GAUHATI UNIVERSITY INSTITUTE OF DISTANCE AND OPEN LEARNING (GUIDOL)

Programme Project Report (PPR)

PPR ID: GU/GUIDOL/PPR/19 (Total no. pages: 10) তরাহাটী বিশ্ববিদ্যালয়,গুরাহাটী-১৪ Programme: Master of Science (M.Sc) in Information Technology (MSc-IT) Registrar Gauhati University, Guwahati-14

1. Programme Mission and Objective:

The mission of the Programme, to be launched, is "to cater to the need of higher education in Information Technology and to widen the periphery of computer science & information technology."

Objectives of the Programme:

- The program focuses on the design of technological information systems, as solutions to business, research and communications support needs.
- To develop and promote technical skills needed to design, implement, and test solutions in the field of information technology.
- To provide a framework within which students can appreciate and integrate concept of new software technologies and extend their theoretical knowledge in specific areas of interest in academia and the industry.
- To provide graduates who are planning to work in an IT or computing environment with the opportunity to enhance their career prospects by gaining additional knowledge and skill in selected areas of IT.
- To generate competent and well-educated man-power for the teaching profession as well as manning positions of research associates in public/private sector academic institutions.

2. Relevance of the Programme with HEI's Mission and Goals:

Gauhati University was established in 1948 with a mission to revitalize educational leadership, to set the standard for the production and dissemination of knowledge as well as to become an effective instrument of change in the society. With this aim in view, the Department of Computer Science was established in 1985. The Department started a one year Post Graduate Diploma course in Computer Science and Applications (PGDCSA)

with thirty seats in 1986 at time in which there were only a few institutions in the entire country offering post graduate courses in Computer Science. The objectives of the course were to produce Computer Programmers, Research Scholars, Teachers, Instructors, Computer Professionals; i.e., to produce manpower for software industries, research and educational institutions and other organizations in India and abroad and association of the new generation in these fields and related areas. In 2001, a two-year (four semesters) M.Sc. programme in Computer Science was introduced after obtaining approval from the UGC with student intake capacity 15 per batch, replacing the PGDCSA programme. In 2005, the Department started another course MSc in Information Technology (MSc-IT) together with the existing MSc program in Computer Science. Keeping in view the motto of "Quality Higher Education For All", Master in Information Technology (MSc-IT) to be offered through ODL mode is very much relevant to the HEI's mission and goals as it aims to provide quality higher education in Information Technology to those aspiring candidates who are deprived of higher education due to various serious and unavoidable circumstances. Moreover, to keep the quality intact the curriculum and syllabi has been designed at par with the conventional mode keeping in mind the specific needs and acceptability of the learners in the ODL mode and in keeping with the aims and objectives of the parent department.

3. Nature and Target Group of Learners:

Our target group includes

- Those who are deprived of admission in the parent department of Regular Mode due to limited intake capacity.
- 2) Those employed in various organizations who desire to pursue higher education as a passion or as a mean for movement up the promotional ladder.
- 3) Those willing to pursue research as a career.
- 4) Those willing to have Computer Science/Information Technology as a career.
- 5) Drop-outs primarily due to social, financial and economic compulsions as well as demographic factors.
- 6) Job seekers.

Gauhati University also has a provision in the ODL mode for lateral entry for those who had to discontinue the regular course after successful completion of the first two semesters due to unavoidable reasons. Acceptability of the lateral entry provision is an indicator of parity of the courses in regular and distance mode. The curriculum is designed to enable learners to fulfill their aims and objectives in a manner they deem fit and proper. The curriculum is designed by a committee comprising of experts from the Department of the HEI, external experts and faculties of the ODL mode, keeping in view the needs of the diverse class of learners.

4. Appropriateness of the Programme to be Conducted in the ODL Mode for Acquiring Specific Skills and Competence:

The MSc-IT programme to be to be offered through ODL mode will have certain learning outcomes. This programme will help the learners

- To design an IT solution using best practices and standard methodologies in the field of Computer Science and Information Technology,
- To enhance and develop their knowledge and understanding of the theoretical and practical foundations of Information Technology as a subject,
- To enhance the capacity for creative, technical and problem-solving skills in a research context,
- To make themselves theoretically and practically knowledgeable to understand, design and implement large and complex Computer Applications,
- To make themselves fit to embrace the future developments and retaining professional relevance,
- In gaining dexterity in advanced programming languages and building sophisticated software for a wide area of applications,
- To work with high-end applications in Internet Technologies,
- In acquiring managerial ability to use IT skills in Decision Making, by Analyzing Problems, Developing Solutions and Explaining findings,
- To be acquainted with various generic skills and competencies for Team Work, Time Management and Critical Thinking.

5. Instructional Design:

- a) Curriculum Design: The curriculum in CBCS mode is adopted from the parent department of HEI keeping the ODL at par with the regular mode.
- **b) Detailed Syllabus**: The syllabus through ODL mode is the same as that of the parent department of the HEI (refer to **Enclosure-I**). However, in keeping with the credit

system of ODL & and the format of Self-learning Materials (SLMs), the contents of the parent department syllabus have been re-configured in terms of blocks and units so as to serve the purpose of distance and open learners.

- **c) Duration of the Program**: Minimum 2 years. However, the learners will be required to complete the course within 4 (four) years from the date of admission.
- d) Instructional Delivery Mechanism: The programme will be delivered in 4 (four) semesters having 5 (five) courses/papers in 1st, 2nd, 3rd semesters and in 4th semester there are 3 (three) courses/papers and 1 (one) Major Project. The learners will be provided with the printed SLM which covers almost all the contents in the syllabus (*Enclosure-III*). Counselling classes will be held in headquarter and various affiliated study centres.

Regarding the Hours of Study, the system of 30 hours per credit for a course/paper will be followed. Out of total study hours per course/paper, minimum 10% will be in the form of Contact Hours, which includes Contact Sessions & Tutorials and Practical Sessions (if applicable). The rest of the study hours is divided among student self-study & practice (in case of Practical) through SLM/e-SLM, LMS (e-Learning Portal) and OER provided. Last but not the least, the Walk-in-Counselling, Telephonic Counselling and student self-preparation for Internal Assessment also contribute to the study hours. The progress of the learners will be assessed periodically by Internal Assessment. At the end of each semester, learners' performance will be evaluated by Term/Semester-end examination.

e) Programme Coordinator – Prof. Anjana Kakoti Mahanta, Head, Department of Computer Science, Gauhati University

f) Faculty:

(i) Full Time

- 1. Dr. Khurshid Alam Borbora, M.Sc. (Comp. Sc), Ph.D. Assistant Professor.
- 2. Dr. Swapnanil Gogoi, M.Sc. (Comp. Sc), Ph.D. Assistant Professor.
- 3. Mrs. Pallavi Saikia, M.Sc. (Comp. Sc) Assistant Professor.
- 4. Dr. Rita Chakraborty, M.Sc. (Comp. Sc), Ph.D. Assistant Professor.
- 5. Mr. Hemanta Kalita, M.Sc. (IT) Assistant Professor.

(ii) Resource persons are drawn from amongst teachers/faculties of the Regular Department, Researchers of HEI and its Affiliated Colleges. Personalities from Corporate Sector are also engaged.

- g) Media: Print Media, ICT enabled tools, Multi-Media and e-Learning Portal.
- **h) Student Support Services:** In order to successfully execute this programme, there are a wide range of support services. The various support services are listed as below:
 - i) Network of Study Centres: To assist its learners in ODL mode the University has established 117 study centres (list enclosed) throughout the State of Assam but within its territorial jurisdiction.
 - **ii) State of the Art Library** with around 7 thousand collections of materials which includes books, journals, magazines, CD and DVDs.
 - iii) E-Learning Portal (www.bodhidroom.net): This portal is the first of its kind in the entire North east region of India. This provides the following services to the learners:
 - Online enrolment of students
 - Independent Discussion Forum for every course
 - Independent News Forum for every course
 - > Online interaction facility with faculty members
 - Online interaction between the students making the scope of collaborative learning
 - > Interaction through chatting of all users of all courses who are online.
 - Separate Chat Room for individual course
 - Message My Teacher: When a student logs in to Bodhidroom, after enrolling himself/herself to a course, he/she will see the names of the virtual class teachers. Student can directly send offline messages to the teachers. When the teacher is logged on, he will receive an alert of incoming messages. Then he can reply to the message.
 - Online Study Material
 - Old Examination Question Papers

- **iv) Dynamic Website:** For ODL learners, the University have a separate website, www.idolgu.in, where one can get all the information regarding ODL programmes, up-coming events, examination results etc.
- v) Computerised Admission Process with Provision of Online Admissions: The whole system of admissions and examinations are managed using professional software which gives instant online access to learners through www.idolgu.in.
- vi) Flexible Walk in Group Counselling (FWGC): Regular group and individual counselling will be held in the GUIDOL (headquarter) complex during all working days. Learners may walk-in to the designated GUIDOL counselling room and meet their teachers to clarify their doubts. Besides, online platform will be provided for the purpose mentioned above.
- vii) Personal Contact Programme (PCP): In addition to the Study Materials, useful Personal Contact Programmes will be held at various affiliated study centres, which will enable the students to clarify their confusions and ease their difficulty while going through it. Qualified faculty members of affiliated study centres will help out the attending students by providing necessary tips and guidelines during the interactive sessions. These sessions are also meant to give the students a chance to meet the teachers personally and discuss their problems. Besides, online platform will be provided for the purpose mentioned above.
- viii) Community FM Radio: Gauhati University has its own Community radio station named as "Radio Luit 90.8 FM" and operates daily from 8AM to 8PM. The Community Radio station shall be extensively used to broadcast radio talks on various courses daily. The broadcast contents are designed as per the requirements by teaching staff of both the ODL Institute as well as the parent department. Experts are outsourced if situation arises.

6. Procedure for Admissions, Curriculum Transaction and Evaluation:

Admission: The admission process shall start as per the UGC-DEB guidelines. A learner can take admission only through online mode. The minimum eligibility for MSc-IT program is BSc/BCA/Graduate in Engineering, Technology or equivalent degree from a recognized Indian or Foreign University. An entrance test is/shall be conducted for the admission to this programme or as decided by the Gauhati University Authority. The

maximum intake capacity for this programme per study centre including the head quarter is/shall be 50. The fee for admission is Rs 14500.00 (Fourteen Thousand Five Hundred only) per semester. Financial Assistance is provided to the candidates belonging to SC/ST and OBC category in the form of scholarship. A few learners belonging to the economically deprived section as well as the physically challenged category are provided free ship on the recommendation of the Vice-Chancellor of the University.

Curriculum Transaction: The curriculum will be transacted throughout the year as follows:

- Regular Contact Classes/Practicals will be carried out for the minimum of 4 (four) months per semester.
 - *a)* For odd semesters, contact classes will start from the month of August/September and end by November/December every year and
 - *b)* For even semesters, contact classes will start from the month of March/April and end by July/August every year.
- Regarding the regular Contact Classes, for both the theory and practical components of a course/paper,
 - a) One theory class, of one hour duration, for each course/paper is/will be conducted in a week.
 - b) One practical class, two hours of duration, for each course/paper having practical component is/will be conducted in a week.
- ➤ For slow-learners, remedial classes is/will be conducted as necessary.
- > Walk-in-Counselling and Telephonic Counselling are/will be provided.

For detailed Activity Planner refer to Enclosure – II.

Evaluation: Each course/paper shall carry 80% weightage for the term-end examinations and 20% for internal evaluation in the form of Home Assignments/internal examinations. In order to pass/clear a course/paper, a candidate must secure minimum 35% marks in case of theory course/paper and 40% marks in practical as well as in the final project. The students will also have to submit a project related to the field of Computer Science and IT and Viva Voce will be conducted and the pass percentage is 40. However, a candidate must secure over all 45% to clear a semester. All examinations are conducted by the Controller of Examinations as per rules and regulations of the University.

7. Library Resource and Laboratory Support:

The University has a State-of-the Art Central Library with rich collections of materials which includes books, journals, magazines, CD and DVDs, and is accessible to the ODL learners as well. Moreover, the Institute has its own Library where various books, journals and magazines are available.

Gauhati University being a member of UGC-Infonet Digital Library Consortium (http://www.inflibnet.ac.in/econ/index.php) which provides current as well as archival access to more than 5000 core and peer-reviewed journals and nine bibliographic databases from 23 publishers and aggregators in different disciplines. The ODL learners can access the e-resources of UGC-Infonet Digital Library Consortium from the Gauhati University campus.

For conducting theory and practical classes, there are 2 (two) Digital Classrooms and 3(three) Computer Laboratories with the following facilities available at HQ:

	Item	Quantity
	Desktop Computer	55
	LCD Overhead Projector	1
	Document Scanner with Overhead Projector	1
Computer Lab 1	40-inch LED TV for parallel display with the LCD	1
	projector	
	Smart Board	1
	Sound System with Lapel Connectivity	1 Set
	Split AC	4
	LAN Connectivity	
	Internet Connectivity provided by National	
	Knowledge Network (NKN)	
	Desktop Computer	22
	55-inch LED TV used for projection	1
Computer Lab 2	Split AC	2
	LAN Connectivity	
	Internet Connectivity provided by NKN	
	Desktop Computer	30
	LCD projector	1
	Motorized display screen(5x7)	1
Computer New	Split AC	2
Lab	LAN Connectivity	

	Internet Connectivity provided by NKN	
	Intake Capacity	64
	LCD Projector	1
D: :/ I	Sound System with Lapel Connectivity	1 Set
Digital Classroom 1	Podium	1
	Split AC	3
	LAN Connectivity	
	Internet Connectivity provided by NKN	
	Intake Capacity	100
	LCD Projector	1
D: :/ 1	Sound System with Lapel Connectivity	1 Set
Digital Classroom 2	Podium	1
	Split AC	4
	LAN Connectivity	
	Internet Connectivity provided by NKN	

It is also mandatory for all Study Centres offering M. Sc-IT and related programmes to have similar facilities.

8. Estimated Cost of the Programme: Total estimated cost of the programme is approximately Rs. 45 lakhs which includes preparation and printing of SLMs, remuneration of the Resource persons, establishment cost and overheads. The estimate is evaluated considering the unit expenses of Rs.2.5 lakhs per course/1000 students for the entire duration of two years.

