyzing several candidate

algorithms for a problem. Such analysis may indicate more than one

viable candidate, but we can often discard several inferior algorithms in

the process. Before analyzing an algorithm, we must have a model of

the implementation technology that we will use, including a model for

the resources of that technology and their costs.

Here we shall assume a generic uniprocessor, random-access

machine (RAM) model of computation as our implementation

technology and understand that our algorithms will be implemented as

computer programs. In the RAM model, instructions are executed one

after another, without any concurrent operations. We should precisely

define the instructions of the RAM model and their costs. To do so,

however, would be tedious and would yield little insight into algorithm

design and analysis. Also we must be careful not to abuse the RAM

model. For example, what if a RAM had an instruction that sorts? Then

we could sort in just one instruction. Such RAM would be unrealistic,

since real computers don’t have such instructions. Our guide, therefore,

is how real computers are designed. RAM model contains instructions

commonly found in real computers: arithmetic (add, subtract, multiply,

divide, remainder, floor, ceiling), data movement (load, store, copy),

and control (conditional and unconditional branch, subroutine call and

return). Such type of instruction takes a constant amount of time.

The data types for the RAM model are integer and floating point

(for storing real numbers). Here we assume a limit on the size of each

10 | P a g e

Space for learners: word of data. For example, when we are working with inputs of size n,

typically assume that integers are represented by c lg n bits for some

constant c ≥ 1. We need c ≥ 1 so that each word can hold the value of n,

enabling us to index the individual input elements, and we restrict c to

be a constant so that the word size does not grow arbitrarily. (If the

word size grows arbitrarily, we could store huge amounts of data in one

word and operate on it all in constant time, clearly an unrealistic

scenario.)

 Real computers contain instructions not listed above, and such

instructions represent a gray area in the RAM model. For example, is

exponentiation a constant time instruction? In general case, no; it takes

several instructions to compute xy (where x and y are real numbers).

But in restricted situations, however, exponentiation is a constant-time

operation. Most computers have a “shift left” instruction, which in

constant time shifts the bits of an integer by k positions to the left. In

many computers, shifting the bits of an integer by one position to the

left is equivalent to multiplication by 2, so that shifting the bits by k

positions to the left is equivalent

to multiplication by 2k. Hence, such computers can compute 2k in one

constant-time instruction by shifting the integer 1 by k positions to the

left, as long as k is no more than the number of bits in a computer word.

We will try to avoid such gray areas in the RAM model, but we will

treat computation of 2k as a constant-time operation when k is a small

enough positive integer.

In the RAM model, we do not attempt to model the memory

hierarchy which is common in contemporary computers. i.e., we do not

model caches or virtual memory. Several computational models attempt

to account for memory-hierarchy effects, and they are sometimes

significant in real programs on real machines. Models that include the

memory hierarchy are quite a bit more complex compared to the RAM

model, and so they can be difficult to work with. However, RAM-model

analyses are usually excellent predictors of performance on actual

machines. Analyzing even a simple algorithm in the RAM model can be

a challenge. The mathematical tools required may include

combinatorics, probability theory, algebraic dexterity, and the ability to

identify the most significant terms in a formula. As the behavior of an

algorithm may be different for each possible input, we need a means for

summarizing that behavior in simple, easily understood formulas.

11 | P a g e

Space for learners: Though we typically select only one machine model to analyze a given

algorithm, we still face many choices in deciding how to express our

analysis. We would like a way, which is simple to write and manipulate,

shows the important characteristics of an algorithm’s resource

requirements, and suppresses tedious details.

Insertion sort

Our first algorithm, insertion sort, solves the sorting problem

introduced in 1.2:

Input: A sequence of n elements {A1, A2, A3,……………. An}.

Output: A permutation (reordering) { A1, A2, A3,……………. An }

of the input sequence such

that A1≤ A2≤ A3≤……………. ≤An.

.

The elements that we wish to sort are also known as the keys.

Conceptually we are sorting a sequence, the input comes to us in the

form of an array with n elements.

Figure 1.1 Sorting a hand of cards using insertion sort

We start with an efficient algorithm insertion sort, for sorting a small

number of elements. Insertion sort works like the way many people sort

a hand of playing cards. We start with an empty left hand and the cards

face down on the table. Then we remove one card at a time from the

table and insert it into the correct position in the left hand. To find the

correct position for a card, we compare the card with each of the cards

already in the hand, from right to left, as shown in Figure 1.1. At all the

times, the cards held in the left hand are sorted, and these cards were

12 | P a g e

Space for learners: originally the top cards of the pile on the table. Here we present a

pseudocode for insertion sort as a procedure named

INSERTION_SORT, which takes as a parameter an array Arr[1….n]

containing a sequence of length n that is to be sorted. (In the code, the

number n of elements in Arr is denoted by Arr.length). The algorithm

sorts the input elements in place: it rearranges the elements within the

array Arr, with at most a constant number of them stored outside the

array at any time. The input array Arr contains the sorted output

sequence of elements when the INSERTION_SORT procedure is

finished.

Figure 1.2 The operation of INSERTION_SORT on the array Arr =

(6,3,5,7,2,4). Array indices appear above the rectangles, and values

stored in the array positions appear within the rectangles. From (a) to

(e) the iterations of the for loop of lines 1–8. And (f) The final sorted

array.

INSERTION_SORT(Arr)

1 for j = 2 to Arr.length

2 key = Arr[j]

3 // Insert Arr[j] into the sorted sequence Arr[1….. (j -1)].

4 i = j - 1

5 while i > 0 and Arr[i] > key

6 Arr[i+1]=Arr[i]

7 i = i - 1

8 Arr[i + 1]= key

13 | P a g e

Space for learners: Loop invariants and the correctness of insertion sort

Figure 1.2 shows how this algorithm works for Arr = (6, 3, 5, 7, 2, 4).

The index j indicates the “current card” being inserted into the hand. At

the beginning of each iteration of the for loop, which is indexed by j,

the subarray consisting of elements Arr[1…..(j -1)] constitutes the

currently sorted hand, and the remaining subarray Arr [j+1…. n]

corresponds to the pile of cards still on the table. In fact, elements

Arr[1…..(j - 1)] are the elements originally in positions 1 through (j -

1), but now in sorted order. We state these properties of Arr[1…(j – 1)]

formally as a loop invariant:

At the beginning of each iteration of the for loop of lines 1–8,

the subarray Arr[1….(j – 1)] consists of the elements originally in

Arr[1…..(j – 1)], but in sorted order. We use this loop invariants to help

us understand why an algorithm is correct. Three things about a loop

invariant we must show here:

Initialization: It is true prior to the first iteration of the loop.

Maintenance: If it is true before an iteration of the loop and it remains

true before the next iteration.

Termination: When the loop terminates, the invariant gives us a useful

property that helps to show the algorithm is correct.

The first two properties hold, the loop invariant is true prior to every

iteration of the loop. (Of course, we are free to use established facts

other than the loop invariant itself to prove that the loop invariant

remains true before starting each iteration.) The similarity to

mathematical induction, where to prove that a property holds, you prove

a base case and an inductive step. Here, showing that the invariant holds

before the first iteration corresponds to the base case, and also showing

that the invariant holds from iteration to iteration corresponds to the

inductive step.

The third property is the most important one, since we are using the

loop invariant to show correctness. Typically, we use the loop invariant

along with the condition which caused the loop to terminate. The

termination property differs from how we usually use mathematical

induction, in which we apply the inductive step infinitely and we stop

the “induction” when the loop terminates.

14 | P a g e

Space for learners: Let’s see how these properties are using for insertion sort.

Initialization: We start by showing the loop invariant holds before the

first loop iteration, for j = 2. In this case the subarray Arr[1……(j – 1)]

consists of just the single element Arr[1], which is in fact the original

element in Arr[1]. Also, this subarray is sorted (trivially, of course),

which shows that the loop invariant holds prior to the first iteration of

the loop.

Maintenance: Now, we consider the second property: which shows that

each iteration maintains the loop invariant. Here, the body of the for

loop works by moving Arr[j – 1], Arr[j – 2], Arr[j – 3], and so on by

one position to the right until it finds the proper position for Arr[j]

(lines 4–7), at which point it inserts the value of Arr[j] (line 8). The

subarray Arr[1….. j] then consists of the elements originally in

Arr[1…j], but in sorted order. By incrementing j for the next iteration of

the for loop preserves the loop invariant. A more formal analysis of the

second property would require us to state and show a loop invariant for

the while loop of lines 5–7. However, at this point, we prefer not to get

bogged down in such formalism, and so we rely on our informal

analysis to show that the second property holds for the outer loop.

Termination: Lastly, we examine what happens when the loop

terminates. The condition causing the for loop to terminate is that j >

Arr. length = n. Since each loop iteration increases j by 1, we must have

j = n + 1 at that time. Substituting n + 1 for j in the wording of loop

invariant, we have that the subarray Arr [1 …… n] consists of the

elements originally in Arr [1…. n], but in sorted order. Observing that

the subarray Arr [1…… n] is the entire array, so we conclude that the

entire array is sorted. Therefore, the algorithm is correct.

STOP TO CONSIDER

RAM (Random Access Machine) model measures the rum time of an

algorithm by summing up the number of steps needed to execute the

algorithm on a set of data.

15 | P a g e

Space for learners: CHECK YOUR PROGRESS - III

14) __________ an algorithm means predicting the resources that the

algorithm requires.

15) In the___________, instructions are executed one after another,

without any concurrent operations.

16) The INSERTION_SORT algorithm sorts the input elements

___________.

17) _____________ means to set a starting value of a variable.

1.7. ANALYSIS OF INSERTION SORT

The time taken by the INSERTION_SORT procedure depends on the

input, for example sorting a thousand numbers takes longer than sorting

three numbers. INSERTION_SORT can take different amounts of time

for sorting two different input sequences of the same size depending on

how nearly sorted they already are. In general, the time taken for an

algorithm grows with the size of the input, so it is conventional to

describe the running time of a program as a function of the size of its

input. For that, we need to define the terms “running time” and “size of

input” more carefully.

The input size of a problem depends on the problem being used. For

sorting or computing discrete Fourier transforms, the most natural

measure is the “number of items in the input” (for example, the array

size n for sorting.) For other problems, like multiplying two integers,

the best measure of input size is the “total number of bits” needed to

represent the input in ordinary binary notation. For another instance, if

the input to an algorithm is a graph, the input size can be described by

the numbers of vertices and edges in the graph.

The running time of an algorithm on a particular input is the number of

steps executed. Let us consider a viewpoint, a constant amount of time

is required to execute each line of our pseudocode. Each line may take a

different amount of time, but we assume that each execution of the ith

line takes time ci, where ci is a constant. This viewpoint is keep in the

16 | P a g e

Space for learners: RAM model, and it also reflects how the pseudocode would be

implemented on most actual computers.

Here, we are presenting the INSERTION_SORT procedure with

time “cost” of each statement and the number of times each statement is

executed. For each j = 2, 3, …….n, where n = Arr.length, we let tj

denote the number of times the while loop test in line 5 is executed for

that value of j. When a for or while loop exits in the usual way, the test

is executed one time more than the loop body. As comments are not

executable statements, and so they take no time.

INSERTION_SORT(Arr) cost

 times

1. for j = 2 to Arr.length c1

 n

2. key = Arr[j] c2

 n - 1

3. // Insert Arr[j] into the sorted

sequence A[1 …… (j – 1)] 0

 n - 1

4. i = j -1 c4

 n - 1

5. while i > 0 and A[i] > key c5

 ∑ tj�
���

6. A[i + 1] = A[i] c6

∑ (tj − 1)�
���

7. i = i - 1 c7

∑ (tj − 1)�
���

8. A[i + 1] = key c8

 n – 1

The running time of the algorithm is the sum of running times for each

statement executed. A statement that takes ci steps to execute and

executes n times will contribute ci n to the total running time. To

compute the running time T(n) for INSERTION_SORT on the input of

n values, we will sum the products of the cost and times columns, and

we will get as follows:-

17 | P a g e

Space for learners: T(n) = c1n + c2(n – 1) + c4 (n - 1) + c5 ∑ tj�
��� + c6 ∑ (tj − 1)�

���

+ c7 ∑ (tj − 1)�
��� + c8 (n - 1)

For inputs of a given size, an algorithm’s running time may depend on

which input of that size is given. We can analyze the

INSERTION_SORT in three cases, best case, worst case and average

case.

1.7.1 Insertion_Sort in the Best Case

In INSERTION_SORT, the best case occurs when the array is already

sorted. For each j = 2, 3, ……, n, we then find that A[i] ≤ key in line 5

when i has its initial value of j - 1. Thus tj = 1 for j = 2, 3, ……., n, and

the running time in the best case is,

T(n) = c1n + c2(n – 1) + c4 (n - 1) + c5 (n - 1) + c8 (n - 1).

 = (c1 + c2 + c4 + c5 + c8) n – (c2 + c4 + c5 + c8).

We can express the above running time as An + B for constants A and

B that depend on the statement costs ci, it is thus a linear function of n.

1.7.2 Insertion_Sort in the Worst Case

INSERTION_SORT in the worst case means, if the array is in reverse

sorted order —that is, in decreasing order. In this situation, we must

compare each element A[j] with each element in the entire sorted

subarray A[1, 2, …… (j – 1)], and so tj = j for j = 2, 3, ……, n. Noting

that

 ∑ j�
��� =

�(���)

�
 -1 and ∑ (j −�

���

1) =
�(���)

�

Now the running time for the INSERTION_SORT in the worst case is,

T(n) = c1n + c2(n – 1) + c4 (n - 1) + c5 (
�(���)

�
 -1) + c6 (

�(���)

�
) + c7

(
�(���)

�
) + c8 (n - 1)

18 | P a g e

Space for learners: = (c5/2 + c6/2 + c7/2) n2 + (c1 + c2 + c4 + c5/2 - c6/2 - c7/2 + c8) n – (c2 +

c4 + c5 + c8)

We can express the above running time as An2 + Bn + C for constants

A, B and C that again depend on the statement costs ci, it is thus a

quadratic function of n.

The worst-case running time of an algorithm gives us an upper bound

on the running time for any input. It provides a guarantee that the

algorithm will never take any longer. Moreover, we need not make

some educated guess about the running time and hope that it never gets

much worse.

For some algorithms, the worst case occurs differently. For example,

searching for a particular piece of information in a database, the

searching algorithm’s worst case will often occur when the information

is not present in the database. Also, in some applications, searches for

absent information may be frequent.

1.7.3 Insertion_Sort in the Average Case

The “average case” is as bad as the worst case. Suppose that we

randomly choose n numbers and apply insertion sort. On average case ,

half the elements in A[1.….. (j – 1)] are less than A[j], and half the

elements are greater than A[j]. In this case, therefore, we check half of

the subarray A[1….. (j – 1)] , and so tj is about j / 2.

Here,

 ∑ j�
��� /2 =(

�(���)

�
 -1)/2 and

 ∑ (j − 1)/2�
��� =(

�(���)

�
)/2

Now the running time for the INSERTION_SORT in the average case

is,

T(n) = c1n + c2(n – 1) + c4 (n - 1) + c5 (
�(���)

�
 -1)/2 + c6 (

�(���)

�
)/2 +

 c7 (
�(���)

�
)/2 + c8 (n - 1)

= (c5/4 + c6/4 + c7/4) n2 + (c1 + c2 + c4 + c5/4 - c6/4 - c7/4 + c8) n –

(c2 + c4 + c5/4 + c8)

19 | P a g e

Space for learners: Just like worst case here also we can express the above running time as

An2 + Bn + C for constants A, B and C that again depend on the

statement costs ci, it is thus a quadratic function of n.

STOP TO CONSIDER

 Best case: Best case is the function, which performs the minimum

number of steps on input data of n elements.

 Average case: Average case is the function, which performs the

average number of steps on input data of n elements.

 Worst case: Worst case is the function, which performs the

maximum number of steps on input data of n elements.

CHECK YOUR PROGRESS - IV

18) The __________ of a problem depends on the problem being used.

19) The __________of an algorithm on a particular input is the number

of steps executed.

20) An algorithm can take __________ amounts of time for sorting

two different input sequences

1.8 RATE OF GROWTH

Suppose we are analyzing two algorithms and expressed their run times

in terms of the size of the input. Algorithm A takes n2 + n + 1steps to

solve a problem with size n and algorithm B takes 100 n + 1 steps. The

following table shows the run time of these two algorithms for different

problem sizes:

Input Size Runtime of

algorithm A

Runtime of Algorithm

B

10 111 1001

100 10101 10001

1000 1001001 100001

10000 >1010 1000001

20 | P a g e

Space for learners: For n=10, Algorithm B looks pretty bad as it takes almost 10 times

longer than Algorithm A. But at n =100 they are about the same, and for

larger values B is much better. The main reason is that for large values

of n, any function that contains an n2 term will grow faster than a

function whose leading term is n. The leading term denotes the term

with the highest exponent. Algorithm A does better than B for small n,

since for Algorithm B, the leading term has a large coefficient, 100. But

other than the coefficients, there will always be some value of n where a

n2 > b n.

Generally, we expect an algorithm with a smaller leading term to be a

better algorithm for large problems, but for smaller problems, there may

be a crossover point where another algorithm is better. The location of

the crossover point depends on the details of the algorithms such as, the

inputs, and the hardware and hence it is usually ignored for purposes of

algorithmic analysis. If two algorithms have the same leading order

term, it is hard to say which is better and again, the result depends on

the details. Therefore for the analysis of algorithm, functions with the

same leading term are considered equivalent, even if they have different

coefficients.

A rate of growth or order of growth is a set of functions whose

asymptotic growth behavior is considered equivalent. For example, 3n,

1000n and n + 1 belong to the same order of growth, which is

written O(n) in Big-Oh notation and often called linear because every

function in the set grows linearly with n. In another example, n2, 2n2 +

n + 1, 100n2 + 1 are belong to same order of growth, written as O(n2)

and they are called quadratic for functions with the leading term n2.

The following table shows some of the rate of growth that appear most

commonly in algorithmic analysis.

21 | P a g e

Space for learners: Rate of growth Name

O(1) Constant

O(logb n) logarithmic (for any b)

O(n) Linear

O(n logb n) “en log en”

O(n2) Quadratic

O(n3) Cubic

O(cn) Exponential (for any c)

For the logarithmic terms, the base of the logarithm doesn’t matter and

changing bases is the equivalent of multiplying by a constant, which

doesn’t change the rate of growth. Likewise, all exponential functions

belong to the same order of growth regardless of the base of the

exponent. Since exponential functions grow very quickly, therefore

exponential algorithms are only useful for small problems.

1.9 SUMMING UP

 An Algorithm is a step-by-step process to solve a problem.

Every computerized device uses algorithms, which cut the time

required to do things manually.

 RAM (Random Access Machine) model measures the rum time

of an algorithm by summing up the number of steps needed to

execute the algorithm on a set of data.

 An analysis of algorithm is a technique that’s used to measure

the performance of the algorithms. Analysis of algorithm can be

done in three case; best case, average case and worst case. Best

case of an algorithm performs the minimum number of steps on

input data of n elements. Average case of an algorithm performs

the average number of steps on input data of n elements. Worst

case of an algorithm performs the maximum number of steps on

input data of n elements.

 Complexity of an algorithm measures the amount of time and/or

space required by an algorithm for an input of a given size (n).

22 | P a g e

Space for learners: Time Complexity of an algorithm means, the amount of time

required by the algorithm to execute to completion. Space

complexity of an algorithm means the amount of memory space

needed the algorithm.

 A rate of growth or order of growth is a set of functions whose

asymptotic growth behavior is considered equivalent.

1.10 ANSWERS TO CHECK YOUR PROGRESS

1) Algorithm

2) Computational

3) Output

4) Time, space

5) Zero, more

6) Algorithms

7) Science

8) Donald Knuth

9) Worst case

10) Average

11) Memory space

12) Variable part

13) Time Complexity

14) Analyzing

15) RAM model

16) In place

17) Initialization

18) Input size

19) Running time

20) Different

23 | P a g e

Space for learners: 1.11 POSSIBLE QUESTIONS AND ANSWERS

Short Answer type Questions:

1. What do you mean by Algorithm?

2. What is the need for an algorithm?

3. Define time complexity of algorithm.

4. Define space complexity of algorithm.

5. Why analysis of algorithms required?

6. What do you mean by order of an algorithm?

Long Answer type Questions:

1. Define Algorithm with an example.

2. Write a note on the advantages and disadvantages of Algorithm.

3. What are the various cases to analyze an algorithm?

4. Find out the order of growth for following:-

a) n3 + n2

b) 1000000 n3 + n2

c) n3 + 1000000 n2

d) 20n2 + n

e) (n2 + n) . (n+1)

5. Write down the algorithm for bubble sort and analyze in best

case, average case and worst case.

6. Write down the algorithm for selection sort and analyze in best

case, average case and worst case.

7. Differentiate best case and worst case time complexity.

1.12 REFERENCES AND SUGGESTED READING

1. Thomas H. Cormen, Charlese E . Leiserson, Ronald L. Rivest,

Clifford Stein. “INTRODUCTION TO ALGORITHMS”, PHI

publication.

2. Aditya Bhargava “Grokking Algorithm: An illustrated guide for

programmers and other curious people”.

24 | P a g e

Space for learners: UNIT 2: ASYMPTOTIC NOTATIONS I

Unit Structure:

2.1 Introduction

2.2 Unit objectives

2.3 Asymptotic Notations (O, o, θ, ω, Ω)

2.4 Common Mathematical functions and complexity analysis

2.5 Example of Asymptotic notation

2.6 Summing Up

2.7 Answers to Check Your Progress

2.8 Possible Questions

2.9 References and Suggested Readings

2.1 INTRODUCTION

An algorithm is a collection of steps of different operations to solve

a specific problem. An algorithm is an effective method to solve a

problem within a finite amount of time and space. It is the best way

to represent the solution of a specific problem in a very simple and

well-organized way. An algorithm for a specific problem can be

implemented in any programming language. Algorithm analysis is

an important part of computational complexity theory and it is can

be used to find the best possible. The algorithms are designed to

work with inputs of arbitrary length and it is analyzed based on the

amount of time and space requires to execute them. Different growth

functions and notations are used to present the functional value of an

algorithm such as O, o, θ, ω, Ω. The notation is used for the different

case-based analyses of an algorithm using mathematical induction

and other methods.

25 | P a g e

Space for learners: 2.2 UNIT OBJECTIVES

After going through this unit, you will be able to know

i) About different asymptotic notations.

ii) About the common mathematical function and

complexity analysis

iii) About examples of complexity analysis

2.3 ASYMPTOTIC NOTATIONS (O, O, Θ, Ω, Ω)

The term algorithm complexity defines the amount of time and

space required to execute the steps of an algorithm. It evaluates the

order of count of operations executed by an algorithm as a function

of input data size. To assess the complexity, different notations are

used which are known as Asymptotic notation. Let’s O (f) notation

represents the complexity of an algorithm, the Asymptotic notation

is "Big O" notation and f corresponds to the function whose size is

the same as that of the input data. The complexity of the asymptotic

computation O(f) determines in which order the resources such

as CPU. The complexity of an algorithm may find in any form such

as constant, logarithmic, linear, n*log (n), quadratic, cubic,

exponential, etc. It is nothing but the order of constant, logarithmic,

linear, and so on, the number of steps encountered for the

completion of a particular algorithm. We are calling it as the term

running time of the algorithm.

Generally, the running time of an algorithm falls under three

different cases.

 Best Case –the Minimum time required for a program to

execute its line of codes.

 Average Case − the average time required for a program to

execute its line of codes.

 Worst case − the maximum time required for a program to

execute its line of codes.

The following are the commonly used asymptotic notations to

calculate the running time complexity of an algorithm.

 Ο Notation (Big-Oh)

 Ω Notation (Omega)

26 | P a g e

Space for learners: θ Notation (Theta)

Big Oh (Ο) Notation

The asymptotic notation Ο(n) is used to prompt the upper bound of

the running time of an algorithm. Generally, it is used to measure

the worst-case time complexity of an algorithm but not all the time

because any asymptotic notation can be used for worst-case

analysis. Case-based algorithm analysis is not similar to the

asymptotic notation.

Fig 2.1. Graphical view of Big-Oh (Ο) Notation

Mathematically, it is explained as for a function f(n), the Ο(f(n)) =

{g(n): there exists k > 0 and n0 such that f(n) ≤ k.g(n) for all n > n0.}

Omega Notation (Ω)

The asymptotic notation omega Ω(n) is used to express the lower

bound of an algorithm's running time. Though it is used for the best

case time complexity of an algorithm other asymptotic notations are

also used for best-case analysis. As mentioned above, any

asymptotic notation can be used for any case-based analysis.

Mathematically, it is defined as follows. For example, for a

function f(n), the omega f(n)) ≥ Ω{g(n): there exists c > 0 and n0

such that g(n) ≤ k.f(n) for all n > n0}

27 | P a g e

Space for learners:

Fig 2.2. Graphical view of Omega (Ω) Notation

Theta Notation (θ)

The notation theta θ(n) is another way to express both the lower

bound and the upper bound of an algorithm's running time. It is

represented as follows. θ(f(n)) = { g(n) if and only if g(n) = Ο(f(n))

and g(n) = Ω(f(n)) for all n > n0.

Fig 2.3. Graphical view of thetaθ(n) Notation

Along with the above three notations, another two notations such as

o and ω are also used in complexity analysis. A Ο is used as a tight

upper bound on the growth of an algorithm, whereas the little ο

notation is also used for the upper bound but it is not tight.Let f(n)

and g(n) be functions and f(n) = ο(g(n)) if for any real constant c >

0, there exists an integer constant n0 ≥ 1 such that 0 ≤ f(n) <

k*g(n).It means that o() means loose upper-bound of f(n). Little o is

a rough estimate of the maximum order of growth whereas Big-Ο

may be the actual order of growth.

28 | P a g e

Space for learners:

Fig 2.4. Graphical view of Small o and ωNotation

The relationship between Big Omega (Ω) and Little Omega (ω) is

similar to that of Big-. The ω is looking at the lower bounds that are

not asymptotically tight. Let f(n) and g(n) be functions that map

positive integers to positive real numbers. We say that f(n) is ω(g(n))

for any real constant c > 0, there exists an integer constant n0 ≥ 1

such that f(n) > c * g(n) ≥ 0 for every integer n ≥ n0. As f(n) has a

higher growth rate than g(n) so main difference between Big Omega

(Ω) and little omega (ω) lies in their definitions. In the case of Big

Omega f(n)=Ω(g(n)) and the bound is 0<=cg(n)<=f(n), but in case of

little omega, it is true for 0<=c*g(n)<f(n).

We use ω notation to denote a lower bound that is not

asymptotically tight. And f (n) ∈ ω (g (n)) if and only if g(n) ∈

ο((f(n)).

CHECK YOUR PROGRESS - I

1. What is an algorithm?

2. What do you mean by asymptotic notation?

3. True or False

i) 3n3 + 6n2 + 6000 = Θ(n3)
ii) f(n) = 2n²+5 is O(n²)

iii) If f(n) = 2n²+5 is O(n²) then 7*f(n) = 7(2n²+5) =

14n²+35 is also O(n²).

29 | P a g e

Space for learners: 2.4 COMMON MATHEMATICAL FUNCTIONS

FOR COMPLEXITY ANALYSIS

The common mathematical functions used for complexity analysis

are presented below.

 constant: Θ(1)

 logarithmic: Θ(log N)

 linear: Θ(N)

 polynomial: Θ(N^2)

 exponential: Θ(2^N)

 factorial: Θ(N!)

2.5 EXAMPLES OF ASYMPTOTIC NOTATION

Let’s understand the asymptotic notations with the following

examples.Express the following functional value of an algorithm in

terms of O, θ, Ω

i) F(n) = 2n + 5

ii) F(n) = 2n2 + 5

Solution:

i) Here, the functional value is F(n) = 2n + 5

For O, the definition is the f(n) = O{g(n)}, where f(n) ≤ c.g(n) for

all n > n0.

So,

f(n) = 2n+ 5 < 3n ---------- (1)

Here, the 3n >2n+5 for some values of n. To check its validity, put n

= 1, 2, 3, 4,5,6, ------

for n=1, the LHS is 2*1+5 = 7. Again RHS 3*1 = 3. For this 3<7, so

it is invalidfor the O definition

for n=2, the LHS is 2*2+5 = 9. Again RHS 3*2 = 6.For this 6<9, so

it is invalidfor the O definition

for n=3, the LHS is 2*3+5 = 11. Again RHS 3*3 = 9. For this 9<11,

so it is invalidfor the O definition

30 | P a g e

Space for learners: for n=4, the LHS is 2*4+5 = 13. Again RHS 3*4 = 12. For this

12<13, so it is invalidfor the O definition

for n=5, the LHS is 2*5+5 = 15. Again RHS 3*5 = 5. For this 15 =

15, so it is valid for the O definition.

for n=6, the LHS is 2*6+5 = 17. Again RHS 3*6 = 18. For this 18

>15, so it is valid for the O definition.

If you put any value of n starting from 5 then the

f(n) ≤ c.g(n) where f(n) = 2n+5, c = 3 and n = {5, 6, …}

so, the equation is 2n+5 ≤ 3n. So, the O notation is f(n) = O (n),

where g(n) = n, c= 3, and n = {5, 6, …}

Now For Ω, the definition is thef(n) ≥ Ω {g(n)for all n > n0.

So,

f(n) = 2n+ 5 > 2n ---------- (2)

Here, the 2n < 2n+5. To check its validity, put n = 1,2,3, 4,5,6, ------

For n=1, the LHS is 2*1+5 = 7. Again RHS 2*1 = 2. For this 2<7, so

it is valid for the Ω definition

For n=2, the LHS is 2*2+5 = 9. Again RHS 2*2 = 4. For this 4<9, so

it is valid for the Ω definition

If you put any value of n starting from 1then the

f(n) ≥ Ω {g(n)where f(n) = 2n+5, c = 2 and n = {1,2,3, ….}

so, the equation is 2n+5> 2n. So, the Ω notation is f(n) = Ω (n),

where g(n) = n, c= 2, and n = {1,2,3, ….}

Now Forθ,

2n < f(n) = 2n+ 5 < 3n

So, the n= 5 and c1= 2, and c2 = 3, the equation is valid and it cn

expressed as f (n) = θ (n).

ii) Here, the functional value is F(n) = 2n2 + 5

For O, the definition is the f(n) = O{g(n)}, where f(n) ≤ c.g(n) for

all n > n0.

So,

31 | P a g e

Space for learners: f(n) = 2n2 + 5<= 3n2 ---------- (3)

Here, the 3n2> 2n2+5 for some values of n. To check its validity, put

n = 1,2,3, 4,5,6, ------

for n=1, the LHS is 2*1+5 = 7. Again RHS 3*1 = 3. For this 3<7, so

it is invalid for the O definition

for n=2, the LHS is 2*22+5 = 13. Again RHS 3*22 = 12.For this

12<13, so it is invalid for the O definition

for n=3, the LHS is 2*32+5 = 23. Again RHS 3*32 = 27. For this

27>23, so it is valid for the O definition

If you put any value of n starting from 3 then the f(n) ≤ c.g(n) where

f(n) = 2n2 + 5, c = 3 and n = {3, 4, …}so, the equation is 2n2 + 5≤

3n2. So, the O notation is f(n) = O (n), where g(n) = n, c= 3, and n =

{3, 4, …}

Now For Ω, the definition is the f(n) ≥ Ω {g(n)for all n > n0.

So,

f(n) = 2n2 +5 >=2n2 ---------- (4)

Here, the 2n2 + 5>=2n2. To check its validity, put n = 1,2,3, 4,5,6, ---

For n=1, the LHS is 2*1+5 = 7. Again RHS 2*1 = 2. For this 7>2 so

it is valid for the Ω definition

If you put any value of n starting from 1 then the

f(n) ≥ Ω {g(n)where f(n) = 2n2 +5, c = 2 and n = {1,2,3, ….}

so, the equation is 2n2 +5 >2n2 . So, the Ω notation is f(n) = Ω (n),

where g(n) = n, c= 2, and n = {1,2,3, ….}

Now Forθ,

 2n2< f(n) = 2n2 + 5<= 3n2

So, the n= 3 and c1= 2, and c2 = 3, the equation is valid and it can

expressed as f (n) = θ (n).

32 | P a g e

Space for learners:

2.6 SUMMING UP

i) An algorithm is a collection of steps of different operations to

solve a specific problem. An algorithm is an effective method

to solve a problem within a finite amount of time and space.

ii) The term algorithm complexity defines the amount of time

and space required to execute the steps of an algorithm. It

evaluates the order of count of operations executed by an

algorithm as a function of input data size.

iii) Generally, the running time of an algorithm falls under

three different cases.

a. Best Case –the Minimum time required for a program to

execute its line of codes.

b. Average Case − the Average time required for a program

to execute its line of codes.

c. Worst case − the Maximum time required for a program

to execute its line of codes.

iv) The following are the commonly used asymptotic

notations to calculate the running time complexity of an

algorithm.

a. Ο Notation (Big-Oh)

b. Ω Notation (Omega)

c. θ Notation (Theta)

CHECK YOUR PROGRESS - II

4. Arrange the following complexity function in ascending

order.

O(logn),O(n), O(2n)

5. True or False

iv) 1. If f(n) = Θ(g(n)) and g(n) = Θ(h(n)), then h(n)

= Θ(f(n))

v) If f(n) = O(g(n)) and g(n) = O(h(n)), then h(n) =

Ω(f(n))

vi) n/ 100 = Ω(n)

33 | P a g e

Space for learners: v) Mathematically, Big Oh O is explained as for a

function f(n), the Ο(f(n)) = {g(n): there exists c > 0 and n0

such that f(n) ≤ c.g(n) for all n > n0.}

vi) Mathematically, omega is explained as for a function f(n),

the omega f(n)) ≥ Ω{g(n): there exists c > 0 and n0 such

that g(n) ≤ c.f(n) for all n > n0.}

vii) θ(f(n)) = { g(n) if and only if g(n) = Ο(f(n)) and g(n) =

Ω(f(n)) for all n > n0.

viii) Let f(n) and g(n) be functions and f(n) = ο(g(n)) if for any

real constant c > 0, there exists an integer constant n0 ≥ 1

such that 0 ≤ f(n) < c*g(n).

ix) Let f(n) and g(n) be functions that map positive integers to

positive real numbers. We say that f(n) is ω(g(n)) for any

real constant c > 0, there exists an integer constant n0 ≥ 1

such that f(n) > c * g(n) ≥ 0 for every integer n ≥ n0.

2.7 ANSWER TO CHECK YOUR PROGRESS

1) An algorithm is a collection of steps of different operations

to solve a specific problem. An algorithm is an effective

method to solve a problem within a finite amount of time and

space.

2) The term algorithm complexity defines the amount of time

and space required to execute the steps of an algorithm. To

assess the complexity, different notation are used which are

known as Asymptotic notation

3) i)True ii) True iii) True

4) O(log)< O(n) < O(2n)

5) i) True ii) True iii) True

2.8 POSSIBLE QUESTIONS

Short Answer type Questions:

i) What do you mean by an algorithm?

ii) What are the properties of a good algorithm?

34 | P a g e

Space for learners: iii) What do you mean by asymptotic notation?

iv) What are the different asymptotic notations are used?

v) What are the different case-based analyses present?

vi) What is the definition of Big-Oh?

vii) What is the definition of omega?

viii) What is the definition of theta?

Long Answer type Questions:

i) Express the following notation in Big Oh, Small O,

omega, and theta notation

a. F(n) = 3n + 2n

b. F(n) = 2n2 + 5

ii) Express the following notation in Big Oh, Small O,

omega, and theta notation

a. F(n) = 2n /5

b. F(n) = log n

2.9 FURTHER READINGS

 Introduction to the algorithm- MIT press- Thomas H

Coleman

35 | P a g e

Space for learners:

UNIT 3: ASYMPTOTIC NOTATIONS II

Unit Structure:

1.1 Introduction

1.2 Relational Properties of Asymptotic Notations

 1.2.1 General Properties

1.2.2 Reflexive Properties

1.2.3 Transitive Properties

1.2.4 Symmetric Properties

1.2.5 Transpose Symmetric Properties

1.2.6 Some More Properties

1.3 Asymptotic behaviors of Polynomials

1.4 Relative Asymptotic Growth

1.4.1 Order of Growth and Big-O Notation

1.4.2 Comparing Orders of Growth

1.5 Ordering functions by Asymptotic Growth Rates

 1.6 Summing Up

 1.7 Answers to Check Your Progress

 1.8 Possible Questions

 1.9 References and Suggested Readings

1.1 INTRODUCTION

The efficiency and performance in a meaningful way is determined by

Asymptotic Notation. Often, we get complex polynomial at the time of

calculating the complexity of an algorithm. We use asymptotic notation

to simplify this complex polynomial.

36 | P a g e

Space for learners: The notations we use to describe the asymptotic running time of an

algorithm are defined in terms of functions whose domains are the set of

natural numbers N={ 0,1,2,…..}. Such notations are convenient for

describing the worst case running time function T(n), which usually is

defined only on integer input sizes. We sometimes find it convenient,

however, to abuse asymptotic notation in a variety of ways. For

example: we might extend the notation to the domain of real numbers or

alternatively, restrict it to a subset of the natural numbers [1].

Primarily we use asymptotic notation to describe the running times of

algorithm. When we use asymptotic notation to apply to the running

time of an algorithm, we need to understand which running time we

mean. Sometime we are interested in the worst- case running time.

Often, we wish to characterize the running time no matter what the

input.

1.2 RELATIONAL PROPERTIES OF ASYMPTOTIC

NOTATIONS

In previous unit we discussed about Asymptotic Notations and its uses

in calculating time complexity. Here, we will discuss various relational

properties. Many of the relational properties of real numbers apply to

asymptotic comparisons as well. For the following, assume that f(n) and

g(n) are asymptotically positive [1].

1.2.1 General Properties

If f(n) is O(g(n)) then a*f(n) is also O(g(n)) ; where a is a constant

Example:

f(n) = 2n²+5 is O(n²)

then 2*f(n) = 2(2n²+5)= 4n²+10, is also O(n²)

Similarly, this property satisfies both Θ and Ω notation. We can say

If f(n) is Θ(g(n)) then a*f(n) is also Θ(g(n)); where a is a constant.

If f(n) is Ω (g(n)) then a*f(n) is also Ω (g(n)); where a is a constant.

37 | P a g e

Space for learners: 1.2.2 Reflexive Properties

If f(n) is given then f(n) is O(f(n)).

Example: f(n) = n² ; O(n²) i.e O(f(n))

Similarly, this property satisfies both Θ and Ω notation. We can say

If f(n) is given then f(n) is Θ(f(n)).

If f(n) is given then f(n) is Ω (f(n)).

1.2.3 Transitive Properties

If f(n) is O(g(n)) and g(n) is O(h(n)) then f(n) = O(h(n)) .

Example: if f(n) = n , g(n) = n² and h(n)=n³

n is O(n²) and n² is O(n³) then n is O(n³)

Similarly this property satisfies for both Θ and Ω notation. We can say

If f(n) is Θ(g(n)) and g(n) is Θ(h(n)) then f(n) = Θ(h(n)) .

If f(n) is Ω (g(n)) and g(n) is Ω (h(n)) then f(n) = Ω (h(n))

If f(n) is o(g(n)) and g(n) is o(h(n)) then f(n) = o(h(n))

If f(n) is ω(g(n)) and g(n) is ω(h(n)) then f(n) = ω(h(n))

1.2.4 Symmetric Properties

If f(n) is Θ(g(n)) then g(n) is Θ(f(n)) .

Example: f(n) = n² and g(n) = n² then f(n) = Θ(n²) and g(n) = Θ(n²)

Similarly this property satisfies for both O and Ω notation. We can say

If f(n) is O (g(n)) then g(n) is O (f(n))

If f(n) is Ω (g(n)) then g(n) is Ω (f(n))

1.2.5 Transpose Symmetric Properties

If f(n) is O(g(n)) then g(n) is Ω (f(n)).

Example: f(n) = n , g(n) = n² then n is O(n²) and n² is Ω (n)

Since these properties hold for asymptotic notations, analogies can be

drawn between functions f(n) and g(n) and two real numbers a and b.

38 | P a g e

Space for learners: g(n) = O(f(n)) is similar to a ≤ b

g(n) = Ω(f(n)) is similar to a ≥ b

g(n) = Θ(f(n)) is similar to a = b

g(n) = o(f(n)) is similar to a < b

g(n) = ω(f(n)) is similar to a > b

 We can say that f(n) is asymptotically smaller than g(n) if f(n) =

o(g(n)), and f(n) is asymptotically larger than g(n) if f(n) = ω(g(n))

1.2.6 Some More Properties

1. If f(n) = O(g(n)) and f(n) = Ω(g(n)) then f(n) = Θ(g(n))

2. If f(n) = O(g(n)) and d(n)=O(e(n))

then f(n) + d(n) = O(max(g(n), e(n)))

Example: f(n) = n i.e. O(n)

d(n) = n² i.e. O(n²)

then f(n) + d(n) = n + n² i.e. O(n²)

3.If f(n)=O(g(n)) and d(n)=O(e(n))

then f(n) * d(n) = O(g(n) * e(n))

Example: f(n) = n i.e. O(n)

d(n) = n² i.e. O(n²)

then f(n) * d(n) = n * n² = n³ i.e. O(n³)

1.3 ASYMPTOTIC BEHAVIORS OF

POLYNOMIALS

Given a nonnegative integer d, a polynomial in n of degree d is a

function p (n) of the form

���� = � ��
�

��

39 | P a g e

Space for learners: Where the constants ��, ��, … … … . , �� are the coefficients of the

polynomial and �� ≠ 0. A polynomial is asymptotically positive if and

only if �� > 0. For an asymptoticallypositive polynomial p(n) of degree

d, we have p (n)= Θ(nd). For any real constant a≥0, the function na is

monotonically increasing, and for any real constant a≤0, the function na

is monotonically decreasing. We say that a function f(n) is polynomially

bounded if f(n)= O (nk) for some constant k.

Let, ���� = ∑ �����

Where if �� > 0, �� � ������ � polynomial in n, and let k be a

constant. By using definitions of the asymptotic notations, we can prove

the following properties:

a. If k=d, then p(n)=Θ(nk)

b. If k ≥d, then p(n)=O(nk)

c. If k ≤d, then p(n)=Ω(nk)

a. Theta or Asymptotic Bound:

Analytical Approach:

The largest term in the polynomial is ����, so the polynomial cannot

grow neither slower nor faster than nd. Hence, p(n)=Θ(nk)

Mathematical Approach:

The polynomial can be written as:

���� = � ��
�

��

= ���� + � ��
�!�

��

= ���� + �� � ��!�
�!�

��

= ���� + ��"#

= ����� + "#�

Where, "# = ∑ ��!��!���

40 | P a g e

Space for learners: Now note that Qn is the sum of powers of n multiplied by some

constants, and the powers of n are all less than or equal to -1. This

follows from the fact that (i−d)≤−1. Now for sufficiently large n, Qn

approaches zero. And that in turn means, before it reaches zero, we can

find a positive integer n0, such that: |Qn∣≤0.5ad for alln≥n0.

Now,

−0.5 �� ≤ "# ≤ 0.5 ��

�� − 0.5 �� ≤ �� + "# ≤ �� + 0.5��

����� − 0.5 ��� ≤ ����� + "#� ≤ ����� + 0.5 ���

0.5�� . �� ≤ ����� + "#� ≤ 1.5��. ��

0.5 �� . �� ≤ ���� ≤ 1.5��. ��

So, if we pick (� = 0.5 �� ��� () = 1.5 �� , *� ℎ�,� (��� ≤ ���� ≤
()��

In other words, ���� = -����

And when . = �, it means ���� = -��/�

b. Asymptotic Upper Bound:

Analytically as . ≥ �, asymptotically �/ grows faster or at same rate

than ��for sufficiently large n. Hence, ���� = 0 ��/�

Mathematically, from c we can write:

0 ≤ ���� ≤ 1.5��. �� ≤ 1.5 ��. �/

 So, if we pick (� = 1.5 ��, *� ℎ�,� 0 ≤ ���� ≤ (��/

In other words, � ��� = 0 ��/�

c. Asymptotic Lower Bound:

Analytically, as . ≤ �, asymptotically �/ grows slower or at same

rate than �� for sufficiently large �. 12342, 5�3� = 6�37�

Mathematically, from c we can write:

0 ≤ 0.5�� . �/ ≤ 0.5��. �� ≤ ����

41 | P a g e

Space for learners: So, if we pick (� = 0.5 ��, *� ℎ�,� 0 ≤ (��/ ≤ ����

In other words, � ��� = 6 ��/�

1.4 RELATIVE ASYMPTOTIC GROWTH

There may be many algorithms for solving any problem and obviously

we would like to use the most efficient one. Analysis of algorithm is

required to compare these algorithms and recognize the best one.

Algorithms are generally analyzed on their time and space

requirements.

One way of comparing algorithms is to compare the exact running time

of all algorithms. But the running time is dependent on the language and

machine used for implementing the algorithm. Even if the machine and

language are kept same, calculation of exact time would be very

difficult as it would require the count of instructions executed by the

hardware and the time taken to execute each instruction. So the time

efficiency is not measured in time units like seconds or microseconds

[2].

The running time generally depends on the size of input, for example

any soring algorithm will take less time to sort 10 elements and more

time for 100000 elements. So the time efficiency is generally expressed

in terms of size of input. If the size of input is n, then f(n) which is a

function of n denotes the time complexity. Thus to compare any two

algorithms we will find out this function for both algorithms and then

compare the rate of growth of these two functions. It is important to

compare the rates of growth because an algorithm may seem better for

small input but as the input becomes large it may take more time than

others [2].

The function f(n) may be found out by identifying some key operations

in the algorithm which account for most of the running time. Other

operations are not counted as they take very little time as compared to

these key operations and not executed more often than the key

operations. For example, in searching we may count the number of

comparisons and in sorting we may count the swaps in addition to

42 | P a g e

Space for learners: comparisons. We are interested only in the growth rate of functions so

the exact computation of f(n) is not necessary [2].

Let us take an example where time complexity is given by the following

function:

8��� = 5�) + 6� + 12

If n=10

% of running time due to the term 5�): < =��
=��>?�>�)@ ∗ 100 =

87.41%

% of running time due to the term 6�: < ?�
=��>?�>�)@ ∗ 100 =

10.49%

% of running time due to the term 12: < �)
=��>?�>�)@ ∗ 100 =

2.09%

The following table shows the growth rate of all the terms of

function

8��� = 5�) + 6� + 12

n 5�) 6n 12

1 21.74% 26.09% 52.17%

10 87.41% 10.49% 2.09%

100 98.79% 1.19% 0.02%

1000 99.88% 0.12% 0.0002%

10000 99.99% 0.01% 2.4E-06%

We can see that n grows, the dominant term n2 accounts for most of the

running time and we can ignore the smaller terms. Calculating exact

function f(n) for the time complexity may be difficult. So the terms

which do not significantly change the magnitude of function can be

dropped from the function. In this way we can get an approximation of

the time efficiency and we are satisfied with this approximation because

this is very close to the exact value when n becomes large. This

approximate measure of complexity is known as asymptotic complexity.

There are some standard functions whose growth rates are

known, we find out the complexity of our algorithm and compare it with

these known functions whose growth rates are known. The growth rates

of some known functions are shown in the table:

43 | P a g e

Space for learners:

n

G(n)

log) � n
n

log) �
�) �J 2#

1 0 1 0 1 1 2

2 1 2 2 4 8 4

4 2 4 8 16 64 16

8 3 8 24 64 512 256

16 4 16 64 256 4096 65536

32 5 32 160 1024 32768 4.29E+09

64 6 64 384 4096 262144 1.84E+19

From the table we see that some functions grow faster than others. The

growth rate of ���� = log) � is least and the function ���� = 2#

grows very fast. The function ���� = � grows faster than log) �but

slower than nlog) � or �), �J, 2#. To compare the growth rate of

function

8���*KLℎ Lℎ�M� ML������ 8N�(LKO�M, *� (�� NM� �K� 0 �OL�LKO�.
The order of growth of the running time of an algorithm gives a simple

characterization of the algorithm's efficiency and also allows us to

compare the relative performance of alternative algorithms. Once the

input size n becomes large enough, merge sort, with its (n lg n) worst-

case running time, beats insertion sort, whose worst-case running time

is (n2). Although we can sometimes determine the exact running time

of an algorithm, the extra precision is not usually worth the effort of

computing it. For large enough inputs, the multiplicative constants and

lower-order terms of an exact running time are dominated by the effects

of the input size itself.

The asymptotic efficiency of algorithms is required when we look at

input sizes large enough to make only the order of growth of the

running time relevant. That is, we are concerned with how the running

time of an algorithm increases with the size of the input in the limit, as

the size of the input increases without bound. Usually, an algorithm that

is asymptotically more efficient will be the best choice for all but very

small inputs.

Here we discussed several standard methods for simplifying the

asymptotic analysis of algorithms.

44 | P a g e

Space for learners: Asymptotic growth means the rate at which the function grows.

Growth rate means the complexity of function or the amount of resource

it takes up to compute (i.e. time + memory). Classification of growth:

a) Growing with the same rate

b) Growing with the slower rate

c) Growing with a faster rate

There are mainly three asymptotic notation are used to analyze function

growth and to represent time complexity of an algorithm. The functions

need not necessarily be about algorithms, and indeed asymptotic

analysis is used for many other applications.

Asymptotic analysis of algorithms requires:

1. Identifying what aspect of an algorithm we care about, such

as:

o runtime

o use of space

o possibly other attributes such as communication

bandwidth

2. Identifying a function that characterizes that aspect

3. Identifying the asymptotic class of functions that this

function belongs to, where classes are defined in terms of

bounds on growth rate.

The different asymptotic bounds we use are analogous to equality and

inequality relations:

 O ≈ ≤

 Ω ≈ ≥

 Θ ≈ =

 o ≈ <

 ω ≈ >

In practice, most of our analyses will be concerned with run time.

Analyses may examine:

 Worst case

45 | P a g e

Space for learners: Best case

 Average case (according to some probability distribution across

all possible inputs)

1.4.1 Order of Growth and Big-O Notation

In estimating the running time of insertion sort (or any other program)

we don't know what the constants c or k are. We know that it is a

constant of moderate size, but other than that it is not important; we

have enough evidence from the asymptotic analysis to know that

a merge sort is faster than the quadratic insertion sort, even though the

constants may differ somewhat [3].

We may not even be able to measure the constant c directly. For

example, we may know that a given expression of the language, such

as if, takes a constant number of machine instructions, but we may not

know exactly how many numbers. For these reasons, we usually ignore

constant factors in comparing asymptotic running times.

For hiding the constant factor, convenient notation are used. We

write O(n) instead of ''cn for some constant c.'' Thus an algorithm is said

to be O(n) or linear time if there is a fixed constant c such that for all

sufficiently large n, the algorithm takes time at most cn on inputs of

size n. An algorithm is said to be O(n2) or quadratic time if there is a

fixed constant c such that for all sufficiently large n, the algorithm takes

time at most cn2 on inputs of size n. O(1) means constant time.

Polynomial time means nO(1), or nc for some constant c. Thus any

constant, linear, quadratic, or cubic (O(n3)) time algorithm is a

polynomial-time algorithm.This is called big-O notation. It concisely

captures the important differences in the asymptotic growth rates of

functions.

One important advantage of big-O notation is that it makes algorithms

much easier to analyze, since we can conveniently ignore low-order

terms. For example, an algorithm that runs in time

10n3 + 24n2 + 3n log n + 144

is still a cubic algorithm, since

46 | P a g e

Space for learners: 10n3 + 24n2 + 3n log n + 144

<= 10n3 + 24n3 + 3n3 + 144n3

<= (10 + 24 + 3 + 144)n3

= O(n3).

Since we are ignoring constant factors, any two linear algorithms will

be considered equally good by this measure. There may even be some

situations in which the constant is so huge in a linear algorithm that

even an exponential algorithm with a small constant may be preferable

in practice. This is a valid criticism of asymptotic analysis and big-O

notation. However, as a rule of thumb it has served us well. Just be

aware that it is only a rule of thumb--the asymptotically optimal

algorithm is not necessarily the best one.

Some common orders of growth seen often in complexity analysis are:

O(1) constant

O(log2 n) logarithmic

O(n) linear

O(n log2 n) "n log2 n"

O(n2) quadratic

O(n3) cubic

1.4.2 Comparing Orders of Growth

Big O notation:

When we have only an asymptotic upper bound, we use O-notation.

