

(1)

GAUHATI UNIVERSITY

Institute of Distance and Open Learning

Second Semester

(under CBCS)

M.Sc.-IT

Paper: INF-2036

 SOFTWARE ENGINEERING

Contents:

BLOCK I: FUNDAMENTALS OF SOFTWARE ENGINEERING

AND SOFTWARE DESIGN

Unit 1 : Introduction to Software Engineering

Unit 2 : Software Process Models

Unit 3 : Software Requirements and Analysis

Unit 4 : Software Project Planning

Unit 5 : Software Decomposition and Cost Estimation Techniques

Unit 6 : Software Design I

Unit 7 : Software Design II

Unit 8 : Software Design III

BLOCK II: SOFTWARE CODING, TESTING AND MAINTENANCE

Unit 1 : Software Coding

Unit 2 : Software Testing I

Unit 3 : Software Testing II

Unit 4 : Software Maintenance

Unit 5 : Software Maintenance Models

BLOCK III: SOFTWARE RELIABILITY AND SOFTWARE

MANAGEMENT

Unit 1 : Software Reliability

Unit 2 : Software Quality Management

Unit 3 : Software Configuration Management

M.Sc.-IT-19-II-2036

(2)

Contributors:

Mr. Hem Chandra Das (Block I : Units- 1 & 2)
Asstt. Prof., Dept. of Computer
Science & Technology
Bodoland University
Kokrajhar (BTAD), Assam

Mrs. Chayanika Talukdar (Block I: Units- 3 & 4)
Asstt. Prof., Dept. of Computer Science
NERIM, Guwahati, Assam

Mrs. Shilpi Singh (Block I : Unit- 5, Block II: Units- 1 &2)
Asstt. Prof., Dept. of Computer Science
LCB College, Guwahati, Assam

Dr. Gautam Chakrabarty (Block I : Units- 6 & 7)
Asstt. Prof., Dept. of Computer Science
NERIM, Guwahati, Assam

Mr. Subrat Chetia (Block I: Unit- 8)
Asstt. Prof., Dept. of Computer Science
PDUAM, Dalgaon,Assam

Mr. Debashis Dev Misra (Block II: Unit- 3)
Asstt. Prof., Dept. of Computer Science and Engineering
Royal Global University, Guwahati, Assam

Mrs. Pinky Saikia Dutta (Block II : Unit- 4)
Asstt. Prof., Dept. of Computer Science and Engineering
GIMT, Guwahati, Assam

Dr. Utpal Barman (Block II: Unit- 5)
Asstt. Prof., Dept. of Computer Science and Engineering
GIMT, Guwahati, Assam

Dr. Aniruddha Deka (Block III: Unit- 1)
Asstt. Prof., Dept. of Computer Science and Engineering
Royal Global University, Guwahati, Assam

Mr. Adarsh Pradhan (Block III: Units- 2 & 3)
Asstt. Prof., Dept. of Computer Science and Engineering
GIMT, Guwahati, Assam

Content Editor:

Prof. Shikhar Kumar Sarma

Head, Dept. of Information Technology, Gauhati University

Course Coordination:

Prof. Dandadhar Sarma Director, IDOL, Gauhati University

Prof. Anjana Kakoti Mahanta Prof., Dept. Computer Science, G.U.

Cover Page Designing:

Bhaskar Jyoti Goswami IDOL, Gauhati University

May, 2022

© Copyright by IDOL, Gauhati University. All rights reserved. No part of this
work may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, or otherwise.
Published on behalf of Institute of Distance and Open Learning, Gauhati
University by the Director, and printed at Gauhati University Press, Guwahati-
781014.

BLOCK I:

FUNDAMENTALS OF SOFTWARE

ENGINEERING AND

SOFTWARE DESIGN

1 | P a g e

Space for learners: UNIT 1: INTRODUCTION TO SOFTWARE

ENGINEERING

Unit Structure:

1.1 Introduction

1.2 Unit Objectives

1.3 Software

1.4 Characteristics of Software

1.5 Classification of Software

1.6 Software Crisis

1.6.1 Causes of Software Crisis

1.6.2 Solution of Software Crisis

1.7 Software Engineering

1.8 Approaches to Software Engineering

1.9 Software Engineering Challenges

1.10 Software Development Life Cycle (SDLC)

1.10.1 What is SDLC?

1.10.2 SDLC Models

1.11 Summing Up

1.12 Answers to Check Your Progress

1.13 Possible Questions

1.14 References and Suggested Readings

1.1 INTRODUCTION

 Software Engineering is a study and approach to the design,

development, operation, and maintenance of software systems that is

methodical, disciplined, and quantitative.

1.2 UNIT OBJECTIVES

Software engineering's main objective is to create software

development processes and procedures that can scale up for large

systems and can be utilized consistently to produce high-quality

2 | P a g e

Space for learners: software at a low cost and with a short cycle time. In this chapter we

discussed the characteristics of software, Classification of software,

software crisis, about software, software engineering, approach to

software engineering, software engineering challenges and software

development life cycle.

1.3 SOFTWARE

A programme or set of programmes containing instructions that

offer desired functionality is referred to as software. And

engineering is the process of creating something that fulfils a

specific function and solves problems in a cost-effective manner.

1.4 CHARACTERISTICS OF SOFTWARE

 Maintainability – The programme should be able to evolve to

suit changing requirements.

 Efficiency – Software should not waste computational

resources such as memory, CPU cycles, and so on.

 Correctness – If the various requirements mentioned in the SRS

document have been correctly implemented, a software product

is correct.

 Reusability – If the various modules of a software product can

be easily reused to construct other products, the product has

strong reusability.

 Testability – In this case, software aids in the creation of test

criteria as well as the evaluation of the software against those

requirements.

 Reliability – It's a criterion for software quality. Over an

indeterminate time period, the extent to which software may be

expected to accomplish its desired function.

 Portability – In this case, the software can be transferred from

one computer system or environment to another.

 Adaptability– In this situation, the programme supports a

variety of system constraints, and the user's needs can be met

by altering the software.

3 | P a g e

Space for learners: Interoperability – The ability of two or more functional units to

work together to process data.

1.5 CLASSIFICATION OF SOFTWARE

 System Software – System software is required to manage

computer resources and facilitate application programme

execution. This category includes operating systems,

assemblers, compilers, editors, drivers, linkers and loaders etc.

System software is required for the operation of a computer.

Operating systems controls the memory and operations of the

computer, as well as all of its software and hardware. The

compiler translates the programmer's source code (high-level

language) into a machine-level language (low-level language).

Assembler is a programme that translates assembly code(low-

level language) into machine code(target code).

 Networking and Web Applications Software – Computer

networking software offers the necessary functionality for

computers to communicate with one another and with data

storage facilities. When software is operating on a network of

computers, networking software is also used (such as World

Wide Web). It comprises all network administration software,

server software, security and encryption software, and web-

based application development tools such as HTML, PHP, and

XML, etc.

 Embedded Software – This sort of software is embedded in the

hardware, usually in the Read Only Memory (ROM), as part of

a larger system, and is used to support specific functions under

the control conditions. Software used in instrumentation and

control applications such as washing machines, satellites,

microwaves, and so on.

 Reservation Software – A reservation system is generally used

to store and retrieve information about air travel, vehicle

rentals, hotels, and other activities, as well as to conduct

transactions. They also provide access to bus and train

reservations; however they aren't always linked to the main

system. These are also used in the hotel business to

communicate computerised information to users, such as

4 | P a g e

Space for learners: making a reservation and making sure the hotel is not

overbooked.

 Business Software – This type of software is used to support

business applications and is the most common type of software.

Inventory management, accounting, banking, hospitals,

schools, stock markets, and other software are examples.

 Entertainment Software – Education and entertainment

software is a valuable tool for educational organisations,

particularly those who work with young children. There is a

wide range of entertainment software such as computer games,

educational games, translation software, mapping software,

etc.

 Artificial Intelligence Software – Expert systems, decision

support systems, pattern recognition software, artificial neural

networks, and other types of software are included in this area.

Complex problems are involved, and complex computations

using non-numerical algorithms have no impact.

 Scientific Software – Scientific and engineering software

supports a scientific or engineering user's requirements for

performing enterprise-specific tasks. This type of software is

created for specific applications using industry-specific

principles, techniques, and formulae. Software such as

PYTHON, MATLAB, AUTOCAD, PSPICE, ORCAD, and

others are examples.

 Utilities Software – These programmes execute specific jobs

and differ in size, cost, and complexity from other software.

Anti-virus software, speech recognition software, compression

programmes, and other programmes are examples.

 Document Management Software – To reduce paperwork,

Document Management Software is used to track, manage, and

store papers. Such systems can maintain track of all the many

versions created and edited by different users (history tracking).

Storage, versioning, metadata, security, as well as indexing and

retrieval are all typical features.

1.6 SOFTWARE CRISIS

The problem of building meaningful and efficient computer

programmes in the time allotted is referred to as a software crisis in

5 | P a g e

Space for learners: computer science. Despite rapidly expanding software demand,

complexity of software, and software issues, the software crisis was

caused by the use of the same workforce, methodologies, and tools.

With increase in the complexity of software, many software

problems arise because existing methods were insufficient.

If we continue to employ the same workforce, processes, and tools

in the face of rapidly expanding software demand, complexity, and

challenges, we will face issues such as software Size and Cost,

software budgeting, software efficiency, software quality, and

software managing and delivering, and so on. This is referred to as

a "software crisis."

1.6.1 Causes of Software Crisis

 Software's complexity and expectations are increasing on a

daily basis. Software is becoming more expensive and more

complex.

 The cost of owning and maintaining software was equal to the

cost of creating it.

 At the time, Projects were running late.

 Software was inefficient at the time.

 The software's quality was poor.

 Software frequently failed to fulfil criteria.

 The average software project is half an hour behind schedule.

 Software was never delivered at the time.

Software Crisis

Increasing

Demand

Increasing

Complexity

Increasing

Challenges

Same

Workspac

Same

Methods

Same

Tools

6 | P a g e

Space for learners: 1.6.2 Solution of Software Crisis

The crisis does not have a single solution. One possible solution of

software crisis is Software Engineering because software

engineering is a systematic, disciplined and quantifiable approach.

There are certain measures to follow in order to avoid a software

crisis:

 Software cost overruns are reduced.

 Software must be of excellent quality.

 Software development takes less time.

 Previous experience as a member of a software development

team.

 Software must be made available.

1.7 SOFTWARE ENGINEERING

Software engineering refers to the application of systematic

engineering principles to the creation of software products and

applications. It is a discipline of engineering concerned with the

analysis of user requirements, software design, development,

testing, and maintenance. Software engineering results in a product

that is both efficient and reliable.

1.8 APPROACHES TO SOFTWARE ENGINEERING

The following are some fundamental principles of good software

engineering:

 Better Requirement Analysis is a fundamental software

engineering technique that provides a clear picture of the

project. Finally, by producing a good software product that

meets user requirements, a thorough understanding of

customer requirements adds value to its consumers.

 The KISS (Keep it Simple, Stupid) philosophy should be

followed in all designs and implementations. It simplifies the

code, making debugging and maintenance becomes simple.

 The most crucial aspect of a software project's success is

maintaining the project's vision throughout the development

7 | P a g e

Space for learners: process. As a result of having a clear vision for the project, it

can be developed properly.

 Much functionality is included in software projects; all

functionalities should be designed using a modular approach

to make development faster and easier. Because of this

modularity, functions or system components are self-

contained.

 Abstraction is a specialisation of the idea of separation of

concerns for suppressing complex things and offering

simplicity to the customer/user, which means it provides only

what the user need and hides the rest.

 Consider this. Act is a must required principle in software

engineering, which says that before beginning to develop

functionality, you must first consider application architecture,

as a well-planned project development flow yields superior

results.

 When a developer combines all features, he or she may

subsequently discover that they are no longer needed. As a

result, adhering to the Never Add Extra approach is critical

because it implements just what is actually required, saving

time and effort.

 When other developers work on another developer's code,

they should not be startled and should not waste their time

trying to figure out what's going on. As a result, improving

documentation at critical stages is an excellent method to

develop software projects.

 The Law of Demeter should be obeyed since it separates

classes based on their functionality and decreases coupling

(connections and interdependence between classes).

 The developers should design the project in such a way that it

satisfies the principle of generality, which means that it

should not be limited or restricted to a specific set of

cases/functions, but rather should be free of unnatural

constraints and capable of providing comprehensive service to

customers who have specific or general needs.

 The principle of consistency is significant in coding style and

GUI (Graphical User Interface) design because consistent

8 | P a g e

Space for learners: coding style makes code easier to read and consistent GUI

makes user learning of the interface and software easier.

 Never waste time if something is needed but it is already out

of the way; instead, using open source to fix it in your own

way.

 Continuous validation ensures that a software system meets

its requirements and serves its intended function, resulting in

improved software quality control.

 To get out of the current technological market To meet users'

needs in the most up-to-date and progressive method, it's

critical to employ modern programming practises.

 To grow and handle rising demand for software applications,

scalability in software engineering should be maintained.

1.9 SOFTWARE ENGINEERING CHALLENGES

The first stage in the Requirement Engineering process is to collect

requirements. It assists the analyst in gaining understanding of the

problem domain, which is then utilised to create a formal software

specification. During this procedure, there are a variety of issues

and challenges that must be overcome. The following are a few of

them:

 Understanding large and complex system requirements is

difficult –]

The term " large" has two meanings:

(i) Due to the enormous number of users, there are

significant security and other constraints.

(ii) There will be a large number of functions to

implement.

 Undefined system boundaries – There might be no defined set

of implementation requirements. The customer may go on to

include several unrelated and unnecessary functions besides

the important ones, resulting in an extremely large

implementation cost which may exceed the decided budget.

 Customers/Stakeholders are not clear about their needs –

Customers themselves may be unsure about the

comprehensive list of functionalities they want in the software

9 | P a g e

Space for learners: at times. This can happen when people have a general notion

of what they want but haven't thought much about how to get

it done.

 Conflicting requirements are there –There's a chance that two

different project stakeholders will make demands that are

incompatible with each other's implementation. In some

cases, a single stakeholder may articulate two requests that are

mutually exclusive.

 Changing requirements is another issue – If the client

communicates a modification in the first set of specified

criteria through subsequent interviews or evaluations, it is

possible that the customer will alter their mind. While certain

criteria are simple to meet, dealing with constantly changing

requirements can be tough.

 Partitioning the system suitably to reduce complexity –

Sometimes projects are divided down into smaller modules or

functionalities, which are subsequently handled by distinct

teams. More division is required for more sophisticated and

large projects. It is necessary to guarantee that the divisions

are non-overlapping and self-contained.

 Validating and Tracing requirements – It is critical to double-

check the mentioned requirements before beginning the

implementation phase.Also, there should be forward as well

as backward traceability. For eg, all the entity names should

be the same everywhere, i.e., There should never be a

situation where the terms "EMLOYEE" and "EMPLOYEES"

are used interchangeably to refer to the same entity.

 Identifying critical requirements – It's critical to identify the

set of requirements that must be implemented at all costs. The

requirements should be prioritised so that the most important

ones can be implemented first and foremost.

 Resolving the “to be determined” part of the requirements –

Those needs that have yet to be resolved in the future are

included in the TBD set of requirements. It's best to keep the

number of such requirements as low as possible.

 Proper documentation, proper meeting time and budget

constraints – Maintaining adequate documentation is a

constant problem, especially when requirements change. Time

and budget constraints must also be carefully and

methodically managed.

10 | P a g e

Space for learners: 1.10 SOFTWARE DEVELOPMENT LIFE CYCLE

(SDLC)

The Software Development Life Cycle (SDLC) is a methodology

for producing high-quality software that follows a set of well

defined processes. It is a detailed strategy that explains how to

build, maintain, replace, and change or improve certain software.

The life cycle is a methodology for improving software quality and

the development process as a whole.

1.10.1 What is SDLC?

The Software Development Life Cycle, or SDLC, is a method for

producing high-quality, low-cost software in the least amount of

time. SDLC is a well-structured flow of stages that enables a

company to swiftly develop high-quality software that has been

thoroughly tested and is ready for production. Within a software

organisation, the SDLC is a process that is followed for a software

project

The stages of a typical SDLC are depicted graphically in the

following diagram.

The steps of a typical Software Development Life Cycle are as

follows:

 Requirement analysis

Requirement

Analysis

Design

Software
Development

Planning

Testing

Deployment and

Maintenance

SDLC

11 | P a g e

Space for learners: Planning and requirement gathering

 Software design such as architectural design

 Software development

 Testing

 Deployment and Maintenance

Stage 1: Requirement Analysis

The most critical and fundamental level of the SDLC is requirement

analysis. It is carried out by the team's top members, with input

from the customer, the sales department, market surveys, and

industry domain specialists. This information is then utilised to

establish the main project approach and conduct product feasibility

studies in the areas of economics, operations, and technology.

Stage 2: Planning and requirement gathering

The planning step also includes determining the project's quality

assurance requirements and identifying the project's risks. The goal

of the technical feasibility study is to identify the various technical

approaches that can be used to successfully implement the project

with the least amount of risk.

Following the requirement analysis, the product needs must be

properly defined and documented, and they must be approved by

the client or market analysts. This is accomplished through the use

of an SRS (Software Requirement Specification) document, which

contains all of the product requirements that must be designed and

developed throughout the project life cycle.

Stage 3: Designing the Product Architecture

SRS is the reference for product architects to come out with the best

architecture for the product to be developed. Typically, many design

approaches for the product architecture are presented and

documented in a DDS - Design Document Specification based on

the criteria given in the SRS.

This DDS is reviewed by all essential stakeholders, and the optimal

design strategy for the product is chosen based on many parameters

such as risk assessment, product robustness, design modularity,

budget, and time restrictions.

A design approach identifies all of the product's architectural

modules, as well as the product's communication and data flow

12 | P a g e

Space for learners: representation with external and third-party modules (if any). All of

the modules of the proposed architecture's internal design should be

thoroughly documented in DDS, down to the tiniest of details.

Stage 4: Software Development

The actual development of the product begins at this stage of the

SDLC. During this stage, the programming code is generated

according to DDS. Code generation can be done quickly and easily

if the design is done in a precise and organised manner.

Developers must adhere to their organization's coding rules, and

programming tools such as compilers, interpreters, and debuggers

are used to develop code. Code is written in a variety of high-level

programming languages, including C, C++, Pascal, Java, and PHP.

The programming language is chosen based on the type of software

that is being developed.

Stage 5: Testing

As testing activities are mainly included in all phases of SDLC in

modern SDLC models, this stage is usually a subset of all stages.

This stage, on the other hand, relates to the product's testing stage,

during which faults are reported, tracked, corrected, and retested

until the product meets the SRS's quality criteria.

Unit, integration, system, and acceptance testing are all performed

during this stage.

Stage 6: Deployment and Maintenance

The product is formally released in the appropriate market once it

has been thoroughly tested and is ready for deployment. Product

deployment can also be done in stages, depending on the company's

business strategy. The product might be released in a limited market

first, then tested in a real-world setting (UAT- User acceptance

testing).

The product may then be released as is or with proposed

enhancements in the intended market segment based on the

feedback. After a product is launched, it is maintained for existing

customers.

13 | P a g e

Space for learners: 1.10.2 SDLC Models

There are various software development life cycle models defined

and designed which are followed during the software development

process. These models are also referred as Software Development

Process Models. Each process model follows a Series of steps

unique to its type to ensure success in the process of software

development.

Following are the most important and popular SDLC models

followed in the industry −

 Waterfall Model

 Iterative Model

 Prototyping Model

 Spiral Model

 Incremental Model

 V-Model

 Big Bang Model

Other related methodologies are Agile Model, RAD Model, Rapid

Application Development and Time Boxing Models.

CHECK YOUR PROGRESS

1. What is software?

(A) Software is a documentation and configuration of data

(B) Software is a set of programs

(C) Software is a set of programs, documentation and configuration

of data

(D) None of the above

2. SDLC stands for

(A) System Development Life Cycle

(B) Software Design Life Cycle

(C) Software Development Life Cycle

(D) System Design Life Cycle

3. RAD stands for

14 | P a g e

Space for learners: (A) Relative Application Development

(B) Rapid Application Development

(C) Rapid Application Document

(D) None of the mentioned

4. What is the essence of software engineering?

(A) Requirements Definition, Design Representation, Knowledge

Capture and Quality Factors

(B) Maintaining Configurations, Organizing Teams, Channeling

Creativity and Planning Resource Use

(C) Time/Space Tradeoffs, Optimizing Process, Minimizing

Communication and Problem Decomposition

(D) Managing Complexity, Managing Personnel Resources,

Managing Time and Money and Producing Useful Products

5. Which of the following is not a description of planning?

(A) Planning is used to find credible ways to produce results with

limited resources and limited schedule flexibility

(B) Planning is finding new personnel resources to support labor

intensive development

(C) Planning is identifying and accommodating the unforeseen

(D) Planning is negotiating compromises in completion dates and

resource allocation

6. How does a software project manager need to act to minimize

the risk of software failure?

(A) Double the project team size

(B) Request a large budget

(C) Form a small software team

(D) Track progress

7. Views of quality software would not include

(A) Optimizing price and performance

(B) Minimizing the execution errors

(C) Conformance to specification

(D) Establishing valid requirement

15 | P a g e

Space for learners: 8. Software measurement is useful to

(A) Indicate quality of the product

(B) Track progress

(C) Assess productivity

(D) All of the above

9. Symptoms of the software crisis would include

(A) Software delivered behind schedule

(B) Software exceeding cost estimate

 (C) Difficult to maintain and Unreliable

(D) All of the above.

10. A systematic approach to software development, as epitomized

by the various life-cycle models, is useful in

(A) Helping us understand the nature of the software product

(B) Convincing the customer that we know what we are doing

(C) Filling texts on software engineering

(D) Managing the various activities necessary to get the job done

1.11 SUMMING UP

 A programme or set of programmes containing instructions

that offer desired functionality is referred to as software.

 The Characteristics of Software are: Maintainability,

Efficiency, Correctness, Reusability, Testability, Reliability,

Portability, Adaptability, Interoperability.

 System Software is required to manage computer resources

and facilitate application programme execution.

 Software such as PYTHON, MATLAB, AUTOCAD,

PSPICE, ORCAD falls under the category of Scientific

Software.

 The problem of building meaningful and efficient computer

programmes in the time allotted is referred to as a software

crisis in computer science.

 Software's complexity and expectations are increasing on a

daily basis. Software is becoming more expensive and more

complex. This is one of the major causes of Software Crisis.

 Software engineering refers to the application of systematic

engineering principles to the creation of software products

16 | P a g e

Space for learners: and applications. It is a discipline of engineering concerned

with the analysis of user requirements, software design,

development, testing, and maintenance.

1.12 ANSWERS TO CHECK YOUR PROGRESS

1. Ans. (C)

2. Ans. (C)

3. Ans. (B)

4. Ans. (D)

5. Ans. (D)

6. Ans. (D)

7. Ans. (D)

Reason: minimizing the execution errors would not included in

views of quality software.

8. Ans. (D)

9. Ans. (D)

Reason: When software delivered behind schedule, software

exceeding cost estimate, unreliable and difficult to maintain

then it is said that software crisis.

10. Ans. (D)

Reason: A systematic approach to software development, as

epitomized by the various life-cycle models, is useful in managing

the various activities necessary to get the job done.

1.13 POSSIBLE QUESTIONS

1. What are the important categories of software?

2. Describe the software development process in brief.

3. Name two tools which are used for keeping track of software

requirements?

4. What is feasibility study?

5. What are functional and non-functional requirements?

17 | P a g e

Space for learners: 1.14 REFERENCES AND SUGGETSED READINGS

 https://www.geeksforgeeks.org/software-engineering-

introduction-to-software-engineering/

 https://www.tutorialspoint.com/sdlc/sdlc_overview.htm

 Fundamentals of Software Engineering, Rajib Mall

18 | P a g e

Space for learners: UNIT 2: SOFTWARE PROCESS MODEL

Unit Structure:

2.1 Introduction

2.2 Unit objectives

2.3 Software process model

2.3.1 Waterfall Model

2.3.2 Prototyping Model

2.3.3 Spiral Model

2.3.4 Incremental Model

2.3.5 Time Boxing Model

2.4 Verification and Validation

2.4.1 Verification

2.4.2 Validation

2.5 Summing Up

2.6 Answers to Check Your Progress

2.7 Possible Questions

2.8 References and Suggested Readings

2.1 INTRODUCTION

A software process (also known as software methodology) is a

collection of related operations that leads to software production.

These actions could include creating new software or changing an

existing one.

The following four activities are required in any software

development process:

 Software specification (or requirements engineering): Define the

software's main functions and constraints.

 Software design and implementation: It will be necessary to

design and programmed the software.

 Software verification and validation: The software must meet the

customer's requirements and correspond to its specifications.

 Software evolution (software maintenance): The software is

constantly updated to meet changing customer and market needs.

19 | P a g e

Space for learners: 2.2 UNIT OBJECTIVES

A Software Process Model gives a roadmap for software engineering

work. It defines the flow of all activities, actions and tasks. The main

Objective is to introduce the generic concept of software engineering

process model with the concept of software process and software

process models. Five traditional process models have been discussed

with their pros and cons in this chapter. Verification and Validation

also discussed for specifications and standards because software

system meets the need.

2.3 SOFTWARE PROCESS MODEL

A software process model is a detailed description of a software

process from a certain point of view. A software process model is an

abstraction of the real process that is being represented, as models

are by their very nature simplifications. Activities that are part of the

software process, software products, and the roles of persons

involved in software engineering may be included in process

models.

Types of Software Process Model

There are a variety of process models available to satisfy various

requirements. Software development life cycle (SDLC) models are

one of the most fundamental parts of the software development

process. There are a variety of software development life cycle

models designed to achieve certain goals. These models are defined

at different stages of the process and development module in which

they are implemented. The following are the most commonly used,

popular, and important SDLC models:

1.3.1 Waterfall Model

The first Process Model to be introduced was the Waterfall Model. It

is also known as a linear-sequential life cycle model. It is very

simple to understand and use. In this waterfall model, each phase

must be completed before moving on to the next, and the phases do

not overlap. The waterfall Model illustrates the software

development process in a linear sequential flow.

20 | P a g e

Space for learners: The Waterfall model is the earliest SDLC approach that was used for

software development.

Design:

The Waterfall Approach was the first SDLC Model to be widely

utilized in Software Engineering to ensure project success. The

entire software development process is separated into several phases

using "The Waterfall" approach. Typically, the output of one phase

acts as the input for the following phases in this Waterfall approach.

The different phases of the Waterfall Model are depicted in the

following diagram.

Fig 1: Waterfall Model

The sequential phases in Waterfall model are −

 Requirement Gathering and analysis − All possible

requirements of the system to be developed are captured in this

phase and documented in a requirement specification document.

Business analysts gather requirements, which are then analyzed

by the team. Based on their discussions with the client, business

analysts will document the requirements.

 System Design − this phase examines the requirements

specifications from the previous phase and prepares the system

design. This system design helps in designing the overall system

architecture as well as describing hardware and system

requirements.

Requirement

Analysis

System

Design

Implementation

Testing

Deployment

Maintenance

21 | P a g e

Space for learners: Implementation − The system is first built as discrete programs

called units, which are then merged in the next phase, using

inputs from the system design. Unit testing is the process of

developing and testing each unit for its functioning.

 Integration and Testing − After each unit has been tested, all of

the units built during the implementation phase are integrated

into a system. The entire system is then tested for any flaws or

failures after it has been integrated.

 Deployment of system − The product is deployed in the client

environment or released into the market once functional and

non-functional testing is completed.

 Maintenance − In the client environment, there are a few

challenges that arise. Patches are released to remedy the issues.

In order to improve the product, newer versions have been

produced. Maintenance is carried out in order to bring about

these changes in the customer's environment.

Advantages:

Waterfall development has the advantage of allowing for

departmentalization and control. A schedule can be created with

deadlines for each step of development, and a product can be guided

through the various phases of the development process one by one.

The following are some of the key benefits of the Waterfall Model:

 It's simple to comprehend and utilize.

 Because of the model's rigidity, it's simple to manage. There

are specified deliverables and a review mechanism for each

phase.

 One phase at a time is processed and completed.

 For smaller projects with well-defined needs, this method

works effectively.

 Stages that are well defined.

 Milestones that are well understood

 Tasks are simple to organize.

 Both the process and the outcomes are well documented.

22 | P a g e

Space for learners: Disadvantages:

Waterfall development has the problem of not allowing for much

reflection or correction. It's quite tough to go back and fix something

that wasn't well-documented or considered in the design stage once

an application has reached the testing stage.

The following are the key drawbacks of the Waterfall Model:

 Until late in the life cycle, no working software is developed.

 There is a lot of risk and uncertainty.

 For sophisticated and object-oriented projects, this is not a

good model.

 For long-term projects, this paradigm is inadequate.

 Not appropriate for projects with a moderate to high risk of

change in requirements. As a result, this process model has a

high level of risk and uncertainty.

 Within stages, it's tough to assess development.

 Changes in requirements cannot be accommodated.

 Changing the scope of a project during its life cycle might lead

to its termination.

 Integration is done as a "big-bang" towards the end, which

prevents any technological, or business bottlenecks or issues

from being identified early.

1.3.2 Prototyping Model

The prototype model requires that before carrying out the

development of actual software, a working prototype of the system

should be built. The prototyping model can be considered to be an

extension of the waterfall model. A prototype is a toy

implementation of the system. A prototype usually turns out to be a

very crude version of the actual system, possible exhibiting limited

functional capabilities, low reliability, and inefficient performance

as compared to actual software. Prototyping Model is a software

development model in which prototype is built, tested, and reworked

until an acceptable prototype is achieved. It also creates base to

produce the final system or software. It works best in scenarios

where the project's requirements are not known in detail. It is an

23 | P a g e

Space for learners: iterative, trial and error method which takes place between

developer and client. In many instances, the client only has a general

view of what is expected from the software product. In such a

scenario where there is an absence of detailed information regarding

the input to the system, the processing needs, and the output

requirement, the prototyping model may be employed.

It has limited functional capabilities, low reliability, or inefficient

performance as compared to the actual software. A prototype can be

built very quickly by using several shortcuts. The shortcuts usually

involve developing inefficient, inaccurate, or dummy functions. The

shortcut implementation of a function, for example, may produce the

desired results by using a table look-up rather than by performing

the actual computations. Normally the term rapid prototyping is used

when software tools are used for prototype construction. For

example, tools based on fourth generation languages (4GL) may be

used to construct the prototype for the GUI parts.

Necessity of the prototyping model

The prototyping model is advantageous to use for specific types of

projects. In the following, we identify three types of projects for

which the prototyping model can be followed to advantage: It is

advantageous to use the prototyping model for development of the

graphical user interface (GUI) part of an application. Through the

use of a prototype, it becomes easier to illustrate the input data

formats, messages, reports, and the interactive dialogs to the

customer. This is a valuable mechanism for gaining better

understanding of the customers’ needs. In this regard, the prototype

model turns out to be especially useful in developing the graphical

user interface (GUI) part of a system. For the user, it becomes much

easier to form an opinion regarding what would be more suitable by

experimenting with a working user interface, rather than trying to

imagine the working of a hypothetical user interface.

The GUI part of a software system is almost always developed using

the prototyping model. The prototyping model is especially useful

when the exact technical solutions are unclear to the development

team. A prototype can help them to critically examine the technical

issues associated with product development. For example, consider a

situation where the development team has to write a command

language interpreter as part of a graphical user interface

development. Suppose none of the team members has ever written a

24 | P a g e

Space for learners: compiler before. Then, this lack of familiarity with a required

development technology is a technical risk. This risk can be resolved

by developing a prototype compiler for a very small language to

understand the issues associated with writing a compiler for a

command language. Once they feel confident in writing compiler for

the small language, they can use this knowledge to develop the

compiler for the command language. Often, major design decisions

depend on issues such as the response time of a hardware controller,

or the efficiency of a sorting algorithm, etc. In such circumstances, a

prototype is often the best way to resolve the technical issues.

An important reason for developing a prototype is that it is

impossible to “get it right” the first time. As advocated by Brooks

[1975], one must plan to throw away the software in order to

develop a good software later. Thus, the prototyping model can be

deployed when development of highly optimized and efficient

software is required. From the above discussions, we can conclude

the following:

The prototyping model is considered to be useful for the

development of not only the GUI parts of a software, but also for a

software project for which certain technical issues are not clear to

the development team.

Software is built in two ways, as depicted in Figure: prototype

construction and iterative waterfall-based software development.

Prototype construction: The development of prototyping begins with

the gathering of basic requirements. A prototype is produced after a

quick design is completed. The customer is asked to evaluate the

prototype that has been created. Based on the customer feedback, the

requirements are refined and the prototype is suitably modified. This

cycle of collecting consumer feedback and making changes to the

prototype continues until the customer approves it.

Iterative development: The actual software is produced utilizing an

iterative waterfall approach after the customer approves the

prototype. Regardless of whether or not a functioning prototype is

available, the SRS document must be created because it is essential

for later phases such as traceability analysis, verification, and test

case creation.

However, for GUI parts, the requirements analysis and specification

phase becomes redundant since the working prototype that has been

approved by the customer serves as an animated requirements

25 | P a g e

Space for learners: specification. The prototype's code is usually discarded. The

expertise gained by constructing the prototype, on the other hand, is

invaluable when it comes to developing the genuine system.

Despite the fact that building a throwaway prototype incurs more

costs, the overall development cost for systems with unclear client

requirements and systems with unsolved technical challenges is

frequently lower than for an analogous system produced using the

iterative waterfall model. Many customer requirements are

adequately defined and technological concerns are overcome by

experimenting with the prototype after it is built and submitted for

user evaluation. This reduces the number of client requests for

changes in the future, as well as the accompanying redesign

expenses.

Steps of Prototype Model

1. Requirement Gathering and Analyst

2. Quick Decision

3. Build a Prototype

4. Assessment or User Evaluation

5. Prototype Refinement

6. Engineer Product

Step 1: Requirements gathering and analysis

Requirement analysis is the first step in a prototype model. The

system's requirements are outlined in depth at this phase. The

system's users are interviewed as part of the process to learn what

they expect from it.

Step 2: Quick design

The second phase is a preliminary design or a quick design. In this

stage, a simple design of the system is created. However, it is not a

complete design. It gives a brief idea of the system to the user. The

quick design helps in developing the prototype.

Step 3: Build a Prototype

In this phase, an actual prototype is designed based on the

information gathered from quick design. It is a small working model

of the required system.

Step 4: Initial user evaluation

26 | P a g e

Space for learners: In this stage, the proposed system is presented to the client for an

initial evaluation. It helps to find out the strength and weakness of

the working model. Comment and suggestion are collected from the

customer and provided to the developer.

Figure 2: Prototyping model of software development.

Step 5: Refining prototype

If the user is not happy with the current prototype, you need to refine

the prototype according to the user's feedback and suggestions.

This phase will not over until all the requirements specified by the

user are met. Once the user is satisfied with the developed prototype,

a final system is developed based on the approved final prototype.

Step 6: Implement Product and Maintain

Once the final system is developed based on the final prototype, it is

thoroughly tested and deployed to production. The system undergoes

Refine requirement

incorporation customer

Suggestion

Build

Prototype

Requirement Gathering

Quick Decision

Customer Evaluation

of prototype

Acceptance

by customer

Design

Implementation

Testing

Maintenance

Prototype

Development

Iterative

Development

27 | P a g e

Space for learners: routine maintenance for minimizing downtime and prevents large-

scale failures.

Advantages of the Prototyping Model

This model is the most appropriate for projects that suffer from

technical

and requirements risks. These risks can be mitigated with a well-

built prototype. Users are actively involved in development.

Therefore, errors can be detected in the initial stage of the software

development process. Prototyping is also considered a risk reduction

activity, so missing functionality can be identified, lowering the risk

of failure. Customers are satisfied because they can feel the product

at an early stage. There will be very little probability of rejection of

the software. Improved software development solutions are made

possible by faster user feedback. Allows the client to compare if the

software code matches the software specification. It helps you to

find out the missing functionality in the system. It also indicates the

functions that are complicated or challenging. Because it is a simple

model, it is simple to comprehend. Building the model does not

necessitate the use of professional experts. The prototype aids in the

understanding of the customer's requirements. Changes and even

discarding prototypes are possible. Future users of the software

system may benefit from early training provided by prototypes.

Disadvantages of the Prototyping Model

The prototype model can increase the cost of development for

projects that are routine development work and do not suffer from

any significant risks. Even when a project is susceptible to risks, the

prototyping model is effective only for those projects for which the

risks can be identified upfront before the development starts. Since

the prototype is constructed only at the start of the project, the

prototyping model is ineffective for risks identified later during the

development cycle. The prototyping model would not be appropriate

for projects for which the risks can only be identified after the

development is underway. Prototyping is a time-consuming and slow

procedure. The cost of building a prototype is completely wasted

because the prototype is eventually discarded. Excessive

modification requests may be encouraged through prototyping.

Customers may not be willing to participate in an iteration cycle for

an extended period of time. When the customer evaluates the

prototype each time, there may be much too many differences in

28 | P a g e

Space for learners: software needs. Because the needs of the clients are always

changing, there is a lack of documentation. It is quite tough for

software engineers to meet all of the client requests. When a client is

unhappy with the initial prototype, he or she may lose interest in the

ultimate product.

1.3.3 Spiral Model

The spiral model is one of the most prominent Software

Development Life Cycle models for risk management. It resembles a

spiral with several loops in diagrammatic depiction. The spiral's

exact number of loops is unclear, and it varies from project to

project. A Phase of the software development process is defined as

each loop of the spiral. Depending on the project risks, the project

manager might change the number of phases required to build the

product. The project manager plays an important role in developing

a product utilizing the spiral model since the number of phases is

dynamically determined by the project manager.

The spiral's radius at any given moment symbolizes the project's

expenses (cost), while the angular dimension shows the current

phase's progress.

The phases of the Spiral Model are depicted in the diagram below: –

Fig 3: Spiral Model

As illustrated in the diagram above, each phase of the Spiral Model

is divided into four quadrants. The following sections go through the

functions of these four quadrants:

1. Objectives determination and identify alternative solutions: At

the outset of each step, customers' requirements are gathered,

29 | P a g e

Space for learners: and objectives are identified, elaborated, and analyzed. Then, in

this quadrant, alternative solutions for the phase are given.

2. Identify and resolve Risks: All viable solutions are reviewed in

the second quadrant in order to choose the best one. The risks

connected with that solution are then identified, and the risks are

mitigated using the best technique possible. The Prototype is

constructed at the end of this quadrant for the best possible

solution.

3. Develop next version of the Product: During the third quadrant,

the identified features are developed and verified through

testing. The next edition of the software is available at the end

of the third quadrant.

4. Review and plan for the next Phase: In the fourth quadrant, the

Customers evaluate the so far developed version of the

software. Finally, the planning for the following phases begins.

Risk Handling in Spiral Model

A risk is anything that could prevent a software project from being

completed successfully. The spiral model's most essential aspect is

how it handles unforeseen hazards once the project has begun. The

development of a prototype makes such risk resolutions easier. The

spiral approach supports risky copying by allowing for the creation

of a prototype at each stage of software development.

Risk management is also supported by the Prototyping Model,

however risks must be fully identified prior to the commencement of

the project's development activity. However, in real life, project risk

may arise after development work has begun; in this scenario, the

Prototyping Model cannot be used. The product's features are

evaluated and examined in each phase of the Spiral Model, and the

risks at that moment in time are identified and resolved through

prototyping. As a result, this paradigm is far more adaptable than

other SDLC models.

Why Spiral Model is called Meta Model?

Because it encompasses all other SDLC models, the Spiral model is

referred to as a Meta-Model. The Iterative Waterfall Model, for

example, is represented by a single loop spiral. The Classical

Waterfall Model's progressive approach is included into the spiral

model. The spiral model employs the Prototyping Model's risk-

handling technique of developing a prototype at the start of each

30 | P a g e

Space for learners: phase. The spiral model can also be thought of as a support for the

evolutionary model, with iterations along the spiral serving as

evolutionary layers upon which the entire system is created.

Advantages of Spiral Model:

The Spiral Model has a number of advantages.

1. Risk Handling: Due to the risk analysis and risk management

at each phase, the Spiral Model is the best development model

to follow for projects with many unknown risks that arise as

the development progresses.

2. Good for large projects: In large and complex undertakings,

the Spiral Model is recommended.

3. Flexibility in Requirements: Using this paradigm, change

requests in the Requirements at a later stage can be accurately

implemented.

4. Customer Satisfaction: Customers can observe the product's

progress throughout the early stages of software development,

and so become familiar with the system by using it before the

final product is completed.

Disadvantages of Spiral Model:

The spiral model has several major drawbacks, which are listed

below.

1. Complex: Other SDLC models are substantially more

sophisticated than the Spiral Model.

2. Expensive: The spiral model is not appropriate for small

projects due to its high cost.

3. Too much dependability on Risk Analysis: Risk Analysis

plays a critical role in the project's success. The development

of a project employing this strategy will be a failure without a

large number of highly experienced professionals.

4. Difficulty in time management: Time estimation is challenging

because the number of phases is unknown at the beginning of

the project.

31 | P a g e

Space for learners: 1.3.4 Incremental Model

This life cycle approach is also known as the incremental or

successive version model. In this life cycle approach, the customer is

first given a simple working system with only a few basic features.

Iteratively, until the required system is accomplished, successive

versions are implemented and supplied to the customer. Figure 4

illustrates the incremental development model.

 Fig 4: Incremental Model

A, B, C are modules of Software Product that are incrementally

developed and delivered.

The software requirements are initially broken down into multiple

modules or features, which can then be created and delivered

progressively under the incremental life cycle model. At any given

time, only the next increment's plans are made, with no long-term

planning. As a result, accommodating client requests for changes

becomes less difficult. The system's core features are developed first

by the development team. The core or fundamental features are

those that do not require the use of any other features' services. Non-

core features, on the other hand, require services from core features.

Following the development of the first basic features, further

functionalities are added in succeeding editions to refine them into

higher degrees of capability. The iterative waterfall model is

typically used to produce each incremental version.

Customer feedback on the delivered version is acquired when each

succeeding version of the software is built and delivered to the

customer, and these feedbacks are included into the following

version. Each version of the software that is supplied to the customer

adds new features and refines those that have already been delivered.

Figure 5 depicts the incremental model in schematic form. After the

requirements gathering and specification, the requirements are split

into several versions. The next version is built using an iterative

waterfall approach of development and deployed at the customer

site, starting with the core (version 1). The whole software is

32 | P a g e

Space for learners: deployed after the last (marked as version n) has been built and

deployed at the client site.

 Figure 5: Incremental model of software development.

Advantages:

There are a number of benefits to the incremental development

paradigm. The following are two prominent examples:

Error reduction: Because the customer uses the core modules from

the beginning, they are thoroughly tested. This minimizes the

likelihood of faults in the final product's core modules, resulting in

increased software reliability.

Incremental resource deployment: This paradigm eliminates the

requirement for the customer to commit significant resources to the

system's development all at once. It also saves the growing

organization from having to deploy enormous amounts of resources

and staff all at once for a project.

Error Reduction (core modules are used by the customer from the

beginning of the phase and then these are tested thoroughly). Uses

divide and conquer for breakdown of tasks. Lowers initial delivery

cost. Incremental Resource Deployment.

Disadvantages:

Requires good planning and design. Total cost is not lower. Well

defined module interfaces are required.

33 | P a g e

Space for learners: 1.3.5 Time Boxing Model

As with the iterative enhancement approach, development is done

iteratively in the time boxing model. In the time boxing approach,

however, each cycle is completed within a predetermined

timeframe. The functionality that has to be built is scaled down to

match the timeframe. Furthermore, each timebox is divided into a

set of predefined phases, each of which completes a distinct task

(analysis, implementation, and deployment) that can be completed

independently. This approach also requires that each stage's time

duration be roughly equal, so that the pipelining concept can be

used to save development time and product releases. There is a

dedicated team for each stage so that the work can be done in

pipelining. As a result, stages should be set so that each step

completes a logical unit of work that serves as the input for the

following stage.

In addition to the benefits of the iterative model, the time boxing

concept has several additional benefits. The time boxing model has

a number of advantages and problems.

 Figure 6: Time boxing model.

The Advantages and Disadvantages of the Time boxing Model

Advantages:

Speeds up the development process and shortens the delivery time.

Ideally suited to developing projects with a variety of features in a

short amount of time.

Disadvantages:

34 | P a g e

Space for learners: Project management is becoming more difficult. Not recommended

for projects where the entire development process cannot be broken

down into many iterations of almost equal time.

1.4 VERIFICATION AND VALIDATION

Verification and Validation is the process of determining whether or

not a software system meets the needed specifications and standards.

Verification and validation, according to Barry Boehm, are:

Verification: Are we building the product right?

Validation: Are we building the right product?

Validation comes after Verification.

1.4.1 Verification

Verification is the process of ensuring that software meets its

objectives without errors. It's the process for determining whether

the product being developed is correct or not. It determines whether

the developed product meets our requirements. Verification is Static

Testing.

Activities involved in verification:

 Inspections

 Reviews

 Walkthroughs

 Desk-checking

1.4.2 Validation

Validation is the process of determining whether a software product

meets the required standards, or in other words, whether it meets the

product's high level requirements. It is the process of verifying

product validation, or ensuring that the product we are building is

correct. It is a validation between the actual and desired product.

Validation is the Dynamic Testing.

Activities involved in validation:

Verification Validation

35 | P a g e

Space for learners: Black box testing

 White box testing

 Unit testing

 Integration testing

Difference between verification and validation testing

Verification Validation

We check whether we are

developing the right product or

not.

We check whether the

developed product is right.

Verification is also known as

static testing.

Validation is also known as

dynamic testing.

Verification includes different

methods like Inspections,

Reviews, and Walkthroughs.

Validation includes testing

like functional testing, system

testing, integration, and User

acceptance testing.

It is a process of checking the

work-products (not the final

product) of a development cycle

to decide whether the product

meets the specified requirements.

It is a process of checking the

software during or at the end

of the development cycle to

decide whether the software

follow the specified business

requirements.

Quality assurance comes under

verification testing.

Quality control comes under

validation testing.

The execution of code does not

happen in the verification testing.

In validation testing, the

execution of code happens.

In verification testing, we can find

the bugs early in the development

phase of the product.

In the validation testing, we

can find those bugs, which

are not caught in the

verification process.

Verification testing is executed by

the Quality assurance team to

make sure that the product is

developed according to customers'

requirements.

Validation testing is executed

by the testing team to test the

application.