9. Quality assurance Mechanism and Expected Programme outcome:

- **Quality assurance Mechanism:** The institute has a *Centre for Internal Quality Assurance (CIQA)* constituted by the statutory body of the HEI. Members of the Cell are drawn from among the Deans of the different Faculty, Heads of the respective departments, Executive Council members, administrative staff and teaching staff of the institute. The Internal Quality Assurance Cell shall review the relevance and standard of the programme from time to time and make necessary changes in the syllabus and contents of the programme. The HEI shall continuously monitor the effectiveness of the program through *CIQA* and other statutory bodies.
- **Expected Programme outcome**: The expected programme outcome is reflected in the Course Benchmark Statement, which is stated as below-

Course Benchmark Statement: Master's in Information Technology shall be awarded to those learners who demonstrate:

- In designing an IT solution using best practices and standard methodologies in the field of Computer Science and Information Technology,
- In developing their knowledge and understanding of the theoretical and practical foundations of Information Technology as a subject,
- The capacity for creative, technical and problem-solving skills in a research context,
- Making themselves fit to embrace the future developments and retaining professional relevance,
- In gaining dexterity in advanced programming languages and building sophisticated software for a wide area of applications,
- > To work with high-end applications in Internet Technologies,
- In acquiring managerial ability to use IT skills in Decision Making, by Analyzing Problems, Developing Solutions and Explaining findings,
- To be acquainted with various generic skills and competencies for Team Work, Time Management and Critical Thinking.

SYLLABUS

NAME OF THE DEPARTMENT : COMPUTER SCIENCE PROGRAM NAME : MASTER OF SCIENCE IN INFORMATION TECHNOLOGY TECHNOLOGY

PROGRAM SPECIFIC OUTCOMES (PSO):

The program will enable students to:

- Utilize and implement hardware and software technologies that provide Information technology solutions to address the needs of an organization.
- Provide socially acceptable technical solutions to complex IT problems with application of modern and appropriate techniques for sustainable development relevant to professional engineering practices.
- Apply the knowledge of ethical and management principles inherent in the discipline of computing to work in a team as well as to lead a team.
- Use of knowledge in various domains of Information Technology in lifelong learning to adopt to innovations and change in the order to be successful.

FIRST SE	MESTER									
COURSE CODE	COURSE NAME	COURSE TYPE	Lec.	Tut	Prac.	Cre.	Contact Hours/		Marks : + (B)	Nature
							Week	Internal (A)	External (B)	
INF1016	Advanced Concepts in OOP	Core	4	1	1	6	7	60	40	Graded
INF1026	Advanced Computer Organization and Architecture	Core	4	2	0	6	6	60	40	Graded
INF1036	Operating System	Core	4	1	1	6	7	60	40	Graded
INF1046	Mathematical Foundations of Computer Science	Core	4	2	0	6	6	60	40	Graded
INF1056	Advanced DBMS	Core	4	1	1	6	7	60	40	Graded
Semester T	otal	1	20	7	3	30	33			

COURSE OVERVIEW:

COURSE CODE	COURSE NAME	COURSE TYPE	Lect.	Tut	Prac.	Cre.	Contact Hours/	Total M (A) ·	Aarks : + (B)	Nature
							Week	Internal (A)	External (B)	
INF2016	Data Communication and Computer Networks	Core	4	1	1	6	7	60	40	Graded
INF2026	Algorithms and Complexity Theory	Core	4	2	0	6	6	60	40	Graded
INF2036	Software Engineering	Core	4	1	1	6	7	60	40	Graded
INF2046	Computer Graphics and Multimedia	Core	4	1	1	6	7	60	40	Graded
INF2056	Advanced Data Structure	Core	4	0	2	6	8	60	40	Graded
Semester T	otal	1	20	5	5	30	35			

COURSE CODE	COURSE NAME	COURSE TYPE	Lect.	Tut	Prac.	Cre.	Contact Hours/		Marks : + (B)	Nature
							Week	Internal (A)	External (B)	
INF3016	Web Programming Technologies	Core	4	2	0	6	6	60	40	Graded
INF3026	Distributed System	Core	4	1	1	6	7	60	40	Graded
INF3036	Compiler Design	Core	4	1	1	6	7	60	40	Graded
INF3046	Seminar	Core	0	0	0	3	6	50	0	Graded
INF3xx6		Elective-I / Open	4	1	1	6	7	60	40	Graded
Semester T	otal	-	16	5	3	27	33			

List of Electives

Elective Subjects for 3rd semester M.Sc. (Information Technology)

[All the following courses carry a total of 6 credits]

- 1. **INF3056** Image Processing (**open**)
- INF3066 Data Mining and Warehousing (open)
 INF3076 E-Commerce Technology
- 4. INF3086 Software testing and Quality Assurance
- 5. INF3096 Software Project Management

COURSE CODE	COURSE NAME	COURSE TYPE	Lect.	Tut	Prac.	Cre.	Contact Hours/		Marks : + (B)	Nature
							Week	Internal (A)	External (B)	
INF4016	Programming languages	Core	4	1	1	6	7	60	40	Graded
INF4026	Project Work	Core	0	0	4	6	8	0	100	Graded
INF4xx6		Elective- II /Open	4	1	1	6	7	60	40	Graded
INF4xx6		Elective-III	4	1	1	6	7	60	40	Graded
Semester T	otal		16	5	3	24	29			

Elective Subjects for 4th semester M.Sc. (Information Technology)

[All the following courses carry a total of 6 credits]

- 1. INF4036 Embedded System
- 2. INF4046 Artificial Intelligence (open)
- 3. INF4056 Speech Processing (open)
- 4. INF4066 Agent Technologies
- 5. INF4076 System Administration and Networking
- 6. INF4086 Wireless Communication and Networks

NB: For open elective papers a maximum of 8 seats will be provided for students outside the department. Knowledge of C/C++ programming, Discrete Mathematics will be required for getting enrolled into these courses.

DETAILED SYLLABUS:

SEMESTER NAME: FIRST SEMESTER

COURSE CODE: INF1016	L-T-P: 4-1-0
COURSE NAME: ADVANCED CONCEPTS IN OOP	CONTACT HOURS/WEEK: 6
COURSE TYPE: CORE	TOTAL MARKS: 100 (INTERNAL: 60, EXTERNAL: 40)
NUMBER OF CREDITS: 6	NATURE: GRADED

COURSE OBJECTIVES:

- 1. To familiarize students with concepts of data abstraction, polymorphism, inheritance, exception handling and file handling in Object Oriented Programming
- 2. To provide students with concepts of different Object Oriented Design approaches, Object Oriented Modeling (OMT) tools and phases of development.
- 3. To make students able to implement features of Object Oriented Programming solve real world problems.

COURSE PREREQUISITE:

• Basic knowledge of C programming

COURSE OUTCOMES:

At the end of the course, students will be able to:

- Differentiate between structured programming and Object Oriented Programming methodologies.
- Develop programs using different object oriented programming features such as data abstraction, polymorphism, inheritance, exception handling etc.
- Analyze different object Oriented Design Approaches and implement it to real life problems.
- Implement different Object Modeling Techniques (OMT) techniques.

Unit No & Name	Components of the Unit	No of contact hours	Marks
UNIT-I:	• Introduction: Definition and Concepts of	60	60
Object Oriented	Structured Programming and Object Oriented		
Programming	Programming paradigms.		
	• Data abstraction: Object, class, member and		
	friend functions, memory allocation for objects,		
	constructors and destructors, templates.		
	• Inheritance: Extending a class, casting up the		
	hierarchy, single and multiple inheritances,		

	•	virtual base class. Polymorphism : Compile time polymorphism, operator overloading, function overloading, static binding, run-time polymorphism, virtual functions, pure virtual functions, abstract class, dynamic binding. Exception handling, File handling,		
UNIT-II: Object Oriented Design	•	Introduction:ObjectOrientedDesignApproaches	30	40
		Total :	90	100

- Stroustrup, B. (1995) *The C++ Programming Language*, Addison Wesley Publishing Company
- Schild Herbert, *The Complete Reference to C++*, Osborne McGraw Hill.
- Rambaugh et al., *Object Oriented Modeling and Design*, P.H.I. (EEE).

COURSE ASSESSMENT DETAILS:

Internal assessment: Class tests, Assignments, Laboratory tests, Seminar

COURSE CODE: INF1026 COURSE NAME: ADVANCED COMPUTER ORGANIZATION AND ARCHITECTURE COURSE TYPE: CORE NUMBER OF CREDITS: 6

L-T-P: **4-2-0** CONTACT HOURS/WEEK: **6** TOTAL MARKS: **100** (INTERNAL: **60**, EXTERNAL: **40**) NATURE: **GRADED**

COURSE OBJECTIVES:

- 1. To provide students the knowledge of instruction set and addressing modes and how computer system works and its basic principles
- 2. To provide students the knowledge of I/O devices and its working principles
- 3. The give students the concepts of memory system and its classifications
- 4. To familiarize students with concepts of advanced pipelining techniques

COURSE PREREQUISITE:

• Fundamental knowledge of computer Organization and Architecture

COURSE OUTCOMES:

At the end of the course, students will be able to:

- Explain the basic instruction set architectures of computer.
- Analyze different Input-Output systems and memory organization used in computer architecture.
- Understand control unit operations.
- Describe different parallel architectures.

Unit No & Name	Components of the Unit	No of contact hours	Marks
UNIT-I: Instruction Set Architecture	 Instruction set design, addressing modes representation of data (character, integral, floating point) 	6	7
UNIT-II: Computer Arithmetic	 Serial adder, parallel adder, ripple carry adder, carry look-ahead adder Multiplication of signed and unsigned numbers, Booth's algorithm, division of integer, floating point arithmetic. 	8	8
UNIT-III: Processor Design	 Register transfer language, one, two and three bus data path ALU Design, control unit, hardwired control 	10	10

	unit, micro programmed control unit.		
UNIT-IV: Memory	Classification and types of memory.	10	10
	• Cache memory, direct mapped, associative		
	mapped and set associative mapped cache.		
	• Cache replacement policies, write policy,		
	unified, split and multilevel cache		
	• Virtual memory, paging, segmentation.		
UNIT-V: Input Output System	• I/O buses, device controller, Interrupt and	12	15
	DMA.		
	• Interrupt driven I/O, Program controlled I/O		
	and DMA transfer.		
UNIT-V: Parallel Architectures	• Classification, SISD, SIMD, MISD, MIMD,	22	25
	Scalar, vector, superscalar and pipelined		
	processor, Pipelining, Instruction pipeline,		
	pipeline bubbles, Hazards: -resource conflicts,		
	data dependency, branch difficulty.		
	• Vector computing, arithmetic pipeline, vector		
	and scalar register, chaining, scatter		
	gather operations, vector-register processor,		
	Memory vector processor. Array processor.		
UNIT-VI: Advanced concepts	• Branch prediction, super pipelining, Branch	22	25
	delay slot, Register file, superscalar		
	architecture, superscalar pipelines, superscalar		
	branch prediction, out of order execution,		
	register renaming		
	• Pipeline scheduling, dynamic scheduling and		
	static scheduling algorithms, reorder buffer and		
	register renaming, Thronton technique and		
	scoreboard. Tomasulo algorithm and		
	reservation stations.		
	• VLIW architecture: - EPIC architecture,		
	Multiprocessor systems: - Interconnection		
	types. Cache coherence problem		
	Total:	90	100

- Govindarajalu, B. Computer Architecture and Organization, TMH publication.
- Richard Y. Kain, Advanced Computer Architecture A systems Design Approach, PHI Publication
- Stallings William, Computer Organization and Architecture Designing for Performance, Pearson Education
- M. Morris Mano, Computer System Architecture, PHI Publication

COURSE ASSESSMENT DETAILS:

Internal assessment: Class tests, Assignments, Seminar

COURSE CODE: INF1036	L-T-P: 4-1-1
COURSE NAME: OPERATING SYSTEM	CONTACT HOURS/WEEK: 7
COURSE TYPE: CORE	TOTAL MARKS: 100 (INTERNAL: 60, EXTERNAL: 40)
NUMBER OF CREDITS: 6	NATURE: GRADED

- 1. To provide students the basic concepts of operating system such as process states, I/O organization and instruction sets
- 2. To familiarize the students with the concepts of deadlock handling in Operating system
- 3. To provide students the knowledge of scheduling, multiprogramming and memory management
- 4. The give students the knowledge of multiprogramming system

COURSE PREREQUISITE:

• Basic concepts of computer fundamentals

COURSE OUTCOMES:

At the end of the course, students will be able to:

- Recognize the design approaches of advanced operating systems such as memory architectures, scheduling, deadlock handling etc.
- Analyze the design issues of distributed operating systems.
- Evaluate design issues of multi processor operating systems.
- Identify the requirements of database operating systems and formulate the solutions to schedule the real time applications.

Unit No & Name	Components of the Unit	No of contact hours	Marks
UNIT-I: Review of computer organization	Major subsystems, instruction setsI/O organization.	8	10
UNIT-II: Memory architecture	 Address protection, segmentation, virtual memory, paging, page replacement algorithms, cache memory Hierarchy of memory types, associative memory. 	12	15
UNIT-III: Support for concurrent process	• Mutual exclusion, shared data, critical sections, busy form of waiting	8	10

	• Lock and unlock primitives, synchronization block and wakeup.		
UNIT-IV: Scheduling	 Process states, process scheduling queue, schedulers, virtual processors, interrupt mechanism Scheduling algorithms: First-Come, First- Served (FCFS) Scheduling, Shortest-Job-Next (SJN) Scheduling, Priority Scheduling, Shortest Remaining Time, Round Robin(RR) Scheduling, Multiple-Level Queues Scheduling, Implementation of concurrency primitive. 	32	30
UNIT-V: System deadlock	 Deadlock characterization, Resource Allocation Graph, Prevention, detection and avoidance of deadlock Banker's algorithm, detection algorithm 	10	10
UNIT-VI: Multiprogramming System	 Queue management, I/O supervisors, memory management, File system, disk and drum scheduling. Case Study: Some real operating system-semaphores, messages, shared memory. 	12	15
UNIT-VII: Advanced Topics	Secondary storage management, Security, Distributed operating system	8	10
	Total:	90	100

- Tanenbaum, A. S. and Woodhull, A. S. Operating Systems Design and Implementation, PHI
- Stallings, W., UNIX Network programming, PHI.
- Kerninghan and Pike, The UNIX programming Environment, PHI.
- Peterson , J. L. and Silberschatz , A., Operating System concepts', Addison Wesley
- Stallings, W., Operating Systems, PHI
- Silberschatz, A., and Galvin, P., Operating System Concepts, Addison-Wesley

COURSE ASSESSMENT DETAILS:

Internal assessment: Class tests, Assignments, Laboratory tests, Seminar

COURSE CODE: CSC1046	L-T-P: 4-2-0
COURSE NAME: MATHEMATICAL FOUNDATIONS	CONTACT HOURS/WEEK: 6
OF COMPUTER SCIENCE	TOTAL MARKS: 100 (INTERNAL: 60, EXTERNAL: 40)
COURSE TYPE: CORE	NATURE: GRADED
NUMBER OF CREDITS: 6	

- 1. To introduce the students with the basic concepts of Mathematics which form the foundation of Computer Science.
- 2. To introduce topics like graph theory, mathematical logic which has tremendous applications in Computer Science.
- 3. To introduce the concept of Automata Theory that is used in the development of finite state machines and also in the analysis of algorithms.

