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BLOCK I:

SAMPLING DISTRIBUTION AND THEORY OF

ESTIMATION

Unit 1 : Sampling Distribution

Unit 2 : Statement of Central Limit Theorem, Estimation of the

Mean and The Variance of the Sampling Distribution of

Sample Mean

Unit 3 : Point Estimation and Interval Estimation for Population

Parameter
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Unit-1

Sampling Distribution

Unit Structure:

1.1 Introduction

1.2 Objectives

1.3 Sampling Fluctuations

1.4 Sampling Distribution of a Statistic

1.5  Standard Error of a Statistic

1.6  Summing Up

1.7 Model Questions

1.8 References and Suggested Readings

1.1 Introduction

In case of any statistical investigation, our interest lies in studying the various

characteristics of a particular collection of objects or observations usually

called the target population, simply population or universe. By definition,

the collection of all the observations under study in any statistical investigation,

is called population or universe for that specific study. The number of

observations included in a population is termed as the size of the population

or population size.

Again, a subcollection of the population is known as sample. In other words,

a sample may be difined as a part of a population so selected with a view to

represent the population. The number of units in a sample is called sample

size and the units forming the sample are known as “Sampling Units”. Again,

a detailed  and complete list of all the sampling units is termed as a “Sampling

Frame”. It is a must to have an updated sampling frame complete in all

respects before the samples are actually drawn.

Any statistical characteristics such as mean, median, quartile, standard

deviation, moments etc. of the population under study, is called a parameter,

while any statistical characteristics such as above of a sample drawn from a

population is called a statistic. Very often, the values of various parameters

are unknown and these are estimated by the corresponding statistic. For

example, sample mean x  is used as an estimator of population mean m ,

sample standard deviations is used as an estimator of population standard
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deviation s , etc. The difference between a statistic and the corresponding

parameter is known as sampling error. The study of Sampling theory as

well as theory of estimation help us to estimate the true value of the population

parameters by minimizing the sampling errors.

1.2 Objectives

After going through thid unit, you will be able to-

· know the concept of sampling distribution;

· explain the methods of estimation;

· discuss the technique of solving practical problems.

1.3 Sampling Fluctuations

The value of parameter is considered as constant. But, if we compute the

value of a statistic, say mean or median or mode or s.d., etc, it is quite

natural that the value of the sample statistic may vary from sample to sample

as the sampling units of one sample may be different from that of another

sample even if the sample sizes are same. The variation in the values of a

statistic from sample to sample is termed as “Sampling Fluctuations” or

“Sampling Variation”.

1.4 Sampling Distribution of a Statistic

If it is possible to obtain the values of a statistic (t) from all the possible

samples of a fixed sample size along with the corresponding probabilities,

then we can arrange the values of the statistic, which is to be treated as a

random variable, in the form of a probability distribution. Such a probability

distribution is known as the sampling distribution of the statistic.

Starting with a population of N units, we can draw many a sample of a fixed

size n. In case of sampling with replacement, the total number of samples

that can be drawn is 
nN  and consequently we shall get 

nN  different values

of any statistic (t) like mean, median, S.D. etc. computed for 
nN  samples.

Again, when sampling is done without replacement of the sampling units,

the total number of samples that can be drawn is mCn
N =  (say). We can

compute any statistic (t) like mean, median, S,d. etc. for these m samples

resulting in m values of the statistic. These 
nN  values of the statistic (t) in

case of sampling with replacement and mCn
N =  values in case of sampling
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without replacement may be arranged in the form of a probability distribution

known as the sampling distribution of the statistic.

The sampling distribution, just like a theoretical probability

distribution possess different properties. One of these is the ‘Law of Large

Numbers’ which asserts that a positive integer n can be determined such

that if a random sample of size n or large is drawn from a population having

mean m , the probability that the sample mean x  will deviate from m  by

less than any arbitrarily small quantity can be made to be as close to 1. This

implies that a fairly reliable inference can be made about an infinite population

by taking only a finite sample of sufficiently large size. Another interesting

result in this connection is the ‘Central Limit theorem’ which is discussed

elaborately in the Unit 2.

Check Your Progress

1. What do you mean by Sampling Fluctuations?

2. What is ‘Law of Large Numbers’?

3. Distinguish between parameter and statistic.

1.5 Standard Error of a Statistic

The standard deviation of a statistic is termed as standard error. We know

that, the population standard deviation describes the variation among values

of members of the population, whereas the standard deviation of sampling

distribution measures the variability among the values of the statistic (such

as mean values, median values, etc) due to sampling errors. Thus knowledge

of sampling distribution of a statistic enables us to find the probability of

sampling error of the given magnitude. Consequently standard deviation of

sampling distribution of a sample statistic measures sampling error and is

also known as standard error of the statistic. If t be any statistic calculated

for different samples, then the standard error of the statistic t is generally

denoted by S.E. (t).

The S.E.(t) measures not only the amount of chance error in the sampling

process but also the accuracy desired in estimation of population parameters.