Let f and g be functions from positive integers to positive integers. We

say

f is O(g(n)) if g is an upper bound on f: there exists a fixed

constant c and a fixed n0 such that for all n≥n0,f(n) ≤ cg(n). i.e.

O(g(n)) = {f(n) : positive constants c and n0, such that n n0,

we have 0 f(n) cg(n) }

Equivalently, f is O(g(n)) if the function f(n)/g(n) is bounded above by

some constant.

47 | P a g e

Space for learners: Intuitively: Set of all functions whose rate of growth is the same as or

lower than that of g(n).

Some examples:

These are all O(n2): These are not:

 n2

 n2 + 1000n

 1000n2 +

1000n

 n1.99999

 n

 n3

 n2.00001

 n2 lg n

Omega Ω notation:

Just as O-notation provides an asymptotic upper bound on a function,

-notation provides an asymptotic lower bound.

We say that f is Ω(g(n)), if g is a lower bound on f for large n. Formally,

f is Ω(g) if there is a fixed constant c and a fixed n0 such that for

all n>n0,cg(n) ≤ f(n)

i.e. (g(n)) = {f(n) : positive constants c and n0, such that n n0,

we have 0 cg(n)f(n)}

48 | P a g e

Space for learners:

For example, any polynomial whose highest exponent is nk is Ω(nk).

If f(n) is Ω(g(n)) then g(n) is O(f(n)). If f(n) is o(g(n))

then f(n) is not Ω(g(n)).

Intuitively: Set of all functions whose rate of growth is the same as or

higher than that of g(n).

Some examples:

These are all Ω(n2): These are not:

 n2

 n2 + 1000n (It's

also O(n2)!)

 1000n2 + 1000n

 1000n2 - 1000n

 n3

 n2.00001

 n1.99999

 n

 lg n

Theta Θ notation:

Just like others, Θ notation provides an asymptotically tight bound.

We say that f is Θ(g(n)) if g is an accurate characterization of f for

large n: it can be scaled so it is both an upper and a lower bound of f.

That is, f is both O(g(n)) and Ω(g(n)). Expanding out the definitions

of Ω and O, f is Θ(g(n)) if there are fixed constants c1 and c2 and a

fixed n0 such that for all n>n0,c1g(n) ≤ f(n) ≤ c2 g(n)

i.e. (g(n)) = {f(n) : positive constants c1, c2, and n0, such that n n0,

we have 0 c1g(n) f(n) c2g(n)}

49 | P a g e

Space for learners:

Intuitively: Set of all functions that have the same rate of growth as

g(n).

For example, any polynomial whose highest exponent is nk is Θ(nk).

If f is Θ(g), then it is O(g) but not o(g). Sometimes people use O(g(n)) a

bit informally to mean the stronger property Θ(g(n)); however, the two

are different.

Here are some examples:

 n + log n is O(n) and Q(n), because for all n > 1, n < n + log n

< 2n.

 n1000 is o(2n), because n1000/2n tends to 0 as n tends to infinity.

 For any fixed but arbitrarily small real number c, n log

n is o(n1+c), since n log n / n1+c tends to 0. To see this, take the

logarithm

log(n log n / n1+c)

= log(n log n) - log(n1+c)

= log n + log log n - (1+c)log n

= log log n - c log n

and observe that it tends to negative infinity.

The meaning of an expression like O(n2) is really a set of functions: all

the functions that are O(n2). When we say that f(n) is O(n2), we mean

that f(n) is a member of this set. It is also common to write this as f(n)

= O(g(n)) although it is not really an equality.

50 | P a g e

Space for learners: We now introduce some convenient rules for manipulating expressions

involving order notation. These rules, which we state without proof, are

useful for working with orders of growth. They are really statements

about sets of functions. For example, we can read #2 as saying that the

product of any two functions in O(f(n)) and O(g(n)) is in O(f(n)g(n)).

1. cnm = O(nk) for any constant c and any m ≤ k.

2. O(f(n)) + O(g(n)) = O(f(n) + g(n)).

3. O(f(n))O(g(n)) = O(f(n)g(n)).

4. O(cf(n)) = O(f(n)) for any constant c.

5. c is O(1) for any constant c.

6. logbn = O(log n) for any base b.

All of these rules (except #1) also hold for as well.

Some examples:

These are all Θ(n2): These are not

 n2

 n2 + 1000n

 1000n2 + 1000n +

32,700

 1000n2 - 1000n -

1,048,315

 n3

 n2.00001

 n1.99999

 n lg n

Small o notation:

We say f is o(g(n)) if for all arbitrarily small real c > 0, for all but

perhaps finitely many n,

f(n) ≤ cg(n).

i.e.

o(g(n)) = {f(n): c> 0, n0> 0 such that n n0, we have0

f(n)<cg(n)}.

f(n) becomes insignificant relative to g(n)as n approaches infinity:

 lim [f(n) / g(n)] = 0

 n

g(n) is anupper bound for f(n)that is not asymptotically tight

51 | P a g e

Space for learners: Equivalently, f is o(g) if the function f(n)/g(n) tends to 0 as n tends to

infinity. That is, f is small compared to g. If f is o(g) then f is also O(g)

Small -notation:

For a given function g(n)

(g(n)) = {f(n): c> 0, n0> 0 such that n n0, we have0 cg(n)

<f(n)}.

f(n) becomes arbitrarily large relative to g(n)as n approaches infinity:

 lim [f(n) / g(n)] = .

n

g(n) is alower bound for f(n)that is not asymptotically tight.

Example of Relative Asymptotic Growth:

Indicate, for each pair of expressions (A,B) in the table below, whether

A is 0, O, Ω, Q O� - O8 R. Assume that . ≥ 1, ∈> 0 ��� (>
1 ��� (O�ML��LM.Now following table contain possible “yes” or “no” in

the respective boxes:

A B O o Ω ω Θ

log/ � �∈ Yes Yes No No No

�/ (# Yes Yes No No No

√� �UVW # No No No No No

2# 2#)X No No Yes Yes No

�YZ[\ (YZ[# Yes No Yes No Yes
log �! log �# Yes No Yes No Yes

1.5 ORDERING FUNCTIONS BY ASYMPTOTIC GROWTH

RATES

When we use asymptotic notation to express the rate of growth of an

algorithm's running time in terms of the input size n. Suppose that an

algorithm took a constant amount of time, regardless of the input size

[4].For example, if you were given an array that is already sorted into

increasing order and you had to find the minimum element, it would

take constant time, since the minimum element must be at index 0.

Since we like to use a function of n in asymptotic notation, we could say

52 | P a g e

Space for learners: that this algorithm runs in Θ(n0), because n0 =1, and the algorithm's

running time is within some constant factor of 1.

Now suppose an algorithm took Θ(log10n) time. Whenever the base of

the logarithm is a constant, it doesn't matter what base we use in

asymptotic notation because there's a mathematical formula that says

^_`a 3 = ^_`b 3
^_`b a

for all positive numbers a, b and c. Therefore, if a and b are constant,

then logc � ��� logd �

Differ only by a factor of logd � and that is a costant factor which we

can ignore in asymptotic notation [4].

Worst case running time of binary search is -�logc �� for any positive

constant a. The no of guesses is at mostlog) � + 1 , generating and

testing each guess takes constant time and setting up and returning take

constant time. In practice we write binary search takes -�log) �� time.

Now suppose, a and b are two constant and a<b, then a running time

-��c� grows more slowly than a running time of �d . For example, a

running time of ��� , which is -����grows more slowly than a running

time of -��)� . The exponents don’t have to be integers. For example, a

running time of -��)� grows more slowly than a running time of

-��)√�, *ℎK(ℎ KM -��).=�.

Following graph compares the growth of �, �) ��� �).=

53 | P a g e

Space for learners: Logarithms grow more slowly than polynomials, i.e. -�log) �� grows

more slowly than-��c) for any positive constant a. But since the value

of log) � increases as n increases, θ�log) �� grows faster than -�1�.
Following graph compares the growth of 1, n, and log) �:

A

list of functions in asymptotic notation that we often encounter when

analyzing algorithms is given below (ordered by slowest to fastest

growing):

1. -�1�

2. - log) �

3.-���

4. -(nlog) ��

5. -��)�

6. -(�)log) ��

7. -��J�

8. -�2#�

9. -��!�

[Note that an exponential function an, where a>1, grows faster than any

polynomial function nb, where b is any constant].

Example:Rank these functions according to their growth, from slowest

growing to fastest growing.

8�)

54 | P a g e

Space for learners: � log? �

 64

log) �

 � log) �

logf �

 6�J

 4�

8)#

Solution:

We have several different types of functions here, so we start by

thinking about the general properties of those function types and how

their rate of growth compares. Here's a reminder of different function

types shown here, in order of their growth:

1. Constant functions (for e.g. 64)

2. Logarithmic functions (for e.g. logf � , log) �)

3. Linear functions (for e.g. 4n)

4. Linearithmic functions (for e.g. � log) �, � logf �)

5. Polynomial functions (for e.g. 8n2, 6n3)

6. Exponential functions (for e.g. 82n)

We have several types where there are multiple functions - logarithmic

functions, linearithmic functions, and polynomial functions, so we have

to look more closely at each of them to compare their growth within the

class. Within the logarithmic functions, the lesser bases grow more

quickly than the higher bases – so log) � will grow more quickly

thanlogf �. Following graph shows the scenario:

55 | P a g e

Space for learners:

The linearithmic functions are those that multiply linear terms by a

logarithm, of the form � log/ �. With the n being the same in both, then

the growth is dependent on the base of the logarithms. The lesser bases

grow more quickly than the higher bases – so� log) � will grow more

quickly than � log? �. We can see that in the following graph:

Within the polynomial functions, 8n2 will grow more slowly than 6n3,

since it has a lesser exponent. We don't even have to look at the

constants in front, since the exponent is more significant.

So, the correct order of the functions would be:

64

logf �

56 | P a g e

Space for learners: log) �

4�

� log? �

 � log) �

 8�), 6�J

8)#

CHECK YOUR PROGRESS

Answer the following:

1. For the functions, �/��� (# , what is the asymptotic relationship

between these functions? Assume that k ≥ 1 and c > 1 ��� (O�ML��L

[A] nk is O�cW�

[B] nk is Ω�cW�

[C] nk is Θ�cW�

[D] nk is o�cW�

2. For the functions, 8Wand4W , what is the asymptotic relationship

between these functions:

[A] 8W is O�4W�

[B] 8W is Ω�4W�

[C] 8W is Θ�4W�

[D] 8W is o�4W�

3. For the functions, log) � ��� logf �, what is the asymptotic

relationship between these functions?

[A] log) � KM 0�logf ��

[B] log) � KM Ω�logf ��

[C] log) � KM Θ�logf ��

[D] log) � KM O�logf ��

4. Consider the following functions from positive integer’s real

numbers:

57 | P a g e

Space for learners: 10, p�, �, log) � , 100/�

The correct arrangement of the above functions in increasing order of

asymptotic complexity is:

 [A] log) � , ���
, 10, √�, �

 [B]
���

, 10, log) � , √�, �

 [C] 10, 100/�, √�, log) � , �

 [D]
���

, log) � , 10, √�, �
5. Consider the following three functions

 8� = 10#8) = �rst #8J = �√#

 Which one of the following options arranges the functions in

increasing order of asymptotic growth rate?

 [A] 8�, 8), 8J

 [B] 8), 8�, 8J

[C] 8J, 8), 8�

[D] 8), 8J, 8�

1.6 SUMMING UP

 Asymptotic notation is used to simplify complex polynomial

 If f(n) is O(g(n)) then a*f(n) is also O(g(n)) ; where a is a constant

 If f(n) is given then f(n) is O(f(n))

 If f(n) is O(g(n)) and g(n) is O(h(n)) then f(n) = O(h(n))

 If f(n) is Θ(g(n)) then g(n) is Θ(f(n))

 If f(n) is O(g(n)) then g(n) is Ω (f(n))

 The asymptotic efficiency of algorithms is required when we look

at input sizes large enough to make only the order of growth of

the running time relevant.

58 | P a g e

Space for learners: Asymptotic growth means the rate at which the function grows.

Growth rate means the complexity of function or the amount of

resource it takes up to compute.

 When we have only an asymptotic upper bound, we use O-

notation

 When we have only an asymptotic upper bound on a function, -

notation provides an asymptotic lower bound

 -notation provides an asymptotically tight bound

1.7 ANSWERS TO CHECK YOUR PROGRESS

1. [A]

2. [B]

3. [A], [B], [C]

4. [B]

5. [D]

1.8 POSSIBLE QUESTIONS

Solve the following problems:

1. Let, p�n� = ∑ aVnVvV��

Where if �� > 0, �� � ������ � polynomial in n, and let k be a

constant. By using definitions of the asymptotic notations, prove the

following properties:

a. If k >d, then p(n)=o(nk)

b. If k <d, then p(n)=ω(nk)

2. Rank these functions according to their growth, from slowest

growing (at the top) to fastest growing (at the bottom).

1, n3, n2, (3/2)n, n, 2n

59 | P a g e

Space for learners: 3. Which kind of growth best characterizes each of these functions?

 Constant Linear Polynomial Exponential

2n3

(3/2)n

(3/2)n

1

2n

3n

1000

3n2

[Hints: 1 and 1000 are constant, 3n and (3/2)n are linear, 2n3 and 3n2

are polynomial, 2n and (3/2)n are exponential]

1.9 REFERENCES AND SUGGESTED READINGS

[1] T.H. Cormen, C. E. Leiserson, R.L.Rivest, and C. Stein,

"Introduction to Algorithms", Second Edition, Prentice Hall of India

Pvt. Ltd, 2006

[2] Data Structure through c in Depth, by S.K. Srivastav and Deepali

Srivastava

[3]https://www.cs.cornell.edu/courses/cs3110/2014sp/recitations/20/revi

ew-of-asymptotic-complexity.html#2

[4] https://www.khanacademy.org/computing/computer-

science/algorithms/asymptotic-notation/a/functions-in-asymptotic-

notation

60 | P a g e

Space for learners:

UNIT 4: RECURRENCES

Unit Structure:

4.1 Introduction

4.2 Objective

4.3 Recurrences

4.4 Substitution Method

 4.4.1 Examples of Solving Recurrences using Substitution

Method

 4.4.2 Advantages and Limitations of Substitution Method

4.5 Recursion Tree Method

4.5.1 Examples of Solving Recurrences using Recursion Tree

Method

4.5.2 Advantages and Limitations of Recursion Tree Method

4.6 Master Method

4.6.1 Examples of Solving Recurrences using Master Theorem

4.6.2 Advantages and Limitations of Recursion Master Method

4.7 Summing Up

4.8 Answers to Check Your Progress

4.9 Possible Questions

4.10 References and Suggested Readings

4.1 INTRODUCTION

In Unit 1, analysis of algorithms has been already discussed where the

algorithms without recursive calls to themselves are considered as

examples. In case of algorithms with recursive calls to themselves,

recurrences are used to express them. In this unit, we are going to learn

about recurrences. We will also examine the methods to solve

recurrences so that the run-time complexities of algorithms described by

the recurrences can be estimated.

61 | P a g e

Space for learners: 4.2 UNIT OBJECTIVES

After reading this unit you are expected to be able to learn:

 Definition of recurrences

 About Substitution method to solve recurrences.

 About advantages and limitations of Substitution method.

 About Recursion Tree Method to solve recurrences.

 About advantages and limitations of Recursion Tree method.

 About the Master Theorem to solve recurrences.

 About advantages and limitations of Master Theorem.

4.3 RECURRENCES

A recurrence can be defined as an inequality or equation which

demonstrates the run time of an algorithm in terms of its values on

lesser inputs. Algorithms with recursive calls to themselves are

demonstrated by recurrences. For example: The run time of Quick sort

algorithm with best case partitioning is represented by the following

recurrence.

 F (n) ≤ 2 F (n / 2) + C n

In the above recurrence, n is the number of inputs and it is greater than

n1 where n1 is a constant. On the other hand C is a constant. The run

time of Quick sort algorithm, F (n) is demonstrated in terms of two F (n

/ 2) in this recurrence.

By solving a recurrence of an algorithm, the run-time complexity of the

algorithm can be estimated. In the process of solving recurrences,

usually we have to make some assumptions. For example, if F (n) is the

runtime of an algorithm then n must be an integer. We can also consider

F (n) = Ө (1) in case of sufficiently small value of n. The floors, ceilings

and boundary conditions are usually ignored to solve recurrences.

There are three methods available to solve recurrences that are

Substitution method, Recursion tree method and Master method.

62 | P a g e

Space for learners:

4.4 SUBSTITUTION METHOD

The substitution method is a simple but powerful technique used for

solving recurrences. It consists of two steps as mentioned below.

Step 1: At first the solution of a particular recurrence is

assumed.

Step 2: Secondly, mathematical induction is used to prove that

the assumed solution is correct or valid.

4.4.1 Examples of Solving Recurrences using

Substitution Method

In this section, we are going to solve two recurrences using Substitution

method.

(a) F (n) = 2 F (n / 2) + Θ (n)

Solution:

In step 1, we have to guess the solution of the given recurrence. So, let

us guess the solution of the given recurrence as O (n lg n).

In the second step, using mathematical induction, we have to prove that

F(n) ≤ t n lg n, where t is a constant and it is greater than 0.

Let us assume that the solution O (n lg n) is true for n/2.

Now we can state that F (n/2) ≤ t (n/2) lg(n/2) is true.

STOP TO CONSIDER

The run time of Quick sort algorithm with worst case partitioning

is represented by the following recurrence.

 F (n) = F (n-1) + Θ (n)

STOP TO CONSIDER

The substitution method can be used to estimate both upper and

lower bounds on recurrences.

63 | P a g e

Space for learners: Then substituting the F (n/2) in the given recurrence, we can have the

following expressions.

 F (n) ≤ 2 t (n/2) lg(n/2) + n

 ≤ t n (lg n – lg 2) + n

 ≤ t n (lg n -1) + n

 ≤ t n lg n – t n + n

 ≤ t n lg n – n (t - 1)

 For t ≥ 1, we can have, F (n) ≤ t n lg n

Now according to mathematical induction, we also have to prove the

assumed solution to be correct for the boundary conditions. In this

process, we are required to prove F (n) ≤ t n lg n for boundary

conditions where n ≥ c and c is a constant.

Let, F (1) = 1 , c ≥ 2

Then for n = 2, we have,

 F (2) = 2 F(2/2) + 2

 = 4

 t n lg n = 2 * 2 * lg 2 [For t = 2]

 = 4

So, it can be stated that F (2) ≤ 2 * 2 * lg 2

Again, for n = 3, we have

 F (3) = 2 F(3/2) + 3

 = 5

 t n lg n = 2 * 3 * lg 3 [For t = 2]

 ≅ 6
So, it can be stated that F (3) ≤ 2 * 3 * lg 3

From the above observations, it is proved that the assumed solution O (n

lg n) is true for the boundary conditions of n = 2 and n = 3 with any

choice of t ≥ 2.

64 | P a g e

Space for learners: Finally, using mathematical induction, it is proved that O (n lg n)

is the correct assumption as a solution for the recurrence F (n) = 2 F

(n / 2) + Θ (n).

(b) F (n) = F (n-1) + Θ (n)

Solution:

In step 1, we have to guess the solution of the given recurrence. So, let

us guess the solution of the given recurrence as O (n2).

In the second step, using mathematical induction, we have to prove that

F (n) ≤ t n2, where t is a constant and it is greater than 0.

Let us assume that the solution O (n2) is true for (n – 1).

Now we can state that F (n-1) ≤ t (n-1)2 is true.

Then substituting the F (n-1) in the given recurrence, we can have the

following expressions.

 F (n) ≤ t (n-1)2 + n

 ≤ t (n2 – 2 n + 1) + n

 ≤ t n2 – 2 t n + t + n

 ≤ t n2 –(2 t n - t - n)

 For t ≥ 1, we can have, F (n) ≤ t n2

Now according to mathematical induction, we also have to prove the

assumed solution to be correct for the boundary conditions. In this

process, we are required to prove F (n) ≤ t n2 for boundary conditions

where n ≥ c and c is a constant.

Let, F (1) = 1 , c ≥ 2

Then for n = 2, we have,

 F (2) = F (2-1) + 2

 = 3

 t n2 = 2 * 22 [For t = 2]

 = 8

So, it can be stated that F (2) ≤ 2 * 22

Again, for n = 3, we have

65 | P a g e

Space for learners: F (3) = F (3-1) + 3

 = F (2) + 3

 = 6

 t n2 = 2 * 32 [For t = 2]

 = 18
So, it can be stated that F(3) ≤ 2 * 32

From the above observations, it is proved that the assumed solution O

(n2) is true for the boundary conditions of n = 2 and n = 3 with any

choice of t ≥ 2.

Finally, using mathematical induction, it is proved that O (n2) is the

correct assumption as a solution for the recurrence F (n) = F

(n-1) + Θ (n).

4.4.2 Advantages and Limitations of Substitution Method

Advantages of Substitution method:

 The substitution method is a simple and powerful technique to solve

recurrences.

 Appropriate solution of a recurrence can be easily estimated by using

this method.

 Approximately all recurrences can be solved by Substitution method.

Limitations of Substitution method:

 Substitution method can be effective only when the assumption of

the solution for particular recurrence is a correct or valid one. So, the

main problem is that we don’t have a standard approach to make a

good assumption of an appropriate solution for a particular

recurrence. As a result, it may be difficult to guess an appropriate

solution for a complex recurrence.

 In some cases, it may happen that the assumption of the solution of a

recurrence is correct but it may not be proved by mathematical

induction. For example: O (n) is a correct assumption as the solution

of the recurrence, F (n) = 2F (n/2) + 1. But using mathematical

induction, it cannot be proved.

66 | P a g e

Space for learners: CHECK YOUR PROGRESS

1. Multiple Choice Questions:

A. Which of the following is not an example of recurrence?

 (i) F (n) = 2 F (n/2) + O (n)

 (ii) F (n) = T (n/2) + 1

 (iii) F (n) = F (n-1) + O (n)

 (iv) None of the above

B. Which of the following algorithm is not described by a

recurrence?

 (i) Linear search

 (ii) Binary search

 (iii) Merge sort

 (iv) All of the above

C. Which of the recurrence can be used to describe binary search

algorithm?

 (i) F (n) = 2 F (n/2) + 1

 (ii) F (n) = F (n/3) + 1

 (iii) F (n) = F (n/2) +1

 (iv) None of the above

D. Which of the following is not true in case of substitution method?

 (i) Mathematical induction is used in substitution method.

 (ii) Substitution method is used to solve recurrences.

 (iii) Substitution method is a complex technique.

 (iv) None of the above.

E. Which of the following is a drawback of substitution method?

(i) Assumption of a proper solution for complex recurrences

may be difficult.

 (ii) It is a complex method for beginners.

(iii) Appropriate solution of a recurrence cannot be easily

estimated by using this method.

 (iv) None of the above

67 | P a g e

Space for learners: 4.5 RECURSION TREE METHOD

Recursion Tree is a tree structure where each node represents the cost of

a particular recursive sub-problem which is a part of an algorithm with

recursive calls. So, recursion tree can be used to represent recurrences in

terms of costs associated with each recursive calls. The recursion tree

can be used to solve a recurrence and this technique is referred as

Recursion tree method.

The steps of the Recursion tree method are stated as follows:

Step 1: At first, an appropriate recursion tree for a particular

recurrence has to be drawn.

Step 2: In the second step, cost associated with each level other

than the last level in the tree is estimated by adding

costs represented by each node available in each level.

Step 3: In the third step, total number of levels and the total

number of nodes in the last level are estimated.

Step 4: In the fourth step, cost associated at the last level is

estimated.

Step 5: In the final step, summation of all costs associated with

all the levels in the recursion tree is performed to obtain

an expression to represent the total cost of the particular

recurrence. Then asymptotic notation is determined by

simplifying this estimated expression.

STOP TO CONSIDER

Recursion tree method can also be used to estimate a possible

solution for a particular recurrence and this estimated solution can

be verified using Substitution method.

68 | P a g e

Space for learners: 4.5.1 Examples of Solving Recurrences using Recursion

Tree Method

In this section, we are going to solve three recurrences using Recursion

tree method.

(a) F (n) = 2 F (n / 2) + Θ (n)

Solution:

 The given recurrence can also be written as,

 F (n) = 2 F (n / 2) + C n,

where C is a constant coefficient and it is greater than 0.

At first, we have to construct an appropriate recursion tree for the given

recurrence.

Construction of the recursion tree for the recurrence,

F (n) = 2 F (n / 2) + C n, is shown in figure 4.1 and 4.2.

Figure 4.1: Recursion tree for the recurrence,

F (n) = 2 F (n / 2) + Θ (n)

69 | P a g e

Space for learners:

Figure 4.2: Recursion tree with cost at each node for the recurrence,

F (n) = 2 F (n / 2) + Θ (n)

In the second step, we have to estimate costs associated with each level

in the recursion tree.

From the given recurrence, it is observed that the cost of one sub-

problem with input n is C n where C > 0.

So, from the recursion tree in figure 4.2, we can have,

The cost at the root node or the 0th level = C n

The cost at the 1st level = C n/2 + C n/2

 = C n

The cost at the 2nd level = C n/22 + C n/22 + C n/22 + C n/22

 = C n

It is observed that the input sizes of the sub-problems decrease as the

number of levels in the recursion tree increases. As a result, the input

size of each node in the last level becomes 1. Now if we let L be the

number of the last level in the recursion tree then the following equation

can be stated.

 n / 2L = 1

 ⇒ n = 2L

 ⇒ lg n = lg 2L

 ⇒ lg n = L

So, the total number of levels in the recursion tree = lg n +1

70 | P a g e

Space for learners: The total number of nodes in the last level of the recursion tree =

2lg n

 So, the cost at the last level = C + C + C +…………+ C

 = 2lg n C

 = C n lg 2

 = C n

 Now, finally summing up the costs of all levels in the recursion

tree, we can have the following expression.

 F(n) = C n + C n + C n +…………+C n

 = C n (lg n +1)

 = C n lg n + C n

 = C n lg n + Θ (n)

 = O (n lg n)

 So, we can state that O (n lg n) is the asymptotic upper bound of

the recurrence F (n) = 2 F (n / 2) + Θ (n) .

(c) F (n) = 2 F (n / 2) + O (n2)

Solution:

The given recurrence can also be written as,

F (n) = 2 F (n / 2) + C n2,

where C is a constant coefficient and it is greater than 0.

At first, we have to construct an appropriate recursion tree for the given

recurrence.

Construction of the recursion tree for the recurrence,

F (n) = 2 F (n / 2) + C n2, is shown in figure 4.3 and 4.4.

2lg n

lg n +1

71 | P a g e

Space for learners:

Figure 4.3: Recursion tree for the recurrence, F (n) = 2 F (n / 2) + O (n2)

Figure 4.4: Recursion tree with cost at each node for the recurrence,

F (n) = 2 F (n / 2) + O (n2)

In the second step, we have to estimate costs associated with each level

in the recursion tree.

From the given recurrence, it is observed that the cost of one sub-

problem with input n is C n2 where C > 0.

 So, from the recursion tree in figure 4.4, we can have,

 The cost at the root node or the 0th level = C n2

 The cost at the 1st level = C n2/22 + C n2/22

 = C n2/2

 The cost at the 2nd level = C n2/24 + C n2/24 + C n2/24 + C n2/24

72 | P a g e

Space for learners: = C n2/22

It is observed that the input sizes of the sub-problems decrease as the

number of level in the recursion tree increases. As a result, the input

size of each node in the last level becomes 1. Now if we let L be the

number of the last level in the recursion tree then the following equation

can be stated.

 n / 2L = 1

 ⇒ n = 2L

 ⇒ lg n = lg 2L

 ⇒ lg n = L

So, the total number of levels in the recursion tree = lg n +1

The total number of nodes in the last level of the recursion tree = 2lg n

So, the cost at the last level = C + C + C +…………+ C

 = 2lg n C

 = C n lg 2

 = C n

Now, finally summing up the costs of all levels in the recursion tree, we

can have the following expression.

 F (n) = C �� + C
��
� + C

��
�� +…………+ C

��
��� ��� + C n

 = C �� ∑ �
��

� �!�"#$ + C n

 < C �� ∑ �
��%"#$ + C n

 = ��& ' �
�!�

�
(+ C n

 = O (n2)

So, we can state that O (n2) is the asymptotic upper bound of the

recurrence F (n) = 2 F (n / 2) + O (n2) .

2lg n

73 | P a g e

Space for learners: (d) F (n) = 3 F (n / 4) + O (n)

Solution:

The given recurrence can also be written as,

 F (n) = 3 F (n / 4) + C n,

where C is a constant coefficient and it is greater than 0.

At first, we have to construct an appropriate recursion tree for the given

recurrence.

Construction of the recursion tree for the recurrence,

F (n) = 3 F (n / 4) + C n, is shown in figure 4.5 and 4.6.

Figure 4.5: Recursion tree for the recurrence, F (n) = 3 F (n / 4) + O (n)

74 | P a g e

Space for learners:

Figure 4.6: Recursion tree with cost at each node for the recurrence,

F (n) = 3 F (n / 4) + O (n)

In the second step, we have to estimate costs associated with each level

in the recursion tree.

From the given recurrence, it is observed that the cost of one sub-

problem with input n is C n where C > 0.

So, from the recursion tree in figure 4.6, we can have,

The cost at the root node or the 0th level = C n

The cost at the 1st level = C n/4 + C n/4 + C n/4

 = C n (3/4)

The cost at the 2nd level = C n/42 + C n/42 + C n/42 + C n/42 + C n/42 +

C n/42 + C n/42 + C n/42 + C n/42

 = C n (32/42)

It is observed that the input sizes of the sub-problems decrease as the

number of level in the recursion tree increases. As a result, the input

size of each node in the last level becomes 1. Now if we let L be the

number of the last level in the recursion tree then the following equation

can be stated.

 n / 4L = 1

 ⇒ n = 4L

 ⇒ log* � = log* 4,

 ⇒ log* � = L

75 | P a g e

Space for learners:
So, the total number of levels in the recursion tree = log* � +1

The total number of nodes in the last level of the recursion tree = 3�- . �

So, the cost at the last level = C + C + C +…………+ C

 = 3�- . � C

 = C ��- . /

 = Θ (��- . /)

Now, finally summing up the costs of all levels in the recursion tree, we

can have the following expression.

F(n) = C n + C n (3/4) + C n (32/42)+……+C n (3�- . �!�/4�- . �!�) +

Θ (��- . /)

 = C n ∑ (3"/4")�- . �!�"#$ + Θ (��- . /)

 < C n ∑ (3"/4")%"#$ + Θ (��- . /)

 = n C ' �
�!1

.
(+ Θ (��- . /)

 = O (n)

So, we can state that O (n) is the asymptotic upper bound of the

recurrence, F (n) = 3 F (n / 4) + O (n).

4.5.2 Advantages and Limitations of Recursion Tree

Method

Advantage of Recursion tree method:

Recursion tree method is a straightforward and standard approach to

estimate an appropriate solution or a proper assumption of solution for a

particular recurrence.

3�- . �

76 | P a g e

Space for learners: Limitations of Recursion tree method:

 It may be difficult to draw a proper recursion tree for complex

recurrences.

 We have to be very watchful to draw recursion trees and summing

costs for recurrences. Otherwise we cannot able to estimate correct

or valid solutions or proper assumptions of solutions for recurrences.

4.6 MASTER METHOD

The Master method to solve recurrences is based on the Master

theorem. So, at first we have to know the Master theorem that is

presented below.

Master theorem:

Let F (n) be a recurrence defined as follows:

 F (n) = x F (n/y) + f (n) ,

Where x and y are two constants such that x ≥ 1 and y > 1. f(n) is a

function and n is a nonnegative integer. n/y can be considered as either

floor of n/y or ceiling of n/y.

Now according to the Master theorem, three cases are presented below

to bound F(n) with asymptotic notations.

Case 1: If f (n) = O (��- 7 8!∈), where ∈ is a constant and it is

greater than 0 then F (n) = Θ (��- 7 8).

Case 2: If f (n) = Θ (��- 7 8), then F (n) = Θ (n�- : ; lg n).

Case 3: If f (n) = Ω (��- 7 8=∈), where ∈ is a constant and it is

greater than 0 and if xf(n/y) ≤ d f(n) for some constant

d<1 and all adequately large n, then F(n) = Θ(f(n)).
If we can establish a recurrence with any of the above cases then using

the Master theorem, we can directly find out the solution of the

recurrence.

77 | P a g e

Space for learners: 4.6.1 Examples of Solving Recurrences using Master

Theorem

In this section, we are going to solve four recurrences using Master

method.

(a) F (n) = 4F (n/2) + n

Solution:

From the given recurrence, it is observed that x = 4, y = 2 and f (n) = n.
So, ��- 7 8 = ��- � * = n2

 f (n) = n = n1 = n2-1 = O(��- � *!∈), where ∈ = 1

From the above observations, we can apply case 1 from the Master

theorem.

According to case 1 from Master Theorem we can state that

 F (n) = Θ (��- 7 8) that means F (n) = Θ (n2).

(b) F (n) = 4F (n/2) + n2

Solution:

From the given recurrence, it is observed that x = 4, y = 2 and f(n) = n2.
So, ��- 7 8 = ��- � * = n2

 f (n) = n2 = Θ (��- � *) = Θ (��- 7 8)

From the above observations, we can apply case 2 from the Master

theorem.

According to case 2 from Master Theorem we can state that

 F (n) = Θ (��- 7 8 lg n) that means F (n) = Θ (�� lg n)

(c) F (n) = 4 F (n/2) + n3

Solution:

From the given recurrence, it is observed that x = 4, y = 2 and f(n) = n3.
So, ��- 7 8 = ��- � * = n2

 f (n) = n3 = Ω (��- � *=�) = Ω (��- 7 8=∈), where ∈ = 1
Again, xf(n/y) = 4(n3/23)=(1/2)n3 = (1/2)f(n)

78 | P a g e

Space for learners: Here d = ½ and so, d < 1
From the above observations, we can apply case 3 from the Master

theorem.

According to case 3 from Master Theorem we can state that

 F (n) = Θ (f (n)) that means F (n) = Θ (n3).

(d) F (n) = F (n/2) + Θ (1)
Solution:

From the given recurrence, it is observed that x = 1, y = 2 and
f (n) = 1.

So, ��- 7 8 = ��- � � = n0 = 1
 f (n) = 1 = n0 = Θ (��- � �) = Θ (��- 7 8)

From the above observations, we can apply case 2 from the Master

theorem.

According to case 2 from Master theorem we can state that

 F (n) = Θ (��- 7 8 lg n) that means F (n) = Θ (lg n)

4.6.2 Advantages and Limitations of Master Method

Advantage of Master method:

The Master method is a very simple and direct way to estimate solutions

for recurrences.

Limitations of Master Method:

The main problem of Master method is that all types of recurrences

cannot be solved by using this method. There are some recurrences

available where Master theorem cannot be applicable. For example:

Consider the following recurrence.

 F (n) = 2F (n/2) + n/log n
From the above recurrence, it is observed that x = 2, y = 2 and f(n) =
n/log n.
So, ��- 7 8 = n and ��- 7 8/ f(n) = log n

79 | P a g e

Space for learners: From the above observations, it is found that f(n) is asymptotically

smaller than ��- 7 8 and so according to the Master theorem case 1

should be applicable to the above recurrence. But it is also observed

that f (n) is not polynomially smaller than ��- 7 8 and as a result case

1 is not applicable in this case.

CHECK YOUR PROGRESS

2. Multiple choice questions:

A. Which of the following is true in case of Recursion tree method?

 (i) Construction of an appropriate recursion tree for a recurrence

is the most important part to solve the recurrence using

Recursion tree method.

 (ii) Cost at each level in a recursion tree is estimated by

mathematical induction.

 (iii) Recursion tree method cannot be used to find out the solution

of all types of recurrences.

 (iv) None of the above.

B. Which of the following recurrences can have a recursion tree

where each parent node linked with three child nodes?

 (i) F (n) = 2F (n/3) + n

 (ii) F (n) = 4F (n/2) + n

 (iii) F (n) = 3F (n/4) + n

 (iv) None of the above

C. Which of the following recurrences can have a recursion tree

where the cost at the root is C n2 ?

 (i) F (n) = 2F (n/3) + O (n lg n)

 (ii) F (n) = 3F (n/3) + O (n2)

 (iii) F (n) = 4F (n/3) + O (n)

 (iv) None of the above

 D. Which of the following is not true in case of Master method?

 (i) Master method is based on Master theorem.

 (ii) Master method is a direct way to solve recurrences.

 (iii) Solution estimated by Master method need not be proved by

substitution method.

 (iv) All kind of recurrences can be solved by Master method.

80 | P a g e

Space for learners: E. Which of the following recurrences cannot be solved by Master

method?

 (i) F (n) = 2F (n/2) + n lg n
 (ii) F (n) = 2F (n/2) + n
 (iii) F (n) = 3F (n/4) + n lg n

(iv) All of the above

4.7 SUMMING UP

 A recurrence is an inequality or equation which express the run

time of an algorithm in terms of its values on lesser inputs.

For example: F (n) = 3F (n/3) + n.

 Substitution method, Recursion tree method and Master method

are the methods that can be used to solve recurrences.

 In Substitution method, at first the solution of a recurrence is

assumed and then mathematical induction is used to prove that

the assumed solution is correct or valid.

 In Recursion tree method, at first proper recursion tree is

constructed for a recurrence. Then cost is estimated at each level

of the recursion tree. Finally, all the costs associated with all the

levels are added to find out the total cost of the particular

recurrence.

 The Master method is based on Master theorem. All recurrences

cannot be solved by Master method.

4.8 ANSWER TO CHECK YOUR PROGRESS

1 . A. (ii) , B. (i) , C. (iii) , D. (iii) , E. (i)

2. A. (i) , B. (iii) , C. (ii) , D. (iv), E. (i)

81 | P a g e

Space for learners: 4.9 POSSIBLE QUESTIONS

1) Explain Substitution method with examples.

2) Solve the following recurrence using Substitution method.

F (n) = 3 F (n / 4) + O (n)

3) Explain Recursion tree method with examples.

4) Solve the following recurrence using Recursion tree method.

F (n) = F (n-1) + Θ (n)

5) Write down the Master theorem.

6) Solve the following recurrences using Master method.

(a) F (n) = 9F (n/3) + Θ (n)

(b) F (n) = F (2n/3) + Θ (1)

(c) F (n) = 3F (n/4) + O (n lg n)

7) Write down the limitations of Substitution method and Master

method.

4.10 REFERENCES AND SUGGESTED READINGS

 Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C.

(2009). Introduction to algorithms. MIT press.

82 | P a g e

Space for learners:

UNIT 5: AMORTIZED ANALYSIS

Unit Structure:

 5.1 Introduction

 5.2 Unit Objectives

 5.3 Amortized Analysis

 5.3.1 Features of Amortized Analysis.

 5.4 Different approaches to amortized analysis

 5.4.1 Aggregate analysis method.

 5.4.2 Accounting method.

 5.4.3 Potential function method.

 5.5 Case Studies

 5.5.1 Stack

 5.5.2 Binary Counter

 5.6 Summing Up

 5.7 Answers to Check Your Progress

 5.8 Possible Questions

 5.9 Suggested Readings

5.1 INTRODUCTION

Several different kinds of operations are supported by data

structures. Each operation has its own cost in terms of time and

space. Amortized analysis says that some of these operations can be

very expensive and can be performed as it does not increase the

overall average cost of each operation. As we are mainly interested

in the asymptotic behaviour of the algorithm so we only consider the

worst-case average cost per operation in a sequence of many

operations.

83 | P a g e

Space for learners: 5.2 UNIT OBJECTIVES

After going through this unit, you will be able to :

 understand the fundamental concepts of amortized analysis.

 differentiate between amortized analysis and worst case

analysis of an algorithm.

 understand the different approaches to amortized analysis.

 perform amortized analysis of a given algorithm.

5.3 AMORTIZED ANALYIS

Asymptotic analysis of algorithms gives us the worst case analysis

of each operation without considering the effect of one operation

over the other, whereas amortized analysis can be applied to a

sequence of operations giving us precise and detailed analysis.

Amortized analysis is applied on data structures that support many

operations where the sequence of operations and the multiplicity of

each operation is application specific or the associated algorithm

specific.

As many operations are involved as part of the amortized analysis,

our objective is to perform efficiently as many operations as possible

without leaving very few costly operations. Generally, the worst

case time of each operation is given by taking into account in

calculating the average cost in the worst case. For calculating the

amortized cost of an operation, we take the average over all the

operations.

In an amortized analysis, the time required to perform a sequence of

data-structure operations is averaged over all the operations

performed. We can use amortized analysis to show if we average

over a sequence of operations then the average cost of an operation

is small even if a single operation within the sequence may be

expensive. Amortized analysis does not involve probability making

it different from average-case analysis. But amortized analysis

makes sure the average performance of each operation in the worst

case.

84 | P a g e

Space for learners: 5.3.1 Features of Amortized Analysis

Features of Amortized analysis:

 Amortized analysis is applied to algorithms where most of

the operations are fast but only a few occasional operations

are very slow.

 Amortized analysis involves analyzing a sequence of

operations and guarantees that the worst case average time

will be lower than the worst case time of a particular

expensive operation.

 Amortized analysis gives an upper bound as it the average

performance of each operation in the worst case.

 Amortized analysis does not mention anything about the cost

of a specific operation in the sequence rather it gives the

overall cost of a sequence of operations.

 Amortized analysis may consist of both inexpensive and

expensive operations however, amortized analysis will

always give that the average cost of an operation is less

expensive.

 Amortized analysis does not involve probability as different

from average case analysis where inputs are modelled using

probability distribution that fits the input.

 Amortized analysis takes care of the fact that some of the

expensive operations may pay for future operations by

somehow reducing its number or the cost of these operations

that may happen in the future.

85 | P a g e

Space for learners: CHECK YOUR PROGRESS

1. State whether true or false:

a. In asymptotic analysis, we take the average over all the

operations.

b. Amortized analysis does not include probability calculations.

c. Amortized analysis involves both inexpensive and expensive

operations.

d. Amortized analysis involves calculating the cost of a specific

operation in the sequence.

e. Amortized cost is less than the worst case cost of the

operation.

5.4 DIFFERENT APPROACHES TO AMORTIZED

ANALYSIS

We will now the study the different approaches to amortized

analysis. There are mainly 3 different approaches to amortized

analysis and these approaches are mainly meant for analysis purpose

only.

 1. Aggregate analysis method.

 2. Accounting method.

 3. Potential function method.

5.4.1 Aggregate Analysis method

Aggregate analysis is the simplest method which involves

determining an upper bound T(n) on the total cost of a sequence of n

operations then dividing T(n) by the number n of operations to

obtain the amortized cost or the average cost in the worst case. The

average cost per operation is T(n)/n. The average cost is taken as the

amortized cost of each operation, so that all operations have the

same amortized cost. For all operations the same amortized cost

T(n)/n is assigned, even if they are of different types.

86 | P a g e

Space for learners: The other two methods allows for assigning different amortized

costs to different types of operations in the same sequence.

5.4.2 Accounting Method

Accounting method involves assigning different costs to different

types of operations in which some of the operations will cost more

and some less than the actual cost. The cost associated with each

operation is called its amortized cost. If an operation's amortized

cost is more than the actual cost, the difference is stored as credits in

specific objects (elements) in the data structure. These accumulated

credits can be used to pay for operations whose amortized cost is

less than the actual cost.

Accounting method is similar to maintaining an account with '0'

credits (charges). When an operation is performed, a charge / cost

are associated. If we overcharge an operation, the excess charge will

be deposited in the account as credit. Some operations are free

operations for which we do not charge anything. For such operations

we may make use of the charges which are available as credit in our

account. This analysis ensures that the account is never at debit

(negative balance). In this method, the amount charged for each

operation type is the amortized cost for that type. The amortized cost

will act an upper bound on the actual cost for any sequence of

operations and it will be impossible for the account to be in debt as

long as the charges are set for each operation. The amortized costs of

operations must be chosen very carefully and it must be shown that

these charges are sufficient to allow payment for any sequence of

operations.

5.4.3 Potential Function Method

The Potential Function method of amortized analysis represents the

work as “potential energy” or “potential” that can be used to pay for

future operations. In the earlier method, work is stored as credit with

specific objects (elements) in the data structure but this method

associates potential with the whole data structure rather than with

specific objects in the data structure.

The analysis is done by focusing on structural parameters of a data

structure such as the number of elements, the height, etc. After

87 | P a g e

Space for learners: performing any operation, the change in a structural parameter is

noted as a function and stored in a data structure. The function that

records the changes in parameter is termed as a potential function. If

the change in potential is positive, then that operation is over

charged and the excess potential will be stored in the data structure

similar to accounting method. If the change in potential is negative,

then that operation is under charged and is compensated by excess

potential available in the data structure.

Let ci be the actual cost of the ith operation and ĉi be the amortized

cost of the ith operation. Then the ith operation has some positive

credit if ĉi > ci and the credits ĉi − ci will be used for future

operations. Now the total available credits will be positive if

∑ ĉ�
�
��� ≥ ∑ ��

�
��� (1)

In this method, a function maps a data structure onto a real valued

non-negative number. The amortized cost is given by the actual cost

added to the increase in potential due to that operation.

ĉ� = �� + �� − ��� (2)

from (1) and (2), we have

∑ ĉ�
�
��� ≥ ∑ ��� + �� − �����

��� (3)

∑ ĉ�
�
��� ≥ �∑ ��

�
��� � + �� − ��.......... (4)

5.5 CASE STUDIES

We will now look into two case studies, stack and binary counter,

for their amortized analysis using the above discussed methods.

5.5.1 Stack

Stack is a data structure with the property of Last In First Out

(LIFO). It works mainly on 2 main operations: Push(x) and Pop()

where x is an element to be pushed onto the stack. Each of this 2

operations takes Ο(1) time respectively. Let us consider the cost of

each operation to be 1. Then the total cost of a sequence of n Push(x)

and Pop() operations is therefore n, and the actual running time for n

operations is therefore θ(n).

88 | P a g e

Space for learners: Push(x)

 1. top[STACK] = top[STACK] + 1

 2. STACK [top[STACK]] = x

 Pop()

 1. if top = -1

 2. then “underflow”

 3. else

 4. top[STACK] = top[STACK] − 1

 5. return STACK [top[STACK] + 1]

 Multipop(k)

 1. While top != -1 and k ≠ 0

 2. Pop()

 3. k = k − 1

Now, let us add another stack operation, Multipop(k) which removes

the k elements from the top of a stack if it contains at least k

elements, or it pops the entire stack if it contains fewer than k

elements. The worst-case cost of a Multipop(k) operation in the

sequence of n operations is Ο(n), since the stack size is at most n.

We will now look at all three operations from the perspective of

amortized analysis using all the above three methods. Let us assume

that there are n such operations being performed using Push(x),

Pop() and Multipop(k) in some order. The actual cost for the worst

case running time of Push(x) and Pop() is Ο(1) and for Multipop(k)

is Ο(n) since the stack contains at most n elements.

5.5.1.1 Aggregate analysis method

Assuming that in a sequence of n operations, we perform a sequence

of n Push(x), Pop() and Multipop(k) operations in any order on an

initially empty stack. So any sequence of n Push(x), Pop() and

Multipop(k) operations will cost Ο(n) as each element can be

popped at most once when it is pushed onto the stack. The number

of times Pop() operation is called will be equal to the number of

times Push(x) operation is called. Now, for a sequence of n Push(x),

Pop() and Multipop(k) operations will take Ο(n) time and the

average cost of an operation is Ο(n) / n = Ο(1). The amortized cost

of each operation is equal to the average cost in aggregate analysis.

Therefore, all three operations of Push(x), Pop() and Multipop(k)

has an amortized cost of Ο(1).

89 | P a g e

Space for learners: 5.5.1.2 Accounting method

In the Accounting method, credits will be assigned to the elements

of the stack. '2' credits will charged for the Push(x) operation which

involves inserting an element x into the stack. Out of the 2 credits, 1

credit will be used for the Push(x) operation and the remaining 1

credit will be stored at x which can be used later. We charge nothing

for the Pop() operation i.e. this operation is free as we use the extra

credit available for each element, x for performing this operation. So

the actual cost of this operation is 1 credit which is used from the

credit available for each element in the stack and hence we charge

nothing for this operation for our analysis. As Pop() operation is

always performed on a non empty stack , our account balance will

never be in debit. Similarly for Multipop(k) operations, the overall

charge for the operation will be nothing as there will always be

sufficient credits available for each element, x in the stack for the k

successive pop operations. Therefore, the amortized cost of Push(x)

is 2 = Ο(1), Pop() is 0 = Ο(1) and Multipop(k) is 0 = Ο(1).

5.5.1.3 Potential function method

In this method, we need to define a potential function capturing

some structural element. We can take the number of elements inside

the stack as a potential function and analyze all the 3 operations viz.

Push(x), Pop() and Multipop(k).

Push(x)

 ĉ���� = ����� + �� + ���

 = 1 + x + 1 − x, where x = Number of elements in S

before push operation.

 = 2

Pop()

 ĉ���� = ����� + �� + ���

 = 1 + x − 1 − x

 = 0

Multipop(k)

90 | P a g e

Space for learners: ĉ���� = ����� + �� + ���

 = k + n − k − n, where n = |�|

 = 0

Therefore, the amortized cost of Push(x) is 2 = Ο(1), Pop() is 0 =

Ο(1) and Multipop(k) is 0 = Ο(1).

STOP TO CONSIDER

We can define another operation for the stack, Multipush(k) which

pushes k elements into the stack. We can also analyze the cost of

this operation using all the three techniques. Using aggregate

analysis, the total cost is Ο(n) and the amortized cost is Ο(n) / Ο(1)

which is equal to Ο(n). With accounting method, we use '2' credits

for push and '0' for pop. So, the amortized cost is 2 * Ο(n) / Ο(1)

which is Ο(n). For the potential function method, we give the

amortized cost using

 ĉ���� = ����� + �� + ���

 = k + n + k − n, where n = |�|

 = 2k = Ο(n)

Thus, the amortized cost for Multipush(k) is Ο(n).

5.5.2 BINARY COUNTER

We will now look into a binary counter with k bits, initially all k bits

set to 0's. The basic operations defined on the binary counter are

increment, decrement and reset. Incrementing a counter adds a bit '1'

to the current value. Decrementing a counter subtracts a bit '1' from

the current value whereas resetting a counter makes all k bits to 0's.

For example, if the current value of the counter is '0010' then on

increment the new value is '0011' and on decrement the initial value

of '0010', the value becomes '0001'. Whereas the reset operation

makes the current value of the counter to all 0's. We will now

analyze the amortized costs of the following operations:

 1. A sequence of n increment operations.

 2. A sequence of n increment and decrement operations.

 3. A sequence of n increment, decrement and reset

operations.

91 | P a g e

Space for learners: COUNTER

VALUE
A [3] A [2] A [1] A [1]

TOTAL

COST

0 0 0 0 0 0

1 0 0 0 1 1

2 0 0 1 0 3

3 0 0 1 1 4

4 0 1 0 0 7

5 0 1 0 1 8

6 0 1 1 0 10

7 0 1 1 1 11

8 1 0 0 0 15

Fig 1: A 4 - bit binary counter with value goes from 0 to 8 by a

sequence of 8 increment operations. Bits that flip to achieve the next

value are underlined. The running cost for flipping bits is shown on

the right as total cost.

5.5.2.1 A sequence of n increment operations

Aggregate Analysis : For aggregate analysis method, let us consider

a binary counter with k bits and not all bits in the binary counter flip

in each increment / decrement operation. Let us consider the 1st

operation of a sequence of n increment operations in which the

trivial analysis of the binary counter in the figure gives Ο(k) for each

increment operation and for n such increment operations, the total

cost will be Ο(nk) and the average cost will be Ο(k).

The 0th bit (rightmost bit , LSB) flips in each increment and there

are n flips . The 1st bit is flipped alternatively and thus there are
�

�

flips in total. So, the ith bit is flipped
�

��
 times. The total number of

flips in a sequence of n increments will be :

∑ ⌊
�

��
⌋

⌊�� �⌋

��0
< " ∑

�

��
∞
��0 = 2"

The worst case time complexity for a sequence of n increments is

Ο(n) when all the k bits of the binary counter is initially set to all 0's.

92 | P a g e

Space for learners: The average cost / amortized cost of each operation is therefore Ο(n)

/ n = Ο(1).