COURSE PREREQUISITE:

• Basic knowledge of Programming and Discrete Mathematics.

COURSE OUTCOMES:

At the end of the course, students will be able to:

- Illustrate the definitions and theorems in basic discrete mathematics
- Formulate simple definitions, examples and proofs in discrete mathematics
- Implement the concepts of formal languages, automata and grammars, and the relation between them
- Describe basic concepts of Graph theory and Tree properties

Unit No & Name	Components of the Unit	No of contact hours	Marks
UNIT-I: Discrete mathematical structures	• Congruence, permutation and combination with repetitions.	25	30
	• Basic concepts of sets. The principle of inclusion and exclusion. Fuzzy sets.		
	• Relations, binary relations, closure of relations.		
	• Functions; Posets and Lattices.		
	• Boolean Algebra; Boolean functions (SOM and POM).		

	• Algebraic structures- Groups, Free groups, Permutation groups. Homomorphism and Isomorphism. Vector Spaces and its properties, basis and dimension. Linear transformations and linear operators.		
UNIT-II: Mathematical Logic	 Connectives- statement formulae and truth tables, tautologies and tautological implications, two-state devices and statement logic; Theory of inference- rules, consistency of premises and indirect method of proof, automatic theorem proving; Propositional calculus 	25	25
	• Predicate calculus- predicates, quantifiers, predicate formulas, free and bound variables, inference theory of predicate calculus; validity, soundness, completeness, compactness (definitions only).		
	 Resolution principles; Skolemization and Herbrand domain; Introduction to axiomatic theory. 		
UNIT-III Graph theory	• Basic concepts- finite and infinite graphs, incidence and degree, isolated and pendant vertices, null graph.	25	25
	• Paths and Circuits- isomorphism, subgraphs, walks, connected and disconnected graphs and components.		
	• Euler graphs, Bi-partite graphs, Hamiltonian paths and circuits.		
	• Trees- properties of trees, distance and centers, rooted and binary trees, counting trees, spanning trees, fundamental circuits, spanning trees in weighted graphs; Cut-sets- properties, connectivity and separability.		
	• Network flows; Matrix representation of graphs- incidence matrix, submatrices, circuit matrix, cut-set matrix, path matrix, adjacency matrix; Coloring, Covering and Partitioning- basic concepts;		

	• Directed graphs- definition, types, directed paths and connectedness, Euler digraph, tress with directed edges.		
UNIT-IV Automata theory	 Concept of language and grammar. Review of DFA, NFA, NFA with empty moves and their equivalence. Minimization of FA. Regular sets and regular expressions. Pumping lemma for regular sets, closure properties and decision algorithms for regular sets. Context free language – definition, removal of useless symbols, removal of null productions and unit productions. Normal forms of CFLs- CNF and GNF. 	15	20
	Total	90	100

- Tremblay, J. P., Manohar, R., *Discrete Mathematical Structures with Applications to Computer Science*, McGraw Hill.
- Liu, C. L., Elements of Discrete Mathematics, McGraw Hill.
- Gallier, J. H., Logic for Computer Science, J. Willey & Sons.
- Lewis, H. R., Papadimitriou, C. H., Elements of the theory of computation, PHI.
- Deo, N., Graph Theory with applications to Engineering and Computer Science, PHI

COURSE ASSESSMENT DETAILS:

Internal assessment: Two/ Three mid semester examinations will be conducted. 60% of this evaluation will be added to the total marks for this course.

External assessment: End Semester Examination will be of 100 marks covering the entire course and the exam duration will be 3 hours. 40% of the mark obtained will be added to the total marks for this course.

COURSE CODE: INF1056	L-T-P: 4-1-1
COURSE NAME: ADVANCED DATABASE	CONTACT HOURS/WEEK: 7
MANAGEMENT SYSTEM	TOTAL MARKS: 100 (INTERNAL: 60, EXTERNAL: 40)
COURSE TYPE: CORE	NATURE: GRADED
NUMBER OF CREDITS: 6	

- 1. To give students the concept of relational model, relational algebra and relational calculus
- 2. To familiarize students with the concept of normalization and ER-designing
- 3. To provide students the basic knowledge of distributed database systems, Query processing, concurrency control and recovery in distributed databases.
- 4. To provide students the concepts of spatial databases, Image and multimedia

COURSE PREREQUISITE:

- Basic concepts of database management system
- Basic knowledge of SQL query language

COURSE OUTCOMES:

At the end of the course, students will be able to:

- Distinguish different type of Relational models, databases and schemas and construction of various relational algebra and calculus.
- Analyze the concepts of ER-model, Functional dependencies and normalization techniques.
- Describe the concepts of different transactions, concurrency control techniques, database recovery techniques.
- Analyze the basic concepts and use of Object-oriented, Distributed, Image, Multimedia and Spatial databases

Unit No & Name	Components of the Unit	No of contact hours	Marks
UNIT-I: Relational model	 Relational model concepts, relational databases and schemas Relational algebra operations, queries in relational algebra Overview of relational calculus; Commercial query language SQL- data definition, constraints, SQL queries, insertion, deletion, updation. 	13	15
UNIT-II: Semantic modeling	• Introduction, E-R model, E-R diagrams, design of database with E-R model, Transformation of ER	13	15

	model to relational schema		
	• Extended ER diagram, Generalization,		
	Aggregation		
UNIT-III: Normalization and	• Design guidelines, functional dependencies –	20	20
functional dependencies	equivalence of sets of functional dependencies,		
	cover, minimal cover		
	 Normal forms- 1NF, 2NF, 3NF, BCNF, 4NF, 		
	 Dependency-preserving property , lossless join 		
	property, algorithms to ensure dependency -		
	preserving property and lossless join property		
UNIT-IV: System	Query processing and optimization- translation	18	20
implementation techniques	between SQL queries and relational algebra	10	20
	 Transaction processing- transaction and system 		
	concepts, desirable properties, schedules and		
	recoverability		
	• Concurrency control- locking techniques,		
	concurrency control based on timestamp ordering,		
	multiversion concurrency control techniques		
	• Database recovery- concepts and techniques,		
	recovery in multidatabase systems; Security and		
	authentication- issues, access control techniques,		
	introduction to multilevel security.	0	10
UNIT-V: Object oriented database systems	• Concepts of object-oriented databases; Standards,	9	10
	languages and design		
	Object relational database systems.		
UNIT-VI: Distributed databases	• Concepts; Data fragmentation, replication, and	9	10
uatabases	allocation techniques		
	• Types of distributed database systems; Query		
	processing in distributed databases		
	• Overview of concurrency control and recovery in		
	distributed databases.		
UNIT-VII: Image, multimedia,	• Concepts of Image, multimedia, and spatial	8	10
and spatial databases	databases		
	• Content-based indexing and retrieval, indexing		
	techniques- R trees, R+ trees, KD trees.		
	Total:	90	100

- Elmasri, R., Navathe, S. B., Fundamentals of Database Systems, Pearson Education.
- Date, C. J., An Introduction To Database Systems, Pearson Education.
- Stamper, D., Price, W., Database Design and Management- An Applied Approach, McGraw Hill.
- Prabhu, C. S. R., Object-Oriented Database Systems- Approaches and Architectures, PHI.
- Ullman, J. D., Principles of Database Systems, Galgotia.

COURSE ASSESSMENT DETAILS:

Internal assessment: Class tests, Assignments, Laboratory tests

SEMESTER NAME: SECOND SEMESTER

COURSE CODE: INF2016	L-T-P: 4-1-1
COURSE NAME: DATA COMMUNICATION AND	CONTACT HOURS/WEEK: 7
COMPUTER NETWORKS	TOTAL MARKS: 100 (INTERNAL: 60, EXTERNAL: 40)
COURSE TYPE: CORE	NATURE: GRADED
NUMBER OF CREDITS: 6	

COURSE OBJECTIVES:

- 1. To provide the knowledge of essential of data communication and networking including a study of the Open Systems Interconnection (OSI), TCP/IP and Internet models.
- 2. To provide knowledge of different transmission modes, different network standards and protocols.
- 3. To provide the basic concept of LAN and Wireless LAN, Network Security etc

COURSE PREREQUISITE:

• Basic Concept of Computer Network.

COURSE OUTCOMES:

At the end of the course, students will be able to:

- Describe different synchronous and asynchronous transmission technologies.
- Identify the different types of network topologies and protocols.
- Explain data communication system and its components.
- Implement the skill of sub-netting and routing mechanism.

Unit No & Name	Components of the Unit	No of contact hours	Marks
UNIT-I: Introduction	Data Communication concepts and terminologies: Data representation, Data transmission, Transmission channels, Signal encoding, Transmission impairments, Transmission media: Guided transmission media (<i>Twisted pair, Coaxial and Optical</i> <i>fiber</i>); Wireless transmission (<i>Terrestrial</i> <i>microwave, satellite microwave, Broadcast</i> <i>Radio and Infrared</i>)	10	10

UNIT-II: Transmission Modes	 Asynchronous and Synchronous transmission, Baseband and Broadband transmission, Modulation methods, Modems, Multiplexing. 	8	6
UNIT-III: Evolution of Computer Networks	 Evolution of computer networks: Circuit switching, Development of packet switching: 1961-1972, Proprietary networks and internetworking: 1972-1980, Proliferation of networks: 1980-1990. The internet explosion: 1990s 	12	10
UNIT-IV: Network Standards and protocols	 Network standards and protocols: The IEEE standards, OSI 7 layer model, TCP/IP protocol suit. Data Link Layer: Frame design, Flow control, Error handling, HDLC, PPP, Sliding window protocol. 	15	18
UNIT-V: Different Network Layers	 Network Layer: IP, X.25, Frame Relay, ATM, Routing, Queuing theory. Transport Layer: TCP, UDP, Congestion control, Flow control, Socket interface. Application Layer: SNMP, Authentication, Encryption, Web and HTTP, FTP, Email, DNS, Network File System (NFS) and File sharing, Remote Procedure Calling (RPC). 	20	24
UNIT-VI: Introduction to LAN, Architecture and Technology	 Local Area Network (LAN): Needs, Architecture and Technology, Ethernet: CSMA/CD operation, parameters and specifications, Cabling: 10Base5, 10Base2, 10BaseT, 10BaseF, Hubs, patch panels and wiring closets. Bridges, Switches, 100BaseT, 100BaseVGANY,Gigabit Ethernet. FDDI, Token Ring, Wireless, ISDN, B-ISDN 	15	20
UNIT-VII: Wireless LAN, Network Management and Security	 VSAT technology, Wireless LAN: Technologies, IEEE standards and protocols. Basics of Network management and Security, Infrastructure for network management and security. 	10	12

	Total :	90	100
--	---------	----	-----

- Stallings, W.; Data and Computer Communications; Prentice Hall of India.
- Tanenbaum A.S.; *Computer Networks*; Prentice Hall of India Education
- Kurose and Ross; *Computer Networking*; Addison Wesley
- Prakash C. Gupta; Data Communication; Prentice Hall of India

COURSE ASSESSMENT DETAILS:

Internal assessment: Class tests, Assignments, Laboratory tests, Seminar

COURSE CODE: INF2026	L-T-P: 4-2-0
COURSE NAME: ALGORITHMS AND	CONTACT HOURS/WEEK: 6
COMPLEXITY THEORY	TOTAL MARKS: 100 (INTERNAL: 60, EXTERNAL: 40)
COURSE TYPE: CORE	NATURE: GRADED
NUMBER OF CREDITS: 6	

- 1. To teach the students how to analyze computer algorithms.
- 2. To introduce some domain independent algorithm design techniques.
- 3. To acquaint the students with the classification of problems based on existence of efficient algorithms.

COURSE PREREQUISITE:

• Discrete Mathematics, CSC1046, CSC 1016

COURSE OUTCOMES:

At the end of the course, students will be able to:

- Determine the best, average, worst time complexity of algorithms.
- Know the big O, omega and theta notations and their usage to give asymptotic upper, Lower and tight bounds on time and space complexity of algorithms.
- Analyze major sorting and order statistics algorithms and solve problems using fundamental graph algorithms.
- Define the classes P and NP and explain the significance of NP completeness.

Components of the Unit	No of contact hours	Marks
 Concepts in algorithm analysis, time and space complexity. Review of asymptotic notations (Ο, ο, θ, ω, Ω) used for time complexity. Common Mathematical functions-monotonicity, floors and ceilings, polynomials, exponentials, logarithms, factorials, iterated logarithmic functions. Relational properties of asymptotic notations. Asymptotic behaviors of polynomials, relative asymptotic growth, ordering 	25	25
	 Concepts in algorithm analysis, time and space complexity. Review of asymptotic notations (O, o, θ, ω, Ω) used for time complexity. Common Mathematical functions-monotonicity, floors and ceilings, polynomials, exponentials, logarithms, factorials, iterated logarithmic functions. Relational properties of asymptotic notations. Asymptotic behaviors of polynomials, 	• Concepts in algorithm analysis, time and space complexity. 25 • Review of asymptotic notations (O, o, θ, ω, Ω) used for time complexity. 25 • Common Mathematical functions-monotonicity, floors and ceilings, polynomials, exponentials, logarithms, factorials, iterated logarithmic functions. Relational properties of asymptotic notations. • Asymptotic behaviors of polynomials,