Some of the common results of standard error of different statistic are given

below :
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Example 1. A population comprises 3 members 1,5,3. Draw all

possible samples of size two

i) with replacement

ii) without replacement

Find the sampling distribution of sample mean in both cases.

Solution : i) with replacement:

since n=2 and N=3, the total number of possible sample of size 2

with replacement = 32 =9. These are exhibited along with the corresponding

sample mean in the following table :
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Sl. No. Sample Sample Mean ( x )

1 1, 1 1

2 1, 5 3

3 1, 3 2

4 5, 1 3

5 5, 5 5

6 5, 3 4

7 3, 1 2

8 3, 5 4

9 3, 3 3

This sampling distribution of the sample mean is given as follows:

x 1 2 3 4 5 Total

p : 1/9 2/9 3/9 2/9 1/9 1

(ii)  Without replacement :

As N = 3 and n = 2, the total number of possible samples

without replacement = 3C C 2

3

n

N == . Possible samples of size 2

and corresponding sample means are given below :

Serial No. Sample Sample Mean ( x )

1 1, 3 2

2 1, 5 3

3 3, 5 4

The sampling distribution of the sample mean is given as follows:

x  : 2 3 4 Total

p : 1/3 1/3 1/3 1

Example : Compute the standard deviation of sample mean for the

last  problem. Obtain the SE of sample mean and show that they

are equal.

Solution : We consider the following cases :

(i) With replacement :



(11)

Let u = x . The sampling distribution of u is given by

u : 1 2 3 4 5

p : 1/9 2/9 3/9 2/9 1/9
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Thus comparing (1) and (2), we are able to verify the validity of the

formula.

(ii)  Without replacement :

In this case, the sampling distribution of xv =  is given by



(12)

v : 2 3 4

p : 1/3 1/3 1/3
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and thereby, we make the same conclusion as in previous case.

Example : Construct a sampling distribution of the sample mean for

the following population when random samples of size 2 are taken

from it (a) with replacement and (b) without replacement. Also find

the mean and standard error of the distribution in each case.

Population Unit : 1 2 3 4

Observation : 22 24 26 28

Solution :

The mean and standard diviation of population are
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(a)  With replacement :

When random samples of size 2 are drawn, we have

1642 =  samples, shown below :

Simple No Sample Values x

1 22, 22 22

2 22, 24 23

3 22, 26 24

4 22, 28 25

5 24, 22 23

6 24, 24 24

7 24, 26 25

8 24, 28 26

9 26, 22 24

10 26, 24 25

11 26, 26 26

12 26, 28 27

13 28, 22 25

14 28, 24 26

15 28, 26 27

16 28, 28 28

Since all of the above samples are equally likely, therefore, the

probability of each value of x  is 
16

1
. Thus, we can write the sampling

distribution of x  as given below :

x : 22 23 24 25 26 27 28 Total
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Which is equal to 
n

σ

(b)  Without replacement :

When random samples of size 2 are drawn without

replacement, we have 
2

4C  samples, shown below :

Simple No Sample Values x

1 22, 24 23

2 22, 26 24

3 22, 28 25

4 24, 26 25

5 24, 28 26

6 26, 28 27

Since all the samples are equally likely, the probability of each value

of x  is 
6

1
. Thus, we can write the sampling distribution of x  as

x : 23 24 25 26 27 Total
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1.6 Summing Up

A sampling distribution is an array of sample studies relating to a popula-

tion. If we select a number of independent random samples of a definite

size from a given population and calculate some statistic like the mean,

standard deviation etc. from each sample, we shall get an array of values of

these statistics. The distribution so obtained by these values of the statistic

is called the sampling distribution of that statistic. The standard deviation of

the sampling distribution would be called the standard error which is ab-

breviated as S.E. The concept of Standard Error is very useful in testing

statistical hypothesis and in the theory of estimation.

1.7  Model Questions

Objective Questions:

1. A population has N items. Samples of size n are selected without re-

placement. Find the number of possible samples.



(16)

2. Standard error is always non-negative. (True or False)

3. If the mean of population is  μ  then the mean sampling distribution is

.................... . (fill in the blank)

4. Consider a population containing N items and n are selected as a

sample with replacement. Find the numver of possible samples.

5. Sampling distribution describes the distribution of sample ...............

(fill in the blank)

Descriptive Questions:

1. Explain the concept of sampling distribution of a statistic.

2. A population consists of four numbers 3, 4, 2, 5. Consider all possible

distinct samples of size two that can be drawn without replacement

and verify that the population mean is equal to the mean of the sample

means.

3. A simple random sample of size 36 is drawn from a finite population of

101 units. If the population S.D. is 12.6, find the standard error of the

sample mean when the sample is drawn (i) with replacement, (ii) with-

out replacement.

4. Consider a population of 6 units with values 1,2,3,4,5,6. Write down

all possible samples of size 2 (without replacement) from this popula-

tion and construct a sampling distribution of the sample mean. Also

find the mean and standard error of the distribution.