Verification is done before the After verification testing,

36 | P a g e

Space for learners: validation testing. validation testing takes place.

In this type of testing, we can

verify that the inputs follow the

outputs or not.

In this type of testing, we can

validate that the user accepts

the product or not.

CHECK YOUR PROGRESS

Q.1. In which model the Project risk factor is considered?

(A) Spiral model.

(B) Waterfall model.

(C) Prototyping model

(D) Incremental model

Q.2. What is the most important use of the incremental model?

(A) Customers can respond to each increment

(B) Easier to test and debug

(C) To use it when we need to get a product to the market early

(D) Easier to test and debug & use it when we need to get a

product to the market early

Q.3. The spiral model was the first time proposed by

(A) IBM

(B) Pressman

(C) Barry Boehm

(D) Royce

Q.4. What is the disadvantage of the Spiral Model.

(A) Does n’t work well for smaller projects

(B) The high amount of risk analysis

(C) Additional Functionality can be added later

(D) Strong approval and documentation control

Q.5. Where is the prototyping model of software development

well suited?

(A) When requirements are well defined.

(B) For projects with large development teams.

37 | P a g e

Space for learners: (C) When a customer cannot define requirements clearly.

(D) None of the above.

Q.6. Design phase is followed by ______ .

(A) Coding

(B) Testing

(C) Maintenance

(D) None of the above.

Q.7 Which of the following activities of the generic process

framework delivers a feedback report?

(A) Deployment

(B) Planning

(C) Modeling

(D) Construction

Q.8 Which one of the following activities is not recommended

for software processes in software engineering?

(A) Software Evolution

(B) Software Verification

(C) Software Testing & Validation

(D) Software designing

Q.9 The __________ and __________ are the two major

dimensions encompassed in the Spiral model.

(A) Diagonal, Perpendicular

(B) Perpendicular, Radial

(C) Angular, diagonal

(D) Radial, Angular

Q.10 Which parameters are essentially used while computing

the software development cost?

(A) Hardware and Software Costs

(B) Effort Costs

(C) Travel and Training Costs

(D) All of the above

38 | P a g e

Space for learners: 1.5 SUMMING UP

 A Software Process Model gives a roadmap for software

engineering work. It defines the flow of all activities, actions

and tasks.

 A software process model is an abstraction of the real process

that is being represented, as models are by their very nature

simplifications. Activities that are part of the software process,

software products, and the roles of persons involved in software

engineering may be included in process models.

 The following are the most commonly used, popular, and

important SDLC models:

 Waterfall Model

 Prototyping Model

 Spiral Model

 Incremental Model

 Time Boxing Model

 Verification is the process of ensuring that software meets its

objectives without errors. It's the process for determining

whether the product being developed is correct or not.

 Validation is the process of determining whether a software

product meets the required standards, or in other words, whether

it meets the product's high level requirements. It is the process

of verifying product validation, or ensuring that the product we

are building is correct.

1.6 ANSWERS TO CHECK YOUR PROGRESS

1. Ans. A

2. Ans. D

3. Ans. C

4. Ans. A

5. Ans. C

7. Answer: Deployment

Explanation: The deployment phase is the last phase of the software

development life cycle in which the software product is delivered to

its end-user, who further assesses its performance and revert back

39 | P a g e

Space for learners: with the feedback if anything is required or missing as per the

formulated evaluation.

8. Answer: b) Software Verification

Explanation: Software verification is mainly considered for

implementing and testing activities.

9. Answer: D) Radial, Angular

Explanation: The cumulative cost is represented by the radial

dimension, whereas the angular dimension represents the progress

made in the completion of each consecutive cycle. Each loop in the

spiral model depicts the phase.

10. Answer: D) All of the above

Explanation: Estimation cost works out on assessing the amount of

effort required to complete each activity, followed by calculating the

total cost of activities.

1.7 POSSIBLE QUESTIONS

1. Why document a development process?

2. What is a data structure-oriented software design

methodology? How is it different from the data flow-oriented

design methodology?

3. What is SDLC? What are different SDLC models?

4. Describe classical waterfall model and iterative development

model of Software development. Draw appropriate diagrams.

Compare the two models.

5. Discuss about prototyping model. Explain its merits and

Demerits.

6. Discuss in detail about Time Boxing model.

7. Describe how incremental process models are better than

water fall model.

8. What process models will you use in various projects?

9. What are perspective process models?

40 | P a g e

Space for learners: 1.8 REFERENECS AND SUGGESTED READINGS

 https://www.geeksforgeeks.org/software-engineering-

introduction-to-software-engineering/

 https://www.tutorialspoint.com/sdlc/sdlc_overview.htm

 Fundamentals of Software Engineering, Rajib Mall

41 | P a g e

Space for learners: UNIT 3: SOFTWARE REQUIREMENTS AND

ANALYSIS

Unit Structure:

3.1 Introduction

3.2 Unit Objectives

3.3 Software Requirement

 3.3.1 Software Requirement Statement

3.4 Types of Requirements

 3.4.1 Functional Requirements

 3.4.2 Non Functional Requirements

 3.4.3 Domain Requirements

3.5 Requirements Engineering Process

 3.5.1 Feasibility Study

 3.5.2 Requirement Gathering

 3.5.3 Software Requirement Specification

3.5.4 Software Requirement Validation

3.6 Feasibility Study

 3.6.1 What is Feasibility Study?

 3.6.2 Types of Feasibility Study

 3.6.3 The Feasibility Study Process

 3.6.4 Outcome of the feasibility study

3.7 Elicitation of Requirements

 3.7.1 The Process of Requirement Elicitation

 3.7.2 The Techniques of Requirement Elicitation

3.8 Requirements Analysis

 3.8.1 Problem Recognition

 3.8.2 Evaluation and Synthesis

 3.8.3 Modeling

 3.8.4 Specification

 3.8.5 Review

3.9 Software requirement specification

 3.9.1 Problem Recognition

 3.9.2 Characteristics of a Good SRS

 3.9.2 Important Categories of Customer Requirement

 3.9.3. Functional Requirements

42 | P a g e

Space for learners: 3.9.4. Non Functional Requirements

 3.9.5 Goals of Implementation

 3.9.6 Identify Functional Requirements

 3.9.7 Document Functional Requirements

 3.9.8 . Techniques for Representing Complex Logic

 3.9.9 Problems without an SRS Document

3.10 Summing Up

3.11 Answers to Check Your Progress

3.12 Possible Questions

3.13 References and Suggested Readings

3.1 INTRODUCTION

The Software requirements and analysis phase starts after the feasibility

study phase gets completed and the project is found to be feasible and

technically sound. The primary objective of the software requirements

analysis and specification phase is to have a clear understanding of the

customer’s requirements and to organize these requirements

systematically in a specification document. This phase consists of the

following two activities:

• Requirements Gathering and Analysis

• Requirements Specification

 Identifying the user requirements properly is quite a tedious job. It

combines the processes of describing, analyzing, documenting and

validating the services, requirements and constraints related to the

software. All these processes, in combination, are called Software

Requirement engineering or simply, software requirement.

STOP TO CONSIDER

Requirements may serve a dual function:

 As the basis of a bid for a contract

 As the basis for the contract itself

43 | P a g e

Space for learners: 3.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 Be familiar with software requirements

 Understand the concepts and significance of Software

Requirement Analysis

 Differentiate between the types of Software Requirements

 Understand the structure of Software Requirement Specification

 Characteristics of SRS

3.3 SOFTWARE REQUIREMENT

The software requirements include a precise description of the

functionalities and features of the target software system. These

requirements specify what the users would expect from the software

product. The software requirements can be unknown or known,

expected or unexpected and hidden or obvious from the users’ point of

view. The objective of software requirement is to specify the

requirements of the software product in a consistent, unambiguous and

concise manner- with the help of appropriate formal notations. The

requirement specification would focus on the ‘What” part of the

software rather than on “how”. It starts with the requirements gathering

process. The System analyst starts requirements gathering activity by

collecting all information from the customer which could be used to

develop the requirements of the system. Then, he analyses the

information collected to get a thorough understanding of the system to

be developed. The objective is to get rid of all ambiguities and

inconsistencies from the initial problem perception by the customer

3.3.1 Software Requirement Statement

A software requirement statement is a document that mentions the

intended use, challenges and features of the software application.

44 | P a g e

Space for learners: Software system requirements can be broadly classified into three

groups-

 User Requirement Document- It contains natural language

statements related to the services provided by the system, along

with the operational constraints. It also includes diagrammatic

representations related to the services offered. Such a document

is usually written for the customers.

 System Requirement Document- It is s structured document

that provides detailed descriptions of the services. This

document is usually written as a contract between a contractor

and a client.

 Software Specification Document- It contains a detailed

description of the software that serves as a foundation for the

implementation or design of the software. Such a document is

usually written for the developers.

3.4 TYPES OF REQUIREMENTS

There may be three types of software requirements, namely

a) Functional requirements, and

b) Nonfunctional requirements.

c) Domain requirements

3.4.1 Functional Requirements

The functional requirements of a software system details the services or

functionalities that the user expects it to provide. These requirements

will describe how the software system can react to a specific set of

inputs and how it should ideally behave in a particular situation.

The functional requirements focus on the functionalities required by the

STOP TO CONSIDER

The software requirements include a precise description of the

functionalities and features of the target software system.

45 | P a g e

Space for learners: users from the software system. The users or clients expect the software

to perform a specific set of functions.

The functional view of a software system is shown in the figure below-

 Inputs

 Ii

Fig:3.1

Each function (Fi) of the software system can be thought of as a

conversion from a specific set of input data (Ii) to the corresponding set

of output data (Oi). From the user’s perspective, he should be able to

accomplish some meaningful piece of work with the help of the

function.

3.4.2 Non-Functional Requirements

Constraints are part and parcel of any software system. The

functionalities and services offered by the system come with many

constraints. These include constraints related to the process of

development, timing constraints, constraints related to standards etc.

The non-finctional requirements define the constraints associated with a

software system. They are not exactly concerned about a particular

function delivered by the software system. Rather, they may be related

to system properties like response time, storage and reliability. They

may also define the constraints related to the system such as data

representation used in the interfaces and capabilities of the I/O devices.

To be precise, nonfunctional requirements are concerned with the

system characteristics that the functions cannot express. These include -

portability, maintainability , usability and so on. It may also include

accuracy of results, reliability issues, implementation issues and issues

related to human - computer interface etc.

These requirements primarily deal with issues such as:

 Portability issues

(Fi) Outputs

Oi

46 | P a g e

Space for learners: Usability issues

 Maintainability issues

 Security issues

 Scalability issues

 Reliability issues

 Reusability issues

 Flexibility issues

 Performance issues

The differences between Functional and Non-functional requirements

are shown below in a tabular form

Functional Requirements Non-Functional Requirements

Defines a software system or

its components.

Defines the quality attributes related to

a software system.

Specifies what the software

system should do

Describes constraints on how the

software should fulfill its functional

requirements

These requirements are

specified by the user.

These requirements are specified by

technical people such as software

developers, architects, technical

leaders and so on

It is a mandatory requirement It is not a mandatory requirement

Captured with regards to use

case.
Captured as a quality attribute.

It is applied at the component

level.
It is applied to a system as a whole.

Allows to check the

functionality of the software.

Allows to ascertain the software

performance

Carries out functional testing

such as integration, System,

API Testing, End to End etc

Performs Non-Functional Testing such

as Usability, Performance, Security

testing, Stress etc

Easy to define. Comparatively difficult to define.

47 | P a g e

Space for learners: 3.4.3 Domain Requirements

These requirements describe system features and characteristics that

specify the domain. These may include constraints on prevailing

requirements , new functional requirements or may even define specific

computations. The system may not work properly if the domain

requirements are not fully satisfied.

3.5 REQUIREMENTS ENGINEERING PROCESS

The requirement engineering process refers to the procedure of

gathering specific software requirements from the concerned client,

analyzing and documenting them for future reference.

The objective of this process is to prepare and maintain a descriptive

and comprehensive SRS (System Requirements Specification)

document.

The entire requirement engineering process consists of four steps.

These are –

 Feasibility Study

 Requirement Gathering

 Software Requirement Specification

 Software Requirement Validation

STOP TO CONSIDER

The functional requirements focus on the functionalities required by

the users from the software system. The non-functional requirements

define the constraints associated with a software system. The domain

requirements describe system features and characteristics that specify

the domain

STOP TO CONSIDER

Requirements Engineering is the process of establishing the services

that the customer requires from the system and the constraints under

which it is to be developed and operated.

48 | P a g e

Space for learners: 3.5.1 Feasibility Study

When a client assigns an organization the task of developing the desired

software product, he often provides a rough idea about the expected

features from the software or the functions it must perform. Taking a

reference from this raw information, the analysts of the organization

makes a complete study about whether it is feasible to develop the

software system, with the desired functions embedded in it. Such a

study can be termed as feasibility study. The output of this study should

be a feasibility study report with adequate recommendations and

comments for the management for them to consider whether or not the

project should be undertaken.

We will discuss it in detail in the next section

3.5.2 Requirement Gathering

If the feasibility study gives a positive report about undertaking the

project, the next phase starts, that is, collecting requirements from the

client or user. Analysts and technical staffs of the organisation

communicate with the end-users/client to understand their ideas. Thus,

they will try to apprehend what the software must provide and the

features they would like the software to have. Requirements gathering

itself is an art. The person who is entrusted with the responsibility of

gathering requirements should have the knowledge of when to gather

and what information to gather and by using what resources. The

requirements regarding organisation, which include information related

to its policies, objectives, organisational structure and user staff are

gathered. Moreover, it includes information regarding job function,

information about work schedules, work flow and working procedure.

Below, we are going to discuss some of the requirements gathering

tools.

1. Record review: A review of all the recorded documents of the

organization such as procedures, manuals, forms and books, are

reviewed to understand the format and

functions of the present system. This technique consumes more time.

2. On-site observation: In case there exists such a system, the actual

49 | P a g e

Space for learners: site of the system is visited

 to get a close view of the system. It enables the analyst to detect the

problems of the existing

 system.

3. Interview: The system analyst interacts with the staff to identify their

requirements. It requires experience in arranging the interview, avoiding

arguments and evaluating the outcome.

4. Questionnaire: It is an effective means to acquire customer

requirements with less effort. This produces a written document about

the requirements. It considers the responses of a large number of

participants at the same time and examines answers to the queries.

A) Software Requirement Specification

3.5.3 Software Requirement Specification

SRS is a document created by a system analyst. After the user

requirements are gathered from different stakeholders, the system

analysts of the organization create a document called the SRS

(Software Requirement Specification) document. The SRS will define

how the proposed software would interact with external interfaces,

hardware, system response time, operational speed, portability across

platforms, recovery after crashing, security, maintainability, quality,

constraints and so on.

Please note that the user requirements are usually received in a natural

language format. It is the job of the system analyst to write all these

requirements in a technical language in the SRS document. He should

be able to write in a language so that it can be useful for the

development team.

CHECK YOUR PROGRESS

1.How will you gathers requirements from the user foe a library

management system

50 | P a g e

Space for learners: 3.5.4 Software Requirement Validation

After the SRS is developed as per user specifications, it is again

validated with the requirements of the user. It may so happen that the

user may ask for some illegal solutions. The experts may also

interpret the user requirements incorrectly. Such issues, if not

addressed at the very beginning, may lead to an exponential increase in

cost. Therefore, it is important to check the requirements against the

below-mentioned conditions -

 If it is practical to implement requirements

 If the requirements are valid and conform to the domain and

functionality of the software

 If the requirements are complete

 If the requirements can be demonstrated

 If any ambiguities exist

3.6 FEASIBILITY STUDY

3.6.1 What is Feasibility Study?

The objective of this study is to establish the reasons for developing

the software, in a way to make it conform to agreed standards,

acceptable to users and flexible to change.

The feasibility study is aligned with the goal of the organization. It

analyzes if it is practicable to materialize the software in terms of cost

constraints, implementation, project contribution to the organization

and the perceived objectives and values of the organization. It mainly

looks into the technical aspects of the project, which include

productivity, integration ability, maintainability and usability.

STOP TO CONSIDER

The process of finding out, analyzing, documenting and checking

these services and constraints is called Requirements Engineering.

51 | P a g e

Space for learners: The output of this whole exercise should be in the form of a feasibility

study report. It should include sufficient comments and

recommendations so as to help the management decide in favour of or

against undertaking the particular project. The business strategists in

the organization analyse the feasibility study report to find out if the

software can fulfill the user requirements and the software can generate

profit at the same time. If the project is found to be feasible

technologically, practically and financially- it will be given a go-ahead.

Else, it will be discarded.

3.6.2 Feasibility Study: Why it is required

The feasibility study is an extremely important stage of the Software

Project Management Process. After the feasibility study gets

completed, the organisaton gets a clear idea of whether it is profitable

or practically feasible to continue with the proposed project. The

feasibility study also helps the organization to identify the risk factors

associated with developing and deploying the system. Based on the

findings of the feasibility study, the organization can plan for the risk

analysis and zero in on the business alternatives. By analyzing various

project parameters mentioned in the feasibility study report, the

organization can also enhance the success rate of the proposed

software.

3.6.3 Types of Feasibility Study

Three different types of feasibility study may exist, namely

1. Technical Feasibility – It evaluates the latest technologies that are

required to fulfill customer requirements, conforming to the

specified time and budget. It also takes into account the resources at

hand (software, hardware etc). The feasibility study will report if the

required technologies and technical resources are available,

adequately enough, for developing the software. In addition, the

feasibility study analyses the capabilities and skills of the technical

team. It assesses if existing technology can be employed, if any

technology upgradation is required and the cost of

52 | P a g e

Space for learners: deployment/maintenance of the upgraded technology. Technical

feasibility also performs the following tasks-

• Determines whether relevant technology is established and

stable.

 • Analyzes the technical capabilities of the software

development team.

• Ascertains that the technology picked for software

development has a huge number of users, so that in case any

problem arises or improvements are required, they can be

consulted.

2. Operational Feasibility – This is a type of feasibility that

determines the range within which the software performs a

designated series of levels in order to fulfill customer requirements

and resolve business issues. Here, the level of providing service as

per user requirements is analysed. It also studies how easy or tough

it will be to operate and maintain the software after deployment.

Other operational scopes such as usability of the product,

acceptability of the solutions provided by the development team, etc

are also studied. Operational feasibility carries out the following

tasks:

• Determines whether the problems in user requirements

can be regarded as of high priority.

• Determines whether the suggested solution forwarded by

the software development team is acceptable.

 • Ascertains whether users are ready to adapt to new

software.

• Finds about whether the organization is satisfied by the software

development team’s proposed alternative solutions

3. Economic Feasibility – This type of feasibility determines whether

the software will be able to produce financial profits for an

organization. It makes a cost-benefit analysis of the software

development project. A detailed analysis is carried out to assess the

total cost of the project, including the cost of design, development,

procurement of resources, operational cost and others. Then, it will be

53 | P a g e

Space for learners: analysed if developing the project will be profitable financially or not.

The Software is said to be economically feasible if it highlights the

issues listed below.

• Cost incurred on the development of the software will produce long-

term gains for an organization.

• Cost required to carry out full software investigation such as

requirements elicitation and requirements analysis.

• Cost of software, hardware, development team, and training.

3.6.4 The Feasibility Study Process

The entire process of a feasibility study involves the following steps -

 Information assessment

 Collection of Information

 Report writing

 General information

Let us briefly study the steps involved in a feasibility study.

• Information assessment: Identifies information regarding whether

the system aid in achieving the goals of the organization. Apart from

this, it verifies whether that the system can be implemented by making

use of new technology and within the budget. It also verifies whether

the system to be developped can be integrated with the existing system.

• Information collection: It states the sources from where information

regarding the software can be acquired. In general, the users (who will

be operating the software), the organisation where the software will be

used, and the software development team (which has a clear

understanding of user requirements and knows how to accomplish

them in software) act as the main source of information.

• Report writing: The software development team uses a feasibility

report, to mark the conclusion of the feasibility study. The report

includes recommendations on whether the development of the software

should be continued. Information about changes regarding software

scope, schedule, and budget and suggestions with respect to any

requirements in the system is also included in the report .

54 | P a g e

Space for learners: • General information: This describes the purpose along with the

scope of the feasibility study. It also elucidates system overview,

acronyms and abbreviations, project references, and points of

contact to be used. Project references give a list of references used for

the preparation of the document. System overview gives a description

of the organization responsible for the software development, system

category, system name or title, operational status, and so on.

Acronyms and abbreviations describe a list of the terms used in this

document accompanied by their meanings. Points of contact provide a

list of organizational contact points with the users for future

information and coordination. For example, users might require

assistance for solving a particular problem (such as troubleshooting)

3.6.5 Outcome of The Feasibility Study

Based on the information assessed (about the requirements) ,

information collected and report written, the following list of questions

is obtained-

 a) What will happen if the system is not implemented?

 b) What are the present problems related to the project?

 c) How will the proposed software system help?

 d) What will be challenges related to integration?

 e) Is there any requirement for new technology?

 f) Is there any requirement for new skill sets and team members?

 g) What facilities would the proposed system support?

3.7 ELICITATION OF REQUIREMENTS

In the process of requirement elicitation, the requirements of the

proposed software are ascertained by communicating with end-users,

system users , clients and other stakeholders.

55 | P a g e

Space for learners: 3.7.1 The Process of Requirement Elicitation

The process of requirement elicitation can be described with the help

of the following diagram:

Fig 3.2 Process of requirement elicitation

 Requirements gathering – In this process, the developers have

a discussion with the end-users or the client to understand what

they expect from the software.

 Organizing Requirements – Here, the developers arrange the

requirements in the order of priority, importance and

convenience.

 Negotiation & Discussion – At times, there may exist

ambiguities or conflicts in requirements coming from different

stakeholders. Such issues are discussed or negotiated with the

stakeholders in this important process, for correctness and

clarity. After a consensus has been received, realistic

requirements are prioritised. At the same time, unrealistic

requirements are reasonably compromised .

 Documentation – At this stage, all functional and non-

functional , formal & informal, requirements are duly

documented and are made accessible for the next phases of

processing.

3.7.2 The Techniques of Requirement Elicitation

Different techniques are used in the process of requirement elicitation

to discover the requirements. Some of these are mentioned below-

A . Interviews

An interview is a strong and widely used medium to collect user

requirements. Different types of interviews employed by organizations

are:

56 | P a g e

Space for learners: Structured or closed interviews- Here, the interviewer decides

about every single piece of information to gather well in

advance. The matter of discussion and the pattern to follow is

chalked out firmly.

 Non-structured or open interviews- Here, the interviewer

does not decide on the information to gather in advance.

Therefore, such interviews may be less biased and more flexible.

 Written interviews

 Oral interviews

 One-to-one interviews- Here, the interview is held between the

interviewer and the interviewee, across the table.

 Group interviews - Here, the interview is held between

categories of participants. As a number of people are involved

in such interviews, group interviews have the capacity to unveil

any missing requirement.

B. Surveys

The organization may collect required information by conducting

specially designed surveys among the stakeholders. In the survey,

queries are made about the expectation and requirements of the

stakeholders from the proposed software system.

C. Questionnaires

In this method, a document is provided to all the stakeholders. It

includes a pre-defined set of questions (in objective format, along with

respective options). The response of each stakeholder is then collected

and compiled.

However, this method has an important drawback. If a relevant option

for a particular issue is not included in the questionnaire, there is every

chance that the issue will be left unaddressed.

D. Task analysis

This technique may be used by the engineers and developers to analyze

the functionality for which the proposed software system is needed. If

the client has some similar software in place already to accomplish

57 | P a g e

Space for learners: certain operations, the same is studied and from this, the requirements

of the proposed software system are collected.

E. Domain Analysis

Every software can be grouped into certain categories of domains. The

experts in this particular domain can be consulted to analyze the

general and specific requirements.

F. Brainstorming

In this method, an informal discussion cum debate is organized

among the various stakeholders . Inputs coming from the stakeholders

are recorded for further analysis by the organization.

G. Prototyping

Prototyping is all about building a user interface that is similar to the

intended software. However, this interface does not include the

detailed functionalities of the proposed software. But, from this, the

user can interpret the proposed features of the software product. It

helps the user to provide a better idea of his requirements. This method

becomes very useful if no software is installed at the client’s end for

the reference of the developer and also when the client is not clear

about his own requirements. In such cases, the developer creates the

prototype depending on the raw and initial requirements coming from

the user. The prototype is then provided to the client and his feedback

is noted down. This feedback is considered as the input for requirement

collection.

H. Observation

In this technique, an expert team visits the workplace or organization

of the client. They observe and gather ideas about the actual working

place where the existing systems are installed. They study the

prevailing workflow at the end of the client end and the way the

execution problems are managed. The team would draw important

insights and conclusions which would form the functionalities

expected from the proposed software.

58 | P a g e

Space for learners: 3.8 REQUIREMENTS ANALYSIS

After the process of requirements gathering gets completed, the system

analyst studies the gathered requirements in order to understand the

exact requirement of the customer. This is done with a view to resolving

any ambiguity in the customer's requirements.

The following basic but important questions pertaining to the project

should be clearly understood by the analyst, in advance:

• What is the problem?

• Why should we solve the problem?

• What are the possible solutions to the problem?

• What precisely are the data input to the system and what exactly are

the data outputted by the system?

• What are the most likely complexities that might arise while trying to

solving the problem?

• If the developed software needs to interface with any external

software or hardware, then what exactly would be the format of data

interchange with the external system?

Once the analyst gets a good understanding of the customers'

requirements, he/she proceeds to resolve the following problems that

he/she detects in the requirements.

 a)Ambiguity

 Since an unclear or ambiguous requirement can lead to

incorrect software development, hence the analyst tries to resolve it.

 b)Inconsistency

STOP TO CONSIDER

A system analyst in an IT organization is a person, who analyzes the

requirement of the proposed system and ensures that requirements are

conceived and documented properly & correctly.

STOP TO CONSIDER

The main aim of requirement analysis phase is to analyse the

collected information in order to get a clear understanding of the

system to be developed.

59 | P a g e

Space for learners: The analyst attempts to get the contradicting requirements given by

say two customers resolved as this will hamper the development of

precise software by the customer.

 c)Incompleteness

The analyst gets the incompleteness in requirement solved by

incorporating the requirements that have been overlooked by the

customer. Several activities are involved in analyzing the requirements

of the proposed software. Some of them are mentioned below :

Fig:3.3 Activities involved in analyzing the requirements

3.8.1 Problem Recognition

The primary aim of the requirement analysis process is to completely

understand the objectives of the requirement. It would also look into

why the software is required, what value it will add to the product,

what its benefits will be, if it increases the product quality and if it has

any other effects. These points are studied thoroughly so that business

problems can be fulfilled.

60 | P a g e

Space for learners: 3.8.2 Evaluation and Synthesis

Evaluation means judging whether something is worth it or not.

Whereas, synthesis refers to creating or forming something. The

following tasks may constitute the process of evaluation and synthesis:

 To define all the necessary functions of the proposed software.

 To define the external data objects that are easily observable.

 To evaluate whether the data flow is worth it or not.

 To understand the overall working or behavior of the system

 To find out the constraints of the system.

 To understand the character of the system interface in order to

thoroughly understand how a system interacts with other

components or with other systems.

3.8.3 Modeling

After information gathering is complete with the help of the above

tasks, the next step is to establish behavioral and functional models.

Here, the behavior and function of the system are checked with the

help of a domain model, also known as a conceptual model.

3.8.4 Specification

 Here, an SRS is developed to specify the requirements and to

determine if these are functional or non-functional. The objective of

software requirement is to specify the requirements of the software

product in a consistent, unambiguous and concise manner- with the help

of appropriate formal notations.

Specifying the software requirements is a critical step in software

development. If not done in a proper manner, it may even lead to a

crippled system that may be extremely difficult to rectify later on.

61 | P a g e

Space for learners: 3.8.5 Review

After the SRS is developed, it should be reviewed. This is to check if

the SRS can be improved or not. If there is scope for improvement, it

must be refined to enhance the quality.

3.9 SRS OR SOFTWARE REQUIREMENT

SPECIFICATION

After the analyst has collected all the required information regarding the

software to be developed, and has removed all the anomalies,

incompleteness and inconsistencies from the specification, he/she starts

to organize the requirements, in systematic order, in the form of an SRS

document. The SRS is the official document that contains what is

required from the developers of the system. It comprises detailed user

requirements and complete system specifications. According to

Henninger, an SRS must satisfy the following six requirements:

 It should only specify the external system behavior

 It should specify the constraints related to the implementation.

 It should be adaptable to change.

 It should work as a reference for those who maintain the system.

 It should record the life cycle of the proposed software system.

 It should facilitate a standard and predictable response to

undesired events.

SRS document is supposed to cater to the needs of a varied class of

users some of which are mentioned below-

 Users, customers and marketing personnel

 Project Managers

 Software Developers

 Test Engineers

 User Documentation writers

 Maintenance Engineers

62 | P a g e

Space for learners: 3.9.1 Need for SRS

The following points will help you understand the needs for SRS-

 SRS forms the base of the agreement between the supplier and

the user. The user may not understand a single bit about

software but, he needs to be satisfied. The developers will

develop the software. But, he may not at all know about the

problems the software must solve. SRS is the very medium that

can bridge the communication gap.

 SRS can specify the needs of the user in a manner both the user

and the developer can understand

 SRS can also help the user understand his needs better. Users

may not always be clear about what to expect from the

software. The SRS must analyze and apprehend the potential of

the software to add value to the user and must enlighten the user

about this.

 SRS provides a reference point for validating the final software

product. It provides a clear understanding of what is expected

from the software at the time of the validation.

 A high-quality SRS reduces the cost of software development

3.9.2 Characteristics of a Good SRS

Here are the desired characteristics of a good SRS:

1. Concise: An SRS should be concise. It should also be devoid of

inconsistency and ambiguity. At the same time, it should also

include each and every requirement specified by the user.

2. Structured: An SRS should be well structured so that its style

and structure can be easily modified without disturbing the

completeness and consistency.

3. Black-box view: SRS should only define what the system

should do and abstain from stating how to do it. This means that

the SRS should not discuss the internal implementation issues.

The SRS report should view the proposed system as a black box.

63 | P a g e

Space for learners: It should only define the behavior of the system that is externally

visible. This is the reason, why the SRS document is also termed

as the black-box specification of a system.

4. Verifiable: An SRS is considered verifiable if every single

requirement specified by it is verifiable. This means it follows a

procedure to verify that the intended software meets the user

requirement.

5. Traceable: An SRS is said to be traceable if each and every

requirement specified by it can be uniquely attributed to a

source.

6. Response to undesired events: It should include responses to

exceptional cases.

3.9.2 Important Categories of Customer Requirement

While documenting users' requirements, utmost care should be taken to

categorise and document the requirements in a different section of the

SRS. The varied user requirements can be categorised in the following

points

3.9.3. Functional Requirements

As discussed in 3.4.1 the functional requirements part discusses the

functionalities required from the system. With a high-level function, the

user should be able to accomplish some meaningful part of the work.

3.9.4 Non-Functional Requirements

As discussed in section 3.4.2 Non-functional requirements deal with the

STOP TO CONSIDER

The important parts of the SRS document are:

 • Functional requirements of the system

 • Non-functional requirements of the system

 • Goals of implementation

64 | P a g e

Space for learners: characteristics of the system which cannot be expressed as functions.

3.9.5 Goals of Implementation

The goals of implementation part of the SRS documents some general

suggestions regarding development. These suggestions guide trade-offs

among design goals. This section can document issues with regards to

revisions of the system functionalities that might be required in the near

future, reusability issues, new devices to be supported in the future, etc.

These are some of the items which the developers need to keep in their

mind during development so that the developed system may meet these

aspects that are not required at present.

3.9.6 Identify Functional Requirements

The functional requirements often need to be identified either from a

conceptual understanding of the problem or an informal problem

description document. Each high-level requirement is characterised by

how a system is used by some users to perform certain meaningful jobs.

A system can have different types of users and their requirements from

the same system may also be completely different from one another.

Hence, it is often necessary to identify the different levels of users who

might use the system. Then it should make an attempt to identify each

user's requirements from their perspective. Here we list all the functions

{fi} performed by the system. Each function fi, as shown in the figure

below (fig. 3.1), is considered as a conversion of a specified set of input

data into the corresponding output data.

Example:

Consider the case of a library system, where –

 F1: Search Book details function (fig. 3.4)

Input: Author’s name

Output: Details of the books of the author and their location inside the

library

65 | P a g e

Space for learners:

Fig. 3.4. Book Function

Therefore, the function Search Book (F1) accepts an author's name and

converts it into book details.

 Functional requirements literally describe a set of high-level

requirements, with each high-level requirement taking some data from

the user and thereby providing some data to the user as output. Also

,each high-level requirement itself might consist of many other

functions.

3.9.7 Document Functional Requirements:

For the documentation of the functional requirements, we have to

specify the set of functionalities that the system supports. A function is

specified by identifying the state at which the data is inputted to the

system, its input and output data domain, and the type of processing that

is to be carried out on the input data to get the desired output data. Let

us try to document the withdraw-cash function of an Automated Teller

Machine(ATM) system. The withdrawal of cash (the withdraw-cash

function) is a high-level requirement. It has a number of sub-

requirements corresponding to the different user interactions. These

varied interaction sequences capture the different scenarios for an ATM

.An Example: Automated Teller Machine(ATM)

 Functional Requirements of an ATM

• Withdraw Cash

• Deposit Cash

• Balance Enquiry

• Passbook Update

• Transaction Details

• PIN Change

We will look at the functional requirements of Withdraw Cash from an

ATM

Author
Name

Book
details

F1

66 | P a g e

Space for learners:

Fig:3.5

F1: Withdraw Cash

Description: This function first ascertains the type of account the user

has and the account number from which he attempts to withdraw cash .

It verifies the balance to check if the amount requested is available in

the account or not. If sufficient balance is available, it sends the

required cash amount as output; else, it generates an error

F1.1: Select Withdraw Cash

Input: “Withdraw Cash” Option

Output: User is Prompted to fill in the Account Type

F1.2: Select Account Type

Input: User Option

Output: User is Prompted to enter the Amount

F1.3: Read required Amount

Input: Amount to be withdrawn in integer values in the range of

more than 100 and below 10,000 and in multiples of 100

Output: Processing for “Valid Transaction” with requested cash and

printed transaction OR “Failed Transaction” with a regret message .

Select

Withdraw Cash

Display

Account Type Menu

Enter

Option

Prompt
Amount to be withdrawn

Enter

Amount

Check
Validity of input

Display

Current Balance
Check

Transaction Request
Display

Changed Balance

67 | P a g e

Space for learners: 3.9.8 Techniques for Representing Complex Logic

A good SRS document should be able to characterize the conditions

under which different interaction scenarios take place. Sometimes these

conditions may be complex and many alternative processing and

interaction sequences may also exist. Two primary techniques to

analyze and represent complex processing logic are available: decision

trees and decision tables.

1. Decision Trees- It presents a graphic view of the processing logic

associated with decision making and the corresponding actions

undertaken. The edges of a decision tree denote conditions and the leaf

nodes denote the actions to be taken on the basis of the outcome of

testing the condition.

For Example,

Consider Library Membership Automation Software (LMS). Assume

that it supports the following 3 options-

• New member

• Renewal, and

• Cancel membership

New member option Decision: When a user selects the 'new member'

option, the software asks for member details like the member's name,

phone number, address etc. Action: If the user enters proper

information, the software would create a membership record for the

particular member. Also, a bill is printed against the annual membership

charge and the payable security deposit.

Renewal option Decision: If the user selects the 'renewal' option, the

LMS asks for the membership number of the member and his name to

verify if he is an authorised member. Action: If his membership is

found to be valid, the membership expiry date gets updated and the

annual membership bill for the user is printed. Else, an error message is

shown on the screen.

Cancel membership option Decision: If the user selects the 'cancel

membership' option, the LMS asks for the membership number of the

member and his name to verify if he is an authorised member. Action:

68 | P a g e

Space for learners: The software cancels the membership. Also, a cheque bearing the

balance amount due to the member gets printed. Finally, the

membership record gets deleted from the database.

Decision tree representation of the above example The tree shown in

the figure below, (fig. 34.3) is a graphical representation of the above-

mentioned example. After the software gets the information from the

user, it makes a decision and accordingly, performs the corresponding

actions.

Fig 3.6

2. Decision Tables

Decision tables are used to represent the otherwise complex processing

logic in a matrix or tabular form. The top rows of the table specify the

conditions or variables to be evaluated. The rows at the bottom of the

table specify the actions to be performed upon satisfaction of the

corresponding conditions.

Example

Consider the LMS example discussed above. The decision table shown

in the figure below (fig. 34.4) shows a way to represent the problem in

a tabular form. The table here is divided into 2 parts. The part at the top

shows the conditions and the part at the bottom shows the actions that

have been taken. Each column of the table stands for a rule.

69 | P a g e

Space for learners: Conditions

Valid selection No Yes Yes Yes

New member - Yes No No

Renewal - No Yes No

Cancellation - No No Yes

Actions

Display error message x - - -

Ask member's details - x - -

Build customer record - - x -

Generate bill - x x -

Ask member's details - - x x

Update expiry date - - x -

Print cheque - - - x

Delete record - - - x

Fig. 3.7 Decision table for LMS

From the table shown above, you can easily see that, if the valid

selection condition becomes false, the action performed with reference

to this condition is 'display error message' and so on.

3.9.9 Problems without an SRS Document

Here are some of the problems an organization will face without an

SRS:

• If an SRS is not there, the software system implemented would not

be able to address the needs of the customers.

 • Software developers will not be sure about whether they have

developed the software as per the customer requirements

 • It will be extremely difficult for the maintenance engineers to

understand the functionalities of the system.

• The document writers will find it very difficult to script the user

manuals properly.

70 | P a g e

Space for learners:

CHECK YOUR PROGRESS

1. Mark the following as True or False:

a. All software engineering principles are backed by either scientific

basis or theoretical proof.

b. Functional requirements address maintainability, portability, and

usability issues.

c. The edges of decision tree represent corresponding actions to be

performed according to conditions.

 d. The upper rows of the decision table specify the corresponding

actions to be taken when an evaluation test is satisfied.

e. A column in a decision table is called an attribute.

2. i) How many feasibility studies is conducted in Requirement

Analysis?

a) Two

b) Three

c) Four

d) None of the mentioned

ii). How many phases are there in Requirement Analysis ?

 a) Three

 b) Four

 c) Five

 d) Six

iii). Which one of the following is a functional requirement ?

 a) Maintainability

 b) Portability

 c) Robustness

 d) None of the mentioned

71 | P a g e

Space for learners:

3.10 SUMMING UP

This unit discusses various aspects of software requirements analysis,

the significance of the use of engineering approach in software design,

various tools for gathering the requirements and specifications of

prototypes. Due to the complexity associated with software

development, the engineering approach is being used in software

design. The use of the engineering approach in the area of requirements

analysis has evolved the field of Requirements Engineering. Before the

actual system design commences, the system architecture is modelled.

3.11 ANSWERS TO CHECK YOUR PROGRESS

Answers for Q1:

a)True

b)False

c)False

iv) . An SRS document normally contains

a) Functional requirements of the system

b) Module structure

c) Non-functional requirements of the system

d) Both a and b

v) Consider a system where a heat sensor detects an intrusion and

alerts the security company. What kind of requirement the sysem

provides?

 A). Functional

B). Non-Functional

 C). Known

 D). None of the mentioned

72 | P a g e

Space for learners: d)False

e)False

Answers for Q2:

i) b

ii) c

iii) d

iv) d

v) a

3.12 POSSIBLE QUESTIONS

1. Identify the important parts of an SRS document. Identify the

problems an organization might face without developing an SRS

document.

2. Identify the non-functional requirement-issues that are considered

for a given problem description.

3. Discuss the problems that an unstructured specification would

create during software development.

4. Why SRS document is often touted as a “Black Box” document?

5. “SRS document should be a flexible document” - Agree or disagree

the comment

6. How Requirement Engineering is related to process development

models?

3.13 REFERENCES AND SUGGESTED READINGS

 Software Engineering, Sixth Edition, 2001, Ian Sommerville;

Pearson

 Education.

 Software Engineering – A Practitioner’s Approach, Roger S.

Pressman;

 McGraw-Hill International Edition.

 Fundamentals Of Software Engineering, 2014 4Th Edn. by Rajib

Mall, PHI.

73 | P a g e

Space for learners: UNIT 4: SOFTWARE PROJECT PLANNING

Unit Structure:

4.1 Introduction

4.2 Unit Objectives

4.3 Responsibilities of a software project manager

4.4 Project Planning

4.5 Sliding Window Planning

4.6 Software Project Management Plan (SPMP)

4.7 Purpose of project planning

4.8 Project Scope

4.9 Principles of Project Planning

4.10 Process of Project Planning

4.11 Project Plan

4.11.1Quality Assurance Plan

4.11.2 Verification and Validation Plan

4.11.3 Configuration Management Plan

4.11.4 Maintenance Plan

4.11.5 Staffing Plan

4.12 Project Scheduling

4.13 Project Scheduling Techniques

 4.13.1Activity networks

 4.13.2 Critical Path Method (CPM)

 4.13.3 Gantt chart

 4.13.4 PERT Chart

4.14 Summing Up

4.15 Answers to Check Your Progress

4.16 Possible Questions

4.17 References and Suggested Readings

4.1 INTRODUCTION

Software development is considered as a complex task involving

processes, procedures and people. Therefore, for the successful

development of a software an effective software management is

required. Historically, software projects have the dubious distinction of

74 | P a g e

Space for learners: exceeding project schedule and cost. Estimating cost and duration is still

a weak link in software project management. The aim of this unit is to

give an overview of different project planning techniques and tools used

by modern day software project managers. It is the responsibility of the

project manager to make as far as possible accurate estimations of effort

and cost. This is particularly what is desired by the management of an

organization in a competitive world. This is especially true of projects

subject to competition in the market where bidding too high compared

with competitors would result in losing the business and a bidding too

low could result in financial loss to the organization. This makes

software project estimation crucial for project managers.

4.2 UNIT OBJECTIVES

After reading this unit, the reader will get a grasp of the following:

 Responsibilities of software project manager.

 The need and purpose of project planning.

 The project planning process.

 A project plan.

 Project scheduling.

 Techniques for project scheduling include Gantt and PERT

chart.

 Project staffing.

4.3 RESPONSIBILITIES OF A SOFTWARE PROJECT

MANAGER

Effective project planning is the key to successful completion of the

software project and project manager is the person responsible for it.

Software project managers is responsible for steering a project to

success. It is difficult to describe the job responsibilities of a project

manager. The responsibility of a project manager spans from invisible

activities such as building up team morale to clearly visible activity like

75 | P a g e

Space for learners: customer presentations. Most managers take the responsibility for

project proposal writing, scheduling, project staffing, project cost

estimation, software process tailoring, software configuration

management, project monitoring and control, risk management,

managerial report writing and presentations, interfacing with clients,

etc. These numerous activities are varied and difficult to enumerate, but

it can be broadly classified into project planning, and project monitoring

and control activities. The project planning activity is undertaken before

development starts. While, the project monitoring and control activities

are undertaken once the development activities start.

4.4. Project Planning

Before starting a software project, it is important to determine the

various tasks to be performed. The tasks are then properly allocated

among individuals involved in the process of software development.

Thus, planning is essential as it results in effective software

development.

Project planning is an well-structured and consolidated management

process with consistent focus on activities that will lead to successful

completion of the project. It helps in preventing obstacles that crop up

in the project, as for example changes in organization’s or project’s

objectives, non-availability of resources etc. Further, project planning

also aids in optimal usage of the allotted time for a project and better

utilization of resources. Some of the additional objectives of project

planning are listed below.

 To define the roles and responsibilities of the members in a

project management team.

 To determine project constraints.

 To check whether the user requirements along with schedule are

feasible or not.

 To ensure that the works of project management team is aligned

with the business objectives.

STOP TO CONSIDER

The different activities of a project manager can be classified into-

a) Project planning

b) Project monitoring and control activities

76 | P a g e

Space for learners:

Several individuals work together for planning a project which include

senior management and project management team. The senior

management is responsible for employing the team members. The

senior member team also provide resources that are required for the

project. The project management team, which consists of project

managers and developers, is generally in charge of planning,

determining, and tracking the various activities of the project.

The following essential activities are carried out during project

planning:

 • Estimating the following attributes of the project:

Project size: What will be problem complexity, expressed in terms

of the effort and time required to develop the product?

Cost: How much cost will be incurred to develop the project?

Duration: What is the duration for completing the software

development?

Effort: How much effort would be required?

The success of the subsequent planning activities will depend on

the accuracy of these estimations.

• Work break down structure

• Risk identification, analysis, and abatement planning

•Scheduling manpower and other resources

• Miscellaneous plans such as quality assurance plan, configuration

management plan, etc.

STOP TO CONSIDER

Project planning is undertaken and completed even before any

developmental activity starts.

STOP TO CONSIDER

A project plan defines the project goals and objectives, defines tasks

and the means to achieve the goals, identifies what resources will be

needed and associated budgets and timelines for completion.

77 | P a g e

Space for learners: The effectiveness of the following planning activities relies on the

accuracy of those estimations.

 planning force and alternative resources

 workers organization and staffing plans

 Risk identification, analysis, and abatement designing

Miscellaneous arranges like quality assurance plan, configuration,

management arrange, etc

Fig:4.1

Fig. 4.1 shows the order in which different project planning activities

may be undertaken. It can be easily observed that size estimation is the

first activity. It is also the most fundamental parameter based on which

all other planning activities are carried out. Other estimations such as

estimation of effort, cost, resource, and project duration are also very

important components of project planning.

4.5 SLIDING WINDOW PLANNING

Project planning needs due care and attention as adhering to unrealistic

time and resource estimates leads to schedule slippage. Delays in

STOP TO CONSIDER

Size is the most fundamental parameter based on which all other

parameters are estimated

78 | P a g e

Space for learners: schedule can cause customer dissatisfaction and adversely affect the

morale of the team. This may even lead to project failure. But project

planning is a very challenging task. Especially it is very difficult to

prepare accurate plan for very large projects. This is partly difficult

because of the fact that the scope of the project, proper parameters,

project staff, etc. may change during the span of the project. To

overcome this problem, sometimes project managers undertake project

planning in stages. Planning a project over a number of stages protects

managers from making big commitments too early. This technique of

staggered planning is known as Sliding Window Planning. In the sliding

window technique, starting with an initial plan, the project is planned

more accurately in successive development stages. At the start of a

project, project managers have incomplete knowledge about the details

of the project. Their information base gradually improves as the project

progresses through different phases. After the completion of every

phase, the project managers can plan each subsequent phase more

accurately and with increasing levels of confidence.