Accounting method: In the accounting method, credits will be

assigned for flipping the bits (0 to 1). '2' credits will assigned for

each flip from 0 to 1 where 1 credit is used for the actual flip and

remaining 1 credit is stored with the bit. It is done free when the bit

is flipped from 1 to 0 in subsequent increments. The 1 credit stored

with the bit is used to pay for this operation and hence it is termed as

free. The number of 1's is accumulated as credit in the counter at the

end of each increment. The cost of flipping the bit (0 to 1) is 2 =

Ο(1) and for flipping the bit (1 to 0) is 0 = Ο(1). Therefore, the

amortized cost of n increments is Ο(1).

Potential Function Method: In this method, we define the number

of 1's in the counter as a potential function capturing some structural

element. For the ith iteration, the last 0 is set to 1 and after the last 0

all 1's are set to 0. E.g. when a counter with value = '1001' is

incremented then the new value is '1010'. Let us denote the total no

of 1's before the ith operation be x and the total no of 1's after the last

0 be t . After the end of ith operation, t no of 1's are changed to 0 and

the last 0 is changed to 1 so there will be x – t + 1 no of 1's. Thus,

the actual increment cost is t + 1 and the amortized cost is

 ĉ� = �� + �� − ���

 = 1 + t + (x − t + 1) − x

 = 2 = Ο(1)

5.5.2.2 A Sequence of N Increment and Decrement

Operations

Aggregate Analysis : For the 2nd operation of a sequence of n

increment and decrement operations, we take a sequence of
�

�

increments followed by
�

�
 increments and decrements occurring

alternately. Using aggregate analysis, for the 1st half of the

operations the actual cost is Ο(n) and for the 2nd half the actual cost

is
�

�
 * Ο(k) . Thus, the amortized cost is Ο(k) for both increment and

decrement operations.

Accounting method : For the accounting method, k credits will be

assigned to both increment and decrement operations. Therefore, the

amortized cost is Ο(k) for both increment and decrement operations.

93 | P a g e

Space for learners: Potential Function Method : We define the number of 1's in the

counter as a potential function capturing some structural element.

Let us denote the total no of 1's before the ith operation be x and the

total no of 1's after the last 0 be t . So, the amortized cost of

increment is

 ĉ� = �� + �� − ���

 = 1 + t + (x − t + 1) − x

 = 2 = Ο(1)

Let us denote the total no of 1's before the ith operation be x and the

total no of 0's after the last 1 be t . So, the amortized cost of

decrement is

 ĉ� = �� + �� − ���

 = 1 + t + (x + t − 1) − x

 = 2t = Ο(k)

Therefore, the amortized cost of increment is Ο(1) and that of

decrement is Ο(k).

5.5.2.3 A Sequence of N Increment, Decrement and

Reset Operations

Aggregate Analysis : For the 3rd operation of a sequence of n

increment , decrement and reset operations, we take a sequence of
�

�

increments followed by one reset operation. The total cost would be

Ο(n) + Ο(k). The aggregate analysis method gives Ο(1) amortized

cost for
�

�
 increments and Ο(k) amortized cost for the reset operation.

Therefore, the amortized cost is Ο(k) for this sequence of operations.

Accounting method : For the accounting method, k credits will be

assigned to both increment and decrement operations. Reset

operations requires flipping back all the 1's present in the current

value of the counter back to 0's. It’s a decrement operation done

with k credits and so the actual cost of reset operation is Ο(k).

Therefore, the amortized cost is Ο(k) for increment , decrement and

reset operations.

Potential Function Method : For the potential function method, the

analysis of increment and decrement is same as done previously and

thus is Ο(1) amortized and Ο(k) amortized respectively. We now

analyze the reset operation and the actual cost of reset operation is

94 | P a g e

Space for learners: Ο(k). Assuming that there are x 1's in the current value of the

counter and so the amortized cost is

 ĉ� = �� + �� − ���

 = k + 0 − x

 = Ο(k) , if x = Ο(1)

5.6 SUMMING UP

 Amortized analysis is a worst-case analysis of a sequence of

operations to obtain a tight bound on the overall cost per

operation in the sequence.

 Amortized analysis is applied when few operations of the

algorithms are slow while rest of them are fast.

 Amortized analysis does not involve probability calculations and

does not give the cost of a specific operation in the sequence.

 There are 3 different approaches to perform amortized analysis

of an algorithm viz. aggregate analysis, accounting method and

potential function method.

 Aggregate analysis is the simplest and gives the upper bound on

the total cost of a sequence of n operations.

 Accounting method gives different costs to different types of

operations and the cost associated with each operation is its

amortized cost. This method involves maintaining credits for

each operation.

 Potential function method performs analysis as “potential

energy” or “potential” which can be used to pay for future

operations. The analysis is based on a structural feature of the

data structure and this method also assigns different costs to

different types of operations.

 Case studies are performed on stack and binary counter to

perform amortized analysis using the 3 different methods.

5.7 ANSWERS TO CHECK YOUR PROGRESS

 1. a. FALSE

 1. b. TRUE

95 | P a g e

Space for learners: 1. c. TRUE

 1. d. FALSE

 1. e. TRUE

5.8 POSSIBLE QUESTIONS

 1. What is amortized analysis ?

2. Why amortized analysis of an algorithm is needed ?

3. Define the features of amortized analysis ?

4. What are the different approaches to perform amortized

analysis ?

5. Which technique/techniques of amortized analysis assigns

different costs to

 different operations?

6. Show that if a DECREMENT operation were included in

the k-bit counter example, n operations could cost as much as

θ(nk).

 7. Perform amortized analysis on dynamic tables using any

one of the methods.

5.9 SUGGESTED READINGS

 Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald

L. and Stein, Clifford. Introduction to Algorithms. 2nd

Edition : The MIT Press, 2001.

BLOCK II:

ALGORITHM DESIGN TECHNIQUES

Space for learners:

96 | P a g e

UNIT 1: ALGORITHM DESIGN

TECHNIQUES I

Unit Structure:

1.1 Introduction

1.2 Divide and Conquer

1.2.1 General Method

1.2.2 Recurrence Equation for Divide and Conquer

1.2.3 Advantages and Disadvantages of Divide and

Conquer

1.3 Greedy Algorithm

1.3.1 General Method

1.3.2 Optimal Merge Patterns

1.3.3 Minimum Spanning Tree

1.3.4 DIJKSTRA’S Algorithm

1.4 Dynamic Programming

1.4.1 General Method

1.4.2 Some Applications of the Dynamic-Programming

1.5 Backtracking

1.5.1 General Method

1.5.2 Tree Organization for Solution Space in

Backtracking

1.5.3 The N Queens Problem

1.5.4 Hamiltonian Cycle

1.6 Branch and Bound

1.6.1 General Method

1.6.2 Travelling Salesman Problem

 1.7 Summing Up

 1.8 Answers to Check Your Progress

 1.9 Possible Questions

 1.10 References and Suggested Readings

Space for learners:

97 | P a g e

1.1 INTRODUCTION

The term algorithm comes from the name of a Persian author, Abu

Ja’far Mohammed ibn Musa al Khowarizmi (c. 825 A. D.), who

wrote a textbook of mathematics. This word has taken on a special

significance in computer science, where the term “algorithm” has come

to refer to a method that can be used by a computer for the solution of a

problem. This makes algorithm is different from the terms such as

process, technique or method [3].

Algorithm is a set of instructions to solve a particular problem. Mainly

algorithm contains a sequence of computational steps that transform the

input into the output. We can think an algorithm like a tool for solving a

well specified computational problem. The statement of the problem

specifies in general terms the desired input/output relationship. The

algorithm describes a specific computational procedure for obtaining

that input/ output relationship.

All algorithms must satisfy the following criteria [1]:

 Input: there may be zero or more externally supplied quantities

 Output: at least one quantity or result is produced

 Definiteness: each instruction must be clear and unambiguous;

 Finiteness: if we trace out the instructions of an algorithm, then

for all cases the algorithm will terminate after a finite number of

steps;

 Effectiveness: every instruction must be sufficiently basic that it

can in principle be carried out by a person using only pencil and

paper. It is not enough that each operation be definite, but it

must also be feasible.

No matter which programming language we use, but at the same time it

is important to learn algorithm design techniques in data structures in

order to be able to build scalable systems in an efficient manner.

Selecting a proper design technique for algorithms is a complex but

important task. We can choose from a wide range of algorithm design

technique. Following are some of the main algorithm design techniques:

1. Divide and Conquer

Space for learners:

98 | P a g e

2. Greedy Algorithms

3. Dynamic Programming

4. Backtracking

5. Branch and Bound Algorithm

1.2 DIVIDE AND CONQUER

The advance of scientific knowledge often involves the grouping

together of similar objects followed by the abstraction and

representation of their common structural and functional features.

Generic properties of the objects in the class are then studied by

reasoning about this abstract characterization. The resulting theory may

suggest strategies for designing objects in the class which have given

characteristics. One such related algorithm based on the principle of

'divide and conquer'.

1.2.1 General Method

Divide and conquer is a design strategy which is well known to

breaking down efficiency barriers. When the method applies, it often

leads to a large improvement in time complexity. For example, from O

(n2) to O (n log n) to sort the elements [1].

Divide and Conquer is one of the best-known general algorithm design

technique. It works according to the following general plan:

 Given a function to compute on n input the divide-and-

conquer strategy suggest splitting the input into k distinct

subsets, 1<k<=n, yielding k subproblems.

 These subproblems must be solved and then a method must

be found to combine subsolution into a solution of the

whole.

 If the subproblems are still relatively large, then the divide-

and–conquer strategy can possibly be reapplied.

 Often the subproblems resulting from a divide-and –conquer

design are of the same type as the original problem.

Space for learners:

99 | P a g e

 For those cases the reapplication of the divide-and-conquer

principle is naturally expressed by a recursive algorithm.

Divide and conquer strategy is as follows:

 Divide the problem instance into two or more smaller

instances of the same problem

 Solve the smaller instances recursively, and assemble the

solutions to form a solution of the original instance

 The recursion stops when an instance is reached which is too

small to divide

 When dividing the instance, one can either use whatever

division comes most easily to hand or invest time in making

the division carefully so that the assembly is simplified

The Divide and conquer algorithm involves three steps at each level

of recursion:

Steps

Example:

Divide-and-Conquer (Input:

Problem P)

To Solve P:

Divide: Divide the problem into a

number of sub problems. The sub

problems are solved recursively.

Divide P into smaller problems

P1, P2, P3.....Pk

Conquer: Conquer the

subproblems by solving them

recursively. If the subproblem sizes

are small enough, however, just

solve the subproblems in a

straightforward manner.

Conquer by solving the (smaller)

subproblems recursively

Combine: Combine the solutions

to the subproblems into the

solution for the original problem.

Combine solutions to P1, P2, ...Pk

into solution for P

Space for learners:

100 | P a g e

A typical case with k=2is diagrammatically shown below:

Control Abstraction for divide and conquer:

Algorithm DAndC(P)

{

if Small(P) then return S(P)

else

{

 divide P into smaller instances P1,P2,…..,Pk, k>=1;

Apply DAndC to each of these subproblems;

Return

Combine(DAndC(P1),DAndC(P2),…..,DAndC(Pk));

}

}

In the above specification,

 Initially DAndC(P) is invoked, where ‘P’ is the problem to be

solved.

 Small (P) is a Boolean-valued function that determines whether

the input size is small enough that the answer can be computed

without splitting. If this so, the function ‘S’ is invoked.

Otherwise, the problem P is divided into smaller sub problems.

Space for learners:

101 | P a g e

These sub problems P1, P2 ……Pk are solved by recursive

application of DAndC.

 Combine is a function that determines the solution to P using the

solutions to the ‘k’ sub problems.

1.2.2 Recurrence equation for Divide and Conquer

If the size of problem ‘p’ is n and the sizes of the ‘k’ sub problems are

n1, n2….nk, respectively, then the computing time of divide and conquer

is described by the recurrence relation.

Where,

 T(n) is the time for divide and conquer method on any input of

size n and

 g(n) is the time to compute answer directly for small inputs.

 The function f(n) is the time for dividing the problem ‘p’ and

combining the solutions to sub problems.

For divide and conquer based algorithms that produce sub problems of

the same type as the original problem, it is very natural to first describe

them by using recursion

More generally, an instance of size n can be divided into b instances of

size n/b, with a of them needing to be solved. (Here, a and b are

constants; a>=1 and b > 1.). Assuming that size n is a power of b (i.e.

n=bk), to simplify our analysis, we get the following recurrence for the

running time T(n):

where, f(n) is a function that accounts for the time spent on dividing the

problem into smaller ones and on combining their solutions.

Space for learners:

102 | P a g e

Analyzing divide-and-conquer algorithms:

We often use a recurrence to express the running time of a divide-and-

conquer algorithm.

Let T(n) = running time on a problem of size n.

 If n is small (say n ≤ k), use constant-time brute force solution.

 Otherwise, we divide the problem into a subproblems, each 1/b

the size of the original.

 Let the time to divide a size-n problem be D(n).

 Let the time to combine solutions (back to that of size n) be

C(n).

We get the recurrence

 c if n ≤ k

T(n) =

 a T(n/b) + D(n) + C(n) if n > k

Example: Merge Sort

For simplicity, assume n = 2k.

For n = 1, the running time is a constant c

For n ≥ 2, the time taken for each step is:

Divide: Compute q = (p + r)/2; so, D(n) = � (1).

Conquer: Recursively solve 2 subproblems, each of size n/2; so,

2T(n/2)

Combine: MERGE two arrays of size n; so, C(n) = � (n)

More precisely, the recurrence for MERGE-SORT is

 c if n ≤ 1

T(n) =

 2 T(n/2) + f(n) if n > 1

Space for learners:

103 | P a g e

where the function f(n) is bounded as d’ n ≤ f(n) ≤ d n for suitable

constants d, d’> 0

1.2.2.1 Guess-and –test (Substitution Method)

Guess an expression for the solution. The expression can contain

constants that will be determined later. Use induction to find the

constants and show that the solution works.

Or

[Substitution Method: This method repeatedly makes substitution for

each occurrence of the function T in the right-hand side until all such

occurrences disappears.]

Let us apply this method to MERGE-SORT

The recurrence of MERGE-SORT implies that there exist two constants

c, d > 0 such that

 c if n = 1

T(n) ≤

 2 T(n/2) + dn if n > 1

Guess: There is some constant a > 0 such that T(n) ≤ an lg n for all n ≥

2 that are powers of 2

Solving the MERGE-SORT recurrence by guess-and-test

Test: For n=2k , by induction on k

Base case: k=1

T(2) = 2c + 2d ≤ a 2 lg 2 if a ≥ c + d

Inductive step: assume T(n) ≤ an log n for n = 2k.

Then, for n′ = 2k+1 we have:

����� ≤ 2	
�

� lg
�

� + ���

= 	�′���′ − 	�′ �� 2 + ��′
≤ 	���� �� �� 	 ≥ �

Space for learners:

104 | P a g e

In summary: choosing a ≥ c + d ensures T(n) ≤ an lg n, and thus T(n) =

O(n log n).

A similar argument can be used to show that ���� = Ω � log �

Hence, T(n) = � (n log n)

1.2.2.2 The Recursion Tree

Guess-and-test is great, but sometime it is difficult to guess. One way is

to use the recursion tree, which exposes successive unfoldings of the

recurrence. The idea is well exemplified in the case of MERGE-SORT.

The recurrence is

c if n = 1

T(n) =

2 T(n/2) + f(n) if n > 1

where the function f(n) satisfies the bounds d′ n ≤ f(n) ≤ d n, for suitable

constants d, d′ > 0

Unfolding the recurrence of MERGE-SORT

Assume n = 2k for simplicity

First unfolding: cost of f(n) plus cost of two subproblems of size n/2

Second unfolding: for each size-n/2 subproblem, cost of f(n/2) plus cost

of two subproblems of size n/4 each

Space for learners:

105 | P a g e

Continue unfolding, until the problem size (= node label) gets down to

1:

In total, there are lg � + 1 levels

 Level 0 (root) has cost ����� = ����

 Level 1 has cost ����� = 2��

��

 Level 2 has cost ����� = 4��

!�

 For � < lg �, level � has cost #���� = 2$��

�%�

Note that, since ��� ≤ ���� ≤ � �, we have ��� ≤ �$��� ≤ ��

 The last level (consisting of n leaves) has cost &'

Analysing MERGE-SORT with the recursion tree

The total cost of the algorithm is the sum of the costs of all levels:

���� = ∑ �$��� + # �)*
+�
$,�

Using the relation ��� ≤ �$��� ≤ �� for < lg � , we obtain the bounds

��� lg � + # � ≤ ���� ≤ �� lg � + # �

Hence, ���� = ��� log ��

Space for learners:

106 | P a g e

1.2.2.3 The Master Theorem

The efficiency analysis of many divide-and-conquer algorithms is

greatly simplified by the master theorem. It states that, in recurrence

equation T(n) = aT(n/b) + f (n), If f (n)∈ Θ (nd) where d ≥ 0 then

Analogous results hold for the O and Ω notations, too.

Problems on Substitution method and Master theorem to solve the

recurrence relation

Exercise 1: Solve following recurrence relation

T(n)=2T(n/2)+n, T(1)=2, using substitution method

Solution: T(n)= 2T(n/2)+n

=2[2.T(n/4)+n/2] +n

=4T(n/4)+2n

=4[2.T(n/8)+n/4]+2n= 8T (n/8)+3n

.

.

.

=2i T(n/2i)+ ¡n, 1 ≤i ≤ log� �

The maximum value of i=log2n [then only we get T(1)]

= 2 log� � . � /

�)0*1
2 + �. log� �

=n.T(1)+ �. log� �

=�3 � �log� ��4

Solution using Master Theorem

Space for learners:

107 | P a g e

Here, a=2, b=2, f(n)=n= ��′ d=1

Also we see that a=bd [2=2’]

As per case 2 of master theorem

T(n)= �/ �5 �log� ��2

= �3 � �log� ��4

1.2.3 Advantages and Disadvantages of Divide and

Conquer

Advantages

 Parallelism: Divide and conquer algorithms tend to have a lot

of inherent parallelism. Once the division phase is complete, the

sub-problems are usually independent and can therefore be

solved in parallel. This approach typically generates more

enough concurrency to keep the machine busy and can be

adapted for execution in multi-processor machines.

 Cache Performance: divide and conquer algorithms also tend

to have good cache performance. Once a sub-problem fits in the

cache, the standard recursive solution reuses the cached data

until the sub-problem has been completely solved.

 It allows solving difficult and often impossible looking problems

like the Tower of Hanoi. It reduces the degree of difficulty since

it divides the problem into sub problems that are easily solvable,

and usually runs faster than other algorithms would.

 Another advantage to this paradigm is that it often plays a part in

finding other efficient algorithms, and in fact it was the central

role in finding the quick sort and merge sort algorithms.

Disadvantages

 One of the most common issues with this sort of algorithm is the

fact that the recursion is slow, which in some cases outweighs

any advantages of this divide and conquer process.

Space for learners:

108 | P a g e

 Another concern with it is the fact that sometimes it can become

more complicated than a basic iterative approach, especially in

cases with a large n. In other words, if someone wanted to add a

large amount of numbers together, if they just create a simple

loop to add them together, it would turn out to be a much

simpler approach than it would be to divide the numbers up into

two groups, add these group recursively, and then add the sums

of the two groups together.

 Another downfall is that sometimes once the problem is broken

down into sub problems, the same sub problem can occur many

times. It is solved again. In cases like these, it can often be easier

to identify and save the solution to the repeated sub problem,

which is commonly referred to as memorization.

1.3 GREEDY ALGORITHM

We consider problems in which a result comprises a sequence of steps

or choices that have to be made to achieve the optimal solution. Greedy

programming is a method by which a solution is determined based on

making the locally optimal choice at any given moment. In other words,

we choose the best decision from the viewpoint of the current stage of

the solution. Depending on the problem, the greedy method of solving a

task may or may not be the best approach. If it is not the best approach,

then it often returns a result which is approximately correct but

suboptimal. In such cases dynamic programming or brute-force can be

the optimal approach. On the other hand, if it works correctly, its

running time is usually faster than those of dynamic programming or

brute-force.

A Greedy algorithm is characterized by the following two

properties:

1. The algorithm works in stages, and during each stage a choice is

made which is locally optimal;

2. The sum totality of all the locally optimal choices produces a globally

optimal solution.

Space for learners:

109 | P a g e

1.3.1 General Method

Greedy is the most straight forward design technique. Most of the

problems have n inputs and require us to obtain a subset that satisfies

some constraints. Any subset that satisfies these constraints is called a

feasible solution. We need to find a feasible solution that either

maximizes or minimizes the objective function [1].

If a greedy procedure does not always lead to a globally optimal

solution, then we will refer to it as a heuristic, or a greedy heuristic.

Heuristics often provide a “short cut" to a solution, but not necessarily

to an optimal solution. Hence fore, we will use the term “algorithm" for

a method that always produces a correct/optimal solution and

“heuristic" to describe a procedure that may not always produce the

correct or optimal solution.

Let us consider the problem of coin change. Suppose a greedy person

has some 25p, 20p, 10p, 5paise coins. When someone asks him for

some change then he wants to give the change with minimum number

of coins. Now, let someone requests for a change of top then he first

selects 25p. Then the remaining amount is 45p. Next, he selects the

largest coin that is less than or equal to 45p i.e. 25p. The remaining 20p

is paid by selecting a 20p coin. So the demand for top is paid by giving

total 3 numbers of coins. This solution is an optimal solution. Now, let

someone requests for a change of 40p then the Greedy approach first

selects 25p coin, then a 10p coin and finally a 5p coin. However, the

some could be paid with two 20p coins. So it is clear from this example

that Greedy approach tries to find the optimal solution by selecting the

elements one by one that are locally optimal. But Greedy method never

gives the guarantee to find the optimal solution.

The choice of each step is a greedy approach is done based on the

following:

· It must be feasible

· It must be locally optimal

· It must be unalterable

There are two key ingredients in greedy algorithm that will solve a

particular optimization problem.

Space for learners:

110 | P a g e

1. Greedy choice property

2. Optimal substructure

1. Greedy choice property:

A globally optimal solution can be arrived at by making a locally

optimal (greedy) choice. In other words, when a choice is to be made,

without considering results from the sub-problems, it looks for best

choice in the current problem. In this algorithm choice is made that

seems best at the moment and solve the sub-problems after the choice is

made. The choices made by a greedy algorithm may depend on choices

so far, but it cannot depend on any future choice or solution to the sub-

problems. The algorithm works in a top down manner, making one

greedy choice one after another, reducing each given problem instances

into smaller one.

2. Optimal substructure:

A problem is said to have optimal substructure if an optimal solution

can be constructed efficiently from optimal solution to its sub-problem.

The optimal substructure varies across problem domain in two ways-

i) How many sub-problems are used in an optimal solution to the

original problem.

ii) How many choices we have in determining which sub-problem

to use in an optimal solution.

In Greedy algorithm a sub-problem is created by having made the

greedy choice in the original problem. Here, an optimal solution to the

sub-problem, combined with the greedy choice already made, yield an

optimal solution to the original problem.

1.3.2 Optimal Merge Patterns

Optimal merge patterns can be stated as follows:

 Two sorted file containing n and m records respectively

could be merged together to obtain one sorted file in time O(

n + m). When more than two sorted files are merged

together then merge can be done by repeatedly merging the

sorted files in pairs.

Space for learners:

111 | P a g e

For example-

Problem 1: There are 5 sorted files F1,F2,F3,F4,F5 and each file has

20,30,10,5,30 records respectively.

If merge these files pair wise then-

M1 = F1&F2

= 20 + 30

= 50 (i.e merging F1 and F2

requires 50 moves)

M2 = M1&F3

= 50 +10

=60

M3 = M2&F4

= 60 + 5

= 65

M4 = M3&F5

= 65 + 30

= 95

Hence Total time required to moves records is –

50+60+65+95 = 270

 Different pairing requires different amount of computing

time. The problem can be stated as-

What is the optimal way to pair wise merge n sorted files? Or What is

the minimum time needed to pair wise merge n sorted files?

 We can solved this problem using greedy algorithm. The greedy

algorithm attempt to find an optimal merge pattern.

Space for learners:

112 | P a g e

Greedy method for optimal merge pattern:

Sorts the list of file and at each step merge the two smallest size files

together.

Example: The above given problem 1 can be solved as follows-

Sort the files according to their number of records.

(5,10,20,30,30) = (F4,F3,F1,F2,F5)

Merge the first two files-

(5,10,20,30,30) => (15,20,30,30)

Merge the next two files-

(15,20,30,30) => (30,30,35)

Merge the next two files-

(30,30,35) => (35,60)

Merge the last two files-

(35,60) => (95)

Hence, total time require is 15+35+60+95= 205

This is the optimal merge pattern for the given problem instance. This

merging is also called two way merge pattern because each merge step

involves merging of two files.

The two way merge pattern can be represented by binary merge trees.

For the above problem1 the binary merge tree representing the optimal

merge pattern is as follows-

Here, the leaf nodes are denoted by square and represent the five files.

These nodes are called external nodes. The remaining nodes are drawn

as circle and are called internal nodes. Each internal node has exactly

two children and it represent file obtained by merging the files

represented by its two children. The number in the each node is the

length (i.e. the number of records) of the file represented by that record.

Space for learners:

113 | P a g e

Fig 3.1 Binary merge tree representing a merge pattern

Here a node at level i is at a distance of i -1 from the root (In the above

tree x4 is at a distance 3 from root z4).

If di is the distance from the root to external node for a file xi and qi is

the length of the file xi , then the total number of records move for the

binary merge tree is-

∑ i=1..n di gi

This sum is called the weighted external path length of the tree. An

optimal two way merge pattern is minimum weighted external path

length of a binary merge tree.

CHECK YOUR PROGRESS - I

a) _____________ is a set of instructions to solve a particular

problem.

b) Greedy programming is a method by which a solution is

determined based on making the locally ______ choice at any

given moment

c) Divide and conquer is a design strategy which is well known

to breaking down __________barriers

Space for learners:

114 | P a g e

1.3.3 Minimum Spanning Tree

Before going to the definition of the minimum spanning tree let us

define what a spanning tree is:

Spanning tree:

A spanning tree is a connected graph, say G = (V, E) with V as set of

vertices and E as set of edges, is its connected acyclic sub- graph that

contain all the vertices of the graph.

Now the minimum spanning tree can be defined as:

Minimum spanning tree:

A minimum spanning tree T of a positive weighted graph G is a

minimum weighted spanning tree in which total weight of all edges are

minimum

6��� = ∑ 6�7, 9��:,;�<= �> ?���?�@A�

Where w(u, v) is the cost of the edge (u, v)

For example;

Let us consider connected graph G given in fig

Now, the minimum spanning trees are for the graph G is-

Space for learners:

115 | P a g e

Application of Minimum spanning tree:

i. In design of electric circuit network .

ii. It is used in traveling salesman problem.

The minimum spanning tree problem is the problem of finding a

minimum spanning tree for a given weighted connected graph

There are two algorithms to solve minimum spanning tree problem

1. Kruskal algorithm

2. Prim algorithm

The general approaches of these algorithms are-

o The tree is built edge by edge

o Let T be the set of edges selected so far

o Each time a decision is made. Include an edge e to T

s.t. Cost (T) + w (e) is minimized, and T U {e} does

not create a cycle

Both these algorithms are greedy algorithm. Because at each step of an

algorithm, one of the best possible choices must be made. The greedy

strategy advocates making the choice that is best at the moment. Such a

strategy is not generally guaranteed to globally optimal solution to a

problem.

1.3.3.1 PRIM’S Algorithm

The prim’s algorithm uses greedy method to build the sub-tree edge by

edge to obtain a minimum cost spanning tree. The edge to include is

Space for learners:

116 | P a g e

chosen according to some optimization criterion. Initially the tree is just

a single vertex which is selected arbitrarily from the set V of vertices of

a given graph G. Next edge is added to the tree by selecting the

minimum weighted edge from the remaining edges and which does not

form a cycle with the earlier selected edges. The tree is represented by a

pair (V’, E’) where V’ and E’ represent set of vertices and set of edges

of the sub-tree of minimum spanning tree.

The algorithm is as follows-

The algorithm continuously increases the size of a tree, one edge at a

time, starting with a tree consisting of a single vertex, until it finds all

vertices.

 Input: A non-empty connected weighted graph with vertices V

and edges E (the weights are positive).

 Initialize: V’ = {x}, where x is an arbitrary node (starting point)

from V,

 E’ = { }

 Repeat until V’ = V;

 Choose an edge (u, v) with minimal weight such that u is in V’ and

v is not in V’ (if there are multiple edges with the same weight, any

of them may be picked)

 Add v to V’ and (u, v) to E’ if edge (u, v) will not make a cycle with

the edges already in E’

 Output: V’ and E’ describe a minimal spanning tree

Space for learners:

117 | P a g e

Example:

Let us consider the following graph G

Fig. 3.4 Prim’s algorithm applied on the Graph G

Initially vertex a is selected. So, V’ will contain a.

Fig. 3.5 Vertex a is selected

V’ = {a}

 E’ = Ø

After first iteration, the minimum weight edge connected a and other

vertices of V is selected. In this case from vertex a there are two edges

ab and ad to vertex b and d.

10

Space for learners:

118 | P a g e

10

Fig. 3.6 minimum weighted edge

Between ab and ad weight of ab is minimum. Hence, after first iteration

vertex b is include to V’ and edge ab is included to E’.

Fig. 3.7 Minimum weighted edge selected

V’ = {a, b}

E’ ={ ab }

In the next iteration we select the minimum weight edge, which does

not make a cycle with previously selected edges in E’, from the edges

not included in E’ and edges connected one vertex from V’ and

another vertex not in V’. Here edges from a and b to any other vertex.

10

Space for learners:

119 | P a g e

10

Here, edges are ad, bd, be, bc from which we can select the minimum

weight edge.

Fig. 3.8 Finds the minimum weighted edge

Here, weight of bc is minimum and it does not make a cycle with ab.

Thus bc is selected in this iteration.

Fig. 3.9 Minimum weighted edge selected

V’ = { a, b, c }

E’ = { ab, bc }

In the next iteration we can consider the edges that have a,b or c as one

of the vertex . Here the edges are ad, bd, be, ce, cf. we canot consider

ab and bd because they are already selected.

Space for learners:

120 | P a g e

10

Fig. 3.10 Finds minimum weighted edge

From these edges weight of bd is minimum and it does not make a

cycle with the edge in E’. Thus bd is selected.

Fig. 3.11 Minimum weighted edge selected

V’ = { a, b, c, d }

E’ = { ab, bc, bd }

In the next iteration we consider the edges (excluding already selected

edges) that have a, b, c, d as one vertex. Here edges are ad, be, ce, cf,

de, dh, dg.

10

Space for learners:

121 | P a g e

10

Fig. 3.12 Finds Minimum weighted edge

The weight of dg is minimum and it does not make a cycle with the

edges in E’. Thus, dg is selected.

Fig. 3.13 Minimum weighted edge selected

V’ = { a, b, c, d, g }

E’ = { ab, bc, bd, dg }

In the next iteration considered edges are ad, be, de, gh, dh, ce, cf

10

Space for learners:

122 | P a g e

10

.

Fig. 3.14 Finds Minimum weighted edge

Among these edges weight of gh is minimum and it does not make any

cycle with already selected edges in E’. Thus, gh is selected.

Fig. 3.15 Minimum weighted edge selected

 V’ = { a, b, c, d, g, h }

E’ = { ab, bc, bd, dg, gh }

In the next iteration consider the edges that have one vertex from V’ and

connect another vertex excluding already selected edges. Here edges

are ad, be, ce, cf, de, dh, hf.

10

Space for learners:

123 | P a g e

6

10

10

Fig. 3.16 Finds Minimum weighted edge

Among these weights, ad and ce are minimum. If select ad then it

make a cycle with the already selected edge ab and bd of E’. So, ad

cannot be selected. If we select ce it will not make a cycle with the

edges of E’. Thus ce is selected.

Fig. 3.17 Minimum weighted edge selected

V’ = {a, b, c, d, e, g, h}

E’ = {ab, bc, bd, dg, gh, ce}

Space for learners:

124 | P a g e

6

10

10

In the next iteration considered edges are ad, be, de, dh, cf, hf.

Fig. 3.18 Finds Minimum weighted edge

Among these weights, ad is minimum. But it makes a cycle with already

selected edges ad and ab. So, ad is rejected. Next minimum weight is of

edge de, be and hf. But these two edges will also make cycle. So de

and be are also rejected. hf will not make a cycle. Thus hf is

considered.

Fig. 3.19 Minimum weighted edge selected

V’ = { a, b, c, d, e, f, g, h }

E’ = { ab, bc, bd, dg, gh, ce, hf }

Space for learners:

125 | P a g e

Next, the edges be, de, cf, ad, dh cannot included to form the tree

because they make a cycle with already selected edges. Hence the final

spanning tree is-

Fig. 3.20 Final spanning tree of graph G

1.3.3.2 KRUSKAL Algorithm

Another method of finding minimum spanning tree is Kruskal

algorithm. In this algorithm the edges of the graph are considered in

non-decreasing order. The result is a forest of trees that grows until all

the trees in a forest (all the components) merge in a single tree.

The algorithm is as follows-

 create a forest F (a set of trees), where each vertex in the graph

is a separate tree

 create a set S containing all the edges in the graph

 while S is nonempty and F is not yet spanning

 remove an edge with minimum weight from S

 if that edge connects two different trees, then add it to the forest,

combining two trees into a single tree

 Otherwise discard that edge.

Space for learners:

126 | P a g e

KRUSKAL ALGORITHM EXAMPLE:

1.3.4 DIJKSTRA’S Algorithm

For a given weighted and directed graph G= (V, E), the shortest path

problem is the problem of finding a shortest path between any two

vertex v ϵ V in graph G. The property of the shortest path is such that a

shortest path between two vertices contains other shortest path within it

i.e any other sub-path of a shortest path is also a shortest path.

Single source shortest path problem:

In a single source shortest path problem, there is only one source vertex

S in the vertex set V of graph G = (V, E). Now this single source

shortest path problem finds out the shortest path from the source vertex

S to any other vertex in v € V.

Optimal substructure of a shortest path:

Optimal substructure of a shortest path can be stated that any other sub-

path of a shortest path is also a shortest path. Here is the lemma-

Lemma:

Given a weighted directed graph G=(V, E) with weight function w: E

R, let p = (v1,v2 , vk) be a shortest path from vertex v1 to vertex vk, and

for any i and j such that 1 ≤ i ≤ j ≤ k, let Pij = (v1,vi+1, ------,vj) be the

Space for learners:

127 | P a g e

sub-path of P from vertex vi to vertex vj. Then Pij is a shortest path from

vi to vj.

Dijsktra algorithm solves the single source shortest path problem. But

the algorithm works only on a directed and positive weighted graph.

Positive weighted graph means where weights of all edges are non-

negative i.e. G = (V, E) is a positive weighted graph then w(u, v) ≥ 0.

Dijsktra algorithm is a greedy algorithm.

Example of Dijkstra’s algorithm:

Apply Dijkstra’s algorithm for the following graph G

c

d

s

a

b

6

Space for learners:

128 | P a g e

6

Step 1
Step 2

Step 3

6

6
6

Step 4

Step 5
Step 6

6

Space for learners:

129 | P a g e

After applying Dijkstra’s algorithm we found F={s,b,d,a,c} [distance is

9]

Step 9

Step 7

6

6

6

6

Step 8

CHECK YOUR PROGRESS - II

d) The ________ algorithm uses greedy method to build the

sub-tree edge by edge to obtain a minimum cost spanning

tree.

e) In Kruskal’s algorithm the edges of the graph are

considered in _________order.

f) List two applications of Minimum Spanning Trees.

Space for learners:

130 | P a g e

1.4 DYNAMIC PROGRAMMING

The Dynamic Programming (DP) is the most powerful design technique

for solving optimization problems. The term dynamic programming

refers to this bottom-up approach. It was invented by mathematician

named Richard Bellman inn 1950s. The DP in closely related to divide

and conquer techniques, where the problem is divided into smaller sub-

problems and each sub-problem is solved recursively. The Dynamic

Programming differs from divide and conquer in a way that instead of

solving sub-problems recursively, it solves each of the sub-problems

only once and stores the solution to the sub-problems in a table. The

solution to the main problem is obtained by the solutions of these sub-

problems.

The steps of Dynamic Programming technique are:

Dividing the problem into sub-problems: The main problem is

divided into smaller sub- problems. The solution of the main problem is

expressed in terms of the solution for the smaller sub-problems.

Storing the sub solutions in a table: The solution for each sub-

problem is stored in a table so that it can be referred many times

whenever required.

Bottom-up computation: The DP technique starts with thesmallest

problem instance and develops the solution to sub instances of longer

size and finally obtains the solution of the original problem instance.

1.4.1 General Method

Dynamic Programming is an algorithm design method that can be used

when the solution to a problem can be viewed as the result of a

sequence of decisions.

When developing a dynamic programming algorithm, we follow a

sequence of four steps:

1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution, typically in

bottom-up fashion

Space for learners:

131 | P a g e

4. Construct an optimal solution from computed information.

Characteristics of Dynamic Programming:

 The Problem can be divided into stages, with a policy

decision at each stage

 Each stage consist of a number of states associated with it

 Decision at each stage convert the current stage in to a state

associated with next stage

 The state of the system at a stage is described by state

variable

 When the current state is known, an optimal policy for the

remaining stages is independent of the policy of the previous

ones

 The solution procedure begins by finding the optimal

solution of each state from the optimal solutions of its

previous stage

1.4.2 Some Applications of the Dynamic-Programming

Matrix Chain Multiplication: Given a sequence of matrices that must

be multiplied, parenthesize the product so that the total multiplication

complexity is minimized.

0-1 Knapsack: Given items x1,……, xn , where item xi has weight wi

and profit pi (if its placed in the knapsack), determine the subset of

items to place in the knapsack in order to maximize profit, assuming

that the sack has capacity M.

Longest Common Subsequence: Given an alphabet Σ, and two words

X and Y whose letters belong to Σ , find the longest word Z which is a

(non-contiguous) subsequence of both X and Y.

Optimal Binary Search Tree: Given a set of keys k1,…….., kn and

weights w1, …………., wn, where wi reflects how often ki is accessed,

design a binary search tree so that the weighted cost of accessing a key

is minimized.

Space for learners:

132 | P a g e

1.5 BACKTRACKING

The name backtrack was first coined by D. H. Lehmer in the 1950s.

Backtracking is a modified depth first search of a tree. Many problem

which deal with searching for a set of solutions or which ask for an

optimal solution satisfying some constraints can be solved using the

backtracking formula. This algorithm tries to construct a solution to a

computational problem incrementally, one small piece at a time.

Whenever the algorithm needs to decide between multiple alternatives

to the next component of the solution, it recursively evaluates every

alternative and then chooses the best one [4].

1.5.1 General Method

Many application of the backtrack method the desired solution is

expressible as an n tuple (x1, x2 ...xn) where the xi are chosen from some

finite set si. Often the problem to be solved calls for finding one vector

that maximizes or minimizes a criterion function p(x1, x2 ...xn).

Many application of the backtrack method the desired solution is

expressible as an n-tuple (x1, x2 ...xn) where the xi are chosen from some

finite set Si. Often the problem to be solved calls for finding one vector

that maximizes or minimizes a criterion function P(x1, x2 ...xn).

Sometimes it seeks all vectors that saitisfy P.

Problems, which are solving using the method backtracking required

that all the solutions satisfy a complex set of constraints. For any

problem these constraints can be divided into two categories [1]:

1. Explicit Constraints are rules that restrict each CD to take on values

only from a given set. The explicit constraints depend on the particular

instance I of the problem being solved. All tuples that satisfy the

explicit constraints define a possible solution space for I.

Example:

CD ≥ 0 FG HD = {	�� �F��A�	J�9A GA	� �7?KAG}

CD = 0 FG 1 HD = {0,1}

�D ≤ CD ≤ 7D FG HD = {	: �D ≤ 	 ≤ 7D}

Space for learners:

133 | P a g e

2. Implicit constraints are rules that determine which of the tuples in

the solution space of I satisfy the criterion function. Thus implicit

constraints describe the way in which the CD must related to each other.

There are two types of solution space tuple formulation:

1. Variable size tuple:

In this method for the solution vector (x1, x2,…..,xk), xi will represent

indices of ith choices for 1 ≤ i ≤ k. Here size of the solution vector can

varies for a problem.

2. Fixed sized tuple:

In this method for solution vector(x1, x2, x3,…..xn), xi € { 0,1 } and 1 ≤

i ≤ n, such that xi is 0 if ith element not chosen and 1 otherwise. Here

solution vector sizes are same for a problem.

The backtracking algorithm

Backtracking is quite simple. We “ explore” each node, as follows”

 To “explore” node N

o Step 1: If N is a goal node return “success”

o Step 2: If N is a leaf node, return “ failure”

o Step 3: For each child C of N,

 Step 3.1: Explore C

 Step 3.1.1: If C was successful,

return “success”

o Step 4: Return “failure”

A backtracking algorithm need not actually create a tree. Rather, it only

needs to keep track of the values in the current branch being

investigated. This is the way we implement backtracking algorithm. We

can say that the state space tree exists implicitly in the algorithm

because it is not actually constructed. Main mechanism is that, after

determining that a node can lead to nothing but dead end, we go back

(backtrack) to the nodes parent and proceed with the search on the next

child.

Space for learners:

134 | P a g e

Example:

Suppose we given a maze to find a path from start to finish.

To solve this, at each intersection, we have to decide between three or

fewer choices:

 Go straight

 Go left

 Go right

We don’t have enough information to choose correctly.

Each choice leads to another set of choices.

One or more sequences of choices may (or may not) lead to a solution.

These types of maze problems can be solved with backtracking.

1.5.2 Tree Organization for Solution Space in

Backtracking

Backtracking method determine solution of a problem by searching for

the solution set in the solution space. This searching can be organized in

a tree called State Space Tree. Terminologies used in State Space Tree

are given below:

Space for learners:

135 | P a g e

 Problem State is the state where each node in the DFS tree

 Solution State is the state are the problem states “S” for which

the path from a root node to “S” defines a tuple in the solution

space

 Live node is an node which has been generated and all of whose

children have not generated yet

 E-node is the live node whose children are currently being

generated

 Dead node is the node which is not expanded further or all of

whose children have been generated

 DFS is the depth first node generation with bounding function is

called backtracking

 In state space tree

i. root of the tree represent 0 choices

ii. 1st level node represents 1st choices

iii. 2nd level node represent 2nd choice.

iv. nth level node represent nth choices.

 Non-promising node is the node, if it cannot lead to a feasible

solution and for this node n bounding function B(n) = 0.

Otherwise, it is called promising node and bounding function

B(n)=1. Non-promising nodes can be bounded or kill using

bounding function. Then for this node its sub-trees are not

generated.

 A state space tree is called pruned state space tree if it consist

of only expanded node.

Space for learners:

136 | P a g e

1.5.3 The N Queens Problem

Suppose we given N-Queens and NxN chess board. Now we have to

find a way to place all N queens on the board show that no queens are

attacking another queen. In chess, queens can move all the way

horizontally, vertically or diagonally (if there is no other queen in the

way).But, no two Queen can attack each other. So, due to this

restriction, each queen must be on a different row and column.

Let, N = 8. Then 8-Queens Problem is to place eight queens on an 8 x 8

chessboard so that no two “attack”, that is, no two of them are on the

same row, column, or diagonal.

All solutions to the 8-queens problem can be represented as 8-tuples (x1,

. . . . , x8), where xi is the column of the ith row where the ith queen is

placed.

The explicit constraints using this formulation are Si = {1, 2, 3, 4, 5, 6,

7, 8}, 1 <i < 8.

The implicit constraints for this problem are that no two xi’s can be the

same (i.e., all queens must be on different columns) and no two queens

can be on the same diagonal.

Space for learners:

137 | P a g e

Backtracking strategy for 8-Queen problem is as follows-

 Let, in the chess board rows and columns are numbered from 1

to 8 and also queens are numbered from 1 to 8

 Without loss of generality, assume that ith queen can be placed in

ith row, because no two queen can place in the same row

 All solution can represented as 8-tuple (x1, x2,…. x8), where xi

is the column number of the ith row of ith queen placed

 Here explicit constraints are Si = {1, 2, 3, 4, 5, 6, 7, 8}, 1 ≤ i ≤ 8

and the solution space will consist of 88 8-tuple

 According to the implicit constraints no two queen can on the

same row

 So, all solution are permutation of 8-tuple(1, 2, 3, 4, 5, 6, 7, 8)

 Thus the searches is reduce to 88 8-tuple to 8! tuple

In 8 -Queen problem all the solution can represented as 8-tuple (x1,

x2,….,x8), where xi is the column number of ith row where ith queen

placed. These all xi’s are distinct because of the implicit constraint that

no two queen can placed in same column. We assume already in no. 2

that ith queen can be placed in ith row only. So, no two queen can placed

in same row. Now, we have only to decide whether two queens are on

the same diagonal or not.

Suppose two queens are placed at position (i,j) and (k,l). then queens are

on the same diagonal only if

� − N = O − � FG � + N = O + �
The first equation implies N − � = � − O

The second equation implies N − � = O − �
Therefore two queens lie on the same diagonal if and only if |N − �| =
|� − O|
The time complexity of this approach is O(N!)

Visualization from a 4x4 chessboard solution

In this configuration, we place 2 queens in the first iteration and see that

checking by placing further queens is not required as we will not get a

solution in this path. Note that in this configuration, all places in the

third rows can be attacked.

Space for learners:

138 | P a g e

By using backtracking method we can bound the search of the state

space tree using some constraint so that searching require less time.

For this problems to bound a node n constraints or bounding conditions

B(n) are-

1. No two queens can place in same row i.e xi always represents ith

queen is in ith row.

2. No two queen in same column i.e values of xi’s are always

distinct.

3. For two queen placed in (m, n) and (x, y) position in the chess ,

value of | n – y | cannot same as | m – x |

When a node is bounded using bounding condition it will not generate

any nodes in its sub-tree because nodes in its sub-tree will not give a

feasible solution any more.

Fig: State Space Tree

The portion of pruned state space tree after applying bounding condition

is as follows:

Space for learners:

139 | P a g e

Fig: Pruned State Space Tree

Here node 3 is bounded because-

At level 1, x1=1 means first time 1st queen is placed in 1st row, 1st

column i.e position is (1,1)

At level 2 , x2=2 means second time 2nd queen is placed in 2nd row, 2nd

column i.e. position(2,2)

Thus they will place in diagonally. It will violet the implicit constraint

or bounding condition. So this combination cannot give a feasible

solution any more. So, the children of node 3 will not generated further.

Hence node 3 will bound.

Here is a path from root 1 to leaf 31 and this will generate one feasible

solution set (2, 4, 1, 3) where x1=2, x2=4, x3=1, x4=3.

Position of the 4 queens are (1,2), (2,4), (3,1) and(4,3) respectively.

Space for learners:

140 | P a g e

Fig: State space Tree for 4 Queens problem

Fig: Solution of 4 Queens problem

A recursive backtracking function for n-Queen problem:

/* placed search for a new queen*/

Space for learners:

141 | P a g e

void nQueen (int k, int i)

{

for (int i =1; i ≤ n;

i++) if (QPlace(k, i

))

{

x [k] = i;

if (k == n)

{

for (int m = 1; m ≤ n; m++)

{cout << x [m] <<’

‘<<; cout<<endl;

}

}

else

nQueen (k + 1, n);

}

}

bool QPlace (int k, int i)

{

for (int m = 1; m < k; m++)

{

if ((x [m] == i) || (abs (x[m] – i) == abs (m – k)))

return (false);

return (true);

}

}

/* Solution to n queen*/

Space for learners:

142 | P a g e

Here QPlace (k, i) will return a boolean value true or false. The

function return true if kth queen can placed in ith column and assigned it

to x [k]. This value x [k] = i is distinct from x [1]…… x [k-1]. It also

ensures that no two queens is placed in same diagonal.

Next nQueen (k, n) will solve the n-Queen problem recursively using

backtracking method.

1.4.4 Hamiltonian Cycle

Hamiltonian Path is an undirected graph, which visits each vertex

exactly once. A Hamiltonian Cycle is a Hamiltonian Path such that

there is an edge in the graph from the last vertex to first vertex of the

Hamiltonian Path, i.e. each vertex visit once in graph G and return to

the starting vertex. It is named after William Hamilton.

Input: A 2D array graph[V][V]

where V is the number of vertices in graph

graph [V][V] is adjacency matrix representation of the graph

graph[i][j]=1 if there is a direct edge from i to j

graph[i][j]=0 otherwise

Output: An array path[V] that should contain the Hamiltonian Path.

Path[i] should represent the ith vertex in the Hamiltonian Path. The code

should also return false if there is no Hamiltonian Cycle in the graph.

For example:

Consider the following graph and evaluate to check whether the graph is

Hamiltonian or not.

Space for learners:

143 | P a g e

Fig: A graph with 8 vertices

Fig: Hamiltonian Cycle

The Hamiltonian cycle of this graph is- 1, 2, 8, 7, 6, 5, 4, 3, 1

Backtracking method for Hamiltonian cycle:

Now, using backtracking method we can find out the Hamiltonian

cycles in a graph which has n vertices. The solution set can represented

as (x1, x2,……….,xn), where 1 ≤ i ≤ n and xi represents the ith visited

vertex of the current considered cycle.

We have to determine value of xi i.e possible vertex to select. For i =1,

x1 can be any vertex chooses from n vertex. To determine value of xi we

have already determine x1, x2, ,xi-1. Hence, the xi can be choose as

i) any vertex v which is not assigned to x1, x2…..and xi-1 from the n

vertices.

ii) v is connected by an edge to xi-1

The last vertex xn must be connected to both xn-1 and x1.

For example: Consider the given graph and evaluate the mechanism:

Space for learners:

144 | P a g e

State space tree for finding the Hamiltonian Circuit is:

Recursive function for Hamiltonian cycle:

/* for finding Hamiltonian cycle*/

void Hamiltonian (int k)

{

do

{

NextValue (k);

if (! x [k]) return;

if (k == n)

{

for (int i =1; i ≤ n; i++)

cout << x [i] <<” ”<<”\n”;

1 2

3 4

Solution Solution

Space for learners:

145 | P a g e

}

else

Hamiltonian (k + 1)

}

while(1);

}

/* generating next vertex*/

void NextValue (int k)

{

 do

 {

 x [k] = (x [k] + 1) % (n + 1);

 if (! x [k]) return;

 if (G [x [k – 1] [x [k]])

 {

 if ((k < n) || ((k == n) && G [x [n]] [x [1]]))

 return;

}

 } while(1);

 }

This program first initializes the adjacency matrix G [1:n] [1:n] and x

[1] = 1 and x [2:n] = 0.

1.6 BRANCH AND BOUND

Branch and bound is an algorithm design technique that is often

implemented for finding the optimal solutions in case of optimization

problems; it is mainly used for combinational and discrete global

optimizations of problems.

Branch and bound is composed of two main actions. Firstly, branching,

where we define the tree structure from the set of candidates in a

recursive manner. Secondly, bounding, where we calculates the upper

and lower bounds of each node from the tree. Furthermore, there is an

additional pruning step, where depending on the values of upper bound

and lower bound some node can be discarded from the search.

Space for learners:

146 | P a g e

Branch and bound is similar to backtracking. The main difference is that

the branch and bound is used only in case the case of optimization

problems, whereas backtracking can’t be. Another difference is that,

backtracking always picks one single successor from the candidates,

while branch and bound always has the entire list of successors in the

queue.

1.6.1 General Method

The branch and bound algorithm is based on an advanced breadth-first

search, where breath- first search is performed with the help of apriority

queue instead of the traditional list. The term branch and bound refers to

all state search methods in which all children of the E-node are

generated before any other live node can become the E-node. In branch-

and-bound terminology, a BFS- like state space search will be called

FIFO(First In First Out) search as the list of live nodes is a FIFO list or

queue. A DFS search like state space search is called LIFO search as the

list of live nodes is a LIFO list or a stack. To avoid the generation of

subtrees that do not contain an answer node, bounding function is the

best method than backtracking [4].

In branch and bound it is crucial to understand the importance of two

functions: g(x) and h(x). The first function, g(x), calculates the distance

between the x node and the root node. Whereas, h(x), is a heuristic

function because it estimates how close the x node to the solution.