5. What do you mean by ‘Sampling Fluctuations’? Describe briefly.

1.8 References and Suggested Readings

1. Gupta S.C. & Kapoor V.K.; Fundamentals of Mathematical Statis-

tics; Sultan Chand & Sons.

2. Hazarika P.; Essential Statistics for Economics and Commerce;

Akansha Publishing House.

3. Rao Radhakrishna C.; Linear Statistical Inference and its Applica-

tions; Wiley Eastern Limited.

******
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Unit-2

Statement of Central Limit Theorem, Estimation of

the Mean and The Variance of the Sampling

Distribution of Sample Mean

Unit Structure:

2.1 Introduction

2.2 Objectives

2.3 Central Limit Theorem

2.3.1 How Does the Central Limit Theorem Works?

2.3.2 De-Moivre’s Laplace Theorem

2.3.3 Lindeberg-Levy Theorem

2.3.4 Liapounoff’s Central Limit Theorem

2.4 Estimations of the Mean and the Variance of the Sampling Distribution

of the Sample Mean

2.5 Summing Up

2.6 Model Questions

2.7 References and Suggested Readings

2.1 Introduction

It is seen that most of the distributions like Binomial, Poisson, etc. tend to

normal distribution when the size of the sample is too large. For this reason

and for otherwise also the distribution of sample mean, whatever be the

nature of the parent population, will approach to the normal distribution as

the size of the sample increases. This fact leads to the Central limit theorem,

first proved by the French mathematician Pierre-Simon Laplace in 1810.

The theorem is applicable to all the populations in practice except a few

which are very much different from the normal. It should be noted that the

efficiency of the theorem increases with an increase in the sample size

regardless of whether the source population is normal or skewed.

2.2 Objectives

After going through this unit, you will be able to

· know the basic concept of Central Limit Theorem
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· understood the applications of Central Limit Theorem

· discuss the technique of finding estimation of the mean and the

variance

· explain the concept of standard error

2.3 Central Limit Theorem

This theorem states that :

“If },,........., 2 n1 xxx{  is a random sample of size n from a non-normal

population of size N with mean m  and standard deviation s , then the sampling

distribution of sample mean x  will approach normal distribution with mean

m  and standard error ÷
÷

ø

ö

ç
ç

è

æ

n
.

1-N

n-N
or  

n

2ss
  as n becomes larger and larger.”.”

It should be noted that as a general rule, when 30³n , the sampling

distribution of x  is taken to be normal for practical purposes. Moreover,,

the larger the sample size the better will be the approximation.

The statement of the above Central limit theorem is actually deducted from

the generalized central limit theorem which is given as :

“If },,........., 2 n1 xxx{ are independent random variables following any

distribution, then under certain very general conditions, their sum

å +++= n21 x.......xxx  is asymptotically normally distributed, i.e. å x

follows normal distribution as µ¾®¾n .”

Thus the Central Limit Theorem asserts that for any statistic t, the random

variable 
S.E.(t)

E(t)-t
Z =  approaches the standard normal distribution of the

population as n tends to infinity. This result is extensively used in Large

Sample tests and in construction of confidence limits for the parameters

provided the samples are relatively large.

2.3.1 How Does the Central Limit Theorem Works?

Basically the probability distributions are based on the concept of the Central

Limit Theorem. For repeated sampling, the theorem provides us the

behaviour of the population parameters estimates. When sample values are

plotted on a graph, the theorem gives us the shape of the distribution formed

by means. As the sample sizes get larger, the distribution of the means from
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the repeated sample tends to normalize and forms a normal distribution.

Statistically, when sample size (n) is more than or equal to 30, the Central

Limit Theorem works better. But in case, even though n is less than 30, the

distribution of sample means may tend to normal if the source population is

normally distributed.

From above, it is seen that

The averages of samples have approximately followed normal distribution.

Morever, as sample size increases, the Distribution of Averages tends to

normal and the curve becomes narrow.
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This Central Limit Theorem was first stated by great mathematician Laplace

in 1812 and a regorous proof under general conditions was given by

Liapounoff in 1901. Let us consider some particular cases of this general

central limit theorem.

2.3.2 De-Moivre’s Laplace Theorem

This theorem is a particular case of central milit theorem which is stated as

follows :

“If 
î
í
ì

=
qyprobabilitwith,0

pyprobabilitwith,1
X i

Then the distribution of the random variable S
n
=X

1
+X

2
+......+X

n
, where

X
i
’s are independent, is asymptotically normal as ®µn .”

2.3.3 Lindeberg-Levy Theorem

This is an another particular case of central limit theorem which was jointly

developed by Lindeberg and Levy. The statement of the theorem is given

as :

“If X
1
, X

2
, ....., X

n
 are independently and identically distributed

random variable with

( )
n,....,2,1i,

)X(V

XE

2

1i

1i
=

ïþ

ï
ý
ü

s=

m=

then the sum S
n
=X

1
+X

2
+......+X

n
 is asymptotically normal with

1

m

m
n

=  and variance 1

2
n2 s=s ”.