and adjacency list. • Depth-first search and breadth-first search, topological sort. • Minimum spanning tree – Kruskal's and Prim's algorithm • Single source shortest path problem and algorithm due to Dijkstra. UNIT-IV Theory of NP- Completeness • Formal language framework, complexity classes – P, NP. co-NP. Reducibility and NP-Completeness, NP-Hard. • Computing lower bounds for sorting, merging, finding maximum and second maximum, minimum and maximum simultaneously. Unit - VI Overview of more • Basic idea about neural network and genetic 4 7		• Docurronage substitution method itsertion		
theorem (proof of the theorem is not included).Introduction to the concept of amortized analysis. Use of aggregate method to some simple problems like stack operations and incrementing binary counter.25UNIT-II: Algorithm Design Techniques• Algorithm design techniques – Divide and Conquer, Dynamic programming, Greedy Algorithm, Back-tracking, Branch and Bound. Illustration of design techniques by application to some specific problems such as: sorting and searching, matrix manipulation problem, job sequencing problem, set manipulation problem.2022UNIT-III Graph Algorithms• Representation of graphs – adjacency matrix and adjacency list.2022UNIT-III Graph Algorithms• Representation of graphs – adjacency matrix and adjacency list.2022UNIT-IV Theory of NP- Completeness• Formal language framework, complexity classes – P, NP. co-NP.1012Unit - V Lower Bound Theory unit - VI Overview of more• Basic idea about neural network and genetic47				
included).included).Introduction to the concept of amortized analysis. Use of aggregate method to some simple problems like stack operations and incrementing binary counter.25UNIT-II: Algorithm Design Techniques• Algorithm design techniques - Divide and Conquer, Dynamic programming, Greedy Algorithm Back-tracking, Branch and Bound. Illustration of design techniques by application to some specific problems such as: sorting and searching, matrix manipulation problem, set manipulation problem.25UNIT-III Graph Algorithms• Representation of graphs - adjacency matrix and adjacency list.20UNIT-III Graph Algorithms• Representation of graphs - adjacency matrix and adjacency list.20UNIT-IV Theory of NP- Completeness• Formal language framework, complexity classes - P, NP, co-NP.10Unit - V Lower Bound Theory• Computing lower bounds for sorting, merging, finding maximum and second maximum, minimum and maximum simultaneously.4Unit - V1 Overview of more• Basic idea about neural network and genetic4				
• Introduction to the concept of amortized analysis. Use of aggregate method to some simple problems like stack operations and incrementing binary counter.25UNIT-II: Algorithm Design Techniques• Algorithm design techniques – Divide and Conquer, Dynamic programming, Greedy Algorithm, Back-tracking, Branch and Bound. Illustration of design techniques by application to some specific problems such as: sorting and searching, matrix manipulation problem, knapsack problem, internal and external sorting problem, job sequencing problem, set manipulation problem.2022UNIT-III Graph Algorithms• Representation of graphs – adjacency matrix and adjacency list.2022UNIT-III Graph Algorithms• Representation of graphs – adjacency matrix and adjacency list.2022UNIT-IV Theory of NP- Completeness• Formal language framework, complexity classes – P, NP. co-NP.1012Unit - V Lower Bound Theory• Computing lower bounds for sorting, merging, finding maximum and second maximum, minimum and maximum simultaneously.69Unit - VI Overview of more• Basic idea about neural network and genetic47		-		
analysis. Use of aggregate method to some simple problems like stack operations and incrementing binary counter.25UNIT-II: Algorithm Design Techniques• Algorithm design techniques – Divide and Conquer, Dynamic programming, Greedy Algorithm, Back-tracking, Branch and Bound. Illustration of design techniques by application to some specific problems such as: sorting and searching, matrix manipulation problem, sknapsack problem, internal and external sorting problem, good sequencing problem, set manipulation problem.2022UNIT-III Graph Algorithms• Representation of graphs – adjacency matrix and adjacency list.2022UNIT-III Graph Algorithms• Representation of graphs – adjacency matrix and adjacency list.2022UNIT-IV Theory of NP- Completeness• Formal language framework, complexity classes – P, NP. co-NP.1012Unit - V Lower Bound Theory• Computing lower bounds for sorting, merging, finding maximum and second maximum, minimum and maximum simultaneously.69Unit - VI Overview of more• Basic idea about neural network and genetic47				
simple problems like stack operations and incrementing binary counter.25UNIT-II: Algorithm Design Techniques• Algorithm design techniques – Divide and Conquer, Dynamic programming, Greedy Algorithm, Back-tracking, Branch and Bound. Illustration of design techniques by application to some specific problems such as: sorting and searching, matrix manipulation problem, knapsack problem, internal and external sorting problem, job sequencing problem, set manipulation problem.2022UNIT-III Graph Algorithms• Representation of graphs – adjacency matrix and adjacency list. • Depth-first search and breadth-first search, topological sort. • Minimum spanning tree – Kruskal's and Prim's algorithm • Single source shortest path problem and algorithm due to Dijkstra.2022UNIT-IV Theory of NP- Completeness• Formal language framework, complexity classes – P, NP. co-NP. • Reducibility and NP-Completeness, NP- Hard.1012Unit - V Lower Bound Theory• Computing lower bounds for sorting, merging, finding maximum and second maximum, minimum and maximum simultaneously.69		-		
incrementing binary counter.UNITI-II: Algorithm Design Techniques• Algorithm design techniques – Divide and Conquer, Dynamic programming, Greedy Algorithm, Back-tracking, Branch and Bound. Illustration of design techniques by application to some specific problems such as: sorting and searching, matrix manipulation problem, knapsack problem, internal and external sorting problem, job sequencing problem, set manipulation problem.2525UNIT-III Graph Algorithms• Representation of graphs – adjacency matrix and adjacency list.2022UNIT-IV Theory of NP- Completeness• Formal language framework, complexity classes – P, NP. co-NP.1012UNIT-IV Theory of NP- Completeness• Computing lower bounds for sorting, merging, finding maximum and second maximum, minimum and maximum simultaneously.1012Unit - VI Overview of more• Basic idea about neural network and genetic47				
UNIT-II: Algorithm Design • Algorithm design techniques – Divide and Conquer, Dynamic programming, Greedy Algorithm, Back-tracking, Branch and Bound. Illustration of design techniques by application to some specific problems such as: sorting and searching, matrix manipulation problems, knapsack problem, internal and external sorting problem, job sequencing problem, set manipulation problem. 20 22 UNIT-III Graph Algorithms • Representation of graphs – adjacency matrix and adjacency list. 20 22 UNIT-IV Theory of NP- Completeness • Formal language framework, complexity classes – P, NP. co-NP. 10 12 Unit - V Lower Bound Theory • Computing lower bounds for sorting, merging, finding maximum and second maximum, minimum and maximum simultaneously. 6 9 Unit - VI Overview of more • Basic idea about neural network and genetic 4 7				
TechniquesConquer, Dynamic programming, Greedy Algorithm, Back-tracking, Branch and Bound. Illustration of design techniques by application to some specific problems such as: sorting and searching, matrix manipulation problem, job sequencing problem, set manipulation problem.Genedy application to some specific problems such as: sorting problem, job sequencing problem, set manipulation problem.UNIT-III Graph Algorithms• Representation of graphs – adjacency matrix and adjacency list.2022UNIT-III Graph Algorithms• Representation of graphs – adjacency matrix and adjacency list.2022UNIT-IV Theory of NP- Completeness• Formal language framework, complexity classes – P, NP. co-NP.1012Unit - V Lower Bound Theory• Computing lower bounds for sorting, merging, finding maximum and second maximum, minimum and maximum simultaneously.69Unit - VI Overview of more• Basic idea about neural network and genetic47				
Algorithm, Back-tracking, Branch and Bound. Illustration of design techniques by application to some specific problems such as: sorting and searching, matrix manipulation problems, knapsack problem, internal and external sorting problem, job sequencing problem, set manipulation problem.20UNIT-III Graph Algorithms• Representation of graphs – adjacency matrix and adjacency list.2022UNIT-III Graph Algorithms• Representation of graphs – adjacency matrix and adjacency list.2022UNIT-IV Theory of NP- Completeness• Formal language framework, complexity classes – P, NP. co-NP.1012Unit - V Lower Bound Theory• Computing lower bounds for sorting, merging, finding maximum and second maximum, minimum and maximum simultaneously.69Unit - VI Overview of more• Basic idea about neural network and genetic47		C C 1	25	25
Bound. Illustration of design techniques by application to some specific problems such as: sorting and searching, matrix manipulation problems, knapsack problem, job sequencing problem, set manipulation problem.UNIT-III Graph Algorithms• Representation of graphs – adjacency matrix and adjacency list.2022UNIT-III Graph Algorithms• Representation of graphs – adjacency matrix and adjacency list.2022UNIT-IV Theory of NP- Completeness• Formal language framework, complexity classes – P, NP. co-NP.1012Unit - V Lower Bound Theory• Computing lower bounds for sorting, merging, finding maximum and second maximum, minimum and maximum simultaneously.69Unit - VI Overview of more• Basic idea about neural network and genetic47	Techniques			
application to some specific problems such as: sorting and searching, matrix manipulation problems, knapsack problem, job sequencing problem, set manipulation problem. • Dynamic storage allocation, garbage collection.UNIT-III Graph Algorithms• Representation of graphs – adjacency matrix and adjacency list. • Depth-first search and breadth-first search, topological sort. • Minimum spanning tree – Kruskal's and Prim's algorithm • Single source shortest path problem and algorithm due to Dijkstra.2022UNIT-IV Theory of NP- Completeness• Formal language framework, complexity classes – P, NP. co-NP. • Reducibility and NP-Completeness, NP- Hard.1012Unit - V Lower Bound Theory• Computing lower bounds for sorting, merging, finding maximum and second maximum, minimum and maximum simultaneously.69Unit - VI Overview of more• Basic idea about neural network and genetic47				
as:sortingandsearching,matrix manipulation problem, job sequencing problem.UNIT-III Graph Algorithms•Proprime ecollection.2022UNIT-III Graph Algorithms•Representation of graphs – adjacency matrix and adjacency list.2022UNIT-III Graph Algorithms•Representation of graphs – adjacency matrix and adjacency list.2022UNIT-IV Theory of NP- Completeness•Portmal language framework, complexity classes – P, NP. co-NP.1012Unit - V Lower Bound Theory unit - VI Overview of more•Computing lower bounds for sorting, merging, finding maximum and maximum simultaneously.69Unit - VI Overview of more•Basic idea about neural network and genetic47		Bound. Illustration of design techniques by		
manipulation problems, knapsack problem, internal and external sorting problem, job sequencing problem, set manipulation problem.Dynamic storage allocation, garbage collection.Dynamic storage allocation, garbage collection.UNIT-III Graph Algorithms• Representation of graphs – adjacency matrix and adjacency list. • Depth-first search and breadth-first search, topological sort. • Minimum spanning tree – Kruskal's and Prim's algorithm • Single source shortest path problem and algorithm due to Dijkstra.10UNIT-IV Theory of NP- Completeness• Formal language framework, complexity classes – P, NP. co-NP. • Reducibility and NP-Completeness, NP- Hard.10Unit - V Lower Bound Theory unit - VI Overview of more• Computing lower bounds for sorting, merging, finding maximum and second maximutaneously.6		application to some specific problems such		
internal and external sorting problem, job sequencing problem, set manipulation problem.Dynamic storage allocation, garbage collection.UNIT-III Graph Algorithms• Representation of graphs – adjacency matrix and adjacency list.• Depth-first search and breadth-first search, topological sort.• Minimum spanning tree – Kruskal's and Prim's algorithm• Single source shortest path problem and algorithm due to Dijkstra.UNIT-IV CompletenessUNIT-V Theory of NP- Completeness• Formal language framework, complexity classes – P, NP. co-NP.• Reducibility and NP-Completeness, NP- Hard.Unit - V Lower Bound Theory• Computing lower bounds for sorting, merging, finding maximum and second maximum, minimum and maximum simultaneously.Unit - VI Overview of more• Basic idea about neural network and genetic4		as: sorting and searching, matrix		
sequencing problem, set manipulation problem.Dynamic storage allocation, garbage collection.UNIT-III Graph Algorithms• Representation of graphs – adjacency matrix and adjacency list.• Depth-first search and breadth-first search, topological sort.• Minimum spanning tree – Kruskal's and Prim's algorithm• Single source shortest path problem and algorithm due to Dijkstra.UNIT-IV Completeness• Formal language framework, complexity classes – P, NP. co-NP.• Reducibility and NP-Completeness, NP- Hard.Unit - V Lower Bound Theory• Computing lower bounds for sorting, merging, finding maximum and second maximum, minimum and maximum simultaneously.Unit - VI Overview of more• Basic idea about neural network and genetic4		manipulation problems, knapsack problem,		
problem.problem.• Dynamic storage allocation, garbage collection.20UNIT-III Graph Algorithms• Representation of graphs – adjacency matrix and adjacency list.20• Depth-first search and breadth-first search, topological sort.20• Minimum spanning tree – Kruskal's and Prim's algorithm9• Single source shortest path problem and algorithm due to Dijkstra.10UNIT-IV Completeness• Formal language framework, complexity classes – P, NP. co-NP.10• Reducibility and NP-Completeness, NP- Hard.• Computing lower bounds for sorting, merging, finding maximum and second maximum, minimum and maximum simultaneously.6Unit - VI Overview of more• Basic idea about neural network and genetic4		internal and external sorting problem, job		
• Dynamic storage allocation, garbage collection. UNIT-III Graph Algorithms • Representation of graphs – adjacency matrix and adjacency list. 20 22 • Depth-first search and breadth-first search, topological sort. • Depth-first search and breadth-first search, topological sort. 20 22 • Minimum spanning tree – Kruskal's and Prim's algorithm • Single source shortest path problem and algorithm due to Dijkstra. 10 12 UNIT-IV Theory of NP-Completeness • Formal language framework, complexity classes – P, NP. co-NP. 10 12 Unit - V Lower Bound Theory • Computing lower bounds for sorting, merging, finding maximum and second maximum, minimum and maximum simultaneously. 6 9 Unit - VI Overview of more • Basic idea about neural network and genetic 4 7		sequencing problem, set manipulation		
collection.UNIT-III Graph Algorithms• Representation of graphs – adjacency matrix and adjacency list.2022• Depth-first search and breadth-first search, topological sort.• Depth-first search and breadth-first search, topological sort.• Minimum spanning tree – Kruskal's and Prim's algorithm• Single source shortest path problem and algorithm due to Dijkstra.UNIT-IV Completeness• Formal language framework, complexity classes – P, NP. co-NP.• Formal language framework, complexity classes – P, NP. co-NP.1012Unit - V Lower Bound Theory• Computing lower bounds for sorting, merging, finding maximum and second maximum, minimum and maximum simultaneously.69Unit - VI Overview of more• Basic idea about neural network and genetic47		problem.		
UNIT-III Graph Algorithms • Representation of graphs – adjacency matrix and adjacency list. 20 22 • Depth-first search and breadth-first search, topological sort. • Depth-first search and breadth-first search, topological sort. • Minimum spanning tree – Kruskal's and Prim's algorithm 20 22 UNIT-IV Theory of NP-Completeness • Formal language framework, complexity classes – P, NP. co-NP. 10 12 Unit - V Lower Bound Theory • Computing lower bounds for sorting, merging, finding maximum and second maximum, minimum and maximum simultaneously. 9 Unit - VI Overview of more • Basic idea about neural network and genetic 4 7		• Dynamic storage allocation, garbage		
and adjacency list. • Depth-first search and breadth-first search, topological sort. • Minimum spanning tree – Kruskal's and Prim's algorithm • Single source shortest path problem and algorithm due to Dijkstra. UNIT-IV Theory of NP- Completeness • Formal language framework, complexity classes – P, NP. co-NP. Reducibility and NP-Completeness, NP-Hard. • Computing lower bounds for sorting, merging, finding maximum and second maximum, minimum and maximum simultaneously. Unit - VI Overview of more • Basic idea about neural network and genetic 4 7		collection.		
• Depth-first search and breadth-first search, topological sort.• Minimum spanning tree – Kruskal's and Prim's algorithm• Minimum spanning tree – Kruskal's and Prim's algorithm• Single source shortest path problem and algorithm due to Dijkstra.UNIT-IV Completeness• Formal language framework, complexity classes – P, NP. co-NP. • Reducibility and NP-Completeness, NP- Hard.10Unit - V Lower Bound Theory• Computing lower bounds for sorting, merging, finding maximum and second maximum, minimum and maximum simultaneously.6Unit - VI Overview of more• Basic idea about neural network and genetic4	UNIT-III Graph Algorithms	• Representation of graphs – adjacency matrix	20	22
topological sort.Minimum spanning tree – Kruskal's and Prim's algorithmSingle source shortest path problem and algorithm due to Dijkstra.10UNIT-IV Completeness• Formal language framework, complexity classes – P, NP. co-NP. • Reducibility and NP-Completeness, NP- Hard.10Unit - V Lower Bound Theory• Computing lower bounds for sorting, merging, finding maximum and second maximum, minimum and maximum simultaneously.6Unit - VI Overview of more• Basic idea about neural network and genetic4		and adjacency list.		
topological sort.Minimum spanning tree – Kruskal's and Prim's algorithmSingle source shortest path problem and algorithm due to Dijkstra.10UNIT-IV Completeness• Formal language framework, complexity classes – P, NP. co-NP. • Reducibility and NP-Completeness, NP- Hard.10Unit - V Lower Bound Theory• Computing lower bounds for sorting, merging, finding maximum and second maximum, minimum and maximum simultaneously.6Unit - VI Overview of more• Basic idea about neural network and genetic4		• Depth-first search and breadth-first search,		
• Minimum spanning tree – Kruskal's and Prim's algorithm• Single source shortest path problem and algorithm due to Dijkstra.UNIT-IV Theory of NP- Completeness• Formal language framework, complexity classes – P, NP. co-NP. • Reducibility and NP-Completeness, NP- Hard.Unit - V Lower Bound Theory Unit - VI Overview of more• Computing lower bounds for sorting, merging, finding maximum and second maximum, minimum and maximum simultaneously.69		-		
Prim's algorithm• Single source shortest path problem and algorithm due to Dijkstra.UNIT-IV Theory of NP- Completeness• Formal language framework, complexity classes – P, NP. co-NP. • Reducibility and NP-Completeness, NP- Hard.1012Unit - V Lower Bound Theory Unit - VI Overview of more• Computing lower bounds for sorting, merging, finding maximum and second maximum, minimum and maximum simultaneously.69				
• Single source shortest path problem and algorithm due to Dijkstra. UNIT-IV Theory of NP- • Formal language framework, complexity classes – P, NP. co-NP. • Reducibility and NP-Completeness, NP-Hard. Unit - V Lower Bound Theory • Computing lower bounds for sorting, merging, finding maximum and second maximum, minimum and maximum simultaneously. Unit - VI Overview of more • Basic idea about neural network and genetic 4				
algorithm due to Dijkstra.UNIT-IV Theory of NP- Completeness• Formal language framework, complexity classes – P, NP. co-NP. • Reducibility and NP-Completeness, NP- Hard.1012Unit - V Lower Bound Theory Unit - VI Overview of more• Computing lower bounds for sorting, merging, finding maximum and second maximum, minimum and maximum simultaneously.69Unit - VI Overview of more• Basic idea about neural network and genetic47		C		
UNIT-IV Theory of NP- • Formal language framework, complexity classes – P, NP. co-NP. 10 12 Completeness • Reducibility and NP-Completeness, NP-Hard. • Computing lower bounds for sorting, merging, finding maximum and second maximum, minimum and maximum simultaneously. 6 9 Unit - VI Overview of more • Basic idea about neural network and genetic 4 7				
Completeness classes – P, NP. co-NP. • Reducibility and NP-Completeness, NP- Hard. • Computing lower bounds for sorting, merging, finding maximum and second maximum, minimum and maximum simultaneously. 6 9 Unit - VI Overview of more • Basic idea about neural network and genetic 4 7	UNIT-IV Theory of NP-		10	12
• Reducibility and NP-Completeness, NP- Hard. • Reducibility and NP-Completeness, NP- Hard. Unit - V Lower Bound Theory • Computing lower bounds for sorting, merging, finding maximum and second maximum, minimum and maximum simultaneously. 6 9 Unit - VI Overview of more • Basic idea about neural network and genetic 4 7	·		10	12
Hard. Hard. Unit - V Lower Bound Theory • Computing lower bounds for sorting, merging, finding maximum and second maximum, minimum and maximum simultaneously. 6 9 Unit - VI Overview of more • Basic idea about neural network and genetic 4 7	Completeness			
Unit - V Lower Bound Theory • Computing lower bounds for sorting, merging, finding maximum and second maximum, minimum and maximum simultaneously. 6 9 Unit - VI Overview of more • Basic idea about neural network and genetic 4 7		-		
merging, finding maximum and second maximum, minimum and maximum simultaneously. Unit – VI Overview of more • Basic idea about neural network and genetic 4 7	Linit VI cover Derrid Theory		6	0
maximum, minimum and maximum simultaneously. Unit – VI Overview of more • Basic idea about neural network and genetic 4	Unit - V Lower Bound I neory	1 6 6	O	9
unit – VI Overview of more • Basic idea about neural network and genetic 4 7				
Unit – VI Overview of more • Basic idea about neural network and genetic 4 7				
		simultaneously.		
	Unit – VI Overview of more	Basic idea about neural network and genetic	4	7
		algorithm.	-T	,
Algorithm Design Techniques	Algorithm Design Techniques	argoriumi.		
Total 90 100		Total	90	100