4.6 SOFTWARE PROJECT MANAGEMENT PLAN

(SPMP)

When project planning reaches its completion, project managers

document their plans in the form of the Software Project Management

Plan (SPMP) document. The list of various items that an SPMP

document should discuss are mentioned below. This list can be referred

to as a possible organization of the SPMP document.

 Organization of the Software Project Management Plan (SPMP)

Document

1. Introduction

(a) Objectives

(b) Major Functions

(c) Performance Issues

(d) Management and Technical Constraints

 2. Project Estimates

79 | P a g e

Space for learners: (a) Historical Data Used

 (b) Estimation Techniques Used

 (c) Effort, Resource, Cost, and Project Duration Estimates

3. Schedule

 (a) Work Breakdown Structure

(b) Task Network Representation

 (c) Gantt Chart Representation

(d) PERT Chart Representation

4. Project Resources

(a) People

(b) Hardware and Software

(c) Special Resources

5. Staff Organization

(a) Team Structure

(b) Management Reporting

6. Risk Management Plan

(a) Risk Analysis

(b) Risk Identification

 (c) Risk Estimation

(d) Risk Abatement Procedures

 7. Project Tracking and Control Plan

 8. Miscellaneous Plans

(a) Process Tailoring

(b) Quality Assurance Plan

(c) Configuration Management Plan

(d) Validation and Verification

(e) System Testing Plan

(f) Delivery, Installation, and Maintenance Plan

80 | P a g e

Space for learners:

4.7 PURPOSE OF PROJECT PLANNING

In order to accomplish a specific purpose, software project is carried

out which can be categorized under two heads namely, project

objectives and business objectives. Some of the most common project

objectives are listed below.

 Meet user requirements:

Understand the user requirements and develop the project

accordingly.

 Meet scheduled deadlines:

Complete the project milestones, as laid down in the project plan,

on time so that the project gets completed according to the

schedule.

 Be within budget:

To manage the overall project cost in such a way that the project

is completed within the allocated budget.

 Produce quality deliverables:

Ensure that quality, accuracy and overall performance of the

project is maintained.

Business Objectives

Business objectives plays the role for ensuring that the organizational

objectives and requirements are accomplished in the project. In

general, these objectives are related with business process

improvements, quality improvements and customer satisfaction. Some

of the most common project objectives are listed below.

 Evaluate processes:

Evaluate the business processes and make changes as and when

required during the progress of the project.

 Renew policies and processes:

STOP TO CONSIDER

The SNMP is the end product of the planning process

81 | P a g e

Space for learners: In order to carry out the task effectively, flexibility to renew the

policies and processes of the organization must be provided.

 Keep the project on schedule:

Reduce the downtime (period of no work done) by effectively

managing the factors, such as unavailability of resources during

software development, that hampers the development.

 Improve software:

Use suitable processes so that the software developed meets the

organizational requirements and the organization gains a competitive

advantage.

4.8 PROJECT SCOPE

Given the user requirements, the project management team decides the

scope of the project before it begins. This scope furnishes a detailed

description of features, functions, interfaces, and constraints of the

software that needs to be considered. Functions gives a description of

the tasks the software is expected to accomplish. Features describe the

attributes the software should have as per the user requirements.

Constraints express the limitations that are imposed on software by

hardware, memory etc. Interfaces describe the interactions of modules

and functions of software components with each other. Project scope

also takes into account the software performance, which, again

depends on its processing capability and response time required to

produce the output.

Once the scope of the project is determined, it is crucial to understand

it properly so as to develop the software aligned with the user

requirements. After this, cost and duration of the project are estimated.

In case, the project scope is not determined on time, the project may

fail to complete within the specified schedule. Project scope gives

details of the following information.

STOP TO CONSIDER

Purpose of project planning is to accomplish project and business

objectives

82 | P a g e

Space for learners: The elements included in and excluded from the project

 The processes alone with the entities

 The functions and features need to be included in the software to

meet the user requirements.

4.9 PRINCIPLES OF PROJECT PLANNING

For the project to begin with well-defined tasks, project planning

should be effective .An effective project plan helps to minimize any

additional costs incurred on the project while it is in progress. For

project planning to be effective, some principles are followed which

are listed below.

 Planning is necessary:

 Planning should be carried out before a project begins. For it to

be effective, objectives and schedules should be unambiguous and

understandable.

 Risk analysis:

Before starting a project, the senior management along with the

project management team must consider the risks therein that may

affect the project. As for instance, the user might want some

changes in their requirements while the project is in progress. To

tackle such a case, the time and cost estimation should be done

accordingly (to meet the new requirements).

 Tracking of project plan:

Once the project plan is ready, it should be tracked and modified

accordingly.

 Meet quality standards and produce quality deliverables:

STOP TO CONSIDER

The project management and senior management team should

communicate with the users to understand their requirements and

develop software according to those requirements and expected

functionalities.

83 | P a g e

Space for learners: The project plan should be able to identify processes by means of

which the project management team can ensure desired quality in

software. Based on the selected process for ensuring quality, the

time and cost for the project is estimated.

 Description of flexibility to accommodate changes:

 The final outcome of project planning is in the form of a project

plan, which should be flexible enough to allow changes to be

incorporated when the project is in progress

4.10 PROCESS OF PROJECT PLANNING

The project planning process comprises of a series of interlinked

activities followed in an ordered sequence in order to implement user

requirements. It includes the elucidation of a series of project planning

activities along with individual(s) responsible for performing these

activities. Furthermore, the project planning process consist of the

following.

1. The objectives and scope of the project.

2. Name of techniques used to perform project planning

3. Effort of individuals (expressed in time) involved in the project.

4. Resources required for the project

5. Project schedule and milestones

6. Risks associated with the project.

The process of project planning comprises of several activities which

are crucial for carrying out a project in a systematic manner. These

activities consist of series of tasks undertaken over a period of time in

the process of developing the software. These activities comprise of

estimation of effort, time, and resources required and risks associated

with the project.

STOP TO CONSIDER

An effective project plan helps to minimize any additional costs

incurred on the project

84 | P a g e

Space for learners:

 Fig 4.2

Following activities are performed during the project planning process

 Identifying the project requirements:

Before starting a project, it is important to identify the

requirements of the project because it is the identification of

project requirements that will help in performing the project

related activities in a systematic manner. These requirements

consist of information such as project scope, data and functionality

required in the software, and roles determined for the project

management team members.

 Identifying cost estimates:

 Along with the effort and time estimation, it is essential to

estimate the cost that the project will incur. The cost of hardware,

the cost required for the maintenance of hardware components and

the cost of network connections are included in the cost estimation.

In addition to this, cost for the individuals involved in the project

is also estimated.

 Identifying risks:

Risks can be defined as unexpected or undesired events that have

an adverse effect on the project. A software project may encounter

several risks (such as technical risks and business risks) that

hamper the project schedule and multiply the cost of the project.

85 | P a g e

Space for learners: Hence identifying risks before starting a project, helps in

understanding their probable magnitude of impact on the project.

 Identification of critical success factors:

 For the success of a project, critical success factors need to be

recognised. These factors include the conditions that ensure greater

chances of success for a project. Commonly, these factors include

appropriate budget, support from management, proper schedule,

and skilled software engineers.

 Preparation of project charter:

A project charter gives a brief description of the project scope,

time, quality, cost, and resource constraints as described during

project planning. The management prepares it for approval from

the sponsor of the project.

 Preparation of project plan:

A project plan gives a description regarding the resources that are

available for the project, individuals involved in the project, and

the schedule according to which the project is to be carried out.

 Commencement of the project:

After the project planning is complete and resources are allocated

to team members, the software project commences.

After the determination of project objectives and business objectives,

end date for the project is fixed. The project management team is

entrusted with the responsibility of preparing the project plan and

schedule aligned with the end date of the project. After the project plan

is analyzed, the project manager conveys the project plan and its end

date to the senior management. From time to time, the progress of the

project is reported to the management. In the same way, the senior

management is informed when the project is complete. In case there is

any delay in completing the project, the project plan is re-analyzed and

corrective actions are taken to complete the project. The project is

tracked on a regular basis and in case of any modification in the project

plan, the senior management is informed.

86 | P a g e

Space for learners:

4.11 PROJECT PLAN

A project plan is the outcome of project planning. It provides

information regarding the end date, milestones set, activities and

deliverables of the project. Moreover, it also describes the duties and

responsibilities of the project management team. The resources

required, including the description of hardware and software (such as

compilers and interfaces) , for the project are also finds place in the

project plan. The description and lists of the methods and standards to

be used are also mentioned in the project plan. These methods and

standards include algorithms, tools, review techniques, design

language, programming language, and testing techniques.

It helps a project manager to understand, monitor, and control the

development of software project. This plan is acts as a means of

communication between the users and project management team.

There are a number of advantages associated with a project plan, some

of which are listed below.

 It ensures that the software is developed as desired by the user

(user requirements), objectives set, and scope of the project.

 It helps in identifying the role of each member of the project

management team who are involved in the project.

 It helps to monitor the progress of the project as laid in the project

plan.

 It enables to determine the available resources and the activities to

be undertaken during software development.

 It gives an overview of the costs of the software project, which

was estimated during project planning, to the management,

STOP TO CONSIDER

It should be noted that depending on the kind of project and user

requirements there are differences in the contents of two project plans.

STOP TO CONSIDER

Once the project objectives and business objectives are determined

for the project, its end date is fixed.

87 | P a g e

Space for learners: Generally, project plan is divided into the following sections.

 Introduction:

It describes the objectives of the project and gives detail about the

constraints that might affect the software project.

 Project organization:

Illustrates about the responsibilities assigned to the team members

of project management in order to complete the project.

 Risk analysis:

 Describes the probable risks involved during software

development It also explains means to assess and reduce the effect

of risks.

 Resource requirements:

Specifies the software and hardware required to build the software

project. Cost estimation is thus done according to these resource

requirements.

 Work break down:

Specifies the activities the project is composed of. It also describes

the milestones and deliverables of the different project activities.

 Project schedule:

 Specifies how the activities are dependent on each other. Based on

this, the time required by the project management team members

to complete the project activities is estimated.

In addition to the above sections, there are a number of plans that may

be a part of or related to a project plan. Some of these plans include

quality assurance plan, verification and validation plan, configuration

management plan, staffing plan, and maintenance plan.

STOP TO CONSIDER

Project Plan is the document containing information regarding the

end date, milestones set, activities and deliverables of the project.

88 | P a g e

Space for learners: 4.11.1QUALITY ASSURANCE PLAN

The quality assurance plan specifies the strategies and methods that

needs to be followed in order to accomplish the following objectives.

 Ensuring that the project is developed, managed, and implemented

in an organized way.

 Ensuring that the deliverables of the project is of acceptable

quality before they can be delivered to the user.

4.11.2 Verification and Validation Plan

The verification and validation plan gives detail about the approach,

resources and schedule to be used for system validation. It comprises

of the following sections.

4.11.2.1 General information

It provides description of the aim or purpose of the system, scope,

system overview, project references, abbreviations and acronyms, and

points of contact. Purpose gives a description of the procedures to

verify and validate the various components of the system. Scope

provides information regarding the procedures to verify and validate as

they relate to the project. System overview specifies information about

the organization responsible for the project. Other information such as

system name, system category, operational status of the system, and

system environment are also specified by system overview. Project

references gives the list of references used while preparing the

verification and validation plan. Acronyms and abbreviations

specifies the list of terms used in the project plan. Points of contact is

meant to provide assistance to users, by the organization, as and when

they encounter problems such as troubleshooting and so on.

4.11.2.2 Reviews and Walkthroughs

It is meant to provide information about the schedule and procedures.

Schedule describes the end date to achieve the milestones set for the

project. Procedures are the tasks that are associated with reviews and

89 | P a g e

Space for learners: walkthroughs. Each team member is responsible for reviewing the

documents for errors and also ensure it is consistent with the project

requirements. During walkthroughs, the project management team

checks to see the correctness of the project as laid down in the software

requirements specification (SRS).

4.11.2.3 System Test Plan and Procedures

Provides information related to the strategy used for testing the

system, database integration, and platform system integration. System

test strategy gives an overview of the various components required in

order to integrate of the database and ensure that the application

executes on at least two specific platforms. Database integration

describes about how the database is connected to the GUI (Graphical

User Interface). Platform system integration is a procedure which is

performed on different operating systems with a view to test the

platform.

4.11.2.4 Acceptance Test and Preparation for Delivery

It describes the procedure, criteria for acceptance, and installation

procedure. Procedure illustrates on how acceptance testing needs to be

performed on the software in order to verify its usability as it was

expected to be. Acceptance criteria specifies the conditions based on

which the software will get accepted. These includes those tests must

be on all the components, features and functions and the system

integration test. In addition to this, acceptance criteria also checks

whether the software meets user expectations such as its ability to

operate on several platforms. Installation procedure describes the steps

on how to install the software in the specific operating system being

used.

4.11.3 Configuration Management Plan

The configuration management plan defines the process, which is to be

used while bringing about some changes in the project scope.

Generally, it is concerned with redefining the objectives of the project

90 | P a g e

Space for learners: and its deliverables (software products that are delivered to the user

after completion of software development).

4.11.4 Maintenance Plan

The maintenance plan lists the resources and processes that is required

for making the software operational after its installation. Sometimes,

software development team (or the project management team) is not

entrusted with the responsibility of maintenance of the software. In

such cases, a separate team known as software maintenance team is

assigned the task of software maintenance.

The maintenance plan, comprises of the following sections.

 a) Introduction and background:

It describes the services required by the software and the manner in

which the software is to be maintained. It also defines the scope of al

the maintenance activities that needs to be performed.

b) Budget:

Specifies the budget that will be required for carrying out operational

activities and software maintenance.

 c) Roles and responsibilities:

Defines the roles and responsibilities of the each of the team members

which are associated with software maintenance and operational

activities. It also mentions the skills that is required to perform

maintenance and operational activities. Apart from the software

maintenance team, software maintenance also comprises of the user

support staff, user training staff, and support staff.

d) Performance measures and reporting:

It recognises the performance measures required in order to carrying

out software maintenance. Moreover, it also describes how the different

measures, essential for enhancing the performance of services (for the

software), are recorded and reported.

e) Management approach:

It identifies the methodologies required for demonstrating maintenance

priorities of the project. Because of this purpose, the management either

91 | P a g e

Space for learners: identifies new methodologies or refers to the existing methodologies.

Apart from this management approach also describes the various levels

at which the users are involved in software maintenance and

operational activities. It also specifies the manner in which the users

and the project management team will communicate with each other.

f) Documentation strategies:

Describes in detail the documentation prepared for user reference.

Generally, reports, error messages, information about problems

occurring in software, and the system documentation are included in

the documentation.

g) Training:

It provides information regarding the training activities.

h) Acceptance:

It defines a point of agreement between the project management team

and software maintenance team after the completion of implementation

and transition activities. Once the agreement has been made, the

software maintenance begins.

4.11.5 Staffing Plan

The staffing plan specifies the number of individuals required for a

project. It includes selection and assignment of tasks to the members of

the project management team. It also specifies the appropriate skills

required to manage the project and to perform tasks so as to produce

the project deliverables. In addition to this, Staffing Plan also provides

information about the resources such as tools, equipment, and

processes used by the project management team.

A staff planner undertakes the task of staff planning. He is the one who

is responsible for determining the individuals that are available for the

project. Moreover, a staff planner has a number of responsibilities

which are listed below.

 1) The staff planner identifies the individuals, who can be either from

existing staff, staff on contract, or newly employed staff, that can be

employed in the project. It is essential for the staff planner to know the

92 | P a g e

Space for learners: structure of the organization in order to determine the availability of

staff.

2) The staff planner is responsible for determining the skills required to

execute the various levels of tasks as mentioned in the project schedule

and task plan. In case where staff with required skills is not available,

the staff planner has to inform the project manager about the

requirements.

3)The staff planner must ensure that the required staff with desired

skills is available at the right time. In order to fulfill this requirement,

the staff planner plans the availability of staff once the project schedule

is fixed. For instance, the initial stage of a project require only the

project manager along with a few software engineers as the staff

whereas during software development phase, the staff will consist of

software designers as well as the software developers.

4) Roles and responsibilities of the project management team members

are also defined by the staff planner, so that, according to the tasks

assigned to them, they can communicate and coordinate with each

other. Depending on the size and complexity of the project the project

management team can be further broken down into sub-teams

The staffing plan comprises of the following sections.

1) General information:

Specifies name of the project and the project manager, who is

responsible for the project. It also specifies the start and end dates of

the project.

2) Skills assessment:

Provides information, which is essential for assessment of skills. These

information include the knowledge, skill, and ability of team members

who are responsible for achieving the objectives of the project.

Moreover, it specifies the number of members that will comprise a

team, for the project.

3) Staffing profile:

It describes the staff profile required for the project. The profile defines

the calendar time, the individuals involved, and the level of

commitment. Calendar time specifies the period of time, expressed in

93 | P a g e

Space for learners: terms as month or quarter, that the individuals are required to complete

the project. All the individuals involved in the project have specific

designations such as project manager and developer. Level of

commitment is the utilization rate of individuals such as work

performed on full-time and part-time basis.

4) Organization chart:

It illustrates the organization of team members in the project

management team. It also includes information such as name,

designation, and role of each team member.

4.12 PROJECT SCHEDULING

Project scheduling comprise one of the most important part in project

planning activity. It gives details regarding the project start date and

termination date, milestones set, and the tasks for a particular project.

Moreover, it specifies resources in terms of person to be engaged,

equipments and facilities to be used. A proper project schedule

prepared aligned to the project plan not only aims to complete the

project on the scheduled time but also ensures that no additional cost is

incurred in the event of any delay in the project. a software project

manager follows the following principles while preparing the project

schedule:

1) Compartmentalization:

Modularize the project to form subtasks. The main purpose of

compartmentalization is to make the project manageable.

2) Interdependency:

Identify the interdependency among the various tasks. All the activities

may not be interdependent. But there are some activities which cannot

be started until the activity on which it is dependent completes. on

interdependent activities can be started simultaneously.

STOP TO CONSIDER

The staffing plan specifies the selection and assignment of tasks to the

members of the project management team

94 | P a g e

Space for learners: 3) Time Allocation:

Determine the time required to complete each activity so that it can

be allocated to each of the team members responsible for carrying out

that particular job. Moreover, the members of the project

management team should be assigned a start and end date on the

based on the manner on which the work will be conducted (i.e., full-

time or part time basis)

4) Effort Validation:

Ensure that the number of project team members allocated to a

specific task conforms to the effort required for that particular task.

This is specifically because every project management team has a

specified number of members in it and if more or less members are

allocated to a particular activity than required then the project may

not complete on time.

5) Defined responsibilities:

Demarcate the roles and responsibilities of each of the members in

the project management team. Thus, tasks should be allocated suited

to their skills and abilities.

6) Defined outcomes:

The outcome of each and every task should be well defined.

Generally, outcomes are defined in terms of product which are

combined together to form the deliverables.

7) Defined milestones:

Set milestones for the completion of the product and its review for

quality check.

The first and foremost step in project scheduling is identification of the

various tasks essential for completion of the project. The next step in

scheduling is to breakdown a large task into a logical set of small

STOP TO CONSIDER

Several aspects that are important in project scheduling are: a)

Techniques of project scheduling b)Task Network c)Tracking the

schedule

95 | P a g e

Space for learners: activities which can be assigned to different developers. After the the

tasks has been broken down to smaller tasks and the work breakdown

structure has been created, the dependency among the activities needs

to be identified. Determining the dependency among the different

activities determines the order in which the different activities would

be carried out. For instance if an activity A needs the results of another

activity B, then activity A must be scheduled after activity B.

Generally, task dependencies define a partial ordering among the

different tasks, i.e. one task may precede a subset of other tasks, but

for some tasks there may not exist any precedence ordering defined

between them (called concurrent task). Activity Network is used to

represent the dependency among the activities

Once the activity network representation has been worked out,

resources are allocated to each activity. Allocation of resource is

generally done using a Gantt chart. After resource allocation is done, a

PERT chart representation is developed to monitor and control the

project. For task scheduling, the project tasks is decomposed into a set

of activities. The time frame for each activity to be performed is

determined. The end of each activity is called milestone. The progress

of a project is tracks by the project manager by monitoring the timely

completion of these milestones. In case he observes that the milestones

started getting delayed, then he has to carefully control the activities,

so that the overall deadline can still be met.

4.13 TECHNIQUES FOR PROJECT SCHEDULING

We need to use scheduling techniques in a project to align all its aspects

so as to work corresponding to each other. A schedule should be

proportionate with the time set for the project and all its resources

should be used in an optimum manner. Given the variable nature of the

project and its scope, it is hard to plan it, but the project management

team is expected to do it otherwise they will be held responsible for it.

A schedule consists of all the activities included in the implementation

and execution of a project within the pre-determined time frame of the

project. A project schedule helps in prioritizing work involved in a

project and finish it off in an orderly manner. It also helps in

appointing the right person for the job and in the proper allocation of

96 | P a g e

Space for learners: the available resources. Time management and adjustments with the

scope of a project is only possible if there is a proper schedule

prepared for the project being worked upon

Numerous techniques have been in use for the purpose of project

scheduling. These techniques are applied after every information is

gathered from the project planning activities.

The most common techniques used for project scheduling are Activity

network and critical path, Gantt Chart and PERT chart.

4.13.1 Activity Networks

Work Breakdown Structure (WBS) representation of a project is

transformed into an activity network by representing the activities

identified in WBS along with their interdependencies. An activity

network displays the different activities making up a project, their

estimated durations, and interdependencies (as shown in fig. 4.4).

Each activity is represented by a rectangular node and the duration of

the activity is shown alongside each task.

The Work Breakdown Structure of an MIS (Management Information

System) problem is shown in the fig 4.3

.

STOP TO CONSIDER

Work Breakdown Structure (WBS) is the procedure for decomposing

a given task set recursively into small activities.

STOP TO CONSIDER

Activity Network is used to represent the dependency among the

activities

97 | P a g e

Space for learners:

Fig 4.3 showing the WBS of an MIS problem.

The activity network representation of the same problem as shown in fig

4.3 is shown in fig 4.4

Fig 4.4 showing the Activity Network of the MIS problem.

Time durations for the different tasks can be estimated in several ways.

One possible way that project managers use is that they empirically

assign durations to different tasks. However, this is not a good

technique for time estimation, as software engineers often do not agree

to this unilateral decision. An alternative to this is to let engineer

himself assess the time required for an activity he could be assigned to.

Nevertheless, some managers prefer to estimate the time for various

activities themselves. Many believe that an aggressive schedule could

motivate the engineers to carry out his job in a better and faster way.

RAS

15

Design database

45

Code database

60

Design GUI

30

Code GUI

45

Integrate

and Test

60

Document

5

User Manual and

Documentation

90

98 | P a g e

Space for learners: However experiments reveal that unrealistically aggressive schedules

not only cause engineers to compromise on quality aspects, but also

can lead to schedule delays. A better way to estimate the durations of

task accurately is to let people involved in the project set their own

schedules.

4.13.2 Critical Path Method (CPM)

The Critical Path Method is a technique for determining the activities

with least scheduling flexibility known as critical activity. It should

be noted that a delay in these activities will eventually delay the

entire project. After the determination of these activities CPM defines

the project schedule aligned to the activities that lie on the critical

path method

From the activity network representation following analysis can be

made. The minimum time (MT) to complete the project is the

maximum of all paths from start to finish. The earliest start (ES) time

of a task is the maximum of all paths from the start to the task. The

latest start time is the difference between MT and the maximum of all

paths from this task to the finish. The earliest finish time (EF) of a

task is the sum of the earliest start time of the task and the duration of

the task. The latest finish (LF) time of a task can be obtained by

subtracting maximum of all paths from this task to finish from MT.

The slack time (ST) is LS – EF and equivalently can be written as LF

– EF. The slack time (or float time) is the total time that a task may

be delayed before it will affect the end time of the project. The slack

time indicates the “flexibility” in starting and completion of tasks. A

critical task is one with a zero slack time. A path from the start node

to the finish node containing only critical tasks is called a critical

path. These parameters for different tasks for the MIS problem are

shown in the following table.

99 | P a g e

Space for learners: Task ES EF LS LF ST

Specification 0 15 0 15 0

Design database 15 60 15 60 0

Design GUI part 15 45 90 120 75

Code database 60 165 60 165 0

Code GUI part 45 90 120 165 75

Task ES EF LS LF ST

Specification 0 15 0 15 0

Design database 15 60 15 60 0

Design GUI part 15 45 90 120 75

Code database 60 165 60 165 0

Code GUI part 45 90 120 165 75

The critical paths are all the paths whose duration equals MT. The

critical path in fig. 4.4 is shown with a thicker arrow.

4.13.3 Gantt Chart

Gantt charts are mainly used to allocate resources to activities. The

resources allocated to activities include staff, hardware, and software.

Gantt charts (named after its developer Henry Gantt) are useful for

resource planning. A Gantt chart is a special type of bar chart where

each bar represents an activity. The bars are drawn along a time line.

The length of each bar is proportional to the duration of time planned

for the corresponding activity.

Gantt charts are used in software project management are actually an

enhanced version of the standard Gantt charts. In the Gantt charts used

for software project management, each bar consists of a white part and

a shaded part. The shaded part of the bar shows the length of time each

STOP TO CONSIDER

A path from the start node to the finish node containing only critical

tasks is called a critical path.

100 | P a g e

Space for learners: task is estimated to take. The white part shows the slack time, that is,

the latest time by which a task must be finished. A Gantt chart

representation for the MIS problem of fig. 4.4 is shown in the fig. 4.5.

Fig. 4.5: Gantt chart representation of the MIS problem

4.13.4 PERT Chart

PERT (Project Evaluation and Review Technique) charts consist of a

network of boxes and arrows. The boxes represent activities and the

arrows represent task dependencies. PERT chart represents the

statistical variations in the project estimates assuming a normal

distribution. Thus, in a PERT chart instead of making a single estimate

for each task, pessimistic, likely, and optimistic estimates are made.

The boxes of PERT charts are usually annotated with the pessimistic,

likely, and optimistic estimates for every task. Since all possible

completion times between the minimum and maximum duration for

every task has to be considered, there are not one but many critical

paths, depending on the permutations of the estimates for each task.

This makes critical path analysis in PERT charts very complex. A

STOP TO CONSIDER

Gantt charts are used to allocate resources to activities.

101 | P a g e

Space for learners: critical path in a PERT chart is shown by using thicker arrows. The

PERT chart representation of the MIS problem of fig. 4.4 is shown in

fig. 4.6. PERT charts are a more sophisticated form of activity chart. In

activity diagrams only the estimated task durations are represented.

Since, the actual durations might vary from the estimated durations,

the utility of the activity diagrams are limited.

Fig. 4.6: PERT chart representation of the MIS problem

Gantt chart representation of a project schedule is helpful in planning

the utilization of resources, while PERT chart is useful for monitoring

the timely progress of activities. Also, it is easier to identify parallel

activities in a project using a PERT chart. Project managers need to

identify the parallel activities in a project for assignment to different

engineers.

STOP TO CONSIDER

PERT chart is used to monitor and control the projects.

102 | P a g e

Space for learners: CHECK YOUR PROGRESS

A. Choose the correct option from the following:

1. Which of the following activity is undertaken immediately after

feasibility study and before the requirement analysis and

specification phase?

a) Project Planning

 b) Project Monitoring

c) Project Control

d) Project Scheduling

2. This activity is undertaken once the development activities start?

a) Project Planning

b) Project Monitoring and Control

c) Project size estimation

d) Project cost estimation

3. In the project planning, which of the following is considered as

the most basic parameter based on which all other estimates are

made?

a) Project size

b) Project effort

c) Project duration

d) Project schedule

4. Once project planning is complete, project managers document

their plan in

a) SPMP document

b) SRS document

c) Detailed Design document

d) Excel Sheet

103 | P a g e

Space for learners: 5. Which of the Following method is not used as project scheduling

technique

a) Activity Diagram

b) CPM

c)Timesheet

d) Gantt chart

b) Fill in the blanks:

1) The estimation that is carried out first by a project manager during

project planning is __________________.

2) Sliding Window Planning involves __________________

3) Normally software project planning activity is undertaken

4) ________________ is the process of dividing the project into

tasks and logically ordering them into a sequence.

5)Techniques used for project scheduling include ____________,

___________ and CPM diagram.

4.14 SUMMING UP

This unit discussed the about Project planning which is an well

organized process which aims at successful completion of the software

project. The main purpose of project planning is to accomplish

business and project objectives. Fulfillment of user requirement,

completion of the project within the scheduled timeframe and with the

allocated budget and incorporation of quality in the software constitute

the project objectives. Business objectives include evaluation of

processes and also renewal and evaluation of policies and processes.

Project scope highlights on the limitations of the project. The process

of project planning consists of a set of related activities carried out in

an orderly manner with a view to implement user requirements in the

software. It also mentions the individuals responsible for each activity.

The end product of project planning is the project plan which contains

the end date, activities, milestones and deliverables. Project scheduling

determines the time limit required for completing the project. Different

104 | P a g e

Space for learners: techniques such as CPM, Gantt Chart and PERT chart are used at

different levels for the purpose of project scheduling.

4.15 ANSWERS TO CHECK YOUR PROGRESS

A) Multiple choice questions

 1.(a)

 2.(b)

 3.(a)

 4.(a)

 5.(c)

B) Fill in the blanks

 1. Size estimation

 2. Planning progressively as development proceeds.

 3. Before the development starts to plan the activities to be undertaken

during development

 4.Work Breakdown Structure

 5.Gantt chart, PERT chart.

4.16 POSSIBLE QUESTIONS

1) List the important items that a Software Project Management Plan

(SPMP) document should discuss

2) What do you understand by Sliding Window Planning? Explain

using a few examples the types of projects for which this form of

planning is especially suitable. What are its advantages over

conventional planning?

3) Planning and Scheduling consume a lot of time. What will happen if

software project commences without planning and scheduling.

4) List the important items that a Software Project Management Plan

(SPMP) document should discuss.

105 | P a g e

Space for learners: 5) When does the software planning activity start and end in software

life cycle? List some important activities that a software project

manager performs during software project planning.

4.17 REFERENCES AND SUGGESTED READINGS

 Software Engineering Principles and Practices, Second Edition,

2011, Rohit Khurana; Vikash Publication.

 Software Engineering – A Practitioner’s Approach, Roger S.

Pressman; McGraw-Hill International Edition.

 Fundamentals Of Software Engineering, 2014 4th Edition by

Rajib Mall, PHI

106 | P a g e

Space for learners: UNIT 5: SOFTWARE DECOMPOSITION

AND COST ESTIMATION

TECHNIQUES

Unit Structure:

5.1 Introduction

5.2 Unit Objectives

5.3 Software Resources

5.3.1 Types of Software Resources

5.4 Software Decomposition

5.5 Project Planning

5.6 Metrics for Project Size Estimation

5.6.1 Lines of Code (LOC)

5.6.2 Function Point Metric

5.6.3 Number of Entities In Er Diagram

5.6.4 Total Number of Processes in Detailed Data Flow

Diagram

5.7 Project Estimation Techniques

5.7.1 Empirical Estimation Technique

5.7.2 Heuristic Technique

5.7.3 Analytical Estimation Technique

5.8 COCOMO

5.8.1 Basic COCOMO Model

5.8.2 Intermediate Model

5.8.3 Complete COCOMO Model

5.9 Summing Up

5.10 Answers to Check Your Progress

5.11 Possible Questions

5.12 References and Suggested Readings

5.1 INTRODUCTION

In this unit we will learn about the software decomposition and its

importance in project size estimation. The project resources plays an

important role for successful development and completion of project.

107 | P a g e

Space for learners: We will also learn that the effective software project management is

crucial to the success of any software project. In this unit we will learn

that for the accurate estimation of the problem size is fundamental to

satisfactory estimation of other project parameters such as effort, time

duration for completing the project and the total cost for developing

the software. The unit covers the empirical, Heuristics and Analytical

size estimation techniques. The COCOMO model is discussed in

detail.

5.2 UNIT OBJECTIVES

After completing the unit, you will be able to:

 The software resources, its type and Importance.

 Understand the importance of decomposition in software

development.

 The concept of project planning and software project

management techniques.

 The stages in the project planning and the different cost

estimation techniques.

 The different size estimation techniques like Expert

Judgement and Delphi Cost estimation Technique.

 Understand the COCOMO Model postulated by Boehm.

5.3 SOFTWARE RESOURCES

The software resources or the project resources are required for

successful development and completion of project. These resources

can be capital, people, material, tool or supplies that are helpful to

carry out certain task in project. Without these resources it is

impossible to complete project. In project planning phase

identification of resources that are required for completion of project

and they will be allocated is key element and very important task to

do. There are mainly three types of resources that are considered and

are very essential for execution of project and completion for project

on time and budget. These resources can be represented by a pyramid

called Resource Pyramid.

108 | P a g e

Space for learners: When software planner wants to specify resources, they specify

resources, they specify it using four characteristics

 Description of resource

 Resource Availability

 Time of Resource when it will be available

 Duration of resource availability

 People

 Reusable software

 Components

 Hardware and Software

 Tools

RESOURCE PYRAMID

5.3.1 Types of Software Resources

There are mainly three types of resources:

a) Human Resource: People or Human resource playa an

important role in software development process. No matter what size

is and how much complexity is there in the project, if you want to

perform project task in an effective an effective manner, then human

resources are very essential. In software industry the people are

performed some organizational positions such as manager, software

developer, software developer, and test engineers and so on that

depends on their skills and specialty. For small project a single

individual can perform all these activities, but for large project a big

team of people are needed.

b) Reusable Components: In order to accelerate and bring ease

to the software development process the industry prefers to use some

109 | P a g e

Space for learners: ready components of software. It can be defined as the software

building blocks that can be created and reused in software

development process. Managing budget is one of the most important

task that all project managers have to do. The reusable resources helps

in reducing the overall cost of software development. The use of

component emphasizes reusability and is termed as Component based

Software Engineering.

c) Hardware and Software Tools: These are the actual material

resources that are part of project. This type of resources should be

planned before starting development of project otherwise it may cause

problems for the project.

5.4 SOFTWARE DECOMPOSITION

Decomposition Technique uses the concept of “Divide and conquer”

method for the cost estimation of a project. By decomposing the

projects into major functions and related engineering activities the

cost and size estimation can be performed in stepwise fashion. In the

complete software development, the system is divided into major

modules or the functional requirement of the system and then is

further decomposed into simpler forms until the problem is solved

using an algorithm. Decomposition in computer science, also known

as factoring, is breaking a complex problem or system into parts that

are easier to conceive, understand, program, and maintain. The

Empirical estimation models can be used to complement

decomposition techniques and offer a potentially valuable estimation

approach in their own right. A model is based on experience

(Historical Data) and takes the form :

 d = f(Vi),where d is one of the estimated values ie effort , cost and

project duration.

 Vi are selected as independent Line of code (LOC) or Function

Point (FP).

 Software project estimation is a form of problem solving and in

most cases the problem to be solved ie.(developing an cost and

effort estimate for software project) is too complex to be considered

in one piece. For this reason we decompose the problem, re

characterize it as a set smaller and hopefully more manageable

problems.

110 | P a g e

Space for learners: Line of code (LOC) and Function point (FP) are described as

measures form which productivity metrics can be computed LOC and

FP data are used in two ways during software project estimation:

a) As an estimation variable to “size” each element of the

software.

b) As baseline metrics collected from past projects and used in

conjunction with estimation variable to develop cost and effort

projections.

LOC and FP are distinct cost estimation techniques but they have lot

of properties in common.

CHECK YOUR PROGRESS:

1. Decomposition in computer science, also known

as ………., is breaking a complex problem or system into parts that

are easier to conceive, understand, program, and maintain.

2. ……….and …… are measures of cost estimation.

3. The ………… models can be used to complement

decomposition techniques and offer a potentially valuable

estimation approach in their own right.

4. ……… , …… and ……. are the main components of

resource pyramid.

5. What are the four characteristics based on which the

software planner specifies resources?

6. Define component based software Engineering.

5.5 PROJECT PLANNING

Once a project is found to be feasible, software project managers

undertake project planning. Project planning is undertaken and

completed even before any development activity starts. It involves

estimating several characteristics of the project and then planning the

project activities based on estimates made. Project planning is taken

immediately after the feasibility study phase and before the

requirement analysis and specification.

It consists of following essential activities:

111 | P a g e

Space for learners: a) Estimation- The following project attributes have to be

estimated:

Cost – How much it is going to cost to develop the software?

Duration – How long it is going to take to develop the product?

Effort – How much effort would be required to develop the product?

b) Scheduling – After the estimations are made the schedules for

manpower and other resources have to be developed.

c) Staffing – Staff organizations and staffing plans have to be

made.

d) Risk management – Risk identification, analysis and

abatement planning have to be done.

e) Miscellaneous plans – Several other plans such as quality

assurance, configuration management plan, etc have to be done.

Project planning requires utmost care and attention since commitment

to unrealistic time and resource estimates result in schedule slippage.

Schedule delays can cause customer dissatisfaction and adversely

affect team morale. It can even cause project failure. For this reason,

project planning is considered to be a very important activity.

For large projects it is very difficult to make accurate plans due to the

fact that the project parameters, scope of the project, project staff and

project managers undertake project planning in stages. In order to deal

with these issues the project managers plan the projects in stages that

protects the managers to make big commitments too early. This

technique of staggered planning is called as Sliding Window Protocol.

In this technique starting with an initial plan the project is planned

more accurately in successive development stages. After the

completion of every phase the project managers can plan each

subsequent stages. In addition to the knowledge of the various

estimation techniques, past experience is crucial.

CHECK YOUR PROGRESS

7. State True or False

a. Project planning is taken immediately after the feasibility

study phase and before the requirement analysis and specification.

b. The past experience is not required to plan the different

stages of a project.

112 | P a g e

Space for learners:

5.6 METRICS FOR PROJECT SIZE ESTIMATION

Estimation of the size of software is an essential part of Software

Project Management. It helps the project manager to further predict

the effort and time which will be needed to build the project. The

accurate estimation of the problem size is fundamental to

satisfactory estimation of the other parameters such as effort, time,

duration for completing the project and the total cost of developing

the software. It is important to understand that the size of the project

is very important to estimate to accurately calculate the exact cost of

the software development.

Various measures are used in project size estimation. Some of these

are:

 Lines of Code

 Number of entities in ER diagram

 Total number of processes in detailed data flow diagram

 Function points

The project size is a measure of the problem complexity in terms of

the effort and time required to develop the product. Currently, two

metrics (LOC and FP) are popularly being used to estimate size:

5.6.1 Lines of Code (LOC)

The LOC is the simplest among all the metrics available to estimate

the project size. As the name suggest, LOC count the total number

of lines of source code in a project. The lines used for commenting

and the header lines are ignored. Determining the exact line of code

at the beginning of the project is difficult. In order to do that one

would have to do a systematic guess. The project managers usually

divide the problem into modules and each modules into sub modules

and so on, until the size of the leaf module can be approximately

predicted. In order to predict the LOC count for various leaves past

c. Cost, Duration and effort are the project attributes which

are not required to be estimated.

8. Define sliding window protocol.

113 | P a g e

Space for learners: experience in developing the similar kind of product plays an

important role. The units of LOC are:

 KLOC- Thousand lines of code

 NLOC- Non comment lines of code

 KDSI- Thousands of delivered source instruction

The size is estimated by comparing it with the existing systems of

same kind. The experts use it to predict the required size of various

components of software and then add them to get the total size.

Advantages:

 Universally accepted and is used in many models like

COCOMO.

 Estimation is closer to developer’s perspective.

 Simple to use.

Disadvantages:

 Different programming languages contains different number

of lines.

 No proper industry standard exists for this technique.

 It is difficult to estimate the size using this technique in early

stages of project.

 It also depends on the individual coding style of

programmers.

 It only considers the coding effort but other factors like

design, test etc. need to be considered in order to calculate

the exact effort.

 It is very difficult to calculate the exact size estimate at the

beginning of the project and LOC count can only be

accurately computed after the code has been fully developed.

 LOC metric measures the lexical complexity of a program

and does not address the more important but subtle issues of

logical or structural complexities.

5.6.2 Function Point Metric

In this method, the number and type of functions supported by the

software are utilized to find FPC (function point count). This metric

114 | P a g e

Space for learners: overcomes many of the shortcomings of LOC metric. The main

advantage of this metric is that it can estimate the size of the project

directly from the problem specification. This is completely in

contrast with the LOC metric. The main idea behind Function point

metric is that the size of the software product mainly depends on the

number of different functions or features it supports. A software

product with less features is certainly smaller that the product with

more features. Each function in a system when invoked reads some

input and transforms it into some output. Thus computation of

number of input and output to a system gives some idea about the

number of functions supported by the system. Albrecht postulated

that in addition to the number of basic functions that a software

performs, the size is also dependent on the number of files and the

number of interfaces. Interfaces refer to the different mechanism that

need to be supported for data transfer with other external systems.

The steps in the function point is computed in three stages. The first

is to compute the unadjusted function point. In the next step the UFP

is refined to reflect the differences in the complexities of the

different parameters of the expression for UFP computation. In the

final step the FP is computed by further refining UFP for account for

the specific characteristics of the project that can influence the

development effort.

UFP = (Number of Inputs)*4 + (Number of Outputs)*5 +

(Number of Inquiries) * 4 + (Number of files) *10 + (Number of

Interfaces)*10

The expression shows the computation of the Unadjusted Function

Point as weighted sum of these five problem characteristics. It was

validated by Albrecht empirically and was validated through data

gathered from many projects. The meaning of different parameters

of this expression is as follows:

1) Number of inputs: Each data item input by the user is counted

and it should be distinguished from the user inquiries. The inquiries

are the user command that are counted separately. The group of

related inputs are considered as a single input and the individual data

input items inputted by the user is not counted.

2) Number of outputs: The output considered refer to reports

printed, screen outputs, error messages produced etc. While

computing the number of outputs the individual data items within a

115 | P a g e

Space for learners: report are considered, but a set of related data items is counted as

one output.

3) Number of Inquiries: It is the number of distinctive

interactive queries made by the users. These are the use command

which require specific action by the system.

4) Number of files: Each logical file is counted. It implies a

group of logically related data. Thus, logical files include data

structures and physical files.

5) Number of Interfaces: The interfaces are used to exchange

information with other systems. Examples of such interfaces are

files on tapes, disks, communication links with other systems etc.

Advantages:

 It can be easily used in the early stages of project planning.

 It is in depending on the programming language.

 It can be used to compare different projects even if they use

different technologies (database, language etc).

Disadvantages:

 It is not good for real time systems and embedded systems.

 Many cost estimation models like COCOMO uses LOC and

hence FPC must be converted to LOC.

 The major shortcoming is that it does not take into account

the algorithmic complexity of a software. It means it assumes

that the design and effort required to develop any two

functionalities of the system is same. But normally it is not

true.

5.6.3 Number of Entities in ER Diagram

ER model provides a static view of the project. It describes the

entities and its relationships. The number of entities in ER model

can be used to measure the estimation of size of project. Number of

entities depends on the size of the project. This is because more

entities needed more classes/structures thus leading to more coding.

Advantages:

 Size estimation can be done during initial stages of planning.

116 | P a g e

Space for learners: Number of entities is independent of programming

technologies used.

Disadvantages:

 No fixed standards exist. Some entities contribute more

project size than others.

 Just like FPA, it is less used in cost estimation model. Hence,

it must be converted to LOC.

5.6.4 Total Number of Processes in Detailed Data Flow

Diagram

Data Flow Diagram (DFD) represents the functional view of a

software. The model depicts the main processes/functions involved

in software and flow of data between them. Utilization of number of

functions in DFD to predict software size. Already existing

processes of similar type are studied and used to estimate the size of

the process. Sum of the estimated size of each process gives the final

estimated size.

Advantages:

 It is independent of programming language.

 Each major processes can be decomposed into smaller

processes. This will increase the accuracy of estimation

Disadvantages:

 Studying similar kind of processes to estimate size takes

additional time and effort.

 All software projects are not required to construction of

DFD.

117 | P a g e

Space for learners: CHECK YOUR PROGRESS

9. The function point metric can estimate the size of the

project directly from the …

10. UFP stands for …..

11. The …. is the most fundamental parameter based on which

all other estimates are made.

12. State true or false.

a. The project size is a measure of the problem complexity in

terms of the effort and time required to develop the product.

b. It is very easy to calculate the accurate estimation of

project before actual development process starts.

5.7 PROJECT ESTIMATION TECHNIQUES

For an effective management accurate estimation of various measures

is a must. With correct estimation managers can manage and control

the project more efficiently and effectively. Software size may be

estimated either in terms of KLOC (Kilo Line of Code) or by

calculating number of function points in the software. Lines of code

depend upon coding practices and Function points vary according to

the user or software requirement. The managers estimate efforts in

terms of personnel requirement and man-hour required to produce the

software. For effort estimation software size should be known. This

can either be derived by managers’ experience, organization’s

historical data or software size can be converted into efforts by using

some standard formulae. Once size and efforts are estimated, the time

required to produce the software can be estimated. Efforts required is

segregated into sub categories as per the requirement specifications

and interdependency of various components of software. Software

tasks are divided into smaller tasks, activities or events by Work

Breakthrough Structure (WBS). The tasks are scheduled on day-to-

day basis or in calendar months. The sum of time required to complete

all tasks in hours or days is the total time invested to complete the

project. This might be considered as the most difficult of all because

it depends on more elements than any of the previous ones. For

estimating project cost, it is required to consider -

 Size of software

118 | P a g e

Space for learners: Software quality

 Hardware

 Additional software or tools, licenses etc.

 Skilled personnel with task-specific skills

 Travel involved

 Communication

 Training and support

 There are three broad categories of estimation techniques:

1. Empirical Estimation Techniques

2. Heuristic Technique

3. Analytical Estimation Technique

5.7.1 Empirical Estimation Technique

It is based on the educated guess of the project parameters. While

using this technique, prior experience with similar products is helpful.

Although, empirical estimation technique is based on common sense

but different activities are formalized over years. The empirical cost

estimation techniques are based on pure guess work and have over the

years formalized to some extent. Two popular methods are:

a) Expert Judgement Technique – It is one of the most widely

used technique. In this an expert makes an educated guess of the

problem analyzing the problem thoroughly. Usually the expert

calculate the cost of different components (modules and subsystems)

that would make up the system and then combines the estimates for

the individual modules to arrive at the overall estimates. However,

this technique is subject to human errors and individual bias.