2.3.4 Liapounoff’s Central Limit Theorem

This particular case of generalised central limit theorem was developed by

Liapounoff. The statement of the theorem is given as follow :

“Let X
1
, X

2
, ...., X

n
 be independent random variable such that

n,....,2,1i
)X(V

)x(E

2

ii

ii
=

ïþ

ï
ý
ü

s=

m=

Let us suppose that third absolute moment, say ò
3

i
 of X

i
 about its

mean exists, i.e.



(21)

{ } n,.....,2,1i;|X|E
3

i

3
ii =m-=ò  is finite.

Further let ò å ò
=

=
3 n

1i

3

i
.

If ®µn

lim 0=
s
ò

, the sum X=X
1
+X

2
+......+X

n

is asymptotically N ),( 2sm , where

å
=

m=m
n

1i

i  and å
=

s=s
n

1i

2

i
2

”

Check Your Progress

1. Define Standard Normal Variate.

2. What is the assertion of the statistic under Central Limit Theorem?

3. Name the particular cases of Central Limit Theorem.

Example: A certain group of people receives government welfare

benefit of Rs. 110/- per week with a standard deviation of Rs. 20/-. If a

random sample of size 25 people is drawn, what is that probability that

their mean benefit will be greater than Rs. 120/- per week?

Solution : We are given,

20

120X

110

=

=

=

s

m

and n = 25

5.2
4

10

25
20

120

n

X
Z ===

-
=\
s

m

We are to find,

)5.2( >zP

0062.0

4938.05.0

)5.20(5.0

=

-=

<<-= zP

which is the required probability.
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2.4 Estimations of the Mean and the Variance of the Sampling

Distribution of the Sample Mean

Let n21 x,..........x,x  be a random sample of size n from a large population

n21 X,..........X,X  of size N whose mean is m  and variance is 2s .

The mean of the sampling distribution of the sample mean

n

x.......xx
x n21 +++
=

Now, úû

ù
êë

é +++
=

n

x...xx
 ExE n21)(

     [ ]n21 x...xx E
n

++=
1

      = [ ])E(...)E()E( nxxx
n

+++ 21

1

     [ ] )1()(...)()(
1

21     xxx 
n

n ¾®¾+++= EEE

Since ),...2,1( nixi =  is a sample observation from the population

),...2,1( NiX i = , hence it can take any one of the values N21 X...,X,X

each with equal probability 
N

1
.

N21i X
1

...X
1

X
1

)x(
NNN

E +++=\

 
( )

n. to 1 from i each for ,

X...XX
N

1
N21

m=

+++=

Thus, m=== )(...)()( 21 nx xx EEE

[ ]terms n to ... 
n

1
)x(E)1( +m+m=Þ\

        m= n 
n

.
1

        m=
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which shows that the mean of the sampling distribution of sample

mean x  is the population mean m .

Again, ÷
ø

ö
ç
è

æ ++
=

n

x...xx
 Var)x( Var n21

[ ] ) (VarVarVar 2)(...)()(
1

212
   xxx

n
n ¾®¾+++=

the covariance terms vanish since the sample observations are

independent of each other.

Now, [ ]2
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2.5 Summing Up

The central limit theorem statis that for a random sample of size n

drawn from a non-normal population with mean and variance, the sample

mean approximately follows a noraml distribution with mean and variance.

The larger the value of the size of the sample, the better will be the

approximation to the normal.

The mean of the sampling distribution of sample mean x  is the

population mean m  and variance of the sample mean is  
n

σ 2

. Further, we

calculate S.E. )xV()x( = .
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2.6 Model Questions

1. Prove that the expectation of sample mean x  is the population mean

μ  and the variance of sample mean is 
n

σ 2

, where 2σ  is population

variance and n is the sample size.

2. For a distribution with unknown mean μ  has variance equal to 1.5.

Use central limit theorem to find how large a sample should be taken

from the distribution in order that the probability will be at least 0.95

that the sample mean will be withing 0.5 of the population mean.

3. The life time of a certain brand of an electric bulb may be considered

a random variable with mean 1200 hours and standard deviation 250

hours. Find the probability using central limit theorem, that the average

life-time of 60 bulbs exceeds 1400 hours.

4. State the Lindberg-Levy Central Limit Theorem.

5. Define Central Limit Theorem. Write few applications of Central Limit

Theorem.

2.7 References and Suggested Readings

1. Hogg, Tanis, Rao; Probability and Statistical Inference; Pearson.

2. Bhuyan K.C.; Probability Distribution Theory and Statistical Inference;

New Central Book Agency (P) Ltd.

3. Gupta S.C. & Kapoor V.K.; Fundamentals of Mathematical Statistics;

Sultan Chand & Sons.

4. Hazarika P.; Essential Statistics for Economics and Commerce;

Akansha Publishing House.