Moreover, we can say that f(x) = g(x) + h(x). The g(x) part is the path-

cost function, while the h(x) part is the admissible heuristic estimate;

the sum of these two is the f(x).

1.6.2 Travelling Salesman Problem

Instead of using a Queue to perform a breadth-first traversal of the state

space, we will use a Priority Queue and perform a "best-first" traversal.

For the TSP we first compute the minimum possible tour by finding the

minimum edge exiting each vertex. The sum of these edges may not

form a possible tour, but since every vertex must be visited once and

only once, every vertex must be exited once. Therefore, no tour can be

shorter than the sum of these minimum edges.

Space for learners:

147 | P a g e

At each subsequent node, the lower bound for a "tour in progress" is the

length of the tour to that point plus the sum of the minimum edge

exiting the end vertex of the partial tour and each of the minimum edges

leaving all of the remaining unvisited vertices. If this bound is less than

the current minimum tour, the node is "promising" and the node is

added to the queue. Initially the minTour is set to infinity. When a node

whose path includes all of the vertices except one is reviewed, there is

only one possible way for the tour to complete. The remaining vertex

and the first are added to the path and the length of the tour is the

current length plus the length of the edge to the remaining vertex and

the length of the edge from there back to the starting vertex. If this tour

length is better than the current minimum, it becomes the minimum tour

length. Once a first complete tour is discovered, nodes whose bound is

greater than or equal to this minTour are deemed "non- promising" and

are pruned.

The nodes in state space must carry the following information:

 their level in the state space tree

 the length of the partial tour

 the path of the partial tour

 the bound

 (for efficiency) the last vertex in the partial tour

In a branch and bound algorithm, a node is judged to be promising

before it is placed in the queue and tested again after it is removed from

the queue. If a lower minTour is discovered during the time a node is in

the queue, it may no longer be promising after it is removed, and it is

discarded. Using a Priority Queue, the search traverses the state space

tree in neither a breadth-first nor depth-first fashion, but alternates

between the two approaches in a greedy, opportunistic fashion. In the

example problem below, a diagram of the best-first traversal of the state

space indicates by number when each of the nodes is removed from the

priority queue

Example:

Let G be a fully connected directed graph containing five vertices that is

represented by the following adjacency list:

Space for learners:

148 | P a g e

We assume in the implementation of this algorithm that vertices are

labeled by an integer number and edges contain the source and sink

vertices and a cost or length label. The tour will start at vertex 1, and the

initial bound for the minimum tour is the sum of the minimum outgoing

edges from each vertex.

Vertex 1 min (14, 4, 10, 20) = 4

Vertex 2 min (14, 7, 8, 7) = 7

Vertex 3 min (4, 5, 7, 16) = 4

Vertex 4 min (11, 7, 9, 2) = 2

Vertex 5 min (18, 7, 17, 4) = 4

bound [1] = 21

Since the bound for this node (21) is less than the initial minTour (),

nodes for all of the adjacent vertices are added to the state space tree at

level 1. The bound for the node for the partial tour from 1 to 2 is

determined to be:

bound = length from 1 to 2 + sum of min outgoing edges for

vertices 2 to 5

= 14 + (7 + 4 + 2 + 4)

= 31

Space for learners:

149 | P a g e

After each new node is added to the PriorityQueue, the node with the

best bound is removed and similarly processed. The algorithm

terminates when the queue is empty.

Second node placed in the priority queue, but the 8th node to be

removed. By the time it is removed and examined, a tour of length 30

which turns out to be the optimal tour, has already been discovered, and,

since its bound exceeds this length, it is discarded without having to

check any of the possible tours that extend it.

Here is a Branch and Bound algorithm for an adjacency list

representation of a graph. If the first vertex is numbered 1 instead of 0,

the array bounds for mark and minEdge would have to be length N + 1

and the loops traversing these arrays would have to be from 0 to N.

CHECK YOUR PROGRESS - III

g) Backtracking is a modified ________ first search of a tree

h) Hamiltonian Path is an undirected graph, which visits each vertex

exactly _________.

Space for learners:

150 | P a g e

1.7 SUMMING UP

 An algorithm is a sequence of computational steps that start with a

set of input(s) and finish with valid output(s)

 An algorithm is correct if for every input(s), it halts with correct

output(s)

 Divide and conquer algorithm has three steps

 Divide the problem into smaller independent sub-problems

 Conquer by solving these sub-problems

 Combine these sub-problems to together

 The sub-problems solved by a divide and conquer is non-

overlapping

 Greedy algorithm is typically used in optimization problem

 Optimal solution finds a given objective function which value is

either maximizes or minimizes

 A greedy algorithm always makes the choice that looks best at the

moment. That is it makes a locally optimal choice that may be

lead to a globally optimal solution

 In Greedy algorithm choice is made that seems best at the moment

and solve the sub-problems after the choice is made

 Greedy algorithm progress in a top down manner

 A greedy algorithm gives optimal solution for all subproblems,

but when these locally optimal solutions are combined it may

NOT result into a globally optimal solution. Hence, a greedy

algorithm cannot be used to solve all the dynamic programming

problems.

 A problem is said to have optimal substructure if an optimal

solution can be constructed efficiently from optimal solution to its

sub-problem

 A spanning tree is a connected graph, say G = (V, E) with V as

set of vertices and E as set of edges, is its connected acyclic sub-

graph that contain all the vertices of the graph

Space for learners:

151 | P a g e

 A minimum spanning tree T of a positive weighted graph G is a

minimum weighted spanning tree in which total weight of all

edges are minimum

 A problem can be solved by dynamic programming only when it

possesses optimal substructure

 A problem is said to satisfy the principle of optimality, if the sub

solutions of an optimal solution of the problem are themselves

optimal solution for their sub problems

 In dynamic programming we first solve the sub-problems and

then use these solutions to get the optimal solution in recursive

manner

 Backtracking is a method for searching a set of solutions or find

an optimal solution for satisfy some given constraint to a problem

 In backtracking method the solution set can be represented by an

n tuple (x1,x2,…….,xn), where xi are chosen from some finite set

Si

 Backtracking method can be used for optimization problem to

find one or more solution vector that maximize or minimize or

satisfy a given criterion function

 In backtracking constraint to be satisfied can be divided into two

categories- Implicit constraint and Explicit constraint

 Two types of tuple formulation- Variable size tuple and Fixed

sized tuple

 In backtracking method searching can be organized in a tree

called state space tree

 A solution state is a node s for which each node from root node to

nodes together can represent a tuple in solution set

 A live node is a generated node, for which all of its children node

have not yet generated.

 A E-node (Expanded node) is a live node, whose children are

currently being generated

 A dead node is that , which is not expanded further and all of its

children is generated

Space for learners:

152 | P a g e

 A node n is called non-promising if it cannot lead to a feasible

solution. Otherwise, it is called promising node

 A state space tree is called pruned state space tree if it consist of

only expanded node

 Backtracking method do depth first search of a state space tree

 It is a generalized problem of 8-Queen problem. N Queens are

placed on a chess board of size n x n, without having attack each

other.

 A Hamiltonian cycle of a connected undirected graph with n

vertices is a cyclic path along n edges, such that each vertex visits

once in graph G and return to the starting vertex

 Branch and Bound is a state space search method in which all the

children of a node are generated before expanding any of its

children

 It is similar to backtracking technique but uses BFS-like search

 Branch and bound techniques uses the priority queue data

structure for storing the information

 Branch and bound technique mainly based on the value g(x) +

h(x), where g(x) is the distance from the root to the current vertex

and h(x) is a heuristic function.

1.8 ANSWERS TO CHECK YOUR PROGRESS

a) Algorithm

b) Optimal

c) Efficiency

d) Prim’s

e) Non-decreasing

f) Two applications of Minimum Spanning Tree:

i. In design of electric circuit network

ii. It is used in traveling salesman problem

Space for learners:

153 | P a g e

g) Depth

h) Once

1.9 POSSIBLE QUESTIONS

Short Answer type Questions:

1) What is optimal substructure?

2) How does the greedy choice property applied in optimal merge

pattern problem?

3) What is minimum spanning tree?

4) What are the algorithms to solve minimum spanning tree

problem ?

5) What is backtracking method?

6) Write about state space tree organization of backtracking

method.

7) What is Hamiltonian cycle?

Long Answer type questions:

1) Explained the criteria that all algorithms must satisfy.

2) Solve by substitution method a=1, b=2, f(n)=c

3) Solve recurrence relation a=2, b=2, f(n)=cn

4) Solve ���� = Q. � /

R2 + 4�S; � ≥ 3

5) Explain the characteristics of dynamic programming.

6) Describe the steps of dynamic programming algorithm.

7) Describe the method of solving travelling salesman problem

using branch and bound strategy.

8) How does backtracking method find Hamiltonian cycle in a

graph?

9) What is 8-queen problem? How can it solve using backtracking?

10) What is the bounding condition for n-queen problem?

11) What is minimum spanning tree? Find the minimum spanning

tree for the following graph using Prim’s and Kruskal algorithm

Space for learners:

154 | P a g e

 12) Find out the shortest path using Dijkstra algorithm for the

following graph

1.10 REFERENCES AND SUGGESTED READINGS

[1] Design And Analysis Of Algorithms [R18a0507], Malla Reddy

College Of Engineering & Technology.

[2] T. H. Cormen, C. E. Leiserson, R.L.Rivest, and C. Stein,

"Introduction to Algorithms", Second Edition, Prentice Hall of

India Pvt. Ltd, 2006.

[3] Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran,

Computer Algorithms/ C++, Second Edition, Universities Press,

2007.

[4] Design And Analysis Of Algorithms, by Malla Reddy College Of

Engineering & Technology.

155 | P a g e

Space for learners:

UNIT 2: ALGORITHM DESIGN

TECHNIQUES II

Unit Structure:

2.1 Introduction

2.2 Searching

2.2.1 Binary search

2.2.2 Optimal Binary Search Tree

2.3 Sorting

2.3.1 Insertion sort

2.3.2 Merge Sort

2.3.3 Quick sort

2.4 Matrix manipulation problems

2.4.1 Matrix chain Multiplication

2.4.2 Dynamic Programming Approach for Matrix

Chain Multiplication

2.4.3 Divide and Conquer strategy for Matrix

Multiplication

2.5 KNAPSACK Problem

2.5.1 Greedy Strategy Applied in 0-1 KNAPSACK

Problem

2.5.2 Greedy Strategy Applied in Fractional

KNAPSACK Problem

2.5.3 Dynamic Programming applied in 0/1

KNAPSACK Problem

2.5.4 Backtracking Method for 0-1 KNAPSACK

Problem

2.5.5 Solving Knapsack Problem using Branch and

Bound

2.6 Job Sequencing With Deadline

2.7 Set manipulation problem

 2.7.1 Disjoint-set operation

2.7.2 Union and Find Operation

2.8 Dynamic storage allocation

 2.8.1 Garbage collection

2.9 Summing Up

2.10 Answers to Check Your Progress

2.11 Possible Questions

2.12 References and Suggested Readings

156 | P a g e

Space for learners: 2.1 INTRODUCTION

In the previous unit we discussed about various algorithm design

techniques. We can view an algorithm as a tool for solving a well-

specified computational problem. The algorithm describes a specific

computational procedure for achieving that input/output

relationship.

Computers may be fast, but they are not efficiently fast and memory

may be inexpensive, but it is not free. Computing time is therefore

bounded resource and so is space in memory. We should use those

resources wisely and algorithms that are efficient I n terms of time

or space will help us to do so. Different algorithms devised to solve

the same problem often differ dramatically in their efficiency. These

differences can be much more significant than differences due to

hardware and software [1]. Total system performance depends on

choosing efficient algorithms as much as on choosing fast hardware.

Just as rapid advances are being made in other computer

technologies, they are being made in algorithms as well.

An algorithm is said to be correct if for every input instance, it halts

with the correct output. Correct algorithm solves the given

computational problem. An incorrect algorithm might not halt at all

on some input instances, or it might halt with an incorrect answer.

2.2 SEARCHING

In computing locating information is important and recurring

problem, this problem is known as searching. Searching is

considered as one of the issue involved in algorithm design [4].

The information to be searched has to first be represented (or

encoded) somehow. This is where data structures come in. Of

course, in a computer, everything is ultimately represented as

sequences of binary digits (bits), but this is too low level for most

purposes. We need to develop and study useful data structures that

are closer to the way humans think, or at least more structured than

mere sequences of bits.

After that we have chosen a suitable representation for information

and then processed them. This is what leads to the need for

algorithms. In this case, the process of interest is that of searching.

157 | P a g e

Space for learners: Let us assume that we want to search a collection of integer

numbers. To begin with, let us consider:

1. The most obvious and simple representation.

2. Two potential algorithms for processing with that

representation.

Arrays are one of the simplest possible ways of representing

collections of numbers (or strings, or whatever), so we shall use that

to store the information to be searched.

Suppose, for example, that the set of integers we wish to search is

{1, 4, 17, 3, 90, 79, 4, 6, 81}.

We can write them in an array a as

a = [1, 4, 17, 3, 90, 79, 4, 6, 81]

If we ask where 17 is in this array, the answer is 2, the index of that

element. If we ask where 91 is, the answer is nowhere. It is useful to

be able to represent nowhere by a number that is not used as a

possible index. Since we start our index counting from 0, any

negative number would do. We shall follow the convention of using

the number -1 to represent nowhere.

We can now formulate a specification of our search problem using

that data structure:

Given an array a and integer x, find an integer i such that

1. If there is no j such that a[j] is x, then i is -1,

2. Otherwise, i is any j for which a[j] is x

The first clause says that if x does not occur in the array a

then i should be -1, and the second says that if it does occur then i

should be a position where it occurs. If there is more than one

position where x occurs, then this specification allows you to return

any of them.

In the previous unit we introduced with Divide-and-conquer

approach that is used in the design of algorithms. This technique is

the basis of designing efficient algorithms for all kinds of problems,

such as sorting like insertion sort, merge sort, quick sort and in

searching like binary search.

158 | P a g e

Space for learners: 2.2.1 Binary Search

Binary search is a well-known instance of divide and conquer

method. For binary search divide and conquer strategy is applied

recursively for a given sorted array is as follows:

Divide: Divide the selected array at the middle. It creates two sub-

arrays, one left sub-array and other right sub-array.

Conquer: Find out the appropriate sub-array.

Combine: Check for the solution to key element.

For a given sorted array of N element and for a given key element

(value to be searched in the sorted array), the basic idea of binary

search is as fallows –

1. First find the middle element of the array

2. Compare the middle element with the key element.

3. There are three cases

 If it is the key element then search is successful

 If it is less than key element then search only the lower half

of the array

 If it is greater than key element then search only the upper

half of the array

4. Repeat 1, 2 and 3 until the key element found or sub-array sizes

become one.

Problem definition:

Let ai, 1 ≤ i ≤ n be a list of elements that are sorted in non-

decreasing order. The problem is to find whether a given element x

is present in the list or not. If x is present we have to determine a

value j (element’s position) such that aj=x. If x is not in the list, then

j is set to zero [5].

Solution: Let P = (n, ai……al, x) denote an arbitrary instance of

search problem where n is the number of elements in the list, ai…al

is the list of elements and x is the key element to be searched for in

the given list. Binary search on the list is done as follows:

Step1: Pick an index q in the middle range [i, l] i.e. q= [(n + 1)/2]

and compare x with aq

159 | P a g e

Space for learners: Step 2: if x = aq i.e key element is equal to mid element, the

problem is immediately solved.

Step 3: if x <aq in this case x has to be searched for only in the sub-

list ai, ai+1, ……, aq- Therefore, problem reduces to (q-i, ai…aq-1, x).

Step 4: if x >aq,x has to be searched for only in the sub-list aq+1, ...,.,

al . Therefore problem reduces to (l-i, aq+1…al, x).

For the above solution procedure, the Algorithm can be

implemented as recursive or non- recursive algorithm

Analysis

In binary search the basic operation is key comparison. Binary

Search can be analyzed with the best, worst, and average case

number of comparisons. The numbers of comparisons for the

recursive and iterative versions of Binary Search are the same, if

comparison counting is relaxed slightly. For Recursive Binary

Search, count each pass through the if-then-else block as one

160 | P a g e

Space for learners: comparison. For Iterative Binary Search, count each pass through

the while block as one comparison. Let us find out how many such

key comparison does the algorithm make on an array of n elements.

Best case – Θ (1) In the best case, the key is the middle in the array.

A constant number of comparisons (actually just 1) are required.

Worst case – Θ (log2 n) In the worst case, the key does not exist in

the array at all. Through each recursion or iteration of Binary

Search, the size of the admissible range is halved. This halving can

be done ceiling(log2n) times. Thus, [log2 n] comparisons are

required.

Sometimes, in case of the successful search, it may take maximum

number of comparisons] log2 n]. So worst case complexity of

successful binary search is Θ (log2 n).

Average case - Θ (log2n) To find the average case, take the sum of

the product of number of comparisons required to find each element

and the probability of searching for that element. To simplify the

analysis, assume that no item which is not in array will be searched

for, and that the probabilities of searching for each element are

uniform.

Space Complexity - The space requirements for the recursive and

iterative versions of binary search are different. Iterative Binary

Search requires only a constant amount of space, while Recursive

Binary Search requires space proportional to the number of

comparisons to maintain the recursion stack.

161 | P a g e

Space for learners:

Advantages: Efficient on very big list, Can be implemented

iteratively/recursively.

Limitations:

 Interacts poorly with the memory hierarchy

 Requires sorted list as an input

 Due to random access of list element, needs arrays instead of

linked list

2.2.2 Optimal Binary Search Tree

A binary search tree is a tree where the key values are stored in the

internal nodes, the external nodes (leaves) are null nodes, and the

keys are ordered lexicographically, i.e. For each internal node all the

keys in the left sub-tree are less than the keys in the node, and all the

keys in the right sub-tree are greater.

When we know the frequency of searching each one of the keys, it is

quite easy to compute the expected cost of accessing each node in

the tree. An optimal binary search tree is a binary search tree which

has minimal expected cost of locating each node. In our problem, we

Binary Search Example

162 | P a g e

Space for learners: are not concerned with the frequency of searching for a missing

node. For example:

Fig a: Optimal Binary search tree ex1.

[2*1 + (1+8)*2 + (4+1+16)*3] = 83

The expected cost of successful search is 83, is computed by

multiplying each frequency by its level (starting w ith the root at 1).

A different tree will have a different expected cost

Fig b: Optimal Binary search tree ex2

[8*1 + (1+16)*2 + (4+2)*3 + 1 *4] = 64

Node ID 0 1 2 3 4 5

Key A B C D E F

Frequency 4 1 1 2 8 16

163 | P a g e

Space for learners: It's clear that the tree in fig a is not optimal. - It is easy to see that the

nodes having higher frequencies are closer to the root, and then the

tree will have a lower expected cost.

In obtaining a cost function for binary search trees, it is useful to add

an external node in place of every empty sub-tree in the search tree.

If a binary search tree represents n identifiers, then there will be

exactly n internal nodes and n+1 external nodes.

If a successful search terminates at an internal node at level l, then

the expected cost contribution from the internal node aiis p(i) *

level(ai).

Unsuccessful searches terminates the external nodes, let the

unsuccessful searches terminates at node Ei, if the failure node is at

level l, then only l-1 comparisons will be made, so the cost

contribution of this node is q(I) * (level(Ei) -1)

The preceding decision leads to the following formula for the

expected cost of a binary search tree.

∑ ���� ∗ ��	���
���� � + ∑ ���� ∗ ���	������ − 1����

We define a optimal binary search tree for the identifier set { a1, a2,

…., an} to be a binary search tree for which the above equation is

minimum

To solve this problem by dynamic programming we need to view

the construction of such a tree as the result of a sequence of

decisions and then observe that the principle of optimality holds

when applied to the problem state resulting from a decision. A

possible approach to this would be to make a decision as to which of

the ai’s should be assigned to the root of the tree. If we choose ak,

then it is clear that the internal nodes for a1, a2, …., ak-1 as well as

external nodes for the classes E1, E2, …., Ek-1 will be in the left

subtree, l, of the root. The remaining nodes will be in the right

subtree, r. Define

������� = ∑ ���� ∗ ��	���
�� +���� ∑ ���� ∗ ��	����� − 1�����

������� = ∑ ���� ∗ ��	���
�� +����� ∑ ���� ∗ ��	����� − 1������

In both cases the level is measured by regarding the root of the

respective subtree to be at level 1.

Using w(I,j) to represent the sum q(i) + ∑j
l=i+1 (q(I)+p(I)), we obtain

the following as the expected cost of the search tree

164 | P a g e

Space for learners: p(k) + cost(I) + cost(r) + w(0, k-1) + w(k, n)

If the tree is optimal then the above equation must be minimum.

Hence, cost(l) must be minimum over all the binary search trees

containing a1, a2, …., ak-1 and E1, E2, …., Ek-1. Similarly cost(r) must

be minimum. If we use c(I,j) to represent the cost of an optimal

binary search tree, tij, containing ai+1, ai+2, …., aj and Ei+1, Ei+2, ….,

Ej, then for the tree to be optimal, we must have cost(I) = c(0, k-1)

and cost(r) = c(k,n). In addition k must be choose such that

p(k) + c(0, k-1) + c(k,n) + w(0, k-1) + w(k, n) is minimum. Hence

c(0,n) we obtain

c(0,n) = min���{��!� + c(0, k-1) + c(k,n) + w(0, k-1) + w(k, n)}

we can generalized this equation for any c(i,j) as follows:

c(i,j) = min��"{��!�+ c(i, k-1) + c(k,j) + w(i, k-1) + w(k, j)}

c(i,j) = min��"{c�i, k − 1� + c�k, j�} + w(i,j)

This equation can be solved for c(0,n) by first computing all c(i,j)

such that j-i=1. Next we can compute all c(i,j) such that j-i =2, then

all c(i,j) with j-i=3, etc. if during this computation we record the root

r(i,j) of each tree tij, then an optimal binary search tree can be

constructed from these r(i,j).

2.3 SORTING

Sorting is a fundamental operation in computer science. As a result

we have a large number of good sorting at or disposal. Which

algorithm is best for a given application depends on other factors

also. These are:

(a) The no of items to be sorted

(b) The extent to which the items are already somewhat

sorted

CHECK YOUR PROGRESS - I

a) Binary search is a well-known instance of ________and

_______method

b) List two limitations of Binary Search

165 | P a g e

Space for learners: (c) Possible restrictions on the item values

(d) The architecture of the computer

(e) The storage device used like main memory, disks or tapes

Formal definition of sorting problem:

Input: A sequence of n numbers <)*,)+, … … … . ,).>

Output: a permutation (reordering) </*0 , /+0 , … … … . . , /10 > of

the input sequence such that </*0 ≤ /+0 ≤ … … … . . ≤ /10 >

The numbers that we wish to sort are also known as the keys.

Conceptually we are sorting a sequence, but the input comes in the

form of an array with n elements [2].

For example, given the input <31, 41, 59, 26, 41, 58>, a sorting

algorithm returns as output the sequence <26, 31, 41, 41, 58, 59>.

Such an input sequence is called instance of the sorting problem. An

instance of a problem consists of the input (satisfying whatever

constraints are imposed in the problem statement) needed to

compute a solution to the problem.

Sorting techniques can be classified into two types:

 Internal sorting techniques: Any sort algorithm that uses main

memory exclusively during the sorting is called as internal sort

algorithms. Internal sorting is faster than external sorting. Some

example internal sorting algorithms are Insertion Sort, Bubble

Sort, Selection Sort, Heap Sort, Shell Sort, Bucket Sort, Quick

Sort, Radix Sort.

 External sorting techniques: Any sort algorithm that uses

external memory, such as tape or disk, during the sorting is

called as external sort algorithms. Merge Sort is one of the

external sort algorithms.

2.3.1 Insertion Sort

We start with insertion sort, which is an efficient algorithm for

sorting a small number of elements. For insertion sort we used an

incremental approach. In insertion Sort the number of comparisons

depends on the order of the input elements. We begin with the

subarray of size 1, A[1], which is already sorted. Next, A[2] is

inserted before or after A[1] depending on whether it is smaller than

A[1] or not. Continuing this way, in the ith iteration, A[i] is inserted

166 | P a g e

Space for learners: in its proper position in the sorted subarray A[1..i − 1]. This is done

by scanning the elements from index i−1 down to 1, each time

comparing A[i]with the element at the current position. An element

is shifted one position up to a higher index, in each iteration of the

scan. This process of scanning, performing the comparison, and

shifting continues until an element less than or equal to A[i] is

found, or when all the sorted sequence so far is exhausted. At this

point, A[i] is inserted in its proper position, and the process of

inserting element A[i] in its proper place is complete [3].

The number of element comparisons done by Algorithm

INSERTIONSORT depends on the order of the input elements. It is

easy to see that the number of element comparisons is minimum

when the array is already sorted in non-decreasing order. In this

case, the number of element comparisons is exactly n − 1, as each

element A[i], 2 ≤ i ≤ n, is compared with A[i − 1] only. On the other

hand, the maximum number of element comparisons occurs if the

array is already sorted in decreasing order and all elements are

distinct. In this case, the number of element comparisons is

4 � − 1 =
�

�56
4 � = 7�7 − 1�2
�9�

�5�

as each element A[i], 2 ≤ i ≤ n, is compared with each entry in the

subarray A[1..i−1]. As to the number of element assignments, notice

that there is an element assignment after each element comparison in

the while loop. Moreover, there are n−1 element assignments of A[i]

to x in Step 2 of the algorithm. It follows that the number of element

assignments is equal to the number of element comparisons plus n −

1.

Algorithm: INSERTIONSORT

167 | P a g e

Space for learners: The number of element comparisons performed by Algorithm

INSERTIONSORT is between n−1 and n(n−1)/2. The number of

element assignments is equal to the number of element comparisons

plus n−1.

Insertion Sort Example

Analysis of Insertion sort:

 Simple implementation

 Efficient for small data sets

 Adaptive, i.e., efficient for data sets that are already

substantially sorted: the time complexity is O(n+d),

where d is the number of inversions

 More efficient in practice than most other simple quadratic

algorithms such as selection sort or bubble sort: the average

running time is n2/4, and the running time is linear in the best

case

 Stable, i.e., does not change the relative order of elements

with equal keys

 In-place, i.e., only requires a constant amount O(1) of

additional memory space

 Online, i.e., can sort a list as it receives it

 Worst case performance: : (n2)

 Best case performance: : (n)

 Average case performance: : (n2)

168 | P a g e

Space for learners: Worst case space complexity: : (n) total, : (1) auxiliary

2.3.2 Merge Sort

The merge sort algorithm closely follows the divide-and-conquer

paradigm. Intuitively, it operates as follows:

Divide: Divide the n-element sequence to be sorted into two

subsequences of n/2 elements each

Conquer: Sort the two subsequences recursively using merge sort.

Combine: Merge the two sorted subsequences to produce the sorted

answer.

The recursion “bottoms out” when the sequence to be sorted has

length 1, in which case there is no work to be done, since every

sequence of length 1 is already in sorted order.

The key operation of the merge sort algorithm is the merging of two

sorted sequences in the “combine” step. We merge by calling an

auxiliary procedure MERGE(A, p,q,r), where A is an Array

p, q and r are indices into the array such that p<=q<r.

The procedure assume that the subarrays A[p…q] and [Aq+1…r]

are in sorted order. It merges them to form a single sorted subarray

that replaces the current subarray A[p..r].

MERGE-SORT(A, p, r)

Input: An integer array A with indices p < r.

Output: The subarray A [p ... r) is sorted in non-decreasing order.

1 if r > p + 1

2 � = ⌊�� + ��/2⌋
3 MERGE-SORT (A, p, q)

4 MERGE-SORT (A, q, r)

5 MERGE (A, p, q, r)

Initial Call:

Merge Sort (A, 1, n+1)

Input: Array A with indices p, q, r such that

 p<q<r

169 | P a g e

Space for learners: Subarrays A[p…q) and A[q…r) are both sorted

Output: The two sorted subarrays are merged into a single sorted

subarray in A[p….r).

Merge Sort example

Analysis of merge sort:

 The worst-case running time of MERGE-SORT is : (n log

n), much better that the worst-case running time of

INSERTION-SORT, which was : (n2) [11].

 MERGE-SORT is stable, because MERGE is left-biased

 MERGE and therefore MERGE-SORT is not in-place: it

requires : (n) extra space

 MERGE-SORT is not an online-algorithm: the whole array

A must be specified before the algorithm starts running

170 | P a g e

Space for learners: 2.3.3 Quick Sort

The quick sort algorithm partitions the original array by rearranging

it into two groups. The first group contains those elements less than

some arbitrary chosen value taken from the set and the second group

contains those elements greater than or equal to the chosen value.

The chosen value is known as the pivot element. Once the array has

been rearranged in this way with respect to the pivot, the very same

partitioning is recursively applied to each of the two subsets. When

all the subsets have been partitioned and rearranged, the original

array is sorted.

The function partition () makes use of two pointers ‘i’ and ‘j’ which

are moved toward each other in the following fashion:

 Repeatedly increase the pointer ‘i’ until a[i] >= pivot

 Repeatedly decrease the pointer ‘j’ until a[j] <= pivot

 If j > i, interchange a[j] with a[i]

 Repeat the steps 1, 2 and 3 till the ‘i’ pointer crosses the ‘j’

pointer. If ‘i’ pointer crosses ‘j’ pointer, the position for pivot

is found and place pivot element in ‘j’ pointer position.

The program uses a recursive function quicksort(). The algorithm of

quick sort function sorts all elements in an array ‘a’ between

positions ‘low’ and ‘high’.

 It terminates when the condition low >= high is satisfied.

This condition will be satisfied only when the array is

completely sorted.

 Here we choose the first element as the ‘pivot’. So, pivot =

x[low]. Now it calls the partition function to find the proper

position j of the element x[low] i.e. pivot. Then we will have

two sub-arrays x[low], x[low+1], x[j-1] and x[j+1],

x[j+2], . . .x[high]

 It calls itself recursively to sort the left sub-array x[low],

x[low+1],x[j-1] between positions low and j-1

(where j is returned by the partition function).

 It calls itself recursively to sort the right sub-array x[j+1],

x[j+2], x[high] between positions j+1 and

high.

171 | P a g e

Space for learners: Algorithm QUICKSORT(low, high)

/* sorts the elements a(low), , a(high) which reside in the
global array A(1 :
n) into ascending order a (n + 1) is considered to be defined and

must be greater than all elements in a(1 : n); A(n + 1) = + ∝ */

{
if low < high then

{
j := PARTITION(a, low, high+1);
 // J is the position of the partitioning
element QUICKSORT(low, j – 1);
QUICKSORT(j + 1 , high);

}
}

Algorithm PARTITION(a, m, p)
{

V a(m); i m; j p; // A (m) is the partition element
do
{

loop i := i + 1 until a(i) ≥ v // i moves left to right

loop j := j – 1 until a(j) ≤v // p moves right to left
if (i < j) then INTERCHANGE(a, i, j)

} while (i ≥ j);
a[m] :=a[j]; a[j] :=V; // the partition element belongs at

position P
return j;

}

Algorithm INTERCHANGE(a, i, j)
{

P:=a[i];
a[i] := a[j];
a[j] := p;

}

172 | P a g e

Space for learners: Quick Sort example

Analysis of Quicksort

 Best-case time efficiency: split in the middle — Θ(n log n)

 Worst-case time efficiency: sorted array! — Θ(n2)

 Average case time efficiency: random arrays — Θ(n log n)

 Space efficiency: not in-place — Θ(log n) with a careful

implementation

 Not stable

 Improvements:

• better pivot selection: median-of-three partitioning

• switch to insertion sort on small sub files or just

stopping recursive calls when unsorted subarrays

become small (say, <10 elements) and finish sorting

with insertion sort

173 | P a g e

Space for learners: These yields about 20% improvement

 Considered the method of choice for sorting random files of

nontrivial sizes

2.4 MATRIX MANIPULATION PROBLEMS

Operations on matrices are at the heart of scientific computing.

Efficient algorithms for working with matrices are therefore of

considerable practical interest.

Suppose we had given a sequence of matrices to find the most

efficient way to multiply those matrices together. The problem is not

actually to perform the multiplications, but merely to decide in

which order to perform the multiplications. We have many options

to multiply a chain of matrices because matrix multiplication is

associative. In other words, no matter how we parenthesize the

product, the result will be the same.

2.4.1 Matrix Chain Multiplication

Let, we have three matrices A1, A2 and A3, with order (10 x 100),

(100 x 5) and (5 x 50) respectively.

Then the three matrices can be multiplied in two ways.

(i) First, multiplying A2 and A3, then multiplying A1 with

the resultant matrix i.e. A1(A2 A3).

(ii) First, multiplying A1 and A2, and then multiplying the

resultant matrix with A3 i.e. (A1A2) A3.

The number of scalar multiplications required in case 1 is

100 * 5 * 50 + 10 * 100 * 50 = 25000 + 50,000

= 75,000

CHECK YOUR PROGRESS - II

c) In insertion Sort the number of comparisons depends on the

order of the ____________

d) MERGE-SORT is stable, because MERGE is __________

e) The arbitrary chosen element is termed as _____________

174 | P a g e

Space for learners: and the number of scalar multiplications required in case 2 is

10 * 100 * 5 + 10 * 5 * 50 = 5000 + 2500 = 7500

To find the best possible way to calculate the product, we

could simply parenthesize the expression in every possible

fashion and count each time how many scalar multiplications are

required. Thus the matrix chain multiplication problem can be

stated as “find the optimal parenthesization of a chain of

matrices to be multiplied such that the number of scalar

multiplications is minimized”.

For example, if we had four matrices A, B, C, and D, we would

have:

 (ABC)D = (AB)(CD) = A(BCD) =

However, the order in which we parenthesize the product affects

the number of simple arithmetic operations needed to compute the

product, or the efficiency.

For example, suppose A is a 10 × 30 matrix, B is a 30 × 5 matrix,

and C is a 5 × 60 matrix. Then,

(AB)C = (10×30×5) + (10×5×60) = 1500 + 3000 = 4500 operations

A(BC) = (30×5×60) + (10×30×60) = 9000 + 18000 = 27000

operations.

Clearly the first parenthesization requires less number of

operations.

Note that in the matrix chain multiplication problem, we are not

actually multiplying matrices. Our goal is only to determine an

order for multiplying matrices that has the lowest coast.

Typically the time invested in determining this optimal order is

more than paid for by the time saved later on when actually

performing the matrix multiplications.

2.4.2 Dynamic Programming Approach for Matrix

Chain Multiplication

Dynamic programming is typically applied to optimization

problems. In such problems there can be many possible solutions.

Each solution has a value, and we wish to find a solution with the

optimal (minimum or maximum) value. We call such a

solution an optimal solution to the problem, as opposed

175 | P a g e

Space for learners: to the optimal solution.

Our first example of dynamic programming is an algorithm that

solves the problem of matrix-chain multiplication [6].

Let us consider a chain of n matrices A1, A2……….An, where the

matrix Ai has dimensions P[i-1] x P[i]

Suppose we take the parenthesisation at k, this results two sub

chains A1…….Ak and Ak+1…….An. These two sub chains must each

be optimal for A1……An to be optimal. The cost of matrix

chain (A1….An) is calculated as

cost(A1……Ak) + cost(Ak+1 .. An) + cost of multiplying two resultant

matrices together i.e.

cost(A1……An)= cost(A1……Ak) + cost(Ak+1 An) + cost of

multiplying two resultant matrices together.

Here, the cost represents the number of scalar multiplications.

The sub chain (A1….Ak) has a dimension P[0] x P[k] and the

sub chain (Ak+1……An) has a dimension P[k] x P[n]. The

number of scalar multiplications required to multiply two

resultant matrices is P[0] x P[k] x P[n]

Let m[i, j] be the minimum number of scalar multiplications

required to multiply the matrix chain (Ai……… Aj). Then

(i) m[i, j] = 0 if i = j

(ii) m[i, j] = minimum number of scalar multiplications

required to multiply (Ai….Ak) + minimum number

of scalar multiplications required to multiply

(Ak+1….An) + cost of multiplying two resultant

matrices i.e. m[i, j] = m[i, k] + m[k, j] + P[i -1]x P[k

]x P[j]

However, we don’t know the value of k, for which m[i, j] is

minimum. Therefore, we have to try all j – i possibilities.

0 if i=1

mi, j
minm[i, k] m[k, j] P[i 1] P[k] P[j]

 Otherwise

 ik j

176 | P a g e

Space for learners: Therefore, the minimum number of scalar multiplications required

to multiply n matrices A1 A2……An is

m[1, n] minm[1, k] m[k , n] P[0] P[k] P[n]
1k n

177 | P a g e

Space for learners: The dynamic programming approach for matrix chain multiplication is

presented in the following algorithm:

Algorithm MATRIX-CHAIN-MULTIPLICATION (P)

Now let us discuss the procedure and pseudo code of the matrix chain

multiplication. Suppose, we are given the number of matrices in the

chain is n i.e. A1, A2………An and the dimension of matrix Ai is P[i- 1]

×P[i]. The input to the matrix-chain-order algorithm is a

sequenceP[n+1] = {P[0], P[1], …….P[n]}. The algorithm first

computes m[i, i] = 0 for i = 1, 2, …….n in lines 2-3. Then, the

algorithm computes m[i, j] for j– i = 1 in the first step to the calculation

of m[i, j] for j – i = n -1 in the last step. In lines 3 – 11, the value of

// P is an array of length n+1 i.e. from P[0] to P[n]. It is assumed

that the matrix Ai has the dimension P[i-1] ×P[i].

{

for(i = 1; i<=n; i++)

m[i, i] = 0;

for(l = 2; l<=n; l++){

for(i = 1; i<=n-(l-1); i++){

j = i + (l-1);

m[i, j] = ∞;

for(k = i; k<=j-1; k++)

q = m[i, k] + m[k+1, j] + P[i-1] P[k] P[j] ;

if (q<m [i, j]){

m[i, j] = q;

s[i, j] = k;

}

}

}

}

return m and s

}

178 | P a g e

Space for learners: m[i, j] is calculated for j – i = 1 to j –i = n – 1 recursively. At each step

of the calculation of m[i, j], a calculation on m[i, k] and m[k+1, j] for

i≤k<j, are required, which are already calculated in the previous steps.

To find the optimal placement of parenthesis for matrix chain

multiplication Ai, Ai+1, …..Aj, we should test the value of i≤k<j for

which m[i, j] is minimum. Then the matrix chain can be divided from

(A1 ……Ak) and (Ak+1 ……. Aj).

Let us consider matrices A1,A2……A5 to illustrate MATRIX-CHAIN-

MULTIPLICATIONalgorithm. The matrix chain order P = {P0, P1, P2,

P3, P4, P5} = {5, 10, 3, 12, 5, 50}. The objective is to find the

minimum number of scalar multiplications required to multiply the 5

matrices and also find the optimal sequence of multiplications [7].

The solution can be obtained by using a bottom up approach that means

first we should calculate mii for 1≤i ≤ 5. Then mij is calculated for j – i =

1 to j – i = 4.

The value of mii for 1≤i ≤5 can be filled as 0 that means the

elements in the first row can be assigned 0. Then

For j – i = 1

m12 = P0 P1 P2 = 5 x 10 x 3 = 150

m23 = P1 P2 P3 = 10 x 3 x 12 = 360

m34 = P2 P3 P4 = 3 x 12 x 5 = 180

m45 = P3 P4 P5 = 12 x 5 x 50 = 3000

For j – i = 2

m13 = min {m11 + m23 + P0 P1 P3, m12 + m33 + P0 P2 P3}

= min {0 + 360 + 5 * 10 * 12, 150 + 0 + 5*3*12}

= min {360 + 600,

150 + 180} = min {960,

330} = 330 m24 =

min {m22 + m34 + P1 P2 P4,

m23 + m44 + P1 P3 P4}

= min {0 + 180 + 10*3*5, 360 + 0 +10*12*5}

179 | P a g e

Space for learners: = min {180 + 150,

360 + 600} = min {330,

960} = 330 m35 =

min {m33 + m45 + P2 P3 P5,

m34 + m55 + P2 P4 P5}

= min {0 + 3000 + 3*12*50, 180 + 0 + 3*5*50}

= min {3000 + 1800 + 180 + 750} = min {4800, 930} = 930

For j – i = 3

m14 = min {m11 + m24 + P0 P1 P4, m12 + m34 + P0 P2 P4, m13+m44+P0

P3 P4}

= min {0 + 330 + 5*10*5, 150 + 180 + 5*3*5,

330+0+5*12*5}

= min {330 + 250, 150 + 180 + 75, 330 +300}

= min {580, 405, 630} = 405

m25 = min {m22 + m35 + P1 P2 P5, m23 + m45 + P1 P3 P5, m24+m55+P1

P4 P5}

= min {0 + 930 +10*3*50, 360+3000+10*12*50,

330+0+10*5*50}

= min {930 + 1500, 360 +3000+6000, 330+2500}

= min {2430, 9360, 2830} = 2430

For j - i = 4

m15 = min{m11+ m25+ P0 P1 P5, m12+m35+ P0 P2 P5, m13 + m45 +P0

P3 P5, m14+m55+P0 P4 P5 }

= min{0+2430+5*10*50,

150+930+5*3*50,

330+3000+5*12*50,

405+0+5*5*50}

= min {2430+2500, 150+930+750, 330+3000+3000,

405+1250}

= min {4930, 1830, 6330, 1655} = 1655

180 | P a g e

Space for learners: Hence, minimum number of scalar multiplications required to multiply

the given five matrices in 1655.

To find the optimal parenthesization of A1……….A5, we find the value

of k is 4 for which m15 is minimum. So the matrices can be splitted to

(A1….A4) (A5). Similarly, (A1….A4) can be splitted to (A1A2) (A3 A4)

because for k = 2, m14 is minimum. No further splitting is required as

the sub chains (A1A2) and (A3 A4) has length 1. So the optimal

paranthesization of A1 …….A5 in ((A1 A2) (A3 A4)) (A5).

From the above solution of the given problem, we can see that all

possible ways of obtaining the parenthesization of a matrix chain

product using dynamic programming are performed. In other words, all

possible solutions are obtained, and from those solutions, the optimal

solution is taken, we have selected only those solutions that provide the

least or minimum value, which can be reflected in the minimum cost

table, as shown in Fig. 1. The respective k values are included in the

split table, as shown in Fig. 2.

Fig 1: Minimum cost table

181 | P a g e

Space for learners:

Complexity of Matrix Chain Product:

 The time complexity of matrix chain product is O(n3)

 The space complexity of matrix chain product is O(n2)

Tree for optimal parenthesization

Fig 2: Split table

182 | P a g e

Space for learners:

2.4.3 Divide and Conquer Strategy for Matrix

Multiplication

Here, we will see how divide and conquer technique work as a new
algorithm for multiplying matrix.

Let X and Y be n × n matrices

X= @A�� A�6 A��A6� A66 A��A�� A�6 A��
B

183 | P a g e

Space for learners: We want to compute Z=X.Y
 C�" = ∑ D�� . E�"��5�

 Naive method uses n2.n=:�7�F operations

Divide-and-Conquer solution:

Z= GH IJ KL . G� MN OL = P�H. � + I. N� �H. M + I. O��J. � + K. N� �J. M + K. O Q

 The above naturally leads to divide-and-conquer solution:
o Divide X and Y into 8 sub-matrices A, B, C, and D
o Do 8 matrix multiplications recursively
o Compute Z by combining results (doing 4 matrix

additions)

 Let’s assume n = 2c for some constant c and let A, B, C and D be
n/2 × n/2 matrices

o Running time of algorithm is T(n) = 8T(n/2) + : (n2))

 T(n) = :
(n3)

2.4.3.1 Strassen’s Matrix Multiplication

By using divide-and-conquer approach proposed by Strassen in 1969,

we can reduce the number of multiplications.

The usual way to multiply two n x n matrices A and B, yielding result

matrix ‘C’ as follows :

for i := 1 to n do

for j :=1 to n do

c[i, j] := 0;

for K: = 1 to n do

c[i, j] := c[i, j] + a[i, k] * b[k, j];

This algorithm requires n3 scalar multiplication’s (i.e. multiplication of

single numbers) and n3 scalar additions. So we naturally cannot improve

upon. We apply divide and conquer to this problem.

184 | P a g e

Space for learners: For example, let us considers three multiplications like:

R = GH IJ KL . G� MN OL = P�S� + S6 − ST + SU� �ST + SV��SU + SW� �S6 + SF + SV − SW�Q

S1 = (B − D) · (G + H)

S2 = (A + D) · (E + H)

S3 = (A − C) · (E + F)

S4 = (A + B) · H

S5 = A · (F − H)

S6 = D · (G − E)

S7 = (C + D) · E

Let’s test that S6 + S7 is really C · E + D · G

S6 + S7 = D · (G − E) + (C + D) · E

= DG − DE + CE + DE

= DG + CE

This leads to a divide-and-conquer algorithm with running time T(n) =

7T(n/2) + : (n2)

– We only need to perform 7 multiplications recursively.

– Division/Combination can still be performed in :(n2) time.

Let’s solve the recurrence using the iteration method

185 | P a g e

Space for learners:

Now we have the following:

Or, in general:
XYZ[�=: 7XYZ[�

So the solution is T(n) = : (n log 7) = : (n2.81...)

So, concluding that Strassen’s algorithm is asymptotically more

efficient than the standard algorithm.

186 | P a g e

Space for learners: 2.5 KNAPSACK PROBLEM

The knapsack problem is an example of a combinational optimization

problem, a topic in mathematics and computer science about finding the

optimal object or finite solution where an exhaustive search is not

possible among a set of objects. The problem can be found real-world

scenarios like resource allocation in financial constraints or even in

selecting investments and portfolios; and also be found in fields such as

applied mathematics, complexity theory, cryptography, combinatorics

and computer science.

In the knapsack problem, the given items have two attributes at

minimum – an item’s value, which affects its importance, and an item’s

weight or volume, which is its limitation aspect. Since an exhaustive

search is not possible, one can break the problems into smaller sub-

problems and run it recursively. This is called an optimal sub-structure.

This deals with only one item at a time and the current weight still

available in the knapsack. The problem solver only needs to decide

whether to take the item or not based on the weight that can still be

accepted. However, if it is a program, re-computation is not independent

and would cause problems. This is where dynamic programming

techniques can be applied. Solutions to each sub-problem are stored so

that the computation would only need to happen once [8].

There are n items, ith item is worth vi dollars and weight wi pounds,

where vi and wi are integers. Select item to put in knapsack with total

weight is less than W, So that the total value is maximized. This

problem is called knapsack problem. This problem finds which items

should choice from n item to obtain maximum profit and total weight is

less than W.

The problem can be explained as follows-

“A thief robbing a store finds n items, the ith item is worth vi dollar and

weight w pounds, where vi and wi are integers. He wants to take as

valuable load as possible, but he can carry atmost W pounds in his

knapsack, where W is an integer. Which item should he take”

There are two types of knapsack problem.

1. 0-1 knapsack problem:

187 | P a g e

Space for learners: In 0-1 knapsack problem each item either be taken or left behind.

2. Fractional knapsack problem:

In fractional knapsack problem fractions of items are allowed to

choose.

2.5.1 Greedy Strategy Applied in 0-1 KNAPSACK

Problem

The greedy algorithm in 0-1 knapsack problem can be applied as

follows-

1. Greedy choice:

Take an item with maximum value per pound.

2. Optimal substructure:

Consider the most valuable load that weights atmost W pounds. These

W pounds can be choose from n item. If jth item is choose first then

remaining weight W-wi can be choose from n-1 remaining item

excluding j.

2.5.2 Greedy Strategy Applied in Fractional KNAPSACK

Problem

The greedy algorithm in fractional Knapsack problem can be applied as

follows-

1. Greedy choice:

Take an item or fraction of item with maximum value per pound.

2. Optimal substructure:

If we choose a fraction of weight w of the item j, then the remaining

weight atmost W-w can be choose from the n-1 item plus wi-w pounds

of item j.

Although, both the problems are similar, the fractional knapsack

problem is solvable by greedy strategy, but 0-1 knapsack problem are

not solvable by greedy algorithm.

188 | P a g e

Space for learners: Consider the following problem-

There are 3 items. The knapsack can hold 50 pounds. Item1 weight 10

pounds and its worth is 60 dollar, item2 weight 20 pounds and its worth

100 dollars, item3 weight 30 pounds and its weight 120 dollars. Find

out the items with maximum profit which the knapsack can carry.

Solution:

Here,

W = 50 pounds

Item
Weight

(w pound)

Worth

(v dollar)

Item1 10 60

Item2 20 100

Item3 30 120

Let, an item I has weight wi pounds and worth vi dollar

Value per pound of I = vi / wi .

Thus, value per pound for-

Item1 = w1 / v1

= 60 dollars / 10 pounds

= 6 dollars/pounds

Item2 = w2 / v2

= 100 dollars / 20 pounds

= 5 dollars/pounds

Item3 = w3 / v3

= 120 dollars / 30 pounds

= 4 dollars/pounds

We can select maximum of 50 pounds.

189 | P a g e

Space for learners: So, using greedy strategy in 0-1 knapsack problem

1st choice is Item1.

2nd choice is Item2.

Total weight = 10 + 20 pounds

= 30 pounds

Total worth = 60 +100 dollars

=160 dollars

But this is not the optimal choice.

The optimal choice will choose item 2 and 3. Then,

Total weight = 20 + 30 pounds

= 50 pounds

Total worth = 100 + 120 dollars

= 220 dollars

Hence, 0-1 knapsack problem is not solved by greedy strategy.

Now, using greedy strategy in fractional knapsack problem –

1st choice is item1.

2nd choice is item2

Total weight = 30 pounds

But the size of the knapsack is 50 pounds.

So, it will take remaining 20 pounds from item3 (fraction of

item3) and its worth is 4 x 20=80 dollars.

Hence,

Total weights = 50 pounds.

190 | P a g e

Space for learners: Total worth = 60+100+ 80 dollars

=240 dollars.

Hence, an optimal solution can be obtained from fractional knapsack

problem using greedy strategy.

2.5.3 Dynamic Programming applied in 0/1 KNAPSACK

Problem

In the above topic, we have discussed about the Knapsack problem, and

found that fractional knapsack problem can be solved by using greedy

strategy. The 0-1 knapsack problem can only be solved by using

dynamic programming. Below we will discuss methods for solving 0-1

knapsack problem.

The naive way to solve this problem is to cycle through all 2n subsets of

the n items and pick the subset with a legal weight that maximizes the

value of the knapsack. But, we can find a dynamic programming

algorithm that will usually do better than this brute force technique.

Our first attempt might be to characterize a sub-problem as follows:

Let Sk be the optimal subset of elements from {I0, I1,...Ik}. But what we

find is that the optimal subset from the elements {I0, I1,... Ik+1} may not

correspond to the optimal subset of elements from {I0, I1,...Ik} in any

regular pattern. Basically, the solution to the optimization problem for

Sk+1 might NOT contain the optimal solution from problem Sk.

To illustrate this, consider the following example:

Item Weight Value

I0 3 10

I1 8 4

I2 9 9

I3 8 11

191 | P a g e

Space for learners: The maximum weight the knapsack can hold is 20.

The best set of items from {I0, I1, I2} is {I0, I1, I2} but the best set of

items from {I0, I1, I2, I3} is {I0, I2, I3}. In this example, note that this

optimal solution, {I0, I2, I3}, does NOT build upon the previous optimal

solution, {I0, I1, I2}. Instead it builds upon the solution, {I0, I2}, which is

really the optimal subset of {I0, I1, I2} with weight 12.

So, now, let us rework on our example with the following idea

Let B[k, w] represents the maximum total value of a subset Sk with

weight w. Our goal is to find B[n, W], where n is the total number of

items and W is the maximal weight, the knapsack can carry.

Using this definition, we have B[0, w] = w0, if w ≥ w0.

= 0, otherwise

Now, we can derive the following relationship that B[k, w] obeys: B[k,

w] = B[k - 1,w], if wk> w

= max { B[k - 1,w], B[k - 1,w - wk] + vk}

In general:

1) The maximum value of a knapsack with a subset of items from

{I0, I1, ...Ik} with weight w is the same as the maximum value of

a knapsack with a subset of items from {I0, I1, ... Ik- 1} with

weight w, if weights of item k is greater than W.

Basically, we can NOT increase the value of our knapsack with

weight w if the new item we are considering weighs more than

W – because it WON'T fit!!!

2) The maximum value of a knapsack with a subset of items from

{I0, I1, ... Ik} with weight w could be the same as the maximum

value of a knapsack with a subset of items from {I1, I2, ... Ik-1}

with weight w, if item k should not be added into the knapsack.