- Cormen. T. H., Leiserson C. E. and Rivest. R. L., 3rd edition (2010); *Introduction to Algorithms*, Tata-Mcgraw Hill Publishers.
- Horowitz and Sahani; (2nd Edition) *Fundamentals of Computer Algorithms*, Galgotia.
- Aho.A, Hopcroft J.E. and Ullman J.D.; (2011), *Design and Analysis of Computer Algorithms*, Pearson Education.
- S. Baase and Allen Van Gelder, (3rd edition), *Computer Algorithms-Introduction to Design and Analysis*, Pearson Education, LPE.

COURSE ASSESSMENT DETAILS:

Internal assessment: Two mid semester examinations will be conducted apart from sudden class tests and home assignments. 60% of this evaluation will be added to the total marks for this course.

External assessment: End Semester Examination will be of 100 marks covering the entire course and the exam duration will be 3 hours. 40% of the mark obtained will be added to the total marks for this course.

COURSE CODE: INF2036	L-T-P: 4-1-1
COURSE NAME: SOFTWARE ENGINEERING	CONTACT HOURS/WEEK: 7
COURSE TYPE: CORE	TOTAL MARKS: 100 (INTERNAL: 60, EXTERNAL: 40)
NUMBER OF CREDITS: 6	NATURE: GRADED

- 1. To provide students the knowledge of SE challenges, Software process, S/W development process model and problem analysis.
- 2. The give students the concepts of role of software architecture, architecture views, software cost estimation model, quality plan, and risk management.
- 3. To familiarize students with concepts of module level concept, OO Analysis and OO Design, UML, Coding process, refactoring, verification, testing fundamentals.

COURSE PREREQUISITE:

• Basic knowledge of database management system.

COURSE OUTCOMES:

At the end of the course, students will be able to:

- Compare different software development processes and their challenges.
- Create software require specification and translate it into an implementable design, following a structured and organize process.
- Implement different software estimation metrics such as cost, effort size, staffing etc.
- Make effective use of UML, along with design strategies such as defining software architecture, separation of concerns and design patterns.

Unit No & Name	Components of the Unit	No of contact hours	Marks
UNIT-I: Software challenges and Software process	 Problem domain, SE challenges SE approach. Software process, Characteristics of SW process, SW development process model. 	10	10
UNIT-II: Software requirement and specification	 SW requirement, problem analysis, requirement specification. Functional specification, validation, matrices. 	10	15
UNITIII:Software architecture views and cost	Role of SW architecture, architecture view, component and connector view, style for C&C	30	35

estimation model.	view.		
	• Process planning, Effort estimation, Software Cost		
	Estimation based on COCOMO II cost model.		
	• Scheduling and staffing.		
	• SW configuration management plan, quality plan,		
	risk management, project monitoring plan.		
UNIT-IV: Design principles	Design principle	25	25
and Methodology	Module level concept		
	• Design notation and specification,		
	• Structured design methodology verification.		
	• OO Analysis and OO Design. OO Design concept,		
	UML. OO Design methodology.		
UNIT-V: Detail Design and	Detail design and PDL	15	15
Testing fundamentals	• Verification, Metrices, Programming principles		
	and guidelines, coding process, refactoring,		
	verification. Testing fundamentals.		
	Total	90	100

- Jalote P. ; An integrated Approach to Software Engineering; Narosa Publishing House
- Patton R.; *Software Engineering;* Pearson Education.
- Agarwal K. K., Singh Y.; Software Engineering; New Age International Publisher.
- Sommerville I.; *Software Engineering*; Pearson Education (Addison Wesley)
- Pressman R.S.; Software Engineering: A practitioner's Approach; McGraw Hill.

COURSE ASSESSMENT DETAILS:

Internal assessment: Class tests, Assignments, Laboratory tests

COURSE CODE: INF2046	L-T-P: 4-1-1
COURSE NAME: COMPUTER GRAPHICS AND	CONTACT HOURS/WEEK: 7
MULTIMEDIA	TOTAL MARKS: 100 (INTERNAL: 60, EXTERNAL: 40)
COURSE TYPE: CORE	NATURE: GRADED
NUMBER OF CREDITS: 6	

- 1. To introduce students the basic concepts of hardware, software and applications of computer graphics.
- 2. To familiarize students with the concepts of computer graphics such as input/output systems, line drawing algorithms, area filling algorithms, clipping algorithms etc those are essential for designing computer graphics software.
- 3. To provide experience of graphics programming by completing several programming assignments.

COURSE PREREQUISITE:

- Programming knowledge of C.
- Concept of basic linear algebra (matrices and vector geometry).

COURSE OUTCOMES:

At the end of the course, students will be able to:

- Explain basic knowledge of core concepts of computer graphics input/output systems.
- Analyze different techniques such as line drawing algorithms, area filling algorithms, clipping algorithms etc that are essential for designing computer graphics software.
- Solve problems 2D/3D geometric transformations and viewing techniques.
- Differentiate different Colour models, visible surface rendering method, methods

Unit No & Name	Components of the Unit	No of contact hours	Marks
UNIT-I: Introduction	• Introduction: Computer graphics and its	15	10
and overview of	applications; Input devices; Output devices-		
Graphics systems	display devices; Display techniques- Raster-scan		
	display and Random-scan display; color display		
	techniques; Direct view storage tubes; emissive		
	& non-emissive flat-panel displays-Plasma		
	panels, Thin-film electrostatic displays, LED,		
	LCD; Three-dimensional viewing devices;		

UNIT-II: Output primitives	 display systems architecture. Graphics software: classifications, graphics functions for various operations, software standards- PHIGS, PHIGS+, GKS. Line-drawing algorithms: DDA algorithm and Bresenham's algorithm. Midpoint algorithms for circle & ellipse 	20	20
	 generation. Area-filling algorithms: scan-line polygon-fill, nonzero-winding number rule, scan-line curve filling, boundary-fill algorithm, flood-fill algorithm. Character generation techniques: generation of bitmap and outlined font. 		
UNIT-III: Geometric transformations	 2-D geometric transformations: Basic transformations- translation, rotation and scaling; matrix representations and Homogeneous co-ordinate representations; Composite transformations among translation, rotation and scaling; General pivot-point rotation; General fixed-point scaling; General scaling directions; Other transformations-reflection and shear; Transformation between co-ordinate systems; Definition of Affine transformations. 3-D geometric transformations: Translation; Rotation- rotation; Scaling; Reflection; Shear. 	15	20
UNIT-IV: Viewing and Clipping	 2-D viewing: definition; viewing transformation pipeline; window-to-viewport co-ordinate transformation. 2-D Clipping operations: definition; point clipping; line clipping algorithms; polygon clipping algorithms; curve clipping, text clipping. 3-D viewing: viewing transformation pipeline; 	15	20

	world co-ordinate to viewing co-ordinate		
	transformation.		
UNIT-V: 3D	• 3-D concepts: display methods- Parallel	15	20
UNIT-V: 3D Graphics	 projection, perspective projection, depth visible line & surface identification, surface rendering, exploded & cutaway views, 3-D & stereoscopic views. Projections: Parallel projection techniques- orthographic & oblique projections and their transformation equations; Perspective projection and transformation equations. Visible surface detection: definition; classification of algorithms- object-space methods & Image-space methods; algorithms for visible surface detection; curved-surface detection; wireframe displays. Illumination and Surface rendering: definition and importance; light sources; Definition of basic illumination models. Color models and applications: properties of light; standard preliminaries- XYZ model, CIE 	15	20
	chromaticity diagram; color models- RGB, YIQ, CMY, HSV, HLS; conversion between color models.		
UNIT-VI: Multimedia	Multimedia Systems: Review of typical	10	10
Systems and Computer Animation	 Multimedia Systems: Review of typical interactive multimedia systems, Aspects of multimedia systems, Multimedia design techniques, Multimedia technology; Networkbased multimedia systems. Computer Animation: Traditional animation techniques, 2D animation, 3D animation. Case Study: Graphics API with GD or OpenGL or DirectX/3D. 	10	
	TOTAL	90	100

- Hearn D., Baker M. P.; Computer Graphics C Version; PHI.
- Foly, Dam V., Feiner, Hughes; Computer Graphics principles and practice; Pearson Education.
- Xiang Z., Plastock R. A.; (2006); Computer Graphics, McGraw Hill.
- Sinha N., Udai A. D.; (2008); Computer Graphics, McGraw Hill

COURSE ASSESSMENT DETAILS:

Internal assessment: Class tests, Assignments, Laboratory tests

COURSE CODE: INF2056	L-T-P: 4-0-2
COURSE NAME: ADVANCED DATA	CONTACT HOURS/WEEK: 8
STRUCTURE	TOTAL MARKS: 100 (INTERNAL: 60, EXTERNAL: 40)
COURSE TYPE: CORE	NATURE: GRADED
NUMBER OF CREDITS: 6	

- 1. To teach efficient storage mechanisms of data for an easy access.
- 2. To design and implementation of various basic and advanced data structures.
- 3. To introduce various techniques for representation of the data in the real world.
- 4. To develop application using data structures.