Sometimes the experts overlook some of the factors inadvertently.

b) Delphi Cost Estimation Technique – It tries to overcome the

shortcomings of expert judgment technique. It is carried out by a team

comprising of a group of experts and coordinators. The coordinator

provides the copy of Software Requirement Specification (SRS)

document to every member of the team. Estimators analyses the

problem domain and after estimating the cost they submit it to the

coordinator. The coordinator prepares the summary of the responses

of the estimators. The prepared summary is again distributes among

119 | P a g e

Space for learners: the estimators for further refinement and the process is iterated for

several rounds.

5.7.2 Heuristic Technique

The Heuristic technique assumes that the relationship among the

different project parameters can be modelled using suitable

mathematical expression. Once the independent parameters are

known the dependent parameters are calculated using the dependent

parameters by substituting the value of basics parameters in the

mathematical expression. The COCOMO Model is the heuristic

approach of cost estimation technique that we will discuss later.

5.7.3 Analytical Estimation Technique

It derives the required results staring with certain basic assumptions

regarding the project. Thus, unlike empirical and heuristic technique

the analytical technique does not have certain scientific basis.

5.8 COCOMO

Boehm proposed COCOMO (Constructive Cost Estimation Model)

in 1981.COCOMO is one of the most generally used software

estimation models in the world. COCOMO predicts the efforts and

schedule of a software product based on the size of the software. In

order to classify a product into the identified categories, Bohem

requires us to consider not only the characteristics of the product but

also those pf development team and development environment. In

COCOMO, projects are categorized into three types:

CHECK YOUR PROGRESS

13. ……….. cost estimation techniques tries to overcome the

shortcomings of expert judgement approach.

14. COCOMO is a ……………. Estimation technique.

15. State true or false.

a. The heuristic technique makes an educated guess of the

project parameters.

b. The analytical technique of cost estimation have scientific

basis.

120 | P a g e

Space for learners: 1) Organic: A development project can be treated of the organic

type, if the project deals with developing a well-understood

application program, the size of the development team is reasonably

small, and the team members are experienced in developing similar

methods of projects. Examples of this type of projects are simple

business systems, simple inventory management systems, and data

processing systems.

2) Semidetached: A development project can be treated with

semidetached type if the development consists of a mixture of

experienced and inexperienced staff. Team members may have finite

experience in related systems but may be unfamiliar with some

aspects of the order being developed. Example of Semidetached

system includes developing a new operating system (OS), a Database

Management System (DBMS), and complex inventory management

system.

3) Embedded: A development project is treated to be of an

embedded type, if the software being developed is strongly coupled

to complex hardware, or if the stringent regulations on the operational

method exist. For Example: ATM, Air Traffic control.

For three product categories, Bohem provides a different set of

expression to predict effort (in a unit of person month)and

development time from the size of estimation in KLOC (Kilo Line of

code) efforts estimation takes into account the productivity loss due

to holidays, weekly off, coffee breaks, etc. According to Boehm,

software cost estimation should be done through three stages:

5.8.1 Basic COCOMO Model

The basic COCOMO model provides an approximate estimate of the

of the project parameters. The following expressions give the basic

COCOMO estimation model:

Effort=a1*(KLOC) a2 PM

Tdev=b1*(efforts) b2 Months

 where,

a) KLOC is the estimated size of the software product indicate in

Kilo Lines of Code

b) a1, a2, b1, b2 are constants for each group of software products.

121 | P a g e

Space for learners: c) Tdev is the estimated time to develop the software, expressed in

months.

d) Effort is the total effort required to develop the software product,

expressed in person months (PMs).

For the three classes of software products, the formulas for estimating

the effort based on the code size are shown below:

Estimation of development effort:

Organic: Effort = 2.4(KLOC)1.05 PM

Semi-detached: Effort = 3.0(KLOC)1.12 PM

Embedded: Effort = 3.6(KLOC)1.20PM

Estimation of development time:

For the three classes of software products, the formulas for estimating

the development time based on the effort are given below:

Organic: Tdev = 2.5(Effort) 0.38 Months

Semi-detached: Tdev = 2.5(Effort) 0.35Months

Embedded: Tdev = 2.5(Effort) 0.32Month

The effort required to develop a product increases very rapidly with

project size. The size of the product increases by two times, the time

to develop the product does not double but rises moderately. This can

be explained by the fact that for larger products, a larger number of

activities which can be carried out concurrently can be identified. The

parallel activities can be carried out simultaneously by the engineers.

This reduces the time to complete the project. The development time

is roughly the same for all three categories of products. For example,

a 60 KLOC program can be developed in approximately 18 months,

regardless of whether it is of organic, semidetached, or embedded

type. From the effort estimation, the project cost can be obtained by

multiplying the required effort by the manpower cost per month. But,

implicit in this project cost computation is the assumption that the

entire project cost is incurred on account of the manpower cost alone.

In addition to manpower cost, a project would incur costs due to

hardware and software required for the project and the company

overheads for administration, office space etc. It is important to note

that the effort and the duration estimations obtained using the

COCOMO model are called a nominal effort estimate and nominal

duration estimate. The term nominal implies that if anyone tries to

122 | P a g e

Space for learners: complete the project in a time shorter than the estimated duration, then

the cost will increase drastically. But, if anyone completes the project

over a longer period of time than the estimated, then there is almost

no decrease in the estimated cost value.

The effort and duration values computed by COCOMO are the values

for doing the work in the shortest time without unduly increasing the

manpower. It is important to note that effort and duration estimations

obtained using the COCOMO Model imply that if we try to complete

the project in a time shorter than the estimated duration the cost will

increase drastically. But if we complete the project over a longer

period of time than the estimated, then there is almost no decrease in

the estimated cost.

5.8.2 Intermediate Model

The basic COCOMO model considers that the effort is only a function

of the number of lines of code and some constants calculated

according to the various software systems. The intermediate

COCOMO model recognizes these facts and refines the initial

estimates obtained through the basic COCOMO model by using a set

of 15 cost drivers based on various attributes of software engineering.

Classification of Cost Drivers and their attributes:

 Product – The characteristics of the products that are considered

include the inherent complexity of the product, reliability

requirements of the product and size of the application database etc.

Hardware - The characteristics of the computer that are considered

include the execution speed required, storage space required etc. The

other factors include:

 Run-time performance constraints

 Memory constraints

 The volatility of the virtual machine environment

 Required turnabout time

 Personnel attributes -

 Analyst capability

 Software engineering capability

 Applications experience

123 | P a g e

Space for learners: Virtual machine experience

 Programming language experience

Personal - The characteristics of the development personal that are

considered include the experience of personal , programming

capability , analysis capability etc.

Development Environment: It captures the development facilities

available to the developers. It also includes:

 Use of software tools

 Application of software engineering methods

 Required development schedule

5.8.3 Complete COCOMO Model

The major limitation of both the basic and intermediate COCOMO

models is that they consider a software product as a single

homogeneous entity. However, most large software systems are made

up of smaller subsystems and they have widely different

characteristics. For example some have organic type and others may

be of semidetached or embedded type. It incorporates all qualities of

the standard version with an assessment of the cost driver’s effect on

each method of the software engineering process. In complete

COCOMO the whole software is differentiated into multiple modules,

and then we apply COCOMO in various modules to estimate effort

and then sum the effort. The cost of each subsystem is estimated

separately. This approach reduces the margin of error in the final

estimate.

The Six phases of detailed COCOMO are:

1. Planning and requirements

2. System structure

3. Complete structure

4. Module code and test

5. Integration and test

6. Cost Constructive model

To improve the accuracy of their result, the differentiate parameter

values of the model can be fine – tuned and validated against an

124 | P a g e

Space for learners: organization’s historical project database to obtain more accurate

estimations. Estimations models such COCOMO are not accurate and

lack a full of scientific justification. But still software cost estimation

model like COCOMO are required for an engineering approach to

software project management. Although, these estimates are gross

approximations – without such models, one has only subjective

judgements to rely on.

5.9 SUMMING UP

 The software resources or the project resources are required for

successful development and completion of project. These

resources can be capital, people, material, tool or supplies that are

helpful to carry out certain task in project. Without these

resources it is impossible to complete project.

 In project planning phase identification of resources that are

required for completion of project and they will allocated is key

element and very important task to do.

 Decomposition Technique uses the concept of “Divide and

conquer” method for the cost estimation of a project. By

decomposing the projects into major functions and related

engineering activities the cost and size estimation can be

performed in stepwise fashion.

 Estimation of the size of software is an essential part of

Software Project Management. It helps the project manager to

further predict the effort and time which will be needed to build

the project. The accurate estimation of the problem size is

CHECK YOUR PROGRESS

16. State true or false

a. According to COCOMO model, cost is the most

fundamental attribute of a software product, based on which size

and effort are estimated.

b. Estimations models such COCOMO are not accurate and

lack a full of scientific justification.

17. Give the order in which the following are estimated while

using the COCOMO estimation technique: cost, effort, duration,

size.

125 | P a g e

Space for learners: fundamental to satisfactory estimation of the other parameters

such as effort, time, duration for completing the project and the

total cost of developing the software.

 Boehm proposed COCOMO (Constructive Cost Estimation

Model) in 1981.COCOMO is one of the most generally used

software estimation models in the world. COCOMO predicts the

efforts and schedule of a software product based on the size of

the software.

5.10 ANSWERS TO CHECK YOUR PROGRESS

1. Factoring

2. Line of code and Function Point

3. Empirical Estimation model

4. People, Reusable software components and Hardware &

Software components.

5. The characteristics based on which the software planner

specifies resources are

a. Description of resource

b. Resource Availability

c. Time of Resource when it will be available

d. Duration of resource availability

6. Component Based Software Engineering - In order to

accelerate and bring ease to the software development process

the industry prefers to use some ready components of software

and this technique is called as Component Based Software

Engineering.

7. a. True , b. False , c. False

8. Sliding Window Protocol –

9. Problem Domain

10. Unadjusted Function point

11. Cost

12. a. True , b. False

13. Delphi

126 | P a g e

Space for learners: 14. Cost

15. a. True , b. False

16. a. False , b. True

17. Size , Effort , Duration , Cost

5.11 POSSIBLE QUESTIONS

Short Answer type Questions:

1) Define software decomposition.

2) What are the three main categories of projects in COCOMO

Model?

3) What is the difference between Expert judgement and Delphi

cost estimation technique?

4) Define LOC and Function Point Metrics.

5) What do you mean by software resources? What are the major

types of software resources?

Long Answer type Questions:

1) What is meant by the size of software project? Why does a

project manager need to estimate the size of the project?

2) What is project planning and why it is important? What are the

different stages of project planning?

3) What are the different categories of software development

projects according to COCOMO estimation model?

4) Why is accurate estimation of the effort required for

completing a project is difficult? Briefly explain the different

effort estimation methods that are available.

5) What are the relative advantage of using either the LOC or the

function point metric to measure the size of software product?

6) List the important shortcomings of LOC for use as a software

size metric for carrying out project estimations.

7) Explain the Basic COCOMO model briefly. Discuss about its

limitations.

8) What is complete COCOMO Model? Explain briefly.

127 | P a g e

Space for learners: 9) What do you mean by Intermediate COCOMO? What are the

major cost drivers that are considered in Intermediate

COCOMO?

10) Explain why adding more man power to an already late project

makes it later.

5.12 REFERENCES AND SUGGESTED READINGS

 “Fundamentals of Software Engineering”, Rajib Mall, Prentice-

Hall of India.

 “An Integrated Approach to Software Engineering”, Pankaj

Jalote , Narosa Publishing House

 http://www.tutorialspoint.com

 http://www.geeksforgeeks.com

128 | P a g e

Space for learners: UNIT 6: SOFTWARE DESIGN I

Unit Structure:

6.1 Introduction

6.2 Unit Objectives

6.3 Definitions of Software Design

6.4 Qualities of a Good Design

6.5 Design Constraints

6.6 Fundamental Design Concepts

 6.6.1 Abstraction

6.6.2 Information Hiding

6.6.3 Modularity

6.7 Software Design Levels

6.8 Modularization criteria

6.8.1 Coupling

6.8.2 Cohesion

6.9 Summing Up

6.10 Answers to Check Your Progress

6.11 Possible Questions

6.12 References and Suggested Readings

6.1 INTRODUCTION

Software design is an important phase in software engineering, in

which a blueprint is designed to serve as a base for constructing the

software system. The design process comprises a set of principles,

concepts and practices, which permit the software designer to model

the system or product which is to be built. It is a process to transform

user requirements into some suitable form, which helps the

programmer in writing software coding and implementation. The

design phase in Software Development Life Cycle (SDLC) plays a

crucial role in obtaining a quality software product. Here, the system is

designed to satisfy the identified requirements in the previous phases

and then they are transformed into a System design document that

129 | P a g e

Space for learners: accurately describes the system design. This chapter will focus on the

design concepts and elements that are required to develop a software

design model.

6.2 UNIT OBJECTIVES

After completion of this unit, you will be able to learn --

 The standard definition of software design.

 The factors behind the qualities of a good design.

 The constraints behind the software design.

 The key design concepts like abstraction, modularity,

information hiding, functional independence, cohesion and

coupling.

6.3 DEFINITION OF SOFTWARE DESIGN

The design activity begins when the requirements document for the

software to be developed becomes ready. The design of a software is

essentially a plan or blueprint to serve as a foundation for constructing

the software system. According to IEEE, software design can be

defined as ‘both a process of defining, the architecture, components,

interfaces, and other characteristics of a system or component and the

result of that process.’ Viewed as a process, software design can be

considered an activity within the software development life cycle,

where software requirements are analyzed in order to produce a

description of the internal structure and organization of the system that

will serve as the basis for its construction. More precisely, a software

design must describe the architecture of the system, that is, how the

system is decomposed and organized into components and must

describe the interfaces between these components. It must also

describe these components into a level of detail suitable for allowing

their construction.

130 | P a g e

Space for learners: 6.4 QUALITIES OF A GOOD SOFTWARE DESIGN

For developing a good quality software, the software design must also

be of good quality. Now, the matter of concern is how the quality of a

good software design is measured? This is done by observing certain

factors in software design. The definition of a good software design

may vary based on the exact application being designed because the

criteria used to judge a design solution depend on the application being

designed. However, some deserving factors which are associated with a

good software design for general applications may be listed in the

following way:

 Correctness

 Understandability

 Efficiency

 Maintainability

Now, let us define each of them in detail.

 Correctness

The design of any software is assessed for its correctness first. The

evaluators check the software for every kind of input and action, and

observe the results that the software produces according to the proposed

design. If the outputs are correct for every input, the design is accepted

and considered that the software produced according to this design will

function correctly.

 Understandability

The software design should be understandable so that the developers do

not find any difficulty to understand it. Good software design should be

self- explanatory. The reason is that there are hundreds and thousands of

developers that develop different modules of the software, and it would

be very time consuming to explain each design to each developer.

Therefore, the developers find easy to implement and build the same

software that is represented in the design if the design is easy and self-

explanatory.

 Efficiency

131 | P a g e

Space for learners: The software design must be efficient. The efficiency of the software

can be evaluated from the design phase itself, because if the design

describing the software is not found efficient and useful, then the

developed software would also stand on the same level of efficiency.

Hence, for efficient and good quality software to be developed, care

must be taken in the designing phase itself.

 Maintainability

The software design must be in such a way that modifications can be

easily made in it. This is because every software needs time to time

updating and maintenance. So, the design of the software must also be

able to handle such changes. It should not be the case that after making

some modifications, the other features of the software start

nonfunctioning. Any change made in the software design must not

affect the other available features, and if the features are getting

affected, then they must be handled properly.

6.5 DESIGN CONSTRAINTS

A constraint is anything that slows a system down or prevents it from

achieving its goal. Design constraints are some challenges that force

people for considering more methodical analysis of design and their

problems. Because resources are not inexhaustible and criteria must be

met. Software designers are to be more strategic about the processes

they employ and energies they spend. In order to address design

constraints, a straightforward approach is required to categorize the type

of constraints (e.g., hardware, software, procedure, algorithm), identify

the specific constraints for each category, and capture them as system

requirements.

Types of constraint

The following kind of constraints might encounter in the theory of

design constraints.

 Policy

Policy constraints are those caused by the company procedures and

policies. A policy constraint in the process of developing a software

132 | P a g e

Space for learners: might relate to security / compliance requirements. On the other hand, it

could be an issue with interchanging the code between team members.

 Equipment

Equipment constraints refer to delays caused by faulty, slow, or

outdated equipment or a lack of sufficient space. In software

development, this might be faulty keyboards or slow computers. It

might also be a lack of devices through which cross-platform tests are to

be run.

 People

A people constraint is a common challenge caused by the number of

people involved in a project. Often, people constraints are caused by

unavailability of skilled people for a project. On the other hand, in

software development, having too many skilled people on a project can

also cause a people constraint.

 Paradigm

A paradigm constraint is a constraint caused by opinions. The view like,

for example, ‘lines of code’ is considered a good metric for

productivity, when the opposite can often be true.

 Market

A market constraint is related to the constraint which lies in delivering a

software to consumers. In software, this would look

like overengineering and feature creep.

6.6 FUNDAMENTAL DESIGN CONCEPTS

Every software process is characterized by basic concepts along with

certain practices or methods. Methods represent the manner through

which the concepts are applied. As new technology replaces older

technology, many changes occur in the methods that are used to apply

the concepts for the development of software. However, the

fundamental concepts underlying the software design process remain

the same, some of which are described in the following.

133 | P a g e

Space for learners: 6.6.1 Abstraction

As a powerful design tool, abstraction is meant for allowing software

designers to define components at an abstract level by ignoring the

implementation details of the components. IEEE defines abstraction as

‘a view of a problem that extracts the essential information relevant to

a particular purpose and ignores the remainder of the information.’ The

concept of abstraction can be visualized in two ways: as a process and

as an entity. As a process, it refers to a mechanism of hiding irrelevant

details and representing only the essential features of an item and

thereby one can concentrate on important things. In terms of

an entity, it refers to a model or view of an item.

Every step in the software process is realized through various levels of

abstraction. At the highest level, a framework of the solution to the

problem is presented whereas at the lower levels, the detail solution to

the problem is outlined. For example, in the requirements analysis

phase, a solution to the problem is presented using the language of

problem environment and as we proceed through the software process,

the abstraction level reduces and at the lowest level, source code of the

software is produced.

There are three commonly used abstraction mechanisms in software

design, namely, functional abstraction, data abstraction and control

abstraction. All these mechanisms allow us to control the complexity

of the design process by proceeding from the abstract design model to

concrete design model in a systematic manner.

 Functional abstraction: This involves the use of parameterized

subprograms. Functional abstraction can be generalized as

collections of subprograms referred to as ‘groups’. Within these

groups, there exist routines which may be visible or hidden. Visible

routines can be used within the containing groups as well as within

other groups, whereas hidden routines are hidden from other

groups. These can be used within the containing group only.

 Data abstraction: This process concentrates on specifying data that

describes a data object. For example, the data

object window encompasses a set of attributes (window type,

window dimension) that describe the window object clearly. In this

134 | P a g e

Space for learners: abstraction mechanism, representation and manipulation details are

ignored.

 Control abstraction: This abstraction provides the programmer the

ability to hide procedural data. It refers to the software part of

abstraction wherein the program is simplified and unnecessary

execution details are removed. For example, if and while statements

in programming languages (like C and C++) are abstractions of

machine code implementations, which involve conditional

instructions. In the architectural design level, this abstraction

mechanism permits specifications of sequential subprogram and

exception handling without the concern for exact details of

implementation.

6.6.2 Information Hiding

Information hiding states that each module should hide a design

decision from the rest of the modules. In particular, the designer should

choose to hide within a module an aspect of the system that is likely to

change as the program evolves. Modules should be specified and

designed in such a way that the data structures and processing details of

one module are not accessible to other modules. They pass only that

much information to each other, which is required to accomplish the

software functions. The way of hiding unnecessary details is referred to

as information hiding. IEEE defines information hiding as ‘the

technique of encapsulating software design decisions in modules in such

a way that the module’s interfaces reveal as little as possible about the

module’s inner workings; thus, each module is a ‘black box’ to the other

modules in the system.’

6.6.3 Modularity

Modularity is attained by splitting the software into uniquely named

and addressable components, which are also known as modules. A

modular system can be characterized by functional partitioning into

these type of discrete scalable and reusable modules, rigorous use of

well-defined modular interfaces and making use of industry standards

for interfaces. A complex system (large program) is partitioned into a

135 | P a g e

Space for learners: set of discrete modules in such a way that each module can be

developed independent of other modules. After designing all the

modules, they are combined together to meet the software

requirements as specified in SRS document. It is to be noted that larger

the number of modules a system is divided into, greater will be the

effort required to integrate the modules. Figure 6.1 depicts the

modularity concepts of a software system. This graphical design of

modularity clearly states that a program can be intellectually

manageable if its activities are modularized. The desirable

characteristics of modular design can be listed as:

 Each module is well defined system that can be used with other

applications.

 Each module has a single specific job.

 Modules can be separately compiled and stored in a library.

 A module can employ other modules.

 Modules are easier to use than to build.

 Each module is simpler from outside than inside.

Thus, modularity enhances the clarity of design which in turn

simplifies coding, testing, debugging, documenting and maintenance of

a software system. Modular design usually follows the rules of ‘divide

and conquer’ problem-solving strategy because there are many other

benefits attached with the modular design of a software.

Advantage of modularization:

 Smaller components are easier to maintain.

 Program can be divided based on functional aspects.

 Desired level of abstraction can be brought in the program.

 Components with high cohesion can be re-used again.

 Concurrent execution can be made possible.

 Desired from security aspect.

136 | P a g e

Space for learners:

Figure 6.1 Modularity concepts of a software system

With the introduction of modular design, complexity of software design

has considerably reduced. It facilitates the change in the program which

in turn encourages parallel development of systems. Modularizing a

design helps to plan the development in a more effective manner,

accommodates any changes easily and also helps to conduct testing and

debugging effectively and efficiently. Also, conducting maintenance

work without adversely affecting the functioning of the software is

another attractive advantage of modularity.

6.7 SOFTWARE DESIGN LEVELS

Software design yields three levels of results:

 Architectural Design - The architectural design is the highest

abstract version of the system. It identifies the software as a

system with many components interacting with each other. At

this level, the designers get the idea of proposed solution

domain.

 High-level Design – It is related to identification of different

modules and the their control relationships and the definition of

the interfaces among these modules. The outcome of the high-

level design is called software architecture or the program

structure. Many different types of notations have been used to

represent a high-level design. High-level design focuses on how

the system along with all of its components can be implemented

137 | P a g e

Space for learners: in forms of modules. It recognizes modular structure of each

sub-system and their relation and interaction among each other.

 Detailed Design- Detailed design deals with the implementation

part of what is seen as a system and its sub-systems in the

previous two designs. It is more detailed towards modules and

their implementations. During detailed design, the data structure

and the algorithms of the different modules are

designed. Moreover, it defines logical structure of each module

and their interfaces to communicate with other modules.

6.8 MODULARIZATION CRITERIA

When a software program is modularized, its tasks are divided into

several modules based on some characteristics. As explained in earlier

section, it is clear that the concept of modularity can reduce the

complexity by breaking a system into varying degrees of

interdependence and independence across, and hide the complexity of

each part behind an abstraction and interface. A module is a set of

instructions put together in order to achieve some specific tasks. They

are though, considered as single entity but may refer to each other to

work together. There are some procedures by which the quality of

modular design and interaction among them can be measured. These

measures are called coupling and cohesion. Conceptually, coupling and

cohesion are two qualitative criteria of functional independence.

Functional independence is the refined form of the design concepts of

modularity, abstraction and information hiding as described in earlier

sections. It is achieved by designing a module in such a way that it

independently performs given set of functions without interacting with

other parts of the system.

6.8.1 Coupling

Coupling is a measure that defines the level of inter-dependability

among the modules of a program. It tells at what level the modules

interfere and interact with each other. The lower the coupling, the

better the program. Various factors such as type of data that pass

138 | P a g e

Space for learners: across the interface, interface complexity, number of interfaces per

module, etc. impact on the strength of coupling between two modules.

There are five levels of coupling, namely -

 Data coupling: Data coupling is the one when two modules

interact with each other by means of passing data (as parameter).

If a module passes data structure as parameter, then the

receiving module should use all its components. This way,

communication between two modules is achieved. In data

coupling, the components are independent to each other and

communicating through data. Data coupling is considered the

best coupling among all.

 Stamp coupling: When multiple modules share common data

structure and work on different part of it, it is called stamp

coupling. In this coupling, the complete data structure is passed

from one module to another module.

 Control coupling: Two modules are called control-coupled if

one of them decides the function of the other module or changes

its flow of execution. In this coupling, modules communicate by

passing control information. It is considered bad if parameters

indicate completely different behavior and good if parameters

allow factoring and reuse of functionality.

 Common coupling: When multiple modules have read and write

access to some global data, it is called common or global

coupling. The modules have shared data such as global data

structures. The changes in global data mean tracing back to all

modules which access that data to evaluate the effect of the

change.

 Content coupling: When a module can directly access or modify

or refer to the content of another module, it is called content

coupling. Here, control flow can also be passed from one

module to the other module. This is the worst form of coupling

and should be avoided.

139 | P a g e

Space for learners: 6.8.2 Cohesion

Cohesion is a measure that defines the degree of intra-dependability

within elements of a module. The tighter the elements are bound to

each other, the higher is the cohesion of a module. The greater the

cohesion, the better is the program design. Low coupling results in

high cohesion and vice versa. Hence, designers should maintain a high-

level cohesion while designing a module.

There are seven types of cohesion, namely –

 Functional cohesion - It is considered to be the highest degree of

cohesion, and it is highly expected. Elements within modules in

this cohesion are grouped because they all contribute to a single

well-defined function. It can also be reused.

 Sequential cohesion - When elements within a module are

grouped and involved in activities in such a way that the output

of one element serves as input to another and so on, it is called

sequential cohesion.

 Communicational cohesion - When elements of different

modules are grouped together, to perform different functions and

work on same data (information), it is called communicational

cohesion.

 Logical cohesion - When logically categorized elements are put

together into a module, it is called logical cohesion.

 Temporal Cohesion - When elements within modules are

organized in such a way that they are processed at a similar

point in time, it is called temporal cohesion.

 Procedural cohesion – In this cohesion, elements of within

modules are involved in different and possibly unrelated

activities which are executed sequentially in order to perform a

task.

 Co-incidental cohesion - It is unplanned and random cohesion,

which might be the result of breaking the program into smaller

modules for the sake of modularization. Because it is unplanned,

it may serve confusion to the programmers and is generally not-

accepted.

140 | P a g e

Space for learners:

From the above discussion on coupling and cohesion, it can be

summarized the difference between them in the following way.

Coupling Cohesion

Coupling is also called Inter-

Module Binding.

Cohesion is also called Intra-

Module Binding.

It conceptualizes the relationships

between modules.

It shows the relationship within

the module.

It shows the relative independence

between the modules.

It defines the relative functional

strength of a module.

In coupling, modules are linked to

the other modules by passing either

data structure or control

information.

In cohesion, the module focuses

on a single thing.

CHECK YOUR PROGRESS

A. Choose the correct options from the following:

1. __________ refers to a powerful design tool, which allows software

designers to consider components at an abstract level ignoring the

implementation details of the components.

A. Information hiding

B. Functional decomposition

C. Abstraction

D. None of these

2. Software design yields ______ levels of results.

 A. 2

 B. 3

 C. 4

 D. 5

3. Which of the following is not an advantage of modularization?

141 | P a g e

Space for learners: A. Smaller components are easier to maintain

B. Concurrent execution can be made possible

C. Program cannot be divided based on functional aspects

D. Desired level of abstraction can be brought in the program

4. Which of the following defines the degree of intra-dependability

within elements of a module?

 A. Cohesion

 B. Coupling

 C. Design Verification

 D. None of the above

5. When multiple modules share common data structure and work on

different part of it, it is called ___________.

 A. Common coupling

 B. Share coupling

 C. Data coupling

 D. Stamp coupling

6. In Design phase, which is the primary area of concern?

 A. Architecture

 B. Data

 C. Interface

 D. All of the above

7. Which of the following is the best type of module cohesion?

 A. Functional Cohesion

 B. Temporal Cohesion

 C. Co-incidental Cohesion

 D. Sequential Cohesion

8. Which of the following is the worst type of module coupling?

 A. Control Coupling

 B. Stamp Coupling

 C. Data Coupling

 D. Content Coupling

9. How many types of cohesion are there in software design?

 A. 5

 B. 6

142 | P a g e

Space for learners: C. 7

 D. 8

10. Which design identifies the software as a system with many

components interacting with each other?

A. High-level design

B. Architectural Design

C. Detailed design

D. Both A & C

B. State True or False:

1. Modules should be specified and designed in such a way that the

data structures and processing details of one module are accessible

to other modules.

2. Stepwise refinement is a top-down design strategy used for

decomposing a system from high-level abstraction to more detailed

form of abstraction.

3. Information hiding makes program maintenance easier by hiding

data and procedure from the unaffected parts of a system.

4. Since modularity is an important design goal, it is not possible to

have too many modules in a proposed design.

5. Keeping low cohesion and high coupling is good practice for a

software designer.

6.9 SUMMING UP

o Software design is a stage in software development life cycle in

which a blueprint is developed to serve as base for constructing the

software system.

o There are various software design concepts which lay the

foundation for the software design process.

o Abstraction refers to the process which allows software designers to

consider components at an abstract level, ignoring the

implementation details of the components.

o Modularity is the process of decomposing the software into

uniquely named and addressable components called modules.

143 | P a g e

Space for learners: o Modules should be designed in such a way that the data structures

and processing details of one module are not accessible to other

modules. Only the required information is passed among

 the modules to accomplish the software functions. This is called

information hiding.

o Functional independence refers to the use of parameterized

subprograms or groups and within these groups there exist routines

which may be accessible or hidden.

o Data abstraction involves how to specify data that describes a data

object. Again, control abstraction hides the procedural data stating

only the desired effect.

o Functional independence is the refined form of the design concepts

of modularity, information hiding and abstraction. Each module is

developed independently so that it uniquely performs given set of

functions without interacting with other sections of the system.

o Coupling and Cohesion are two qualitative criteria for measuring

functional independence.

o Coupling measures the degree of interdependence among the

modules whereas cohesion is the measurement of the relative

functional strength of a module.

 6.10 ANSWERS TO CHECK YOUR PROGRESS

Answers to A:

1. C 2. B 3. C 4. A 5. A

 6. D 7.A 8. D 9. C 10.B

Answers to B:

1. True 2. True 3. True 4. False

5. False

6.11 POSSIBLE QUESTIONS

 What are the common features a good software design must

possess?

144 | P a g e

Space for learners: How do you explain the terms cohesion and coupling in the

context of software design?

 Discuss the different types of cohesion that a module might exist

with proper example.

 Enumerate the various types of coupling that might exist between

two modules with example of each.

 Differentiate coupling with cohesion.

 What do you understand by the term functional independence?

What are the advantages of functional independence?

145 | P a g e

Space for learners: UNIT 7: SOFTWARE DESIGN II

Unit Structure:

7.1 Introduction

7.2 Unit Objectives

7.3 Software Design Method

 7.3.1 Structured design

 7.3.2 Function Oriented design

 7.3.3 Object Oriented design

7.4 Software Design Notation

7.4.1 Flow chart

7.4.2 Data Flow Diagram

7.4.3 Pseudocodes

7.4.4 Structure Chart

7.4.5 HIPO Diagram

7.4.6 Decision Table

7.5 Summing Up

7.6 Answers to Check Your Progress

7.7 Possible Questions

7.8 References and Suggested Readings

7.1 INTRODUCTION

As discussed in Unit 6, Software design can be defined as a plan for

converting a specification into executable code i.e., problem description

turned into problem solution. Software design involves two major

categories of design methodologies: structural design and algorithmic

design. Structural design further involves many levels of system

decomposition followed by algorithmic design. All software systems are

called information-processing systems because they accept data as input,

process the input and finally provide the data in result form. Therefore,

software design must concentrate on three basic issues:

 definition of the data to be held by the system;

146 | P a g e

Space for learners: definition of the process by which inputs are manipulated;

 formulation of states that the system can assume and what

transformations are required between states.

7.2 UNIT OBJECTIVES

After completion of this unit, you will be able to learn --

1. Various methods of software design such as function oriented design

and object-oriented design.

2. Several kinds of design notations including Flow chart, Data flow

diagram, HIPO diagram, Decision table, Pseudocode.

7.3 SOFTWARE DESIGN METHOD

A design method provides a way of indicating how to create a design. It

needs to impart the procedures for verifying that the design is correct.

Software design takes the user requirements as challenges and tries to

find out optimum solution. While the software is being conceptualized,

a plan is chalked out to find the best possible design for implementing

the intended solution. There are mainly three variants of software design

methods which are described in the following.

 Structured Design

Structured design is a conceptualization of problem into several well-

organized elements of solution. It is basically concerned with the

solution design. The benefit of structured design is that it gives better

understanding of how the problem is being solved. Structured design

also makes it simpler for designer to concentrate on the problem more

accurately.

Structured design follows ‘divide and conquer’ technique where a

problem is decomposed into several small problems and each small

problem is individually solved until the whole problem is solved. The

small pieces of problem are solved by means of solution modules which

have been well organized in order to achieve precise solution. These

147 | P a g e

Space for learners: modules are arranged in hierarchy where top level module

communicates with descendant modules.

A good structured design follows some rules for communication among

multiple modules by the virtue of cohesion and coupling as discussed in

previous unit. Cohesion refers to grouping of all functionally related

elements within a module whereas Coupling measures the inter

dependency among different modules. A good structured design has

high cohesion and low coupling arrangements.

 Function Oriented Design

In function-oriented design, the system is considered a group of many

smaller sub-systems known as functions and hence, system is known as

top view of all functions. These functions are capable of performing

significant task in the system.

Function oriented design inherits some properties of structured design

where divide and conquer methodology is used. This design mechanism

divides the whole system into smaller functions, which provides means

of abstraction by concealing the information and their operation. These

functional modules can share information among themselves by means

of information passing.

Another characteristic of functions is that when a program calls a

function, the function changes the state of the program, which

sometimes is not acceptable by other modules. Function oriented design

works well where the system state does not matter and

program/functions work on input rather than on a state.

Design Process:

 The whole system is seen as how data flows in the system by

means of data flow diagram.

 Data flow diagram depicts how functions changes data and

state of entire system.

 The entire system is logically broken down into smaller units

known as processes on the basis of their operation in the

system.

 Each function is further described at large by decomposing

the same into multiple sub functions.

148 | P a g e

Space for learners: Object Oriented Design

Object oriented design (OOD) works around the entities and their

characteristics instead of functions involved in the software system. This

design strategies mainly concentrates on entities and its characteristics.

The whole concept of software solution revolves around the engaged

entities. Some important concepts behind Object Oriented Design are:

 Objects - All entities involved in the solution design are known as

objects. For example, person, banks, company and customers are

treated as objects. Every entity has some attributes associated to

it with specified values and those values are processed by some

methods to perform respective operation.

 Classes - A class is a generalized description of an object (or a

class can be called a template for defining object(s)). An object,

on the other hand, is a runtime instance of a class. All the

attributes associated with an object along with methods, which

defines the functionality of the object are declared within a class.

In the solution design, attributes are stored as variables and

functionalities are defined by means of methods or procedures.

 Encapsulation - In OOD, the binding of attributes (data variables)

and methods (operation on the data) in a single platform is

referred to as encapsulation. Encapsulation not only bundles

important information of an object together, but also restricts

access of the data and methods from the outside world. This is

called information hiding.

 Inheritance - OOD permits similar classes to stack up in

hierarchical manner where the lower or sub-classes can inherit,

re-use and implement allowed variables and methods from their

immediate parent class (or classes). This property of OOD is

known as inheritance. This makes it easier to define specific class

or classes known as base class and to construct generalized

classes from specific ones.

 Polymorphism - OOD languages provide a mechanism to define

more than one method (vary in arguments) having same name

performing multiple tasks. This is called polymorphism, which

allows a single interface performing tasks for different types.

149 | P a g e

Space for learners: Depending upon how the function is invoked, respective portion

of the code gets executed.

7.4 SOFTWARE DESIGN NOTATION

It can be stated that software analysis and design stage comprise of the

activities which help in transforming of requirement specification

document into implementation. Requirement specifications specify all

functional and non-functional necessities for the software to be

developed. These requirement specifications come in the shape of

human readable and understandable formats to which a computer has

nothing to do. Design notations refers to some techniques which are used

to represent a system in software design. These notations help software

designers to get an overview of various aspects of software design like

modules, abstraction, information hiding, concurrency, etc. in a

comprehensive manner.

A design notation in well-formed helps to clarify the relationships and

interactions among various modules that exist in the design, while a poor

design form generally complicates the design process. It is to be noted

that software design notations may be in the form of graphical, textual,

or symbolic. Various design notations which are widely used by software

designers as analysis and design tools include Flow Charts, Structure

Charts, Data Flow Diagram, HIPO diagram, Pseudocodes, Decision

Table, etc.

7.4.1 Flow Charts

A flowchart is a design representation in graphical form which shows the

sequence of operations to be carried out to solve a given problem. It helps

to determine the major elements of a process by creating boundaries

between the end of one process and beginning of another process. The

logic of a problem can be clearly understood by the programmer from the

flow chart of the problem. It makes use of set of symbols which are

CHECK YOUR PROGRESS

1. What is design method? Name different types of design methods.

2. Differentiate between function-oriented design and object oriented

design.

150 | P a g e

Space for learners: connected among them to indicate the flow of information and

processing. Frank Gilberth introduced flowcharts in 1921, and they were

called “Process Flow Charts” at the beginning.

Symbols used in the Flowcharts:

Some standard symbols and rules are prescribed by American National

Standard Institute (ANSI) for drawing flowcharts. Table 1 presents some

standard symbols which are frequently used in flowcharts.

Table 1. Some standard symbols and their purposes used in flowcharts

Symbol Symbol Name Purpose

Start/Stop
It is used to denote start and end of a logic/program.

Process
It specifies how to process mathematical operations.

Input/ Output
Used for accepting inputs for the program and

producing outputs by the program.

Decision box

It stands for decision making statements in a program,

where any decision results either Yes or No.

Flow line

It represents the flow of the sequence and direction of

a process.

On-page Connector

It connects two or more parts of a flowchart, which are

on the same page.

Off-page Connector

It is used to connect two parts of a flowchart which are

spread over different pages.

Benefits of Flowcharts:

The sequential steps in an algorithm are pictorially represented by the

flowchart and therefore, flowchart is considered a step next to an

algorithm. It helps to clarify the actions to be taken. It also allows to

improve the currently working things. The misplaced steps or

151 | P a g e

Space for learners: unnecessarily included steps are clearly come into picture for the

software designers with the help of flowchart. Some benefits of using

flowchart in problem solving are described in the following.

 Logic understanding

Since the flow chart pictorially represents the actions to be performed,

the logic used for solving the problem can be understood easily. The flow

chart symbols used to perform various functions denote the actions and

their flow. Thus, the control flow in a program can be easily visualized

with the help of flowchart.

 Communication

A common understanding about the process is established among the

members of designer team with the help of flow chart. It is a better way

of communicating the logic of a system to all concerned. The flowchart

makes the communication easier to all the involved people as compared

to actual program code.

 Effective analysis

Although it is the duty of the programmer to analyse the problem, but it

can be handed over to other persons who may or may not be aware of the

programming techniques because of flowchart which gives broad idea

about the logic. The testing and analysis of the logic is performed in an

unbiased manner by these people. Thus, the analysis of the problem

becomes effective and easier because of flowchart.

 Useful in coding

When the flowchart becomes ready, the start and end of a problem

solution become fixed along with all the necessary sequential steps. It

acts as a guide to the programmer in planning the coding process

effectively. Thus, the flowcharts allow the programmer to develop error

free programs in high-level languages at a faster rate.

 Proper testing and debugging

The errors in the program can be easily detected by going through the

flowchart. The logic used for solving the problem is exactly known to the

developer. The developer can test a program by fetching various data and

thereby, flow chart allows the testing of program in every contingency.

 Appropriate documentation

152 | P a g e

Space for learners: Flowcharts can serve as good documentation tool for beginners which

may not have any programming idea. They can understand what the

program actually does and how to use the program with the help of

documentation.

To understand the basic concept of flowchart, few examples are discussed

in the following.

Example 1. A flow chart is presented in the figure 7.1 which describes to

find out the largest of the given three numbers stored in A, B & C.

Figure 7.1 Flow chart for finding out the greatest number among three

integers

Example 2. A flow chart to generate Fibonacci series upto n which is

presented in figure 7.2.

153 | P a g e

Space for learners:

Figure 7.2 Flow chart to generate Fibonacci series upto n.

7.4.2 Data Flow Diagrams

A Data flow diagram (DFD) is a graphical representation of flow of data

in an information system. It can depict incoming data flow, outgoing

data flow and stored data throughout the system. The objective of DFD

(DFD is also known as bubble chart) is to provide an overview of the

transformations in the input data within the system in order to produce

the output. A DFD is defined by IEEE as ‘a diagram that depicts data

sources, data sinks, data storage and processes performed on data as

nodes and logical flow of data as links between the nodes.’ Since

graphical representations are easier to interpret compared to the

technical descriptions, the non-technical users can also able to

understand the system details easily and clearly.

There is a prominent difference between DFD and Flowchart. The

flowchart presents flow of control in program modules whereas DFDs

154 | P a g e

Space for learners: depict flow of data in the system at various levels. DFD does not have

any control or branch elements.

Data Flow Diagrams may be either Logical or Physical.

 Logical DFD - This type of DFD concentrates on the system process,

and flow of data in the system. It presents the theoretical process of

moving information through a system, like where the data comes

from, where it goes, how it changes, and where it ends up.

 Physical DFD - This type of DFD shows how the data flow is

actually implemented in the system. It is more specific and closer to

the implementation.

DFD notations:

To construct DFD for a system, a set of symbols are used which are

standardized notations like rectangle, circle, arrows, etc. There are four

common methods of notation used in DFDs: Yourdon & De Marco, Gene

& Sarson, SSADM and Unified. All methods use the same labels with

different shapes to represent the four main elements of a DFD - external

entity, process, data store, and data flow. Figure 7.3 presents these

elements. The notations belonging to Yourdon & De Marco method are

widely used to construct DFDs. Unified modelling notations are used for

defining a system in object-oriented design.

155 | P a g e

Space for learners: Figure 7.3 Four fundamental notations used in DFDs

External Entity

An external entity, which are also known as terminators, sources, sinks,

or actors, represents an external user that sends or receives data to and

from the system. They are used either the sources or destinations of

information and accordingly, they are usually placed on the diagram’s

edges. Entities are represented by rectangles with specific names.

Process

Process refers to an operation that manipulates the data and its flow by

taking incoming data, changing it, and producing an output with it. A

process can do this by performing computations and using logic to sort

the data, or change its flow of direction. Activities and action taken on

the data by processes are represented by Circles.

Data Store

Data stores hold information for later use, like a file of documents from

which necessary data can be retrieved for processing. Data inputs flow

from the external entity to a data store through a process while data

outputs flow out of a data store to the entity through a process. It is to be

noted that data flow can never be possible in between entity and the data

store. There are two variants of data storage - it can either be represented

as a rectangle with absence of both smaller sides or as an open-sided

rectangle with only one side missing.

Data Flow

Data flow is the path by which the system’s information passes from

external entities through processes and data stores. With arrows along

with brief labels, the DFD presents the direction of the data flow. In

general, data flow is not shown in between two processes. Data

movement is shown from the base of arrow as its source towards head of

the arrow as destination.

Certain standard guidelines are to be followed while creating a DFD.

These include the following:

a) DFD notations should be given meaningful names with proper parts

of speech. For example, a process name should be a verb whereas

156 | P a g e

Space for learners: nouns should be used for naming external entities, data store and data

flow.

b) Each process should be numbered uniquely and numbering should

be consistent.

c) Abbreviations should be avoided in DFD notations.

d) Looping concept should not be used in DFD.

e) A DFD refinement should be continued in a series of levels of DFDs

until each process performs a simple operation.

f) The data store should not be depicted in Context diagram or Level 0

DFD, but all the data stores required for a system must be included

in next level DFDs.

g) Each process should have at least one input and one output.

h) Each data store should have at least one data flow in and data flow

out.

Levels of Data Flow Diagrams

There are various levels of DFD ranging from simple overviews to

complex, granular representations of a system or process with deeper

levels, starting with level 0. These provide details about the input,

processes and outputs of a system. The most common and intuitive DFDs

are level 0 DFDs, which are also known as context diagrams.

Level 0 DFD or Context Diagram

This DFD level focuses on high-level system processes or functions and

the data sources that flow to or from them. All the external entities must

be shown in Level 0 data flow diagram. They are designed to be simple,

straightforward overviews of a process or system. It is to be mentioned

that no data store should be included in context diagram.

157 | P a g e

Space for learners: Level 1 DFD

Level 1 DFD elaborates level 0 DFD by splitting the system’s single

process into more detailed form showing all the broad level functions of

the system. It depicts basic modules in the system and flow of data among

various modules. It also includes all the data stores required for the

system. However, external entities may not be a part of level 1 DFD or

other deeper level DFDs.

Level 2 DFD

The level 2 DFDs present more elaboration by breaking down each level

1 process into granular subprocesses.

Level 3 DFD

Level 3 and higher-numbered DFDs are usually not to be defined. This is

mainly due to the requirements of large amount of detail which increases

the complexity of the system. Higher level DFDs can be transformed into

more specific lower level DFDs with deeper level of understanding

unless the desired level of specification is achieved.

Let us take an example to explain DFD for a system “Online Shopping

System”. Online Shopping System is an e-commerce application which

allows customer to buy goods or services from a seller over the Internet.

This system is handled by two types of users: buyer(customer) and

seller(Administrator). Hence, two external entities are involved in this

system. The context diagram of this system is presented in the figure 7.4.

Figure 7.4 Context diagram of Online Shopping System

158 | P a g e

Space for learners: Further, the process(system) in context diagram is decomposed into

various subprocesses which are presented in Level 1 DFD. Figure 7.5

depicts the Level 1 DFD.

Figure 7.5 Level 1 DFD for Online Shopping system

159 | P a g e

Space for learners: 7.4.3 Pseudo-Code

Pseudocode is a "text-based" detail (algorithmic) design tool. It describes

a piece of code or an algorithm. As the name suggests, it does not refer

to the actual code. The term is widely used in algorithm-based fields. It

is written closer to programming language and therefore it is considered

as augmented programming language, full of comments and descriptions.