5. Rao Radhakrishna C., Linear Statistical Inference and its Applications;

Wiley Eastern Limited.

******
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Unit-3

Point Estimation and Interval Estimation for

Population Parameter

Unit Structure:

3.1 Introduction

3.2 Objectives

3.3 Theory of Estimation

3.4 Point Estimation

3.5 Interval Estimation

3.6 Summing Up

3.7 Model Questions

3.8 References and Suggested Readings

3.1 Introduction

The theory of statistical inference is based on sampling theory for making

inferences about a population. The primary aim of sampling is to study the

features of a population or to estimate the values of its parameter(s). It may

be pointed out that it is possible to get reliable information about a population

on the basis of sample information even if nothing is known about the

population.

Estimation of population parameters by means of sample statistic is one of

the important problems of statistical inference. This is often unavoidable for

economic and business decisions and research studies. Thus, we can define

the term estimation as follows -

“It is a procedure by which sample information is used to estimate the

numerical magnitude of one or more parameters of the population. A function

of sample values is called on estimator (or statistic) while its numerical value

is called an estimate.” For example x  is an estimator of population mean

m . On the other hand, if x =50 for a sample, the estimate of population

mean is said to be 50.

3.2 Objectives

This unit is an attempt to have the basic ideas of Estimation. After going

through this unit you will be able to –

· understand the concept of estimation
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· understand point estimation and interval estimation

· explain the characteristics of a good estimator

· discuss the techniques of solving practical problems

3.3 Theory of Estimation

Let X be a random variable with probability density function or probability

mass function ),...,;x( f k21 qqq , where 
kqqq ,..., 21
 are k parameters of

the population.

Suppose, a random sample )x, ... ,x,x( n21  of size n is drawn from the

population and we are to estimate the k parameters 
kqqq ,..., 21
. In order

to be specific, let x be a normal variate so that its probability density function

can be written as ),:x( N sm . Here, we may be interested to estimate the

value of m  or s .

It should be noted that, there may exist several estimators of a parameter,

e.g., we can have any of the sample mean, median, mode, geometric mean,

harmonic mean etc., as an estimator of population mean m . Similarly, we

can use either 
2

i )xx(
n

1
S å -=  or 

2

i )xx(
1-n

1
S å -=  as an

estimator of population standard deviation s .

This technique of estimation, where a single state like mean, median,

Standard Deviation etc., is used as an estimator of population parameter, is

known as Point Estimation. On the other hand, if an interval is estimated in

which the value of the parameter is expected to lie, the procedure is termed

as interval Estimation. The estimated interval is also termed as Confidence

Interval.

3.4 Point Estimation

There can be more than one estimators of a population parameter. So, it is

necessary to determine a good estimator out of a number of available

estimators. We know that, a function of random variables )x, ... ,x,x( n21 ,

is a random variable. Therefore, a good estimator is one whose distribution

is more concentrated around the population parameter. Thus, we may define

point estimation as follows :
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A particular value of a statistic which is used to estimate a given parameter

is known as point estimate or estimator of the parameter.

According to R. A. Fisher, the founder of the theory, the following are some

of the criteria of a good estimator :

(i)  Unbaidsedness

(ii)  Consistency

(iii)  Efficiency

(iv)  Sufficiency

(i) Unbiasedness :

A statistic t = t )x, ... ,x,x( n21  is said to be an unbiased estimator of a

parameter q  if q=)(tE . If q¹)(tE , then it is said to be a biased estimator

of q . The magnitude of bias = q-)(tE .

We have seen that, m=)(xE , where m  is the population mean, x  is said

to be an unbiased estimator of the population mean m . But, since

22 )S(E s¹ , where ( )å -=
i

2

i
2 xx 

n

1
S  is not an unbiased estimator of

the population variance 2s . On the other hand, since 22 )S(E s= , where

( )å -
-

=
i

2

i
2 xx

1n

1
s  is an unbiased estimator of  2s . However, since

n

1n
  and  s

n

1n
S 22 --

=  approximates 1 when n is large, say, 30³n  for

large sample, i.e., samples with size greater than or equal to 30, S can be

taken as an estimator of s .

It should be noted that, a statistic t is said to be positively or negatively

biased according as 0)( >q-tE  or <0, i.e., q<q> ortE  )(

One should observe that the bias of an estimator usually decreases as the

size of the simple increases.

(ii) Consistency :

A statistic )x,...,x,x(tt n21nn =  is said to be a consistent estimator

of a parameter q  if nt  converges to q  in probability, i.e.,

1)t(P lim n
n

=q¾®¾
µ¾®¾
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i.e., { } 0¾®¾>q- EP nt  as µ¾®¾n  for every 0Î>

It should be noted that, consistency is essentially a large sample

property and strictly speaking it concerns not just one statistic, but a sequence

of statistics.

We may note that x  is a consistent estimator of population mean

m  because m=)(xE  and 0)(
2

¾®¾
s

=
n

xVar  as a¾®¾n

Note : An unbiased estimator is necessarily a consistent estimator.