COURSE PREREQUISITE:

• Fundamentals of C/C++ programming

COURSE OUTCOMES:

At the end of the course, students will be able to:

- Analyze linear and non-linear data structures like stacks, queues, linked list etc.
- Solve problems related to data dictionary data structures such as search tree, AVL tree, Red Black trees, Splay trees and Hashing.
- Compare different Sorting and Searching techniques such as Quick sort, Heap Sort, Radix Sort, Counting Sort, BST, Median and Order Statistics and Heap data structures.
- Implement B tree, B+ tree used for external storage operation.

Unit No & Name	Components of the Unit	No of contact hours	Marks
UNIT-I: Review of basic concepts in Data Structure	 A quick review of array versus linked list structure; binary tree, binary search tree; traversal, insertion and deletion in binary search trees. 	10	10
UNIT-II: Dictionary ADT	 Search trees, balancing of search trees – AVL trees, Red-Black trees, multi way search trees, 2-3 trees, splay trees. Insertion and Deletion in each of the above data structures. Hashing. 	20	20

UNIT-III: Sorting and	• Quick sort, Heap sort, Shell sort, sorting in	15	20
Selection Techniques	linear time - Counting sort, Radix sort.		
	Medians and order Statistics. Selection and		
	Adversary arguments. Lower bound on		
	sorting		
UNIT-IV: Priority	• Heaps-extended priority queue, min (max)	20	20
Queue ADT	heaps, binomial heap, fibonacci heap and its		
	amortized analysis.		
UNIT-V: Partition ADT	• Union-find algorithms through weighted	15	15
	merge and path compression.		
UNIT-VI: Data	• B-tree, insertion and deletion in B-trees,	10	15
Structure for external	external sorting. B+ tree.		
storage operations			
	TOTAL	90	100

- Cormen T. H., Leiserson C. E., Rivest R. L.; Introduction to Algorithms; Tata-McGraw Hill Publishers
- Aho A., Hopcroft J. E., Ullman J. D.; *Data Structures and Algorithms*; Addison-Wesley
- Horowitz, Sahani; Fundamentals of Data Structures in C/C++; Computer Science Press
- Aho A., Hopcroft J. E., Ullman J. D.; Design and Analysis of Computer Algorithms ; Addison-Wesley

COURSE ASSESSMENT DETAILS:

Internal assessment: Class tests, Assignments, Laboratory tests

SEMESTER NAME: THIRD SEMESTER

COURSE CODE: INF3016	L-T-P: 4-1-1
COURSE NAME: WEB PROGRAMMING AND	CONTACT HOURS/WEEK: 7
TECHNOLOGIES	TOTAL MARKS: 100 (INTERNAL: 60, EXTERNAL: 40)
COURSE TYPE: ELECTIVE/OPEN	NATURE: GRADED
NUMBER OF CREDITS: 6	

COURSE OBJECTIVES:

- 1. To provide the basic concepts of Internet and different Internet services, such as, telnet, e-mail, FTP, etc.
- 2. To enable students to design basic web page using HTML, JavaScript, Ajax, CSS.
- 3. To provide basic knowledge of markup languages, their structures, elements, content models, DTD, attributes, etc.
- 4. To introduce the basics of XML such as, how to display XML contents, how to use user-defined tags in web pages, use of XSL, etc.
- 5. To give brief introduction to some server-side scripting language, such as PHP, JSP, ASP, etc.

COURSE PREREQUISITE:

• Basics of programming languages and database management system

COURSE OUTCOMES:

At the end of the course, students will be able to:

- Analyze a web page and identify its elements and attributes.
- Create interactive web applications using AJAX. Differentiate between client side web technologies and server side web technologies
- Apply languages like HTML, DHTML, CSS, XML, JavaScript, VBScript, ASP, PHP, JSP, Servlet and protocols in the workings of the web and web applications
- Analyze a web project and identify its elements and attributes and build customize web sites and web applications

COURSE CONTENT:
Unit No. 8. Nomo

Unit No & Name	Components of the Unit	No of contact hours	Marks
UNIT-I: Internet basics	• History and basic idea of Internet.	5	8
	• Different types of Internet services, such as, telnet, e-mail, ftp, WWW, etc.		
UNIT-II: Web page design	• Designing web pages with HTML.	8	10
	• Use of different tags, hyper-links, URLs, tables, text		
	formatting, graphics & multimedia, image-map,		

	frames and forms in web pages.		
	• Use of Cascading Style Sheet in web pages.		
UNIT-III: Creating	Basics of JavaScript overview, such as, constants,	8	8
interactive and dynamic web	variables, operators, expressions & statements,		
pages with JavaScript	• Creating user-defined & built-in functions,		
	• Client-side form validation using properties and		
	methods of built-in objects.		
UNIT-IV: Markup language	Basics of Standard Generalized Markup Language	10	10
basics	(SGML) such as structures, elements, Content		
	models, DTD, attributes, entities.		
UNIT-V: Extensible Markup	• Introduction to using user-defined tags in web pages,	12	8
Language (XML):	• Displaying XML contents,		
	• Creating XML DTDs,		
	• Use of XSL.		
UNIT-VI: Web Browsers	• Functions and working principle of web browsers,	5	10
	• Plug-ins & helper applications,		
	• Conceptual architecture of some typical web		
	browsers.		
UNIT-VII: Introduction to	Basics of client-server computing,	10	12
Client/Server Computing	• Types of Client/Server systems, such as,		
	middleware, 2-tier/3-tier/4-tier/ N-tier systems,		
	• Fat Clients versus Fat Servers.		
UNIT-VIII: Web Servers	• Web services and web server functionality,	8	8
	• Web server composition and registration,		
	• Basics of HTTP, IP address, DNS & ports,		
	• Conceptual architecture of some typical web servers.		
UNIT-IX: Server-side	• overview of CGI, ASP, and JSP,	8	10
scripting	• Server side scripting using PHP,		
	• Web database connectivity- introduction to ODBC,		
	• PHP with database connectivity.		
UNIT-X: Exposure to	• Distributed Object based models- DCOM, CORBA,	8	8
Advanced Web Technologies	EJB,		
	• Web services and Related Technologies, such as,		
	ISAPI, SOAP, UDDI, WSDL,		
	• Other Advanced Web Technologies- AJAX, ISAPI,		
	.NET.		

UNIT-XI: Web Security	•	Basics of Firewalls, such as, definition and their uses,	8	8
	•	Types of Firewalls, such as, Network layer firewalls and application layer firewalls,		
	•	Proxy servers.		
		Total:	90	100

- Oliver, Dick, Sams; Teach Yourself Html 4 in 24 Hours; Techmedia.
- Ashbacher, Charles, Sams; Teach Yourself XML in 24 Hours; Techmedia.
- Phil B., M. Michael, Sams; Teach Yourself JavaScript in 24 Hours; Techmedia.
- Julie C. M., Sams; *Teach Yourself PHP in 24 Hours*, Techmedia.
- Lehnert, Wendy. G.; Web 101: Making the Net for you; Pearson Education.
- Robert W. S.; World Wide Web Programming; Pearson Education.

COURSE ASSESSMENT DETAILS:

Internal assessment: Class tests, Assignments, Laboratory tests, Seminar

- 1. To provide students the concepts of basic architecture and components of distributed systems
- 2. To familiarize the students with the concepts of various distributed algorithms.
- 3. To give students the concepts of concurrency controlling and distributed file system handing

COURSE PREREQUISITE:

• Basic concepts of Operating Systems and basic concepts of Computer networks

COURSE OUTCOMES:

At the end of the course, students will be able to:

- Explain the architecture and different system models of distributed systems.
- Analyze different process synchronization, Global state recording and termination detection algorithms in distributed systems.
- Compare different Mutual Exclusion, leader election algorithms, different distributed file structures
- Distinguish the Inter-process communication methods and analyze the idea of failure handling, concurrency management and Security handling issues

Unit No & Name	Components of the Unit	No of contact hours	Marks
UNIT-I: Introduction to Distributed Systems	 Definition of a distributed system. Characteristics of distributed and centralized systems, Design issue and challenges, types of transparency issues, openness, and scalability. Hardware concepts- multiprocessors, homogeneous & heterogeneous systems, middleware, issues in distributed Operating systems, inherent limitations of distributed systems System models: Fundamental and Architectural model, System architectures- The client-server model and its variations, application layering, client-server 	hours 18	20
	architectures.		

UNIT-II: Synchronization	• Needs of clash complementation sectomed and intermed	18	20
UNIT-II: Synchronization	• Needs of clock synchronization, external and internal	18	20
	clock synchronization, Logical and vector clocks,		
	Lamport's logical clock, Vector clocks, Causal Order of		
	messages, Birman-Schiper-Stephension protocol,		
	Schiper-Eggli-Sandoz protocol,		
	• Global state, Chandy Lamport snapshot algorithm,		
	termination detection, Haung's algorithm		
UNIT-III: Distributed	• Requirements of Mutual Exclusion algorithms,	18	20
Mutual Exclusions	Performance measurement metrics, Classification of		
	mutual exclusion algorithm, Token based algorithms,		
	Non-token based algorithm, Central Server Algorithm,		
	Lamport's timestamp algorithm, Ricart-Agrawala		
	Algorithm, Maekawa's Voting algorithm, Ring based		
	algorithm, Suzuki-Kasami's Broadcast algorithm,		
	Raymond's Tree-based algorithm		
	• Election algorithms- the Bully algorithm, Ring		
	algorithm. Mutual exclusion- definition, algorithms.		
UNIT-IV: Distributed	• Distributed scheduler, issues in distributed load	9	10
Scheduling and Deadlock	distribution, components of load distribution algorithm,		
detection	stability, task migration		
	• Basic conditions of deadlocks, Resource and		
	communication deadlock, Strategies of deadlock		
	handling, issues in deadlock detection and resolution,		
	Deadlock detection algorithms (Centralized, Distributed		
	, Hierarchical)		
UNIT-V: Agreement	 System models, classification of agreement problems 	9	10
Protocols and Inter-	(Byzantine, Consensus, Interactive), Solutions to the		
process Communication	Byzantine agreement problem, Applications of		
	agreement algorithms		
	 Inter-process Communications, API for UDP/TCP, 		
	Request Reply Protocol, Remote Procedure Call- basic		
	RPC operation, parameter passing, examples.		
	Remote Object Invocation- distributed objects, integrating glights and objects static versus dynamics		
	integrating clients and objects, static versus dynamic		
	RMI, parameter passing, examples and case study.	4	
UNIT-VI: Naming	• Naming entities- names, identifiers & addresses, name	4	5
	resolution, name space implementation, the Domain		

	Name System.		
UNIT-VII: Distributed	• Distributed transactions- ACID properties, flat and	7	7
Transaction Processing	nested transactions, atomic commit protocols, concurrency control in distributed transactions, Introduction, reasons for replication, object replication, consistency models		
UNIT-VIII: Distributed File Systems	 Introduction: characteristics of file systems, distributed file system requirements, File service architecture, file accessing models, detailed case study of Sun Network File System (NFS). 	7	8
	Total:	90	100

- Tanenbaum & Steen; (2004); Distributed Systems Principles and Paradigms; Pearson Education
- Coulouris, Dollimore & Kindberg; (2006); Distributed Systems Concepts and Design; Pearson Education

COURSE ASSESSMENT DETAILS:

Internal assessment: Class tests, Assignments, Laboratory tests

COURSE CODE: INF3036	L-T-P: 4-1-1
COURSE NAME: COMPILER DESIGN	CONTACT HOURS/WEEK: 7
COURSE TYPE: CORE	TOTAL MARKS: 100 (INTERNAL: 60, EXTERNAL: 40)
NUMBER OF CREDITS: 6	NATURE: GRADED

- 1. To provide the students the concepts of various of phases of compiler design
- 2. To familiarize the students the concepts parsing, code generation and code optimization
- 3. To enable students to design a basic compile systems

COURSE PREREQUISITE:

• Basic concepts of theory of computation (CSC3016)

COURSE OUTCOMES:

At the end of the course, students will be able to:

- Implement Lexical analyzer such as NFA, DFA, Regular Expressions and parser generator tools.
- Derive different syntax analysis such as LR, SLR and LALR parsing
- Build symbol tables and generating intermediate code.
- Explain DAG and formulate code optimization solution for a give problem

Unit No & Name	Components of the Unit	No of contact hours	Marks
UNIT-I: Introduction	• What is a compiler? Phases of compiler. Overview of working of a compiler	8	10
UNIT-II: Lexical Analysis	 NFA, DFA, conversion from NFA to DFA. Regular expression. Regular expression to NFA conversion. Minimisation of DFA. Writing a lexical analyser for C using Lex 	12	15
UNIT-III: Syntax analysis	 Grammar representation. Derivation and parse tree. Ambiguity and possible elimination. Top down parsing. Recursive descent and predictive top down parsing. Elimination of Left recursion. Bottom up parsing. Operator precedence parsing, LR parsing (including SLR and LALR). Error detection 	23	25

		and recovery. Parser table construction. Writing a		
		parser for a subset of C using yacc.		
UNIT-IV: Code generation	•	Symbol table contents, implementation. Type	23	25
		checking. Syntax directed translation. Forms of		
		intermediate codes. Abstract Syntax Trees, Directed		
		Acyclic Graph, Three address code.		
	•	Intermediate code generation for different language		
		constructs like arrays, boolean expressions, if, if-		
		else, while, case or switch, function calls. Writing a		
		intermediate code generator and an interpreter for		
		the intermediate code for the parser developed in 3		
		above. Target code generation issues. Runtime		
		storage management.		
UNIT-V: Code Optimisation	•	DAG, basic blocks, Common sub-expression	22	25
		elimination, variable propagation, code motion,		
		strength reduction, elimination of dead code, loop		
		optimization.		
	•	Data flow analysis, objects, integrating clients and		
		objects, static versus dynamic RMI, parameter		
		passing, examples and case study.		
		Total:	90	100

- Aho, Sethi, Ullman; Compilers, Principles, Techniques, Tools; Pearson Education
- Aho A.V., Sethi R., Ullman J.D.; Introduction to Compiler Construction; Pearson Education.
- Holub.; *Compiler Design in C*; P.H.I.
- Chattopadhyay S.; Compiler Design; P.H.I.
- Hunter; *The Essence of Compilers*; Pearson Education.

COURSE ASSESSMENT DETAILS:

Internal assessment: Class tests, Assignments, Laboratory tests

COURSE CODE: INF3046	L-T-P: 0-0-3
COURSE NAME: SEMINAR	CONTACT HOURS/WEEK: 6
COURSE TYPE: CORE	TOTAL MARKS: 50 (INTERNAL: 50, EXTERNAL: 0)
NUMBER OF CREDITS: 6	NATURE: GRADED

- 1. The objective of the project is to train the student to independently search, identify and study real-life important topics in CS/IT,
- 2. To develop skills among students in a particular field of CS/IT; and to expose students to the world of technology, innovation, and research

COURSE PREREQUISITE:

• Basic knowledge of computer fundamental, hardware & software, concepts of basic programming such as C/C++

/Java etc.