Pseudo code is an implementation of the algorithm in English. It has no

syntax like any other programming language, hence it cannot be compiled

or interpreted by a computer.

How to write Pseudo code?

Arrange the sequence of tasks before writing the pseudo code.

1. Start with the statement which establishes the main goal or the aim.

2. Use if-else like statement, for, and while loops wherever required and

indent the statements.

3. Make use of appropriate conventions. If the programmer goes

through a pseudo code, the naming must be simple and distinct.

4. Use appropriate sentence casings such as Proper Case for functions

or methods, Upper case for constants and Lower case of variables.

5. Elaborate on everything that is going to happen in the actual code.

6. Check whether all the sections of a pseudo-code are complete, finite

and clear.

7. It is not advisable to write the code in a complete programming

manner.

8. Avoid variable declaration in Pseudo code.

Why use Pseudo code?

The pseudo code improves the readability of any approach. It is the best

approaches to start the implementation of an algorithm. This kind of

practice helps in bridging the potential gaps between the program,

algorithm, or flowchart. It also acts as a rough document.

The rules of Pseudocode are reasonably straightforward. All statements

showing "dependency" are to be indented. These include while, do, for,

if, switch. Examples below will illustrate this notion. Pseudo code

160 | P a g e

Space for learners: contains more programming details than other design notations. It

provides a method to perform the task, as if a computer is executing the

code. Few examples of Pseudocode are mentioned below.

 To print the result of a student as “passed” if he/she obtains

average marks equal to or more than 60 otherwise “failed”.

Input the student’s grade

If student's grade is greater than or equal to 60

Print "passed"

else

Print "failed"

 To compute the average grade mark of 10 students of a class.

Set total to zero

Set grade counter to one

While grade counter is less than or equal to ten

Input the next grade

Add the grade into the total

Set the class average to the total divided by ten

Print the class average.

 Finding the sum of n natural numbers.

 Declare variables n, i and sum as integer;

 Read number n ;

 Initialize i to 1

 for i upto n increment i by 1

 {

 sum=sum+i;

 }

 Print sum;

161 | P a g e

Space for learners:

 Program to print Fibonacci up to n numbers.

 void function Fibonacci

 Get value of n;

 Set value of a to 1;

 Set value of b to 1;

 Initialize i to 0

 for (i=0; i< n; i++)

 {

 if a greater than b

 {

 Increase b by a;

 Print b;

 }

 Else if b greater than a

 {

 Increase a by b;

 print a;

 }

 }

7.4.4 Structure Charts

Structure chart is a chart derived from Data Flow Diagram (DFD). It

represents the system in more detail than DFD. It breaks down the entire

system into lowest functional modules describing functions and sub-

functions of each module of the system to a greater detail than DFD.

Structure charts are also the graphical representation of the high-level

design which presents the hierarchical structure of modules. At each

layer, a specific task is performed. As a design notation, structure charts

162 | P a g e

Space for learners: show both control and data flow between modules. Here are the symbols

used in construction of structure charts.

 Module - It represents process or subroutine or task. A control

module branches to more than one sub-module. Library Modules

are re-usable and invokable from any module.

 Condition - It is represented by small diamond at the base of

module. It depicts that control module can select any of sub-routine

based on some condition.

 Jump - An arrow is shown pointing inside the module to depict that

the control will jump in the middle of the sub-module.

 Loop - A curved arrow represents loop in the module. All sub-

modules covered by loop repeat execution of module.

163 | P a g e

Space for learners:

 Data flow - A directed arrow with empty circle at the end represents

data flow.

 Control flow - A directed arrow with filled circle at the end

represents control flow.

Developing a Structure Chart:

To build a structure chart, the steps given below are to be followed.

a. Maintain the relations of modules from top to bottom.

b. Arrange the major activities of the problem in a hierarchical

manner in such a way that the activities are represented by the

nodes below the root node and connection between the root and

the nodes is depicted by drawing lines.

c. Conceptualize each activity separately to determine how it can be

divided into smaller subtasks.

164 | P a g e

Space for learners: A sample structure chart is presented in figure 7.6 in which top-

level module “process_sales” communicates with three sub

modules namely “validate_order”, “do_classify_order” and

“put_invoice” respectively.

Figure 7.6 A sample structure chart

7.4.5 HIPO Diagram

HIPO (Hierarchical Input Process Output) diagram is a combination of

two organized method to analyze the system and provide the means of

documentation. HIPO model was developed by IBM in year 1970. A

HIPO diagram generally consists of the following elements.

 A collection of top-level diagrams.

 A collection of detailed diagrams.

 A visual table of contents (VTOC) which consists of a tree or

graph structured directory, summary of contents in each

overview diagram, and a legend of symbol definitions.

165 | P a g e

Space for learners: Similar to an organization chart, HIPO diagram represents the hierarchy

of modules in the software system. Analyst uses HIPO diagram in order

to obtain high-level view of system functions. It decomposes functions

into sub-functions in a hierarchical manner. It depicts the functions

performed by system.

HIPO diagrams are good for documentation purpose. Their graphical

representation makes it easier for designers and managers to get the

pictorial idea of the system structure. Hence, HIPO diagrams can be used

as a modelling tool in some environments.

Using the HIPO technique, designers can evaluate and refine a

program’s design, and correct flaws prior to implementation. Given the

graphic nature of HIPO, users and managers can easily follow a

program’s structure.

A completed HIPO package has two parts:

A hierarchy chart is used to represent the top-down structure of the

program. The hierarchy chart serves as a useful planning and

visualization document for managing the program development process.

A sample hierarchy chart is shown in the following figure 7.6 where a

rectangular box represents a function which can further call its

subfunctions.

Figure 7.6 A Sample Structure chart

For each module depicted on the hierarchy chart, an IPO (Input-Process-

Output) chart is used to describe the inputs to, the outputs from, and the

process performed by the module. The IPO charts define for the

programmer each module’s inputs, outputs, and algorithms. For

166 | P a g e

Space for learners: example, IPO chart for Authentication function is presented in the figure

7.7.

Figure 7.7 IPO chart for authentication function

7.4.6 Decision Tables

A decision table is a tabular representation of the logic of a problem. It

specifies the possible conditions and the resulting actions to be taken to

address them, in a structured tabular format.

It is a powerful tool to debug and prevent errors. It helps group similar

information into a single table and then by combining tables it delivers

easy and convenient decision-making.

A decision table consists of three parts: Condition stubs which lists

condition relevant to decision, Action stubs specify actions that result

from a given set of conditions and Rules specify which actions are to be

followed for a given set of conditions.

Creating Decision Table:

To create a decision table, the designer must follow basic four steps:

 Identify all possible conditions to be addressed,

 Determine actions for all identified conditions,

 Create Maximum possible rules,

 Define action for each rule.

Decision Tables should be verified by end-users and can lately be

simplified by eliminating duplicate rules and actions.

167 | P a g e

Space for learners: Constructing a Decision Table:

PART 1. FRAME THE PROBLEM.

 Identify the conditions (decision criteria). These are the factors that

will influence the decision.

 Identify the range of values for each condition or criteria.

 Identify all possible actions that can occur.

PART 2. CREATE THE TABLE.

 Create a table with 4 quadrants. (Put the conditions in upper left

quadrant and place the actions in lower left quadrant)

 List all possible rules. Put the rules in the upper right quadrant.

 Enter actions for each rule. (In the lower right quadrant, determine

what, if any, appropriate actions should be taken for each rule)

Example:

Let us take an example of day-to-day problem with our Internet

connectivity. We begin by identifying all problems that can arise while

connecting to internet and their respective possible challenges. We

include all possible problems under column conditions and the

prospective actions under column Actions. Table 2 presents the decision

table explaining in house internet connectivity problem.

Table 2: Decision Table – In-house Internet Troubleshooting

 Conditions/Actions Rules

Conditions

Shows Connected N N N N Y Y Y Y

Ping is Working N N Y Y N N Y Y

Opens Website Y N Y N Y N Y N

Actions

Check network cable X

Check internet router X X X X

Restart Web Browser X

Contact Service provider X X X X X X

Do no action

168 | P a g e

Space for learners:

CHECK YOUR PROGRESS

A. Choose the correct options from the followings:

1. Which of the following is not a component in DFD?

 A. Entities

 B. Attributes

 C. Process

 D. Data Flow

2. A data flow can

 A) Only emanate from an external entity

 B) Only terminate in an external entity

 C) May emanate and terminate in an external entity

 D) May either emanate or terminate in an external entity but not both

3. HIPO stand for

 A) Hierarchy input process output

 B) Hierarchy input plus output

 C) Hierarchy plus input process output

 D) Hierarchy input output Process

4. In a DFD external entities are represented by a

 A) Rectangle

 B) Ellipse

 C) Diamond shaped box

 D) Circle

5. After the design phase the document prepared is known

as………………

 A) system specification

 B) performance specification

 C) design specification

 D) None of these

6. What is level 2 in DFD means?

 A) Highest abstraction level DFD is known as Level 2.

 B) Level 2 DFD depicts basic modules in the system and flow of data

among various modules.

 C) Level 2 DFD shows how data flows inside the modules mentioned

in Level 1.

 D) All of the above

169 | P a g e

Space for learners:

7.5 SUMMING UP

 In function-oriented design, the system is considered a group of

many smaller sub-systems known as functions and hence, system is

known as top view of all functions. These functions are capable of

performing significant task in the system.

 Object Oriented design gives a detailed description of how the

system can be built using objects.

 Design notations are used by the designers to represent software

design. Various notations that are commonly used include flow

charts, DFDs, HIPO diagram, Decision table, Structure chart, etc.

 A flow chart is a graphical design tool that depicts the sequence of

operations to be carried out to solve a problem.

7. The context diagram is also known as _____________.

 A) Level-0 DFD

 B) Level-1 DFD

 C) Level-2 DFD

 D) All of the above

8. is a tabular method for describing the logic of the decisions to be

taken.

 A) Decision tables

 B) Decision tree

 C) Decision Method

 D) Decision Data

9. gives defining the flow of the data through an organization or a

company or series of tasks that may not represent computerized

processing.

 A) System flowchart

 B) Decision Tables

 C) System Trees

 D) Organization chart

10. The structure chart is

 A) a document of what has to be accomplished

 B) a statement of information processing requirement

 C) a hierarchical partitioning of the program

 D) All of the above

170 | P a g e

Space for learners: As a graphical notation, DFD presents data sources, data sinks, data

storage and processes performed on data as nodes, and logical flow

of data as links between the nodes.

 A decision table is defined as a table that contains all the possible

conditions for a problem and the corresponding results based on

condition rules that connect condition with results. It is composed of

rows and columns in the form of a matrix and matrix is formed in

four quadrants.

 Structure Chart represent hierarchical structure of modules. It

breaks down the entire system into lowest functional modules,

describe functions and sub-functions of each module of a system to

a greater detail. Structure Chart partitions the system into black

boxes (functionality of the system is known to the users but inner

details are unknown).

 A HIPO diagram comprises of a hierarchy chart that pictorially

represents control structure of a program and a set of IPO (Input-

Process-Output) charts that describe the inputs to, the outputs from,

and the functions (or processes) performed by each module on the

hierarchy chart.

7.6 ANSWERS TO CHECK YOUR PROGRESS

1. B 2. C 3. A 4. A 5. C

6. C 7. A 8. A 9. A 10.C

7.7 POSSIBLE QUESTIONS

1. Compare relative advantages of the object-oriented and function-

oriented approaches to software design.

2. How do you describe the term top-down decomposition in the context

of function-oriented design?

3. Mention the differences between a structure chart and a flow chart.

4. Explain how the DFD model can help to understand the working of a

software system.

171 | P a g e

Space for learners: 5. Draw the context diagram and level 1 DFD for Students’ academic

record management system.

6. Write the main advantages of using decision table in designing a

problem.

172 | P a g e

Space for learners: UNIT 8: SOFTWARE DESIGN III

Unit Structure:

8.1 Introduction

8.2 Unit Objectives

8.3 Structured Design Methodology

 8.3.1 Building Blocks of Structured Chart

 8.3.2 Transform Analysis

 8.3.2 Transaction Analysis

8.4 Object-Oriented Modelling

8.4.1 Concept of Object-Oriented Modelling

8.4.2 Object-Oriented Analysis vs Object-Oriented Design

8.5 Object Modelling Using UML

8.5.1 Things in UML

8.5.2 Relationship

8.5.3 UML Diagrams

8.5.3.1 Structural Diagrams

8.5.3.2 Behavioural Diagrams

8.6 Summing Up

8.7 Answer to Check Your Progress

8.8 Possible Questions

8.9 Reference and Suggested Readings

8.1 INTRODUCTION

Software design is a method to abstract the software requirements into

software implementation. It takes the user requirements as challenges

and tries to find an optimal solution. There are several alternatives of

software design methodology. In this chapter, we will discuss two of

them i.e., Structured Design Methodology and Object-Oriented

Design methodology

8.2 UNIT OBJECTIVES

At the end of this lesson the student will be able to

173 | P a g e

Space for learners: Identify the aim of structured design.

 Explain what a structure chart is.

 Differentiate between a structure chart and a flow chart.

 Identify the activities carried out during transform analysis

with examples.

 Explain what is meant by transaction analysis.

 Identify the basic difference between object-oriented analysis

(OOA) and object-oriented design (OOD).

 Explain what a model and how models are useful.

 Explain what UML means.

 Identify different types of views captured by UML diagrams.

 Explain the utility of different types UML diagrams.

8.3 STRUCTURED DESIGN METHODOLOGY

Structured design transforms the results of the structured analysis into

a structure chart. Structured analysis is a well-organized development

process that uses graphical tools to analyse and improve the objectives

of an existing system and to develop a new system specification. It

allows understanding the system and its activities in a logical way.

Data Flow Diagrams (DFD), Data Dictionary, Decision Trees,

Decision Tables, Pseudocode, etc. are some examples of tools

available for structured analysis.

On the other hand, a structure chart represents the architecture of the

software i.e., the dependency and the parameters passed among the

various modules of the software system. There are two strategies to

converts the results of the structured analysis into a structure chart.

 Transform analysis and

 Transaction analysis

At each level of conversion, it is very important to determine whether

the transform analysis or the transaction analysis is suitable for a

particular structured analysis or not.

8.3.1 Building Blocks for Structure Chart

The basic building blocks that are used to design structure charts are

the following:

174 | P a g e

Space for learners: Rectangular boxes: Used to represents the process or task of the

system. It is of three types - Control Module, Sub Module and

Library Module.

A control module branches to more than one sub-module. Library

modules are reusable and invokable from any module.

Fig 8.1 Representation of Modules

 Module invocation arrows: These are module connecting

arrows. The direction of the arrow indicates that control is passed

from one module to another module.

Fig 8.2 Module invocation arrows

 Data flow arrows: It represents data passes from one module to

another module in the direction of the arrow. It is represented by

a directed arrow with an empty circle at the end.

Fig 8.3 Data flow arrows

 Control flow arrows: It represents the flow of control between

the modules. It is represented by a directed arrow with a filled

circle at the end.

175 | P a g e

Space for learners:

Fig 8.4 Control flow arrows

 Selection or Condition: Denoted by a diamond symbol. It

represents that the control module can select any of the

submodules on the basis of some condition.

Fig 8.5 Selection

 Repetition or Loop: It signifies the repetitive execution of a

module by the submodule. A curved arrow is used to represents

a loop in the module.

Fig 8.6 Loop

 Physical Storage: Physical Storage is that where all the

information is to be stored.

Fig 8.7 Physical Storage

The following figure shows a layout of structure chart

176 | P a g e

Space for learners:

Fig 8.8 Physical Storage

We are used to flow chart representation of a program. Though looks

similar, a structure chart differs from a flow chart. It is typically

difficult to recognize the different modules of the software from its

flow chart representation. Besides, data interchange among different

modules is not represented in a flow chart.

8.3.2 Transform Analysis

Transform analysis distinguishes the key functional modules and the

high-level inputs and outputs for these modules. Steps of Transform

Analysis are given below

Step 1: The first step in transform analysis is to divide the structured

analysis into 3 types of parts:

 Input

 Logical processing

 Output

The input portion comprises procedures that convert input data from

physical form (e.g. character from terminal) to logical forms (e.g.

internal data lists, tables etc.). Each input portion is known as an

afferent branch.

The output portion of transform analysis alters output data from

logical to physical form. Each output portion is termed an efferent

branch.

The remaining portion of transform analysis is called the central

transform.

177 | P a g e

Space for learners:
Step 2: In the next step, the structure chart is derived by drawing one

functional component for the central transform, and the afferent and

efferent branches.

Each input and output unit are represented as boxes in the first level

structure chart. Processes that perform logical processing like sorting

or filtering input data are part of central transforms. Each central

transform is depicted as a single box. Processes like input validation

or adding information to input are not central transforms.

Step 3: In this step, sub-components or sub-functions are added to

each of the high-level functional components (if required). It makes a

structured chart more refined. This process of breaking high-level

functional components into sub-components is called factoring. Many

levels of subcomponents may be added. The factoring process is

continued until all components of structured analysis are represented

in the structure chart.

Example: Structure Chart of a simple email server

We can see that three basic functions that the email server needs to

perform – accept the login details from the user, validate users, then

login to the mailbox. The level 1 DFD of this system may be as

follows

Fig 8.9 Level 1 DFD of email server

From this DFD, we can get the structure chart shown in the following

figure by applying all 3 steps of transform analysis mentioned above.

Fig 8.10 Structure chart of email server

178 | P a g e

Space for learners: 8.3.3 Transaction Analysis

Transaction analysis is an alternative structured design strategy for

developing structure charts. It is useful while designing transaction

processing programs. One of several possible paths through the data

flow diagram is pass through depending upon the input data item.

Each different way in which input data is handled is considered a

transaction. The input data is traced to the output for each identified

transaction. All the traversed bubbles of data flow diagram belong to

the transaction and these bubbles should be mapped to the same

module on the structure chart. Initially we draw a root module in the

structured chart and each identified transaction will be drawn below

this root module. Every transaction is associated with a tag, which

identifies its type. This tag is used to divide the system into transaction

modules and a transaction center module during transaction analysis.

It is also possible that some transactions may not require any input

data. Such kind of transactions can be identified by practicing a large

number of examples.

CHECK YOUR PROGRESS

1. Differentiate between a structure chart and a flow chart

2. Which documents are produced at the end of structured analysis

activity?

3. For the following, mark all options which are true

a. The purpose of structured analysis is

i. to capture the detailed structure of the system as perceived

by the user

ii. to define the structure of the solution that is suitable for

implementation in some programming language

STOP TO CONSIDER

A DFD model of a system graphically portrays the conversion of

the data input to the system to the final result through a hierarchy

of levels. It starts with the most abstract definition of the system

(context diagram) and at each higher level DFD, more details are

successively introduced. To develop a higher-level DFD model,

processes are decomposed into their sub-processes and the data

flow among these sub-processes is identified.

179 | P a g e

Space for learners:
iii. all of the above

b. Structured analysis technique is based on

i. top-down decomposition approach

ii. bottom-up approach

iii. divide and conquer principle

iv. none of the above

c. In a structure chart, a module represented by a rectangle with

double edges is called

i. root module

ii. library module

iii. primary module

iv. none of the above

d. Which of the following types of bubbles in DFD may belong to

the central transform ?

i. input validation

ii. adding information to the input

iii. sorting input

iv. filtering data

e. The input portion in the DFD that transform input data from

physical to logical form is called

i. central transform

ii. efferent branch

iii. afferent branch

iv. none of the above

8.4 OBJECT-ORIENTED MODELLING

8.4.1 Concept of Object-Oriented Modelling

Object-Oriented (OO) Modelling is a way of thinking about problems

using models organized around real-world concepts. In this approach,

the system is viewed as a collection of objects. Object have their own

data which defines their states and functions or operations to work on

180 | P a g e

Space for learners:
these data. For example, in a Banking Software, each account may be

a separate object with its own data like account holder’s name,

balance amount, and functions like suspend(), deposit(), withdraw(),

update() to operate on these data.

Each object is said to be an instance of some class. A class can be

assumed as generalized description of an object. Class can be termed

as the blueprint from which individual objects are created. Classes

may inherit data and functions from other classes. But functions

defined for one object cannot refer to or change the data of other

objects. However, the same function may behave differently in

different classes.

8.4.2 Object-Oriented Analysis vs Object-Oriented

Design

The first technical activity performed as part of object-oriented

modelling is Object-Oriented Analysis (OOA). It is used to develop

an initial analysis model of the system from the requirements

specification. This analysis model is then transformed by Object-

Oriented Design (OOD) into a design model that works as a plan for

software development. Object-Oriented Design (OOD) techniques

not only identify objects but also identify the internal details of the

objects and the relationships existing among these objects.

8.5 OBJECT MODELLING USING UML

Designers build different kinds of models for various purposes before

constructing things. The main reason for constructing models is to

deal with systems that are too complex to understand directly. Models

helps to reduce complexity by separating out a small number of

important things to deal with at a time. Once models of a system have

been developed, it can be used for a variety of purposes during

software development, including the following:

 Analysing and Specification

 Reduction of Complexity

 Designing and testing the system

 Better understanding of the problem

181 | P a g e

Space for learners:
Since a model can be used for a variety of purposes the model may

vary depending on the purpose for which it is being created. For

example, a model constructed for initial analysis and specification

will be different from the model constructed for design.

UML (Unified Modelling Language) is a standard language for

specifying, visualizing, constructing, and documenting software

systems. It was created by the Object Management Group (OMG).

UML 1.0 specification draft was proposed to the Object Management

Group (OMG) in 1997. Initially it was started to capture the behavior

of complex software and non-software system and now it has become

an OMG standard. UML has its own syntax and semantics to create a

visual model of the system. UML is not a programming language. It

is basically used to document object-oriented and analysis results

obtained using some methodology. There are many tools which can

be used to produce code in different programming languages using

UML diagrams.

The conceptual model of UML can be mastered by learning the

following three major elements

 UML building blocks

 Rules to connect the building blocks

 Common mechanisms of UML

The building blocks of UML can be defined as – Things,

Relationships and Diagrams

8.5.1 Things in UML

Things are the most vital building blocks of UML. It can be –

Structural, Behavioral, Grouping and Annotation .

A) Structural Things: Structural things represent the physical and

conceptual elements of a system. Brief descriptions of various

structural things are given below.

 Class: Class denotes a set of objects having similar

characteristics.

182 | P a g e

Space for learners:

Fig 8.11 : Representation of Class

 Interface: Interface defines a set of operations, which

specify the properties of a class.

Fig 8.12 : Representation of Interface

 Collaboration: Collaboration describes interactions

between elements.

Fig 8.13 : Representation of Collaboration

 Component: Component defines the physical part of a

system.

Fig 8.14 : Representation of Component

 Node: Physical elements that exists at run time are

termed as node

Fig 8.15 : Representation of Node

B) Behavioral things : A behavioral thing consists of the dynamic

parts of UML models. Following are the behavioral things −

183 | P a g e

Space for learners: Interaction : Interaction is defined as a behavior that

involves a group of messages exchanged among elements

to complete a specific job.

Fig 8.16: Representation of Interaction

 State machine : It defines the sequence of states an object

goes through in response to external factors responsible

for a state change.

Fig 8.17 : Representation of State

C) Grouping Things : Grouping things can be defined as a technique

to group elements of a UML model together. There is only one

grouping thing available i.e. package which gathers structural and

behavioral things.

Fig 8.18 : Representation of Package

D) Annotational Things : Annotational things is a mechanism to

capture remarks, descriptions, and comments of UML model

elements. Note is the only one Annotational thing available in UML

Modelling.

Fig 8.19 : Representation of Note

8.5.2 Relationship

Relationship demonstrates how the elements of a system are

associated with each other. This association between elements

describes the functionality of a system. There are four types of

relationships – Dependency, Association, Generalization and

Realization.

184 | P a g e

Space for learners: Dependency defines a relationship between two things in

which any alteration in one element also affects the other

element.

Fig 8.20 : Representation of Dependency

 Association describes how many objects are taking part in a

relationship. It is basically a set of links that attaches the

elements of a UML model.

Fig 8.21 : Representation of Association

 Generalization can be defined as a relationship that links a

specialized element with a generalized element. It generally

describes the inheritance relationship between objects.

Fig 8.22 : Representation of Generalization

 Realization can be viewed as a relationship in which two

elements are connected. One element defines some

characteristics which are not implemented and the other

element implements them. This kind of relationship exists in

the case of interfaces.

Fig 8.23 : Representation of Realization

8.5.3 UML Diagrams

All the elements, relationships can be associated in different ways to

make a complete UML picture, which is known as diagram. UML

diagrams helps us to understand the system in a better and simple way.

Usually diagrams are made in an incremental and iterative way. A

single diagram is not adequate to cover all the characteristics of the

system. There are two broad categories of diagrams i.e. Structural

Diagrams and Behavioral Diagrams. They are again divided into

subcategories.

185 | P a g e

Space for learners:

Fig 8.24: Categories of UML Diagram

Different UML diagrams provide different perspectives of the

software system to be designed and developed. They facilitate a

comprehensive understanding of the system. The UML diagrams can

capture the following five views of a system:

 User’s view: This view defines the functionalities (facilities)

made available by the system to its users. The users’ view

captures the external users’ view of the system in terms of the

functionalities offered by the system.

 Structural view: The structural view describes the classes of

objects important to the understanding of the working and

implementation of the system. It also defines the relationships

among the objects.

 Behavioral view: The behavioral view captures how objects

interact with each other to realize time dependant or dynamic

behavior of the system.

 Implementation view: Implementation view captures the

important components of the system and their dependencies.

 Environmental view: Environmental view models how the

different components are

implemented on different pieces of hardware.

186 | P a g e

Space for learners: 8.5.3.1 Structural Diagrams

The structural diagrams depict the main structure of a system

represented by classes, interfaces, objects, components, and nodes.

The four structural diagrams are −

 Class diagram

 Object diagram

 Component diagram

 Deployment diagram

A) Class Diagram

Class diagrams are the most common diagrams used in UML. A class

diagram consists of classes, interfaces, associations, and

collaboration. Class diagrams basically represent the object-oriented

view of a system

Class diagrams have a lot of properties to consider while drawing. The

following points should be remembered while drawing a class

diagram −

 Name of the class diagram should be meaningful to describe

the aspect of the system.

 Each element and its relationships should be identified

properly in advance.

 Attributes and methods of each class should be clearly

identified

 Unnecessary properties should be avoided, otherwise they will

make the diagram complicated.

 Use notes whenever required to describe some aspect of the

diagram so that it becomes easily understandable to the

developer/coder.

187 | P a g e

Space for learners:

Fig 8.25 : Class Diagram

UML diagrams are not directly mapped with any object-oriented

programming languages but the class diagram is an exception. As it

clearly shows the mapping with object-oriented languages.

B) Object Diagrams

Object diagrams are derived from class diagrams. Object diagrams

help to render a set of objects and their relationships as an instance.

Objects and links are the two essential elements used to construct an

object diagram. The object diagram should have a meaningful name

to indicate its purpose and association among various objects should

be clarified.

Fig 8.26 : Object Diagram

188 | P a g e

Space for learners:
C) Component Diagram

The purpose of the component diagram is different from a class

diagram or object diagram. It describes the components used to make

functionalities of the system rather than describing those

functionalities. Component diagrams are used to model the physical

aspects such as executables, libraries, files, documents, etc. of a

system

Fig 8.27 : Component Diagram

D) Deployment Diagram

Deployment diagrams are a set of nodes and their relationships. These

nodes are nothing but physical hardware used to deploy the

application.

Fig 8.28 : Deployment Diagram

189 | P a g e

Space for learners: 8.5.3.2 Behavioral Diagrams

Behavioral diagrams basically capture the dynamic aspect i.e. the

behavior of the system when it is in operational or running state. UML

has the following five types of behavioral diagrams

 Use case diagram

 Interaction diagram

 State chart diagram

 Activity diagram

A) Use case diagrams

A use case basically represents a sequence of interactions between the

system and users. Use case diagrams are used to gather the

requirements of a system including internal and external effects.

These requirements are typically design requirements. Hence, when a

system is analyzed to gather its functionalities, use cases are prepared

and actors are identified. Actors are nothing but an entity that interacts

with the system. It can be a human user, some internal applications,

or maybe some external applications. While planning to draw a use

case diagram, the following items should be identified in advanced

 Functionalities to be represented as a use case

 Actors and

 Relationships among the use cases and actors

Use case diagrams are drawn to capture the functional requirements

of a system. After identifying the above items, the following

guidelines need to be followed to draw an efficient use case diagram

 The name should be chosen in such a way so that it can

identify the functionalities performed.

 Give a appropriate name for actors.

 Relationships and dependencies should be clearly visible in

the diagram.

 Use notes (if required) to clarify important points.

190 | P a g e

Space for learners:

Fig 8.29: Use Case Diagram

B) Interaction Diagrams

Interaction diagrams visualize the interactive behavior of a system.

Visualizing the interaction is not an easy task. Hence, different types

of models are used to capture the various aspects of the interaction.

This interaction is a part of the dynamic behavior of the system and it

is represented in UML by two diagrams known as Sequence diagram

and Collaboration diagram. The basic purpose of both the diagrams

is similar.

A sequence diagram shows the message sequence of various objects

The message flow is nothing but a method call of an object.

Fig 8.30 : Sequence Diagram

191 | P a g e

Space for learners:
In the collaboration diagram, some numbering technique is used to

indicate the method call sequence. The number specifies how the

methods are called one after another.

Fig 8.31 : Collaboration Diagram

C) Statechart Diagram

Statechart diagram is another type of UML diagrams which is used to

model the dynamic nature of a system. Statechart diagrams define

different states of an object throughout its lifetime and these states are

changed by events. Statechart diagrams are convenient to model

systems that respond to external or internal events.

Fig 8.32 : Statechart Diagram

D) Activity Diagram

Activity diagram is fundamentally a flowchart to represent the flow

from one activity to another. The activity can be defined as an

operation of the system. The control flow is drawn from one operation

to another. This flow can be sequential, branched, or concurrent.

192 | P a g e

Space for learners:
Activity diagram has more impact on understanding the system rather

than on implementation details.

Fig 8.33 : Activity Diagram

CHECK YOUR PROGRESS

4. Explain why is it necessary to create a model in the context of good

software development.

5. Which diagrams in UML capture the behavioral view of the

system?

6. Which UML diagrams capture the structural aspects of a system?

7. Which UML diagrams capture the important components of the

system and their dependencies?

8. Mark the following as either True or False. Justify your answer.

a. State chart diagrams in UML are normally used to model how

some behavior of a system is realized through the co-operative

actions of several objects.

b. Normally, you use an interaction diagram to represent how the

behavior of an object change over its life time.

c. Class diagrams developed using UML can serve as the

functional specification of a system.

 9. Mark all options which are true.

a. UML is a

i. a language to model syntax

193 | P a g e

Space for learners:
ii. an object-oriented development methodology

iii. an automatic code generation tool

iv. none of the above

b. In the context of use case diagram, the stick person icon is

used to represent

i. human users

ii. external systems

iii. internal systems

iv. none of the above

c. Which of the following view captured by UML diagrams

can be considered as

black box model of a system?

i. structural view

ii. behavioral view

iii. user’s view

iv. implementation view

8.6 SUMMING UP

Software design is a process to convert user requirements into some

suitable form, which helps the programmer in software coding and

implementation. Structured design methodology is typically based on

‘divide and conquer’ approach where a problem is fragmented into

several small problems and each small problem is separately solved

until the whole problem is solved. A good structured design has high

cohesion and low coupling arrangements. Object oriented design

works around the entities and their features instead of functions

involved in the software system. UML is a modelling language used

to model software and non-software systems. Although UML is used

for non-software systems if we look into UML diagrams all would

basically be designed based on the objects.

Hence, the relation between Object - Oriented design and UML is

very important to understand. Before understanding the UML in

detail, the Object - Oriented concept should be learned properly.

194 | P a g e

Space for learners: 8.7 ANSWERS TO CHECK YOUR PROGRESS

1. A structure chart differs from a flow chart in following ways:

 It is usually difficult to identify the different modules of the

software from its flow chart representation.

 Data interchange among different modules is not represented

in a flow chart.

2. Graphical representation of structured analysis results Data Flow

Diagrams.

3. a. i

 b. i, ii

 c. ii

 d. iii, iv

e. iii

4. An important reason behind constructing a model is that it helps

manage complexity. Once models of a system have been constructed,

these can be used for a variety of purposes during software

development, including the following:

 Analysing and Specification

 Reduction of Complexity

 Designing and testing the system

 Better understanding of the problem

Since a model can be used for a variety of purposes, it is reasonable

to expect that the model would vary depending on the purpose for

which it is being constructed. For example, a model developed for

initial analysis and specification should be very different from the one

used for design. A model that is being used for analysis and

specification would not show any of the design decisions that would

be made later on during the design stage. On the other hand, a model

used for design purposes should capture all the design decisions.

Therefore, it is a good idea to explicitly mention the purpose for which

a model has been developed, along with the model.

5. The behavioral view is captured by the following UML diagrams:

 Sequence diagrams

195 | P a g e

Space for learners: Collaboration diagrams

 State chart diagrams

 Activity diagrams

6. Structural aspects of a system are captured by the following UML

diagrams:

 Class diagrams

 Object diagrams

7. Implementation view captures the important components of the

system and their dependencies.

8.

a. False. A state chart diagram is normally used to model how

the state of an object changes in its life time. State chart diagrams

are good at describing how the behavior of an object changes

across several use case executions.

b. False. Interaction diagrams are models that describe how

groups of objects team up to realize some behavior. Typically,

each interaction diagram comprehends the behavior of a single

use case. An interaction diagram shows a number of example

objects and the messages that are passed between the objects

within the use case.

c. False. A class diagram describes the static structure of a

system. It shows how a system is structured rather than how it

behaves. The static structure of a system comprises of a number

of class diagrams and their dependencies.

9. a. iv

 b. i

 c. iii

8.8 POSSIBLE QUESTIONS

1. Identify different types of views of a system captured by UML

diagrams.

2. What is the basic difference between object-oriented analysis

(OOA) and object-oriented design (OOD) ?

3. What is the need for developing use case diagram?

196 | P a g e

Space for learners:
4. Differentiate Activity diagram and State chart diagram.

5. What do you understand by relationships in UML?

6. What are the advantages of creating a Model ?

8.9 REFERENCES AND SUGGESTED READINGS

 Fundamentals of Software Engineering, Fifth Edition, 2018,

Rajib Mall; PHI

 Software Engineering – A Practitioner’s Approach, Roger S.

Pressman; McGraw-Hill International Edition

BLOCK II:

SOFTWARE CODING, TESTING AND

MAINTENANCE

197 | P a g e

Space for learners: UNIT 1: SOFTWARE CODING

Unit Structure:

1.1 Coding standards and Guidelines

1.1.1 Representative coding standards

1.1.2 Representative coding guidelines

1.2 Coding Methodologies

1.2.1 Code Review

1.2.2 Code Verification

1.2.3 Static and Dynamic Techniques

1.3 Coding Tools

1.4 Coding Documentation

1.4.1 Internal Documentation

1.4.2 External Documentation

1.5 Summing up

1.6 Answers to Check Your Progress

1.7 Possible Questions

1.8 References and Suggested Readings

1.0 INTRODUCTION

In this unit, you will learn the coding phase of software development life

cycle. This unit covers the basic understanding of the coding activities

involved during software development. The goal of the coding activity is

to implement the design in the best possible manner. It affects both the

testing and the maintenance process profoundly. As we know, the time

spent in the coding activity is the small percentage of the total software

development cost and the testing and the maintenance consumes the

major percentage. Thus, it is very much clear that the purpose of coding

phase is not to reduce the implementation cost but to reduce the cost of

the later phase. In other words, the goal during this phase is not to

simplify the programmers job rather the goal should be to simplify the

job of tester and the maintainer. It is very important to understand that

while coding it must be kept in mind that the program should not be

198 | P a g e

Space for learners: constructed so that they are easy to write, but so that they are easy to write

and understand.

1.2 UNIT OBJECTIVES

After going through the unit you will be able:

 To understand the coding phase of software development life

cycle.

 The importance of coding standards and guidelines followed by

organizations.

 The difference between coding standards and guidelines.

 The different coding methodologies followed in the software

industries.

 The concept of coding verification and the also discusses about

the importance of code documentation.

1.3 CODING STANDARDS AND GUIDELINES

Writing an efficient software code requires a thorough knowledge of

programming. This knowledge can be implemented by following a

coding style which comprises several guidelines that help in writing the

software code efficiently and with minimum errors. These guidelines,

known as coding guidelines, are used to implement individual

programming language constructs, comments, formatting, and so on.

These guidelines, if followed, help in preventing errors, controlling the

complexity of the program, and increasing the readability and

understandability of the program. A set of comprehensive coding

guidelines encompasses all aspects of code development. To ensure that

all developers work in a harmonized manner (the source code should

reflect a harmonized style as a single developer had written the entire

code in one session), the developers should be aware of the coding

guidelines before starting a software project.

199 | P a g e

Space for learners: Moreover, coding guidelines should state how to deal with the existing

code when the software incorporates it or when maintenance is

performed. Since there are numerous programming languages for writing

software codes, each having different features and capabilities, coding

style guidelines differ from one language to another. However, there are

some basic guidelines, which are followed in all programming languages.

These include naming conventions, commenting conventions, and

formatting conventions.

Good software development organizations usually develop their own

coding standards and guidelines depending on what suits there

organization best and based on the specific type of product they develop.

In the following section, we shall only list some general coding standards

and guidelines, which are commonly adopted by much software

development organization, rather than trying to provide an exhaustive

list.

A coding standard lists several rules to be followed during coding such

as the way variables are to be named, the way the code is to be laid out,

the error return conventions etc. Besides the coding standards, several

coding guideline are to be prescribed by software companies. But what is

the difference between coding standard and coding guidelines?

Coding standards have to be mandatorily followed by the programmers,

and compliance to coding standards is verified before the testing phase

can start. In contrast , coding guidelines provide some general

suggestions regarding the coding style to be followed but leave the actual

implementation of these guidelines to the discretion of the individual

developers.

1.3.1 Representative Coding Standards

a) Rules for limiting the scope of global variables: These rules list

what types of data can be declared global and what cannot, with a view

to limit the data that needs to be defined with the global scope.

b) Standard headers to precede the code of different modules: The

information contained in the headers of the of different modules should

be standard for an organization and exact format of the header must be

200 | P a g e

Space for learners: specified. The following is an example of some of the header format

adopted by the companies:

 Name of the module

 Date on which the module was created

 Authors name

 Modification history

 Synopsis of the module

 Different functions supported in the module, along with their

input/output parameters

 Global variables accessed / modified by the module

c) Naming conventions for global variables, local variables and

constant identifiers: The variables are named using mixed case lettering.

Global variable names should always start with a capital letter (e.g

GlobalData) and local variable name would start with small letters (e.g

localData). Constant names should be formed using capital letters only

(e.g CONSTDATA).

d) Conventions regarding error return values and exception

handling mechanism: The way error conditions are reported by different

functions in a program should be standard within an organization. For

example all functions while encountering an error condition should either

return 0 or 1 consistently, independent of which the program has written

a code.

1.3.2 Representative Coding Guidelines

The following are some representatives coding guidelines that are

recommended by many software development organizations:

a) Do not use a coding style that is too clever or too difficult to

understand: Code should be easy to understand. Many inexperienced

engineers actually take pride in writing cryptic and incomprehensible

code. Clever coding can obscure meaning of the code and hamper

understanding. As a result, it can make maintenance and debugging

difficult and expensive.

201 | P a g e

Space for learners: b) Avoid obscure side effects: The side effect of a function call include

modifications to the parameters passed by reference, modifications of

global variables and I/O operations. An obscure side effect is one that is

not obvious from a casual examination of the code. Obscure side effects

make it difficult to understand a piece of code. For example , if a global

variable is changed or some file I/O performed obscurely in a called

module, it becomes difficult to infer from the functions name and the

header information, making it difficult to understand the code.

c) Do not use an identifier for multiple purposes: Programmers often

use the same identifier to denote several temporary entities. For example,

some programmers use a temporary loop variable for also computing and

storing the final result. The reason for doing so is that if same variable is

used for multiple purpose it can save memory since they are using the

same memory location and if we used three different variables then it will

take three different memory locations. However, there is several things

wrong with this approach and hence should be avoided. Some of the

problems caused by use of variable for multiple purpose are as follows :

 Each variable should be given a descriptive name indicating its

purpose. Use of single variable for multipole purpose may lead to

confusion and reduces the understandability of the code.

 Use of single variable for multiple purpose usually makes future

enhancement more difficult. For example, while changing the

final computed result from integer to float type, the programmer

might subsequently notice that it has been used as a temporary

loop variable that cannot be float type.

d) The code should be well documented: As a rule of thumb, there

should be at least one comment line on the average for every three-source

lines of code.

e) The length of any function should not exceed 10 source lines: A

lengthy function is usually very difficult to understand as it probably has

a large number of variables and carries out many different types of

computations. It may carry large number of bugs.

f) Do not use GO TO statements: Use of GO TO statement makes the

program unstructured, thereby making it difficult to understand, debug

and maintain the program.

202 | P a g e

Space for learners:

1.4 CODING METHODOLOGIES

1.4.1 Code Review

It in undertaken after the modules is successfully compile, it means all

the syntax error have been eliminated from the module. The code reviews

are cost effective strategies for eliminating coding errors and for

producing high quality code. The reason behind why code review is much

more cost effective strategy to eliminate errors from code compare to

testing since it directly detect errors. On the other hand testing only detect

failures and significant effort need to be given in debugging to locate the

error.

Normally there are two types of reviews carried out on the code of a

module.

a) Code Walkthrough

Code Walkthrough is a form of peer review in which a programmer leads

the review process and the other team members ask questions and spot

possible errors against development standards and other issues.

 The meeting is usually led by the author of the document under

review and attended by other members of the team.

 Review sessions may be formal or informal.

 Before the walkthrough meeting, the preparation by reviewers

and then a review report with a list of findings.

CHECK YOUR PROGRESS

1. Coding instruction in computer language is known as

…………………

2. Coding guidelines helps in ….. and helps to detect …..

easily.

3. Code should be well documented.

4. The coding standards decreases the efficiency of the

programmers.

203 | P a g e

Space for learners: The scribe, who is not the author, marks the minutes of meeting

and note down all the defects/issues so that it can be tracked to

closure.

 The main purpose of walkthrough is to enable learning about

the content of the document under review to help team members

gain an understanding of the content of the document and also

to find defects.

b) Code Inspection

Code Inspection is the most formal type of review, which is a kind of

static testing to avoid the defect multiplication at a later stage.

 The main purpose of code inspection is to find defects and it can

also spot any process improvement if any.

 An inspection report lists the findings, which include metrics that

can be used to aid improvements to the process as well as

correcting defects in the document under review.

 Preparation before the meeting is essential, which includes

reading of any source documents to ensure consistency.

 A trained moderator, who is not the author of the code, often leads

inspections.

 The inspection process is the most formal type of review based

on rules and checklists and makes use of entry and exit criteria.

 It usually involves peer examination of the code and each one has

a defined set of roles.

 After the meeting, a formal follow-up process is used to ensure

that corrective action is completed in a timely manner.

Common programming errors that can be checked during

code Inspection.

The following is the list of classical programming errors that needs to be

considered during code inspection:

 Use of uninitialized variables

 Jumps into loops

 Non – terminating loops

204 | P a g e

Space for learners: Incompatible assignments

 Array indices out of bounds

 Improper storage allocation and deallocation.

 Mismatches between actual and formal parameter in procedure

calls

 Use of incorrect logical operators or incorrect precedence among

operators

 Improper modification of loop variables

 Comparison of equality of floating point values , etc

1.4.2 Code Verification

Code verification is the process used for checking the software code for

errors introduced in the coding phase. The objective of code verification

process is to check the software code in all aspects. This process includes

checking the consistency of user requirements with the design phase.

Note that code verification process does not concentrate on proving the

correctness of programs. Instead, it verifies whether the software code

has been translated according to the requirements of the user.

Verification is the process of confirming if the software is meeting the

business requirements, and is developed adhering to the proper

specifications and methodologies.

 Verification ensures the product being developed is according to

design specifications.

 Verification answers the question– "Are we developing this

product by firmly following all design specifications?”

 Verifications concentrates on the design and system

specifications.

Target of the test are -

 Errors - These are actual coding mistakes made by developers.

In addition, there is a difference in output of software and desired

output, is considered as an error.

205 | P a g e

Space for learners: Fault - When error exists fault occurs. A fault, also known as a

bug, is a result of an error which can cause system to fail.

 Failure - failure is said to be the inability of the system to

perform the desired task. Failure occurs when fault exists in the

system.

1.4.2.1 Static and Dynamic Techniques

The code verification techniques are classified into two categories,

namely, dynamic and static. The dynamic technique is performed by

executing some test data. The outputs of the program are tested to find

errors in the software code. This technique follows the conventional

approach for testing the software code. In the static technique, the

program is executed conceptually and without any data. In other words,

the static technique does not use any traditional approach as used in the

dynamic technique. Some of the commonly used static techniques are

code reading, static analysis, symbolic execution, and code inspection

and reviews.

a) Code Reading: Code reading is a technique that concentrates on

how to read and understand a computer program. It is essential for a

software developer to know code reading. The process of reading a

software program in order to understand it is known as code reading or

program reading. In this process, attempts are made to understand the

documents, software specifications, or software designs. The purpose of

reading programs is to determine the correctness and consistency of the

code. In addition, code reading is performed to enhance the software

code without entirely changing the program or with minimal disruption

in the current functionality of’ the program. Code reading also aims at

inspecting the code and removing (fixing) errors from it.Code reading is

a passive process and needs concentration. An effective code reading

activity primarily focuses on reviewing ‘what is important’. The general

conventions that can be followed while reading the software code are

listed below.

 Figure out what is important: While reading the code, emphasis

should be on finding graphical techniques (bold, italics) or positions

(beginning or end of the section). Important comments may be

highlighted in the introduction or at the end of the software code. The

206 | P a g e

Space for learners: level of details should be according to the requirements of the software

code.

 Read what is important: Code reading should be done with the intent

to check syntax and structure such as brackets, nested loops, and

functions rather than the non-essentials such as name of the software

developer who has written the software code.

b) Static Analysis: Static analysis comprises a set of methods used to

analyze the source code or object code of the software to understand how

the software functions and to set up criteria to check its correctness.

Static analysis studies the source code without executing it and

gives information about the structure of model used, data and control

flows, syntactical accuracy, and much more. Due to this, there are several

kinds of static analysis methods, which are listed below.