3) The maximum value of a knapsack with a subset of items from

{I0, I1, ... Ik} with weight w could be the same as the maximum

value of a knapsack with a subset of items from {I0, I1, ... Ik-1}

with weight w-wk, plus item k.

192 | P a g e

Space for learners: You need to compare the values of knapsacks in both case 2 and 3 and

take the maximal one.

Recursively, we will still have an O(2n) algorithm. But, using dynamic

programming, we simply perform in just two loops - one loop running n

times and the other loop running W times.

Here is a dynamic programming algorithm to solve the 0/1 Knapsack

problem:

Input: S, a set of n items as described earlier, W the total weight of the

knapsack. (Assume that the weights and values are stored in separate

arrays named w and v, respectively.)

Output: The maximal value of items in a valid knapsack. int i, k;

for (i=0; i<= W; i++)

 B[i] = 0

 for (k=0; k<n; k++)

 {

 for (i = W; i>= w[k]; i--)

 {

 if (B[i – w[k]] + v[k]> B[i])

 B[i] = B[i – w[k]] + v[k]

 }

}

Clearly the run time of this algorithm is O(nW), based on the nested

loop structure and the simple operation inside of both loops. When

comparing this with the previous O(2n), we find that depending on W,

either the dynamic programming algorithm is more efficient or the brute

force algorithm could be more efficient.

193 | P a g e

Space for learners: 2.5.4 Backtracking Method for 0-1 KNAPSACK

Problem Given n positive weights wi, n positive profits pi, and a

positive number m that is the knapsack capacity, the problem calls for

choosing a subset of the weights such that:

∑]�A� ≤ ^
7_ ∑ �̀A� �� ^
A�^�C�_ ��� ���

The xi’s constitute a zero–one-valued vector.

The solution space for this problem consists of the 2n distinct ways to

assign zero or one values to the xi’s.

Bounding functions are needed to kill some live nodes without

expanding them. A good bounding function for this problem is obtained

by using an upper bound on the value of the best feasible solution

obtainable by expanding the given live node and any of its descendants.

If a upper bound for a live node is not higher than the value of the best

solution then the node can bounded or kill.

 If we consider for a node Z the values of xi, 1 < i < k, have already

been determined, then an upper bound for Z can be obtained by relaxing

the requirements xi = 0 or 1.

A recursive function for 0-1 knapsack using backtracking:

/* bounding function for 0-1 knapsack*/

float Bound (float cp, float cw, int k)

{

float b = cp, c = cw;

for (int i = k + 1; i ≤ n; i++) c

= c + w [i];

if (c < m)

b = b + p [i]; else

return (b + (1 - (c – m) / w [i] * p [i]);

}

return(b);

}

/* Backtracking method for 0-1 knapsack*/

194 | P a g e

Space for learners: void Knap(int k, float cp, float cw)

{

if (cw + w [k] ≤ m)

y [k] = 1;

if (k < n)

Knap (k + 1, cp + p [k], cw + w [k]);

if ((cp + p [k] > fp) && (k == n))

{

fp = cp + p [k]; fw =

cw + w [k];

for (int j = 1; j ≤ k ; j++) x [

j] = y [j];

}

}

if (Bound (cp, cw, k) ≥ fp)

{

y [k] = 0;

if (k < n)

Knap (k + 1, cp, cw);

if ((cp > fp) &&(k == n))

{

fp = cp; fw =

cw ;

for (int j = 1; j ≤ k; j++)

x [j] = y [j];

}

}

}

Here,

cp = current total profit of the chosen items

cw = current total weight of all chosen items

k = index of last considered item

m = capacity of knapsack

w[i] = weight of ith item

195 | P a g e

Space for learners: p[i] = profit of ith item.

P[i]/w[i] ≥ p[i+1]/w[i+1], for all 1≤i<n

n= total item numbers

fw= final total weights in knapsack

fp= final maximum profit

x[k] ==0, if w[k] is not in knapsack,

== 1 ,Otherwise

The above method to determine an upper bound for a node at level k+1

of state space tree, function Bound(cp, cw, k) is used.

Initially fp is set to -1. This method s invoked by Knap(1,0,0). When fp

!= -1 , x[k],1≤k<n , is such that ∑ �a�bAa�b = c��5�….�

The path y[j],1 ≤ j ≤ k is the path to the current node. The current

weight

�] = � = ∑]a�bda�b�5�……�9�

The current profit cp = ∑ �a� bda�b�5�….�5�

2.5.5 Solving Knapsack Problem using Branch and

Bound

Let us consider a knapsack of size K and we want to select a set of

objects from n objects , where the ith object has size si and value vi such

that it maximizes the value contained in the knapsack with the contents

of the knapsack less than or equal to K.

Suppose that K = 16 and n = 4, and we have the following set of objects

ordered by their value density.

i vi si vi/si

1 $45 3 $15
2 $30 5 $ 6

3 $45 9 $ 5
4 $10 5 $ 2

196 | P a g e

Space for learners: Firstly we begin the state space tree with the root consisting of the

empty Knapsack. The current weight and value are obviously. To find

the maximum potential value we consider the problem as if it was the

fractional knapsack problem and we were using the greedy algorithmic

solution to that problem. We have already discussed that the greedy

approach to the fractional knapsack problem yields an optimal solution.

We place each of the remaining objects, into the knapsack until the next

selected object is too big to fit into the knapsack. We then use the

fractional amount of that object that could be placed in the knapsack to

determine the maximum potential value.

totalSize = currentSize + size of remaining objects that can be fully

placed

bound (maximum potential value) = currentValue + value of

remaining objects fully placed + (K - totalSize) * (value density of item

i.e partially placed)

In general, for a node at level i in the state space tree the first i items

have been considered for selection and for the kth object as the one that

will not completely fit into the remaining space in the knapsack, these

formulae can be written:

totalsize= currentsize + ∑ S��9�"5"e�

bound= currentvalue+ ∑ f� + �g − ���
���C�� ∗ �f��9�"5"e� S��

For the root node currentSize = 0 and currentValue = 0

totalSize = 0 + s1 + s2 = 0 + 3 + 5 = 8

bound = 0 + v1 + v2 + (K - totalSize) * (v3/s3)

= 0 + $45 + $30 + (16 - 8) * ($5)

= $75 + $40

= $115

The computation of the bound and the selection criteria for promising

nodes is the same as before. We must replace the depth-first traversal of

the state space tree with a breadth first traversal. In the depth-first

traversal the auxiliary data structure used to store the nodes was the

197 | P a g e

Space for learners: stack. In breath-first traversal, the auxiliary data structure is explicitly

the queue.

2.6 JOB SEQUENCING WITH DEADLINE

Now, we will discuss about the job sequencing problem. The problem is

stated as below-

1. There are n jobs to be processed on a machine

2. Each job i has a deadline di ≥ 0 and profit pi ≥ 0

3. pi is earned iff the job is completed by its deadline

4. To complete the job, it is processed in one machine for a unit of

time

5. Only one machine is available for processing job

6. Only one job is processed at a time on the machine

7. A feasible solution is a subset of job J such that each job is

completed by its deadline

8. An optimal solution is a feasible solution with a maximum profit

This problem can be solved by greedy algorithm. For the optimal

solution, after choosing a job, it will add the next job to the subset such

that ∑ ��� € i , increases and resulting subset become feasible. pi is the

total profit of ith subset of jobs. In other words we have to check all

possible feasible subset J with their total profit value, for a given set of

jobs.

Feasible solution for a set of job J is such that, if the jobs of set J can be

processed in the order without violating any deadline then J is a feasible

solution.

Algorithm for job sequencing:

Input: A is the array of jobs with deadline

198 | P a g e

Space for learners: 1. Begin

 2. Sort all the jobs based on profit Pi so

 3. P1 > P2 > P3 …………………………….>=Pn

 4. d = maximum deadline of job in A

 5. Create array J[1,…………………,d]

 6. For i=1 to n do

 7. Find the largest job x

 8. For j=i to 1

 9. If ((J[j] = 0) and (x deadline<= d))

 10. Then

 11. J[x] = i;

 12. Break;

 13. End if

 14. End for

 15. End for

 16. End

Output: Profit J array will be the output

Greedy Algorithm is adopted to determine how the next job is selected

for an optimal solution. The greedy algorithm described below always

gives an optimal solution to the job sequencing problem-

Step-01:

 Sort all the given jobs in decreasing order of their profit

Step-02:

 Check the value of maximum deadline

199 | P a g e

Space for learners: Draw a Gantt chart where maximum time on Gantt chart is the

value of maximum deadline.

Step-03:

 Pick up the jobs one by one

 Put the job on Gantt chart as far as possible from 0 ensuring that

the job gets completed before its deadline

Time complexity: Job sequencing problems has the time complexity of

O(n2)

Example :

Let , there are n=4 nos. of job and jobs are 1, 2, 3, 4

profit (p1,p2,p3,p4) = (100,10,15,27)

deadline (d1,d2,d3,d4) = (2,1,2,1)

Find the optimal solution set.

Jobs Profit Deadline

1 p1 100 d1 2

2 p2 10 d2 1

3 p3 15 d3 2

4 p4 27 d4 1

Solution:

Step 1: Sorting all jobs according to profit

Jobs Profit Deadline

2 p2 10 d2 1

3 p3 15 d3 2

4 p4 27 d4 1

1 p1 100 d1 2

Step 2: Here maximum deadline is 2

Now we draw a Gantt chart with maximum time on Gantt chart = 2

units.

Now,

 We take each job one by one in the order they appear in Step-01.

 We place the job on Gantt chart as far as possible from 0.

200 | P a g e

Space for learners: Step 3:

 We take job p4.

 Since its deadline is 1 and has the maximum profit than p2

(which has also deadline=1, so we place it in the first empty cell

before deadline 1 as-

0 1

p4

Step 4:

 We take job p1.

 Since its deadline is 2 and has the maximum profit than p3

(which has also deadline=1, so we place it in the first empty cell

before deadline 2 as-

 0 1

p4 p1

The optimal schedule is- p4, p1

This is the required order in which the jobs must be completed in order

to obtain the maximum profit.

Maximum earned profit

= Sum of profit of all the jobs in optimal schedule

= Profit of job p4 + Profit of job p1

= 27+100

=127 units

Following is a table with all possible feasible solution with processing

sequences and profit of each sequence. From this table now we can

understand that why (p4, p1) is the best optimal solution and why other

combinations were not considered as optimal.

201 | P a g e

Space for learners: Sl. No. Feasible Solution Processing Sequence Profit

1 (2,1) (1,2) 110

2 (1,3) (1,3) or(3,1) 115

3 (1,4) (4,1) 127

4 (2,3) (2,3) 25

5 (3,4) (4,3) 42

6 (1) (1) 100
7 (2) (2) 10

8 (3) (3) 15

9 (4) (4) 27

Here solution 3 is optimal. The optimal solution is got by processing the

job 1 and 4 in the order job 4 followed by job 1. The maximum profit is

127. Thus, the job 4 begins at time zero and job 1 end at time 2.

Consider solution 3 i.e maximum profit job subset J = (1, 4)

Here , at first J= Ø and ∑ ��� € i =0.

Job 1 is added to J as it has the largest profit and is a feasible solution.

Next add job 4 .Then also J = (1,4) is feasible because if the job

processes in the sequence (4,1) then job 4 will start in zero time and

job 1 will finish in 2 time within its deadline.

Next if job 3 is added then j=(1,3,4) is not feasible because all the job

1,3,4 cannot be completed within its deadline. So job 3 is not added to

the set.

Similarly after adding job 2 J= (1,2,4) is not feasible.

Hence J = (1, 4) is a feasible solution set with maximum profit 127.

This is an optimal solution.

2.7 SET MANIPULATION PROBLEM

The set union problem has been widely studied during the past decades.

Here we will discuss the use of forests in the representation of sets [2].

Some applications involve grouping n distinct elements into a collection

of disjoint sets. These applications often need to perform two operations

in particular:

 Finding the unique set that contains a given element

 Uniting two sets

202 | P a g e

Space for learners: 2.7.1 Disjoint-Set Operation

A disjoint-set data structure maintains a collection of set S= { S�, S6 … … … . . S�} of disjoint dynamic sets [1]. We identify each set by

a representative, which is some member of the set. Some application

doesn’t mind about which member is used as the representative; only

have to care that if we ask for the representative of a dynamic set twice

without modifying the set between the requests, we get the answer both

times. Other application may require a pre-specified rule for choosing

the representative, such as choosing the smallest member in the set.

Here we will assume that the elements of the sets are the numbers

1,2,3,….n. These numbers indicates into a symbol table in which the

names of the elements are stored. We assume that the sets being

represented are pairwise disjoint (i.e. if Si and Sj, � ≠ k, are two sets

then there is no element that is in both Si and Sj).

For example, when n=10, the elements can be partitioned into three

disjoint sets, S� = {1,7,8,9}, S6 = {2,5,10}
7_ SF = {3,4,6} .

Following fig., shows one possible representation for these sets:

Possible tree representation of sets S�, S6, SF

Here the usual method for representing child- parent relationship is not

used; instead the links are maintained from child to parent. Now the

operations we wish to perform on these sets are:

1. Disjoint set union: If Si and Sj are two disjoint sets, then their union S� ∪ S" = all elemets x such that x is in S��� S" . Thus S� ∪ S6 =

{1,7,8,9,2,5,10}. Since we have assume that all sets are disjoint, we can

assume that following the union of S�
7_ S" , the sets S�
7_ S" do not

exist independently, i.e. they are replaced by S� ∪ S" in the collection of

sets.

203 | P a g e

Space for learners: 2. Find(u�: Given the element � , find the set containing �. Thus, 4 is in

set SF and 9 is in set S�.

2.7.2 Union and Find Operation

Suppose, we wish to obtain the union of S�
7_ S6 from the fig 1. Since

we have linked the nodes from children to parent, we simply make one

of the trees a subtree of the other. S� ∪ S� could then have one of the

representation as shown int the following fig.

Possible tree representation of S� ∪ S6

To obtain the union of two sets, we have to set the parent field of one of

the roots to the other root. This can be accomplished easily if, with each

set name, we keep a pointer to the root of the tree representing that set.

If each root has a pointer to the set name, them to determine which set

an element is currently in, we follow parent links to the root of its tree

and use the pointer to the set name. The data representation for v*, v+, vw may then take the following form shown in fig 3.

Data representation for S�, S6,
7_ SF

204 | P a g e

Space for learners: Since the set elements are numbered 1 through n, we can represent, the

tree nodes using an array p [1 : n], where n is the maximum number of

elements. The ith element of this array represents the tree node that

contains element i. The array elements give the parent pointer of the

corresponding tree node. Fig 4 shows representation of sets v*, v+,).x vw, where the root node have parent -1.

I [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

p -1 5 -1 3 -1 3 1 1 1 5

Array representation of S�, S6,
7_ SF of fig 1

Now we can implement Find(i), by following the indices, starting at i

until we reach a node with parent value -1. For example Find(6) starts at

6 and then moves to 6’s parent 3. Since p[3] is –ve, we have reached the

root. The operation Union(i, j) is also equally simple, we pass the two

trees root i and j, by adopting the convention first tree become the sub-

tree of the second, the statement p[i]=j; accomplished the union.

An algorithm for “union and find” gives the description of the union

and find operation. Although these two algorithms are very easy to

state, their performance characteristics are not very good. For instance,

if we start with q elements each in a set of its own (i.e. S� = {�}, 1 ≤ � ≤��, them the initial configuration comnsists of a forest with q nodes, and �a�b = 0,1 ≤ � ≤ �.
 Algorithm: Simple algorithms for union

vyz{ *: Algorithm SimpleUnion(i,j)

Step 2: {

vyz{ w: �a�b = k;
vyz{ }: }

Algorithm: Simple algorithms for find

vyz{ *: Algorithm SimpleFind(i)

Step 2: {

vyz{ w:]ℎ��� ��a�b ≥ 0 _� � ≔ �a�b;

205 | P a g e

Space for learners: vyz{ }: return i;

Step 5: }

Since the time taken for a union is constant, the n-1 unions can be

processed in time ��.�. However, each find requires following a

sequence of parent pointers from the element to be found to the root.

Since the time required to process a find for an element at level � of a

tree is ����, the total time needed to process the n finds is ��∑ u�.u5* =��.+�.
2.8 DYNAMIC STORAGE ALLOCATION

Dynamic memory allocation has been a fundamental part of most

computer systems since roughly 1960, and memory allocation is widely

considered to be either a solved problem or an insoluble one.

Many algorithms require dynamic allocation of memory while the

program is running. For example, a text editor may choose to store text

a line at a time. Typically, each line would be allocated as it is created

or modified, so that it only consumer as much space as required,

without imposing arbitrary restrictions on the length of lines. Or it may

choose to allocate and store the file in even smaller contiguous pieces,

to minimize the number of characters that need to be moved in memory

after an update. Similarly, many numerical programs will need to

allocate sections of memory whose size or number depends on the

particular input to the program [9].

Dynamic memory allocation is when an executing program requests that

the operating system give it a block of main memory. The program then

uses this memory for some purpose. Usually the purpose is to add a

node to a data structure. In object oriented languages, dynamic memory

allocation is used to get the memory for a new object.

The memory comes from above the static part of the data segment.

Programs may request memory and may also return previously

dynamically allocated memory. Memory may be returned whenever it is

no longer needed. Memory can be returned in any order without any

relation to the order in which it was allocated. The heap may develop

206 | P a g e

Space for learners: "holes" where previously allocated memory has been returned between

blocks of memory still in use.

A new dynamic request for memory might return a range of addresses

out of one of the holes. But it might not use up all the hole, so further

dynamic requests might be satisfied out of the original hole.

If too many small holes develop, memory is wasted because the total

memory used by the holes may be large, but the holes cannot be used to

satisfy dynamic requests. This situation is called memory

fragmentation. Keeping track of allocated and deallocated memory is

complicated. A modern operating system does all this.

2.8.1 Garbage Collection

"Garbage Collection, also known as automatic memory management, is

the automatic recycling of heap memory. Garbage Collection is

performed by a garbage collector which recycles memory that it can

prove will never be used again. Systems and languages which

use Garbage Collection can be described as garbage-collected."

207 | P a g e

Space for learners: Garbage refers to those memory blocks that are allocated but not in use,

these objects are dead. The garbage collection technique is used to

recognize garbage blocks and automatically free them. Garbage

collection is also known as automatic memory management, as the

dynamically allocated memory is automatically reclaimed by the

garbage collector, and there is no need for the programmer to de-

allocate it explicitly. The main work of a garbage collector is to

differentiate between garbage and non-garbage blocks and return the

garbage blocks to the free list [10].

Advantages of Garbage Collection:

(i) Faster memory allocation

Simple pointer bumping

(ii) Increased cache performance

No need for headers

(ii) Better page locality

Compacts data and reduces fragmentation

Disadvantages of Garbage Collection:

(i) Additional process to run

(ii) Degrades cache performance

(iii) Degrades page locality

(iv) Increase in memory needs

The two common approaches of garbage collection are:

(i) Reference counting: Each allocated block contains a reference

count which indicates the number of pointers pointing to this block.

This count is incremented each time we created or a copy a pointer to

the block and is decremented each time when a pointer to the block is

destroyed. When the reference count of an object becomes zero, it

become unreachable and is considered as garbage. This garbage block is

immediately made reusable by placing it on the free list.

208 | P a g e

Space for learners:

Advantages: (i) In reference counting a block of memory is

freed as soon as it becomes garbage.

(ii) Very easy to implement.

Disadvantages: (i) Reference counting cannot handle cyclic

reference correctly. A cyclic reference occurs

when an object references itself indirectly, for

example when some block A references block B

and block B references block A. The reference

count of blocks A and B will never become zero.

So reference counting mechanism fails to

recognize cyclic data structures as garbage and is

not able to free them.

(ii) Reference counts have to be frequently

updated thereby increasing processing cost.

(ii) Can be slow if a large collection is initiated.

(ii) Mark and Sweep: The mark and sweep garbage collector is

run when the system is very low on memory and it is not possible to

allocate any space for user. All the application programs come to a halt

temporarily when this garbage collector runs and resume when all the

garbage blocks are reclaimed. This garbage collection takes place in two

phases:

(a) The first phase is the mark phase in which all the non-

garbage blocks are marked

209 | P a g e

Space for learners: (b) Second is the sweep phase, in which the collector sweeps

over the memory and returns all the unmarked i.e. garbage

blocks to the free list.

A root is a program variable which directly points to a block on the

heap and the set of all the roots is called the root set. These roots may be

local variables on stack frames, register variables, global variables or

static variables. A block is live or reachable if it is directly or indirectly

accessible by the root set. The directly accessible blocks are those

which are pointed to by any root, and the indirectly accessible blocks

are those which are pointed to by any pointer from within a live block.

Hence all the reachable blocks can be found out by following pointers

from the root set

So the first task that is to be done is to find out the root set. For this all

the program variables are scanned and pointers to dynamic memory

(heap) are identified as roots. All the blocks that are directly and

indirectly referenced by these roots are visited and marked. This is like

DFS traversal of a graph and can be implemented recursively. The

traversal starts from the set of roots and all the reachable blocks are

visited. Whenever a block is visited, its marked field is set to true. So

after the first phase all live blocks are marked and garbage blocks are

not.

In the sweep phase, the garbage collector sequentially scans all the

blocks on the heap and reclaims all the unmarked ones by placing them

on the free list. The marked blocks are unmarked for the next run of the

garbage collector. There is no movement of blocks.

In each memory block a boolean field is taken to differentiate between

the marked and unmarked nodes. This mark field will be true if the

block is marked and false if it is unmarked.

Advantages: (i) A mark and sweep garbage collector can

recognize blocks that have already been marked

and so there is no problem in the case of cyclic

references.

(ii) There is no overhead of maintaining

reference variables as in the reference

count method.

210 | P a g e

Space for learners: Disadvantages: (i) This method uses a stop-the-world approach

i.e. all programs need to stop when garbage

collection takes place. This may be undesirable in

interactive and real time applications.

(iii) Thrashing occurs when most of the memory is being used. In this

case the collector is able to reclaim very less memory which is

exhausted in a short duration. This causes the garbage collector to

be called again, and this time also it reclaims only little space. So

the garbage collector is called again and again this case.

2.9 SUMMING UP

 Union operation on set combine two set by making one of the

root as the child of the other root

 Find operation on set returns the set-name of the set where

the node belongs

 For binary search divide and conquer strategy is applied

recursively for a given sorted array

 Merge sort is a recursive algorithm that splits the array into

two subarrays , sorts each subarray , and then merges the two

sorted arrays into a single sorted array. The array is divided

until its size becomes 0 or 1.

 Merge sort is an external sorting algorithm

CHECK YOUR PROGRESS

f) Dynamic programming is typically applied to ___________

problem

g) In the knapsack problem, the given items have two attributes at

minimum – an item’s ________and ____________

h) ___________ is also known as automatic memory management

i) List two advantages of Garbage Collection.

211 | P a g e

Space for learners: In merge sort in divide step sub-problems are divided into

two halves

 In conquer step sub-problems are sorted individually

 In combine Step sub-problems are combine to find the

resultant sorted array

 Quick sort is an internal sorting algorithm. In its basic form it

was developed by C.A.R Hoare in 1960.

 In merge sort , the list to be sorted is divided at its midpoint

into subarrays which are independently sorted and later

merged. In quick sort, the division to the sorted subarrays is

made, so that the sorted subarrays do not need to merged

later.

 The quick sort algorithm stop when there is only one element

in the subarray to be sorted or if there is no element in the

subarray to be sorted

 Knapsack problem: There are n items, ith item is worth vi

dollars and weight wi pounds, where vi and wi are integers.

Select item to put in knapsack with total weight is less than

W, So that the total value is maximized

 There are two types of knapsack problem

 0-1 knapsack problem

 fractional knapsack problem

 In 0-1 knapsack problem each item either be taken or left

behind

 In fractional knapsack problem fractions of items are

allowed to choose

 The fractional knapsack problem is solvable by greedy

strategy, but 0-1 knapsack problem are not solvable by greedy

algorithm

 In the job sequencing with deadline problem, a feasible

solution is a subset of job J such that each job is completed by

its deadline and optimal solution is a feasible solution with a

maximum profit

212 | P a g e

Space for learners: the optimal way to pair wise merge n sorted files

 the optimal way to pair wise merge n sorted files

 Two algorithm to solve minimum spanning tree problem are-

Kruskal algorithm and Prim algorithm.

2.10 ANSWERS TO CHECK YOUR PROGRESS

a) Divide and Conquer

b) The two limitations of Binary Search:

a. Interacts poorly with the memory hierarchy

b. Requires sorted list as an input

c) Input elements

d) Left-biased

e) Pivot element

f) Optimization

g) Value, weight or volume

h) Garbage collection

i) Two advantages of Garbage Collection:

a. Faster memory allocation

b. Simple pointer bumping

2.11 POSSIBLE QUESTIONS

Short Answer type Questions:

1) What is external and internal sorting? Give examples.

2) How does the binary search algorithm follow the divide and

conquer method? Explain with an example.

3) Explain, what optimal binary search tree is.

4) Write a recursive and non-recursive function for binary search

algorithm.

213 | P a g e

Space for learners: 5) How does merge sort follow the divide and conquer strategy?

Give one example.

6) What are the differences between quick sort and merge sort

algorithm?

7) Write a recursive function to sort elements using merge sort.

8) Write quick sort algorithm and explain with an example.

9) What is greedy strategy for knapsack problem?

Long Answer type Questions:

1) Write briefly about knapsack problem. Explain with an example that

greedy algorithm does not work for 0-1 knapsack problem.

2) What is optimal substructure for 0-1 knapsack and fractional

knapsack problem?

3) With an example explain how 0/1 knapsack problem can be solved

by using dynamic programming.

4) Sort the following element by using Insertion sort algorithm

18, 19, 13, 16, 11, 9, 14, 12, 6 15, 22, 27, 3

5) Sort the following element by using Merge sort algorithm

14, 20, 19, 13, 12, 6, 15, 22, 27, 3, 16, 11, 1

6) Sort the following element by using Quick sort algorithm

3, 16, 11, 1, 4, 20, 16, 13, 12, 6, 15, 23, 27

7) Suppose A is an array of 7 elements. Search an element 9 in the

array using binary search.

9) Consider the following job sequencing problem. Find the feasible

solution set.

Job 1 2 3 4

Profit 10 20 15 5

Deadline 2 3 3 2

0 1 2 3 4 5 6

2 7 8 9 13 17 24

214 | P a g e

Space for learners: 10) What is optimal substructure for 0-1 knapsack and fractional

knapsack problem?

11) With help of an example show how 0/1 knapsack problem can be

solved by using branch and bound technique.

2.12 REFERENCES AND SUGGESTED READINGS

[1] T. H. Cormen, C. E. Leiserson, R.L.Rivest, and C. Stein,

"Introduction to Algorithms", Third Edition, Prentice Hall of

India Pvt. Ltd, 2006

[2] Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran,

Computer Algorithms/ C++, Second Edition, Universities Press,

2007

[3] Algorithms: Design Techniques and Analysis (Revised Edition),

M H Alsuwaiyel

[4] Lecture Notes for Data Structures and Algorithms by John

Bullinaria, School of Computer Science University of

Birmingham Birmingham, UK

[5] Divide and conquer by Lakshmi Priya P, CSE, ACSCE

[6] LECTURE NOTES ON DESIGN AND ANALYSIS OF

ALGORITHMS”, VEER SURENDRA SAI UNIVERSITY OF

TECHNOLOGY, BURLA, SAMBALPUR, ODISHA, INDIA –

768018

[7] Determining an Optimal Parenthesization of a Matrix Chain

Product using Dynamic Programming, Vivian Brian Lobo et al, /

(IJCSIT) International Journal of Computer Science and

Information Technologies, Vol. 7 (2) , 2016, 786-792

[8] https://www.techopedia.com/definition/20272/knapsack-

problem

[9] DYNAMIC MEMORY ALLOCATION AND GARBAGE

COLLECTION Hans-J. Boehm

[10] Data structure through C in Deapth, by S.K. Srivastava and

Deepali Srivastava

[11] Divide and Conquer Algorithms by Elias Koutsoupias.

215 | P a g e

Space for learners:
UNIT 3: GENETIC ALGORITHM AND

NEURAL NETWORK

Unit Structure:

3.1 Introduction

3.2 Genetic Algorithm

3.2.1 Terms related to Genetic Algorithm

3.2.2 Genetic Algorithm Requirements

3.2.3 Genetic algorithms operations

3.2.4 The Principle Structure of a Genetic Algorithm

3.2.5 General Algorithm for Genetic Algorithm

3.2.6 Some areas where we can use Genetic Algorithm

3.2.7 Advantages of Genetic Algorithm

3.2.8 Limitations of Genetic Algorithm

3.2.9 Genetic Algorithms Application Areas

3.2.10 Some Examples of Genetic Algorithm

3.3 Neural Network

3.3.1 Classification based on connection type or

topology

3.3.2 Processing of information in neural network unit

3.3.3 Learning Paradigms

3.3.4 Artificial Neural Network

3.3.5 Why we use Artificial Neural Network

3.3.6 How Artificial Neuron work

3.3.7 The main elements or blocks of an artificial

neural network

3.3.8 Properties of Artificial Neural Network

3.3.9 Artificial Neural Network Models

3.3.10 Applying Genetic Algorithm to neural networks

3.3.11 Advantage and disadvantage

3.3.12 Application of Neural Network

 3.4 Summing Up

 3.5 Answers to Check Your Progress

 3.6 Possible Questions

 3.7 References and Suggested Readings

216 | P a g e

Space for learners: 3.1 INTRODUCTION

Before going to start Neural Network (NN) and Genetic Algorithm

(GA), let’s start with the concept of Optimization. Optimization is the

process of having a set of inputs to finding the values of inputs in such a

way that we can get the best output values i.e. making something better.

The term “best” varies from time to time depending on the problem, but

mathematical term, it is defined as maximizing or minimizing one or

more objective functions, by varying the input parameters.

Neural networks and genetic algorithms are the techniques for

optimization and learning, each with its own strengths and weaknesses.

The two have generally evolved along separate paths. However,

recently there have been attempts to combine the two technologies.

Davis (1988) showed how any neural network can be rewritten as a type

of genetic algorithm called a classifier system and vice versa.

Both Neural Network and Genetic Algorithm were invented in the spirit

of a biological metaphor. The biological metaphor for neural networks

is the human brain. Like the brain, this computing model consists of

many small units that are interconnected. These units (or nodes) have

very simple abilities. Hence, the power of the model derives from the

interplay of these units. It depends on the structure of their connections.

3.2 GENETIC ALGORITHM

A genetic algorithm (or GA) is a search technique used in computing to

find true or approximate solutions to optimization and search problems.

Genetic algorithms are categorized as global search heuristics. GAs are

a particular class of evolutionary algorithms that use techniques inspired

by evolutionary biology such as inheritance, mutation, selection, and

crossover (also called recombination).

Dr. David Goldberg, 1989 offered the following definition:

"Genetic algorithms are search algorithms based on the mechanics

of natural selection and natural genetics"[4].

217 | P a g e

Space for learners:
This method combines Darwinian style survival of the fittest among

binary string "artificial creatures" with a structured, yet randomized

information exchange.

Genetic algorithms are implemented as a computer simulation in which

a population of abstract representations (called chromosomes or the

genotype or the genome) of candidate solutions (called individuals,

creatures, or phenotypes) to an optimization problem evolves toward

better solutions. Traditionally, solutions are represented in binary bit

strings of 0s and 1s, but other encodings can also be taken. The

evolution usually starts from a population of randomly generated

individuals and happens in generations. In each generation, the fitness

of every individual in the population is evaluated, multiple individuals

are selected from the current population (based on their fitness), and

modified (recombined and possibly mutated) to form a new population.

The new population is then used in the next iteration of the algorithm.

Commonly, the algorithm terminates when either a maximum number

of generations has been produced, or a satisfactory fitness level has

been reached for the population. If the algorithm has terminated due to a

maximum number of generations, a satisfactory solution may or may

not have been reached [7].

3.2.1 Terms Related to Genetic Algorithm

 Individual - Any possible solution

 Population - Group of all individuals

 Search Space - All possible solutions to the problem

 Chromosome - Blueprint for an individual

 Trait - Possible aspect (features) of an individual

 Allele - Possible settings of trait (black, blond, etc.)

 Locus - The position of a gene on the chromosome

 Genome - Collection of all chromosomes for an individual

 Genotype - Particular set of genes in a genome

218 | P a g e

Space for learners:
 Phenotype - Physical characteristic of the genotype (smart,

beautiful, healthy, etc.)

3.2.2 Genetic Algorithm Requirements

 A typical genetic algorithm requires two things to be

defined:

 A genetic representation of the solution domain, and

 A fitness function to evaluate the solution domain

 A standard solution is represented by an array of bits. Arrays

of other types and structures can also be used in essentially

the same way

 The main property that makes these genetic representations

convenient is that their parts are easily aligned due to their

fixed size, which facilitates simple crossover operation

 Variable length representations may also be used, but

crossover implementation is more complex in this case

 Tree-like representations are explored in Genetic

programming

 Chromosomes could be:

 Bit strings (0101 ...

1100)

 Real numbers (43.2 -33.1

... 0.0 89.2)

 Permutations of element (E11 E3 E7

... E1 E15)

 Lists of rules (R1 R2 R3

... R22 R23)

219 | P a g e

Space for learners: Program elements (genetic

programming)

 The fitness function is defined over the genetic

representation and measures the quality of the represented

solution. The fitness function is always problem dependent.

For instance, in the knapsack problem we want to

maximize the total value of objects that we can put in a

knapsack of some fixed capacity.

 A representation of a solution might be an array of bits,

where each bit represents a different object, and the value of

the bit (0 or 1) represents whether or not the object is in the

knapsack.

 Not every such representation is valid, as the size of objects

may exceed the capacity of the knapsack.

 The fitness of the solution is the sum of values of all objects

in the knapsack if the representation is valid or 0 otherwise.

In some problems, it is hard or even impossible to define the

fitness expression; in these cases, interactive genetic

algorithms are used.

 A fitness function

220 | P a g e

Space for learners:

The GA’s are used for maximization problem. For the maximization

problem the fitness function is same as the objective function. But, for

minimization problem, one way of defining a ‘fitness function’ is: F (x)

= 1/f(x), where f(x) is an objective function.

3.2.3 Genetic Algorithms Operations

Genetic algorithms have three main operations:

a) Reproduction (or Selection)

b) Crossover

c) Mutation

a) Reproduction is a process in which individual strings are copied

according to their fitness. Whose fitness value is more that is having

more chances to survive in next generation.

b) Crossover is a process that can be divided in two steps. First, pairs

of bit strings will be mated randomly to become the parents of two new

bit strings. The second part consists of choosing a place (crossover site)

in the bit string and exchanges all characters of the parents after that

point. The process tries to artificially reproduce the mating process

where the DNA of two parents determines the DNA for the newly born.

In the above figure, crossover site is 7 so after 7th bit the values of

Parent1 and Parent2 get interchanged and results as Child1 and Child2.

c) Mutation is included, not because the previous process of

reproduction and recombination are not sufficient, but because of the

probability that a certain bit can't be changed by the previous operations

221 | P a g e

Space for learners:
due to its absence from the generation, either by a random chance or

because it has been discarded. It only implies the change of a 0 for a 1

and vice versa.

In the above figure, mutation takes place at bit 7 (here 7th bit’s value

changes from 1 to 0).

3.2.4 The Principle Structure of a Genetic Algorithm

3.2.5 General Algorithm for Genetic Algorithm:

 Initialization: Initially many individual solutions are randomly

generated to form an initial population. The population size

depends on the nature of the problem, but typically contains several

hundreds or thousands of possible solutions. Traditionally, the

population is generated randomly, covering the entire range of

possible solutions (the search space). Occasionally, the solutions

may be "seeded" in areas where optimal solutions are likely to be

found.

222 | P a g e

Space for learners:
 Selection: During each successive generation, a proportion of the

existing population is selected to breed a new generation.

Individual solutions are selected through a fitness-based process,

where fitter solutions (as measured by a fitness function) are

typically more likely to be selected. Certain selection methods rate

the fitness of each solution and preferentially select the best

solutions. Other methods rate only a random sample of the

population, as this process may be very time-consuming. Most

functions are stochastic and designed so that a small proportion of

less fit solutions are selected. This helps keep the diversity of the

population large, preventing premature convergence on poor

solutions. Popular and well-studied selection methods include

roulette wheel selection and tournament selection.

In roulette wheel selection, individuals are given a

probability of being selected that is directly proportionate to their

fitness. Two individuals are then chosen randomly based on these

probabilities and produce offspring.

223 | P a g e

Space for learners:

 Reproduction: The next step is to generate a second generation

population of solutions from those selected through genetic

operators: crossover (also called recombination), and/or mutation.

For each new solution to be produced, a pair of "parent" solutions

is selected for breeding from the pool selected previously. By

producing a "child" solution using the above methods of crossover

and mutation, a new solution is created which typically shares

many of the characteristics of its "parents". New parents are

selected for each child, and the process continues until a new

population of solutions of appropriate size is generated. These

processes ultimately result in the next generation population of

chromosomes that is different from the initial generation.

Generally the average fitness will have increased by this

procedure for the population, since only the best organisms from

the first generation are selected for breeding, along with a small

Roulette Wheel’s Selection Pseudo Code:

 for all members of population

 sum += fitness of this individual

 end for

 for all members of population

 probability = sum of probabilities + (fitness / sum)

 sum of probabilities += probability

 end for

 loop until new population is full

 do this twice

 number = Random between 0 and 1

 for all members of population

 if number > probability but less than next probability then

 you have been selected

 end for

 end

 create offspring

 end loop

224 | P a g e

Space for learners:
proportion of less fit solutions, for reasons already mentioned

above.

 Crossover: The most common type is single point crossover. In

single point crossover, you choose a locus at which you swap the

remaining alleles from on parent to the other. This is complex and

is best understood visually. As you can see, the children take one

section of the chromosome from each parent. The point at which

the chromosome is broken depends on the randomly selected

crossover point. This particular method is called single point

crossover because only one crossover point exists. Sometimes

only child 1 or child 2 is created, but oftentimes both offspring are

created and put into the new population. Crossover does not

always occur, however. Sometimes, based on a set probability, no

crossover occurs and the parents are copied directly to the new

population. The probability of crossover occurring is usually 60%

to 70%.

 Mutation: After selection and crossover, you now have a new

population full of individuals. Some are directly copied, and

others are produced by crossover. In order to ensure that the

individuals are not all exactly the same, you allow for a small

chance of mutation. You loop through all the alleles of all the

individuals, and if that allele is selected for mutation, you can

either change it by a small amount or replace it with a new value.

The probability of mutation is usually between 1 and 2 tenths of a

percent. Mutation is fairly simple. You just change the selected

alleles based on what you feel is necessary and move on.

 Termination: This generational process is repeated until a

termination condition has been reached. Common terminating

conditions are:

 A solution is found that satisfies minimum criteria

 Fixed number of generations reached

 Allocated budget (computation time/money) reached

 The highest ranking solution's fitness is reaching or has reached a

plateau such that successive iterations no longer produce better

results

225 | P a g e

Space for learners:

Genetic Algorithm Pseudo-code

Choose initial population

 Evaluate the fitness of each individual in the population

 Repeat

 Select best-ranking individuals to reproduce

 Breed new generation through crossover and mutation

(genetic operations) and give birth to offspring

 Evaluate the individual fitness of the offspring

 Replace worst ranked part of population with offspring

 Until <terminating condition>

 Manual inspection

 Any Combinations of the above

3.2.6 Some Areas of Usage of Genetic Algorithm

 Genetic Algorithms can be applied to virtually any problem that

has a large search space.

 Al Biles uses genetic algorithms to filter out 'good' and 'bad' riffs

for jazz improvisation.

 The military uses GAs to evolve equations to differentiate

between different radar returns

 Stock companies use GA-powered programs to predict the stock

market

226 | P a g e

Space for learners: 3.2.7 Advantages of Genetic Algorithm

Genetic Algorithm has various advantages, Some of these include −

 Does not require any derivative information (which may not be

available for many real-world problems)

 Faster and more efficient as compared to the traditional methods

 Very good parallel capabilities

 Optimizes both continuous and discrete functions and also

multi-objective problems

 Provides a list of “good” solutions and not just a single solution

 Always gets an better answer over the time to the problem

 Useful when the search space is very large and there are a large

number of parameters involved

3.2.8 Limitations of Genetic Algorithm

Genetic Algorithm also suffers from a few limitations. These include −

 Not suited for all problems, especially problems which are

simple and for which derivative information is available

 Fitness value is calculated repeatedly which might be

computationally expensive for some problems

 Sometimes, there are no guarantees on the optimality or the

quality of the solution

 If not implemented properly, the Genetic Algorithm may not

converge to the optimal solution

3.2.9 Genetic Algorithms - Application Areas

Genetic Algorithms are primarily used in optimization problems of

various kinds, but they are frequently used in other application areas as

227 | P a g e

Space for learners:
well. Here, some of the areas in which Genetic Algorithms are

frequently used are listed below:

 Optimization − Genetic Algorithms are most commonly used

in optimization problems wherein we have to maximize or

minimize a given objective function value under a given set of

constraints. The approach to solve Optimization problems has

been highlighted throughout the tutorial.

 Economics − GAs are also used to characterize various

economic models like the cobweb model, game theory

equilibrium resolution, asset pricing, etc.

 Neural Networks − GAs are also used to train neural

networks, particularly recurrent neural networks.

 Parallelization − GAs also have very good parallel

capabilities, and prove to be very effective means in solving

certain problems, and also provide a good area for research.

 Image Processing − GAs are used for various digital image

processing (DIP) tasks as well like dense pixel matching.

 Vehicle routing problems − with multiple soft time windows,

multiple depots and a heterogeneous fleet.

 Scheduling applications − GAs are used to solve various

scheduling problems as well, particularly the time tabling

problem.

 Machine Learning − as already discussed, genetics based

machine learning (GBML) is a niche area in machine learning.

 Robot Trajectory Generation − GAs have been used to plan

the path which a robot arm takes by moving from one point to

another.

 Parametric Design of Aircraft − GAs have been used to

design aircrafts by varying the parameters and evolving better

solutions.

228 | P a g e

Space for learners: DNA Analysis − GAs have been used to determine the

structure of DNA using spectrometric data about the sample.

 Multimodal Optimization − GAs are obviously very good

approaches for multimodal optimization in which we have to

find multiple optimum solutions.

 Traveling salesman problem and its applications − GAs

have been used to solve the TSP, which is a well-known

combinatorial problem using novel crossover and packing

strategies

3.2.10 Some Examples of Genetic Algorithm

Example 1: Encode the solution using GA:

f(x) = {MAX(x2): 0 <= x <= 32 }

For encoding solution, initially we use 5 bits (1 or 0)

 Step 1: Generate initial population

A 0 1 1 0 1

B 1 1 0 0 0

C 0 1 0 0 0

D 1 0 0 1 1

 Step 2: Evaluate each solution against objective

Sol. String Fitness
% of

Total

A 01101 169 14.4

B 11000 576 49.2

C 01000 64 5.5

D 10011 361 30.9

229 | P a g e

Space for learners:
 Step 3: Create next generation of solutions

 Probability of “being a parent” depends on the fitness

Ways for parents to create next generation

 Reproduction

 Use a string again unmodified

 Crossover

 Cut and paste portions of one string to another

 Mutation

 Randomly flip a bit

 COMBINATION of all of the above

Example 2: P = (C1, C2, C3, ..., Cn) means the salesmen move from

city C1 to C2, C2 to C3, C3 to Cn. There are five cities that a

salesperson will pass. The cities are A, B, C, D, and E. The journey

starts from A and ends at A as well. The distance between cities is

shown in Figure below [8]:

230 | P a g e

Space for learners: Sl. No. City 1 City 2 Distance

1 A B 7

2 A C 5

3 A D 9

4 A E 9

5 B C 7

6 B D 2

7 B E 8

8 C D 4

9 C E 3

10 D E 6

Initial Chromosomes:

Initial fitness:

231 | P a g e

Space for learners:
Selection: The chromosome selection is made because of the TSP

problem desirably that chromosomes with smaller fitness will have a

higher probability of being reelected.

Crossover: Crossover is done to produce children from two mothers

who are mated. The resulting chromosomes are expected to increase the

value of fitness. The number of chromosomes that experience crossover

is determined by crossover probability. The crossover probability value

is 0.25.

232 | P a g e

Space for learners:

Mutation: Mutation works to exchange genes for genes on other

chromosomes. Expected results increase the value of fitness to be

achieved. If a gene is exchanged at the end of a chromosome, this gene

will be exchanged for the first gene. There is a parameter to determine

how many genes will be mutated. The mutation rate is 0.2.

233 | P a g e

Space for learners:
Fitness Values:

In the first generation, it has been seen that there is the smallest fitness

value that does not change. If the calculation is continued up to the Nth

generation, then it is assumed that the lowest fitness value will remain

unchanged. Although the calculation is sufficiently elaborated up to the

1st generation, a near-optimal solution has been found, from the genetic

algorithm process above, the final result the route with the shortest

optimal distance is A, B, D, E, C, A.

CHECK YOUR PROGRESS

a) The ___________is defined over the genetic representation

and measures the quality of the represented solution

b) Define crossover

c) List two limitations of Genetic Algorithm

d) Mention two application areas of Genetic Algorithm

234 | P a g e

Space for learners: 3.3 NEURAL NETWORK

Neural Networks are algorithms optimization and learning based

loosely on the concept inspired by research into the nature of the brain.

A neural network is a computational model consisting of a number of

connected elements, known as neurons. A neuron is a processing unit

that receives input from outside the network and/or from other neurons,

applies a local transformation to that input, and provides a single output

signal which is passed on to other neurons and/or outside the network.

Each of the inputs is modified by a value associated with the

connection. This value is referred to as the connection strength, or

weight, and roughly speaking, represents how much importance the

neuron attaches to that input source. The local transformation is referred

to as the activation function and is usually sigmoidal in nature.

An important difference between Neural Network and Genetic

Algorithm is that, in a genetic algorithm only those items of data that

have value in predicting the outputs are retained as inputs to the system.

A neural network, on the other hand, does not exclude irrelevant data

inputs from the final system. It nullifies the effects of such data inputs

by assigning a low weight to them in the decision process.

Neural Network mainly consists of five components:

235 | P a g e

Space for learners:
1. Directed graph, also known as the network topology whose arcs

are refer to as links

2. State variable is associated with each node

3. Real- valued weight associated with each link

4. Real- valued bias associated with each link

5. Transfer Function determines the state of a node as a function of

a) its bias b, b) the weights, wt of its incoming links, and c) the

states, x of the nodes connected to it by these links [1].

A simple neural network may be illustrated with the help of following

figure:

This network consists of:

 Five units or neurons or nodes (the circles)

 Six connections (the arrows)

 The number next to each connection is called weight; it

indicates the strength of the connection

 Connections with a positive weight are called excitatory

 Connections with a negative weight are called inhibitory

The constellation of neurons and connection is called the architecture of

the network, which is also called the topology. This is a feed-forward

Fig: A Neural Network

236 | P a g e

Space for learners:
network, because the connections are directed in only one way, from

top to bottom. There are no loops or circles. [6]

In a strictly layered network, the nodes are arranged several layers.

Connections may only exist to the nodes of the following layer. Yet in

our case, there is a connection from the input layer to the output layer. It

is, however, not a strictly layered network, but we may call it a layered

network, because the nodes of each layer are not interconnected.

3.3.1 Classification Based on Connection Type or

Topology

1. Single layer feed-forward networks:

– Input layer projecting into the output layer

2. Multi-layer feed-forward networks:

– One or more hidden layers.

– Input projects only from previous layers onto a layer.

Typically, only from one layer to the next

237 | P a g e

Space for learners:

3. Recurrent networks:

– A network with feedback, where some of its inputs are

connected to some of its outputs (discrete time) [2]

3.3.2 Processing of Information in Neural Network Unit

The node receives the weighted activation of other nodes through its

incoming connections. Firstly, these are added up (summation). The

result is passed through activation function; the outcome is the

activation of the node. For each of the outgoing connections, this

activation value is multiplied with the specific weight and transferred to

the next node [5].

Information processing in Neural Network unit

A few different threshold functions are used. It is important that a

threshold function is non-linear; otherwise a multilayer network is

equivalent to a one layer net. The most widely applied threshold

function is the logistic sigmoid:

238 | P a g e

Space for learners: ���� = 1
1 + �	

There are a few other activation functions in use: scaled sigmoid,

gaussian, sine, hyperbolic tangent, etc. It has some benefits for back-

propagation learning, the classical training algorithm for feed-forward

neural networks.

Back-Propagation Learning

At the beginning the weights of a network are randomly set or

otherwise predefined. However, only little is known about the

mathematical properties of neural networks. Especially, for a given

problem, it is basically not possible to say which weights have to be

assigned to the connections to solve the problem. Since NN follow the

non-declarative programming paradigm, the network is trained by

examples, so called patterns. Back-propagation is one method to train

the network. The training is performed by one pattern at a time. The

training of all patterns of a training set is called an epoch. The training

set has to be a representative collection of input-output examples.

Size of the training set:

 No one‐fits‐all formula

 Over fitting can occur if a “good” training set is not chosen

 What constitutes a “good” training set?

 Samples must represent the general population.

 Samples must contain members of each class.

 Samples in each class must contain a wide range of

variations or noise effect.

 The size of the training set is related to the number of hidden

neurons

Back-propagation strategy:

 N is a neuron.

 Nw is one of N’s inputs weights

 Nout is N’s output.

 Nw = Nw +Δ Nw

 Δ Nw = Nout * (1‐ Nout)* NErrorFactor

 NErrorFactor = NExpectedOutput – NActualOutput

239 | P a g e

Space for learners:
 This works only for the last layer, as we can know the actual

output, and the expected output. [5]

3.3.3 Learning Paradigms

 Supervised learning: In supervised learning a network is fed

with a set of training samples (inputs and corresponding output),

and it uses these samples to learn the general relationship between

the inputs and the outputs. This relationship is represented by the

values of the weights of the trained network.

 Unsupervised learning: In unsupervised learning no desired

output is associated with the training data. It is faster than

supervised learning. This learning used to find out structures within

data either by Clustering or by Compression

 Reinforcement learning: Like supervised learning, but weights

adjusting is not directly related to the error value. The error value is

used to randomly, shuffle weights. Relatively slow learning due to

‘randomness’.

3.3.4 Artificial Neural Network

An Artificial Neural Network (ANN) is composed of many artificial

neurons that are linked together according to specific network

architecture.

Computational model of Artificial Neural Network is inspired by the

human brain. ANN is massively parallel, distributed system and made

up of simple processing units (neurons). Synaptic connection strengths

among neurons are used to store the acquired knowledge. Knowledge is

acquired by the network from its environment through a learning

process.

240 | P a g e

Space for learners:

Artificial Neural Network

An ANN is either a hardware implementation or a computer

program which strives to simulate the information processing

capabilities of its biological exemplar. ANNs are typically composed of

a great number of interconnected artificial neurons. The artificial

neurons are simplified models of their biological counterparts. ANN is a

technique for solving problems by constructing software that works like

our brains

3.3.5 Usage Artificial Neural Network

There are basically two reasons why we are interested in building

artificial neural networks (ANN):

 Biological viewpoint: ANNs can be used to simulate and replicate

components of human or animal brain, so that it can gives us

insight into natural information processing.

 Technical viewpoint: Character recognition or the predictions of

future states of a system require massively parallel and adaptive

processing. ANNs made it easy.

241 | P a g e

Space for learners: 3.3.6 How Artificial Neuron Work

Let us start with the model of an artificial neuron

242 | P a g e

Space for learners:

��� = �
�

��

��� = ��
�

��

�� = �����

243 | P a g e

Space for learners: 3.3.7 The Main Elements or Blocks of an Artificial

Neural Network

a) The computing element (called an artificial neuron or simply neuron)

b) The connection pattern among the elements (structure or

architecture)

c) The process used for training the neural network (learning algorithm)

3.3.8 Properties of Artificial Neural Network

 Learning from examples

o labeled or unlabeled

 Adaptions

o changing the connection strengths to learn things

 Non-linearity

o the non-linear activation functions are essential

 Fault tolerance

o if one of the neurons or connections is damaged, the whole

network still works quite well

Thus, they might be better alternatives than classical solutions for

problems characterized by high dimensionality, noisy, imprecise or

imperfect data; and a lack of a clearly stated mathematical solution or

algorithm.