(iii) Efficiency :

It is possible to get many unbiased consistent estimators of a

parameter. In such a situation efficiency is the criterion that decides the

goodness of an estimator. If there exist several consistent estimators for a

parameter q , then the one whose sampling variance is minimum is known

as the most efficient estimator.

Let us consider, 
1t and 

2t  be two estimators of a population

parameter  q such that both are either unbiased or consistent. Now, 
1t is

said to be more efficient estimator than 
2t  if Var (

1t ) < Var (
2t ).

For example, the sample mean x  and sample median Me both can

be used as an estimator of the population mean m . We have seen that,

m=)(xE  and m=)( eME , for large sample only. Again, 
n

x
2

)(
s

=V  and

n2
)(

2ps
=eMV .

But, )()( eMVxV <

So, sample mean x  is more efficient than the sample median Me.

(iv) Sufficeincy :

An estimator is said to be a sufficient estimator if it utilises all the

information given in the sample about the parameter, i.e., a statistic

)x,...,x,x( tt n21=  based on a sample drawn from a population having

probability density function (p.d.f.) ),( qx f  is said to be a sufficient estimator

of q  if it contains all information about the parameter q , i.e., if the conditional

distribution of n21 x,...,x,x  for a given value of t is independent of q , i.e., if

( ){ }0n21 ttx,...,x,xF =  does not depend on q .
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It is easy to observe that x  is a sufficient estimator of m .

Sufficient estimators are the most desirable but are not very

commonly available. The following points must be noted about sufficient

estimators :

1. A sufficient estimator is always consistent.

2. A sufficient estimator is most efficient if an efficient estimator exists.

3. A sufficient estimator may or may not be unbiased.

Methods of Points Estimation :

There are several methods of obtaining a point estimator of the

population parameter. We shall, however, use the most popular method of

maximum likelihood.

Let n21 x,...,x,x  be a random sample of n independent observations

from a population with probability density function (p.m.f) f (x;q ), where

q  is unknown parameter for which we desire to find an estimator..

Since n21 x,...,x,x  are independent random variables, their joint

probability function or the probability of obtaining the given sample, termed

as likelihood function, is given by

);x(f. ........ .);x(f).;x(fL n21 qqq=

   Õ
=

q=
n

1i

i );x(f

We have to find the value of q  for which L is maximum. The

conditions for maxima of L are :

00
2

2

<
q

=
q d

Ld

d

dL
 and .

The value of q  satisfying these conditions is known as Maximum

Likelihood Estimator (MLE).

Generalising the above, if L is a function of k parameters

kqqq ,...,, 21
, the first order conditions for maxima of L are :

0...
21

=
q¶
¶

==
q¶
¶

=
q¶
¶

k

LLL

From above, we will get k simultaneous equations in k parameters

kqqq ,...,, 21
, and can be solved to get k maximum likelihood estimators.
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In most cases, it is convenient to work using logarithm of L. Since

log L is a monotonic transformation of L, the maxima of L and maxima of

log L occur at the same value.

Example : Let a random sample of n observations nxxx ,...,, 21  be

drawn from a normally distributed population.

(i) If mean is unknown and the variance is known, find the maximum

likelihood estimate of the mean,

(ii) if the mean is known but the variance is unknown, find the

maximum likelihood estimate of the variance.

Solution : (i) Here 

( )
2

2

2

22

1
),( s

m-
-

ps
=m

ix

i exf

We have,

),(.......),(),( 21 m··m·m= nxfxfxfL

   ( ) å
ps= s

m-
-- 2

2

2

)(

222
ixn

e 

å m-
s

-ps-=Þ 2

2

2 )(
2

1
)2(log

2
log iee x

n
L

Differentiating partially w.r.t.m , we get

å m-
s

=
m¶
¶

)(
11

2 ix
L

L

The likelihood equation for estimating m  is

å =m-
s

Þ

=
m¶
¶

Þ

=
m¶
¶

0)(
1

0
1

0)(log

2 ix

L

L

Le

x

n

x

nx

x

i

i

i

=mÞ

=mÞ

=m-Þ

=m-Þ

å

å
0

0)(

E

Thus, the maximum likelihood estimate of m  is the sample mean.
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(ii) ( )
( )

2

2

2

2

2

2

1
, s

m-
-

ps
=s

ix

i  exf

Now, ( ) ),(,),,(., 22

2

2

1 sss= nxf . . . xfxfL

( )
( )å

ps= s

m-
-- 2

2

2222
ix

 n

e 

2

2

2 )(
2

1
)2(log

2
log m-

s
-ps-=Þ å iee x

n
L

Differentiating partially w.r.t. 2s , we get

å m-
s

+
s

-=
s¶
¶ 2

2222
)(

)(2

1

2

1
ix

nL

L

The likelihood equation for estimating 2s is

n

x

x
n

e

å

å

m-
=sÞ

=m-
s

+
s

-Þ

=
s¶
¶

Þ

=
s¶
¶

2

2

2

222

2

2

)(

0)(
)(2

1

2

0
1

0)(log

i

i

L

L

L

Thus, sample variance defined by 
n

xiå m-
=

2

2
)(

S  is an estimator

of 
2s .