Control flow analysis: This examines the control structures (sequence,

selection, and repetition) used in the code. It identifies incorrect and

inefficient constructs and also reports unreachable code, that is, the code

to which the control never reaches.

Data analysis: This ensures that-proper operations are applied to data

objects (for example, data structures and linked lists). In addition, this

method also ensures that the defined data is properly used. Data analysis

comprises two methods, namely, data dependency and data-flow

analysis. Data dependency (which determines the dependency of one

variable on another) is essential for assessing the accuracy of

synchronization across multiple processors. Dataflow analysis checks

the definition and references of variables.

Fault/failure analysis: This analyzes the fault (incorrect model

component) and failure (incorrect behaviour of a model component) in

the model. This method uses input-output transformation descriptions to

identify the conditions that are the cause for the failure. To determine the

failures in certain conditions, the model design specification is checked.

Interface analysis: This verifies and validates the interactive and

distributive simulations to check the software code. There are two basic

techniques for the interface analysis, namely, model interface analysis

and user interface analysis. Model interface analysis examines the sub-

model interfaces and determines the accuracy of the interface

207 | P a g e

Space for learners: structure. User interface analysis examines the user interface model

and checks for precautionary steps taken to prevent errors during the

user’s interaction with the model’.

c) Symbolic Executor: Symbolic execution concentrates on assessing

the accuracy of the model by using symbolic values instead of actual data

values for input. Symbolic execution, also known as symbolic

evaluation, is performed by providing symbolic inputs, which produce

expressions for the output.

Symbolic execution uses a standard mathematical technique for

representing the arbitrary program inputs (variables) in the form of

symbols. To perform the calculation, a machine is employed to perform

algebraic manipulation on the symbolic expressions. These expressions

include symbolic data meant for execution. The symbolic execution is

represented as a symbolic state symbol consisting of variable symbolic

values, path, and the path conditions. The symbolic state for each step in

the arbitrary input is updated. The steps that are commonly followed for

updating the symbolic state considering all possible paths are listed

below.

 The read or the input symbol is created.

 The assignment creates a symbolic value expression.

 The conditions in symbolic state add constraints to the path

condition.

The output of symbolic execution is represented in the form of a

symbolic execution tree. The branches of the tree represent the paths of

the model. There is a decision point to represent the nodes of the tree.

This node is labeled with the symbolic values of the data at that junction.

The leaves of the tree are complete paths through the model and they

represent the output of symbolic execution. Symbolic execution helps in

showing the correctness of the paths for all computations. Note that in

this method the symbolic execution tree increases in size and creates

complexity with growth in the model.

d) Code Inspection and Reviews: This technique is a formal and

systematic examination of the source code to detect errors. During this

process, the software is presented to the project managers and the users

for a comment of approval. Before providing any comment, the

208 | P a g e

Space for learners: inspection team checks the source code for errors. Generally, this team

consists of the following.

 Moderator: Conducts inspection meetings, checks errors-, and

ensures that the inspection process is followed.

 Reader: Paraphrases the operation of the software code.

 Recorder: Keeps record of each error in the software code. This

frees the task of other team members to think deeply about the software

code.

 Author: Observes the code inspection process silently and helps

only when explicitly required. The role of the author is to understand the

errors found in the software code.

As mentioned above, the reader paraphrases the meaning of small

sections of code during the code inspection process. In other words, the

reader translates the sections of code from a computer language to a

commonly spoken language (such as English). The inspection process is

carried out to check whether the implementation of the software code is

done according to the user requirements. Generally, to conduct code

inspections the following steps are performed.

a) Planning: After the code is compiled and there are no more errors

and warning messages in the software code, the author submits the

findings to the moderator who is responsible for forming the inspection

team. After the inspection team is formed, the moderator distributes the

listings as well as other related documents like design documentation to

each team member. The moderator plans the inspection meetings and

coordinates with the team members.

b) Overview: This is an optional step and is required only when the

inspection team members are not aware of the functioning of the project.

To familiarize the team members, the author provides details to make

them understand the code.

c) Preparation: Each inspection team member individually examines

the code and its related materials. They use a checklist to ensure that

each problem area is checked. Each inspection team member keeps a

copy of this checklist, in which all the problematic areas are mentioned.

209 | P a g e

Space for learners: d) Inspection meeting: This is carried out with all team members to

review the software code. The moderator discusses the code under

review with the inspection team members.

There are two checklists for recording the result of the code inspection,

namely, code inspection checklist and inspection error list. The code

inspection checklist contains a summary of all the errors of different

types found in the software code. This checklist is used to understand the

effectiveness of inspection process. The inspection error list provides

the details of each error that requires rework. Note that this list contains

details only of those errors that require the whole coding process to be

repeated.

All errors in the checklist are classified as major or minor. An error is

said to be major if it results in problems and later comes to the knowledge

of the user. On the other hand, minor errors are spelling errors and non-

compliance with standards. The classification of errors is useful when

the software is to be delivered to the user and there is little time to review

all the errors present in the software code.

At the conclusion of the inspection meeting, it is decided whether the

code should be accepted in the current form or sent back for rework. In

case the software code needs reworking, the author makes all the

suggested corrections and then compiles the code. When the code

becomes error-free, it is sent back to the moderator. The moderator

checks the code that has been reworked. If the moderator is completely

satisfied with the software code, inspection becomes formally complete

and the process of testing the software code begins.

CHECK YOUR PROGRESS

5. State true or false

a. The main purpose of code inspection is to find defects and it

can also spot process improvement if any.

b. Inspection is an indiscipline practice for correcting defects in

software artifacts.

c. Code Walkthrough is a form of peer review in which a

programmer leads the review process and the other team members ask

210 | P a g e

Space for learners:

1.5 CODING TOOLS

While writing software code, several coding tools are used along with the

programming language to simplify the tasks of writing the software code.

Note that coding tools vary from one programming language to another

as they are developed according to a particular programming language.

However, sometimes a single coding tool can be used in more than one

programming language. Generally, coding tools comprises text editors,

supporting tools for a specific programming language, and the framework

required to run the software code .In addition to the programming

language and coding tools, there are some software programs that are

essential to run the software code. For instance, a debugger is used to

detect the source of program errors by performing a step-by-step

execution of the software code. A debugger breaks program execution at

various levels in the application program. It supports features such as

breakpoints, displaying or changing memory, and so on.

Similarly, compilers are used to translate programs written in a high-

level language into their machine language

equivalents.

1.6 CODING DOCUMENTATION

Code documentation is a manual-cum-guide that helps in

understanding and correctly utilizing the software code. The coding

standards and naming conventions written in a commonly spoken

language in code documentation provide enhanced clarity for the

designer. Moreover, they act as a guide for the software maintenance

team (this team focuses on maintaining software by improving and

enhancing the software after it has been delivered to the end user) while

the software maintenance process is carried out. In this way, code

documentation facilitates code reusability.

While writing a software code, the developer needs proper

documentation for reference purposes. Programming is an ongoing

questions and spot possible errors against development standards and

other issues.

211 | P a g e

Space for learners: process and requires modifications from time to time. When a number of

software developers are writing the code for the same software,

complexity increases. With the help of documentation, software

developers can reduce the complexity by referencing the code

documentation. Some of the documenting techniques are comments,

visual appearances of codes, and programming tools. Comments are

used to make the reader understand the logic of a particular code

segment. The visual appearance of a code is the way in which the

program should be formatted to increase readability. The programming

tools in code documentation are algorithms, flowcharts, and pseudo-

codes.

Code documentation contains source code, which is useful for the

software developers in writing the software code. The code documents

can be created with the help of various coding tools that are used to auto-

generate the code documents. In other words, these documents extract

comments from the source code and create a reference manual in the

form of text or HTML file. The auto-generated code helps the software

developers to extract the source code from the comments. This

documentation also contains application programming interfaces, data

structures, and algorithms. There are two kinds of code documentation,

namely, internal documentation and external documentation.

1.6.1 Internal Documentation

Documentation which focuses on the information that is used to

determine the software code is known as internal documentation. It

describes the data structures, algorithms, and control flow in the

programs. There are various guidelines for making the documentation

easily understandable to the reader. Some of the general conventions to

be used at the time of internal documentation are header comment

blocks, program comments, and formatting. Header comment blocks are

useful in identifying the purpose of the code along with details such as

how the c0ge functions and how each segment of code is used in the

program.

Since software code is updated and revised several times, it is important

to keep a record of the code information so that internal documentation

reflects the changes made to the software code. Internal documentation

212 | P a g e

Space for learners: should explain how each code section relates to user requirements in the

software. Generally, internal documentation comprises the following

information.

 Name, type, and purpose of each variable and data structure used

in the code

 Brief description of algorithms, logic, and error-handling

techniques

 Information about the required input and expected output of the

program

 Assistance on how to test the software

 Information on the upgradations and enhancements in the

program.

1.6.2 External Documentation

Documentation which focuses on general description of the software

code and is not concerned with its detail is known as external

documentation. It includes information such as function of code, name

of the software developer who has written the code, algorithms used in

the software code, dependency of code on programs and libraries, and

format of the output produced by the software code. Generally, external

documentation includes structure charts for providing an outline of the

program and describing the design of the program.

External documentation is useful for software developers as it consists

of information such as description of the problem along with the program

written to solve it. In addition, it describes the approach used to solve the

problem, operational requirements of the program, and user interface

components. For the purpose of readability and proper understanding,

the detailed description is accompanied by figures and illustrations that

show how one component is related to another.

 External documentation explains why a particular solution is chosen and

implemented in the software. It also includes formulas, conditions, and

references from where the algorithms or documentation are derived.

External documentation makes the user aware of the errors that occur

while running the software code. For example, if an array of five

213 | P a g e

Space for learners: numbers is used, it should be mentioned in the external documentation

that the limit of the array is five.

CHECK YOUR PROGRESS

6. Code documentation contains …………… which is useful for

the software developers in writing the software code.

7. The coding standards and naming conventions written in a

commonly spoken language in code documentation provide …….. for

the designer.

8. The ……………. contains a summary of all the errors of

different types found in the software code.

9. Define a debugger.

10. Define a compiler.

1.7 SUMMING UP

 The most software industries have their own coding standards and

they expect that there engineers to adhere to them. On the other

hand, coding guidelines serve as general suggestions to

programmers regarding good programming styles, but the

implementation is left the software engineers.

 Code review is an efficient method of removing errors because of

its capability to identify errors. The two main approach of code

review are code walkthrough and code inspection.

 Both of these methods are used to identify error at an early stage.

 The important basic programming errors are also discussed and

identified in the unit. Code verification is the process used for

checking the software code for errors introduced in the coding

phase.

 The objective of code verification process is to check the software

code in all aspects. This process includes checking the consistency

of user requirements with the design phase.

214 | P a g e

Space for learners: The code verification techniques are classified into two categories,

namely, dynamic and static. The dynamic technique is performed

by executing some test data. The outputs of the program are tested

to find errors in the software code. This technique follows the

conventional approach for testing the software code. In the static

technique, the program is executed conceptually and without any

data.

 While writing software code, several coding tools are used along

with the programming language to simplify the tasks of writing the

software code. Note that coding tools vary from one programming

language to another as they are developed according to a particular

programming language.

 Code documentation is a manual-cum-guide that helps in

understanding and correctly utilizing the software code. The

coding standards and naming conventions written in a commonly

spoken language in code documentation provide enhanced clarity

for the designer. The internal and external documentation have its

own merits and limitations.

1.8 ANSWERS TO CHECK YOUR PROGRESS

1. Programming

2. Code reuse, errors

3. True

4. False

5. a. True, b. False, c. True

6. Source code

7. Enhance clarity

8. Code inspection list

9. It is a debugging tool is a computer program that is used to test

and debug other programs.

215 | P a g e

Space for learners: 10. A compiler is a computer program that converts the program

written in one programing language (source language) into

another programming language (target language)

1.9 POSSIBLE QUESTIONS

Short answer type questions.

1) What are some of the important errors checked during the code

walkthrough?

2) Define code walkthrough.

3) Define code inspection.

4) What is internal and external documentation?

5) State some of the important coding Guidelines.

Long answer type questions.

1) When during the development process is the compliance with

coding standard is checked?

2) List two coding standards each for:

i) Enhancing readability of the code.

ii) Reuse of the code

3) Briefly highlight the difference between code inspection and

code walkthrough. Compare the relative merits of code

inspection and code walkthrough.

4) What do you understand by static and dynamic analysis of

programs? How are static and dynamic program analysis results

useful?

5) What is a coding standard? What problems may arise if the

engineers of an organization do no adhere to any coding standard?

6) What is the difference between coding standard and coding

guideline?

216 | P a g e

Space for learners: 7) Discuss different types of code reviews. Why it is considered to

be the most efficient way to remove errors from the code?

8) What is meant by code walkthrough? What are some of the

important errors that can be checked during code walkthrough?

9) Define control flow and data analysis.

10) What are the major steps to conduct code Inspection?

1.10 REFERENCES AND SUGGESTED READINGS

 “Fundamentals of Software Engineering”, Rajib Mall, Prentice-

Hall of India.

 “An Integrated Approach to Software Engineering”, Pankaj Jalote,

Narosa Publishing House

 http://www.tutorialspoint.com

 http://www.geeksforgeeks.com

217 | P a g e

Space for learners: UNIT 2: SOFTWARE TESTING I

2.1 Introduction

2.2 Unit Objectives

2.3 Testing Fundamentals

2.3.1 Basic Concepts and Terminologies

2.3.2 Test Plan Activities During Testing

2.4 Test Cases and Test Criteria

2.4.1 Why Design Test Cases?

2.4.2 Approaches to Design Test Cases

2.5 Strategic Issues in Testing

2.6 Unit Testing

2.7 Integration Testing

2.8 Acceptance Testing

2.9 Summing Up

2.10 Answers to Check Your Progress

2.11 Possible Questions

2.12 References and Suggested Readings

2.1 INTRODUCTION

The aim of program testing is to identify all defects in a program.

However, in practice even after satisfactory completion of the testing

phase, it is not possible to guarantee that a program is error free. This is

because the input data domain for most of the program is very large and

it is not practically possible to test all possible to test all the data

exhaustively with respect to each value that a input can assume. Even

with this obvious limitation of the testing process, we should not estimate

the importance of testing. It is very important to understand that by

careful testing we can eliminate or reduce the major defects form the

system.

Why to Learn Software Testing?

In the IT industry, large companies have a team with responsibilities to

evaluate the developed software in context of the given requirements.

Moreover, developers also conduct testing which is called Unit Testing.

218 | P a g e

Space for learners: In most cases, the following professionals are involved in testing a

system within their respective capacities −

 Software Tester

 Software Developer

 Project Lead/Manager

 End User

Different companies have different designations for people who test the

software on the basis of their experience and knowledge such as

Software Tester, Software Quality Assurance Engineer, QA Analyst, etc.

Applications of Software Testing

 Cost Effective Development - Early testing saves both time and cost

in many aspects, however reducing the cost without testing may result in

improper design of a software application rendering the product useless.

 Product Improvement - During the SDLC phases, testing is never a

time-consuming process. However diagnosing and fixing the errors

identified during proper testing is a time-consuming but productive

activity.

 Test Automation - Test Automation reduces the testing time, but it

is not possible to start test automation at any time during software

development. Test automaton should be started when the software has

been manually tested and is stable to some extent. Moreover, test

automation can never be used if requirements keep changing.

 Quality Check - Software testing helps in determining following set

of properties of any software such as

 Functionality

 Reliability

 Usability

 Efficiency

 Maintainability

 Portability

219 | P a g e

Space for learners: 2.2 UNIT OBJECTIVES

After going through the unit you will be able:

 The importance of testing and its applications.

 The basic concepts and terminologies used in the process of

testing.

 Designing of test cases and test suites and why we design test

cases?

 The main strategic issues related to the testing.

 The different type of testing like unit testing, Integration testing

and system testing.

2.3 TESTING FUNDAMENTALS

In this section we will define some of the terms that are commonly used

when we discuss about testing. Then we will discuss about some of the

basic issues related to how testing can be performed and some desirable

properties for the criteria used for testing.

2.3.1 Basic Concepts and Terminologies

The term error and failure used to refer to problems in requirements,

design or code. Sometimes error, fault and failure are used

interchangeably and sometimes they refer to different concepts. The

following are some of the commonly used terms associated with testing:

a) Error: It is the mistake committed by development team during

any of the development phase. The mistake might have been

committed in the requirements, design or code. It is sometimes

referred as fault, bug or defect.

b) Failure: It is a manifestation of an error. In other words a failure

is the symptom of an error. But mere presence of an error may not

necessarily lead to failure.

220 | P a g e

Space for learners: c) Test Case: It is the triplet [I , S, O], where I is the data input to

the system, S is the state of the system at which the data is input

and O is the expected output of the system.

d) Test Suite: It is the set of all test cases with which a given

software product is tested.

e) Verification and Validation: Verification is a process of

determining whether the output of one phase of software

development conforms to that of its previous phase, whereas

validation is the process of determining whether a fully developed

system conforms to its requirement specification. Thus the main

difference between is that the verification is concerned with phase

containment of error and the aim of validation is to make the final

product error free.

2.3.2 Test Plan Activities During Testing

Testing involves performing the following main activities:

a) Test suite design: Test suite is a container that has a set of tests

which helps testers in executing and reporting the test execution status.

It can take any of the three states namely active, in progress and

completed.

A Test case can be added to multiple test suites and test plans. After

creating a test plan, test suites are created which in turn can have any

number of tests.

b) Running test cases and checking the results to detect failure:

Each test case is run and the results are compared with the expected

results. A mismatch between the actual and expected result indicates a

failure. A test cases for which the system fails are noted down for later

debugging.

c) Debugging: Debugging is the process of finding and resolving

defects or problems within a computer program that prevent correct

operation of computer software or a system. For each activity observed

during the previous activity, debugging is carried out to identify

statements that are in error. Here, the symptoms are analyzed to locate

the error.

221 | P a g e

Space for learners: d) Error Correction: After the error is located in the previous activity the

code is appropriately changed to correct the errors.

2.4 TEST CASES AND TEST CRITERIA

Test criteria help the tester to organize the test process. They should be

chosen in accordance with the available test effort. Test coverage

measures are defined as a ratio between the test cases required for

satisfying the criteria and those of these which have been executed. A

good test should have the following criteria’s

(1) Validity, (2) Reliability, (3) Level of difficulty, (4)

Discrimination Power, and (5) The Quality of Options.

2.4.1 Why Design Test Cases?

It is not necessary that if we design test cases then it would not be

sufficient to test software using large number of random inputs values?

But this technique would be very costly and very ineffective way of

testing. In other words, testing a system using a large collection of test

cases that are selected at random does not guarantee that all (or even

most) of the errors in the system will be uncovered. Consider one

example, let there is code segment that determines the greater of two

integer values x and y. The code segment gives the simple programming

error:

 if (x>y) max = x;

 else max = x;

In this segment of code if put values like {(x =3, y=2); (x=2,y=3)} can

detect error, whereas a large test suite { (x =3 , y =2), (x = 4 , y =3), (x=5

, y =1)}does not detect the errors. It means that for effective testing we

need to design the test suite carefully rather than taking large number of

input values.

2.4.2 Approaches to Design Test Cases

A minimal test suite is a carefully designed set of test cases such that each

test case helps in detecting different errors. This is in contrast to testing

222 | P a g e

Space for learners: using some random input values. There are essentially two main

approaches to systematically design test cases.

a) Black Box Approach: Black-box testing is a method of software

testing that examines the functionality of an application based on the

specifications. It is also known as Specifications based testing.

Independent Testing Team usually performs this type of testing during

the software testing life cycle.

This method of test can be applied to each and every level of software

testing such as unit, integration, system and acceptance testing. There are

different techniques involved in Black Box testing but the following are

the two main approaches.

Equivalence Class partitioning: It divides input domain into classes of

data, and with the help of these classes of data, test cases can be derived.

An ideal test case identifies class of error that might require many

arbitrary test cases to be executed before general error is observed. The

strategy for black box testing is intuitive and simple and the most

important test is the identification of equivalence class.

In equivalence portioning, equivalence classes are evaluated for given

input conditions. Whenever any input is given, then type of input

condition is checked, then for this input conditions, Equivalence class

represents or describes set of valid or invalid states.

Guidelines for Equivalence Partitioning:

 If the range condition is given as an input, then one valid and

two invalid equivalence classes are defined.

 If a specific value is given as input, then one valid and two

invalid equivalence classes are defined.

 If a member of set is given as an input, then one valid and one

invalid equivalence class is defined.

 If Boolean no. is given as an input condition, then one valid

and one invalid equivalence class is defined.

Summary of the Black Box Test Suite Design Approach

 Examine the input and output values of the program.

 Identify the equivalence classes.

223 | P a g e

Space for learners: Design equivalence class test cases by picking one

representative value form each equivalence class.

 Design the boundary values test cases as follows. Examine if

any equivalence class is a range of values. Include the values

at the boundaries of such equivalence classes in the test suite.

Boundary Value Analysis: Boundary value analysis is a type of black

box or specification based testing technique in which tests are performed

using the boundary values. Boundary values are validated against both

the valid boundaries and invalid boundaries. The boundary value

analysis involves designing test cases using the values at the boundaries

of different equivalence classes.

b) White Box Approach: White box testing techniques analyse the

internal structures the used data structures, internal design, code

structure and the working of the software rather than just the

functionality as in black box testing. It is also called glass box testing

or clear box testing or structural testing. It examines the program

structure and derives test data from the program logic/code. The other

names of glass box testing are clear box testing, open box testing, logic

driven testing or path driven testing or structural testing.

Testing Techniques:

a) Statement Coverage - This technique is aimed at exercising all

programming statements with minimal tests. It aims to design test cases

so as to execute every statement in a program at least once. The principal

idea gfis that unless a statement is executed there is no way to determine

whether an error exists in that statement. The statement coverage is a

very intuitive and appealing testing technique.

b) Branch Coverage - This technique is running a series of tests to

ensure that all branches are tested at least once. The test cases are

designed so as to make each branch condition in the program to assume

true or false values in turn. It is also known as edge testing since in this

testing scheme each edge of the program’s control graph is traversed at

least once. It is obviously stronger than statement coverage based testing.

c) Path Coverage - This technique corresponds to testing all possible

paths which means that each statement and branch is covered. It requires

designing test cases such as all linearly independent paths in the program

224 | P a g e

Space for learners: are executed at least once. A linearly independent path is defined in terms

of control flow graph (CFG) of a program.

Control flow graph: It describes the sequence in which the different

instructions of a program gets executed. In other words we can also

describe how the control flows through the program.

Advantages of White Box Testing:

 Forces test developer to reason carefully about implementation.

 Reveals errors in "hidden" code.

 Spots the Dead Code or other issues with respect to best

programming practices.

Disadvantages of White Box Testing:

 Expensive as one has to spend both time and money to perform

white box testing.

 Every possibility that few lines of code are missed accidentally.

 In-depth knowledge about the programming language is necessary

to perform white box testing.

CHECK YOUR PROGRESS

1. State true and false.

a. Error and failure are synonymous in software testing

terminologies.

b. The main purpose of integration testing is to find design errors.

2. The ….is the set of all test cases with which a given software

product is tested.

3. ………….and ………… are the two main approaches to

systematically design test cases.

2.5 STRATEGIC ISSUES IN TESTING

Testing is the process of evaluating a system or its component(s) with

the intent to find whether it satisfies the specified requirements or not.

Testing is executing a system in order to identify any gaps, errors, or

missing requirements in contrary to the actual requirements.

225 | P a g e

Space for learners: Following are the issues considered to implement software testing

strategies.

 Specify the requirement before testing starts in a quantifiable

manner.

 According to the categories of the user generate profiles for each

category of user.

 Produce a robust software and it's designed to test itself.

 Should use the Formal Technical Reviews (FTR) for the effective

testing.

 To access the test strategy and test cases FTR should be

conducted.

 To improve the quality level of testing generate test plans from

the user’s feedback.

2.6 UNIT TESTING

This type of testing is performed by developers before the setup is

handed over to the testing team to formally execute the test cases. Unit

testing is performed by the respective developers on the individual units

of source code assigned areas. The developers use test data that is

different from the test data of the quality assurance team.

The goal of unit testing is to isolate each part of the program and show

that individual parts are correct in terms of requirements and

functionality. Before carrying out unit test cases have to be designed and

the test environment for the unit under test has to be developed. In the

next section we will discuss the environment needed to perform unit

testing.

Driver and Stub Modules: In order to test a single module, we need a

complete environment to provide all relevant code that is necessary for

execution of the module. Other than the module under test the following

are needed to test the module:

 The procedures belonging to other modules that the module under

test calls.

226 | P a g e

Space for learners: Non local data structures that the module accesses.

 A procedure to call the functions of the module under test with

appropriate parameters.

The stubs and drivers are designed to provide the complete environment

for a module so that testing can be carried out.

 Stubs: Stubs are developed by software developers to use them in

place of modules, if the respective modules aren’t developed, missing

in developing stage, or are unavailable currently while Top-down

testing of modules. A Stub simulates module which has all the

capabilities of the unavailable module. Stubs are used when the lower-

level modules are needed but are unavailable currently.

 Drivers: Drivers serve the same purpose as stubs, but drivers are

used in Bottom-up integration testing and are also more complex than

stubs. Drivers are also used when some modules are missing and

unavailable at time of testing of a specific module because of some

unavoidable reasons, to act in absence of required module. Drivers are

used when high-level modules are missing and can also be used when

lower-level modules are missing.

Limitations of Unit Testing

Testing cannot catch each and every bug in an application. It is

impossible to evaluate every execution path in every software

application. The same is the case with unit testing.

There is a limit to the number of scenarios and test data that a developer

can use to verify a source code. After having exhausted all the options,

there is no choice but to stop unit testing and merge the code segment

with other units.

Difference between Stubs and Drivers:

S.No. Stubs Drivers

1.

Stubs are used in Top-Down

Integration Testing.

 Drivers are used in Bottom-

Up Integration Testing.

227 | P a g e

Space for learners:

S.No. Stubs Drivers

2.

Stubs are basically known as a

“called programs” and are used

in the Top-down integration

testing.

 While, drivers are the

“calling program” and are

used in bottom-up

integration testing.

3.

Stubs are similar to the

modules of the software that

are under development

process.

While drivers are used to

invoking the component

that needs to be tested.

4.

Stubs are basically used in the

unavailability of low-level

modules.

 While drivers are mainly

used in place of high-level

modules and in some

situation as well as for low-

level modules.

5.

Stubs are taken into use to test

the feature and functionality of

the modules.

 Whereas the drivers are

used if the main module of

the software isn’t

developed for testing.

6.

The stubs are taken into

concern if testing of upper-

levels of the modules are done

and the lower-levels of the

modules are under developing

process.

 The drivers are taken into

concern if testing of lower-

levels of the modules are

done and the upper-levels

of the modules are under

developing process.

Stubs are used when lower-

level of modules are missing or

in a partially developed phase,

and we want to test the main

module.

 Drivers are used when

higher-level of modules are

missing or in a partially

developed phase, and we

want to test the lower (sub)

- module.

228 | P a g e

Space for learners: CHECK YOUR PPROGRESS

4. State true or false:

a. The goal of unit testing is to isolate each part of the program and

show that individual parts are correct in terms of requirements

and functionality.

b. The stubs and drivers are not designed to provide the complete

environment for a module so that testing can be carried out.

5. The ……… strategy aims to design test cases so as to execute

every statement in a program at least once.

6. The ………… describes the sequence in which the different

instructions of a program get executed.

2.7 INTEGRATION TESTING

Integration testing is defined as the testing of combined parts of an

application to determine if they function correctly. Integration testing can

be done in two ways: Bottom-up integration testing and Top-down

integration testing.

S.No. Integration Testing Method

1 Bottom-up integration

This testing begins with unit testing, followed by tests of

progressively higher-level combinations of units called

modules or builds.

2 Top-down integration

In this testing, the highest-level modules are tested first and

progressively, lower-level modules are tested thereafter.

In a comprehensive software development environment, bottom-up

testing is usually done first, followed by top-down testing. The process

concludes with multiple tests of the complete application, preferably in

scenarios designed to mimic actual situations.

229 | P a g e

Space for learners: Integration test approaches –

There are four types of integration testing approaches. Those

approaches are the following:

a) Big-Bang Integration Testing –

It is the simplest integration testing approach, where all the modules

are combining and verifying the functionality after the completion of

individual module testing. In simple words, all the modules of the

system are simply put together and tested. This approach is practicable

only for very small systems. If once an error is found during the

integration testing, it is very difficult to localize the error as the error

may potentially belong to any of the modules being integrated. So,

debugging errors reported during big bang integration testing are very

expensive to fix.

Advantages:

 It is convenient for small systems.

Disadvantages:

 There will be quite a lot of delay because you would have to

wait for all the modules to be integrated.

 High risk critical modules are not isolated and tested on

priority since all modules are tested at once.

b) Bottom up Integration Testing: In bottom-up testing, each

module at lower levels is tested with higher modules until all modules

are tested. The primary purpose of this integration testing is, each

subsystem is to test the interfaces among various modules making up

the subsystem. This integration testing uses test drivers to drive and

pass appropriate data to the lower level modules.

Advantages:

 In bottom-up testing, no stubs are required.

 A principle advantage of this integration testing is that several

disjoint subsystems can be tested simultaneously.

Disadvantages:

 Driver modules must be produced.

230 | P a g e

Space for learners: In this testing, the complexity that occurs when the system is

made up of a large number of small subsystem.

c) Top-Down Integration Testing –

Top-down integration testing technique used in order to simulate the

behaviour of the lower-level modules that are not yet integrated. In

this integration testing, testing takes place from top to bottom. First

high-level modules are tested and then low-level modules and finally

integrating the low-level modules to a high level to ensure the system

is working as intended.

Advantages:

 Separately debugged module.

 Few or no drivers needed.

 It is more stable and accurate at the aggregate level.

Disadvantages:

 Needs many Stubs.

 Modules at lower level are tested inadequately.

2.8 ACCEPTANCE TESTING

This is arguably the most important type of testing, as it is conducted by

the Quality Assurance Team who will gauge whether the application

meets the intended specifications and satisfies the client’s requirement.

The QA team will have a set of pre-written scenarios and test cases that

will be used to test the application.

More ideas will be shared about the application and more tests can be

performed on it to gauge its accuracy and the reasons why the project

was initiated. Acceptance tests are not only intended to point out simple

spelling mistakes, cosmetic errors, or interface gaps, but also to point out

any bugs in the application that will result in system crashes or major

errors in the application. By performing acceptance tests on an

application, the testing team will reduce how the application will perform

in production. There are also legal and contractual requirements for

acceptance of the system.

231 | P a g e

Space for learners: a) Alpha Testing:

Alpha testing is used to determine the product in the development

testing environment by a specialized tester’s team usually called alpha

testers.

b) Beta Testing:

Beta testing is used to assess the product by exposing it to the real

end-users, usually called beta testers in their environment. Feedback is

collected from the users and the defects are fixed. Also, this helps in

enhancing the product to give a rich user experience.

Use of Acceptance Testing:

 To find the defects missed during the functional testing phase.

 How well the product is developed.

 A product is what actually the customers need.

 Feedbacks help in improving the product performance and user

experience.

 Minimize or eliminate the issues arising from the production.

CHECK YOUR PROGRESS

7. State true or false

a. The big bang approach is preferred for integration testing of

large programs.

b. Equivalence class partitioning is a white box testing strategy.

c. Testing cannot catch each and every bug in an application

8. Integration testing can be done in two ways ………….. and

…………

9. The ….. and …. are designed to provide the complete environment

for a module so that testing can be carried out.

10. A linearly independent path is defined in terms of ………….

of a program.

2.9 SUMMING UP

 In this unit we mainly discussed about the concept and different

approaches to testing.

232 | P a g e

Space for learners: Exhaustive testing of almost any system is almost impractical.

Also random selection of test cases is inefficient since many test

cases become redundant as they detect the same type of errors.

 There are mainly two main approaches to testing: Black box

testing and white box testing. Designing test cases for black box

testing does not require any knowledge about how the function

have been designed and implemented. On the other hand white

box testing requires knowledge about internals of the software.

 Testing is the process of evaluating a system or its component(s)

with the intent to find whether it satisfies the specified

requirements or not. Testing is executing a system in order to

identify any gaps, errors, or missing requirements in contrary to

the actual requirements.

 Unit testing is performed by the respective developers on the

individual units of source code assigned areas. The developers

use test data that is different from the test data of the quality

assurance team. The goal of unit testing is to isolate each part of

the program and show that individual parts are correct in terms of

requirements and functionality.

 Integration testing is defined as the testing of combined parts of

an application to determine if they function correctly. Integration

testing can be done in two ways: Bottom-up integration testing

and Top-down integration testing.

2.10 ANSWERS TO CHECK YOUR PROGRESS

1. a. True, b. True

2. Test suites

3. Black box and white box

4. a. True, b. False

5. Statement coverage based

6. Control flow graph

7. a. True, b. False, c. True

233 | P a g e

Space for learners: 8. Bottom – up and top down

9. Stubs and drivers

10. Control flow graph

2.11 POSSIBLE QUESTIONS

Short answer type questions.

1) What are driver and stub modules? Why are they required?

2) Distinguish between error and failure in the context of program

testing.

3) Distinguish between software verification and validation.

4) Define acceptance testing.

5) Define control flow graph.

6) List any three differences between drivers and stubs?

7) What is Big Bang Integration testing?

8) What are the advantages of top down integration testing?

9) Define statement and branch coverage in testing. Which testing

approach is stronger?

10) List the main activities to perform testing in software

development.

Long answer type questions.

1) What are different approaches of integration testing? Which

approach is more preferred for the large projects?

2) What is difference between white box and black box testing?

3) What do you mean by equivalence class partitioning and

boundary value analysis?

4) Prove that the branch coverage based testing is a stronger testing

technique compared to a statement coverage based testing.

5) What do you mean by big bang integration testing? How it is

performed?

234 | P a g e

Space for learners: 6) Explain the difference between testing in large and testing in

small. What is the purpose of each?

7) What are alpha, beta and acceptance testing? What are the

differences among these different types of software product?

8) Define test cases and test suites. Why do we need to design test

cases?

9) What are drivers and stubs? Why they are important? What are

the major factors that are required to test the module?

10) What do you understand by the unit testing? Discuss in brief

about the statement and branch coverage testing strategy.

2.12 REFERENCES AND SUGGESTED READINGS

 “Fundamentals of Software Engineering”, Rajib Mall, Prentice-

Hall of India.

 “An Integrated Approach to Software Engineering”, Pankaj Jalote,

Narosa Publishing House

 http://www.tutorialspoint.com

 http://www.geeksforgeeks.com

235 | P a g e

Space for learners: UNIT 3: SOFTWARE TESTING II

Unit Structure:

3.1 Introduction

3.2 Unit Objectives

3.3 White-Box Testing

3.3.1 White Box Testing Tools

3.3.2 White box testing examples

3.3.3 Advantage of White box testing

3.3.4 Disadvantage of White box testing

3.4 Code Coverage

3.5 Data Flow Testing

3.6 Loop Testing

3.7 Black Box Testing

3.7.1 Types of Black Box Testing

3.7.2 Black Box Testing Techniques

3.7.3 Cause Effect Graphing

3.8 Comparison of White Box Testing and Black box testing

3.9 Mutation Testing

3.9.1 Mutation Testing Benefits

3.9.2 Mutation Testing Types:

3.10 Summing Up

3.11 Answers to Check Your Progress

3.12 Possible Questions

3.13 References and Suggested Readings

3.1 INTRODUCTION

The goal of testing is to find errors, and a good test is one that has a

high probability of finding an error. In this unit, different software

testing techniques has been discussed.

236 | P a g e

Space for learners: 3.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 Understand various concepts of white box testing, black box

testing, their advantages and disadvantages.

 Understand the difference white box testing vs black box

testing.

 Understand the different techniques used in black box and

white box techniques

 Understand the need of Cause Effect Graphing their benefits

of Cause Effect

3.3 WHITE BOX TESTING

White-box testing is a testing technique which checks the internal

functioning of the system. In this method, testing is based on

coverage of code statements, branches, paths or conditions. White-

Box testing is considered as low-level testing. It is also called glass

box, transparent box, clear box or code base testing. The white-box

Testing method assumes that the path of the logic in a unit or

program is known. In this technique, the internal structure and

implementation of how an application works are known to the tester.

Let’s assume that there is a car which is not working and therefore

you take it to a mechanic to get it fixed. Now the mechanic will

examine why the car is not working. Similarly, a tester studies the

code of an application and determines all the inputs, and verifies the

outputs against desired outcomes.

We need White box testing for the following two reasons

1) To systematically derive tests from source code.

2) To know when to stop testing.

As a tester, when performing white box testing, your goal was clear:

to derive classes out of the requirement specifications, and then to

derive test cases for each of the classes. You were satisfied once all

the classes and boundaries were systematically exercised. First, it

gives us a systematic way to devise tests. As we will see, a tester

might focus on testing all the lines of a program; or focus on the

branches and conditions of the program. Different criteria produce

237 | P a g e

Space for learners: different test cases. Second, to know when to stop. It is easy to

imagine that the number of possible paths in a mildly complex piece

of code is just too large, and exhaustive testing is impossible.

Therefore, having clear criteria on when to stop helps testers in

understanding the costs of their testing.

Following are the steps that are taken into consideration while

performing white box testing:

 Verification of security holes in source code

 Testing of any broken or incomplete path

 To verify the flow of structure as mentioned in the software

requirement document

 To check the conditionality of all loops and the overall

functionality of the software

 To check if all the expected outcomes are met

 Line by line verification of code

The main aim of white box testing is to verify the proper flow and

functionality of the application. The test cases are executed and the

output is compared to the desired outcome, if any of the output does

not match with the expected outcome, it means that a bug is

encountered.

3.3.1 White Box Testing Tools

Some of the common white box testing tools used is given below

 Veracode

 RCUNIT

 cfix

 Googletest

 EMMA

 NUnit

3.3.2 White Box Testing Example

For understanding how to create test cases in white box testing, let’s

consider the pseudo code given below:

238 | P a g e

Space for learners: INPUT A & B

C = A + B

IF C>100

PRINT “ITS DONE”

ELSE

PRINT “ITS PENDING”

Since the goal of white box testing is to verify and cross check all

the different loops, branches and decision statements, so to exercise

white box testing in the code given above, the two test cases would

be –

A= 33, B=45

A=40, B=70

For the first test case, A=33, B=45; C becomes 78, due to which it

will skip the 4th line in the pseudo code, since C < 100 and will

directly print the 6th line, i.e. ITS PENDING.

Now, for the second test case, A=40, B=70; C becomes 110, which

means that C > 100 and therefore it will print the 4th line and the

program will be stopped.

These test cases will ensure that each line of the code is traversed at

least once and will verify for both true and false conditions.

3.3.3 Advantages of White Box Testing

 Optimization of code by revelation of hidden faults.

 Transparency of the internal code structure that helps to derive

the type of input data needed to adequately test an application.

 This incorporates all conceivable code paths, enabling a

software engineering team to carry out comprehensive

application testing.

3.3.4 Disadvantages of White Box Testing

 A complicated and expensive process that involves the skill

of an experienced professional, programming ability and

knowledge of the underlying code structure.

239 | P a g e

Space for learners: A new test script is necessary when the execution changes

too frequently.

 Detailed testing with the white box testing approach is

significantly more demanding if the application covers many

different areas, such as the Gojek Super App.

3.4 CODE COVERAGE

Code coverage is a measure which describes the degree of which the

source code of the program has been tested. It is one form of white

box testing which finds the areas of the program not exercised by a

set of test cases. It also creates some test cases to increase coverage

and determining a quantitative measure of code coverage. In most

cases, code coverage system gathers information about the running

program. It also combines that with source code information to

generate a report about the test suite’s code coverage. Following are

the code coverage methods:

1. Statement Coverage

One of the main objectives of white box testing is to cover as much

of the source code as possible. Code coverage is a measure that

indicates how much of an application’s code contains unit tests that

validate its functioning.

Using concepts such as statement coverage, branch coverage, and

path coverage, it is possible to check how much of an application’s

logic is really executed and verified by the unit test suite. These

different white box testing techniques are explained below.

2. Branch Coverage

In programming, “branch” is equivalent to, say, an “IF statement”

where True and False are the two branches of an IF statement.

As a result, in Branch coverage, we check if each branch is

processed at least once.

There will be two test conditions in the event of an “IF statement”:

240 | P a g e

Space for learners: One is used to validate the “true” branch, while the other is used to

validate the “false” branch.

3. Path Coverage

Path coverage examines all the paths in a given program. This is a

thorough strategy that assures that all program paths are explored at

least once. Path coverage is more effective than branch coverage.

This method is handy for testing complicated applications.

4. Decision Coverage

Decision Coverage is a white box testing methodology that reports

the true or false results of each boolean expression present in the

source code. The purpose of decision coverage testing is to cover

and validate all available source code by guaranteeing that each

branch of each potential decision point is traversed at least once.

A decision point is a point when there is a possibility of occurrence

of two or more outcomes from control flow statements such as if

statement, do while statement or a switch case statement.

Expressions in this coverage can become difficult at times. As a

result, achieving 100% coverage is quite difficult.

5. Condition Coverage

Condition coverage, also known as expression coverage, is a testing

method for testing and evaluating the variables or sub-expressions in

a conditional statement. The purpose of condition coverage is to

examine the outcome of each logical condition.

Only expressions with logical operands (an operand is considered as

a logical operand if it has its output as either TRUE or FALSE) are

examined in this coverage. Condition coverage does not ensure

complete decision coverage.

6. Multiple Condition Coverage

241 | P a g e

Space for learners: In this testing technique, all the different combinations of conditions

for each decision are evaluated. For example, we have the following

expression,

if (A||B)

then

Print C

So, in this case, the test cases would be as given below

TEST CASE1: A=TRUE, B=TRUE

TEST CASE2: A=TRUE, B=FALSE

TEST CASE3: A=FALSE, B=TRUE

TEST CASE4: A=FALSE, B=FALSE

The point to be noted here is that in this example we have 2

expressions A and B, and as result we have 4 test cases. So,

similarly, for 3 conditions we will have 8 test cases.

So, the general formula for Multiple Condition Coverage is that for

n conditions, there will be 2n test cases.

7. Finite State Machine Coverage

Finite state machine coverage is one of the most difficult forms of

code coverage approach. This is due to the fact that it works on the

design’s functionality. This coverage approach requires you to count

the number of times a state is visited or transited. It also determines

how many sequences are contained within a finite state system. A

sequence in a Finite State Machine is a sorted list of inputs or

outputs.

3.5 DATA FLOW TESTING

Data Flow Testing is the test technique that focuses on data variables

and their values, which are utilized by using the control flow

diagram for the programming logic of the software product. In data

flow testing every data variable is tracked and verified. The primary

principle behind this test is to identify coding problems that might

result in incorrect implementation and use of data variables or data

values, i.e. data anomalies like variables declared but not used in the

code later, in the software code.

There are two types of data flow testing:

242 | P a g e

Space for learners: Static data flow testing: The declaration, usage, and deletion of the

variables are examined without executing the code. A control flow

graph is helpful in this.

Dynamic data flow testing: The variables and data flow are

examined with the execution of the code.

Advantages of data flow testing

Data flow testing helps catch different kinds of anomalies in the

code. These anomalies include:

 Using a variable without declaration

 Deleting a variable without declaration

 Defining a variable two times

 Deleting a variable without using it in the code

 Deleting a variable twice

 Using a variable after deleting it

 Not using a variable after defining it

Disadvantages of data flow testing

A few disadvantages of data flow testing are:

 Good knowledge of programming is required for proper

testing

 Expensive

 Time consuming

Techniques of data flow testing

Data flow testing can be done using one of the following two

techniques:

 Control flow graph

 Making associations between data definition and usages

Control flow graph: A control flow graph is a graphical

representation of the flow of control, i.e., the order of statements in

which they will be executed.

Making associations: In this technique, we make associations

between two kinds of statements:

 Where variables are defined

243 | P a g e

Space for learners: Where those variables are used

3.6 LOOP TESTING

Loop Testing is a kind of software testing that focuses exclusively

on the correctness of loop constructions. It is a component of

Control Structure Testing (path testing, data validation testing,

condition testing). Loop testing is an example of white-box testing.

This approach is used to test software loops.

The following are some examples of loop tests −

 Simple loop

 Nested loop

 Concatenated loop

 Unstructured loop

Need of Loop Testing:

Following are some of the reasons why loop testing is performed −

 Testing can help to resolve loop recurrence concerns.

 Loop testing can indicate constraints in efficiency and

operations.

 The loop's uninitialized variables can be identified by testing

loops.

 It aids in the identification of loop initiation issues.

Complete Methodology of Loop Testing:

It must be tested at three separate stages within the testing loop −

 When the loop is activated.

 When the loop is executed.

 When the loop is terminated.

The following is the testing technique for all of these loops −

Simple Loop

The following is how a simple loop is tested −

 Ignore the entire loop.

 Make a single pass across the loop.

244 | P a g e

Space for learners: Make a number of passes through the loop where a<b, n is

the maximum limit of passes.

 Make b, b-1; b+1 passes through the loop, where "b" is the

highest amount of passes through the loop allowed.

1. Nested Loop

Following steps must be performing to create a nested loop −

 Adjust all the other loops to their smallest value and begin

with the innermost loop.

 Initiate a simple loop test on the innermost loop and keep the

outside loops at their smallest iteration parameter value.

 Conduct the test for the following loop and make your way

outwards.

 Keep testing till the outermost loop is reached.

2. Concatenated Loops

If two loops in a chained loop are free of one other, they are checked

as simple loops; otherwise, they are tested as nested loops. However,

if the loop counter for one loop is utilized as the starting value for

the others, the loops are no longer considered separate.

3. Unstructured Loops

For unstructured loops, the architecture must be restructured to

represent the use of structured programming techniques.

Limitation in Loop testing

 Loop issues are especially common in low-level applications.

 The flaws discovered during loop testing are not significant.

 Numerous defects may be identified by the operating system,

resulting in storage boundary breaches, identifiable pointer

failures, and so on.

3.7 BLACK BOX TESTING

Black Box Testing is a software testing method in which the internal

structure/ design/ implementation of the item being tested is not

known to the tester. Black box testing involves testing a system with

no prior knowledge of its internal workings. A tester provides an

245 | P a g e

Space for learners: input, and observes the output generated by the system under test.

This makes it possible to identify how the system responds to

expected and unexpected user actions, its response time, usability

issues and reliability issues.

3.7.1 Types of Black Box Testing

Black box testing can be applied to three main types of tests:

functional, non-functional, and regression testing.