CHECK YOUR PROGRESS

e) A neural network is a computational model consisting of a

number of connected elements, known as ______

f) The training of all patterns of a training set is called an

g) _________ used to find out structures within data either by

Clustering or by Compression

h) Mention two properties of Artificial Neural Network

244 | P a g e

Space for learners: 3.3.9 Artificial Neural Network Models

 Deep Learning Architectures

 Multilayer feed-forward networks (Multilayer perceptron)

 Radial Basis Function networks

 Self-Organizing Networks

3.3.10 Applying Genetic Algorithm to Neural Networks

Combining Neural Network with Evolutionary Algorithms leads to

Evolutionary Artificial Neural Networks (EANNs). One can use

Evolutionary Algorithms like the GA to train Neural Network, choose

their structure or design related aspects like the function of their

neurons.

3.3.10.1 Using Genetic Algorithm to Train Neural

Network

GA will train the network no matter how it is connected - whether it’s a

feed-forward or a feedback network [4]. Furthermore, it can train

general networks which are mixture of the two types.

a) How to create a string or chromosome from simple neural

network

245 | P a g e

Space for learners:
All the weights in the network are joined to make one string. This string

is then used in the GA as a member of the population. Each string

represents the weights of a complete network. Following figure

represent the value of chromosome obtained from the above fig: simple

neural network.

a b c d e f

String or Chromosome

b) How to evaluate Fitness

Fitness is measured by calculating the error (target – output)

i.e. fitness= 1/error (the lower the error the higher the fitness)

Example:

The target for a network with a particular input is 1. The outputs are

shown below, calculate their fitness.

Population member Output

1 0.4

2 0.2

3 1.6

4 -0.9

One can complete the entities below by first calculating the error as

described above. Then making all the errors positive and finally

working out a fitness (low errors have a high fitness) by using fitness =

1 / error.

Population

member
Output Error (T-O) Positive Fitness

1 0.4 0.6 0.6ss 1.67

2 0.2 0.8 0.8 1.26

3 1.6 -0.6 0.6 1.67

4 -0.9 1.9 1.9 0.53

So members 1 and 3 (which are closest to the target) have the highest

fitness.

246 | P a g e

Space for learners: 3.3.10.2 Using GA to Select ANN Topology

By using genetic algorithm one can evaluate the how neurons are

connected with one another in a network. [4]

Case 1: Simple Neural Network

Consider a simple neuron network. If there is a connection of one

neuron with other neuron, it will be represented by 1 otherwise 0.

In this figure, consider the connections from neuron 1. These may be

represented by the string:

 0 0 1 1 0

The first 0 represents the fact that neuron 1 is not connected to itself

The second 0 represent that neuron 1 is not connected to neuron 2

The third 1 means that neuron 1 is connected to neuron 3, and so on.

The complete network may be represented by the matrix shown in

figure below:

00110 Neuron 1

00101 Neuron 2

00011 Neuron 3

00000 Neuron 4

00000 Neuron 5

Matrix representing the complete network

Where matrix element Mjk is 0 if there is no connection between

neuron j and k; if the matrix element is a 1, then there is a connection.

It is possible to concatenate the matrix into one string from this figure:

0 0 1 1 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

Each string represents the connection pattern of a whole network.

247 | P a g e

Space for learners:
Case 2: Neural Network with weights

Matrix representing network as:

Connections Weights

0 0 1 1 0 +0.0 +0.0 +0.5 -0.1 +0.0

0 0 1 0 1 +0.0 +0.0 +0.8 +0.0 +0.4

0 0 0 1 1 +0.0 +0.0 +0.0 -0.9 +0.2

0 0 0 0 0 +0.0 +0.0 +0.0 +0.0 +0.0

0 0 0 0 0 +0.0 +0.0 +0.0 +0.0 +0.0

This corresponds to the string:

0 0 0 0.5 0.1 0 0 0 0 0.8 0 0.4 0 0 0 0 -0.9 0.2 0 0 0 0 0 0 0 0 0 0 0 0

In this case, a weight of zero simply means that no connection exists

between these neurons.

3.3.11 Advantages and Disadvantages

 Advantages

o Adapt to unknown situations

o Powerful, it can model complex functions and can perform

tasks that a linear program cannot

o Ease of use, learns by example, and very little user domain‐

specific expertise needed and does not need to be

reprogrammed

o It can be implemented in any application

248 | P a g e

Space for learners: Disadvantages

o The neural network needs training to operate

o Not exact

o Large complexity of the network structure as it requires high

processing time for large neural networks

3.3.12 Application of Neural Network

 Pattern recognition

 Investment analysis

 Control system and monitoring

 Mobile computing

 Market and financial application

 Forecasting like sales, market research etc.

3.4 SUMMING UP

 Neural networks and genetic algorithms are the techniques for

optimization and learning

 Genetic algorithms are search algorithms based on the

mechanics of natural selection and natural genetics

 A typical genetic algorithm mainly requires two things to be

defined, a genetic representation of the solution domain, and a

fitness function to evaluate the solution domain

 The fitness function is defined over the genetic representation

and measures the quality of the represented solution

 Genetic algorithms have three main operations: Reproduction

(or Selection), Crossover, Mutation

 A neural network is a computational model consisting of a

number of connected elements, known as neurons

 A neuron is a processing unit that receives input from outside

the network and/or from other neurons, applies a local

transformation to that input, and provides a single output signal

which is passed on to other neurons and/or outside the network

 The constellation of neurons and connection is called the

architecture of the network, which is also called the topology

249 | P a g e

Space for learners: An Artificial Neural Network (ANN) is composed of many

artificial neurons that are linked together according to specific

network architecture

 Artificial Neural Networks are an imitation of the biological

neural networks, but much simpler ones.

 The computing would have a lot to gain from neural networks.

Their ability to learn by example makes them very flexible and

powerful furthermore there is need to device an algorithm in

order to perform a specific task.

 Neural networks also contribute to area of research such as

neurology and psychology. They are regularly used to model

parts of living organizations and to investigate the internal

mechanisms of the brain.

 Many factors affect the performance of ANNs, such as the

transfer functions, size of training sample, network topology,

weights adjusting algorithm.

3.5 ANSWERS TO CHECK YOUR PROGRESS

a) Fitness function

b) Crossover is a process that can be divided in two steps. First,

pairs of bit strings will be mated randomly to become the

parents of two new bit strings. The second part consists of

choosing a place (crossover site) in the bit string and exchanges

all characters of the parents after that point. The process tries to

artificially reproduce the mating process where the DNA of two

parents determines the DNA for the newly born.

c) Two limitations of Genetic Algorithms:

a. Fitness value is calculated repeatedly which might be

computationally expensive for some problems

b. Sometimes, there are no guarantees on the optimality or

the quality of the solution

d) Two application areas of Genetic Algorithms:

a. Image Processing − GAs are used for various digital

image processing (DIP) tasks as well like dense pixel

matching.

b. Vehicle routing problems − with multiple soft time

windows, multiple depots and a heterogeneous fleet.

250 | P a g e

Space for learners:
e) Neurons.

f) Epoch

g) Unsupervised learning

h) Two properties of Artificial Neural Network

a. Learning from examples whether labeled or unlabelled

b. Fault tolerance: If one of the neurons or connections is

damaged, the whole network still works quite well

3.6 POSSIBLE QUESTIONS

Short Answer type Questions:

Define the following terms:

1. Chromosome 2. Genotype 3. Genome

4. Phenotype

5. Fitness function 6. Mutation 7. Neuron

8. Topology.

Long Answer type Questions:

1. What do you mean by Genetic Algorithm? Write down the main

steps involve in Genetic Algorithm.

2. Explain some areas where we can use Genetic Algorithm.

3. Let, P = (C1, C2, C3, ..., Cn) means the salesmen move from city C1

to C2, C2 to C3, C3 to Cn. There are four cities that a salesperson will

pass. The cities are A, B, C and D. The journey starts from A and ends

at A as well. The distance between cities is shown in Figure below:

A

D C

B
5

2 8

9

7

3

251 | P a g e

Space for learners:
4. What do you mean by Neural Network? Explained components

associated with it.

5. Explain some properties of Artificial Neural Network.

3.7 REFERENCES AND SUGGESTED READINGS

[1] Training Feedforward Neural Networks Using Genetic Algorithms:

David J. Montana and Lawrence Davis, BBN Systems and Technologies

Corp., 10 Mouiton St. Cambridge, MA 02138

[2] Artificial Neural Networks: Slides modified from Neural Network

Design by Hagan, Demuth and Beale, Berrin Yanikoglu, DA514–

Machine Learning

[3] Genetic Algorithms and Neural Networks by D. WHITLEY

[4] “Neural Networks using Genetic Algorithms”, International Journal

of Computer Applications (0975 – 8887) Volume 77– No.14, September

2013

[5] Artificial Neural Networks by Ahmad Aljebaly

[6] “Combining Genetic Algorithms and Neural Networks: The

Encoding Proble” A Thesis The University of Tennessee, Knoxville

Philipp Koehn December 1994

[7] “Genetic Algorithms” by Muhannad Harrim

[8] “Traveling Salesman Problem Solution using Genetic Algorithm,

ISSN- 2394-5125 Vol 7, Issue 1, 2020

BLOCK III:

GRAPH ALGORITHMS

252 | P a g e

UNIT 1 INTRODUCTION TO GRAPHS

Unit Structure:

1.1 Introduction

1.2 Unit Objectives

1.3 Basic Terms And Their Definitions

1.4 Graph Representations

1.4.1 Adjacency Martix

1.4.2 Adjacency List

1.5 Graph Traversal Techniques

1.5.1 Depth-First Search

1.5.2 Breadth-First Search

1.5.3 Difference Between DFS and BFS Algorithm

1.6 Topological Sort

1.7 Summing Up

1.8 Answers to Check Your Progress

1.9 Questions and Answers

1.10 References and Suggested Readings

Space for learners

notes

253 | P a g e

1.1 INTRODUCTION

In this unit, you will learn the concept of graph, and its different ways of

representation: Adjacency matrix and Adjacency List. You will also learn

the different graph traversal techniques namely Depth-first search (DFS)

and Breadth-first search (BFS). How the DFS and BFS techniques along

with the algorithms and the data structures used to accomplish the task.

The time complexity of the algorithms will be discussed in this unit along

with few demonstrations of the techniques. You will also learn about one

of the popular sorting techniques i.e. Topological Sort along with its time

complexity analysis.

1.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 Understand the fundamental concept of Graphs.

 Know different ways of representing a graph.

 Define graphs and its types.

 Analyze the time complexities of graph traversal techniques.

 Describe Topological sort.

1.3 BASIC TERMS AND THEIR DEFINITIONS

Graph is a nonlinear ADT (Abstract Data Type) which can be used as a

modeling tool to represent non-hierarchical relationship. A graph is

encountered often in our daily lives like social networks, road networks,

computer networks and so on. For instance, road networks or social

networks etc can be easily modeled using a graph (See Fig 1.1). When you

say graph is a non-linear ADT, it implies that the data stored are

distributed and should not be stored contiguously like Arrays etc. Unlike

Trees, in a graph, there can be any number of predecessors and successors

and a node can have multiple parents and descendants. To understand the

graph, you need to get an introduction of the basic terms and

terminologies associated with the graph. Some, of the basic terms in graph

Space for learners

notes

254 | P a g e

theory are given in the subsequent subsections.

Fig. 1.1: Sample graph

i) Graph

A graph is a non-linear data structure that consists of finite set of

nodes V and a finite set of edges E that connects the vertices.

Mathematically, a graph can be represented as G(V,E). The nodes are also

called as vertices and edges as arcs. A Graph G (V, E) with 4 vertices, set of

vertices V = {A, B, C, D} and six edges i.e. set of edges E = {(A, B), (A, C),

(A, D), (B, C), (C, D), (D, B)} is shown in the Figure 1.2.

ii) Order of a Graph

The total number of nodes/vertices represents the order and edges

represents the size of a graph G(V, E). The size of a graph is denoted as |E|.

iii) Directed Graph

A directed graph is a set of vertices and a set of links between the

vertices, i.e. the vertices of the graph are connected by the edges and where

all the edges are directed from one vertex to another as shown in Fig. 1.2. A

directed graph is also referred to as a digraph or a directed network.

Fig. 1.2: Directed graph

Space for learners

notes
Delhi

Chennai

Guwahati

Gujarat

A

B

C

D

255 | P a g e

iv) Undirected Graph

An undirected graph is a set of vertices and a set of links between the

vertices, i.e., the vertices of the graph are connected by the edges and where

the edges are not associated with the directions with them as shown in Fig.

1.3. Every edge in a undirected graph is equivalent to two edges connecting

two vertices.

Fig. 1.3: Undirected graph

Here, V = {A, B, C, D} and E = {(A,C), (A,B), (A,D), (B.A), (B,C), (B,D),

(C,A), (C,B), (C,D), (D,A), (D,B), (D,C)}. It can be observed that and

undirected graph can be replaced by two directed edges.

v) Walk

When we traverse a graph we get a walk. In other words a walk is a

sequence of vertices and edges of a graph where vertex can be repeated and

edges cannot be repeated. If the last vertex and first vertex are same then it is

known as closed walk, otherwise the walk is referred to as open walk. There

are no restrictions in the number of edges and vertices in a walk. In Fig. 1.3

the traversing of graph in a manner A-> B -> C -> D -> A is a closed walk,

and A-> B -> C -> D-> is an open walk.

vi) Trail

A walk is known as a trail, if no edges appear more than once in a

walk, however vertex can be repeated.

vii) Circuit

When a graph is traversed in such a manner that no edge is repeated

but vertex is repeated, it is known as a circuit. It is a closed trail. For instance

in Fig. 1.3 the A-> B -> C -> D -> A->C is a circuit.

Space for learners

notes

A

B

C

D

256 | P a g e

viii) Path

A path can be defined as the sequence of vertices that are followed in

order to reach some destination vertex v from the initial vertex u where, we

do not repeat a vertex and nor we repeat an edge while we traverse the

graph. A path is an open walk.

ix) Closed Path

A path is known as a closed path if the initial vertex u is same as

terminal vertex v. A path will be closed path if v = u.

x) Simple Path

A path P is called as closed simple path if all the vertices of the

graph are distinct with an exception v = u. then such. Where, v is the

destination vertex and u is the initial vertex.

xi) Cycle

A cycle can be defined as the path where no edges are repeated

neither vertices except the first and last vertices i.e. to get a cycle we can

repeat the starting and ending vertex only. In simple terms, in cycle both the

vertices and edges are not repeated. If all the vertices of a graph are visited

only once except the first vertex, the cycle is known as Hamiltonian cycle.

xii) Loop

 A loop is an edge that connects a vertex to itself. It is also known as

a self loop or buckle. A graph that does not contain any loops or multiple

edges is called a simple graph.

xiii) Digraph

A digraph is a directed graph in which each edge of the graph is

associated with a certain direction and traversing is only possible in that

direction.

xiv) Complete Graph

 A complete graph is the one in which each pair of vertices is

connected by an edge. A complete graph contain n(n-1)/2 edges where n is

the number of vertices in the graph. The Figure 1.4 as shown is a complete

graph, where there are 5 vertices and 10 edges.

Space for learners

notes

257 | P a g e

 Fig. 1.4: Complete graph

xv) Degree of a Vertex

 The number of edges connecting to a vertex of a graph is the

degree of that vertex. A vertex with a degree zero is known as an isolated

vertex.

CHECK YOUR PROGRESS

1. Graph is a __________________ data structure which can be

used as a modeling tool to represent ____________relationship.

2. The total number of edges represents the _________ of a graph.

3. In a _______________edge cannot be repeated but vertex can be

repeated.

4. In a _______________no edge and vertex can be repeated except

the first and last vertices.

5. A ______________is an edge that connects a vertex to itself in a

graph.

6. If there are n vertices in a graph then a complete graph can

contain _____________ number of edges.

7. In an _______________ graph, the edges are not associated with

the directions with them.

8. In a _______________ graph, the edges are associated with the

directions with them.

Space for learners

notes

A

B

C

D

E

258 | P a g e

1.4 GRAPH REPRESENTATIONS

When we say "graph representation”, we just mean the approach that

will be utilized to store a graph in the computer's memory. A graph G(V,E)

can be represented in the following two ways:

a) Adjacency Matrix.

b) Adjacency List.

1.4.1 Adjacency Martix

In this type of representation, a graph is represented as a matrix M of

dimension n x n where n = |V|, number of vertices. It is a sequential

representation of graph. An entry Mij in the adjacency matrix representation

of a graph G will be 1 if there exists an edge between any two vertices vi and

vj. It can be represented as follows:

���, �� = � 1 �� �ℎ��� ������ ��� ���� ������� �� and �� 0 �ℎ������
For example, consider the graph shown in Figure 1.5(a) and its

corresponding adjacency matrix as shown in Figure 1.5(b).

Fig, 1.5 (a): Sample undirected graph. (b): Adjacency matrix

 A B C D

A 0 1 0 1

B 1 0 1 0

C 0 1 0 1

D 1 0 1 0

Space for learners

notes

A

B

C

D

259 | P a g e

It is to be observed that the sample graph shown in Figure 1.5 (a) is an

undirected graph. In case of undirected graphs M[i, j] = M[j, i], i.e. it

holds the symmetry property.

For directed graph, the adjacency graph representation is shown in

Figure 1.6 (a) and 1.6 (b).

Fig. 1.6 (a): Sample directed graph

 A B C D

A 0 1 1 0

B 0 0 0 0

C 0 1 0 1

D 1 0 0 0

Fig. 1.6 (b): Adjacency matrix representation of the sample directed

graph

The entry in the matrix, M [i, j] =1 only when there is an edge directed

from vertex vi and vj otherwise it is 0.

Adjacency matrix can also be used to represent weighted graphs. In

weighted graph, a weight is associated to every edge connecting any pair

of vertices. The length of the path is equal to the sum of weights that fall

in that path.

In case of weighted graphs the non-zero entries in adjacency matrix M

are represented by the weight of respective edges instead of filling it

with 1 and filled with infinite otherwise. It can be represented as

follows:

���, �� = ���! �� �ℎ��� ������ ��� ���� ������� �� and �! ∞ �ℎ������
In Figure 1.7(a) a weighted graph is shown and its adjacency matrix

representation is shown in Figure 1.7(b).

Space for learners

notes

A

B

C

D

260 | P a g e

Fig. 1.7 (a): Sample weighted graph

Fig. 1.7 (b): Adjacency matrix representation of the sample weighted

graph

It is observed that adjacency matrix is sparse if there are lesser number of

edges compared to the maximal possible number of edges. Thus, this kind of

representation consumes memory space. It is ideal if the graph is dense

otherwise, the adjacency list representation of graph is preferable to

represent a sparse graph.

1.4.2 Adjacency List

An adjacency list is another kind of graph representation where a linked list

is used to represent the neighbors of a vertex.

For each node in the graph, an adjacency list is kept, which contains the

node value as well as a pointer to the node's next adjacent node. If all

neighbouring nodes have been traversed, store NULL in the list's last node's

pointer field. In an undirected graph, the sum of the lengths of adjacency

lists is equal to twice the number of edges of the graph.

Consider the directed graph shown in Figure 1.8(a) and check the adjacency

list representation of the graph in the Figure 1.8(b).

Space for learners

notes

 A B C D

A ∞ 2 14 ∞

B ∞ ∞ ∞ ∞

C ∞ 21 ∞ 1

D 1 ∞ ∞ ∞

A

B

C

D

21

14

2
1

27

261 | P a g e

Fig. 1.8 (a): Sample directed graph

Fig. 1.8 (b): Adjacency list representation of the sample directed graph

CHECK YOUR PROGRESS

9. There are two ways of representing a graph ________________

and ______________________.

10. Define weighted graph.

11. In adjacency list representation of graph a ______________ is

used to represent the neighbors of a vertex.

12. In adjacency matrix, the entry in the matrix is equal to _____

only when there is an edge directed from vertex vi and vj

otherwise it is entered as _________.

13. In case of weighted graphs the non-zero entries in adjacency

matrix are represented by the _________of respective edges.

Space for learners

notes A

B

C

D

 A

 D

 A

NULL B C

 B NULL

NULL C B

 D NULL

262 | P a g e

1.5 GRAPH TRAVERSAL TECHNIQUES
__

Graph traversal is a way of processing the vertices/nodes of a graph such

that every vertex is visited only once. There are basically two types of graph

traversal techniques:

a) Depth-first Search (DFS) and

b) Breadth-first Search (BFS).

These techniques are used to search or traverse a graph in linear time. Both

the techniques can take directed and undirected graph and produce DFS and

BFS trees, respectively. The two techniques are discussed in the subsequent

subsections.

1.5.1 Depth-first Search

Depth-first search (DFS) algorithm is a systematic way of traversing

the nodes of a directed or undirected graph G. The nodes are traversed in

such a way that every node is visited only once. It starts with an initial node

to process and then goes deeper to process its descendants before processing

the adjacent nodes. It goes deeper and deeper to process the descendants or

children of subsequent nodes until the target node or the node with no

descendant is found. Once a dead end is encountered, the algorithm, then

backtracks towards the most recent node that is yet to be explored

completely. The DFS algorithm uses stack data structure to keep track of the

nodes to be used to start the search when dead ends occur. The searching is

continued till the stack becomes empty which implies that all the nodes of

the graph are fully explored or processed.

A DFS algorithm can be applied recursively or non-recursively. The steps

followed in the iterative DFS algorithm are as follows:

Step 1: Initialize an empty stack and mark the status of every node as

unvisited in the graph.

Step 2: Explore a node and mark its status as visited and push it into the

Space for learners

notes

263 | P a g e

stack and display it.

Step 3: Pop a node from the stack if no adjacent node of it whose status

is unvisited is found.

Step 4: Repeat the Steps 2 and 3 until the stack is empty.

Example: Let us try to understand with an example. Consider an

undirected graph having four nodes A, B, C and D connected by the

edges. We need to traverse the graph using DFS algorithm. The

illustration of the algorithm is shown below:

Traversal Description of Step

 Initialize a stack and mark

the status of the nodes of

the graph as unvisited.

 Take node A as starting

node and push it into the

stack. Mark its status as

visited and display it.

Explore the adjacent nodes

of A whose status is

unvisited. Here, there are

two adjacent unvisited

nodes B and D. You can

take any of them to explore

further.

 We took the adjacent node

B to explore. Mark it as

visited and push it into the

stack and display B. Now,

you explore the adjacent

node of B. So, next explore

node C.

Space for learners

notes

A

B

C

D
 Stack

A

B

C

D
 Stack

A
Top

A

B

C

D
 Stack

A

Top B

264 | P a g e

Traversal Description of Step

 Mark node C as visited and

push it into the stack and

display it. Now, you

explore the adjacent nodes

of C. You will get nodes B

and D. Both the nodes are

the adjacent nodes, but

node D will be considered

next to be explored due to

its unvisited status.

 Mark node D as visited and

push it into the stack and

display it. The adjacent

nodes of D are A and C but

both are visited, so it

cannot be explored further.

So, now you backtrack

with the help of the stack.

It is to be observed that the node D does not have any further adjacent nodes

yet to be explored, so you need to backtrack by popping out D from the

stack and keep popping until you find any node which is not yet fully

explored or in other words whose status is unvisited. In this case, there are

no nodes with the unvisited status, so pop the nodes one by one until the

stack becomes empty. Hence, all the four nodes of the graph are traversed.

The printing sequence of the graph will be as A -> B - > C -> D.

Time complexity analysis of DFS algorithm

Let us consider, a graph with n number of nodes and m number of edges

(directed or undirected). As you know that in DFS algorithm every node is

visited only once therefore the total time taken to traverse or visit all the

nodes of the graph is n. However, the edges of the graph is traversed twice,

as you can observe from the illustration, thus the total time to traverse all the

edges will be 2m. Hence, we can say that the total time taken to traverse the

graph using DFS algorithm is n + 2m which can be stated using asymptotic

notation as O (n + m).

Space for learners

notes

 Stack

A

Top

B

C
A

B D

C

 Stack

A

Top

B

C

D A

B D

C

265 | P a g e

1.5.2 Breadth-first Search

Breadth-first search is an algorithm is a systematic way of traversing the

nodes of a directed or undirected graph G. It differs with the depth-first

search technique is that the BFS processes the nodes of the graph in a

level wise manner, in other words the nodes at the same level are

explored first before exploring the nodes at the next level. The algorithm

first selects a node to be a root node to start with and then explores the

nodes nearer to the root node. The BFS algorithm uses a queue data

structure to keep track of the nodes to be explored. The queue is used to

store the sibling nodes of the current node being explored and uses the

queue to get the next node to be explored once it encounters a dead-end

in any iteration. The searching is continued till the queue becomes

empty which implies that all the nodes of the graph are fully explored or

processed.

Like a DFS algorithm, BFS also can be applied recursively or non-

recursively. The steps followed in the iterative BFS algorithm are as

follows:

Step 1: Initialize an empty queue and mark the status of every node as

unvisited in the graph.

Step 2: Select a start node to visit, mark its status as visited and enqueue

it into the queue.

Step 3: Dequeue a node from the queue, display it and explore its

adjacent unvisited node.

Step 4: Enqueue the explored adjacent node it into the queue.

Step 5: Repeat the Steps 3 and 4 until the queue is empty.

Example: Let us try to understand with an example. Consider an

undirected graph having four nodes A, B, C and D connected by the

edges. We need to traverse the graph using BFS algorithm. The

illustration of the algorithm is shown below:

Space for learners

notes

266 | P a g e

Traversal Description of Step

 Initialize a queue and mark

the status of the nodes of

the graph as unvisited.

 Take node A as starting

node and enqueue it into

the queue. Mark its status

as visited.

 Dequeue node A, display it

and explore its adjacent

nodes whose status is

unvisited. Here, nodes B

and D are the adjacent

nodes of A. Enqueue the

nodes B and D into the

queue. Mark them as

visited.

Space for learners

notes

A

B

C

D

A

B

C

D

A

B D

C

Front

Queue

A
Front

Queue

B D
Front

Queue

267 | P a g e

Traversal Description of Step

Dequeue node B from the

queue as it is pointed by

front pointer of the queue.

Display it and explore its

adjacent nodes. Here,

nodes A and C are the

adjacent nodes of B but

node A is already visited.

So, enqueue node C into

the queue and mark it as

visited.

 Dequeue node D from the

queue as it is pointed by

front pointer of the queue.

Display it and explore its

adjacent nodes. Here,

nodes A and C are the

adjacent nodes of D but

both the nodes are already

visited.

 Dequeue node C from the

queue as it is pointed by

front pointer of the queue.

Display it and explore its

adjacent nodes. Here,

nodes B and D are the

adjacent nodes of C but

both the nodes are already

visited. So, stop the

exploration as queue is

empty and all the nodes are

fully explored.

Hence, all the four nodes of the graph are traversed. The printing

sequence of the graph will be as A -> B - > D -> C. It is to be noted that

in both DFS and BFS methods the printing sequence of the nodes differs

with the selection of the initial starting node.

Space for learners

notes

A

B D

C

A

B D

C

D C
Front

Queue

C
Front

Queue

A

B D

C

Front

Queue

268 | P a g e

Time complexity analysis of BFS algorithm

Let us consider, a graph with n number of nodes and m number of edges

(directed or undirected). As you know that in BFS algorithm every node is

visited only once therefore the total time taken to traverse or visit all the

nodes of the graph is n. However, the edges of the graph is traversed twice,

as you can observe from the illustration, thus the total time to traverse all the

edges will be 2m. Hence, we can say that the total time taken to traverse the

graph using BFS algorithm is n + 2m which can be stated using asymptotic

notation as O (n + m). Thus, the time complexity of both the DFS and BFS

algorithm to traverse a given graph is same.

1.5.3 Difference between DFS and BFS Algorithm

Both the Depth-first search and Breadth-first search algorithms are used to

traverse a graph. The time complexity of both the algorithms is O (|V| + |E|),

if we use adjacency list to represent the graph, otherwise it is O (|V|2) if we

use adjacency matrix for graph representation. However, the main difference

between them is their approach in traversing the graph. Some of the

differences between the two methods are given below:

S. No Depth-first Search Breadth-first Search

1 DFS uses stack data

structure.

BFS used queue data structure.

2 DFS explores the child nodes

before the sibling nodes.

BFS explores the sibling nodes in a

level by level manner. Where all

nodes in a particular level are

explored first before moving into

the next level.

3 Best suited to find nodes

which are far away from the

source node.

Best suited to find nodes which are

nearer to the source node.

4 The outcome can be a forest. The outcome is a tree (BFS tree).

Space for learners

notes

269 | P a g e

STOP TO CONSIDER

Breadth-first search and Depth-first search are two graph traversal

algorithms. Both are useful in many graph algorithms and can be applied

into directed or undirected graph. Some of the applications of these

algorithms are finding single source shortest path in a graph, detect

cycles in undirected graphs, job scheduling and so on.

1.6 TOPOLOGICAL SORT

Topological sorting is a sorting technique of the nodes of a graph. The

technique works only with directed acyclic graph (DAG). The ordering

of the nodes is done in such a way that if there exist any edge directed

from the node u and node v, then topological sort outputs u before v. As

the graph as to be acyclic the topological sort guarantees the ordered

output of the nodes however there may be more than one output and

may not be unique always.

To begin with topological sort, you need to consider few of the

following terms and concepts:

i). Cyclic Graph

A graph that consists of at least one cycle in a graph. We know that in a

Space for learners

notes

270 | P a g e

graph a cycle is formed whenever the starting and ending vertices are

repeated in a path. Figure 1.9 shows a cyclic graph with having a path from

node A back to itself (A->C->B->A).

Fig. 1.9: A sample cyclic graph

ii). Acyclic Graph

A graph that do not consist of any cycle in it which means that no node of

the graph can be traversed back to itself. Figure 1.10 shows an acyclic

graph.

Fig. 1.10: A sample acyclic graph

iii). Directed Acyclic Graph (DAG)

A directed graph, which does not consist of any cycle, is known as directed

acyclic graph (DAG). The graph shown in Figure 1.10 can also be referred

to as directed acyclic graph.

iv). Indegree of a Node

In a directed graph, the number of edges leading into the node gives us the

indegree of the node. If we consider the DAG shown in Figure 1.10, the

indegree of the nodes are: Node A has indegree 1 as there is only one edge

coming into the node from node B. The indegree of node B is 0,as there are

Space for learners

notes

A

B

C

D

E

A

B

C

D

E

F

271 | P a g e

no edge leading into it. Similarly, the indegrees of the node C, D, E and

F are 1, 2, 1 and 2 respectively.

A node with degree 0 is also known as an isolated node. And root node

always has indegree 0.

v). Outdegree of a Node

In a directed graph, the number of edges leading away from the node

gives us the outdegree of the node. If we consider the DAG shown in

Figure 1.10, the outdegree of the nodes are: Node A has outdegree 1 as

there is only one edge coming out of the node towards node C.

Similarly, the outdegree of the nodes B, C, D, E and F are 2, 2, 1, 1 and

0 respectively.

Topological Sort Algorithm

Topological sort graph traversal algorithm which does the linear

ordering of nodes of a graph. It works only with directed acyclic graph

(DAG) and there is at least one topological ordering of a DAG. Now,

given a directed acyclic graph G (V, E), to begin with topological sort

perform the following steps:

Step 1: Count indegree of nodes of the graph and get the node with

indegree 0 and insert into a list.

Step 2: Remove a node from the list and display it.

Step 3: Delete the node and every edge coming out of it from the graph

and get a new subgraph.

Step 4: Repeat the steps 1 to 3 until all the nodes are traversed and the

list becomes empty.

Here, a list is used to keep track of the nodes however you may use

stack or queue data structure also to perform the task.

Example: Let us try to understand topological sort with an example.

Consider an directed acyclic graph (DAG) having six nodes A, B, C, D,

E and F and seven directed edges. We need to traverse the graph using

topological sort. The illustration of the algorithm is shown below:

Space for learners

notes

272 | P a g e

Traversal Description of Step

Count the indegree of

nodes of the graph and get

the node with indegree 0.

Here, node B has indegree

0. Insert it into the list.

 Remove node B from the

list and display it. We get a

new subgraph by deleting

the node B and edges

coming out of the node.

 Count the indegree of

nodes of the subgraph and

get the node with indegree

0. Now, node A has

indegree 0. Insert it into the

list.

Space for learners

notes

A

B

C

D

E

F

 List B

A C

D

E

F

List

List A

A C

D

E

F

273 | P a g e

Traversal Description of Step

Remove node A from the

list and display it. We get a

new subgraph by deleting

node A and edge coming

out of the node.

 Count the indegree of

nodes of the subgraph and

get the node with indegree

0. Now, node C has

indegree 0. Insert it into the

list.

 Remove node C from the

list and display it. We get a

new subgraph by deleting

node C and edges coming

out of the node.

 Count the indegree of

nodes of the subgraph and

get the node with indegree

0. Now, nodes D and E has

indegree 0. Insert them into

the list.

Space for learners

notes

List

List

 List

D

E

F

C

D

E

F

C

D

E

List C

D

E

F

D

E

F

274 | P a g e

Traversal Description of Step

 Remove node D from the

list and display it. We get a

new subgraph by deleting

node D and edge coming

out of the node.

 Remove node E from the

list and display it. We get a

new subgraph by deleting

node E and edge coming

out of the node.

 Count the indegree of

nodes of the subgraph and

get the node with indegree

0. Now, node F is left and

with indegree 0. Insert it

into the list.

 Remove node F from the

list and display it. Stop

now as we have exhausted

traversing all the nodes of

the graph and the list is

empty.

Hence, all the six nodes of the graph are traversed. The printing sequence of

the graph will be as B, A, C, D, E, F. It is to be noted that the ordered

sequence of the nodes can also be B, A, C, E, D, F. Thus, we get more than

one unique order of nodes using topological sort algorithm.

Space for learners

notes

 List

E

F

List

F

F

E

List

F

List

275 | P a g e

Time complexity analysis of Topological sort algorithm

Let us consider, a directed acyclic graph G (V, E) with n = |V| and m =

|E|. In the topological sort algorithm, every node is visited only once

therefore the total time taken to traverse or visit all the nodes of the

graph is n. Similarly, the edges of the graph is traversed as you can

observe from the illustration, thus the total time to traverse all the edges

will be m. Hence, we can say that the total time taken to traverse the

graph is n + m which can be stated using asymptotic notation as O (n +

m). Thus, the time complexity of topological sort algorithm to traverse a

given graph is linear.

Why Topological sort algorithm cannot be applied to cyclic graph?

To answer this question let us consider the directed cyclic graphs shown in

Figures 1.11 (a) and 1.11 (b).

Fig. 1.11: (a) Sample cyclic graph (b) Sample cyclic graph

If you observe carefully, the directed graph in Figure 1.11 (a), there is a

cycle consisting of the nodes A, C, D, B. There is no node in the graph

shown with indegree 0, so topological sort algorithm cannot be applied

in it. If you consider the directed graph shown in Figure 1.11 (b), there is

one node A whose indegree is 0, however, once we delete the node and

the edge coming out of it, we are left with a subgraph consisting of node

B, C and D forming a cycle. Hence, you cannot carry on the topological

sorting further as no nodes will have an indegree 0.

Space for learners

notes

A

B

C

D

E

A

B

C

D

276 | P a g e

CHECK YOUR PROGRESS

14. With adjacency list representation of graph, the time complexity

of BFS algorithm is _____________.

15. The time complexity of topological sort algorithm is ________.

16. Define indegree and outdegree of a node.

17. DFS algorithm traverses the _______ nodes before the

_________ nodes.

18. A _______ graph has at least one cycle in it.

19. State whether the following statements are true or false:

a. Topological sort algorithm can produce only one order of

the nodes of a graph.

b. In BFS algorithm, we use queue data structure.

c. Topological sort algorithm can be performed in directed

acyclic graph (DAG) only.

1.7 SUMMING UP
__

 A graph G(V,E) is a non-linear data structure that consists of finite set of

nodes V and a finite set of edges E that connects the vertices.

 A non-linear data structure is one in which the data pieces are not placed

in any particular order and are instead distributed across the plane.

 For implementation, we need to represent the graph in the computer's

memory, and there are two ways to do so: adjacency matrix and

adjacency list.

 Traversing a graph or searching a graph implies visiting every nodes or

vertices of a graph.

Space for learners

notes

277 | P a g e

 There are basically two types of graph traversal techniques:

Depth-first Search (DFS) and Breadth-first Search (BFS) and both

traverse a graph in linear time.

 A graph is represented as a matrix M of dimension n x n in

adjacency matrix representation, with n = |V|. It represents a graph in

sequential order. If an edge exists between any two vertices vi and vj, the

item Mij in the adjacency matrix representation of the graph G will be 1

otherwise 0.

 An adjacency list is a type of graph representation that uses a

linked list to represent a vertex's neighbours.

 BFS explores the nodes of the graph in a level-by-level fashion,

that is, nodes at the same level are explored first, followed by nodes at

the next level.

 The DFS method begins by exploring an initial node then

continues deeper to process its descendants before moving on to its

adjacent node.

 The linear ordering of nodes in a graph is accomplished using the

topological sort algorithm. It can only be used with directed acyclic

graphs (DAGs) and have at least one topological ordering.

Space for learners

notes

278 | P a g e

1.8 ANSWERS TO CHECK YOUR PROGRESS
__

1. non linear, non-hierarchical

2. size

3. trail

4. cycle

5. loop

6. n(n-1)/2

7. undirected

8. directed

9. adjacency matrix, adjacency list

10. A weighted graph is a graph where every edge (directed or undirected)

is assigned some numerical weight.

11. linked list

12. 1, 0

13. weight

14. O(|V|+|E|)

Space for learners

notes

279 | P a g e

15. O(|V|+|E|)

16. In a directed graph, the number of edges leading into a node

gives the indegree of the node and the number of edges leading away

from a node gives the outdegree of the node.

17. child, adjacent

18. cyclic

19. a). False b). True c). True

1.9 POSSIBLE QUESTIONS

Short Answer Type Questions

1. What is a graph?

2. What is the purpose of graph representation?

3. What are the different types of graph representation?

4. Define an acyclic graph.

5. Define a complete graph.

6. What do you mean by graph traversal?

7. What are the different types of graph traversal techniques?

8. Draw a graph with five nodes and seven edges where one edge

should be a loop.

9. Define a connected graph.

10. How do you get the size of a graph?

11. Define indegree of a node.

12. What is an ADT?

13. Define DAG.

14. Define outdegree of a node.

15. What is a circuit in graph?

16. What data structure is used in Depth-first search technique?

Space for learners

notes

280 | P a g e

17. Why do we use queue data structure in Breadth-first search?

18. What is the output of topological sort method?

19. What is non-linear data structure?

Long Answer Type Questions

1. Explain the adjacency matrix representation of a graph with a

suitable example.

2. Explain the adjacency list representation of a graph with an example.

3. Differentiate between connected and non-connected graph.

4. Consider the graphs shown in Figure 1.12 (a) (b) and do the

following:

a. Perform the BFS traversal.

b. Perform the DFS traversal.

Fig. 1.12. (a): A directed graph

Fig. 1.12. (b): An undirected graph

Space for learners

notes

A

B

C

D

E

A

B

C

D

E

F

281 | P a g e

5. Explain the advantages and disadvantages of adjacency matrix

representation of a graph.

6. Explain the advantages and disadvantages of adjacency list

representation of a graph.

7. Using the DAG as shown in Fig. 1.12 (a), perform the

topological sort in the graph.

8. “Topological sort can be applied only to directed acyclic graph”.

Justify the statement with a suitable example.

9. Describe the various components of a graph.

10. Draw a directed graph using the following adjacency matrix:

 U V W X

U 1 0 1 0

V 1 0 1 0

W 0 0 0 1

X 0 1 0 0

 Also find the adjacency list representation of the graph.

11. Explain the Breadth-first search algorithm. Derive its time

complexity.

12. Explain the Depth-first search algorithm. Derive its time

complexity.

13. Explain the procedure to determine the presence of a cycle in a

graph.

14. Differentiate between BFS and DFS algorithms.

1.10 REFERENCES AND SUGGESTED

 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and

Clifford Stein, Introduction to Algorithms, 3rd Edition, MIT Press.

 Sridhar S., Design and Analysis of Algorithms, Oxford University

Press, 2014.

Space for learners

notes

281 | P a g e

UNIT 2 MINIMUM SPANNING TREE

Unit Structure:

2.1 Introduction

2.2 Unit Objectives

2.3 Basic Terms and Their Definitions

2.4 Minimum Spanning Tree

2.5 Kruskal’s Algorithm

2.6 Prim’s Algorithm

2.7 Practice Problems

2.8 Summing Up

2.9 Answers to Check Your Progress

2.10 Questions and Answers

2.11 References and Suggested Readings

Space for learners

notes

282 | P a g e

2.1 INTRODUCTION

In this unit, you will learn the concept of spanning trees, weighted graph

and minimum spanning tree. You will also learn the algorithms to find

minimum spanning tree: Kruskal’s and Prim’s algorithm. These

algorithms are basically optimal graph algorithms that use the concept of

Greedy technique to solve the optimization problems. You will learn the

important concepts of greedy techniques and optimization problem and

about the data structures used to accomplish the task. The time complexity

of the algorithms will be discussed in this unit along with some

demonstrations of the techniques.

2.2 UNIT OBJECTIVES

The unit is an attempt to learn the concepts of spanning trees. After going

through this unit, you will be able to:

 Understand the fundamental concept of minimum spanning tree.

 Know different algorithms to find minimum spanning tree.

 Analyze the time complexities of algorithms used to find the

minimum spanning trees.

 Discuss greedy approach and optimization problems.

2.3 BASIC TERMS AND THEIR DEFINITIONS

The problem of minimum spanning or MST was first formulated in the

year 1926 by a Czech mathematician named Otaker Boruvka. Then in

1930 Vojtech Jarnik had developed an algorithm for the MST problem.

Later, it was rediscovered by Joseph Kruskal in the year 1956 and Robert

Prim in 1957 and Edsger W. Dijkstra in 1958. A spanning tree is subgraph

of a graph G(V,E) and minimum spanning tree is a spanning tree

satisfying certain properties. The MST problem is an optimization

problem in graph whose solutions uses the greedy approach. The greedy

approach is also used in developing algorithms for finding the shortest

path problems.

Space for learners

notes

283 | P a g e

To understand the MST, you need to get an introduction of the basic terms

and terminologies associated with it. Some of the basic terms and their

definitions related to MST are given below:

.i) Tree

A tree is basically a data structure consisting of nodes and edges

connecting the nodes in a hierarchical manner. In graph theory it is defined

as an undirected graph where any two nodes are connected by only one

undirected edge not forming any cycle. A tree with 5 nodes and 4 edges is

shown in the Figure 2.1.

Fig. 2.1: A tree with 5 nodes and 4 edges

ii) Subgraph

Given a graph G(V, E) a subgraph G(V’, E’) is the subset of the graph

where its edges E’⊆ E and vertices V’⊆ V. One may obtain a subgraph by

deleting vertices and edges of a graph. A graph may have more than one

subgraphs.

iii) Weighted graph

A weighted graph is graph, where a weight is associated to every

edge connecting any pair of vertices of the graph. The graph may be directed

or undirected graph.

iv) Spanning Tree

Given a graph G(V, E), spanning tree is a subgraph G(V’, E’) which

includes all the vertices of the graph G connected by the edges without

forming any cycle. Consider the graph shown in Figure 2.2 (a) and its

corresponding subgraph in Figure 2.2 (b). A graph can have more than one

spanning trees. A connected graph with n vertices can have nn-2 number of

spanning trees. A spanning tree has n-1 edges. The graph shown in Figure

2.2 (a) has 4 vertices, so it can have 44-2 = 16 number of spanning trees.

Space for learners

notes

A C

E B

D

284 | P a g e

Fig. 2.2 (a): Undirected graph

Fig. 2.2 (b): Spanning tree of the graph

v) Minimum Spanning Tree

. A minimum spanning tree (MST) is a spanning tree obtained from a

weighted graph such that the sum of the weight W of its edges is the least. For

a graph G(V,E), the minimum spanning tree T can be represented

mathematically as:

�(�) = ��	
 � �(�, �)(�,�)∈� �

vi) Optimization Problem

Optimization problem can be defined as a problem to get the best

solutions from the available potential solutions. The main objective is to

mimimize or maximizes some values. For instance to find a shortest route

between two vertices of a graph etc.

vii) Forest

In graph theory, forest is collection of trees, in other words it an

undirected acyclic graph whose components are connected trees.

Space for learners

notes

A

B

C

D

A

B

C

D

285 | P a g e

viii) Shortest Path

A path followed to reach some destination vertex v from the initial

vertex u of weighted graph G, such that the sum of the weights of the edges

along the path is minimal. For example, look at the graph shown in Figure

2.3.

 Fig. 2.3: A weighted graph

Here, if you want to find a path between vertex P and Q of the graph, there

are multiple paths available with different sum of the weights. The paths are

P->Q with total weight 5, path P->S->Q with total weight 5, P->R->Q with

total weight 3 and path P->R->T->Q with total weight 11. Although, all

these paths takes you from vertex P to Q, but the path with minimum

weight is P->R->Q. Thus, it is taken as the shortest path between the two

vertices.

The problem of finding the shortest path between any two vertices of a

graph is known as shortest path problem or single-pair shortest path

problem. It can be defined in both directed and undirected graph. The

problem has variations as:

 Single-source shortest path problem.

 Single-destination shortest path problem.

 All-pairs shorted path problem.

ix) Greedy Technique

Greedy technique in an algorithmic approach where any decision is

taken by considering the information available currently without thinking

what would be the impact of the current decision in future. A greedy method

may provide locally optimal solutions but man not be globally optimized.

For example, solution to change making problem may be locally optimal

solution only.

Space for learners

notes

4

6

2

5

1

3

2

S

P Q

R T

286 | P a g e

CHECK YOUR PROGRESS

1. The problem of minimum spanning or MST was first formulated

in the year 1926 by _____________.

2. The MST problem is an problem in graph whose

solutions uses the approach.

3. A tree is a data structure consisting of nodes and edges

connecting the nodes in a manner

4. A connected graph with n vertices can have number of

spanning trees.

5. State whether the following statements are true or false:

a. A spanning tree with n vertices can have n-1 edges.

b. The problem of finding the shortest path between all the

vertices of a graph is known as single-pair shortest path

problem.

c. A forest is a union of disjoint collection of trees.

d. A graph may have more than one subgraphs.

e. A weighted graph can be directed or undirected.

6. Define optimization problem.

7. What is globally optimal solution?

8. What is locally optimal solution?

9. Define a spanning tree.

10. Construct at least two spanning trees of the graph shown below:

.

Space for learners

notes

S

P Q

R T

287 | P a g e

2.4 MINIMUM SPANNING TREE

A minimum spanning tree (MST) is a spanning tree obtained from a

weighted graph such that the sum of the weight W of its edges is the least.

The cost of an MST is calculated by summing up the weights of its edges.

There can be more than one MST of a graph. For a graph G(V,E), the

minimum spanning tree T can be represented mathematically as:

�(�) = ��	
 � �(�, �)(�,�)∈� �

Here, W(T) is the total weight of cost of the MST, i.e the sum of the weights

of all the edges in the MST and W(u, v) is the weighted associated to the

edge connecting vertex u and v.

The properties of a minimum spanning tree are as follows:

1. A minimum spanning tree must have minimal cost.

2. A minimum spanning tree should not have any cycle.

3. All the vertices of the graph are present in an MST connected by the

edges.

To find an MST is an optimization problem. A greedy approach is applied to

find an MST. Prim’s and Kruskal’s algorithms are the popular algorithms to

find MST. However, there are other algorithms which use greedy approach

to solve some other problems such as Graph coloring problem, Job

scheduling problem, Knapsack problem and so on.

Besides the use of MST in computer science, there are plenty of applications

of minimum spanning tree in real life.

 Fig. 2.4: Flight routes graph

 Space for

learners notes

Jaipur

Kolkata

Chennai

Guwahati

Delhi

288 | P a g e

For example, say a domestic airline company has several flights in five

different cities of a country. Now if the company want to finds an

optimal network connecting all the airports in those cities with the

shortest distance travelled so that less possible routes need to be

travelled covering all the destinations, a minimum spanning tree can be

a solution to such a problem. The problem can be modeled into a graph

as shown in Figure 2.4 where we have 5 vertices representing cities

connected to each other by edges (flight routes). As you see, there are 5

vertices in the graph, so you can have 55-2 = 125 spanning trees. In this

manner, once the number of cities grows, the number of potential

spanning trees will also grow. So, the time required finding the spanning

tree whose cost is minimum or MST will rise. Thus, practically,

applying brute force technique to find the MST will not be feasible; in

fact we need some better algorithms to construct MSTs.

Similar problems like designing a circuit board by connecting the

transistors with minimum number of wires, designing networks (like

cable network, water supply networks, computer networks etc), and so

on can be modeled in to graph and an optimal MST can be designed to

solve such problems.

2.5 KRUSKAL’S ALGORITHM

Kruskal’s algorithm is used to find an MST using greedy

approach. For a given weighted graph G(V, E), the algorithm first sorts

the edges in the increasing order of its weights and then adds the sorted

edges one by one only if it does not form any cycle. The algorithm keeps

adding the edges until all the vertices are connected and creates an

acyclic graph. It is to be noted that the edge which forms a cycle is

discarded.

To keep track of a cycle, the Kruskal’s algorithm uses the disjoint-set

data structure. The disjoint-set data structure stores the partitions of a set

into non-overlapping subsets. The intersection of these subsets results in

an empty set, thus they are non-overlapping subsets or in other words we

can say that they have no elements in common. The find operation of the

disjoint-set helps to identify whether an edge connecting two different

trees in a forest forms any cycle. Thus, edges which connect only the

disconnected components are considered in developing an MST.

Space for learners

notes

289 | P a g e

 The steps of Kruskal’s algorithm are given as follows:

Algorithm Steps

1. Sort the edges of the graph based on its increasing order of weights.

2. Take a smallest edge from the sorted list and check that it does not

forms any cycle then add it into the spanning tree else discard it.

3. Repeat Step 2 as long as all the vertices are connected.

4. Calculate the cost of the spanning tree by summing up all the

weights of the edges to get an MST.

Let us try to understand the Kruskal’s algorithm with an illustration given as

under:

Example: Consider the undirected weighted graph shown in Figure 2.5.

Now, apply the Kruskal’s algorithm to construct a minimum spanning tree

of the given graph.

Fig. 2.5: A weighted graph

To construct an MST using Kruskal’s algorithm, the first step is to sort the

edges of the graph based on its weights. The sorted edges are shown in table

2.1.

 Table 2.1: Sorted order of edges and their status

Edge Cost (Weight) Status

P – R 1 Accepted

P – S 2 Accepted

R – Q 2 Accepted

S – Q 3 Discarded

Q – T 4 Accepted

P – Q 5 Discarded

R – T 6 Discarded

Space for learners

notes

4

6

2

5

1

3

2

S

P Q

R T

290 | P a g e

Step for Constructing MST Description of the Step

Take the first edge (P – R) from

the sorted list. As it does not form

any cycle, so take it to construct an

MST.

Take the next edge (P – S) from

the sorted list. As it does not form

any cycle, so add it into the

spanning tree.

Take the next edge (R – Q) from

the sorted list. As it does not form

any cycle, so add it into the

spanning tree.

Take the next edge (S – Q) from

the sorted list. Now if you observe

it forms a cycle so discard it. Take

the next edge (Q – T) from the

sorted list, as it does not forms any

cycle, so add it into the spanning

tree.

Space for learners

notes

1

P

R

1

P

R

S

2

1

P

R

S

2

Q

2

 4 1

P

R

S

2

Q

2

T

291 | P a g e

Step for Constructing MST Description of the Step

Take the next edge (P – Q) from

the sorted list. Now if you observe

it forms a cycle so discard it.

Similarly, the next edge (R – T) is

discarded as it forms a cycle. Now,

all the vertices are connected and

|V|-1 edges are obtained the

algorithm stops here. Now, obtain

the cost of the obtained MST.

You may observe that for any given graph G (V, E), the number of edges in

an MST is | V | - 1, i.e the number of edges will be one less than the total

number of vertices in the MST of any given graph. So, from the above

illustration, at the end we obtain an MST from the resulting spanning tree.

The cost of the MST obtained in the above illustration is 1 + 2 + 2 + 4 = 9.

Time complexity analysis of Kruskal’s algorithm

One may also use priority queue data structure to keep track of the cycles.