COURSE OUTCOMES:

At the end of the course, students will be able to:

- Analyze their ideas on selected topics on recent technologies
- Perform their communication and presentation skill.
- Write report on a given topic.

COURSE CONTENT:

Student should take a particular domain of research such as database, data mining, computer networking, image processing, speech and signal processing, algorithm, embedded system, cloud computing, soft computing etc. It is expected that at-least one standard methodology/algorithm should apply on a particular domain. The accuracy of the output should be tested using some standard accuracy measuring tools or statistical tools.

COURSE ASSESSMENT DETAILS:

Internal assessment: Each student will have to deliver at least 3 seminars talks on topics assigned by the department.

COURSE CODE: INF3056	L-T-P: 4-1-1
COURSE NAME: IMAGE PROCESSING	CONTACT HOURS/WEEK: 7
COURSE TYPE: ELECTIVE/OPEN	TOTAL MARKS: 100 (INTERNAL: 60, EXTERNAL: 40)
NUMBER OF CREDITS: 6	NATURE: GRADED

- 1. To learn the fundamental concepts of Digital Image Processing.
- 2. To study basic Image Processing operations and image analysis algorithms.
- 3. To expose students to current applications in the field of Digital Image Processing.

COURSE PREREQUISITE:

• Discrete Mathematics, Knowledge of C/C++ programming

COURSE OUTCOMES:

At the end of the course, students will be able to:

- Apply principles and techniques of digital image processing in applications related to digital imaging system design and analysis.
- Analyze and implement image different transformation and enhancement technique such as DFT, FFT, Filtering, Histogram processing
- Differentiate different image compression techniques.
- Compare different binary image processing techniques.

Unit No & Name	Components of the Unit	No of contact hours	Marks
UNIT-I: Digital image processing systems	• Image acquisition, storage, processing, communication, display.	6	6
UNIT-II: Visual Perception	• Structure of the human eye, image formation in the human eye, brightness, adaptation and discrimination	8	8
UNIT-III: Image Model	• Uniform and non-uniform sampling, quantization	8	10
UNIT-IV: Image Transforms	 Introduction to Fourier transform, DFT and two dimensional DFT, some properties of DFT, separability, translation, periodicity, conjugate symmetry, rotation, scaling, average value, 	12	10

	convolution theorem, correlation, FFT algorithms inverse FFT, filter implementation through FFT Other transforms: Other separable image transform and their algorithms.		
UNIT-V: Image Enhancement	 Image enhancement in spatial domain and frequency domain, Histogram processing. Spatial Filtering Frequency Domain Filtering. 		12
UNIT-VI: Image Restoration	 Restoration/Degradation Model, Inverse Filtering Wiener Filtering 	8	10
UNIT-VII: Edge Detection and Segmentation	• Edge detection, Line detection, Segmentation Texture Analysis and Classification.	10	12
UNIT-VIII: Binary Image Processing	Binarisation, Morphological Image Processing Distance Transform.	8	8
UNIT-IX: Color Image Processing	• Color model, Color Image Quantisation, Histogram of a colour image.	10	12
UNIT-X Image Compression	 Lossy Compression, Loss-less compression, Run length and Huffman Coding, Transform Coding Image Compression Standards. Other Advanced Web Technologies- AJAX, ISAPI, .NET. 	, 10	12
	Total	90	100

- R. C. Gonzalez & R. E. Woods Digital Image Processing, Addison Wesley, 1993.
- A. K. Jain Fundamentals of Digital Image Processing, PHI
- K. R. Castleman Digital Image Processing, PHI 1996
- W. K. Pratt Digital Image Processing, John Wiley Interscience, 1991

COURSE ASSESSMENT DETAILS:

Internal assessment: Class tests, Assignments, Laboratory tests

COURSE CODE: INF3066	L-T-P: 4-1-1
COURSE NAME: DATA MINING AND	CONTACT HOURS/WEEK: 7
WAREHOUSING	TOTAL MARKS: 100 (INTERNAL: 60, EXTERNAL: 40)
COURSE TYPE: ELECTIVE/OPEN	NATURE: GRADED
NUMBER OF CREDITS: 6	

- 1. To introduce students the basic concepts of Data Warehouse and techniques and applications of Data Mining.
- 2. To develop skills for designing and implementing systems for data mining to solve practical problems in a variety of disciplines.
- 3. To provide students the experience of doing independent study and research.

COURSE PREREQUISITE:

- Programming knowledge of C, C++ (INF1016)
- Basic knowledge of Mathematics-Statistics.
- Basic concepts of Database (INF1056).

COURSE OUTCOMES:

At the end of the course, students will be able to:

- explain the components and architecture of data warehouse architecture
- Illustrate different data mining techniques such as association rule mining, clustering and classification.
- Analyze different data mining algorithms such as K-means, DBSCAN, FR-tree growth, A priori, CURE, BIRC, ROCK, CART, C4.5 etc.
- Analyze the uses of developing areas-web mining, text mining and sequential data mining.

Unit No & Name	Components of the Unit	No of contact hours	Marks
UNIT-I: Introduction to Data Mining	 Basic Concepts: Data Mining, kinds of patterns that can be mined, Data Mining versus Database systems, Data preparation, cleaning and visualization. Data Warehousing: Differences between database systems and Data Warehouse, Data Warehouse architecture and its components, Warehouse versus Data Mining (OLTP & OLAP), OLAP tools, Data cubes, Multidimensional Data. 	20	30

UNIT-II: Data Mining Techniques	• Association Rules: What is an association rule? Mining association rules, frequent sets and border sets, algorithms for mining association rules – A priori algorithm, Pincersearch algorithm, Border algorithm, FP-tree growth algorithm, generalized association rule, association rule with item constraints.	70	70
	• Clustering: Hierarchical versus Partitional clustering, types of data in clustering, Partitional algorithms – k-means, k-mediods, PAM, CLARA, CLARANS. Density based clustering algorithm – DBSCAN. Hierarchical algorithms – BIRCH, CURE. Categorical clustering algorithms – ROCK, CACTUS.		
	• Decision Trees : Introduction, tree construction principle, decision tree generation algorithms – CART, ID3, C4.5		
	• Other techniques for Data Mining : Concepts of Genetic algorithms, Artificial Neural Network and Rough sets and their application in the domain of data mining. Introduction to Web Mining, Text Mining, Temporal data mining.		
	TOTAL	90	100

- Puzari K.; Data Mining Techniques; University Press
- Han J., Kamber M.; Data Mining Concepts and Techniques; India Morgan Kaufmann & Harcourt
- Soman K. P., Diwakar S., Ajay V.; (2008); *Insight into Data Mining: Theory and Practice*; P.H.I (Eastern Economy Edition
- Jain K. and Dukes R. C.; Algorithms for Clustering Data; Prentice-Hall
- Cios K., Pedrycz W., Swiniarski R; (1998); *Data Mining : Methods of Knowledge Discovery*; Boston Kluwer Academic Publishers, ,

COURSE ASSESSMENT DETAILS:

Internal assessment: Class tests, Assignments, Laboratory tests, Seminar

COURSE CODE: INF3076	L-T-P: 4-1-1
COURSE NAME: E-COMMERCE TECHNOLOGY	CONTACT HOURS/WEEK: 7
COURSE TYPE: ELECTIVE	TOTAL MARKS: 100 (INTERNAL: 60, EXTERNAL: 40)
NUMBER OF CREDITS: 6	NATURE: GRADED

- 1. To introduce to the E-Commerce Fundamentals.
- 2. To make understand the Client Server model.
- 3. To provide the basic ideas of Cryptography and electronic payment methods.
- 4. To introduce to XML in e-commerce and different internet applications.

COURSE PREREQUISITE:

- Knowledge of DBMS.
- Ideas of programming knowledge and Cryptography.

COURSE OUTCOMES:

At the end of the course, students will be able to:

- Able to distinguish uses of different cryptography algorithms in e-commerce.
- Able to analyze the client server technologies in e-commerce
- Able to develop XML-based enterprise applications
- Able to illustrate the ideas of different electronic payment systems

Unit No & Name	Components of the Unit	No of contact hours	Marks
UNIT-I: Internet basics	 History and basic idea of Internet. Different types of Internet services, such as, telnet, e-mail, ftp, WWW, etc. 	5	8
UNIT-II: Web page design	 Designing web pages with HTML. Use of different tags, hyper-links, URLs, tables, text formatting, graphics & multimedia, image-map, frames and forms in web pages. Use of Cascading Style Sheet in web pages. 	8	10
UNIT-III: Creating interactive and dynamic web pages with JavaScript	 Basics of JavaScript overview, such as, constants, variables, operators, expressions & statements, Creating user-defined & built-in functions, Client-side form validation using properties and 	8	8

	methods of built-in objects.		
UNIT-IV: Markup language	Basics of Standard Generalized Markup Language	10	10
basics	(SGML) such as structures, elements, Content		
	models, DTD, attributes, entities.		
UNIT-V: Extensible Markup	• Introduction to using user-defined tags in web pages,	12	8
Language (XML):	• Displaying XML contents,		
	• Creating XML DTDs,		
	• Use of XSL.		
UNIT-VI: Web Browsers	• Functions and working principle of web browsers,	5	10
	• Plug-ins & helper applications,		
	• Conceptual architecture of some typical web		
	browsers.		
UNIT-VII: Introduction to	Basics of client-server computing,	10	12
Client/Server Computing	• Types of Client/Server systems, such as,		
	middleware, 2-tier/3-tier/4-tier/ N-tier systems,		
	• Fat Clients versus Fat Servers.		
UNIT-VIII: Web Servers	• Web services and web server functionality,	8	8
	• Web server composition and registration,		
	• Basics of HTTP, IP address, DNS & ports,		
	• Conceptual architecture of some typical web servers.		
UNIT-IX: Server-side	• overview of CGI, ASP, and JSP, Server side	8	10
scripting	scripting using PHP, Web database connectivity-		
	introduction to ODBC, PHP with database		
	connectivity.		
UNIT-X: Exposure to	• Distributed Object based models- DCOM, CORBA,	8	8
Advanced Web Technologies	EJB, Web services and Related Technologies, such		
	as, ISAPI, SOAP, UDDI, WSDL,		
	• Other Advanced Web Technologies- AJAX, ISAPI,		
	.NET.		
UNIT-XI: Web Security	• Basics of Firewalls, such as, definition and their	8	8
	uses,		
	• Types of Firewalls, such as, Network layer firewalls		
	and application layer firewalls,		
	• Proxy servers.		
	Total:	90	100

- Laudon, K. C. & Traver, C. G.; E-Commerce Business, Technology, Society; Addison Wesley.
- Ince, Darrel; *Developing Distributed and E-commerce Applications*; Addison Wesley.
- Ashbacher, Charles; SAMS Teach Yourself XML in 24 Hours; Techmedia.
- Rayport, Jeffrey & Jaworski, Bernard; ECommerce; Burr ridge, IL: Irwin / McGraw-Hill.
- Stallings, William; Cryptography and Network Security: principles and Practice; Prentice Hall.
- Schneider, Bruce; Applied Cryptography; Wisley publication

COURSE ASSESSMENT DETAILS:

Internal assessment: Class tests, Assignments, Laboratory tests, Seminar

COURSE CODE: INF3086	L-T-P: 4-1-1
COURSE NAME: SOFTWARE TESTING AND	CONTACT HOURS/WEEK: 7
QUALITY ASSURANCE	TOTAL MARKS: 100 (INTERNAL: 60, EXTERNAL: 40)
COURSE TYPE: ELECTIVE	NATURE: GRADED
NUMBER OF CREDITS: 6	

- 1. To provide students the knowledge of software quality assurance and quality model.
- 2. The give students the concepts of testing fundamentals, testing methods and metrics.
- 3. To familiarize students with concepts of risk analysis, data analysis and different testing tools.

COURSE PREREQUISITE:

• Basic knowledge of software engineering

COURSE OUTCOMES:

At the end of the course, students will be able to:

- Able to describe different Quality control tools.
- Able to analyze case studies on Testing tools
- Able to build a test inventory system.
- Able to differentiate different Risk analysis, data analysis techniques

Unit No & Name	Components of the Unit	No of contact hours	Marks
UNIT-I: Software quality and model	 Software quality, problems with traditional quality assurance, solution-improving the quality process, Quality control tools. MCCall Software quality model, Boehm software quality model. 	15	15
UNIT-II: Software testing and terminologies	 Testing fundamentals, Terminologies, Approaches to managing software testing. The Most Important Tests (MITs) method 	15	20
UNIT-III: Matrices for software testing	Fundamental metrices for software testingTest inventory, How to build a test inventory,	20	25

	tools to automate test inventory.		
UNIT-IV: Risk analysis and data analysis	• Risk analysis, applied risk analysis, path analysis, applied path analysis, data analysis techniques.	20	20
UNIT-V: Testing tools	• Testing tools: static, dynamic tools.	20	20
	• Characteristics of modern tools.		
	• Case studies on Testing tools		
	Total	90	100

- Software Testing Fundamentals: Methods and Metrices: Marniw L. Huncheson: Wiley Publishing
- Software Engineering: K. K. Aggarwal, Y. Singh: New Age.
- Effective Software Testing: Elfriede Dustin: Pearson Education

COURSE ASSESSMENT DETAILS:

Internal assessment: Class tests, Assignments, practical test.

COURSE CODE: INF3096	L-T-P: 4-1-1
COURSE NAME: SOFTWARE PROJECT	CONTACT HOURS/WEEK: 7
MANAGEMENT	TOTAL MARKS: 100 (INTERNAL: 60, EXTERNAL: 40)
COURSE TYPE: ELECTIVE	NATURE: GRADED
NUMBER OF CREDITS: 6	

- 1. Be familiar with the different methods and techniques used for project management.
- 2. Understand the fundamental principles of Software Project management & will also have a good knowledge of responsibilities of project manager and how to handle these

COURSE PREREQUISITE:

• Basic knowledge of software engineering

COURSE OUTCOMES:

At the end of the course, students will be able to:

- Able to analyze different Project planning and management infrastructure
- Able to justify needs of risk analysis of a given project
- Able to explain different Project monitoring and control.
- Able to generate ACIC measurement and tracking plan

Unit No & Name	Components of the Unit	No of contact hours	Marks
UNIT-I: Processes and project management	 Processes and project management, project management and the CMM, Case study: project management at one of the leading IT Industries, Overview of ACIC case study. Project planning infrastructure: Project database, process planning. 	15	15
UNIT-II: Estimation and scheduling concept	• Estimation and scheduling concept, bottom up and top down approaches, Overall scheduling, detail scheduling. Quality planning: Concept, quantitative quality management planning,	20	25

UNIT-III: Concept of measurement	 defect prevention planning. Risk Management: Risk assessent, risk control, examples. Concept of measurement, measurement, project tracking, ACIC measurement and tracking plan. Project management plan, Team management, customer communication and issue resolution. Configuration management, CM process. The ACIC configuration management plan. 	20	25
UNIT-IV: Project review	Project review, review process, data collection, monitoring and control, introduction of reviews and NAH Syndrome. Project monitoring and control: Project tracking, Milestone analysis, Activity level analysis using SPC, defect analysis and prevention. Process monitoring and audit. Project closure analysis.		25
UNIT-V: project management tools	• Using a project management tools, like Microsoft Project 2000	10	10
	Total	90	100

- Basics of Software Project Management: NIIT: Prantice Hall of India.
- Software Engineering: Ian Sommerville: Pearson Education (Addison Wesley)
- Software Engineering: A practitioner's Approach: Roger S. Pressman: McGraw Hill.