1. Functional Testing

Black box testing can test specific functions or features of the

software under test. For example, checking that it is possible to log

in using correct user credentials, and not possible to log in using

wrong credentials.

Functional testing can focus on the most critical aspects of the

software (smoke testing/sanity testing), on integration between key

components (integration testing), or on the system as a whole

(system testing).

2. Non-Functional Testing

Black box testing can check additional aspects of the software,

beyond features and functionality. A non-functional test does not

check “if” the software can perform a specific action but “how” it

performs that action.

Black box tests can uncover if software is:

 Usable and easy to understand for its users

 Performant under expected or peak loads

 Compatible with relevant devices, screen sizes, browsers or

operating systems

 Exposed to security vulnerabilities or common security

threats

3. Regression Testing

Black box testing can be used to check if a new version of the

software exhibits a regression, or degradation in capabilities, from

one version to the next. Regression testing can be applied to

functional aspects of the software (for example, a specific feature no

longer works as expected in the new version), or non-functional

246 | P a g e

Space for learners: aspects (for example, an operation that performed well is very slow

in the new version).

3.7.2 Black Box Testing Techniques

1. Equivalence Partitioning

Equivalence Partitioning or Equivalence Class Partitioning is type of

black box testing technique which can be applied to all levels of

software testing like unit, integration, system, etc. In this technique,

input data units are divided into equivalent partitions that can be

used to derive test cases which reduce time required for testing

because of small number of test cases.

It divides the input data of software into different equivalence data

classes. Testers can divide possible inputs into groups or

“partitions”, and test only one example input from each group. For

example, if a system requires a user’s birth date and provides the

same response for all users under the age of 18, and a different

response for users over 18, it is sufficient for testers to check one

birth date in the “under 18” group and one date in the “over 18”

group.

EQUIVALENCE PARTITIONING has been categorized into two

parts:

 Pressman Rule.

 Practice Method.

a. Pressman Rule:

Rule 1: If input is a range of values, then design test cases for one

valid and two invalid values.

247 | P a g e

Space for learners: Rule 2: If input is a set of values, then design test cases for all valid

value sets and two invalid values.

For example:

Consider any online shopping website, where every product should

have a specific product ID and name. Users can search either by

using name of the product or by the product ID. Here, you can

consider a set of products with product IDs and you want to check

for Laptops (valid value).

Rule 3: If input is Boolean, then design test cases for both true and

false values.

For example:

248 | P a g e

Space for learners:

Consider a sample web page which consists of first name, last name,

and email text fields with radio buttons for gender which use

Boolean inputs.

If the user clicks on any of the radio buttons, the corresponding

value should be set as the input. If the user clicks on a different

option, the value of input needs to be updated with the new one (and

the previously selected option should be deselected).

Here, the instance of a radio button option being clicked can be

treated as TRUE and the instance where none are clicked, as

FALSE. Also, two radio buttons should not get selected

simultaneously; if so, and then it is considered as a bug.

b. Practice Method:

If the input is a range of values, then divide the range into equivalent

parts. Then test for all the valid values and ensure that 2 invalid

values are being tested for.

249 | P a g e

Space for learners: Note:

 If there is deviation in between the range of values, then use

Practice Method.

 If there is no deviation between the ranges of values, then

use Pressman Rule.

2. Boundary Value Analysis

BVA is another Black Box Test Design Technique, which is used to

find the errors at boundaries of input domain (tests the behavior of a

program at the input boundaries) rather than finding those errors in

the centre of input. So, the basic idea in boundary value testing is to

select input variable values at their: minimum, just above the

minimum, just below the minimum, a nominal value, just below the

maximum, maximum and just above the maximum. That is, for each

range, there are two boundaries, the lower boundary (start of the

range) and the upper boundary (end of the range) and the boundaries

are the beginning and end of each valid partition. We should design

test cases which exercise the program functionality at the

boundaries, and with values just inside and outside the boundaries.

Boundary value analysis is also a part of stress and negative testing.

Testers can identify that a system has a special response around a

specific boundary value. For example, a specific field may accept

only values between 0 and 99. Testers can focus on the boundary

values (-1, 0, 99 and 100), to see if the system is accepting and

rejecting inputs correctly.

Suppose, if the input is a set of values between A and B, then design

test cases for A, A+1, A-1 and B, B+1, B-1.

Example:

Age: *Accepts any value from 18 to 56

Boundary Value Analysis

Invalid (min -1) Valid (min, +min, -

max, max)

Invalid (max+1)

17 18,19,55,56 57

Boundary value analysis Vs. Equivalence partitioning:

Enter Age

250 | P a g e

Space for learners:
S.N. Boundary value analysis Equivalence partitioning

1. It is a technique where we

identify the errors at the

boundaries of input data to

discover those errors in the

input center.

It is a technique where the

input data is divided into

partitions of valid and

invalid values.

2. Boundary values are those

that contain the upper and

lower limit of a variable.

In this, the inputs to the

software or the application

are separated into groups

expected to show similar

behavior.

3. Boundary value analysis is

testing the boundaries

between partitions.

It allows us to divide a set of

test conditions into a

partition that should be

considered the same.

4. It will help decrease testing

time due to a lesser

number of test cases from

infinite to finite.

The Equivalence partitioning

will reduce the number of

test cases to a finite list of

testable test cases covering

maximum possibilities.

5. The Boundary Value

Analysis is often called a

part of the Stress and

Negative Testing.

The Equivalence partitioning

can be suitable for all the

software testing levels such

as unit, integration, system.

6. Sometimes the boundary

value analysis is also

known as Range Checking.

Equivalence partitioning is

also known as Equivalence

class partitioning.

3.7.3 Cause Effect Graphing

Cause Effect Graphing is a technique in which a graph is used to

represent the situations of combinations of input conditions. The

251 | P a g e

Space for learners: graph is then converted to a decision table to obtain the test cases.

Cause-effect graphing technique is used because boundary value

analysis and equivalence class partitioning methods do not

consider the combinations of input conditions. But since there may

be some critical behavior to be tested when some combinations of

input conditions are considered, that is why cause-effect graphing

technique is used.

Steps used in deriving test cases using this technique are:

1. Division of specification:

Since it is difficult to work with cause-effect graphs of large

specifications as they are complex, the specifications are

divided into small workable pieces and then converted into

cause-effect graphs separately.

2. Identification of cause and effects: This involves identifying

the causes(distinct input conditions) and effects(output

conditions) in the specification.

3. Transforming the specifications into a cause-effect graph:

The causes and effects are linked together using Boolean

expressions to obtain a cause-effect graph. Constraints are also

added between causes and effects if possible.

4. Conversion into decision table: The cause-effect graph is then

converted into a limited entry decision table.

5. Deriving test cases: Each column of the decision-table is

converted into a test case.

Basic Notations used in Cause-effect graph:

Here c represents cause and e represents effect.

The following notations are always used between a cause and an

effect:

1. Identity Function: if c is 1, then e is 1. Else e is 0.

2. NOT Function: if c is 1, then e is 0. Else e is 1

252 | P a g e

Space for learners:

3. OR Function: if c1 or c2 or c3 is 1, then e is 1. Else e is 0.

4. AND Function: if both c1 and c2 and c3 is 1, then e is 1. Else

e is 0

To represent some impossible combinations of causes or impossible

combinations of effects, constraints are used. The

following constraints are used in cause-effect graphs:

a. Exclusive constraint or E-constraint: This constraint

exists between causes. It states that either c1 or c2 can be 1,

i.e., c1 and c2 cannot be 1 simultaneously.

253 | P a g e

Space for learners: b. Inclusive constraint or I-constraint: This constraint exists

between causes. It states that atleast one of c1, c2 and c3

must always be 1, i.e., c1, c2 and c3 cannot be 0

simultaneously.

c. One and Only One constraint or O-constraint: This

constraint exists between causes. It states that one and only

one of c1 and c2 must be 1.

d. Requires constraint or R-constraint: This constraint

exists between causes. It states that for c1 to be 1, c2 must

be 1. It is impossible for c1 to be 1 and c2 to be 0.

e. Mask constraint or M-constraint: This constraint exists

between effects. It states that if effect e1 is 1, the effect e2

is forced to be 0.

254 | P a g e

Space for learners:

Benefits of Cause Effect Graph Technique

 It helps us to determine the root causes of a problem or

quality using a structured approach.

 It uses an orderly, easy-to-read format to diagram cause-and-

effect relationships.

 It indicates possible causes of variation in a process.

 It Identifies areas, where data should be collected for further

study.

 It Encourages team participation and utilizes the team

knowledge of the process.

 It Increases knowledge of the process by helping everyone

to learn more about the factors at work and how they relate.

3.8 COMPARISON OF WHITE BOX TESTING

AND BLACK BOX TESTING

Black Box Testing White Box Testing

It is a way of software testing in

which the internal structure or the

program or the code is hidden and

nothing is known about it.

It is a way of testing the software

in which the tester has knowledge

about the internal structure or the

code or the program of the

software.

It is mostly done by software

testers.

It is mostly done by software

developers.

No knowledge of implementation

is needed.

Knowledge of implementation is

required.

255 | P a g e

Space for learners:
It can be referred as outer or

external software testing.

It is the inner or the internal

software testing.

It is functional test of the software. It is structural test of the software.

This testing can be initiated on the

basis of requirement specifications

document.

This type of testing of software is

started after detail design

document.

No knowledge of programming is

required.

It is mandatory to have knowledge

of programming.

It is the behavior testing of the

software.

It is the logic testing of the

software.

It is applicable to the higher levels

of testing of software.

It is generally applicable to the

lower levels of software testing.

It is also called closed testing.

It is also called as clear box

testing.

It is least time consuming. It is most time consuming.

It is not suitable or preferred for

algorithm testing. It is suitable for algorithm testing.

Can be done by trial and error

ways and methods.

Data domains along with inner or

internal boundaries can be better

tested.

Example: search something on

google by using keywords

Example: by input to check and

verify loops

256 | P a g e

Space for learners: 3.9 MUTATION TESTING

Mutation testing is a structural testing technique, which uses the

structure of the code to guide the testing process. On a very high

level, it is the process of rewriting the source code in small ways in

order to remove the redundancies in the source code

These ambiguities might cause failures in the software if not fixed

and can easily pass-through testing phase undetected.

3.9.1 Mutation Testing Benefits

Following benefits are experienced, if mutation testing is adopted:

 It brings a whole new kind of errors to the developer's

attention.

 It is the most powerful method to detect hidden defects,

which might be impossible to identify using the conventional

testing techniques.

 Tools such as Insure++ help us to find defects in the code

using the state-of-the-art.

 Increased customer satisfaction index as the product would

be less buggy.

 Debugging and maintaining the product would be easier than

ever.

3.9.2 Mutation Testing Types

 Value Mutations: An attempt to change the values to detect

errors in the programs. We usually change one value to a

much larger value or one value to a much smaller value. The

most common strategy is to change the constants.

 Decision Mutations: The decisions/conditions are changed to

check for the design errors. Typically, one changes the

arithmetic operators to locate the defects and also we can

consider mutating all relational operators and logical

operators (AND, OR , NOT)

257 | P a g e

Space for learners: Statement Mutations: Changes done to the statements by

deleting or duplicating the line which might arise when a

developer is copy pasting the code from somewhere else.

3.10 SUMMUING UP

 White box testing can be quite complex. The complexity

involved has a lot to do with the application being tested. A

small application that performs a single simple operation could

be white box tested in few minutes, while larger programming

applications take days, weeks and even longer to fully test.

 White box testing in software testing should be done on a

software application as it is being developed after it is written

and again after each modification

 Boundary value analysis is testing at the boundaries between

partitions.

 Equivalent Class Partitioning allows you to divide set of test

condition into a partition which should be considered the same.

 Boundary Value Analysis is better than Equivalence Partitioning

as it considers both positive and negative values along with

maximum and minimum value. So, when compared with

Equivalence Partitioning, Boundary Value Analysis proves to be

a better choice in assuring the quality.

 Black Box testing, also known as Behavioral Testing is a

software testing method in which the internal

structure/design/implementation of the item being tested is not

known to the tester. These tests can be functional or non-

functional, though usually functional

CHECK YOUR PROGRESS

1. Why we need white box testing?

2. What are steps considered during white box testing?

3. Write the advantage and disadvantage of white box testing?

4. What is code coverage? Explain the different code coverage

methods?

258 | P a g e

Space for learners: 3.11 ANSWERS TO CHECK YOUR PROGRESS

1. Equivalence Partitioning: It is a software test design technique

that involves dividing input values into valid and invalid

partitions and selecting representative values from each partition

as test data.

2. Boundary Value Analysis: It is a software test design technique

that involves the determination of boundaries for input values

and selecting values that are at the boundaries and just inside/

outside of the boundaries as test data.

3. Cause-Effect Graphing: It is a software test design technique that

involves identifying the cases (input conditions) and effects

(output conditions), producing a Cause-Effect Graph, and

generating test cases accordingly.

4. Mutation testing is a white box method in software testing where

we insert errors purposely into a program (under test) to verify

whether the existing test case can detect the error or not. In this

testing, the mutant of the program is created by making some

modifications to the original program.

3.12 POSSIBLE QUESTIONS

Short answer type questions:

1. What is data flow testing? Explain their advantages and

disadvantages?

2. What is loop testing? Explain its needs?

3. What is black box testing? Explain its different types?

Long answer type questions:

1. Explain different black box testing techniques?

2. Explain the black box testing techniques?

3. Explain Cause Effect Graphing?

4. Explain Mutation testing?

3.13 REFERENCES AND SUGGESTED READINGS

 Mall Rajib, Fundamentals of Software Engineering, PHI.

 Pressman, Software Engineering Practitioner’s Approach,

TMH.

259 | P a g e

Space for learners: UNIT 4: SOFTWARE MAINTENANCE

Unit Structure:

4.1 Introduction

4.2 Unit Objectives

4.3 Basic Concept and Importance of Software Maintenance

4.4 Types of Software Maintenance

4.5 Software Maintenance Life Cycle

4.6 Techniques of Software Maintenance

4.7 Summing Up

4.8 Answers to Check Your Progress

4.9 Possible Questions

4.10 References and Suggested Readings

4.1 INTRODUCTION

Whenever a software is delivered, there might be some need to make a

change. There is always a scope for improvement and that

improvement brings change in picture. Changes may be requiring for

modify or update any existing solution to create a new solution to a

problem. This comes under software maintenance part.

Similar to software development, a maintenance request often goes

through a lifecycle. At first the request is analysed, what will be its

impact on the system is determined, then any required modifications are

designed, coded, tested and finally implemented. Training is a

corecomponents of the software maintenance phase. Maintainer need to

understand the existing code carefully. Simple code and good

documentation at the development stage is more helpful at development

stage especially of developer is not available or if there's been a long

gap since development.

260 | P a g e

Space for learners: 4.2 UNIT OBJECTIVES

After going through this unit student will be able to learn

 Basic concept of Software maintenance

 Importance of Software maintenance.

 Different types of Software Maintenance.

 Software Maintenance Process.

 Different techniques involve in Software Maintenance.

 Layer Structure of Software Maintenance.

4.3 BASIC CONCEPT AND IMPORTANCE OF

SOFTWARE MAINTENANCE

Software maintenance is changes to a product maintenance or service

while maintaining its integrity after software has been promoted to

production. Software maintenance is a part of software engineering.

Software maintenance is also software evaluation based on user’s

feedback.

Software maintenance last longer than software development. For

example, Software development may last from one year but software

maintenance may last for 5 to 10 years. This is because organization

want to get most return on investment in software development. For the

same reason there are jobs in Software management then in software

development.

4.3.1 Why Software Maintenance ss Required?

The reason for software maintenance is

1. To fix bugs also called corrective maintenance.

2. To implement enhancements requirement by users or new

regulations. Different sources say this is the largest percentage

of work in software maintenance.

261 | P a g e

Space for learners: 3. To increase non-functionalities qualities like performance,

security, design ,usability of the software.

4. To decrease software complexity . For example by code

refactoring or data refactoring.

5. Software maintenance is also required to make it work in a new

environment, upgraded hardware for upgraded operating system,

new database management system or other software, making the

software run in a new environment is also called adaptive

maintenance.

6. Finally software maintenance is required to delete retired

functionalities.

4.3.2 Software Management Agreement

This agreement states the scope of the Software maintenance. It also

states transition, service level management and incident management.

Transition means training from the software developers, in setting up

esteemed help desk. Service level agreements and incident management

means receives request ,log the request, prioritize the request and send

them the responsible role and track them until they are closed. Software

level agreement also mention software management process.

4.4 TYPES OF SOFTWARE MAINTENANCE

In a software lifetime, types of maintenance may vary based on its

nature. Based on types of software maintenance is different. It may be

just a routine maintenance task as some bug discovered by some user or

it may be a large event in itself based on maintenance size or nature.

Following are 4 types of software maintenance based on characteristics:

STOP TO CONSIDER

Maintenance of the product, after deploying of the product is known

is Software Maintenance. It is a process of modifying a software

system or a component after delivery to correct faults, improve other

attributes.

262 | P a g e

Space for learners: 1. Corrective maintenance

2. Adaptive maintenance

3. Perfective maintenance

4. Preventive maintenance

Let’s discuss each one of them.

1. Corrective maintenance:

This include modification done in order to fix the problems. If after

delivered if any bug is reported by user that bug need to corrected.

So that type of maintenance comes under corrective maintenance. It

deals with the repair of defects found in day-to-day system

functions.

2. Adaptive maintenance:

The major concept is if we have made some modification in some

part of software and because of that change ,there is a need to

maintain all the part of the software .This include modifications

applied to keep the software product upto date. It is the

implementation of changes in a part of the system, which has been

affected by a change that occurred in some other part of the system.

3. Perfective maintenance:

To keep the software usable over long period of time,whatever

modification required that comes under perfective maintenance. To

improve its reliability and performance, it includes new features,

new user requirements for refining the software . This includes

changing the functionalities of as per users changing needs.

4. Preventive maintenance:

To prevent future problems of software ,whatever modification

need to do that comes under preventive maintenance. The problem

which are not significant at this moment but they may cause serious

issues in future, those kind of problem comes under this. It

comprises documentation updating, code optimization and code

reconstructing.

263 | P a g e

Space for learners:

4.5 SOFTWARE MAINTENANCE LIFE CYCLE

Depending on types of the software being maintained, the maintenance

process vary. If it is small means little effort requires and if it is big then

more effort required. The most expensive part of software life cycle is

software maintenance process. Software maintenance process is done by

software maintainer. It performs various task like analyze change

request, confirm the request or denied request based on analysis. After

that it designs one or more possible solutions. Then user approved one

of the solution. After that maintenance developers implement the

STOP TO CONSIDER

 In short, corrective maintenance is taking the existing code and

correcting the faults that deviates from document requirement.

Adaptive maintenance is adding new features to existing code.

Perfective maintenance is typically made to improve maintainability

of the code. Preventive maintenance is usually made as a result of

code inspection to reduce likelihood of a failure.

CHECK YOUR PROGRESS

1. Software maintenance is categorized into how many categories?

264 | P a g e

Space for learners: solution and then the maintenance tester test the solution and finally is

accepted by the user. If solution is not accepted by the user then the

process is repeated right from the analyzing change request.

4.6 TECHNIQUES OF SOFTWARE MAINTENANCE

It involves the following techniques:

1. Software Configuration Management

2. Impact Analysis

3. Software Rejuvenation

4.6.1 Software Configuration Management

While developing the software, various documents ,image files,core

files, databases, script and different types of entities need to manage

during entire software development life cycle. So in general words ,

software configuration management is to systematically manage,

organize and control the changes in the document, codes and other

entities. So whatever activities carried out to manage those changes are

Software management configuration.

Four primary objectives:

 To find out all items that collectively define the software

configuration. Items may be class file, script file, may be project

file etc.

 To manage changes to one or more of these items that are

obtained during first step.

 To facilitate the construction of different versions of an

application. Software engineering is a continuous process. At a

time, software is not going to develop. At first, initial version is

developed, next the second version and so on. So the

CHECK YOUR PROGRESS

2. How are software maintenance tasks triggered?

265 | P a g e

Space for learners: development of the version step by step-l is the main objective

of this step.

 To make sure that software quality is maintained as the

configuration evolves over time. Changes which are made

during different versions are to be such that quality of the

software should be maintained.

4.6.1.1 Layers Structure of SCM Process

STOP TO CONSIDER

Software Configuration management is a process to systematically

manage, organize and control the changes in the documents, code and

other entities during software development life cycle. The primary

goal of SCM is to increase productivity with minimal mistakes. In

other words, it is a set of activities that have been developed to

manage change throughout the software life cycle.

CHECK YOUR PROGRESS

3. Which are the typical software maintenance tasks to be performed

?

266 | P a g e

Space for learners: Inner layer is Software configuration items. Each and every item has

specific version. So the first layer is the identification of these items. All

the code files, project files, any document which is part of the software

development is identified in this layer. After identification of various

items, it organizes the items in SCM repository using an object-oriented

approach. Objects starts as basic objects and then grouped together into

aggregate objects. Each objects has features like name which should be

unambiguous to all other objects, a description that contains the SCI

types, a project identifier and version information, list of resources

needed by the objects, the object realization (i.e., the document, the file,

the model etc).

The next layer is the change control. It is a procedural activity that

confirms quality and consistency as changes are made to an object. A

change request is submitted to a configuration control authority named

Change Control Board (CCB).The request is evaluated for technical

merit, potential side effects, overall impact on other configuration

objects and system functions and projected cost in terms of money, time

and resources. An engineering order ECO) is issued for each approved

change request. It describes the change to be made, the constraints to

follow and the criteria for review and audit.

After that we have version control. Version control is a set of procedure

and tools that are required for managing the creation and use of multiple

occurrences of objects in the SCM repository. Version control

capabilities are:

 All relevant configuration objects are store in SCM repository.

 A version management capability that stores all version of a

configuration object.

 The software engineer collects all relevant configuration objects

and constructs a specific version of the software via make

facility.

 Issues or bug tracking capability is also available which enables

the team to record and track the status of all outstanding issues

associated with each configuration object.

The next higher layer is Configuration Audit. It is an SQA activity that

helps to ensure that quality is maintained as changes are made. It

267 | P a g e

Space for learners: complements the formal technical review and is conducted by the SQA

group. It addresses the following questions:

 Whether a technical review conducted to assess technical

correctness?

 Whether the software process been followed and software

engineering standard been properly maintained?

 Whether the changed been highlighted and documented in

the SCI? Have the changed author and change data been

specified?

 Whether the change, recording it and reporting it been

followed for SCIs item?

 Whether all SCIs been properly updated?

A configuration audit ensures that

 The correct SCIs (by version) have been incorporated into a

specific build.

 Documentation is maintained or up to date for the version

that has been built.

Next layer we have is Status Reporting also called Status accounting. It

provides information about each change to the personnel in an

organization with a need to know. Answers what happened, who did it,

when did it happen and what else will be affected? The configuration

status report

 Placed in an on-line database or on a website for software

developers and maintainers to read.

 Given to management and practitioners to keep them

appraised of important changes to the project SCIs.

4.6.2 IMPACT ANALYSIS

STOP TO CONSIDER

SCM repository maintains a change set. It serves as a collection of all

changes made to a baseline configuration. Also used to create a specific

version of the software and captures all changes to all files in the

configuration along with the reason for changes and details of who

made the changes and when.

268 | P a g e

Space for learners: A meeting is organize for impact analysis and is called Impact Analysis

meeting. Meeting is to be done whenever a developer modifies in his

code or he is trying to fix a bug or trying to add a new feature into the

application or trying to remove features that are already present. Project

developer, project tester, project manager are the member of this

meeting. By this meeting software tester will know what all areas in the

application they need to test. This meeting is usually done by developer

or tester. If developer makes any changes to the code, he will call tester

to inform in what areas he need to test. Tester can also call this meeting

whenever they feel that developers have made changes and they really

feel that can get impacted just because of developers tried to add or

delete new features. Project manager is a domain expert so he needs to

be a part of this meeting.

4.6.3 Software Rejuvenation

Preventive maintenance in the context of software systems has an

exciting name called Software rejuvenation. In software engineering,

software Rejuvenation is an approach to help prevent performance

degradation and other associated values related to aging. It deals

software reliability/availability in the operational phase. It includes

methods of deciding key performance variables to monitor.It have been

adopted as a good practice for many systems. It can reduce costs of

sudden aging related failures. Also it can be applied at the discretion of

the user/administrator or can be automated.

CHECK YOUR PROGRESS

4.What is the purpose of an impact analysis?

5.What is the purpose of maintenance auditing?

6. How are changes to the code validated?

269 | P a g e

Space for learners: 4.7 SUMMING UP

In short Software Maintenance is widely accepted as a part of System

development life cycle. All the modification and updation done after the

delivery of software product is Software maintenance. There are

number of reasons, why modifications are required. Reasons may be

Market conditions such as Policies which changes over time, taxation

and newly introduced constraints like how to maintain bookkeeping,

may trigger need for modification. Modification may be client

requirements such as over time customer may ask for new features or

function in the software. Other modification like host modification

which include any of the hardware or platform of target host changes.

Software changes are needed to keep adaptability.

4.8 ANSWERS TO CHECK YOUR PROGRESS

1. Software maintenance is divided into four categories.

2. Maintenance task is triggered by a maintenance request (change

request or error report)

3. Software maintenance task are:

 changing functions and data of existing code

 adding new functions and data

 Reengineering tasks (improving the changeability of the code

and data)

 Optimization tasks (improving the performance of the code

4. Impact analysis is performed to determine which source code

members, which documents and which test cases are affected by the

change?

5. Maintenance auditing is to ensure that the quality of the software

product does not regress as a result of the maintenance tasks.

6. By testing the new code against the data of the old code and

comparing the new results with the previous results.

270 | P a g e

Space for learners: 4.9 POSSIBLE QUESTIONS

1. How you can define Software Maintenance?

2. What are the four types of software maintenance according to

Lientz and Swanson?

3. What distinguishes adaptive maintenance from corrective

maintenance?

4. What distinguishes adaptive maintenance from functional

enhancement?

5. What is the purpose of perfective maintenance?

6. What does a Software Maintenance Engineer need to know? List

out five items

7. What is the main problem seen in Software maintenance?

8. What does software maintenance include?

9. Describe layers structure of software configuration process.

10. What is impact analysis? How it is different from software

rejuvenation?

4.10 REFERENCES AND SUGGESTED READING

 Software Maintenance: Concepts and Practice September 2003.

Authors: Penny, Grubb, Armstrong, A. Takang

 Software Rejuvenation: Analysis, Module and Applications, Y.

Huang, N. Kolettis and N. Fulton, Proc. FTCS-25,1995

 Software Engineering By Jibitesh Mishra, Ashok Mohanty

 Advances in Software Maintenance Management: Technologies

and Solutions Mario Gerardo Piattini Velthuis, Macario

Polo, Francisco Ruiz

 Fundamentals of Software Engineering, By Rajib Mall

271 | P a g e

Space for learners: UNIT 5: SOFTWARE MAINTENANCE

MODELS

Unit Structure:

5.1 Introduction

5.2 Unit Objectives

5.3 Importance of Software Maintenance

5.4 Process of Software Maintenance

5.5 Software Maintenance Model

 5.6 Challenges of Software Maintenance

 5.7 Summing Up

 5.8 Answers to Check Your Progress

5.9 Possible Questions

 5.10 References and Suggested Readings

5.1 INTRODUCTION

A software might need to make change and update in due for its best

performance. The changes may be requiring for modify or update

any existing solution to create a new solution to a problem in the

software. This comes under software maintenance part. This unit

reports the need of software maintenance. A training process is a

core component of the software maintenance phase. A maintainer

should understand the existing code carefully and provide the recent

solution for the problem. Different software maintenance model

along with its advantages and disadvantages are discussed in this

unit along with the challenges of software maintenance.

5.2 UNIT OBJECTIVES

After going through this unit, you will be able to know

 About need of software maintenance.

 About the different software maintenance model.

 About challenges of software maintenance.

272 | P a g e

Space for learners: 5.3 IMPORTANCE OF SOFTWARE

MAINTENANCE

Software might need to make change and update in due for its best

performance. The reasons for software maintenance are

1. To fix bugs and error of the software and that is called

corrective maintenance.

2. To implement the enhancements, require by users.

3. To increase non-functionalities qualities like performance,

security, design, usability of the software.

4. To decrease software complexity.

5. To work in a new environment, upgraded hardware for

upgraded operating system, new database management

system or other software.

The purpose of software maintenance is to perform the following:

 Expanding the customer requirements and base.

 Enhancing software’s capabilities, so that it works in a new

environment, hardware, and software.

 Omitting obsolete capabilities by employing newer

technology.

5.4 PROCESS OF SOFTWARE MAINTENANCE

Software Maintenance phase of Software Development Life Cycle

(SDLC), is implemented through a proper software maintenance

process, known as Software Maintenance Life Cycle (SMLC). This

life cycle consists of seven different phases, each of which are

presented below:

1. Identification Phase:

The software modifications requests are identified, collected, and

analysed. Based on the requests, the maintenance activities are

scheduled and classified. It is done either by using system or by

using log file or error message of the software.

2. Analysis Phase:

273 | P a g e

Space for learners: In this phase, collected software modification requests are

analysed for feasibility and scope. A plan is prepared to

incorporate the changes in the software. The input attribute,

initial estimate of resources, project documentation, cost of

modification and maintenance is also estimated in this phase

3. Design Phase:

The new modules of the software that need to be replaced or

modified are designed based on the requirements received from

the different sources. The test cases along with the safety and

security issues are also developed for the new design. These test

cases are created for the validation and verification of the

system.

4. Implementation Phase:

In this phase, the modification of the new modules is made in the

coding level. New features that demand modification are added,

and the modified software along with the new modules is

installed.

5. System Testing Phase:

Here, the regression testing is performed on the modified

modules along with the system to ensure that no defect, error or

bug is left undetected. The integration testing is also applied to

validate that no new faults are introduced in the software as a

result of maintenance activity.

6. Acceptance Testing Phase:

Acceptance testing is applied on the system after modifications

by the user or by the third party specified by the end user. The

testing is used to verify thenewly added features of the software

are according to the requirements or not.

7. Delivery Phase:

After the successful accomplishing of acceptance testing, the

new integrated system is delivered to the user along with the new

manual and help files.

274 | P a g e

Space for learners:

5.5 SOFTWARE MAINTENANCE MODELS

To overcome internal as well as external problems of the software,

Software maintenance models are used to overcome the different

error or issues of a software that are generated though external OR

internal sources of a software.

These models use techniques to simplify the process of maintenance

as well as to make are cost effective.

1. Quick-Fix Model:

Quick-Fix software maintenance model is an ad hoc model. This

is used to identify the issues of software and trying to solve the

issues as soon as possible. It performs very quickly and makes

the necessary changes in the software to fix the problem as

quickly as possible at a low cost. Simple changes of codes are

considered in this model to make the impact of changes in the

software.

Fig. 5.1 Quick and Fix Model [1]

CHECK YOUR PROGRESS-I

1. What do you mean by software maintenance?

2. Why do you need to maintain software?

3. Software Maintenance is classified into how many

categories?

4. What type of software testing is generally used in

Software Maintenance?

5. Which regression test selection technique exposes faults

caused by modifications?

275 | P a g e

Space for learners: 2. Iterative Enhancement Model:

Iterative enhancement model considers the changes made to

software are iterative in nature. The change of the current

software depends on the analysis of the existing software system

after completing the documents preparation of the existing

system at the beginning. Moreover, it attempts to control

complexity and tries to maintain good design.Iterative

Enhancement Model is divided into three stages:

a. Analysis of existing software system.

b. Classification of required modifications.

c. Implementation of required modifications.

Fig. 5.2 Iterative enhancement Model [1]

3. The Re-use Oriented Model:

In this maintenance model, the necessary part and codes of the

existing software system are indentified and reuse for further

modification based on the requests. These codes are then going

through modification and enhancement for the specified new

requirements. The final step of this model is the integration of

modified parts into the new system.

276 | P a g e

Space for learners:

Fig. 5.3 Reuse oriented Model [1]

4. Boehm's Model:

Based on the economic models and principles; the Boehm’s

Model performs the software maintenance and analysis. A closed

loop cycle maintenance steps are used to perform the

maintenance of the system wherein the changes are suggested

and approved at first. The managements of the software approve

the changes, and based on it the necessary changes and

maintenance are applied in the system.

Fig. 5.4 Boehm’s Model [1]

5. Taute Maintenance Model:

In 1983, the Taute’s model is a maintenance model that

developed by Taute which consists of eight phases in cycle

fashion. The process of maintenance begins by requesting the

change and ends with its operation. It is very easy to understand

and undemanding to implement. The phases of Taute’s

Maintenance Model are:

277 | P a g e

Space for learners: 1. Change request Phase:

In this phase, the software user makes request in

prescribed format to software management team to apply

change to software.

2. Estimate Phase:

The maintenance team or software management team

estimatethe time and effort required to apply requested

change.

3. Schedule Phase:

In this phase, management or maintenance team

identifies change requests and make schedule for its

release and may also prepare documents that are required

for planning.

4. Programming Phase:

The maintenance team ask the programmer to modifies

source code of existing software to implement requested

change by user and updates all relevant documents like

design document, manuals, etc. accordingly.

5. Documentation Phase:

In this phase, maintenance team ensures the correct

changes of the software based on the request received

from the user.

6. Release Phase:

The modified software system along with its documents

are delivered to customer.

7. Operation Phase:

After successful completion of release phase, the

software is placed under normal operation and also tried

to find the new bugs or issues in the system.A customer

may again initiate ‘Change request’ process in this step.

278 | P a g e

Space for learners:

Fig. 5.5Taute’s Model [1]

5.6 CHALLENGES OF SOFTWARE

MAINTENANCE

The challenges of software maintenance are as follows:

1. Lack of Traceability

o Codes are hardly traceable to the requirements and design

specifications.

o It is very hard for a programmer to identified and correct a

serious defect affecting customer operations.

2. Lack of Code Comments

o Codes of a software modules are developed by an individual

coder. So, most of the codes are lack of adequate comments.

Lesser comments my not help another programmer to

understand the codes and its effects.

3. Obsolete Legacy Systems

o The legacy system of a software that provides the backbone

of the nation's critical industries, were not designed with

maintenance in mind.

279 | P a g e

Space for learners: o As a consequence, the code supporting these systems is

devoid of traceability to the requirements, compliance to

design and programming standards.

5.7 SUMMING UP

 Software might need to make change and update in due for its

best performance.

 To fix bugs and error of the software and that is called

corrective maintenance.

 To increase non-functionalities qualities like performance,

security, design, usability of the software, maintenance is

required.

 To decrease software complexity, software maintenance is

required.

 To work in a new environment, upgraded hardware for

upgraded operating system, new database management system

or other software, software maintenance is required.

 Software Maintenance phase of Software Development Life

Cycle (SDLC), is implemented through a proper software

maintenance process, known as Software Maintenance Life

Cycle (SMLC).

 SMLC has seven different phases.

 To overcome internal as well as external problems of the

software, Software maintenance models are used to overcome

the different error or issues of a software that are generated

though external OR internal sources of a software.

CHECK YOUR PROGRESS-II

6. How many phases are there in Taute Maintenance Model?

7. The modification of the software to match changes in the ever

changing environment, falls under which category of software

maintenance?

8. How many types of software maintenance models are found?

9. What is lack traceability of software maintenance?

280 | P a g e

Space for learners: Five different software maintenance models are there to

perform software maintenance.

 The challenges of software maintenance are as follows

a. Lack of Traceability

b. Lack of Code Comments

c. Obsolete Legacy Systems

5.8 ANSWERS TO CHECK YOUR PROGRESS

1. Software might need to make change and update in due for its

best performance. The changes may be requiring for modify or

update any existing solution to create a new solution to a

problem in the software. This is called as software maintenance.

2. The reasons for software maintenance are

a. To fix bugs and error of the software and that is called

corrective maintenance.

b. To implement the enhancements, require by users.

c. To increase non-functionalities qualities like

performance, security, design, usability of the software.

d. To decrease software complexity.

e. To work in a new environment, upgraded hardware for

upgraded operating system, new database management

system or other software.

3. Four

4. Regression Testing

5. Inclusiveness

6. Seven

7. Adaptive

8. Five

9. Lack of Traceability means the following

a. Codes are hardly traceable to the requirements and

design specifications.

281 | P a g e

Space for learners: b. It is very hard for a programmer to identified and correct

a serious defect affecting customer operations

5.9 POSSIBLE QUESTIONS

Short answer type questions:

i) What is software maintenance and why does is it

important?

ii) What does software maintainer perform?

iii) What are the challenges of software maintenance?

iv) What is the disadvantages of quick and fix software

maintenance model?

v) State the difference between identification and analysis

phase of software maintenance.

Long answer type questions:

i) Explain the different process of software maintenance.

ii) Explain the different models of software maintenance.

iii) Explain about Taute’s software maintenance model.

5.10 REFERENCES AND SUGGESTED READINGS

 https://www.professionalqa.com/software-maintenance-models

 Software Maintenance: Concepts and Practice by Penny Grub

BLOCK III:

SOFTWARE RELIABILITY AND

SOFTWARE MANAGEMENT

282 | P a g e

Space for learners: UNIT 1: SOFTWARE RELIABILITY

Unit Structure:

1.1 Introduction

1.2 Unit Objectives

1.3 Concepts of Software Reliability

1.4 Software Failure Mechanisms

1.5 Software Reliability Metrics

1.6 Software Reliability Measurement Techniques

1.6.1 Project Metrics

1.6.2 Project Management Metrics

1.6.3 Process Metrics

1.6.4 Fault and Failure Metrics

1.7 Software Reliability Improvement Techniques

1.8 Software Fault Tolerance

1.9 Software Fault tolerance techniques

 1.9.1 N-version Programming

 1.9.2 Recovery Blocks

1.9.3 Check-pointing and Rollback Recovery

1.10 Software Reliability Models

1.11 Summing Up

 1.12 Answers to Check Your Progress

1.13 Possible Questions

 1.14 References and Suggested Readings

1.1 INTRODUCTION

Software reliability is the probability that the software will work

without failure for a specified period of time. Failure means the

program in its functionality has no met user requirements in some

way. Software reliability concerns itself with how well the software

functions to meet the requirements of the customer.

283 | P a g e

Space for learners: -Reliability represents a user-oriented view of software quality.

Initially, Software quality was measured by counting the faults in the

program and so this approach is developer oriented whereas

reliability is user oriented, because, it relates to operation rather than

design.

1.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 To differentiate the failure and faults.

 To highlight the importance of execution and calendar time

 To understand Time interval between failures.

 To understand on the user perception of reliability.

1.3 CONCEPT OF SOFTWARE RELIABILITY

Software reliability is one of the most important elements of the

overall quality of any software even after the accomplishment of

software work. If it fails to meet its actual performance after its

deployment, then the software is considered as unreliable software.

We cannot expect better performance from such software.

Software reliability is defined in statistical terms as the probability

of failure free operation of a computer program in a specific

environment for a specific time for software to be reliable; it must

perform operation based upon its analysis and design, available

resources, reusability and so on.

If the design standards are not available or the supply is not at proper

times, then there is a high probability of software failure or there is

degradation in the quality of performance. Therefore, in order to

make software reliable, we should take some measures or earlier

stages as follows:

 Designing a software project based on available resources.

 Develop software that best fits the current environmental

conditions.

 Estimating costs that might be required even after items

implementation.

284 | P a g e

Space for learners: Estimating the actual performance upon using reusable

resources.

The IEEE defines reliability as “The ability of a system or

component to perform its required functions under stated conditions

for a specified period of time.” So it is necessary that software

reliability should be measured and evaluated. Though it is hard to

achieve software reliability as we don’t have a good understanding

of the software, it is always tempting to measure something related

to reliability to reflect the characteristics. Reliability is a by-product

of quality, and software quality can be measured.

1.4 SOFTWARE FAILURE MECHANISMS

Software failures may be due to errors, ambiguities, oversights or

misinterpretation of the specification that the software is supposed to

satisfy, carelessness or incompetence in writing code, inadequate

testing, incorrect or unexpected usage of the software or other

unforeseen problems. There are five different types’ software

failures. Those are as follows:

 Transient- Transient failures occur only for certain input values

while invoking a function of the system.

 Permanent- Permanent failures occur for all input values while

invoking a function of the system.

 Recoverable- When recoverable failures occur, the system

recovers with or without operator intervention.

 Unrecoverable- In unrecoverable failures, the system may need

to be restarted.

 Cosmetic- These classes of failures cause only minor irritations,

and do not lead to incorrect results. An example of a cosmetic

failure is the case where the mouse button has to be clicked

twice instead of once to invoke a given function through the

graphical user interface.

While it is tempting to draw an analogy between Software

Reliability and Hardware Reliability, software and hardware have

basic differences that make them different in failure mechanisms.

Hardware faults are mostly physical faults, while software faults

are design faults, which are harder to visualize, classify, detect, and

285 | P a g e

Space for learners: correct. Design faults are closely related to fuzzy human factors and

the design process, which we don't have a solid understanding. A

partial list of the distinct characteristics of software compared to

hardware is listed below:

 Failure cause: Software defects are mainly design defects.

 Wear-out: Software does not have energy related wear-out

phase. Errors can occur without warning.

 Repairable system concept: Periodic restarts can help fix

software problems.

 Time dependency and life cycle: Software reliability is not a

function of operational time.

 Environmental factors: Do not affect Software reliability,

except it might affect program inputs.

 Reliability prediction: Software reliability cannot be predicted

from any physical basis, since it depends completely on human

factors in design.

 Redundancy: Can not improve Software reliability if identical

software components are used.

 Interfaces: Software interfaces are purely conceptual other than

visual.

 Failure rate motivators: Usually not predictable from analyses

of separate statements.

 Built with standard components: Well-understood and

extensively-tested standard parts will help improve

maintainability and reliability. But in software industry, we have

not observed this trend. Code reuse has been around for some

time, but to a very limited extent. Strictly speaking there are no

standard parts for software, except some standardized logic

structures.

1.5 SOFTWARE RELIABILITY METRICS

Reliability metrics are used to quantitatively express the reliability

of the software product. The option of which metric is to be used

depends upon the type of system to which it applies & the

requirements of the application domain. The reliability requirements

for different categories of software products may be different. For

286 | P a g e

Space for learners: this reason, it is necessary that the level of reliability required for a

software product should be specified in the SRS (software

requirements specification) document. In order to be able to do this,

some metrics are needed to quantitatively express the reliability of a

software product. A good reliability measure should be observer-

dependent, so that different people can agree on the degree of

reliability a system has. For example, there are precise techniques

for measuring performance, which would result in obtaining the

same performance value irrespective of who is carrying out the

performance measurement. However, in practice, it is very difficult

to formulate a precise reliability measurement technique. The next

base case is to have measures that correlate with reliability. There

are six reliability metrics which can be used to quantify the

reliability of software products.

a. Rate of occurrence of failure (ROCOF) - ROCOF measures

the frequency of occurrence of unexpected behaviour (i.e.

failures). ROCOF measure of a software product can be obtained

by observing the behaviour of a software product in operation

over a specified time interval and then recording the total

number of failures occurring during the interval.

b. Mean Time To Failure (MTTF) - MTTF is the average time

between two successive failures, observed over a large number

of failures. To measure MTTF, we can record the failure data for

n failures. Let the failures occur at the time instants t 1, t 2, t n.

Then, MTTF can be calculated as

It is important to note that only run time is considered in the time

measurements, i.e. the time for which the system is down to fix

the error, the boot time, etc. are not taken into account in the

time measurements and the clock is stopped at these times.

c. Mean Time To Repair (MTTR) - Once failure occurs,

sometime is required to fix the error. MTTR measures the

average time it takes to track the errors causing the failure and to

fix them.

d. Mean Time Between Failure (MTBR) - MTTF and MTTR can

be combined to get the MTBR metric: MTBF = MTTF + MTTR.

Thus, MTBF of 300 hours indicates that once a failure occurs,

287 | P a g e

Space for learners: the next failure is expected after 300 hours. In this case, time

measurements are real time and not the execution time as in

MTTF.

e. Probability of Failure on Demand (POFOD) - Unlike the

other metrics discussed, this metric does not explicitly involve

time measurements. POFOD measures the likelihood of the

system failing when a service request is made. For example, a

POFOD of 0.001 would mean that 1 out of every 1000 service

requests would result in a failure.

f. Availability- Availability of a system is a measure of how likely

shall the system is available for use over a given period of time.

This metric not only considers the number of failures occurring

during a time interval, but also takes into account the repair time

(down time) of a system when a failure occurs. This metric is

important for systems such as telecommunication systems, and

operating systems, which are supposed to be never down and

where repair and restart time, are significant and loss of service

during that time is important.

1.6 SOFTWARE RELIABILITY MEASUREMENT

TECHNIQUES

Reliability metrics are used to quantitatively express the reliability

of the software product. The option of which parameter is to be used

depends upon the type of system to which it applies & the

requirement of the application domain. Measuring software

reliability is a severe problem because we don’t have a good

understanding of the nature of software. It is difficult to find a

suitable method to measure software reliability and most of the

aspects connected to software reliability. Even the software

estimates have no uniform definition. If we cannot measure the

reliability directly, something can be measured that reflects the

features related to reliability. Software reliability techniques can be

divided into four categories:

1.6.1 Product Metrics

Product metrics are those which are used to build the artefacts, i.e.

requirement specification documents, system design documents, etc.

288 | P a g e

Space for learners: These metrics help in the assessment if the product is right sufficient

through records on attributes like usability, reliability,

maintainability & portability. In these measurements are taken from

the actual body of the source code.

1.6.2 Project Management Metrics

Project management metrics define project characteristics and

execution. If there is proper management of the project by the

programmer, then this helps us to achieve better products. A

relationship exists between the development process and the ability

to complete projects on time and within the desired quality

objectives. Cost increase when developers use inadequate methods.

Higher reliability can be achieved by using a better development

process, risk management process, configuration management

process. These metrics are:

 Number of software developers.

 Staffing pattern over the life-cycle of the software

 Cost and schedule

 Productivity

1.6.3 Process Metrics

Process metrics quantify useful attributes of the software

development process & its environment. They tell if the process is

functioning optimally as they report on characteristics like cycle

time & rework time. The goal of process metric is to do the right job

on the first time through the process. The quality of the product is a

direct function of the process. So process metrics can be used to

estimate, monitor and improve the reliability and quality of software.