Here, we have used disjoint-set data structure in the algorithm. Given a graph G (V,

E), the algorithm first sorts the edges in increasing order of the weights of the

edges. So, time required to sort the edges can be expressed as O (n log n), where n

= | E |. To detect a cycle, a disjoint-set data structure is used where find operation is

applied to perform the task. So, the time required determining whether a particular

edge is to be taken or not by checking its cycle formation can be at most 2n.

Therefore, the time complexity of Kruskal’s algorithm can be expressed as O (| E |

log | V |).

SAQ

1. Explain with a suitable example, how a cycle in an undirected graph

can be detected in a disjoint-set data structure.

2. “A graph can have several MSTs having same cost”. Justify the

statement.

3. “Greedy technique provides locally optimal solutions”. Justify the

statement.

Space for learners

notes

 4 1

P

R

S

2

Q

2

T

292 | P a g e

CHECK YOUR PROGRESS

11. Kruskal’s algorithm is used to find a minimum spanning tree

using _________ approach.

12. The time complexity of Kruskal’s algorithm can be expressed as

______________,

13. Define disjoint-set data structure.

14. Define a minimum spanning tree.

15. State whether the following statements are true or false:

a. A minimum spanning tree must have minimal cost.

b. In Kruskal’s algorithm, the edge of the graph which forms a

cycle is discarded.

c. There cannot be more than one MST of a given graph.

2.6 PRIM’S ALGORITHM

Prim’s algorithm is another way of constructing a minimum

spanning tree which also uses the greedy approach as in the case with

Kruskal’s algorithm. However, the technique used in Prim’s algorithm

constructing an MST is different as compared with the Kruskal’s

algorithm. The difference between the Prim’s and Kruskal’s algorithm is

given in Table 2.2.

The Prim’s algorithm finds the spanning tree of a graph whose sum of

the weights of the edges is minimum. The basic idea followed here is to

start constructing an MST by initially taking any vertex of a graph. Then

one by one the vertices of the graph are taken subsequently and added to

the spanning tree. Before adding any new vertex to the spanning tree, it

checks whether any cycle is formed or not. If it finds that a cycle is

formed then it discards the edge in the same way as we have seen in the

Kruskal’s algorithm. It means

Space for learners

notes

293 | P a g e

Table 2.2: Differences between Kruskal’s and Prim’s algorithm

S.No Kruskal’s Algorithm Prim’s Algorithm

1 The algorithm initially sorts

the edges in the increasing

order of their weights and then

takes the first edge to start

constructing a spanning tree.

The algorithm does not sort the

edges of the graph. In fact it

randomly takes any vertex to be

the root and starts constructing the

spanning tree.

2 It traverses a vertex only once

to get the minimum cost

It traverses a vertex more than

once to get the minimum cost

3 It saves time finding the next

edge to be considered as it

initially sorts the edges.

It saves memory space, as no

sorted list of edges is required.

4 It generates forest at any

iteration of the algorithm and

then connects the

disconnected components

(trees).

It generates connected graph at

any iteration of the algorithm.

5 Preferred to construct an MST

for a sparse graph,

Preferred to construct an MST for

a dense graph,

6 Time complexity of Kruskal’s

algorithm is O (| E | log | V |).

Time complexity of Prim’s

algorithm is O (| V |2), if adjacency

list is used.

For a given undirected weighted graph G (V, E), the Prim’s algorithm

arbitrarily takes any vertex v to be considered as a root and starts

constructing the MST. It then explores the vertex v to find the adjacent

vertices connected by an edge with minimum weight. It adds the new vertex

into the minimum spanning tree by checking the presence of any cycle.

Space for learners

notes

294 | P a g e

If it finds any cycle, then it discards the edge. In this way, one after

other vertices are added subsequently with their connecting edges into

the minimum spanning tree. The process of adding new vertices stops

when all vertices are added to the minimum spanning tree.

The steps in Prim’s algorithm are as follows:

Algorithm Steps

1. Choose a vertex v as a source vertex for constructing a spanning tree.

2. Explore the vertex, to find the adjacent vertices.

3. Select the adjacent vertex connected by the edge with least weight

and add it to the spanning tree by checking if the edge connecting

with the adjacent vertex does not forms a cycle, otherwise discard it.

4. Consider the spanning tree as a node and explore all its adjacent

vertices to construct the spanning tree.

5. Repeat steps 3 and 4 till there are n - 1 edges in the spanning tree,

where n = | V |.

Let us try to understand the Prim’s algorithm with an illustration given

as under:

Example: Consider the undirected weighted graph shown in Figure 2.6.

Now, apply the Prim’s algorithm to construct a minimum spanning tree

of the given graph.

Fig. 2.6: A weighted graph

To construct an MST using Prim’s algorithm, the first step is to select a

source vertex, here we have selected vertex S as the source vertex. The

following steps to construct the MST with description are as follows:

Space for learners

notes

4

6

2

5

1

3

2

S

P Q

R T

295 | P a g e

Step for Constructing MST Description of the Step

A vertex S has been chosen to be

the source vertex, i.e. the vertex to

start with constructing an MST.

The vertex S is explored and two

adjacent vertices are found: P and

Q connected by the edges S – P

and S – Q respectively. The weight

of edge S – P is 2 and S – Q is 3.

So, applying the greedy approach,

where edge with minimum weight

is selected, thus, edge S – P will be

considered for adding to the

spanning tree and it does not form

any cycle. So, adjacent vertex P

gets connected to the spanning

tree.

The spanning tree is considered as

a node and all its adjacent vertices

are explored via their connecting

edges. The adjacent vertices are Q

and R. The weight of the

connecting edges S – Q is 3, P – R

is 1 and P – Q is 5. Now, while

comparing, the edge P – R has the

least weight and does not form any

cycle, thus it will be considered

and vertex R is added to the

spanning tree.

Space for learners

notes

S

S

2

P

1

P

R

S

2

296 | P a g e

Step for Constructing MST Description of the Step

The spanning tree is considered as

a node and all its adjacent vertices

are explored via their connecting

edges. The adjacent vertices are

Q and T. The weight of the

connecting edges R – Q is 2, P –

Q is 5, S – Q is 3 and R – T is 6.

Comparing all these edges, the

edge R – Q has the least weight

and does not form any cycle, thus

it will be considered and vertex Q

is added to the spanning tree.

The spanning tree is considered as

a node and all its adjacent vertices

are explored via their connecting

edges. The adjacent vertex is T.

The weight of the connecting

edges Q – T is 4 and R – T is 6.

Comparing all these edges, the

edge Q – T has the least weight

and does not form any cycle, thus

it will be considered and vertex T

is added to the spanning tree. The

algorithm stops here, as we have

got | V | - 1 edges in the

constructed minimum spanning

tree.

You may observe that in Prim’s algorithm too, for any given graph G (V,

E), the number of edges in an MST is | V | - 1, i.e. the number of edges

will be one less than the total number of vertices in the MST of any

given graph. So, from the above illustration, at the end we obtain an

MST from the resulting spanning tree. The cost of the MST obtained in

the above illustration is 1 + 2 + 2 + 4 = 9.

Space for learners

notes

2 1

P

R

S

2

Q

4 2 1

P

R

S

2

Q

T

297 | P a g e

The cost of the MST for a given weighted graph will be same irrespective of

the algorithm applied (Prim’s or Kruskal’s algorithm). Both the algorithms

applies the greedy approach by considering the available edge having least

weight which does not forms any cycle. However, their approach to

construct an MST is different. The Prim’s algorithm constructs an MST by

growing a single tree whereas Kruskal’s algorithm constructs an MST by

growing forest of trees. The basic differences between Kruskal’s and Prim’s

algorithms are already shown in Table 2.2.

Time complexity analysis of Prim’s algorithm

The Prim’s algorithm can be applied using a priority queue data structure.

Given a graph G (V, E), the algorithm at first arbitrarily selects a source

vertex v. It grows the spanning tree to construct an MST by adding vertex

to the tree one by one. Time required to perform the insertion of vertices not

yet included in the MST (or not visited vertices) in the priority queue can be

expressed as O (| V | log | V |). Other insertion and deletion operations in

Prim’s algorithm will take O (| E | log | E |) time. Therefore, the time

complexity of Prim’s algorithm can be expressed as O (| V | log | V | + | E |

log | E |) = O (| E | log | V |).

Thus, the time complexity to construct an MST is same using Prim’s

algorithm and the Kruskal’s algorithm. You may observe that the value of |

E | = O (| V |2) in case of dense graph and | E | = O (| V |) in case of sparse

graph, so we can consider O (log | V |) and O (log |E|) as same. Therefore,

the total time complexity of Prim’s and Kruskal’s algorithm to construct an

MST can be expressed as O (| E | log | V |) or O (| E | log | E |).

STOP TO CONSIDER

Prim’s and Kruskal’s algorithm are the two algorithms to find a

minimum spanning tree for a given graph. Both the can be applied into a

weighted graph which is undirected. However, Prim’s algorithm is

preferred if the graph is graph and Kruskal’s algorithm is preferred

while constructing an MST for a dense graph.

 Space for learners

notes

298 | P a g e

CHECK YOUR PROGRESS

16. Prim’s algorithm is used to find a minimum spanning tree using

________ approach.

17. The time complexity of Prim’s algorithm can be expressed as

______________.

18. Define a priority queue.

19. State whether the following statements are true or false:

a. An MST may not have minimum cost always.

b. In Prim’s algorithm, the edge of the graph which forms a

cycle is discarded.

c. A Prim’s algorithm may produce more than one MST of a

given graph with different costs.

d. Like Kruskal’s, Prim’s algorithm also sorts the edges.

SAQ

1. Can you find an MST in a weighted graph which is directed? Justify

your answer.

2. State the differences between Prim’s and Kruskal’s algorithm.

3. Analyse the time complexity of Prim’s algorithm if Fibonacci heap

is used.

2.7 PRACTICE PROBLEMS

Exercise 1. Construct a minimum spanning tree for the given weighted graph

(Fig, 2.6) using Kruskal’s Algorithm.

Space for learners

notes

299 | P a g e

Fig. 2.6: A weighted graph

Solution:

Sorted list of edges:

Edge Weight

A – C 11

B – E 11

A – E 12

A – B 13

B – D 15

D – E 15

E – G 16

A – D 19

A – F 20

B – F 21

D – G 22

C – D 25

 Step 1

 Step 2

Space for learners

notes

15

22

13

12

19

15

11

20

21

25

11
16

C

A D

E

F
G

B

11

C

A

11

C

A

11
E B

300 | P a g e

Step 3 Step 4

Step 5

Step 6

Cost of the MST is 11 + 11 + 12 + 15 + 16 + 20 = 85

Space for learners

notes

11

C

A

11
E

B

12

11

C

A

11
E B

12

15

D

11

C

A

11
E B

12

15

D

16

G

11

C

A

11
E B

12

15

D

16

G

20

F

301 | P a g e

Exercise 1. Construct a minimum spanning tree for the given weighted graph (Fig,

2.7) using Prim’s Algorithm

Fig. 2.7: A weighted graph

Solution:

Step 1 Step 2

Step 3 Step 4

Space for learners

notes

13

22

13

19

23

12

17

25

12
16

C

A D

E

F
G

H

19 29

B

A 12 A

F

13

B

12 A

F

12
E

13

B

12 A

F

302 | P a g e

Step 5

Step 6

Step 7

Step 8

Space for learners

notes

12
E

13

B

12 A

F 13

D

12
E

13

B

12 A

F 13

D

16

G

12
E

13

B

12 A

F 13

D

16

G

H

19

12
E

13

B

12 A

F 13

D

16

G

H

19

23

C

303 | P a g e

The cost of the minimum spanning tree is 12 + 12 +13 + 13 + 16 + 19 +.23

= 108.

__

2.8 SUMMING UP

 A spanning tree is a subgraph of a graph G(V,E) and minimum spanning

tree is a spanning tree satisfying certain properties.

 A graph can have more than one spanning trees. A connected graph with

n vertices can have nn-2 number of spanning trees. A spanning tree has n-

1 edges.

 The properties of a minimum spanning tree are as follows:

1. A minimum spanning tree must have minimal cost.

2. A minimum spanning tree should not have any cycle.

3. All the vertices of the graph are present in an MST connected by the

edges.

 A minimum spanning tree (MST) is a spanning tree obtained from a

weighted graph such that the sum of the weight W of its edges is the

least.

 The MST problem is an optimization problem in graph whose solutions

uses the greedy approach.

 Kruskal’s algorithm is used to find an MST using greedy approach. For

a given weighted graph G(V, E), the algorithm first sorts the edges in the

increasing order of its weights and then construct an MST by adding the

sorted edges one by one only if it does not form any cycle.

 For a given graph G (V, E), the number of edges in an MST is | V | - 1,

i.e. the number of edges will be one less than the total number of

vertices in the MST of any given graph.

 For a given undirected weighted graph G (V, E), the Prim’s algorithm

arbitrarily takes any vertex v to be considered as a root and starts

constructing the MST.

 Space for learners

notes

304 | P a g e

 The Prim’s algorithm constructs an MST by growing a single

tree whereas Kruskal’s algorithm constructs an MST by growing forest

of trees.

 The cost of the MST for a given weighted graph will be same

irrespective of whether you apply Prim’s or Kruskal’s algorithm. Both

the algorithms applies the greedy approach by considering the available

edge having least weight which does not forms any cycle.

Subgraph: A subgraph G(V’, E’) for a given graph G(V, E) is the subset

of the graph where its edges E’⊆ E and vertices V’⊆ V. One may

obtain a subgraph by deleting vertices and edges of a graph.

Spanning Tree: A spanning tree is a subgraph G(V’, E’) for a given

graph G(V, E) that contains all the vertices of the graph connected by the

edges without forming any cycle.

Minimum Spanning Tree: A minimum spanning tree (MST) is a

spanning tree obtained from a weighted graph such that the sum of the

weight W of its edges minimum. For a graph G(V,E), the minimum

spanning tree T can be represented mathematically as:

�(�) = ��	
 � �(�, �)(�,�)∈� �

Optimization Problem: An optimization problem is one in which the

goal is to find the optimal answer from a set of viable solutions. The

main goal is to minimize or maximize certain values. For example, to

identify the shortest path between two vertices of a graph, etc.

Forest: A forest is collection of trees, in other words it an undirected

acyclic graph whose components are connected trees.

Space for learners

notes

305 | P a g e

2.9 ANSWERS TO CHECK YOUR PROGRESS

1. Otaker Boruvka

2. optimization, greedy

3. hierarchical

4. nn-2

5.

a. True.

b. False

c. True

d. True

e. True

6. An optimization problem is one in which the goal is to find the

optimal answer from a set of viable solutions. The main goal is to

minimize or maximize certain values.

7. A global optimal solution of an optimization problem is a solution

that is most favorable or optimal among all the possible solutions.

8. A local optimal solution of an optimization problem is a solution that

is most favorable or optimal in the vicinity but possibly not favorable

globally.

9. A spanning tree is a subgraph G(V’, E’) for a given graph G(V, E)

that contains all the vertices of the graph connected by the edges

without forming any cycle.

10. The two spanning trees of the given graph are:

Space for learners

notes

306 | P a g e

(a) Spanning Tree 1 (b) Spanning Tree 2

11. greedy

12. O (| E | log | E |)

13. A disjoint-set data structure is a data structure that store

components that have nothing in common, in other words a

collection of non-overlapping sets whose intersection results in an

empty set.

14. A minimum spanning tree (MST) is a spanning tree obtained

from a weighted graph such whose sum of the weight of its edges

is minimum.

15. :

a. True.

b. True

c. False.

16. Greedy

17. O (| E | log | V |)

18. A priority queue is a special type of queue data structure where

every element has a priority associated with it. The element with

high priority is given first preference followed by the element

with lower priority.

19.

a. False.

b. True.

Space for learners

notes
S

P Q

R
T

S

P Q

R
T

307 | P a g e

c. False

d. False

__

2.10 POSSIBLE QUESTIONS

__

Short Answer Type Questions

1. Define a tree.

2. What is a spanning tree?

3. Define minimum spanning tree.

4. What is an MST problem?

5. How do you find the cost of a spanning tree?

6. How many spanning tree can a graph have?

7. How many minimum spanning trees can a graph have?

8. What do you mean optimization problem?

9. Give some examples of optimization problem in real life.

10. Define a forest.

11. Define disjoint-set data structure.

12. What is a priority queue?

13. What is the time complexity of Kruskal’s algorithm?

14. What is the time complexity of Prim’s algorithm?

15. Define local optimality with a suitable example.

16. Define global optimality with a suitable example.

17. What do you mean by feasible solution?

18. What is the characteristic of greedy technique?

19. Define single-source shortest path problem.

Space for learners

notes

308 | P a g e

Long Answer Type Questions

1. Explain the minimum spanning tree along with its properties

with suitable example.

2. Consider the graphs shown in Figure 2.8 (a) (b) and do the

following:

a. Find the MST using Prim’s algorithm.

b. Find the MST using Kruskal’s algorithm.

Fig. 2.8 (a): A weighted graph

Fig. 2.8 (b): A weighted graph

3. Differentiate between Prim’s and Kruskal’s algorithm.

4. Explain Prim’s algorithm to construct a minimum spanning tree.

5. Perform the time complexity analysis of Prim’s algorithm.

6. Explain Prim’s algorithm to construct a minimum spanning tree.

7. Perform the time complexity analysis of Kruskal’s algorithm.

8. Give some instances of real-life problems where it can be

modeled into an MST problem.

9. Explain greedy technique with a suitable example.

Space for learners

notes

6 4

9

3

7

10

5

4 A

B

C

D

E

F

11

7 4

8

5

4

8

1

9 A

B

C

D

E

F

5

10

S

309 | P a g e

10. Draw a complete graph with vertices and find all its spanning trees.

11. Does Kruskal’s algorithm always yield an optimal MST of a given

undirected weighted graph? Explain.

12. Does Prim’s algorithm always yield an optimal MST of a given

undirected weighted graph? Explain.

13. Do greedy algorithms always give an optimal solution? Justify your

answer.

14. Does the Prim’s algorithm can construct an MST of a graph having

negative weights? Explain.

__

2.11 REFERENCES AND SUGGESTED READINGS

__

 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and

Clifford Stein, Introduction to Algorithms, 3rd Edition, MIT Press.

 Sridhar S., Design and Analysis of Algorithms, Oxford University

Press, 2014.

Space for learners

notes

310 | P a g e

UNIT 3 SINGLE SOURCE SHORTEST PATH

PROBLEM

Unit Structure:

3.1 Introduction

3.2 Unit Objectives

3.3 Basic Terms and Their Definitions

3.4 Single Source Shortest Path

3.5 Dijkstra’s Algorithm

3.6 Practice Problems

3.7 Summing Up

3.8 Answers To Check Your Progress

3.9 Questions And Answers

3.10 Suggested Readings

Space for learners

notes

311 | P a g e

3.1 INTRODUCTION

In this unit, you will learn the concept of directed acyclic graph, and

single-source shortest path problem on a weighted graph. You will learn

the concept of Dijkstra’s algorithm and how the single-source shortest

path problem can be solved using the Dijkstra’s algorithm. The time

complexity of the algorithm will be discussed in this unit along with few

demonstrations of the technique. You will also learn whether Breadth-first

search and Depth-first search algorithms can solve the problem of finding

the single-source shortest path on a directed weighted graph.

3.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 Know the directed acyclic graph.

 Understand the fundamental concept of single source shortest path

problem.

 Define basic terms and terminologies associated with single-source

shortest path problem.

 Describe Dijkstra’s algorithm.

 Analyze the time complexities of Dijkstra’s algorithm.

3.3 BASIC TERMS AND THEIR DEFINITIONS

Single source shortest path problem is a problem which is applicable in

real life. For instance, one may always need to find the shortest distance to

reach his destination. Suppose a traveler wants to visit a place in a city. He

has got a road map, now in order to reach the place from where he is now,

he need to plan a road map which will help him to reach his destination by

determining the shortest route or the fastest way to reach place B from

place A. The same problem can be modeled as finding a shortest path from

a source vertex to any other vertex of a graph.

Space for learners

notes

312 | P a g e

To understand it further, let us first look at some of the basic terms and

terminologies associated to single source shortest path problem in the

following subsections.

i) Graph

A graph is a non-linear data structure that consists of finite set of

nodes V and a finite set of edges E that connects the vertices.

Mathematically, a graph can be represented as G (V, E). The nodes are also

called as vertices and edges as arcs.

ii) Directed Weighted Graph

A directed weighted graph as shown in Figure 3.1 is a set of vertices

and a set of weighted directed links between the vertices, i.e. the vertices of

the graph are connected by the edges and where all the edges has weights

associated to it and are directed from one vertex to another.

Fig. 3.1: A sample directed weighted graph

iii). Directed Acyclic Graph (DAG)

A directed graph, which does not consist of any cycle, is known as

directed acyclic graph (DAG). The graph shown in Figure 3.2 is a sample

DAG.

Fig. 3.2: A sample directed acyclic graph

Space for learners

notes

A

B

C

D

E

F

8

9

6

5

5

9

2

A

B C

D E

313 | P a g e

iv). Path

A path can be defined as the sequence of vertices that are followed in

order to reach some destination vertex v from the initial vertex u where, we do

not repeat a vertex and nor we repeat an edge while we traverse the graph.

v). Shortest Path

 A path between any two vertices in a graph such that the sum of

the weights of its constituent edges is minimum.

vi). Single-source Shortest Path

The shortest path between a source vertex of a graph to all other

vertices of the graph.

__

3.4 SINGLE SOURCE SHORTEST PATH
__

Single source shortest path problem state the problem of finding a path from

the source vertex u to a target vertex v of a weighted graph (directed or

undirected) such that the sum of the weights of the edge is minimum over the

path. Formally, we can define it as: For a given weighted graph G (V, E, W),

where V is the set of vertices, E is the set of edges and W is the set of real-

valued weights. We need to find the shortest path from a given source vertex u

∈ V to every vertex v ∈ V where the shortest path is calculated by summing up

the weights associated with edges along the path.

There are some variants of the shortest path problem:

1. Single pair shortest path problem: Given a weighted Graph G (V, E,

W), we need to find the shortest path from a given source vertex u ∈ V to a

target vertex v ∈ V.

2. Single destination shortest path problem: Given a weighted Graph

G (V, E, W), we need to find the shortest path to a given target vertex v ∈ V

from every source vertex u ∈ V.

3. All pairs shortest paths problem: Given a weighted Graph G (V, E,

W), we need to find the shortest paths for every pair of vertices u ∈ V to v ∈ V.

Space for learners

notes

314 | P a g e

The shortest path problem can be solved using the following different

algorithms:

 Breadth-first Search Algorithm

 Dijkstra’s Algorithm

 Bellman-Ford Algorithm and

 Floyd-Warshall Algorithm

In the following section, we will discuss about an algorithm which uses the

greedy approach to solve the problem. The algorithm is known as Dijkstra’s

algorithm. It was first proposed by Edgser Wybe Dijkstra. He was a Dutch

computer Scientist and his contribution is well known in the field of

computer science.

CHECK YOUR PROGRESS

1. A graph is a set of vertices and a set of weighted

directed links between the vertices.

2. A directed graph, which does not consist of any cycle, is known

as .

3. The shortest path between a source vertex of a graph to all other

vertices of the graph is known as ______________.

4. Dijkstra’s algorithm was first proposed by .

5. Define all pairs shortest paths problem.

6. Define single pair shortest path problem.

7. What is a shortest path problem?

8. State whether the following statements are true or false:

a. A shortest path is a path between any two vertices in a graph

such that the sum of the weights of its constituent edges is

minimum.

b. A DAG can consist of a cycle.

c. A graph is a linear data structure.

Space for learners

notes

315 | P a g e

3.5 DIJKSTRA’S ALGORITHM

Dijkstra’s algorithm is a graph search algorithm used to solve the

single source shortest path problem. The algorithm is similar to Prim’s

algorithm however, there are basic differences between Dijkstra’s and

Prim’s algorithm. In Prim’s algorithm, the main objective is to find a

minimum spanning tree where we find a subgraph of a given graph

where the sum of the weights of the edges of the subgraph is minimum.

Whereas, in Dijkstra’s algorithm we find paths from a source vertex to

every other vertex of the graph, where the path length from the source

vertex to any other vertex is minimum. So, you can say that Dijkstra’s

algorithm constructs a shortest path tree and a shortest path tree may not

be necessarily a minimum spanning tree. The cost of a shortest path tree

may be much larger than the cost of an MST.

The Dijkstra’s algorithm also applies greedy approach, as at every step

of the algorithm, it tries finding the shortest path between the source and

the target vertices of a graph. As said, the main goal of the algorithm is

to construct a shortest path tree where shortest paths from a source

vertex of a graph to the remaining vertices are determined. The

algorithm works with both directed and undirected graph, however the

weights associated to the edges have to be non-negative. As Dijkstra’s

algorithm cannot work with graphs (directed and undirected) having

edges of negative weights. To solve the shortest path problem with

graphs (directed and undirected) having negative edge weights, there are

other algorithms namely Bellman-Ford algorithm and Floyd-Warshall

algorithm. Breadth-first search algorithm can also solve the shortest path

problem but it assumes the edge weight to be 1.

Given a graph G(V, E, W), the general steps of Dijkstra’s algorithm to

solve the single source shortest path problem of the graph are as follows:

Step 1: Form a distance table T and allocate infinite distance values to

every vertex from a source vertex s except assigning the distance value

of 0 to s itself.

Step 2: Mark the vertex s as visited and all the remaining vertices as

unvisited.

Space for learners

notes

316 | P a g e

Step 3: Calculate the distance from the current vertex to all its adjacent

vertices which are unvisited. If the calculated distance is found to be

minimum than the previously stored distance than update it in the distance

table T. i.e. follow the following rule to update the distance:

 If (d(u) + c(u, v) < d(v)) Then

 d(v) = d(u) + c(u, v)

Where, u and v are the vertices, d(u) is the distance of vertex u from the

source vertex, d(v) is the is the distance of vertex v from the source vertex

and c(u,v) is the distance between vertex u and v.

Step 4: Compare the updated distances and select the vertex v with least

distance and mark it as visited.

Step 5: Take the vertex v and repeat the steps 3 and 4 until all the vertices

are marked as visited.

Example: Let us try to understand with an example. Consider an undirected

graph shown in Figure 3.3 having four vertices A, B, C and D connected by

the edges bearing positive weights. We need to find the shortest path from a

source vertex to all other vertices of the graph. The illustration of the

Dijkstra’s algorithm is shown below:

 Fig. 3.3: An undirected weighted graph

Iteration 1: Let us take vertex A as source vertex and construct a distance

table by assigning infinite distance values to every vertex from the source

vertex A except assigning the distance value of 0 to A itself. The distance

table and labeling of distance of every vertex from source vertex A in the

graph is shown as follows:

Space for learners

notes

A

10

7

4
5

1

B

D C
3

317 | P a g e

 A B C D

A 0 ∞ ∞ ∞

Iteration 2: Now, calculate the distances of the directly connected

vertices from A which are unvisited. As the calculated distance of the

adjacent vertices B, C and D are found to be lesser than the previously

stored distance i.e. ∞ , we update it in the distance table. The distances

from A to B, A to C and A to D are updated as 7, 5 and 4 respectively.

 A B C D

A 0 ∞ ∞ ∞

 7 5 4

Space for learners

notes

0 ∞

∞ ∞

A

10

7

4
5

1

B

D C
3

0 7

5 4

A

10

7

4
5

1

B

D C
3

318 | P a g e

Iteration 3: Based on the current known distances, vertex D is selected as

the next vertex to be explored as it is found to have least distance from A. It

is marked as visited. After exploring vertex D we find, the path lengths: A –

D – C is 4 + 3 = 7, A – D – B is 4 + 10 = 14. The newly calculated distances

are found to be greater than previously stored distance. So, no updating of

distances is done.

 A B C D

A 0 ∞ ∞ ∞

D 7 5 4

 7 5

Iteration 4: Now the vertex C is selected as the next vertex to be explored

as it is found to be nearer to A. It is marked as visited. After exploring

vertex C we find, the path lengths: A – C – B is 5 + 1 = 6 and D has been

already visited so it is ignored.

The newly calculated distance of vertex B from A following the path A – C

– B is found to be lesser than previously stored distance i.e. 7. So, we update

the distance of vertex B from A as 6.

 A B C D

A 0 ∞ ∞ ∞

D 7 5 4

C 7 5

 6

Iteration 5: Now the vertex B is selected as the next vertex to be explored.

Space for learners

notes

0 6

5 4

A

10

7

4
5

1

B

D C
3

319 | P a g e

It is marked as visited. After exploring vertex B we find, the adjacent

vertices of B are already visited, so all are ignored. So, distances are not

updated.

With this, we observe that the all the vertices are visited and thus, we

have got the shortest paths from the source vertex A to all other vertices

of the graph. This solves the shortest path problem of the graph using

the Dijkstra’s algorithm and the shortest path tree for the given graph is

shown in Figure 3.4.

Fig. 3.4: A shortest path tree of the graph shown in Fig. 3.3

The shortest distances and shortest paths from the source vertex A to

every other vertices of the given graph are shown below:

Source Vertex Destination

Vertex

Shortest

Distance

Shortest Path

A

B 6 A – C – B

C 5 A – C

D 4 A – D

Time Complexity Analysis of Dijkstra’s Algorithm

The Dijkstra’s algorithm can be implemented using an array or linked

list data structure. In that case the time complexity of the algorithm can

be represented as O (| V |2 + | E |) = O(| V |2).

Space for learners

notes

 A B C D

A 0 ∞ ∞ ∞

D 7 5 4

C 7 5

B 6

0

5 4

A

4
5

1

B

D C

6

320 | P a g e

In case of sparse graph, then it becomes efficient to represent the it using

adjacency list and use priority queue or binary heap, in that case the running

time of Dijkstra’s algorithm becomes O ((| V | + | E |) log V = O(| E |logV).

CHECK YOUR PROGRESS

9. Dijkstra’s algorithm is a graph search algorithm used to solve the

______________ problem.

10. Sate at least one difference between Dijkstra’s and Prim’s

algorithms.

11. State whether the following statements are true or false:

a. Dijkstra’s algorithm cannot work with graphs having negative

weight edges.

b. Bellman-Ford algorithm can solve the shortest path problem with

graphs (directed and undirected) having edges of negative

weights.

c. Prim’s and Dijkstra’s algorithm both applies greedy approach.

 Space for

learners notes

STOP TO CONSIDER

The Dijkstra’s algorithm uses a greedy approach, in which it tries to

discover the shortest path between the source and target vertices of a graph

at each step. The algorithm's main purpose is to construct a shortest path

tree in which shortest pathways from a graph's source vertex to the

remaining vertices are determined. The approach can be used with both

directed and undirected graphs, but the edge weights must be non-negative.

321 | P a g e

SAQ

1. Why Dijkstra’s algorithm cannot work on a graph having negative

weight edges? Explain

2. How Dijkstra’s algorithm is different from Breadth-first search

algorithm in solving the single source shortest path problem?

3. Analyse the time complexity of Dijkstra’s algorithm.

__

3.6 PRACTICE PROBLEMS

Exercise 1. Consider the graph shown in Figure 3.5 and construct a shortest path

tree using A as the source vertex using Dijkstra’s algorithm.

Fig. 3.5: An undirected weighted graph

Solution:

 A B C D E F G

A 0 ∞ ∞ ∞ ∞ ∞ ∞

B 5 11 9 ∞ 7 ∞

F 11 9 15 7 ∞

D 11 9 15 ∞

C 10 14 24

E 14 24

G 20

Space for learners

notes

5

B

15

5

9

11

7

10

1

10
6

A D

E

F
G

C

322 | P a g e

Exercise 2. Find the shortest paths from the vertex A to all other vertices of the

graph as shown in Fig. 3.6 using Dijkstra’s algorithm.

Fig. 3.6: A directed weighted graph

Solution:

 A B C D E F

A 0 ∞ ∞ ∞ ∞ ∞

C ∞ 3 10 ∞ ∞

D ∞ 8 ∞ ∞

E ∞ 12 ∞

B 23 ∞

F 31

Space for learners

notes

4 9

10

3 5

11

A D

E

F

8 9

B

C

9

5
5

7

1

6 7

F

9

10

0

14

E

C

A

5

B

20

G

D

323 | P a g e

__

3.7 SUMMING UP

 A directed graph, which does not consist of any cycle, is known

as directed acyclic graph (DAG).

 Single source shortest path problem state the problem of finding

a path from the source vertex u to a target vertex v of a weighted graph

(directed or undirected) such that the sum of the weights of the edge is

minimum over the path.

 Dijkstra’s algorithm is a graph search algorithm used to solve the

single source shortest path problem.

 Dijkstra’s algorithm cannot work with graphs (directed and

undirected) having edges of negative weights.

 To solve the shortest path problem with graphs (directed and

undirected) having negative edge weights, there are other algorithms

namely Bellman-Ford algorithm and Floyd-Warshall algorithm.

Space for learners

notes

0

A

4

3 5

11

8

3

C

8

D

12

E 23 B

31

F

324 | P a g e

Path: A path can be defined as the sequence of vertices that are followed in

order to reach some destination vertex v from the initial vertex u where, we

do not repeat a vertex and nor we repeat an edge while we traverse the

graph.

Shortest Path: A path between any two vertices in a graph such that the

sum of the weights of its constituent edges is minimum.

Single-source Shortest Path: The shortest path between a source vertex of

a graph to all other vertices of the graph.

All pairs shortest paths problem: Given a weighted Graph G (V, E, W),

we need to find the shortest paths for every pair of vertices u ∈ V to v ∈ V.

3.8 ANSWERS TO CHECK YOUR PROGRESS
__

1. directed weighted.

2. directed acyclic graph.

3. single-source shortest path.

4. Edgser Wybe Dijkstra.

5. The problem can be defined as given a weighted Graph G (V, E, W), we

need to find the shortest paths for every pair of vertices u ∈ V to v ∈ V.

6. The problem can be defined as given a weighted Graph G (V, E, W), we

need to find the shortest path from a given source vertex u ∈ V to a

target vertex v ∈ V.

7. The problem to find a path between any two vertices in a graph such that

the sum of the weights of its constituent edges is minimum.

8. a. True.

 b. False

Space for learners

notes

325 | P a g e

12. single source shortest path .

13. Dijkstra’s algorithm finds a shortest path tree of a graph whereas

Prim’s algorithm constructs a minimum spanning tree of a graph.

14.

a. True.

b. True.

c. True.

3.9 POSSIBLE QUESTIONS

Short Answer Type Questions

1. Define a path.

2. What is single source shortest path problem?

3. What is Dijkstra’s algorithm?

4. What data structure is used to implement Dijkstra’s algorithm?

5. What is the time complexity of Dijkstra’s algorithm?

6. In what kind of graph we cannot apply Dijkstra’s algorithm?

7. What is all pairs source shortest path problem?

8. State two applications of Dijkstra’s algorithm.

Long Answer Type Questions

1. Explain the shortest path problem and its variants.

2. Explain the Dijkstra’s algorithm.

3. Differentiate between Dijkstra’s algorithm and Prim’s

Algorithm.

4. “Dijkstra’s algorithm applies the Greedy approach”. Explain the

statement with a suitable example.

5. Perform the time complexity analysis of Dijkstra’s algorithm.

6. Consider the graph shown in Figure 3.7 to construct a shortest

path tree using Dijkstra’s algorithm.

Space for learners

notes

326 | P a g e

Fig. 3.7: A directed weighted graph

7. Find the shortest paths from vertex A to all other vertices of the

graph shown in Figure 3.8 using Dijkstra’s algorithm.

 Fig. 3.8: An undirected weighted graph

8. Explain with an appropriate example, where Dijkstra’s algorithm

fails.

3.10 REFERENCES AND SUGGESTED READINGS

 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and

Clifford Stein, Introduction to Algorithms, 3rd Edition, MIT Press.

 Sridhar S., Design and Analysis of Algorithms, Oxford University

Press, 2014.

Space for learners

notes

10

4

7

4

6

U

R

Q

S

T

5

P

9

2

12

3

5
15

13

12

11

18

A

B

C

D

E

F

G

16

BLOCK IV:

THEORY OF NP COMPLETENESS AND

LOWER BOUND THEORY

UNIT 1: THEORY OF NP COMPLETENESS I

Unit Structure:

1.1 Introduction

1.2 Unit Objectives

1.3 Introduction of Formal Language

1.4 Turing Machine

1.5 Complexity of Algorithm

1.6 Complexity Classes

1.6.1 The Class P and NP

1.7 Time Complexity

1.8 Polynomial Time Reduction and NP-Completeness

1.9 Satisfiability Problem (Sat)

 1.9.1 Cook's Theorem

1.9.2 Other NP-Complete Problems

1.10 Use of NP-Completeness

1.11 Answers to Check Your Progress

 1.12 Possible Questions

 1.13 References and Suggested Readings

328 | P a g e

Space for learners: 1.1 INTRODUCTION

In computer science Theory of Formal Languages has a number of

applications. In early 1950’s Linguists were trying hard to bring

some mathematical way to describe formal languages. In 1956

Noam Chomsky an American linguist, philosopher, cognitive

scientist, historian, social critic, and political activist, who is

Sometimes called "The Father Of Modern Linguistics", gave a

mathematical model of grammar which comes out useful for

computer languages.

1.2 UNIT OBJECTIVES

To ascertain the amount of computational resources required to

solve important computational problems, and to classify problems

according to their difficulty is the main purpose of complexity

theory. The most often discussed resource is computational time.

There are certain problems that cannot be solved without expending

large amounts of resources. It is much more difficult to prove that

any interesting problems are hard to solve then to prove that

inherently difficult problems exist. The mathematical arguments of

intractability rely on the notions of Completeness and reducibility.

Before understanding reducibility and completeness, one must know

the notion of a complexity class. But before going to complexity

first we have to know about Formal Languages.

1.3 FORMAL LANGUAGE

According to Chomsky’s classification of Languages, languages can

be divided into four (4) types. They are namely Unrestricted

Language, Context-sensitive Language, Context-free Language and

Regular Language.

Type 0 : Type 0 grammar is a phase structure grammar without any

restriction. All grammars are Type 0 grammar.

For Type 0 grammar, the production rules are in the format

{(��)(��)(��)} → {String of Ts or NTs or both}

Lc : Left context; Rc : Right context; NT: Non-terminal.

Type 1: Type 1 grammar is called context-sensitive grammar.

329 | P a g e

Space for learners: For Type 1 grammar, all production rules are in the format of

context sensitive if all rules in P are of the form�� → ��,

where A NT (i.e. A is a single NT), α, β (NT Σ)*

(i.e. α and β are strings of NTs and Ts) and γ e (NT Σ)+ (i.e. γ is a

non-empty string of NTs and Ts).

Type 2: Type 2 grammar is called context-free grammar. In the left-

hand side of the production, there will no left or right context.

For Type 2 grammar, all the production rules are in the format

of(��) → �, where |NT| = 1 and � (�� �) ∗, NT is non-

terminal and T is terminal.

Type 3: Type 3 grammar is called regular grammar. Here all the

productions will be in the following forms: � → � or � → ��,

where A, B NT and α T.

The Chomsky classification is called the Chomsky Hierarchy. This

can be represented diagrammatically

From this diagrammatical representation, we can say that all regular

grammars are context-free grammar. All context-free grammars are

context-sensitive grammar. All context-sensitive grammar are

unrestricted grammar.

STOP TO CONSIDER

NTs i.e Non-Terminals are those which can be replaced either by

Non-Terminals or by terminals or combination of both. And denoted

by A, B , C......,Z i.e. English Alphabets in uppercase.

T i.e Terminal is that which cannot be replaced and denoted by a, b,

c,,z and 0,1 i.e e English Alphabets in lowercase and binary

digits.

330 | P a g e

Space for learners:

Fig 1.1: Chomsky’s Classification of Languages

Grammar Languages Machine Format

Type 0 Unrestricted Turing Machine(TM)

Type 1
Context-

sensitive

Linear Bound

Automata (LBA)

Type 2 Context-free
Push Down

Automata(PDA)

Type 3

Regular Finite Automata(FA)

 Fig 1.2 : Languages and Machine Format of different Grammar

Using Type 3 Grammar, Regular language can be formed which are

precisely accepted by Finite Automata. Again from Type 2

Grammar, Context Free languages can be formed which are

accepted by Push down Automata(PDA) and from Type 1 Grammar,

Context-sensitive languages can be formed which are accepted by

Linear Bound Automata(LBA) and lastly from Type 0 Grammar,

unrestricted languages can be formed which are accepted by Turing

Machine(TM). From the figure 1.1 we can say that all languages are

of unrestricted type.

Type 0 or Unrestricted Language

Type 1 or Context-sensitive

Type 2 or Context-free

Type 3 or

Regular

331 | P a g e

Space for learners:

1.4 TURING MACHINE

In early stage of 1930’s mathematicians were trying to give different

effective methods of computation. Different models using the

concept of Turing machines, combinatory logic ,JL-calculus, post-

systems and p-recursive functions, were given by a mathematician

,Alan Turing in 1936, , S.C. Kleene in 1935, Alanzo Church in

1933, Schonfinkel

in 1965. From all these different concepts, Turing’s Concept is

accepted as model of computation or algorithm. According to

Church-Turing’s thesis any algorithm that a human or computer can

carried out can be solved by a Turing Machine. Now it has been

universally accepted that an ideal theoretical model of computer can

be provided by Turing machine. Turing machine accepted type 0 or

unrestricted languages. Turing machine can be used to determine

decidability of certain languages, measuring time and space

complexity of problems.

1.5 COMPLEXITY OF ALGORITHM

How many steps are required by the algorithm to solve a given

problem is algorithm complexity. The function of input data size is

evaluated the order of count of operations executed by an algorithm.

The order of count of operation is always considered to assess the

complexity instead of counting the exact steps. O(f) notation

represents the complexity of an algorithm and is termed as an

Asymptotic notation or "Big O" notation. The order in which

resources such as CPU time, memory, etc. are consumed by the

algorithm ids determined by the complexity of the asymptotic

STOP TO CONSIDER

Is there any difference between Formal language and the

languages we know or we speak?

The answer is NO and YES. Formal Languages works as the

languages we used to communicate. Our languages have certain

sets of rules which are called grammar, and it is same in the case

of Formal language. Formal Languages are used in Computer,

332 | P a g e

Space for learners: computation O(f). Constant, logarithmic, linear, n ∗ log(n),

quadratic, cubic, exponential, etc etc are the form of complexity.

1.6 COMPLEXITY CLASSES

A complexity class is defined by 3 ways. They are: (1) model of

computation, (2) resource (or collection of resources), and (3)

function known as the complexity bound for each resource. The

complexity classes can be defined by using models into two main

categories: (a) machine based models, and (b) circuit-based models.

Random-access machines (RAMs) and Turing machines (TMs) are

the two principal families of machine models. The complexity

problems that we are trying to understand are because of the model

of nondeterministic Turing machines. Nondeterministic machines do

model real computational problems instead of model physical

computation devices.

A problem is decidable; it means that the problem is

computationally solvable in principle. It may not be solvable in

practical, means it may require enormous amount of memory and

computation time. In this chapter we discuss the computational

complexity of a problem; The proofs of decidability/undecidability

are quite rigorous, as they depend solely on the definition of a

rigorous mathematical techniques and Turing machine. The proof

and the discussion in complexity theory based on the assumption

that P ≠ NP. The computer scientists and mathematicians strongly

believe that P ≠NP but this is still debatable. The class of problems

that

Can be solved by a deterministic algorithm in polynomial time is

represented by P

(i.e. by a Turing machine) and for the class of problems that can be

solved by a nondeterministic algorithm in polynomial time is

represented by NP (that is, by a nondeterministic TM). Here P

means for polynomial and NP for nondeterministic polynomial.

Another important class is the class of NP-complete problems which

is a subclass of NP.

1.6.1 The Class P and NP

333 | P a g e

Space for learners: Time Complexity: A Turing machine M is said to be of time

complexity T(n) if the following holds: Given an input ‘w’ of length

n, M halts after making at most T(n) moves.

Class P: A language L is in class P if there exists some polynomial

T(n) such that L = T(M) for some deterministic TM M of time

complexity T(n).

Class NP: A language L is in class NP if there is a nondeterministic

TM M and a polynomial time complexity T(n) such that L = T(M)

and M executes at most t(n) moves for every input w of length n.

1.7 NECESSITY OF FOCUSING ON THESE

CLASSES

Many familiar problems such as finding shortest paths in networks,

parsing context-free grammars, sorting, matrix multiplication, and

linear programming; that can be solved efficiently are in class P. In

fact, P contains all problems that can be solved by programs of

reasonable worst-case time complexity. There are problems whose

best algorithms have time complexity n10^500 are also in class P. The

four important reasons for which they could be included these

problems as it seems unreasonable to say that such problems are

computationally feasible.

1. The main goal of proving lower bounds is that, it is sensible

to have an overly generous notion of the class of feasible

problems. If we show that a problem is not in P, then we

have shown in a very strong way that solution via

deterministic algorithms is impractical.

2. “If functions f and g are both easy to compute, then the

composition of f and g should also be easy to compute”, the

theory of complexity-bounded reducibility is predicated on

this simple notion. If we want to allow algorithms of time

complexity n2 to be considered feasible, then we are

immediately led to regard running times n4, n8 ...as also

being feasible. In other words, the choice is either to lay

down an arbitrary and artificial limit on feasibility (and to

forgo the desired property that the composition of easy

334 | P a g e

Space for learners: functions be easy), or to go with the natural and overly-

generous notion given by P.

3. The intellectual boundary between feasible and infeasible

problems is served well by Polynomial time. Logically,

problems of time complexity n10^500 do not arise, while

problems of time complexity O(n4), and those proved or

believed to be Ω(2n), occur often. Moreover, once a

polynomial-time algorithm for a problem is found, and a

base of mathematical and algorithmic techniques can be

used to improve the algorithm. The best known example is

Linear programming. The breakthrough O(n8) time

algorithm of [Khachiyan, 1979], for n x n instances, was

impractical, but it helped in an innovation by [Karmarkar,

1984] that produced an algorithm whose running time of

about O(n3) on all cases competes well commercially with

the simplex method. It runs in O(n3) time in most of the

cases but in some cases it takes 2n time. Of course, if it

should turn out that the Hamiltonian circuit problem (or

some other NP-complete problem) has complexity n10^500,

then the theory would need to be fixed but as of now it

seems unlikely.

4. We would like our fundamental notions to be independent

of arbitrary choices. It is arbitrary and historically accidental

in the prevalent choice of the Turing machine as the

standard model of computation. This choice does not affect

the class P itself, however, because the natural notions of

polynomial time for essentially all models of sequential

computation that have been invented yield the same class.

By analogy to the famous Church-Turing thesis, which states that

the definition of a (partial) recursive function captures the intuitive

notion of a computable process, several authorities have proposed

the following:-

Polynomial-Time Church-Turing Thesis : The class P captures

the true notion of those problems that are computable in polynomial

time by sequential machines, and is the same for any physically

relevant model and minimally reasonable time measure of sequential

computation that will ever be devised. This thesis extends also to

335 | P a g e

Space for learners: parallel models if “time” is replaced by the technologically

important notion of parallel work .Another way in which the concept

of P is robust is that P is characterized by many concepts from logic

and mathematics that do not mention machines or time.

The class NP can also be defined by means other than

nondeterministic Turing machines. NP equals the class of problems

whose solutions can be verified quickly, by deterministic machines

in polynomial time. Equivalently, NP comprises those languages

whose membership proofs can be checked quickly.

For example, one language in NP is the set of composite numbers,

written in binary.

 Proof

 A number z is composite can consist of two factors z1 ≥2 and z2 ≥

2 whose product z1z2 equals z. This proof is quick to check if z1

and z2 are given, or guessed. Correspondingly, one can design a

nondeterministic Turing machine N that on input z branches to write

down “guesses” for z1 and z2, and then deterministically multiplies

them to test whether z1z2 = z. Then L(N), the language accepted by

N, equals the set of composite numbers, since there exists an

accepting computation path if and only if z really is composite. Note

that N does not really solve the problem; it just checks the candidate

solution proposed by each branch of the computation.

Example: Construct the time complexity T(n) for the Turing

machine that accepts {0n1n| n≥1}

Solution:

 The given TM step (i) consists of going through the input string

(0n1n) forward and backward and replacing the leftmost 0 by x and

the leftmost 1 by y. SO we require at most 2n moves to match a 0

with a 1. Step (ii) is repetition of step (i) n times. Hence the number

of moves for accepting 0n1n is at most (2n)(n). For strings not of the

form 0n1n, TM halts with less than 2n2 steps. Hence T(M) = O(n2).

We can also define the complexity of algorithms. In the case

ofalgorithms. T(n) denotes the running time for solving a problem

with an input of size n. using this algorithm.

336 | P a g e

Space for learners:

Example: Find the running time for the Euclidean algorithm for

evaluating gcd(a,b) where a and b are positive integers expressed in

binary representation.

Solution

The Euclidean algorithm has the following steps:

1. The input is (a,b)

2. Repeat until b = 0

3. Assign a a mod b

4. Exchange a and b

5. Output a.

Step 3 replaces a by a mod b. If a/2 ≥ b, then a mod b< b ≤a/2. If

a/2 < b, then a < 2b. Write a = b + r for some r < b. Then a mod b =

r < b < a/2. Hence a mod b ≤ a/2. So a is reduced by at least half in

size anther application of step 3. Hence one iteration of step 3 and

step 4 reduces a and b by at least half in size. So the maximum

number of times the steps 3 and 4 reduces a and b by at least half in

size. So the maximum number of times the steps 3 and 4 are

executed is min {[log2a], [log2b]}. If n denotes

the maximum of the number of digits of a and b. that is

max{{[log2a], [log2b] } then the number of iterations of steps 3 and

4 is O(n). We have to perform step 2 at most min

{{[log2a], [log2b] } times or n times. Hence �(�) = ��(�) =
 �(�)

**Note: The Euclidean algorithm is a polynomial algorithm.

We know that for a deterministic TM M1 simulating a non

deterministic TM M exists .If T(n) is the complexity of M, then the

complexity of the equivalent deterministic TM M1 is 20(T(n)). This

can be justified as follows.

The processing of an input string w of length n by M is equivalent to

a ‘tree’ of computations by M1. Let k be the maximum of the

number of choices forced by the nondeterministic transition

function. (It is max| δ(q, x)| , the maximum taken over all states q

and all tape symbol X). Every branch of the computation tree has a

length T(n) or less. Hence the total number of leaves is at most

kT(n). Hence the complexity of M1 is at most 20(T(n)) .

It is not known whether the complexity of M1 is less than 20(T(n)).

Once again an answer to this question will prove or disprove P ≠

337 | P a g e

Space for learners: NP. But there do algorithms exist where T(n) lies between a

polynomial and an exponential function.

1.8 POLYNOMIAL TIME REDUCTION AND NP-

COMPLETENESS

If P1 and P2 are two problems and P2 ϵ P, then we can decide

whether

P1 ϵ P by relating the two problems P1 and P2 . If there is an

algorithm for obtaining an instance of P2 given any instance of P1,

then we can decide about

the problem P1 . Intuitively if this algorithm is a polynomial one,

then the problem P1 can be decided in polynomial time.

Theorem 1.1 : If there is a polynomial time reduction from P1 to

P2 and if P2 is in P then P1 is in P.

Proof :

Let m denote the size of the input of P1 . As there is a polynomial

time reduction of P1 to P2 the corresponding instance of P2 can be

got in polynomial-time. Let it be O(nk), So the size of the resulting

input of P2 is at most C nk for some constant c. As P2 is in P, the

time taken for deciding the membership in P2 is O(mj), n being the

size of the input of P2. So the total

time taken for deciding the membership of m-size input of P1 is the

sum of the time taken for conversion into an instance of P2, and the

time for decision

of the corresponding input in P2. This is O[nk + (nk)j] which is the

same as O(nfj). So P1 is in P.

CHECK YOUR PROGRESS

a) Type 1 grammar is called ______________.

b) According to Church-Turing’s thesis any algorithm that a

human or computer can be carried out can be solved by a

c) _____________ and ____________ are the two principal

families of machine models.

338 | P a g e

Space for learners: Definition 1.1: Let L be a language or problem in NP. Then L is

NPcomplete

if

1. L is in NP

2. For every language L' in NP there exists a polynomial-time

reduction of L' to L.

Theorem 1.2 : If P1 is NP-complete, and there is a polynomial-time

reduction of P1 to P2, then P2 is NP-complete.