Example : A random sample of size 5 is taken from a population

containing 100 units. If the sample observations are 10, 12, 13, 7, 18, find

(i)  an estimate of the population mean

(ii)  an estimate of the standard error of sample mean

Solution : The estimate of the population mean (m ) is given by

x=m̂

The estimate of the standard error of sample mean is given by
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SRSWOR
N

Nsn
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1

n
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1n
for 

n
 

1n
x
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=
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 i.e, SRSWOR
N

N

n

S
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n
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Ù

Now, let us prepare the following table

x x2

10 100

12 144

13 169

7 49

18 324

––––––– –––––––

å - 60x å = 7862x

2222 12
5

7861

12
5

60

-=-=

===\

å

å

xx
n

  

n

x
x

S

       
2)633.3(

20.13

14420.157

=

=

-=

Hence we have

12ˆ =m

15

633.3
SEx

-
=

Ù
 for SRSWR

       
1100

5100
.

15

633.3

-
-

-
=  for SRSWOR

i.e. 
xSE

Ù
=1.82 for SRSWR

  = 1.78 for SRSWOR
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Example : A random sample of size 65 was taken to estimate the

man annual income of 1000 lower income families and the mean and standard

deviation were found to be Rs. 6300 and Rs. 9.50 respectively. Find the

standard error of the sample mean if sampling was done without replacement.

Solution : Since population is finite and sampling is drawn without

replacement hence S.E. of x  is given by

1N

nN

n

S
SEx

-
-

=
Ù

Here S = 9.5, N = 1000, n = 65

14.1.

61.31

58.30

06.8

5.9
.

11000

651000

65

5.9
...

              

             

x

Rs

Rs

RsES

=

úû

ù
êë

é ´=

ú
û

ù
ê
ë

é

-
-

´=\
Ù

3.5 Interval Estimation

Instead of estimating a parameter q  by a single value, we may

consider an interval of values which is supposed to contain the parameter

q . An interval estimate is always expressed by a pair of unequal real values

and the unknown parameter q  lies between these two values. Hence, an

interval estimation may be defined as specifying two values that contains

the unknown parameter q  on the basis of a random sample drawn from the

population in all probability.

On the basis of random sample drawn from the population

characterised by an unknown parameter q , let us find two statistics 
1t  and

2t  such that

22

11

)(

)(

a=q>

a=q<

t p

t p

for any two small positive quantities 
1a  and 

2a .

Combining these two conditions, we may write

a-=£q£ 1)( 21 tt p  where 
21 a+a=a

where a  is called the level of significance. The interval [
1t ,

2t ]

within which the unknown value of the parameter q  is expected to lie is
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called the confidence interval, the limits 
1t  and 

2t  so determined are known

as confidence limits and 1–a  is called the confidence level of confidene

coefficient. The term ‘confidence interval’ has its origin in the fact that if we

select a=0.05 , then we feel confident that the interval [
1t ,

2t ], would

contain the parameter q  in (1–a ) % or (1–0.005)% or 95% of cases and

the amount of confidence is 95%. This further means that if repeated samples

of a fixed size are taken from the population with the unknown parameter

q , then in 95% of the cases, the interval [
1t ,

2t ] would contain qand in the

remaining 5% of the cases, it would fail to contain q .

Check Your Progress

1. What do you mean by estimation?

2. What are the criteria of a good estimator?

3. Distinguish between point estimation and interval estimation.

Computation of Confidene Interval:

Let us assume that we have taken a random sample of size n from

a normal population with mean m  and standard deviation s . We assume

further that the population standard deviation s  is known i.e. its value is

specified. We know that the sample mean x  is normally distributed with

mean m  and standard deviation = 
n

x

s
=SE .

If the assumption of normality is not tenable, then also the sample

mean follows normal distribution approximately, statistically known as

asymptotically, with population mean m  and standard diviation as 
n

s
,

provided the sample size n is sufficiently large. If the sample size n>30,

then the asymptotic normality assumption holds. In order to select the

appropriate confidence interval to the population mean, we need to determine

a quantity p, say, such that

am -=´+££´- 1)..px..px( p xx ESES

which finally leads to

2
1)(

a
-=f p

Choosing as 0.05, we have
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96.1

)96.1(975.0
2

05.0
1)(

=Þ

f==-=f

p

p

Hence 95% confidence interval to m  is given by

[ ]xx xx ..96.1,..96.1 ESES ´+´-

Similarly, 99% confidence interval to m  is given by

[ ]xx xx ..58.2,..58.2 ESES ´+´-

Below we mention the confidence limits of some important statistics

for large random samples.