Process metrics describe the effectiveness and quality of the

processes that produce the software product. Examples: The effort

required in the process

 Time to produce the product

 Effectiveness of defect removal during development

 Number of defects found during testing

 Maturity of the process

289 | P a g e

Space for learners:

1.6.4 Fault and Failure Metrics

A fault is a defect in a program which appears when the programmer

makes an error and cause failure when executed under particular

conditions. These metrics are used to determine the failure-free

execution software.

To achieve this objective, a number of faults found during testing

and the failures or other problems which are reported by the used

after delivery are collected, summarized and analysed.

Failure metrics are based upon customer information regarding

faults found after release of the software. The failure data collected

is therefor used to calculate failure density, Mean Time between

Failures (MTBF), or other parameters to measure or predict software

reliability.

1.7 SOFTWARE RELIABILTY IMPROVEMENT

TECHNIQUES

Good engineering methods can largely improve software reliability.

In real situations, it is not possible to eliminate all the bugs in the

software; however, by applying sound software engineering

principles software reliability can be improved to a great extent.

Three approaches are used to improve reliability of the software.

These approaches are:

i. Fault avoidance: The design and implementation phase of the

software development uses the process that minimizes the

probability of faults before the software is delivered to the

user.

ii. Fault detection and removal: Verification and validation

techniques are used to detect and remove faults. In addition,

testing and debugging can also remove faults.

iii. Fault tolerance: The designed software manages faults in

such a way that software failure does not occur. There are

three aspects of fault tolerance. These are :

a. Damage assessment : This detects parts of software affected

due to the occurrence of faults

290 | P a g e

Space for learners: b. Fault recovery: This restores the software to the last known

safe state. Safe state can be defined as the state where the

software functions as desired

c. Fault repair: This involves modifying the software in such a

way that faults does not occur.

1.8 SOFTWARE FAULT TOLERENCE

Software fault tolerance is the ability for software to detect and

recover from a fault that is happening or has already happened in

either the software or hardware in the system in which the software

is running to provide service by the specification. Software fault

tolerance is a necessary component to construct the next generation

of highly available and reliable computing systems from embedded

systems to data warehouse systems. To adequately understand

software fault tolerance, it is important to understand the nature of

the problem that software fault tolerance is supposed to solve.

Software faults are all design faults. Software manufacturing, the

reproduction of software, is considered to be perfect. The source of

the problem being solely designed faults is very different than

almost any other system in which fault tolerance is the desired

property

1.9 SOFTWARE FAULT TOLERENCE

TECHNIQUES

Software fault-tolerance techniques are used to make the software

reliable in the condition of fault occurrence and failure. There are

three techniques used in software fault-tolerance. First two

techniques are common and are basically an adaptation of hardware

fault-tolerance techniques.

1.9.1 N-version Programming

In this technique, n versions of a program are developed by n

developers. All these copies are run simultaneously, and the one

with the most fault tolerance is selected. This is a fault-detection

technique used at the developing stage of the software. In N-version

programming; N versions of software are developed by N

291 | P a g e

Space for learners: individuals or groups of developers. N-version programming is just

like TMR in hardware fault-tolerance technique. In N-version

programming, all the redundant copies are run concurrently and

result obtained is different from each processing. The idea of n-

version programming is basically to get the all errors during

development only.

1.9.2 Recovery Blocks

This technique is somewhat the same as above, except for the

redundant copies are not run simultaneously. They are run one by

one and are generated with a different set of algorithms. This

technique is used where task deadlines are more than the

computation time. Recovery blocks technique is also kike the n-

version programming but in recovery blocks technique, redundant

copies are generated using different algorithms only. In recovery

block, all the redundant copies are not run concurrently and these

copies are run one by one. Recovery block technique can only be

used where the task deadlines are more than task computation time.

1.9.3 Check-pointing and Rollback Recovery

This technique is different from above two techniques of software

fault-tolerance. In this technique, system is tested each time when

we perform some computation. This technique is basically useful

when there is processor failure or data corruption.

1.10 SOFTWARE RELIABILTY MODELS

A software reliability model indicates the form of a random process

that defines the behavior of software failures to time.

Software reliability models have appeared as people try to

understand the features of how and why software fails, and attempt

to quantify software reliability. Over 200 models have been

established since the early 1970s, but how to quantify software

reliability remains mostly unsolved. There is no individual model

that can be used in all situations. No model is complete or even

representative.

Most software models contain the following parts:

292 | P a g e

Space for learners: Assumptions

 Factors

A reliability growth model is a numerical model of software

reliability, which predicts how software reliability should improve

over time as errors are discovered and repaired. Although there are

different reliability models, three simple ones are discussed in this

section.

1.10.1 Jelinski-Moranda Model

This model is credited with being the first reliability model. It

belongs to a class of exponential order statistic model that assumes

that fault detection and correction begins when a program contains

N faults and all the faults have the same rate φ. The basic

assumptions of the model are:

1. The program contains N initial faults which are an unknown

but fixed constant.

2. Each fault in the program is independent and equally likely to

cause a failure during a test.

3. Time intervals between occurrences of failure are independent

of each other.

4. Whenever a failure occurs, a corresponding fault is removed

with certainty.

5. The fault that causes a failure is assumed to be instantaneously

removed, and no new faults are inserted during the removal of

the detected fault.

6. The software failure rate during a failure interval is constant

and is proportional to the number of faults remaining in the

program.

The program failure rate at the ith failure interval is given by,

Where

 = a proportional constant, the contribution any one fault makes

to the overall program

293 | P a g e

Space for learners: N = the number of initial faults in the program

 = the time between the and the failures.

For example, the initial failure intensity is

and after the first failure, the failure intensity decreases to

and so on.

The partial distribution function (pdf) of is

The cumulative distribution function (cdf) of is

The software reliability function is, therefore,

1.10.2 Musa’s Basic Execution Time Model

This model was established by J.D. Musa in 1979, and it is based on

execution time. The basic execution model is the most popular and

generally used reliability growth model, mainly because:

 It is practical, simple, and easy to understand.

 Its parameters clearly relate to the physical world.

 It can be used for accurate reliability prediction.

The basic execution model determines failure behavior initially

using execution time. Execution time may later be converted in

calendar time.

 The failure behavior is a nonhomogeneous Poisson process,

which means the associated probability distribution is a

Poisson process whose characteristics vary in time

294 | P a g e

Space for learners: It is equivalent to the M-O logarithmic Poisson execution

time model, with different mean value function

 The mean value function, in this case, is based on an

exponential distribution.

Variables involved in the Basic Execution Model:

 Failure intensity (λ): number of failures per time unit.

 Execution time (τ): time since the program is running.

 Mean failures experienced (μ): mean failures experienced in

a time interval.

In the basic execution model, the mean failures experienced μ is

expressed in terms of the execution time (τ) as

where,

-λ0: stands for the initial failure intensity at the start of the execution.

-v0: stands for the total number of failures occurring over an infinite

time period; it corresponds to the expected number of failures to be

observed eventually.

The failure intensity expressed as a function of the execution time is

given by

It is based on the above formula. The failure intensity λ is expressed

in terms of μ as:

where,

λ0: Initial

v0: Number of failures experienced, if a program is executed for an

infinite time period.

295 | P a g e

Space for learners: μ: Average or expected number of failures experienced at a given

period of time.

τ: Execution time.

The Musa basic execution time model assumes that all faults are

equally likely to occur, are independent of each other and are

actually observed. The execution times between failures are

modelled as piecewise exponentially distributed. The intensity

function is proportional to the number of faults remaining in the

program and the fault correction rate is proportional to the failure

occurrence rate.

1.10.3 Goel-Okumoto (GO) Model

The model developed by Goel and Okumoto in 1979 is based on the

following assumptions:

1. The number of failures experienced by time t follows a Poisson

distribution with the mean value function μ (t). This mean value

method has the boundary conditions μ(0) = 0 and Limt→∞μ(t) =

N < ∞.

2. The number of software failures that occur in (t, t+Δt] with Δt

→ 0 is proportional to the expected number of undetected

errors, N - μ(t). The constant of proportionality is ∅.

3. For any finite collection of times t1 < t2 < · · · < tn the number of

failures occurring in each of the disjoint intervals (0, t1),(t1, t2)...

(tn-1,tn) is independent.

4. Whenever a failure has occurred, the fault that caused it is

removed instantaneously and without introducing any new fault

into the software.

Since each fault is perfectly repaired after it has caused a failure, the

number of inherent faults in the software at the starting of testing is

equal to the number of failures that will have appeared after an

infinite amount of testing. According to assumption 1, M (∞)

follows a Poisson distribution with expected value N. Therefore, N

is the expected number of initial software faults as compared to the

fixed but unknown actual number of initial software faults μ0 in the

Jelinski Moranda model.

296 | P a g e

Space for learners:

1.11 SUMMARY

 Software reliability is the probability that the software will work

without failure for a specified period of time.

 Software failure is classified into Transient, Permanent,

Recoverable, Unrecoverable and Cosmetic

 Reliability metrics are used to quantitatively express the

reliability of the software product.

 ROCOF measures the frequency of occurrence of unexpected

behavior.

 MTTF is the average time between two successive failures,

observed over a large number of failures.

 MTTR measures the average time it takes to track the errors

causing the failure and to fix them.

Check Your Progress-1

1. Write the characteristics of software failures over hardware

failures?

2. What are the objectives of software reliability models?

3. Write the difference between Goel-Okumoto model and

Jelinski Moranda Model?

4. Why MUSA’s model is most popular among reliability

models?

State TRUE or FALSE:

1. A failure can be related to the operating system.

2. Defect that causes error in operation or negative impact is

called fault.

3. Programmers can make mistakes while developing the

source code.

4. A model used to describe software reliability is known as

MTBF

5. Availability is the probability of software to opearate and

deliver the desired request.

297 | P a g e

Space for learners: POFOD measures the likelihood of the system failing when a

service request is made.

 Availability of a system is a measure of how likely shall the

system is available for use over a given period of time.

 Software reliability techniques can be divided into four

categories, namely product metrics, project management

metrics, Process metrics, fault and failure metrics.

 Fault tolerance techniques mainly N-Version Programming,

Recovery blocks and Check-pointing and Rollback Recovery

1.12 ANSWERS TO CHECK YOUR PROGRESS

1.13 POSSIBLE QUESTIONS

Short answer type questions:

1. Define Software Reliability?

2. What are the types of software failure?

3. Differentiate between software reliability and hardware

reliability?

4. Which factor is MUSA's basic model based on?

5. What are the software the fault tolerance techniques?

Long answer type questions:

1. What is the need of reliability matrices? Explain the different

reliability matrices?

2. Explain the software reliability measurement techniques?

3. Explain the software reliability improvement techniques?

4. Write a note on Jelinski-Moranda Model and Goel-Okumoto

Model

298 | P a g e

Space for learners: 5. Describe MUSA's basic execution time model?

1.14 REFERENCES AND SUGGESTED READINGS

 Musa, J.D, A. Iannino and K.okumoto Software Reliability :

Measurement, Prediction , Application, professional Edition :

Software Engineering Series , McGraw- Hill, NewYork ,

NY.,1990

 Software Reliability by John Musa.

 Software Metrics and Reliability by Linda Rosenburg, Ted

Hammer, Jack Shaw

satc.gsfc.nasa.gov/support/ISSRE_NOV98/

software_metrics_and_reliability.html – 2

 Software Reliability by Jiantao,

http://www.ece.cmu.edu/~koopman/des_s99/sw_reliability/

299 | P a g e

Space for learners: UNIT 2: SOFTWARE QUALITY

MANAGEMENT

Unit Structure:

2.1 Introduction

2.2 Unit Objectives

2.3 Software Quality

2.4 Software Standards

2.5 Reviews and Inspections

2.5.1 Review Process

2.5.2 Program Inspection

2.6 Quality Management and Agile Development

2.7 Summing Up

 2.8 Answers to Check Your Progress

2.9 Possible Questions

 2.10 References and Suggested Readings

2.1 INTRODUCTION

If the quality of the software does not meet the standards, then the

final product might be slow, inconsistent, not reusable and hence,

difficult to perform the maintenance. In manufacturing industry, the

concept of ‘quality assurance’ and ‘quality control’ were already in

use, and later these concepts were incorporated in software industry

as well. Quality assurance (QA) defines the processes and standards

that lead to high-quality products whereas quality control is the

application of these processes to eliminate the products that do not

meet the required level of quality. Thus quality management works

in tandem with the software development process as shown in fig

7.1. The quality management process performs periodical checks so

that the project meets the required standard. The quality

management team should be independent from the development

team so that they can take an objective view of the software. This

allows them to report on software quality without being influenced

by software development issues.

300 | P a g e

Space for learners:

 Fig. 7.1: Quality management process

2.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 Understand what is software quality management and why is it

necessary.

 Comprehend the importance of standards in the software

quality management and know how standards are used in

quality assurance.

 Understand how reviews and inspections improve software

quality.

 Learn how quality is maintained in Agile software

development process.

2.3 SOFTWARE QUALITY

In manufacturing industry, the product is manufacture under a set of

standard processes and procedures; and once the product is

manufactured, it is tested to check whether it meets the standard

required specifications. If there are products that miss the standard

specifications by a little margin, then such products will still be

deemed alright because there is a high probability that customers

might never notice or even ignore slight niggles or objections. But

quality of software cannot be evaluated the way quality of

manufactured products are determined because one, the software

Software

Development

Process D1 D2 D3 D4 D5

Quality

Management

Process

Standard and

Procedures

Quality

Plan

Quality Review Reports

301 | P a g e

Space for learners: developer and the customer may never converge in their view of the

requirements. Second, it might never be possible to satisfy the

requirements of all the thousands of users and stakeholders. And

finally, in some cases, it might not be possible to directly assess

certain quality parameters like maintenance. Thus, the assessment of

software quality is a subjective process where it is the responsibility

of the quality management team to use their judgement to decide if

an acceptable level of quality has been achieved and whether the

software can be used for its intended purpose. To do this we have to

answer the following questions about the system’s characteristics.

a) Have programming and documentation standards been

followed in the development process?

b) Has the software been properly tested?

c) Is the software sufficiently dependable to be put into use?

d) Is the performance of the software acceptable for normal

use?

e) Is the software usable?

f) Is the software well-structured and understandable?

Thus, the quality management team analyses the tests that has been

carried out, makes sure the test are correctly done and examines the

test results to check whether the desired goal has been acquired. But,

software quality is not just about whether the system requirement

has been successfully acquired, but also whether the non-functional

system attributes has been evaluated upon. There are around 15

important software quality attributes, as shown in table 7.1, on

which we have to test our system.

Sl.

no.

Attribute Significance

1 Complexity

Software complexity describes a specific set of

characteristics that focus on how our piece of

code or software interacts with other pieces of

code.

2 Efficiency

Software Efficiency determines the amount of

code and testing resources required by a

program to perform a particular function.

3 Interoperability It is the ability of two or more systems to

302 | P a g e

Space for learners: communicate or exchange data easily and to

use the data that has been exchanged.

4 Learnability

Learnability is a quality of software products

and interfaces that allows users to quickly

become familiar with them and able to make

good use of all their features and capabilities

5 Modularity

Modularity is the degree to which a system's

components may be separated and recombined

easily.

6 Portability

It is the ability of a software application to run

on numerous platforms such as data

portability, hosting, viewing, etc.

7 Reliability

It relates to the software's ability to continue

operating, under given environmental

conditions, for a particular amount of time.

8 Resilience

Software resilience refers to the ability to

absorb the impact of disruption in one or more

parts of a system, while still continuing to

provide an acceptable level of service.

9 Reusability

Reusability is the likelihood that a segment of

source code can be used again to add new

functionalities with slight or no modification.

10 Robustness

Robustness is the ability of the system to

handle with abnormalities like errors during

execution, erroneous input, sudden changes in

hardware or software environment, etc.

11 Scalability

It is the ability of a system to handle the

demand for stress caused by increased usage

without decreasing performance.

12 Security

It is the ability of a system to resist or block

malicious or unauthorized attempts that

destroy the system and at the same time

provide access to legitimate users.

13 Supportability

It is the ability of a system that satisfies

necessary requirements and needs to

identifying and solving problems.

14 Testability

It shows how well the system or component

facilitates to perform tests to determine

whether the predefined test criteria have been

met.

303 | P a g e

Space for learners:

15 Usability

It is described as how the user is utilizing a

system effectively and the ease of which users

can learn to operate or control the system. One

of the well-known principles of usability is to

make it very user-friendly and keep it as

simple as possible.

Table 7.1: Software quality attributes

Particular software may not be able to stand strong on all the above

mentioned attributes — for example, if we want to improve

robustness then this might lead to loss of efficiency. Therefore, the

quality management team should try to find out what are the major

criteria for the system being developed. Say, for example, if

efficiency is very important then there is reason why other criteria

like scalability or usability may be relaxed. This should be stated in

the quality plan so that the engineers working on the software

development can cooperate to achieve this. Thus, the quality plan

should include all the definition of the quality assessment process

and the agreed upon quality attributes that are essential for the

software.

STOP TO CONSIDER

 1. The quality of software cannot be evaluated the way quality

of manufactured products are determined.

 2. The quality management process goes in tandem with the

software development process.

 3. The assessment of software quality is a subjective process.

 4. Software quality is not just about whether the system

requirement has been successfully acquired, but also depends

on many non-functional system attributes.

 5. The quality management team should try to find out what are

the essential non-functional attributes for the software.

304 | P a g e

Space for learners:

2.4 SOFTWARE STANDARDS

Software standards play a major role in software quality

management. As assessment of software quality is a subjective

process and it depends on the expectations of the organization and

the user; so, having a set of specified standards will assist in setting

the definition of ‘quality’ for the particular software. It will be the

guiding principles for all the engineers in an organization and will

also assist a new engineer to quickly adapt, in case anyone leaves the

organization.

In software engineering, there are two types of standards:

a) Product standard: These are the standards that the product

being developed should have. It includes document

standards, such as the structure of requirements documents,

documentation standards, such as a standard comment header

for an object class definition, and coding standards, which

define how a programming language should be used

b) Process standard: These are the standard processes that

should be followed during software development. It includes

good development practice, definitions of specification,

design and validation processes, process support tools, and a

description of the documents that should be written during

these processes.

Many international bodies like the Institute of Electrical and

Electronics Engineers (IEEE), American National Standards

Institute (ANSI) and British Standards Institution (BSI) have

developed software standards that can be used for our projects.

There are standards even for programming languages such as Java

and C++. There are standards that encompass many software

CHECK YOUR PROGRESS-1

1. Why the quality management team should be independent from

the development team?

2. The assessment of software quality is a subjective / objective

process. (Choose the correct option)

3. Why should the quality management team try to find out the

major software attributes that are significant for the system being

developed?

305 | P a g e

Space for learners: engineering terminologies like procedures for deriving and writing

software requirements, quality assurance procedures, software

verification and validation processes (IEEE, 2003) and safety /

security-critical procedures as IEC 61508 (IEC,1998).

When developing the standards for a company, the quality

management team should formulate the standards by obtaining

information and insight from such well-established international

quality standards. This way they can set the standards that will be

credible and justifiable. But all software standards might not be

applicable to all kinds of software projects. The quality management

team should plan and prepare in advance, what are the criteria and

standards that are viable for the individual project.

They should be able to identify what are the standards that are

absolutely necessary, what can be used but in a modified manner

and what can be completely rejected. If this is not done in advance,

then the software engineers will be wasting their time in achieving

the standard that is not necessary rather than fulfilling the required

goals and standards for the project.

STOP TO CONSIDER

 1. Software standards will act as the guiding principles for all the

engineers in an organization.

 2. In software engineering, there are two types of standards:

product standard and process standard.

 3. The quality management team should formulate the standards

by obtaining information and insight from well-established

international quality standards.

CHECK YOUR PROGRESS-2

4. Software standard will be the ____________________ for all

the engineers in an organization.

5. What are some of the international standard bodies?

6. How can we set credible software standard?

306 | P a g e

Space for learners: 2.5 REVIEWS AND INSPECTIONS

Reviews and inspections is another means by which we can verify

the quality of software. First the review team validates whether the

quality standards have been followed or not. The review team should

look into the documents pertaining to software specifications,

designs, or code, process models, test plans, configuration

management procedures, process standards, and user manuals. They

should check the consistency and completeness of the documents

and the programming code and makes sure that quality standards

have been followed. After they verify the conformity to standards,

then they try to discover problems and omissions in the software or

project documentation. That is, they thoroughly examine the records

and documentations of the procedures used to discover errors and

omissions.

2.5.1 Review Process

The review process mainly consists of three phases:

a) Pre-review activities: In pre-review activities there is planning

and preparation of the review. A review team is created, a time and

place for the review is set, and the documents to be reviewed are

distributed. Individual review team members will go through the

relevant documents and work independently to find errors,

omissions, and deviations from standards.

b) Review meeting: A review meeting is formally arranged. It is

chaired by one of the review team members while another one

transcribes all the important review decisions and actions to be

taken. One of the authors of the document will have to explain all

the details about the document and the project. The chair should

ensure that all the comments, instructions and future actions are duly

recorded.

c) Post-review activities: After the review meeting is over, it is time

to address the issues and problems raised during the review. For

example there may be issues related to solving bugs in software, or

restructuring the code so that it becomes more readable, more

efficient, less complex and easier to maintain. Sometimes there may

be issue related to compliance of quality standards and rewriting the

document, or in some cases allocating more resources to the project

307 | P a g e

Space for learners: if needed. The review chair must ensure that all the review

comments have been duly processed and thoroughly examined.

2.5.2 Program Inspections

The main aim of program inspection is to find bugs in the program

being developed. A completed program is not required to perform

the inspection; even an incomplete version of the system can be

examined. In fact, the most effective way to inspect a system is to

use its test cases, find problems and thus improve its effectiveness.

One of the main tasks of the members of the inspection team is to

meticulously review each line of the source code, find any logical

errors or any anomalies and show these at an inspection meeting.

Several books and journals have been published which provide us a

list of common programming errors that can be found in a particular

project or domain. In fact, different list exists for different

programming language as each programming language can have

different types of errors or anomalies. One such book is “Managing

the Software Process”, by Watts S. Humphrey, Addison-Wesley

publication (1989). The inspection team members can make use of

such “list of common errors” to examine the project under preview.

2.6 QUALITY MANAGEMENT AND AGILE

DEVELOPMENT

Although, most companies agree that inspections are very effective

in finding bugs, but some may forsake this process. Software

engineers with experience of program testing may disagree that

inspections can be more effective than testing. Again, sometimes

STOP TO CONSIDER

 1. The review team verifies whether the software conforms to

quality standards and also tries to discover problems,

anomalies and omissions in the software.

 2. The review process mainly consists of three phases.

 3. The main aim of program inspection is to find bugs in the

program under inspection.

 4. The inspection team can make use of already existing list of

common errors and problems.

308 | P a g e

Space for learners: managers may not have the liberty to sustain extra cost; as

inspections may incur additional costs during design and

development. Another such example is ‘Agile’ processes which does

not approve of using formal inspection methods.

The Agile method focuses more on code development than on

formal inspection documentation process. It relies more on

individual programmer’s ethical and responsible frame of mind.

Here each member follows good coding practises like refactoring,

avoiding deep nesting, limiting line length, using proper naming

conventions, etc, as well as having a test-driven development so that

a high quality code is created. In the Agile processes, team members

can also cooperate among themselves to check each other’s code.

They follow the rules:

a) Check before check-in: It suggests that programmers should

always check their own code, consult with other team

members, before using it in a system.

b) Never break the build: It suggests that a programmer’s code

should never break the build. So, they have to rigorously test

their code before they use it. If the build is broken, then it is

the programmer’s responsibility to fix it.

c) Fix problem when you see them: If a programmer detects a

problem or anomaly in another programmer’s code, then he or

she can directly modify the code instead of resending the code

to the original programmer.

STOP TO CONSIDER

 1. The formal inspection process may not be adopted by all

companies.

 2. In the Agile processes, team members cooperate among

themselves to check each other’s code.

 3. In the Agile processes, each programmer should rigorously

test their own code, consult with other team members, before

the code is checked in to build the system.

309 | P a g e

Space for learners:

2.7 SUMMING UP

 Software development process and software quality

management process should be done simultaneously.

 Software quality cannot be evaluated the way quality of

manufactured products are determined.

 The assessment of software quality is a subjective process

depends on lot of other non-functional factors like

Complexity, Efficiency, Interoperability, Learnability,

Modularity, Portability, Reliability, Resilience, Reusability,

Robustness, Scalability, Security, Supportability, Testability

and Usability.

 One of the aims of the quality management team is to find out

those the essential non-functional attributes which directly

affects the software.

 Setting standards will assist in defining the ‘quality’ for the

software, and help the engineers to follow the established

guidelines.

 Insight and information from well-established international

quality standards will guide the quality management team to

formulate the standards for the company.

CHECK YOUR PROGRESS-3

7. The review team makes sure that have been

followed and checks whether there are

in the software.

8. For program inspection, a completed program is required to

perform the inspection. (True or False).

9. One of the main tasks of the members of the inspection team

is to meticulously review each line of the source code. (True

or False).

10. The Agile method focuses more on

than on

 .

11. Agile method relies heavily on individual programmer’s

ethical and responsible frame of mind to write good

documentation. (True or False).

310 | P a g e

Space for learners: The purpose of review process is to verify whether the

software conforms to quality standards and also to discover

problems, anomalies and omissions in the software.

 The review process mainly consists of three phases: Pre-

review activities, Review meeting and Post-review activities.

 The main aim of program inspection is to find bugs in the

program by meticulously examining each line of source code.

 The inspection team can make use of already existing list of

common errors and anomalies.

 The Agile software development method focuses more on

code development than on formal inspection documentation

process and relies heavily on individual programmer’s ethical

and responsible behaviour.

 12. The programmers in Agile software development process

follow the rules like Check before check-in, Never break the

build and Fix problem when you see them.

2.8 ANSWERS TO CHECK YOUR PROGRESS

1. The quality management team should be independent from the

development team so that they can take an objective view of the

software. This allows them to report on software quality without

being influenced by software development issues.

2. The assessment of software quality is a subjective process.

3. A software may not be able to satisfy all the non-functional

attributes. So, the quality management team, in consultation with all

the stakeholders, should try to find out what are the attributes that

are more essential for the system. This should be stated in the quality

plan, so that the software engineers can cooperate to achieve this.

4. Software standard will be the guiding principles for all the

engineers in an organization

5. Some of the international standard bodies are Electrical and

Electronics Engineers (IEEE), American National Standards

Institute (ANSI) and British Standards Institution (BSI).

6. When developing the standards for a company, the quality

management team should formulate the standards by obtaining

311 | P a g e

Space for learners: information and insight from such well-established international

quality standards. This way they can set the standards that will be

credible and justifiable.

7. The review team makes sure that quality standards have been

followed and checks whether there are problems and omissions in

the software.

8. False.

9. True

10. The Agile method focuses more on code development than on

formal inspection documentation process.

11. False

2.9 POSSIBLE QUESTIONS

Short answer type questions:

1. State why the evaluation process for the quality of software

cannot be measured in the same way as the quality of

manufactured products.

2. To decide if an acceptable level of quality has been achieved

what are some of the questions about the system’s

characteristics that the quality management team needs to ask?

3. Why do you think the assessment of software quality is a

subjective process?

4. What are two types of standards in software engineering?

5. Why should the quality management team formulate the

standards from well-established international quality

standards?

6. Explain the three phases of review process.

7. State the rules followed in Agile software development.

Long answer type questions:

1. Explain some of the non-functional system attributes that the

software quality needs to be evaluated upon.

2. What is the importance of software quality standards and how

to achieve it?

312 | P a g e

Space for learners: 3. What is the significance of reviews and inspections and how

can you implement them?

4. Explain how software quality is maintained in Agile method of

software engineering.

2.10 REFERENCES AND SUGGESTED READINGS

 Wixom, B. H., Roth, R. M., (2008), Systems Analysis and

Design, Wiley Publishing

 Kendall, K. E., Kendall J. E., (2019), Systems Analysis and

Design, Pearson

313 | P a g e

Space for learners: UNIT 3: SOFTWARE CONFIGURATION

MANAGEMENT

Unit Structure:

3.1 Introduction

3.2 Unit Objectives

3.3 Change Management

3.4 Version Management

 3.4.1 Codelines and Baselines

3.4.1 Version Control System

3.5 System building

 3.5.1 Automated Build Tools

3.6 Release Management

3.7 Summing Up

 3.8 Answers to Check Your Progress

3.9 Possible Questions

 3.10 References and Suggested Readings

3.1 INTRODUCTION

As the software is being developed there might be scenarios where

there is sudden change in system requirements and some additional

features might have to be incorporated in the existing system.

Occurrence of new bugs or arrival of a new version of hardware may

also force the developer to adapt their software according to the

current changes. As changes are inevitable, each of versions

software has to be maintained and managed properly. If it is not

maintained properly then it will lead to a chaotic situation where no

one will have the correct idea about what changes has been made

and which version is supposed to be considered. Thus configuration

management plays a vital role in software development. There are

four components of software configuration management namely,

Change management, Version management, System building, and

Release management; all of these will be discussed in this current

unit.

314 | P a g e

Space for learners: 3.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 Understand that sudden change in system requirements will

continuously emerge through the software development

process.

 Learn how to analyse, respond and manage changes in the

system.

 Learn to perform version management using codeline and

baseline.

 Understand the complex process of system building.

 Understand the differences between a system version and a

system release, and learn about release management process.

3.3 CHANGE MANAGEMENT

As changes to a system due to detection of new bugs, arrival of

newer hardware or need for additional system requirements is almost

certain to emerge, so it is utmost necessary to make sure that the

changes are applied in a controlled and managed process. The main

aim here is to find out which changes are commendable to make,

which are vital, sensible as well as cost-effective and more

importantly keeping track of the components that has been changed.

Any stakeholder be it developer, user, product owner or project

manager can request or report for a change in a system. This can be

straightforward bug report, or request for additional system

requirements. The request has to be formally reported through a

change request form (CRF). After the CRF has been submitted, it is

evaluated and determined whether the change request is notable. In

some events it may happen that a bug or an additional requirement

has been reported, but by the time the report has been filed, the bug

might have been already erased or the additional feature has already

been implemented but the requester may not know about it.

Sometimes the additional feature may already be existing in the

system and due to some misunderstanding, they may not be aware of

it. In such cases the request is dissolved and it not processed any

further.

315 | P a g e

Space for learners: If the requested change is a valid claim then it has to be duly

processed and the following steps are taken. First, vital information

have to be collected like date of submission of the report, the

significance of each change requested, what will be the impact and

scope of the change, which component of the system will be

affected, what will be the cost incurred and finally whether the

request is approved or rejected. If it is approved then it has to be

decided how the changes have to be implemented and where the

changes have to be incorporated. For example, the change may have

to be included in any one or more of the following cases:

requirements documentation, technical design documentation,

programming code, project schedules, test cases, etc. As the change

to the respective component is being made, it is very essential that a

snapshot of the changed state is recorded and properly maintained.

This is called as derivation history. For example if a change is made

in program source code, then a good way of keeping the derivation

history is by using standardized comment at the begin of the code.

This comment will point to the change request that caused the

change. For documents, records of changes incorporated in each

version are usually maintained in a separate page at the front of the

document.

STOP TO CONSIDER

 1. Any stakeholder can request or report for a change in a

system.

 2. Changes to an existing system are inevitable, so each of

versions software has to be maintained and managed

properly.

 3. The request has to be formally reported through a change

request form (CRF).

 4. Valid requests are appropriately processed and analysed

whereas misunderstood or superfluous requests are rejected.

 5. For every changes made, derivation history is to be

maintained.

316 | P a g e

Space for learners:

3.4 VERSION MANAGEMENT

The main objective of version management (VM) is to keep track of

different versions of software components and the systems in which

these components are used. It should be ensured that no two

developers have conflict or interference with the changes made to

their respective versions. In other words, version management is the

process of managing codelines and baselines.

3.4.1 Codelines and Baselines

When a programmer revises or changes the source code of a

component in a system, then there will be different versions of each

component. A codeline is the sequence of versions of source code

where the later version in the sequence is derived from the earlier

version. Before checking in, i.e., submitting, the modified code, a

programmer has to follow certain guidelines. There has to be a limit

to the number of times a programmer can check in the code. A

programmer cannot be allowed to check in as many times as

possible because it will create a huge confusion for the whole team.

Before the code is checked in or submitted, it should be tested as

much as possible and integrated as early as possible.

Once a stable version of the components in a system are judiciously

saved by all the programmers or developers, then a baseline, or to

put in in simple terms, a milestone or a snapshot of the system, is

created and stored. Here we have to ensure that all the information

like who has made the version and what changes were made in the

CHECK YOUR PROGRESS-1

1. What are the sudden changes that might occur during the

software development process?

2. What are the four components of software configuration

management?

3. What are the main objectives of software configuration

management?

4. Any stakeholder be it developer, user, product owner or project

manager cannot request or report for a change in a system.

(True or False).

317 | P a g e

Space for learners:

Codelines

version has to well-documented and astutely preserved. At no point

of time should the versions in a baseline be lost, so that if a previous

version of the software is requested it can be effortlessly returned.

Apart from component versions, the baseline also includes a

specification of the libraries used, configuration files, etc. Fig. 8.1

depicts a diagrammatical view of versions, codelines and baselines.

 Fig 8.1: Versions, Codelines and Baselines

3.4.2 Version Control System

There are software tools that enable us to identify, store and control

access to the different versions of components. These are called as

Version Control (VC) systems and there are two main categories of

version control system: Centralized and Distributed. In centralized

system there is a single master repository that maintains all versions

of the software components that are being developed. In distributed

systems multiple versions of the component repository can be stored

at the same time. Each user has its own repository and working

copy. Example of centralized VC system is Subversion, whereas

example of distributed VC system is Git.

Key features of version control systems:

 Version and release identification

 Change history recording

 Support for independent development

 Project support

 Storage management

Codelines Codelines

Version 1.1

Version 1.2

Version 1.3

Version 2.1

Version 2.2

Version 3.1

Version 3.2

Component 1 Component 2 Component 3

Version 2.3

Baselines

Release

 1.0.0

Release

 1.1.0

318 | P a g e

Space for learners:

3.5 SYSTEM BUILDING

System building is the process of creating a complete, executable

system by compiling and linking the system components, external

libraries, configuration files, etc. As the version management system

contains the repositories of component versions, there need to exist

communication between system building tools and version

management tools. The system building tool also needs

configuration description of baselines existing in the system.

STOP TO CONSIDER

 1. The main objective of version management (VM) is to keep

track of different versions of software components and the

systems in which these components are used.

 2. A codeline is the sequence of versions of source code where the

later version in the sequence is derived from the earlier version.

 3. A baseline represents the stable and agreed upon versions of all

components in a certain point of time.

 4. There are software tools called Version Control (VC) systems

that enable us to identify, store and control access to the

different versions of components.

CHECK YOUR PROGRESS-2

5. ensures that no two developers have conflict or

interference with the changes made to their respective versions.

6. A is the sequence of versions of source code whereas

a

 is a stable and agreed upon versions of all

components in a certain point of time.

7. A programmer need not follow any guidelines to check in his

version of code. (True or False).

8. In a baseline, a previous version of the software cannot be

requested. (True or False).

9. Apart from component versions, the baseline also includes a

specification of the libraries used, configuration files, etc. (True or

False).

10. Give an example of centralized version control system and

distributed version control system. (Subversion, Git)

319 | P a g e

Space for learners: System building has three main platforms:

a) Development system: It includes development tools such as

compilers, source code editors, etc. Here, the developers

need to create a private workspace where they can download

a copy of the code (also called as check out) from the code

repository located in the version management system. Once

they have made the changes in their code and before they

again commit it back into the version management system,

they have to test it in their private development environment.

For this they will have to use the local build tools in their

private workspace.

b) Build server: It is used to build definitive, executable

versions of the system. Once the developers have made the

changes, performed appropriate testing, they upload their

code (also called as check in) to the version management

system. The system build may rely on external libraries that

are not included in the version management system.

c) Target environment: It is the actual platform on which the

software actually has to run. The actual platform can be the

same type of hardware and software environment used

during the development and build phase. But many times the

target environment can be rather smaller and simpler system

like a mobile phone than a high-end system used in the

development environment.

3. 5. 1 Automated Build Tools

The build script is a definition of the system to be built. It includes

information about components and their dependencies, and the

versions of tools used to compile and link the system. The build

script includes the configuration specification which ensures that the

scripting language and the configuration description language

remain the same. The configuration language includes constructs to

describe the system components to be included in the build and their

dependencies.

System building involves assembling a large amount of information

about the software and its operating environment. Therefore, for

large systems, automated build tool can be used to create a system

build. Some example of automated build tools are Bazel, Jenkins,

320 | P a g e

Space for learners: Apache Maven, Gradle, Gulp, Travis CI, Nant, etc. Some of the

features that the automated build tools may provide are as follows:

a) Build script generation: It analyzes the program that is being

built, identifies dependent components, and automatically

generates a build script. It may also support the manual

creation and editing of build scripts.

b) Version management system integration: It verifies the

required versions of components from the version

management system.

c) Minimal recompilation: It finds out which part of the source

code requires to be recompiled and performs the compilation.

d) Executable system creation: It links the compiled object code

files with each other and with other required files, such as

libraries and configuration files, and creates an executable

system.

e) Test automation: Some build systems can automatically run

automated tests using test automation tools such as JUnit.

These check that the build has not been ‘broken’ by changes.

f) Reporting: It provides reports about the success or failure of

the build and the tests that have been run.

g) Documentation generation: It may also be able to generate

release notes about the build and system help pages.

STOP TO CONSIDER

 1. System building is the process of creating a complete,

executable system by compiling and linking the system

components, external libraries, configuration files, etc.

 2. System building has three main platforms: development

system, build server and target environment.

 3. The build script is a definition of the system to be built

which includes information about components and their

dependencies, and the versions of tools used to compile and

link the system.

 4. For larger complex systems, automated build tool can be

used to create a system build.

 5. Automated build tools provide many features like build

script generation, version management system integration,

minimal recompilation, executable system creation, test

automation, reporting and documentation generation.

321 | P a g e

Space for learners:

3.6 RELEASE MANAGEMENT

A system release is a version of a software system that is distributed

to customers or users. Two kinds of release types are there: major

release and minor release. Major release contains significant new

functionality whereas minor release is used to find bugs or customer

/ user related issues and repair them. Minor releases are usually

distributed free of charge while the user has to make payment to use

major releases.

A software company may have various releases of a product and

may distribute these releases to many customers or users. Sometimes

a customer may be comfortable in using an older release and after

many years of use, may want specific changes to be made in that

particular release. So it becomes imperative for the software

company to manage all the different releases, maintain information

about which release is provided to which customer, store

information between releases and system versions and should be

able to correlate and regulate the software that has been delivered to

a particular customer.

CHECK YOUR PROGRESS-3

11. To build a complete system, there should be

communication between tools and

tools.

12. System building consists of development platform where

the developer creates a private workspace and checks in the

code to the version management system. (True or False).

13. How does a developer use the development platform in

system building?

14. Once appropriate testing has been performed, the developer

has to check in the code to the version management system

and build an executable version of the system.

15. The actual platform is always the same as the one used

during the development and build phase. (True or False).

16. What is a build script?

17. Name some automated build tools.

322 | P a g e

Space for learners: To document a release, the specific versions of the source code

components that were used to create the executable code have to be

properly recorded. Copies of the source code files, corresponding

executables, and all data and configuration files should be properly

stored. Even the versions of the operating system, libraries,

compilers, and other tools used to build the software should be well

documented because these may be required to build exactly the same

system at some later date. So along with the source code, copies of

the platform software and the tools used to create the system should

be stored in the version management system.

Release distribution is a costly affair as it requires advertising and

publicity materials, marketing strategies, awareness campaigns, etc.,

in order to entice customers into buying the new release of the

software. If the releases are too frequent then the customer may not

bother to frequently buy new releases, or if the new releases with

improved features are seldom made then it will be difficult to hold

on to the customers as they may start using latest software from

another company.

While making a new release, a company cannot blindly believe that

all the customers will be using their latest release. In fact, there may

be many customers who may be just satisfied with the older release

and may never bother to upgrade to the latest release. Say for

example, a company has three releases of their software, R.1, R.2

and R.3, with R.1 being the oldest and R.3 being the newest release.

Say, R.1 is simple basic release, R.2 requires the customer to upload

some specialized data and R.3 is an advanced distributed system

which makes use of the data uploaded by the customer in R.2. Now,

since release R.3 requires data uploaded by the customer in R.2 then,

if a customer wants to go directly from R1 to R3, then the company

has to maintain proper record about which release was provided to

which customer and accordingly take the correct set of actions. If

this is not handled appropriately, then the software may crash,

causing frustration for the customer and embarrassment for the

company. To avoid such scenarios, some companies may even try to

implement automatic update of their software whenever there is any

new release available. But if the customer switches off the automatic

update feature then this also cannot be forcefully implemented.

323 | P a g e

Space for learners:

3.7 SUMMING UP

 As the software is being developed there might be scenarios

where there is sudden change in system requirements, new bugs

may be detected or new hardware may have to be introduced.

 So, changes to a system are inevitable and hence each of

versions software has to be maintained and managed properly

STOP TO CONSIDER

 1. Two kinds of release types are there: major release and minor

release.

 2. It is important for the company to manage all the different

releases and maintain the information about which release is

provided to which customer.

 3. Along with the source code, copies of the platform software

and the tools used to create the system should be stored in the

version management system.

 4. Release distribution is financially costly.

 5. A company cannot presume that all the customers will be

using their latest release.

CHECK YOUR PROGRESS-4

18. Major release contains significant new functionality

whereas minor release is used to find new bugs.

19. Major releases are usually distributed free of charge while

the user has to make payment to use minor releases. (True

or False).

20. A company should store information between releases and

system versions and should be able to correlate and

regulate the software that has been delivered to a particular

customer. (True or False).

21. Why a company should not make too frequent or too less

releases?

22. A company can always trust the customer to have their

latest release installed. (True or False).

324 | P a g e

Space for learners: otherwise it will lead to a chaotic situation where no one will

have the correct idea about what changes has been made and

which version is supposed to be considered.

 There are four components of software configuration

management namely, Change management, Version

management, System building, and Release management.

 The main aim of change management is to find out which

changes are commendable to make, which are vital, sensible as

well as cost-effective and more importantly to keep track of the

components that has been changed.

 Any stakeholder can request or report for a change in a system

by formally filling a change request form (CRF).

 Valid requests are appropriately processed and analysed

whereas misunderstood or superfluous requests are rejected.

 The main objective of version management (VM) is to keep

track of different versions of software components and the

systems in which these components are used.

 Managing codelines and baselines is an important activity of

version management process.

 Version Control Software tools like Subversion and Git can be

used to identify, store and control access to the different

versions of components.

 System building is the complicated process of creating a

complete, executable system by compiling and linking the

system components, external libraries, configuration files, etc.

 System building has three main platforms: development system,

build server and target environment.

 For larger projects automated build tools can be used, which

provide many features like build script generation, version

management system integration, minimal recompilation,

executable system creation, test automation, reporting and

documentation generation.

 A system release is a version of a software system that is

distributed to customers or users. It is of two types: major

release and minor release.

325 | P a g e

Space for learners: Major release contains significant new functionality whereas

minor release is used to find bugs or customer / user related

issues and to repair them.

 It is very important for the software company to manage all the

different releases, maintain information about which release is

provided to which customer, store information between releases

and system versions.

 Release distribution incurs a lot of costs in order to advertise the

new releases.

 A company cannot presume that all the customers will always

be using their latest release.

3.8 ANSWERS TO CHECK YOUR PROGRESS

1. Some of the sudden changes that might occur during the software

development process are additional features to be included, changes

in system requirements, occurrences of new bugs or arrival of new

hardware, etc.

2. The four components of software configuration management are

change management, version management, system building, and

release management.

3. The objectives of software configuration management are to find

out which changes are commendable to make, which are vital,

sensible as well as cost-effective and more importantly keeping track

of the components that has been changed.

4. False

5. Version management ensures that no two developers have conflict

or interference with the changes made to their respective versions.

6. A codeline is the sequence of versions of source code whereas a

baseline is a stable and agreed upon versions of all components in a

certain point of time.

7. False.

8. False.

9. True.

10. An example of centralized version control system is Subversion

and an example of distributed version control system is Git.

326 | P a g e

Space for learners: 11. To build a complete system, there need to exist communication

between system building tools and version management tools.

12. False.

13. The developers need to create a private workspace where they

have to check out their code from the code repository located in the

version management system. Once they have made the changes in

their code and before they can again commit it back into the version

management system, they have to test it in their private development

environment. For this they will have to use the local build tools in

their private workspace.

14. Once appropriate testing has been performed, the developer has

to check in the code to the version management system and build an

executable version of the system.

15. False.

16. The build script is a definition of the system to be built which

includes information about components and their dependencies, and

the versions of tools used to compile and link the system. The build

script includes the configuration specification which ensures that the

scripting language used is the same as the configuration description

language.

17. Some example of automated build tools are Bazel, Jenkins,

Apache Maven, Gradle, Gulp, Travis CI, Nant, etc.

18. Major release contains significant new functionality whereas

minor release is used to find new bugs.

19. False

20. True

21. If the releases are too frequent then the customer may not bother

to frequently buy new releases, or if the new releases with improved

features are seldom made then it will be difficult to hold on to the

customers as they may start using latest software from another

company.

22. False.

327 | P a g e

Space for learners:

3.9 POSSIBLE QUESTIONS

Short answer type questions:

1. Why is it utmost necessary to properly maintain and manage the

changes applied to each version of software?

2. Why is change request form (CRF) used for?

3. Explain briefly how misunderstood or superfluous requests are

handled in software configuration management?

4. Explain succinctly what is the goal of version management?

5. What are Centralized and Distributed version control system?

6. What is system building and why is it a complicated process?

7. State the difference between major and minor release.

8. Why is it important for the company to manage all the different

releases and maintain the information about which release is

provided to which customer?

9. How will you document and record a release?

Long answer type questions:

1. Explain in detail how to skilfully supervise change management

in software configuration management.

2. Explain how you will perform version management using

codeline and baseline.

3. Explain in detail what is the significance of Version Control

System?

4. Explain in detail, the three platforms used by developers in

system building.

5. Describe the features of automated build tools that will assist

developers in system building process.

6. Explain the importance of release management and why

company cannot presume that all the customers will be using

their latest release?

7. Explain all the process and procedures involved in release

management.

328 | P a g e

Space for learners: 3.10 REFERENCES AND SUGGESTED READINGS

 Pressman, R. S., (2004), Software Engineering, A Practitioner’s

Approach, McGraw-Hill

 Kendall, K. E., Kendall J. E., (2019), Systems Analysis and

Design, Pearson