Proof:

 If L is any language in NP, we show that there is a polynomial-time

reduction of L to P2. As P1 is NP-complete, there is a polynomial-

time reduction of L to P1. So the time taken for converting an n-size

input string w in L to a string x in P1 is at most p1(n) for some

polynomial p1 . As there is a polynomial-time reduction of P1 to P2 ,

there exists a polynomial P2 such that the input x to P1 is transferred

into input y to P2 in at most P2(n) time. So the time taken for

transforming w to y is at most p1(�) + p2 "p1(�)#. As p1(�) +
 p2 (p1(�))is a polynomial, we get a polynomial-time reduction of

L to P2. Hence P2 is NP-complete.

Theorem1.3 : If some NP-complete problem is in P, then P =NP.

Proof :

Let P be an NP-complete problem and PϵP. Let L be any NP-

complete problem. By definition, there is a polynomial-time

reduction of L to P. As P is in P, L is also in P by Theorem 1. Hence

NP = P.

1.9 SATISFIABILITY PROBLEM (SAT) is NP-

COMPLETE

Another important language in NP is the set of satisfiable Boolean

formulas, called SAT.

339 | P a g e

Space for learners:

Boolean formula Φ is satisfiable if there exists a way of assigning

true or false to each variable such that under this truth assignment,

the value of Φ is true. For example, the formula x ᴧ (x& v y) is

satisfiable, but x ᴧ y& ᴧ (x& v y)is not satisfiable. A nondeterministic

Turing machine N, after checking the syntax of Φ and counting the

number n of variables, can non deterministically write down an n-bit

0-1 string a on its tape, and then deterministically (and easily)

evaluate Φ for the truth assignment denoted by a. The computation

path corresponding to each individual a accepts if and only if Φ (a)

= true, and so N itself accepts Φ if and only if Φ is satisfiable; i.e.

L(N) = SAT.

Again, this checking of given assignments differs significantly from

trying to find an accepting assignment.

The above characterization of NP as the set of problems with easily

verified solutions is formalized as follows:

A ϵ NP if and only if there exist a language A׳ϵ P and a polynomial

p such that for every x, x ϵ A if and only if there exists a y such

that |y| ≤ p(|x|) and(x, y) ϵ A׳. Here, whenever x ϵ A, y is

interpreted as a positive solution to the problem represented by x, or

equivalently, as a proof that x ϵ A. NP represents all sets of

theorems with proofs that are short (i.e., of polynomial length), and

P represents the statements that can prove or disproved quickly from

scratch.

The theory of NP-completeness, together with the many known NP-

complete problems, is perhaps the best justification for interest in

the classes P and NP. All of the other canonical complexity classes

listed above have natural and important problems that are complete

for them. Further motivation for studying L, NL, and PSPACE,

comes from their relationships to P and NP. L and NL are the largest

space-bounded classes known to be contained in P, and PSPACE is

the smallest space-bounded class known to contain NP. (It is worth

mentioning here that NP does not stand for “non-polynomial time”;

the class P is a subclass of NP.)

The satisfiability problem for boolean expressions (whether a

boolean expression is satisfiable) is NP-complete and it was the first

problem to be proved NP-complete.

340 | P a g e

Space for learners: 1.9.1 Cook's Theorem

Theorem 1.4 (Cook's theorem) SAT is NP-complete.

Proof:

SAT ϵ NT

If the encoded expression E is of length n, then the number of

variables is [n/2]. Hence, for guessing a truth assignment t we can

use multi tape TM for E. The time taken by a multi tape NTM M is

O(n). Then M evaluates the value of E for a truth assignment t. This

is done in O(n2) time. An equivalent single-tape TM takes

0(�4) time. Once an accepting truth assignment is found, M accepts

E and M and halts. Thus we have found a polynomial time NTM for

SAT. Hence SAT ϵ NP.

1.9.2 Other NP-Complete Problems

It is difficult to prove the NP-completeness of any problem. But

after getting one NP-complete problem such as SAT P’ by obtaining

a polynomial reduction of SAT to P' we can prove the NP-

completeness of the problem. The polynomial reduction of SAT to

P' is relatively easy. Here we will have a list of NP-complete

problems without proving their NP-completeness. Many of the NP-

complete problems are of practical interest.

1. CSAT- Given a Boolean expression in CNF (conjunctive normal

form *), is it satisfiable?

We can prove that CSAT is NP-complete by proving that CSAT is

in NP and getting a polynomial reduction from SAT to CSAT

* A formula is in conjunctive normal form(CNF) if it is a product of

elementary sums.

 If a is in disjunctive normal form, then ¬ a is in conjunctive

normal form. (This can be seen by applying the DeMorgan's laws.)

So to obtain the conjunctive normal form of a, we construct the

disjunctive normal form of ¬ a and use negation.

341 | P a g e

Space for learners:

2. Hamiltonian circuit problem - Does G have a Hamiltonian circuit

(i.e.a circuit passing through each edge of G exactly once)?

3. Travelling salesman problem (TSP)-Given n cities, the distance

between them and a number D, does there exist a tour programme

for a salesman to visit all the cities exactly once so that the distance

travelled is at most D?

4. Vertex cover problem-Given a graph G and a natural number k,

does there exist a vertex cover for G with k vertices? (A subsets C of

vertices of G is a vertex cover for G if each edge of G has an odd

vertex in C.)

5. Knapsack problem-Given a set � = {a1, a2, a3, , an} of

nonnegative integers. and an integer K, does there exist a subset B of

A such that ∑ bj78ϵ9 =K?

This list of NP-complete problems can be expanded by having a

polynomial reduction of known NP-complete problems to the

problems which are in NP and which are suspected to be NP-

complete.

1.10 USE OF NP-COMPLETENESS

NP-complete prevent us from wasting our time and energy over

finding polynomial or easy algorithms for that problem. Also we

may not need the full generality of an NP-complete problem.

Particular cases may be useful and they may admit polynomial

algorithms. Also there may exist polynomial algorithms for getting

an approximate optimal solution to a given NP-complete problem.

For example, the travelling salesman problem satisfying the

triangular inequality for distances between cities (i.e.:;< ≤ :;= +
 :=; for all i, <, =) has approximate polynomial algorithm such that

the ratio of the error to the optimal values of total distance travelled

is less than or equal to 1/2.

342 | P a g e

Space for learners: 1.11 ANSWERS TO CHECK YOUR PROGRESS

a) Context-sensitive grammer

b) Turing Machine

c) Random Access Memory, Turing Machine

1.12 POSSIBLE QUESTIONS

1) Define Language and grammar.

2) Describe Chomsky Hierarchy with examples.

3) The set of all languages whose complements are in NP is

called CO-NP. Prove that NP = CO-NP if and only if there

is some NP-complete problem whose complement is in NP.

4) Is A(B, C, �, d) = (B v C v �) ᴧ(B v C v :) satisfiable?

1.13 REFERENCES AND SUGGESTED READINGS

1. Atallah, M. J., & Blanton, M. (Eds.). (2009). Algorithms and

theory of computation handbook, volume 2: special topics and

techniques. CRC press.

2. Allender, E., Loui, M. C., & Regan, K. W. (2014). Complexity

Theory.

3. Mishra, K. L. P., & Chandrasekaran, N. (2006). Theory of

Computer Science: Automata, Languages and Computation. PHI

Learning Pvt. Ltd..

4. Yates, D. F., Templeman, A. B., & Boffey, T. B. (1984). The

computational complexity of the problem of determining least

capital cost designs for water supply networks. Engineering

Optimization, 7(2), 143-155.

5. Nothen, E., & de Fátima Mastroianni, M. Data structures, from

theory to bits: Using theory of formal languages to analyze

structured data. In IEEE CACIDI 2016-IEEE Conference on

Computer Sciences (pp. 1-6). IEEE.

UNIT 2: THEORY OF NP COMPLETENESS

II

Unit Structure:

2.1 Introduction

2.2 Reducibility Relations

2.3 NP-Complete Problems and Completeness Proofs

2.4 NP-Completeness by Combinatorial Transformation

2.5 Significance of NP-Completeness

2.6 Strong NP-completeness for numerical problems

2.7 Coping with NP-hardness

2.8 Beyond NP-Hardness

2.9 Answers to Check Your Progress

2.10 Possible Questions

2.11 References and Suggested Readings

2.1 INTRODUCTION

Whether the most useful tool that is delivered by complexity theory

is the notion of reducibility or not is a little doubtful. Many

computational problems such as Travelling Salesman Problem, their

deterministic time or space complexity are still not briefly known.

Here we cannot say whether class P and NP are distinct till now. But

still it’s useful for new problem whose complexity is needed to

calculate, say X and can be say that the complexity of X and

Travelling Salesman are same by showing some efficient ways of

reducing each problem o the other. In the cases where the exact

complexity cannot be pinpoint, there showing problems equivalent

in such way can solve the problem. According to reducibility

344 | P a g e

Space for learners: relation the number of real world computational problem which are

similar must be of a large number but surprisingly the number is

very less. Therefore complexity of any problem can be classified as

it must be equivalent to any of the sort listed representative problem,

which was originally not expected. The complexity classes of these

representative problems were discussed in the previous chapter

using Turing machines, a small set of abstract machine concepts.

With some time defining and space bounding simple functions, the

complexity of major computational problems are possible to

characterise though most problems have no similarity with any

questions of Turing machines. This technique is way more

successful than anyone can expect. Because of this we are forced to

believe that, the problems being placed under one class is not an

accident and all the classes are distinct in nature and the

classification is real. Nondeterministic Turing machines, has ability

to soar through huge search spaces, and it is appear to be way more

powerful than mundane deterministic machines, and this strengthen

our belief. Until P vs. NP and other long-standing questions of

complexity theories are completely resolved, to understand the

complexity of real-world problems the best way will be reducibility

of classification.

2.2 REDUCIBILITY RELATIONS

In mathematics, the simplest way to solve a new problem, the

problem must reduce to a problem which has been solved

previously. To interpret the solution of a new problem, the problem

must express in terms of a prior problem. This type of reduction is

called many-one reducibility.

Using the subroutine of the prior problem the new problem can be

solved. For example, we can solve a optimisation problem that has a

feasible solution and it maximises the value of an objective function

f by repeatedly calling a subroutine that solves the corresponding

decision problem of whether there exists a feasible solution y whose

value f(y) satisfies f(y) ≥ k. This reduction is called Turing

reducibility,

345 | P a g e

Space for learners: Let L1 and L2 be languages. L1 is many-one reducible to L2,

andL1 ≤ L2, if there exists a total recursive function f such that for

all y, where y ϵ L1 if and only iff(y) ϵ L2. The function f is called

the transformation function. L1 is Turing reducible to L2,

writtenL1 ≤ T L2, if L1 can be decided by a deterministic oracle

Turing machine M using L2 as its oracle, i.e., L1 = L (MA2) (The

oracle for L2 models a hypothetical efficient subroutine for L2).

In above case if M or f consumes too much space or time then the

computed reduction will not helpful. The study of complexity

classes which are defined by bounds on time and space resources,

resource-bound reducibility must be consider. Let L1 and L2 be

languages.

 L1 is Karp reducible to L2 and written as L1 ≤
p
m

L2, if L1 is

many-one reducible to L2 via a transformation function

which is computable deterministically in polynomial time.

 L1 is Cook reducible to L2, and written as L1≤
 �
�

 L2, if L1

is Turing reducible to L2 via a deterministic oracle Turing

machine of polynomial time complexity.

The term “polynomial-time reducibility" usually refers to Karp

reducibility. If L1 ≤
p
m

L2 and L2≤
p
m

L1, then we can say that L1 and

L2 are equivalent under Karp reducibility. Similarly the Equivalence

under Cook reducibility is defined.

To find the relationships between languages of high complexity,

Karp and Cook reductions are useful but in case of distinguishing

between problems in P Karp and Cook reductions are not at all

useful as all the problems which are in P, are equivalent under Karp

(and hence Cook) reductions.

The preserve polynomial-time feasibility is the key property of Cook

and Karp reductions. Suppose L1 ≤
p
m

L2 via a transformation g. If

M2 decides L2, and Mg computes g, then to decide whether an input

word y is in L1, we may use Mg to compute g(y), and then run M2

on input g(y). If the time complexities of M2 and Mg are bounded by

polynomials r2 and rg , respectively, then on inputs y of length n

346 | P a g e

Space for learners: =|�|, the time taken by this method of deciding L1 is at most

rg(n)+r2(rg(n)), which is also a polynomial in n. It can be summaries

as, if L2 is feasible, and there is an efficient reduction from L1 to

L2, then L1 is also feasible. Even though this is just a simple

observation, but this fact is significant enough to state as a theorem.

Here we need the concept of “closure."

A class of languages A is closed under a reducibility ≤ r if for all

languages L1 and L2, Whenever L1 ≤ r L2 and L2 ϵ A, necessarily

L1 ϵ A.

Theorem 2.1 P is closed under both Cook and Karp reducibility.

This is an instance of an idea that motivated our identification of P

with the class of “feasible” problems, that the composition of two

feasible functions should be feasible.

Theorem 2.2 Karp reducibility and Cook reducibility are transitive,

that is :

1. If L1 ≤
p
m

L2 and L2 ≤
p
m

L3, then L1 ≤
p
m

L3.

2. If L1≤
 �
�

 L2 and L2≤
 �
�

 L3, then L1≤
 �
�

 L3.

3 Complete Languages and Cook's Theorem

Let A be a class of languages that represent computational problems.

A language L0 is C-hard under a reducibility ≤r if for all L in A, L ≤r

L0. A language L0 is C-complete under ≤r if L0 is C-hard, and L0 ϵ

A. Informally, if L0 is C-hard, then L0 represents a problem that is at

least as difficult to solve as any problem in A. If L0 is C-complete,

then in a sense, L0 is one of the most difficult problems in A.

Completeness can be viewed in other ways. Completeness provides

the tight lower bounds on complexity of problems. For complexity

class A, if a language L is complete, then there will be a lower

bound on its complexity. L is as hard as the most difficult problem

in A, assuming that the complexity of the reduction itself is small

enough. As L is in A, the lower bound is tight i.e, the upper bound

matches the lower bound.

347 | P a g e

Space for learners: In the case A = NP, the reducibility ≤r is usually taken to be Karp

reducibility unless stated otherwise .Thus we can say:

 A language L0 is NP-hard if L0 is NP-hard under Karp

reducibility.

 A0 is NP-complete if A0 is NP-complete under Karp

reducibility.

 However, many sources take the term “NP-hard” to refer the Cook

reducibility.

Some implications of the statement “L0 is NP-complete," and also

some things this statement doesn't mean.

If there exists a deterministic Turing machine that decides L0 in

polynomial time, i.e if L0 ϵ P, then as P is closed under Karp

reducibility, and it would follow that NP ⊆ P, therefore P = NP. In

real, the question that whether P is the same as NP reduced to the

question whether any particular NP-complete language is in P or

not. Or in other word we can say that, if any one of all NP-complete

languages which are fall together is in P, then all the remaining NP-

complete languages are in P and similarly if one language is not in P

then others are also not in P. Another implication, that follows by a

almost similar closure argument applied to co-NP, is that if L0 ϵ co-

NP then NP = co-NP. But it is also believed that it’s unlikely to be

NP=co-NP. A theorem given by Lander [Ladner, 1975b] shows that

N≠NP if and only if there exist a language L0in NP-P such that L0 is

not NP-complete. Therefore, if P ≠ NP, then L0 is a contradiction to

the “definition”.

Another misconception that arises from the statement “If L0 is NP

complete, then L0 is one of the most difficult problems in NP" due

to the misinterpretation of the statement. This interpretation is true

up to one level. The NP-complete language L0 is a kind of problem

where it is not in P but is in NP.

348 | P a g e

Space for learners: 2.3 NP-COMPLETE PROBLEMS AND

COMPLETENESS PROOFS

To solve a computational problem where we do not know how to

solve it but want to know how hard it is, the following steps will let

us know the answer and may help to know the problem that are well

brought-up even if the problem is NP-hard for general cases. The

steps are:

1. State the problem in general mathematical terms, and formalize

the statement.

2. Verify whether the problem belongs to NP.

3. If yes, then try to find it in a compendium of known NP-complete

problems.

4. If no, then try to construct a reduction from a related problem that

is known to be NP-complete or NP-hard.

5. Try to identify special cases of your problem that are (i) hard, (ii)

easy, and/or (iii) the ones you need.

6. Even if your cases are NP-hard, they may still be amenable to

direct attack by sophisticated methods on high-powered hardware.

These steps are combined with a traditional “theorem-proof"

presentation and several long examples, but the same sequences are

to be maintained

Step 1: Give a formal statement of the problem.

It must State without using any terms that are specific to one

particular discipline. It is advisable to use common terms from

mathematics and data objects in computer science, e.g. graphs, trees,

matrices, vectors, alphabets, strings, logical formulas, mathematical

equations. For example, a problem in evolutionary biology which

will state by a Phylogenist would state in terms of “species" and

“characters" and “cladograms" can be stated in terms of trees and

strings, using an alphabet that represents the taxonomic characters.

Standard notions of size, depth, and distance in trees can express the

objectives of the problem.

If the problem involves computing a function that produces a lot of

output, look for associated yes/no decision problems, because

349 | P a g e

Space for learners: decision problems have been easier to characterize and classify. For

example, if we need to compute matrices of a certain kind, we have

to look for whether the essence of the problem can be captured by

yes/no questions about the matrices or not. Many optimization

problems who looks for a solution of a certain minimum cost or

maximum value can be turned into decision problems by including a

target cost/value “x" as an input parameter, and phrasing the

question of whether a there exists a solution of cost less than (or

value greater than) the target x.

By ignoring or removing some particular elements from the

problem, the problem can be present in over simplified form. It can

help in verifying the category which is closest to the problem. In the

process, we may learn some useful information about the problem.

Step 2.

When we have an adequate formalization, then first we must ask

ourselves whether our decision problem belongs to NP? This is true

if and only if candidate solutions that would bring a “yes" answer

can be tested in polynomial time. If it answer belongs to NP, then

that's good. If not, we may proceed to determine if it is NP-hard.

The problem may be complete for a class such as PSPACE that

contains NP.

Step 3.

 Check whether our problem is already listed in a compendium of

(NP-) complete problems. The book [Garey and Johnson, 1988] lists

hundreds of NP-complete problems arranged according to category.

A small example from Garey and Johnson, 1988:

VERTEX COVER

Instance: A graph G1 and an integer n.

Question: Does G1 have a set Z of n vertices such that every edge in

G1 is incident on a vertex in Z?

CLIQUE

Instance: A graph G1 and an integer n.

Question: Does G1 have a set N of n vertices such that every two

vertices in N are adjacent in G1?

350 | P a g e

Space for learners: HAMILTONIAN CIRCUIT

Instance: A graph G1.

Question: Does G1 have a circuit that includes every vertex exactly

once?

3-DIMENSIONAL MATCHING

Instance: Sets A, B, C with |A| = |B| = |C| = p and a subset � ⊆

� × � × �

Question: Is there a subset � ′ ⊆ � of size q such that no two triples

in � ′ agree in any coordinate?

PARTITION

Instance: A set W of positive integers.

Question: Is there a subset � ′ ⊆ � such that the sum of the

elements of � ′equals the sum of the elements of� − � ′?

INDEPENDENT SET

Instance: A graph G1 and an integer n.

Question: Does G1 have a set A of n vertices such that no two

vertices in Aare adjacent in G1?

GRAPH COLOURABILITY

Instance: A graph G1 and an integer n.

Question: Is there an assignment of colours to the vertices of G1 so

that no two adjacent vertices receive the same colour, and at most n

colours are used overall?

TRAVELLING SALESPERSON (TSP)

Instance: A set of n “cities" C1,C2, C3,.......Cm, with a distance d(j,k)

between every pair of cities Cj and Ck , and an integer K.

Question: Is there a tour of the cities whose total length is at most K,

i.e., a permutation c1,c2,.....,cn of {12,.....,n} such that d(c1,c2) ++

d(cn-1, cn) + d(cn,c1) ≤ K?

KNAPSACK

Instance: A set F = {f1,f2,......,fn} of objects, each with an integer

size size(fj) and an integer profit profit(uj), a target size t0, and a

target profit q0.

Question: Is there a subset �′ ⊆ � whose total cost and total profit

satisfy

351 | P a g e

Space for learners: ∑ !"# ($%&'∈)′) ≤t0 and ∑ *+,$!- ($%&'∈)′) ≥q0

The languages that are in these problems are seen to belong to NP.

For example, to show that TSP is in NP, one can build a

nondeterministic Turing machine that simply guesses a tour and

checks that the tour's total length is at most K.

Some comments on the last two problems are relevant to steps 1 and

2 above. Travelling Salesperson provides a single abstract form for

many concrete problems about sequencing a series of test examples

so as to minimize the variation between successive items. The

Knapsack problem models the filling of a knapsack with items of

various sizes, with the goal of maximizing the total value (profit) of

the items. Many scheduling problems for multiprocessor computers

can be expressed in the form of Knapsack instances, where the

“size" of an item represents the length of time a job takes to run, and

the size of the knapsack represents an available block of machine

time.

If our problem is on the list of NP-complete problems then we can

skip Step 4, and the compendium may give us further information

for Steps 5 and 6. We may still wish to pursue Step 4 if we need

more study of particular transformations to and from our problem.

If our problem is not on the list, it may still be close enough to one

or more problems on the list to help with the next step.

Step 4.

Construct a reduction from an already-known NP-complete

problem. Karp reductions come in three kinds.

 A restriction from your problem to a special case that is

already known to be NP-complete.

 A minor adjustment of an already-known problem

 A combinatorial transformation.

The first two kinds of reduction are usually quite easy to do, and we

give several examples before proceeding to the third kind.

352 | P a g e

Space for learners: Example. Partition ≤
*

 .
 Knapsack, by restriction: Given a Partition

instance with integers aj, the corresponding instance of Knapsack

takes size(fj) = profit(fj) = aj (for all j), and sets the targets a0 and p0

both equal to (∑j aj)/2. The condition in the definition of the

Knapsack problem of not exceeding a0 nor being less than p0

requires that the sum of the selected items meet the target (∑j aj)/2

exactly, which is possible if and only if the original instance of

Partition is solvable.

In this way, the Partition problem can be regarded as a restriction or

special case of the Knapsack problem. Note that the reduction itself

goes from the more-special problem to the more general problem,

even though one thinks of the more-general problem as the one

being restricted. The implication is that if the restricted problem is

NP-hard, then the more-general problem is NP-hard as well, not

vice-versa.

Example. Hamiltonian Circuit ≤
*

 .
TSP by restriction: Let a

graph G be given as an instance of the Hamiltonian Circuit problem,

and let G have n vertices v1, v2 ,..., vn. These vertices become the

“cities" of the TSP instance that we build. Now define a distance

function as follows:

/(!, %) = {
1 if (vi, vj) is an edge in G

< + 1 ,-ℎ#+?! #

Set K = n. Clearly, k and K can be computed in polynomial

time from G. If G has a Hamiltonian circuit, then the length of the

tour that corresponds to this circuit is exactly n. Conversely, if there

is a tour whose length is at most m, then each step of the tour must

have distance 1, not n+1. Then each step corresponds to an edge of

G, so the corresponding sequence of vertices forms a Hamiltonian

circuit in G. Thus the function f defined by f (G) = ({/(!, %): 1 ≤

!, % ≤ <}, B) is a polynomial-time transformation from Hamiltonian

Circuit to TSP.

353 | P a g e

Space for learners:

2.4 NP-COMPLETENESS BY COMBINATORIAL

TRANSFORMATION

Theorem 2.3 Independent Set is NP-complete. Hence also Clique

and Vertex Cover are

NP-complete.

Proof. We have remarked already that the languages of these three

problems belong to NP, and shown already that Independent Set

≤
*

 .
 Clique and Independent ≤

*
 .

Vertex Cover.

It suffices to show that 3SAT ≤
*

 .
 Independent Set.

Construction. Let the Boolean formula Φ be a given instance of

3SAT with variables a1,a2,.....,am and clauses C1,C2,.....,Cn. The

graph G Φ we build consists of a “ladder" on 2m vertices labelled

y1,yC1,y2, yC2,........,ym, �Cm with edges (yi,�Ci) for 1 ≤ i≤ m forming the

“rungs," and n “clause components."

Here the component for each clause Cj has one vertex for

each literal yi or �Ci in the clause, and all pairs of vertices within

each clause component are joined by an edge. Finally, each clause

component node with a label yi is connected by a “crossing edge" to

the node with the opposite label �Ci in the ith “rung," and similarly

each occurrence of �Ci in a clause is joined to the rung node yi. This

finishes the construction of GΦ.

Also set p = m + n. Then the reduction function f is defined

for all arguments Φ by f(Φ) =(GΦ; p).

Complexity. It is not hard to see that f is computable in polynomial

time given (a straightforward encoding of) Φ.

CHECK YOUR PROGRESS

a) What is many one reducibility?

b) What is a transformation function?

c) Completeness provides the tight ____________ bounds on

complexity of problems.

d) A language L0 is NP-hard if L0 is NP-hard

under__________

354 | P a g e

Space for learners:

Figure 2.1: Construction in the proof of NP-completeness of

Independent Set for the formula (y1 ⋁ y2 V �C3) ∧ (y1 V �C2 V y3).

The independent set of size 5 corresponding to the satisfying

assignment y1 = false, y2 = true, and y3 = true is shown by nodes

marked I.

Correctness. To complete the proof, we need to argue that Φ is

satisfiable if and only if GΦ has an independent set of size m + n. To

see this, first note that any independent set I of that size must

contain exactly one of the two nodes from each “rung," and exactly

one node from each clause component - because the edges in the

rungs and the clause component prevent any more nodes from being

added. And if I selects a node labelled yi in a clause component,

then I must also select yi i in the ith rung. If I selects �Ci in a clause

component, then I must also select �Ci in the rung. In this manner I

induces a truth assignment in which yi= true and yi = false, and so on

for all variables. This assignment satisfies Φ, because the node

selected from each clause component tells how the corresponding

clause is satisfied by the assignment. Going the other way, if Φ has a

satisfying assignment, then that assignment yields an independent

set I of size m +n in like manner.

Since the Φ in this proof is a 3SAT instance, every clause

component is a triangle. The idea, however, also works for CNF

formulas with any number of variables in a clause, such as the Φy in

the proof of Cook's Theorem.

355 | P a g e

Space for learners: Now we modify the above idea to give another example of an NP-

completeness proof by combinatorial transformation.

Theorem 2.4 Graph Colorability is NP-complete

Proof.

Construction: Given the 3SAT instance Φ, we build GΦ similarly to

the last proof, but with several changes. See Figure 4.2. On the left,

we add a special node labelled “B" and connect it to all 2n rung

nodes. On the right we add a special node “G" with an edge to B. In

any possible 3-coloring of GΦ, without loss of generality B will be

coloured “blue" and the adjacent G will be coloured “green." The

third colour “red" stands for literals made true, whereas green stands

for falsity.

Now for each occurrence of a positive literal xi in a clause,

the corresponding clause component has two nodes labelled yi and

yi׳ with an edge between them; and similarly an occurrence of a

negated literal �Cj gives nodes �Cj and �Cj׳ with an edge between them.

The primed (“inner") nodes in each component are connected by

edges into a triangle, but the unprimed (“outer") nodes are not. Each

outer node of each clause component is instead connected by an

edge to G. Finally, each outer node yi is connected by a “crossing

edge" to the rung node �H i and each outer node �H j to rung node yj ,

exactly as in the Independent Set reduction. This finishes the

construction of GΦ.

Figure 2.2 : Construction in the proof of NP-completeness of Graph

Colourability for the formula (y1 ⋁ y2 V �C3) ∧ (y1 V �C2 V y3) . The

356 | P a g e

Space for learners: nodes shown colour R correspond to the satisfying assignment y1 =

false, y2 = true, and y3 = true, and these together with G and B

essentially force a 3-coloring of the graph, which the reader may

complete. Note the resemblance to Figure 2.1.

Complexity. The function f that given any Φ outputs GΦ also fixing

k = 3, is clearly computable in polynomial time.

Correctness. The key idea is that every three-colouring of B, G, and

the rung nodes, which corresponds to a truth assignment to the

variables of Φ, can be extended to a 3-coloring of a clause

component if and only if at least one of the three crossing edges

from the component goes to a green rung node. If all three of these

edges go to red nodes, then the links to G force each outer node in

the component to be coloured blue, but then it is impossible to three-

color the inner triangle since blue cannot be used. Conversely, any

crossing edge to a green node allows the outer node yi or �Cj to be

coloured red, so that one red and two blues can be used for the outer

nodes, and this allows the inner triangle to be coloured as well.

Hence GΦ is 3-colorable if and only if Φ is satisfiable.

2.4.1 Disjoint Connecting Paths

Instance: A graph G with two disjoint sets of distinguished vertices

v1, v2,.....,vj and u1,u2,.....,uj where j ≥ 1.

Question: Does G contain paths P1P2,......,Pj with each Pk going from

vk to uk, such that no two paths share a vertex?

Theorem 4.3 Disjoint Connecting Paths is NP-complete.

Proof. First, it is easy to see that Disjoint Connecting Paths belongs

to NP: one can design a polynomial-time nondeterministic Turing

machine that simply guesses j paths and then deterministically

checks that no two of these paths share a vertex. Now let Φ be a

given instance of 3SAT with n variables and m clauses. Take j = n +

m.

Construction and complexity. The graph GΦ we build has

distinguished path-origin vertices v1, v2,.....,vn for the variables and

357 | P a g e

Space for learners: V1,V2,......,Vm for the clauses of Φ. GΦ also has corresponding sets

of path-destination nodes u1,u2,.....,un and U1,U2,.....,Um. The other

vertices in GΦ are nodes bij for each occurrence of a positive literal

yi in a clause Cj , and nodes aij for each occurrences of a negated

literal �Ci in Cj . For each i, 1 ≤ i≤ n, GΦ is given the edges for a

directed path from vi through all bij nodes to ui, and another from vi

through all aij nodes to ui. (If there are no occurrences of the positive

literal xi in any clause then the former path is just an edge from vi

right to ui, and likewise for the latter path if the negated literal �Ci

does not appear in any clause.) Finally, for each j, 1 ≤ j ≤ m, GΦ has

an edge from Vj to every node bij or aij for the jth clause, and edges

from those nodes to Uj . Clearly these instructions can be carried out

to build GΦ in polynomial time given Φ. (See Figure 2.3.)

Correctness. The first point is that for each i, no path from vi to ui

can go through both a “b-node" and a “a-node." Setting yi true

corresponds to avoiding b-nodes, and setting yi false entails avoiding

a-nodes. Thus the choices of such paths for all i represent a truth

assignment. The key point is that for each j, one of the three nodes

between Vj and Uj will be free for the taking if and only if the

corresponding positive or negative literal was made true in the

assignment, thus satisfying the clause. Hence GΦ has the n + m

required paths if and only if Φ is satisfiable.

Figure 2.3: Construction in the proof of NP-completeness of

Disjoint Connecting Paths for the formula (y1 ⋁ y2 V �C3) ∧

(y1 V �C2 V y3).

358 | P a g e

Space for learners: 2.5 SIGNIFICANCE OF NP-COMPLETENESS

Suppose that you have proved that your problem is NP-complete.

What does this mean, and how should you approach the problem

now?

Exactly what it means is that your problem does not have a

polynomial-time algorithm, unless every problem in NP has a

polynomial-time algorithm; i.e., unless NP ≠P. We have discussed

above the reasons for believing that NP ≠P. In practical terms, you

can draw one definite

Conclusion: Don't bother looking for a “magic bullet" to solve the

problem. A simple formula or an easily-tested deciding condition

will not be available; otherwise it probably would have been spotted

already during the thousands of person-years that have been spent

trying to solve similar problems. For example, the NP-completeness

of Graph 3-Colorability effectively ended hopes that an efficient

mathematical formula for deciding the problem would pop out of

research on “chromatic polynomials" associated to graphs. Notice

that NP-hardness does not say that one needs to be “extra clever" to

find a feasible solving algorithm, it says that one probably does not

exist at all.

The proof itself means that the combinatorial mechanism of the

problem is rich enough to simulate Boolean logic. The proof,

however, may also unlock the door to finding saving graces in Steps

5 and 6.

Step 5. Analyze the instances of our problem that are in the range of

the reduction. We may tentatively think of these as “hard cases" of

the problem. If these differ markedly from the kinds of instances

that you expect to see, then this difference may help you refine the

statement and conditions of your problem in ways that may actually

define a problem in P after all.

To be sure, avoiding the range of one reduction still leaves wide-

open the possibility that another reduction will map into your

instances of interest. However, it often happens that special cases of

359 | P a g e

Space for learners: NP-complete problems belong to P- and often the boundary between

these and the NP-complete cases is sudden and sharp. For one

example, consider SAT. The restricted case of three variables per

clause is NP-complete, but the case of two variables per clause

belongs to P.

For another example, note that the proof of NP-completeness for

Disjoint Connecting Paths given above uses instances in which j =

m+n; i.e., in which j depends on the number of variables.

The case j = 2, where you are given G and v1, v2, u1, u2 and need to

decide whether there are vertex- disjoint paths from v1 to u1 and

from v2 to u2, belongs to P. (The polynomial-time algorithm for this

case is nontrivial and was not discovered until 1978, as noted in

[Garey and Johnson, 1988].)

However, one must also be careful in one's expectations. Suppose

we alter the statement of Disjoint Connecting Paths by requiring

also that no two vertices in two different paths may have an edge

between them. Then the case j = 2 of the new problem is NP-

complete. (Showing this is a nice exercise; the idea is to make one

path climb the “variable ladder" and send the other path through all

the clause components.)

2.6 STRONG NP-COMPLETENESS FOR

NUMERICAL PROBLEMS

An important difference between hard and easy cases applies to

certain NP-complete problems that involve numbers. For example,

above we stated that the Partition problem is NP-complete; thus, it is

unlikely to be solvable by an efficient algorithm. Clearly, however,

we can solve the Partition problem by a simple dynamic

programming algorithm, as follows.

For an instance of Partition, let S be a set of positive {s1, s2,....., sm }

and let s* be the total, s* = ∑ I
JKL i . Initialize a linear array B of

Boolean values so that B[0] = true, and each other entry of B is

false. For i = 1 to m, and for t = s* down to 0, if B[t] = true, then set

B[t + si] to true. After the ith iteration, B[t] is true if and only if a

360 | P a g e

Space for learners: subset of {s1, s2,....., si } sums to t. The answer to this instance of

Partition is “yes" if B[s*/2] is ever set to true.

The running time of this algorithm depends critically on the

representation of S. If each integer in S is represented in binary, then

the running time is exponential in the total length of the

representation. If each integer is represented in unary - that is, each

si is represented by si consecutive occurrences of the same symbol-

then total length of the representation would be greater than s*, and

the running time would be only a polynomial in the length. Put

another way, if the magnitudes of the numbers involved are bounded

by a polynomial in m, then the above algorithm runs in time

bounded by a polynomial in m. Since the length of the encoding of

such a low-magnitude instance is O(mlogm), the running time is

polynomial in the length of the input. The bottom line is that these

cases of the Partition problem are feasible to solve completely.

A problem is NP-complete in the strong sense if there is a fixed

polynomial p such that for each instance x of the problem, the value

of the largest number encoded in x is at most p(|M|). That is, the

integer values are polynomial in the length of the standard

representation of the problem. By definition, the 3SAT, Vertex

Cover, Clique, Hamiltonian Circuit, and 3-Dimensional Matching

problems defined in Section 4 are NP-complete in the strong sense,

but Partition and Knapsack are not. The Partition and Knapsack

problems can be solved in polynomial time if the integers in their

statements are bounded by a polynomial in n- for instance, if

numbers are written in unary rather than binary notation.

The concept of strong NP-completeness reminds us that the

representation of information can have a major impact on the

computational complexity of a problem.

2.7 COPING WITH NP-HARDNESS

Step 6. Even if we cannot escape NP-hardness, the cases we need to

solve may still respond to sophisticated algorithmic methods,

possibly needing high-powered hardware.

361 | P a g e

Space for learners: There are two broad families of direct attack that have been made on

hard problems. Exact solvers typically take exponential time in the

worst case, but provide feasible runs in certain concrete cases.

Whenever they halt, they output a correct answer- and some exact

solvers also output a proof that their answer is correct. Heuristic

algorithms typically run in polynomial time in all cases, and often

aim to be correct only most of the time, or to find approximate

solutions. They are more common. Popular heuristic methods

include genetic algorithms, simulated annealing, neural networks,

relaxation to linear programming, and stochastic (Markov) process

simulation. Experimental systems dedicated to certain NP-complete

problems have recently yielded some interesting results- an

extensive survey on solvers for Travelling Salesperson is given by

[Johnson and McGeogh, 1997].

There are two ways to attempt to use this research. One is to find a

problem close to yours for which people have produced solvers, and

try to carry over their methods and heuristics to the specific features

of your problem. The other (much more speculative) is to construct

a Karp reduction from your problem to their problem, ask to run

their program or machine itself on the transformed instance, and

then try to map the answer obtained back to a solution of your

problem.

The hitches are (1) that the currently-known Karp reductions f tend

to lose much of the potentially helpful structure of the source

instance x when they form f(x), and (2) that approximate solutions

for f(x) may map back to terribly sub-optimal or even infeasible

answers to x. All of this indicates that there is much scope for

further research on important practical features of relationships

between NP-complete problems

2.8 BEYOND NP-HARDNESS

If our problem belongs to NP and we cannot prove that it is NP-

hard, it may be an ‘“NP intermediate" problem; i.e., neither in P nor

NP-complete. According to the theorem of Ladner that NP-

intermediate problems exist, assuming NP ≠ P. However, very few

natural problems are currently counted as good candidates for such

intermediate status: factoring, discrete logarithm, graph-

362 | P a g e

Space for learners: isomorphism, and several problems relating to lattice bases form a

very representative list. The vast majority of natural problems in NP

have resolved themselves as being either in P or NP-complete.

Unless we uncover a specific connection to one of those four

intermediate problems, it is more likely offhand that our problem

simply needs more work.

The observed tendency of natural problems in NP to “cluster" as

either being in P or NP complete, with little in between, reinforces

the arguments made early in this chapter that P is really different

from NP.

Finally, if our problem seems not to be in NP, or alternatively if

some more-stringent notion of feasibility than polynomial time is at

issue, then we may desire to know whether our problem is complete

for some other complexity class.

2.9 ANSWERS TO CHECK YOUR PROGRESS

a) In mathematics, the simplest way to solve a new problem,

the problem must reduce to a problem which has been solved

previously. To interpret the solution of a new problem, the

problem must express in terms of a prior problem. This type

of reduction is called many-one reducibility.

b) Let L1 and L2 be languages. L1 is many-one reducible to L2,

andL1 ≤ L2, if there exists a total recursive function f such

that for all y, where y ϵ L1 if and only iff(y) ϵ L2. The

function f is called the transformation function

c) Lower

d) Karp reducibility

2.10 MODEL QUESTIONS

1. Is f(y,y1,y2,y3)= (y1 ⋁ y2 V �C3) ∧ (y1 V �C2 V y3) satisfiable?

2. What does reducibility mean in NP-problems and why is it

required?

3. What was the first problem proved as NP-Complete?

4. Multiple Choice Questions

363 | P a g e

Space for learners: i) Ram and Laxman have been asked to show that a certain problem

∏ is in NP-complete. Ram shows a polynomial time reduction rom

3-SAT problem to ∏, and Laxman shows a polynomial time

reduction from ∏ to 3-SAT. Which of the following can be inferred

from these reductions?

a) ∏ is NP-complete

b) ∏ is NP, but is not NP-complete

c) ∏ is neither NP-hard, nor in NP

d) ∏ is NP-hard not NP-complete

ii) Consider the following two problems of graph 1) given a graph;

find if the graph has a cycle that visits every vertex once except the

first visited vertex which must visit again to complete the cycle. 2)

Given a graph, find if the graph has a cycle that visits every edge

exactly once. Which of the following is true about above two

problems?

a) Both problems belongs to P set

b) Both problem belongs to NP-complete set

c) Problem 1 belongs to P and problem 2 belongs to NP- complete

d) Problem 1 belongs to NP- complete and problem 2 belongs to P

iii) _____ is the class of decision problems that can be solved by

non-deterministic polynomial algorithms?

a) NP b) P c) Hard d) Complete

iv) How many conditions have to be met if an NP- complete

problem is polynomially reducible?

a) 1 b) 2 c) 3 d) 4

v) Which of the following problems is not NP complete?

a) Hamiltonian Circuit b) Bin packing

c) Partition problem d) Halting problem

vi) To which class does Euler’s circuit problem belongs

a) Decidable b) Unpredictable

c) Complete d) Trackable

364 | P a g e

Space for learners: vii) Halting is an example for?

a) Decidable b) Undecidable

c) Trackable d) Untrackable

2.11 REFERENCES AND SUGGESTED READINGS

1. Atallah, M. J., & Blanton, M. (Eds.). (2009). Algorithms and

theory of computation handbook, volume 2: special topics and

techniques. CRC press.

2. Allender, E., Loui, M. C., & Regan, K. W. (2014). Complexity

Theory.

3. Mishra, K. L. P., & Chandrasekaran, N. (2006). Theory of

Computer Science: Automata, Languages and Computation. PHI

Learning Pvt. Ltd..

4. Yates, D. F., Templeman, A. B., & Boffey, T. B. (1984). The

computational complexity of the problem of determining least

capital cost designs for water supply networks. Engineering

Optimization, 7(2), 143-155.

5. Nothen, E., & de Fátima Mastroianni, M. Data structures, from

theory to bits: Using theory of formal languages to analyze

structured data. In IEEE CACIDI 2016-IEEE Conference on

Computer Sciences (pp. 1-6). IEEE.

365 | P a g e

Space for learners: UNIT 3: LOWER BOUND THEORY

Unit Structure:

 3.1 Introduction

 3.2 Unit Objectives

 3.3 Lower Bound Theory

 3.4 Techniques to Find Lower Bound Theory

 3.4.1 Comparisons Trees

 3.4.2 Oracle and Adversary Argument

 3.4.3 State Space Method

 3.5 Summing Up

 3.6 Answers to Check Your Progress

 3.7 Possible Questions

 3.8 References and Suggested Readings

3.1 INTRODUCTION

For many problems, algorithms are designed and analysed to give

correct and efficient solutions. However, a problem can be solved in

various ways and we can have different algorithms for the same

problem where one algorithm may be better than the others based on

comparing the time complexities. But we cannot claim that this is

the best algorithm for the problem. There might exist a faster

algorithm with a better time complexity.

Lower Bound Theory provides those techniques to establish a given

algorithm is an efficient one or not. We use a function g(n) as a

lower bound on the time complexity and any algorithm that solves

the given problem should have this bound otherwise asymptotically

we do not have a better solution. Lower bounds of various problems

are still unknown as finding the lower bound of a particular problem

is harder.

366 | P a g e

Space for learners: 3.2 UNIT OBJECTIVES

After going through this unit, you will be able to :

 understand the fundamental concepts of lower bound theory.

 analyze lower bound of an algorithm using different

techniques.

 define and create comparison trees for comparison based

algorithms.

 develop state space diagram for different algorithms.

3.3 LOWER BOUND THEORY

In problem solving, we design algorithms with the purpose of

getting a correct and efficient solution. But the search for a fast and

better algorithm continues even after discovering an efficient

algorithm. We use the concept of Lower Bound Theory to establish

that a given algorithm is the most efficient one. Lower Bound

Theory gives the minimum time required for executing an

algorithm.

Using Lower Bound Theory, our main aim is to find out the

minimum number of comparisons required while executing an

algorithm. Lower Bound Theory uses a number of techniques or

methods to find the lower bound of a problem.

Lower bound, L(n) can be defined as the property of a particular

problem i.e. searching, sorting, matrix multiplication. Lower Bound

Theory says that no algorithm can take lesser time than the time of

L(n) for any given input, n. So, lower bound theory is a method to

check that the given algorithm for the problem solution is the most

efficient one. To do so, we take a function g(n) which is a lower

bound on the time that any algorithm will take to solve the given

problem. If our algorithm takes the same computing time in the

same order as g(n) then asymptotically we cannot be better.

Let the time complexity of some algorithm for solving a given

problem be f(n) then the lower bound on f(n) is given by f(n) =

Ω(g(n)) i.e. there exists positive constants c and n0 such that |f(n)| >=

c|g(n)|for all n > n0. It is easier to write efficient algorithms but more

367 | P a g e

Space for learners: challenging to derive good lower bounds. As the lower bound gives

a fact about all possible algorithms for solving a given problem. So,

lower bound proofs are difficult to obtain as we cannot analyze all

such algorithms.

Self Asking Questions (SAQ)

1. What is lower bound theory.

2. What sort of problems requires us to find the lower bound of

a problem.

3. Why is difficult to find the lower bound of a problem.

3.4 TECHNIQUES TO FIND LOWER BOUND

THEORY

There are various techniques to find the lower bound theory is:

 1. Comparisons Trees.

 2. Oracle and adversary argument.

 3. State Space Method.

3.4.1 Comparisons Trees

This method is very easy and a popular computational model for

determining the lower bounds for a given problem. Sorting and

searching problems uses this method since comparison trees for

sorting and searching problems is based on comparison of the

elements and models all possible outcomes. This model is designed

to work on a large number of sorting and searching problems.

3.4.1.1 Sorting Algorithm

Assuming that all input elements are distinct in the list containing n

elements and the input sequence be <��, ��, ��, , ��>. Any

comparison between �� and �	 between any two elements in the

368 | P a g e

Space for learners: input sequence will be given by��
 �	, �� � �	, �� �	,�� � �	,�� �

�	to determine the relative ordering between them forming a binary

comparison tree. Each internal node in the comparison tree is

represented by an ellipse and represents comparison between �� and

�	 whereas the leaf node is represented by a rectangle and contains

elements in sorted order either in increasing or decreasing order. The

leaves also indicate the terminating state of the algorithm with root

being the starting state.

Fig 3.1: Decision Tree (sort 3 elements)

Analysis:

 Let,

T(n) = Minimum number of comparisons to sort n numbers in the

worst case.

K = Maximum height of the tree.

Now, let us assume that all the internal nodes are at level < K.

Therefore, maximum numbers of leaves are 2K. Then we have

 2���� � �! (Stirling's formula)

 =>���� � ����!

 =>���� ����� � �
����

� �
�

���� � ��1�

 =>���� � �����

 =>���� � �������

Thus, any comparison based sorting algorithm for n elements runs in

Ω (n log n) time.

369 | P a g e

Space for learners: 3.4.1.2 Linear Searching

In linear searching, an unordered list L contains n elements. If an

element,x is to be found in L then we need to compare x with every

element of (L – x) i.e. x is compared with L[1], L[2], L[3],

L[n]. If x is present at the ith position i.e. x = L[i] then searching

terminates after ith comparisons. Otherwise, searching continues as x

is compared with rest of the elements in L. When x is found, search

is successful otherwise it’s a failure. In this case also, the

comparison tree is a binary tree too. The leaves contain either

failure(F) or success(S) and the internal nodes give the position,i of

x in L. Depending on the number of comparisons, we can derive 3

different cases.

Best Case: If x is present at the root, then time complexity is

minimum and it is Ω (1).

Average Case: If x is present at any other position except at the root

node and the leaf node then search algorithm gives average time

complexity. So, the average number of comparisons are
�
�
and the

time complexity, T(n) = Ω (n).

Worst Case: In this case, search continues till the end of the list i.e.

x is present at the last position of the list or it is not present in L. So,

total number of comparisons = n – 1 and the worst case time

complexity,

 T(n) = Maximum number of comparisons = n – 1 = Ο(n)

Also, any algorithm that searches a sorted sequence of n elements

must perform at least (log n + 1) comparisons in the worst case.

STOP TO CONSIDER

We can also use the comparison tree to find the lower bound of a

binary search. The minimum number of comparisons needed to

perform a search on n elements using binary search,���� �
������ � 1�.

370 | P a g e

Space for learners: 3.4.2 Oracle and Adversary Argument

The second method for finding lower bound takes the help of oracles

and adversaries. The oracle will tell us the outcome of each

comparison for some model of estimation e.g. comparison trees. The

oracles make the algorithm to work hard in order to get a good lower

bound. The outcome of the next analysis is decided to determine the

final answer. A worst case lower bound of the problem can be

derived by keeping track of the work that has been finished.

The job of the adversary is almost the same as it also makes the

algorithms cost high. The adversary is allowed to reorder the input

to the algorithm in order to drive the cost of the algorithm higher.

The adversary is not an entity in the program nor does it modify the

program, it simply used for analysis only.

Suppose there are two sorted lists given to us , M[1 : m] and N[1 : n]

where the elements are in ascending order. Let L be the merged list

of M and N containing m + n elements also in the ascending order.

We know that there are!"
#$%ways to merge M and N i.e. it is

possible that every element of M can be interleaved with every

element of N in all possible ways in L and vice versa.

 Assuming, M = <a,b> and N = <c,d,e> then there

are!"
"$&ways =!"

'ways = 10 ways to merge M and N. These are :

 (a) a, b, c, d, e (f) c, a, b, d, e

 (b) a, c, b, d, e (g) c, a, d, b, e

 (c) a, c, d, b, e (h) c, a, d, e, b

 (d) a, c, d, e, b (i) c, d, a, b, e

 (e) c, d, e, a, b (j) c, d, a, e, b

Now, if we use comparison tree as model of computation for

merging M and N then there are!#
#$%external nodes and

atleast���(!#
#�%)comparisons on the tree that uses any comparison

based algorithms. However, using conventional technique of

merging requires only (m + n - 1)

comparisons.Therefore,���(!#
#�%) � *+,�+�*, �� � �* � � �

1�where merge(m,n) is the minimum number of comparisons

required to merge m elements with n elements.

371 | P a g e

Space for learners: If m = 1, we need fewer comparisons.

 If m = n, we have optimal number of comparisons for

conventional merging and that’s the lower bound too. Therefore,

merge(m,n) = 2m – 1,* � 1.

3.4.3 State Space Method

This method gives a set of rules of an algorithm from a single

comparison of a given state showing all possible states (n-tuples).

We can now derive the lower bounds once the state transitions are

known. This is possible because the finished state cannot be reached

with lesser transactions. This approach requires counting the number

of changes in state where a state is a collection of attributes. This

will help us in finding out the smallest and biggest items using this

method by comparison.

Our algorithm is modelled to define a state that an algorithm will be

in at any given instant. In this way, we can define the start state, the

end state and the transition states that the algorithm will traversal

while moving from the start state to the end state. Thus, we can

derive the minimum number of states the algorithm goes through

from the start to the end to have a state space lower bound.

CHECK YOUR PROGRESS

1. State whether true or false :

a. Mostly searching and sorting algorithms use state space

method for finding the lower bound.

b. Comparison trees are the most common method for finding

the lower bound.

c. State space method shows all the possible states of an

algorithm starting from the start to the end.

d. Oracle method for finding the lower theory gives a

prediction of each comparison outcome.

372 | P a g e

Space for learners: e. Finding the lower bound is considered to be an easier task as

compared to finding the worst case time of an algorithm.

3.5 SUMMING UP

 Lower bound for a problem is the tightest (highest) lower bound

that can be proved for all possible algorithms solving the given

problem.

 There can be theoretically infinite number solutions to a problem

but it is not possible to know all the algorithms for any problem.

 We try to give a simple lower bound based on the amount of

input that can be examined.

 Lower bound of an algorithm can be found using 3 techniques:

Comparison trees, Oracle and adversary arguments; and state

space method.

3.6 ANSWERS TO CHECK YOUR PROGRESS

 1. a. FALSE

 1. b. TRUE

 1. c. TRUE

 1. d. TRUE

 1. e. FALSE

3.7 POSSIBLE QUESTIONS

1. Define lower bound of a problem.

2. What is the difference between worst case lower bound and

average case lower bound?

3. Give the trivial lower bounds for the following:

(a) Finding the transpose of a m x n matrix.

373 | P a g e

Space for learners: (b) Finding the median of n elements.

4. Prove that the lower bound of sorting a sequence of n elements

using comparison based sorting algorithm is n log n.

5. Draw the decision tree for the following algorithms:

(a) Linear search on seven elements.

(b) Merge sort on five elements.

6. Let X and Y be two sorted lists of n elements each. Find the

minimum number of comparisons to merge X and Y in the worst

case.

3.8 REFERENCES SUGGESTED READINGS

1. Aho, A. V.; Hopcroft, J. E. & Ullman, J. D. ,The Design and

Analysis of Computer Algorithms , Pearson .