*  Confience limits for population proportion P:

95% confidence limits are : p ±  1.96 ´  S.E.(p)

99% confidence limits are : p ±  2.58 ´  S.E.(p)

*  Confidence limits for that difference 
21 mm -  of two population

means 
21 mm    and :

95% confidence limits are : )xx.(.96.1)xx( 2121 -´±- ES

99% confidence limits are : )xx.(.58.2)xx( 2121 -´±- ES

*  Confience limits for the difference 
21 PP -  of two population

proportion :

95% confidence limits are : ).(.  96.1)( 2121 ppESpp -±-

99% confidence limits are : ).(.  58.2)( 2121 ppESpp -±-

Example : Construct 95% and 99% confidence intervals for mean

of a normal population.

Solution : Let n21 x,...,x,x  be a random sample of size n from a

normal population with mean m  and standard deviation s .

We know that sampling distribution of x  is normal with mean m

and standard error 
n

s
.

n
s

m-
=\

x
Z  will be a standard normal variate.

From the table of areas under standard normal curve, we can write

95.0)96.1z96.1(P =££-
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or 95.096.1

n

-x
96.1 =

÷
÷
÷

ø

ö

ç
ç
ç

è

æ
££-

s
m

P  ––––––––– (A)

or 95.0
n

96.1x
n

96.1 =÷
ø

ö
ç
è

æ
£-£-

s
m

s
P

Now, m
s

-£- x
n

96.1

or 
n

96.1x
s

m +£  ––––––––––––– (1)

Similarly, 
n

96.1x
s

£m-

or 
n

96.1x
s

-³m  –––––––––––––– (2)

Combining (1) and (2), we have

n
96.1x

n
96.1x

s
+£m£

s
-

Thus, we can write equation (A) as

95.0
n

96.1x
n

6.19xP =÷
ø

ö
ç
è

æ s
+£m£

s
-

This gives us a 95% confidence interval for the parameter m .

Similarly, we can construct a 99% confidence interval for m  as

99.0
n

58.2x
n

58.2xP =÷
ø

ö
ç
è

æ s
+£m£

s
-

Example : A pharmaceutical company wants to estimate the mean

life of a particular drug under typical weather conditions. A simple random

sample of 81 bottles yields the following information :

Sample mean = 23 months

Population variance = 6.25 (months)2

Find an interval estimate with a confidence level of (i) 90% and

(ii) 98%
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Solution : Since the sample size n = 81 large, the mean life of the

drug under consideration ( x ) is asymptotically normal with population mean

m  and Standard Error = Standard deviation

= 2778.0
9

50.2

81

25.6
===

s

n

(i)  Consulting Biometrika table, we find that

6450.1

95.0)645.1(

95.0
2

10.0
1)(

2
1)(

=Þ

=fÞ

=-=fÞ

a
-=f

p

p

p

%90\  confidence interval for m  is

[ ]xx px,px SESE ´+´-

[ ]
[ ]4570.23,5430.22

2778.0645.123,2778.0645.123

 

  

=

´+´-=

(ii) In this case,

325.2

99.0)325.2(

99.0
2

02.0
1)(

=Þ

=Þ

=-=

r
f

rf

Thus, 98% confidence interval to m  is

[23-2.3250×0.27778, 23+2.3250×0.27778]

= [22.35416, 23.6451]

Example : A random sample of 100 days shows an average daily

sale of Rs. 1000 with a standard deviation of Rs. 250 in a particular shop.

Assuming a normal distribution, find the limits which have a 95% chance of

including the expected sales per day.

Solution : As given, n = 100

x  = sample average sales = Rs. 1000

s = sample standard deviation = Rs. 250

\  95% confidence interval to the expected sales per day (m ) is

given by
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[ ]
[ ]25.1049.,75.950.

25.491000.

1100
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3.6 Summing Up

The theory of estimation is divided into two approaches namely point

estimation and Interval estimation. In point estimation a single value of the

statistic is used to provide an estimate of the parameter. On the other hand,

in interval estimation, a range is specified within which the value of the

parameter is most likely to lie with a known probability.

The characteristics of a good estimator under point estimation are

unbiasedness, consistency, efficiency and sufficiency. There are several

methods for obtaining the point estimates.

In interval estimation, we obtain the probable interval within which the

unknown value of the parameter is expected to lie is called the confidence

interval.

3.7 Model Questions

1. The following observations constitute a random sample from an

unknown population. Estimate the mean and S.D. of the population.

Also find the S.E. of sample means : 14,19,17,20,25.

2. A random sample of the heights of 100 students from a large population

of students in a university having S.D. of 0.75 ft. has an average height

of 5.6 ft. Find (i) 95% and (ii) 99% confidence limits for the average

height of all the students of the university.

3. What do you understand by point Estimation? When would you say

that estimate of a paraneter is good? Explain briefly.

4. State and explain the principle of maximum likelihood (M.L.) for

estimation of population parameter.

5. Discuss the concept of interval estimation and provide suitable example.

6. Explain the following terms:

(i) Sufficient estimator
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(ii) Efficient estimator

(iii) Maximum Likelihood estimator
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