COURSE ASSESSMENT DETAILS:

Internal assessment: Class tests, Assignments, practical test.

SEMESTER NAME: FOURTH SEMESTER

COURSE CODE: INF4016	L-T-P: 4-1-1
COURSE NAME: PROGRAMMING LANGUAGES	CONTACT HOURS/WEEK: 7
COURSE TYPE: Core	TOTAL MARKS: 100 (INTERNAL: 60, EXTERNAL: 40)
NUMBER OF CREDITS: 6	NATURE: GRADED

COURSE OBJECTIVES:

- 1. To introduce the major programming paradigms, and the principles and techniques involved in design and implementation of modern programming languages.
- 2. To introduce notations to describe syntax and semantics of programming languages.
- 3. To analyze and explain behavior of simple programs in various programming paradigms using concepts such as binding, scope, control structures, subprograms and parameter passing mechanisms.
- 4. To introduce the concepts of concurrency control and exception handling

COURSE PREREQUISITE:

• CSC 1016, CSC 2056

COURSE OUTCOMES:

At the end of the course, students will be able to:

- Differentiate between different types of programming paradigms.
- Analyze semantic issues associated with function implementations, including variable binding, scoping rules, parameter passing, and exception handling.
- Implement functional programming (LISP), logical programming (PROLOG), Object Oriented Programming (C++/Java)

Unit No & Name	e Components of the Unit		Marks
UNIT-I: Programming Language concepts	• Factors influencing the evolution of programming languages - influence of architecture and operating system, implementation methods. Development in programming methodology, desirable features and design issues. Language processors. Syntax, semantics and Virtual Computers, Binding and Binding time.	18	20

UNIT-II: Imperative	•	Statements, data types, subprograms, sequence		
Programming Languages		control, data control, dynamic allocation using		
		pointers, operating and programming environment,	10	20
		Subprogram activation- parameter passing methods,	18	20
		scope rules for names. Nested procedures. Syntax		
		and translation.		
UNIT-III: Object Oriented	٠	Data abstraction: object oriented thinking, class,		
Languages		grouping of data and operations, constructors and		
		destructors, templates.		
	•	Inheritance: Extending a class, casting up the		
		hierarchy, single and multiple inheritances, virtual		
		base class.		
	•	Polymorphism: Compile time polymorphism,	18	20
		operator and function overloading, static binding,		
		run-time polymorphism, virtual functions, pure		
		virtual functions, abstract class, dynamic binding.		
	٠	Exception handling.		
	•	[As OOP has been covered in semester 1 in depth, a		
		quick review of the above concepts will be made.]		
UNIT-IV: Functional	٠	Principles of functional programming. Types-values,		
Programming Languages		bindings and functions, environment and scope,		
		recursive functions, polymorphic functions, type	10	•
		variables.	18	20
	٠	Lists and programming with lists (LISP).		
	٠	Functional programming in C++.		
UNIT-V: Logic	٠	Review of Predicate Logic. Logic as a language for		
Programming Languages		problem solving. Facts, rules, queries and		
		deductions, sentence structure. General structure		
		and computational behavior of logic programs.	18	20
		Unification algorithm. Procedural interpretation of		
		Logic. Algorithmic view of logic program		
		execution. A brief introduction to PROLOG.		
		Total:	90	100

- T.W. Pratt and M. V. Zelkowitz: Programming Languages: Design and Implementation; PHI.
- Ravi Sathi, Programming Languages, Concepts and Constructs, Pearson Education, Asia, LPE
- B. Stroustrup, The C++ Programming Language, Addison Wesley Publishing Company, 1995.
- W. Lloyd, Foundations of Logic Programming, Springer 1984.
- Carlo Ghezzi, Mehdi Jazayeri, Programming Language Concepts, J. Wiley & sons.
- E. Horowitz : Fundamentals of Programming Languages; Galgotia Publications Pvt Ltd.
- K. C. Louden; Programming Languages-Principles and Practice; Thompson (2 nd Indian Edition);

COURSE ASSESSMENT DETAILS:

Internal assessment: Class tests, Assignments, Laboratory tests, Seminar

COURSE CODE: INF4026	L-T-P: 0-0-4
COURSE NAME: PROJECT	CONTACT HOURS/WEEK: 8
COURSE TYPE: CORE	TOTAL MARKS: 100 (INTERNAL: 0, EXTERNAL: 100)
NUMBER OF CREDITS: 8	NATURE: GRADED

- 1. The objective of the project is to train the student to independently search, identify and study real-life important topics in CS/IT,
- 2. To develop skills among students in a particular field of CS/IT; and to expose students to the world of technology, innovation, and research.

COURSE OUTCOMES:

At the end of the course, students will be able to:

- Search, identify, study and work on real-life applications of CS/IT independently.
- Implement their thoughts and ideas to develop new innovative solutions.
- Write their findings and analysis in the form of a dissertation
- Develop new systems whiting a time bound.

COURSE CONTENT:

Each student will be assigned some project work at the starting of the sixth semester. Each student (or group of at most 2 students) is expected to take a unique problem under the guidance/supervision of a faculty member of the department. The problem should be such that the students get a chance to explore one or two technologies in depth and grab good command over those technologies after successful completion of the project. Repetition of the problems already attempted by students of the previous years should not be encouraged unless the problem has exceptionally great research importance and scope. Application problems, if found interesting and arisen at the demand of a particular situation, may also be assigned; but typical information management systems with just two or three simple database tables and/or dataentry forms are to be discouraged. The project may be done in other Institutes/Organizations with prior permission from the concerned department of the College and in this case also one project supervisor should have to be from the concerned department in the College. The work will have to be submitted in the form of a dissertation. Project presentation and evaluation will have to be done as per the regulation of PG course semester system of G.U. with choice based credit and grading system.

COURSE ASSESSMENT DETAILS:

Internal assessment: seminars, presentations, viva, project implementation

COURSE CODE:INF4036	L-T-P: 4-1-1
COURSE NAME: EMBEDDED SYSTEM	CONTACT HOURS/WEEK: 7
COURSE TYPE: ELECTIVE	TOTAL MARKS: 100 (INTERNAL: 60, EXTERNAL: 40)
NUMBER OF CREDITS: 6	NATURE: GRADED

- 1. Provide students the concepts of various processors used in embedded system
- 2. Familiarize students with the concepts of I/O programming and memory management in embedded systems
- 3. Train students to design new embedded applications

COURSE PREREQUISITE:

- Basic knowledge of C/C++ programming
- Knowledge of Computer Organization and Architecture (CSC 1026)

COURSE OUTCOMES:

At the end of the course, students will be able to:

- Analyze different embedded processor architecture such as 8085, 8051, 8086.
- Distinguish different Concurrency control and Scheduling methodologies used in embedded technology.
- Explain different I/O programming.
- Design of systems on RTOS based embedded software in developing a complex embedded system product.

Unit No & Name	Components of the Unit	No of contact hours	Marks
UNIT-I: Introduction	 Definition of embedded system, Why is it special? Types of processor used in embedded systems, what are the other peculiarities? 	8	10
UNIT-II: Processors for embedded systems	 8 bit processors 8085, 8051 and PIC 18FXX: - Architecture and instruction set. (Already covered in microprocessor) 16 bit: - 8086 32 bit: - 80386 architecture and instruction set, ARM based processor architecture and instruction set. 	8	10
UNIT-III: I/O programming	 Operating systems for embedded systems, Real time operating systems Issues Synchronization, transfer rate and latency. Polled I/O issues. Interrupt driven I/O. ISR. Response time interrupt controller. Software interrupts and 	14	15

	exceptions. Buffering of data and queuing of		
	interrupt requests.		
UNIT-IV: Concurrency control	• Foreground/Background systems, Thread state and serialization, latency, prevention of interrupt overruns. Concurrent execution of threads, context switch, non-preemptive multitasking, preemptive multitasking. Critical sections:- disabling interrupts, disabling ask switch, spin lock, mutex and semaphore.	15	17
UNIT-V: Scheduling in Embedded Systems	 Conventional scheduling, deadline driven scheduling, rate monotonic scheduling, deadlock, watchdog timer. 	13	15
UNIT-VI: Memory Management	• Static allocation, dynamic allocation. Recursion and dynamic allocation. shared memory, reentrant functions.	14	15
UNIT-VII: Boot up and System initialization	 80x86 microprocessor with a C compiler (suited for RTOS) and uC/OS RTOS may be used for practical. Some real embedded application shall be taken up for practical. 	18	18
	Total:	90	100

- Daniel W Lewis; Fundamentals of Embedded Software; Pearson Education
- David E. Simon; An Embedded Software Primer; Pearson Education

COURSE ASSESSMENT DETAILS:

Internal assessment: Class tests, Assignments, Laboratory tests, Seminar

COURSE CODE: INF4046	L-T-P: 4-1-1
COURSE NAME: ARTIFICIAL INTELLEGENCE	CONTACT HOURS/WEEK: 7
COURSE TYPE: ELECTIVE/OPEN	TOTAL MARKS: 100 (INTERNAL: 60, EXTERNAL: 40)
NUMBER OF CREDITS: 6	NATURE: GRADED

- 1. The objective of the course is to present an overview of artificial intelligence (AI) principles and approaches
- 2. Develop a basic understanding of the building blocks of AI in terms of intelligent agents: Search, Knowledge representation, inference, logic, and learning.

COURSE PREREQUISITE:

• Discrete Mathematics, basics of C/C++ programming

COURSE OUTCOMES:

At the end of the course, students will be able to:

- Analyze important historical and current trends addressing artificial intelligence.
- Identify forward and backward recovery techniques.
- Implement logic programming concepts in AI.
- Explain the components of expert system

Unit No & Name	Components of the Unit	No of contact hours	Marks
UNIT-I: Historical foundation of AI	 Historical foundation of AI. AI application areas. AI problem, Underlying assumptions, AI techniques, Level of models, success criteria. Problem as a state space search, Production Systems, Problem characteristics, PS characteristics, Design issues of search programs. 	20	15
UNIT-II: Heuristic Search Techniques	• Generate and test, Hill Climbing, Best-First Search, Problem reduction	15	15
UNIT-III: Knowledge representation and Mapping	• Approaches, Issues. Predicate logic. Representing simple facts in logic, Instance and isa relationship, Computable function and predicity, Resolution, Natural Deduction.	15	20
UNIT-IV: Knowledge representation using rules	• Procedural vs declarative, logic programmes, Forward vs backward recovery, matching.	20	25

	Nonmonotonic reasoning and logic. Implementation: Depth first abd breath first search.		
UNIT-V: Knowledge representation using rules	 Introduction to statistical reasoning. Probability and bays theorem, Fuzzy logic concept. Concept of weak slot and filter, and strong slot and filter structure. Fundamental of Natural Language Processing: Syntactic processing, semantic analysis. Concept of Expert Systems: Representation using domain knowledge, Expert System shell, knowledge acquisition. 	20	25
	Total:	90	100

- Artificial Intelligence : E. Rich & K. Knight : Tata McGraw Hill.
- Artificial Intelligence: Structures and Strategies for Complex Problem solving: George Luger, Pearson Education.
- Principles of Artificial Intelligence: Nils J Nisson: Narosa

COURSE ASSESSMENT DETAILS:

Internal assessment: Class tests, Assignments, Laboratory tests, Seminar

COURSE CODE: INF4056	L-T-P: 4-0-2
COURSE NAME: SPEECH PROCESSING	CONTACT HOURS/WEEK: 8
COURSE TYPE: ELECTIVE/OPEN	TOTAL MARKS: 100 (INTERNAL: 60, EXTERNAL: 40)
NUMBER OF CREDITS: 6	NATURE: GRADED

- 1. To provide students the concepts of basic models for speech production
- 2. To familiarize students to develop time and frequency domain techniques for estimating speech parameters
- 3. To introduce students a predictive technique for speech compression
- 4. To provide students the process of speech recognition, synthesis and speaker identification.

COURSE PREREQUISITE:

• Programming experience in C, C++

COURSE OUTCOMES:

At the end of the course, students will be able to:

- Explain basic characteristics of speech signal in relation to production and hearing of speech by humans.
- Analyze different algorithms of speech analysis common to many applications.
- Solve practical aspects of speech algorithm's implementation.
- Design a simple system for speech processing (speech activity detector, recognizer of limited number of isolated words), including its implementation into application programs.

Unit No & Name	Components of the Unit	No of contact hours	Marks
UNIT-I: Digital Signal Processing	• Introduction: signals, systems and signal Processing, Frequency in Continuous Time & Discrete Time Signals. Analog to Digital & Digital to Analog Conversion. Discrete Time Signals & Systems: Discrete Time Signals, Discrete Time Systems, Discrete Time Systems described by Difference equations, Correlation of Discrete Time Signals.		15
UNIT-II: Fundamentals of speech signal	 History of speech recognition research, The Speech Signal: Speech production mechanism, Classification of speech, sounds, nature of speech signal, models of speech production. Speech signal processing: purpose of speech processing, digital models for speech signal, Digital processing of speech signals, Significance, short time analysis. 		15

UNIT-III:Timedomain methods•Time domain parameters of speech, methods for extracting the parameters, Zero crossings, Auto correlation function, pitch estimation.	12	12
UNIT-IV: Frequency domain methods for speech processing• Short time Fourier analysis, filter bank analysis, spectrographic analysis, Formant extraction, pitch extraction, Analysis - synthesis systems. Homomorphic Signal Processing	12	12
UNIT-V: Linear predictive coding of speech• Formulation of linear prediction problem in time domain, solution of normal equations, Interpretation of linear prediction in auto correlation and spectral domains.	12	12
 UNIT-VI: Speech analysis Cepstral analysis of speech, formant and pitch estimation, Mel frequency cepstrum computation, Applications of speech processing - Speech recognition, Speech synthesis and speaker verification. 	10	12
 UNIT-VII: Automatic speech recognition Basic pattern recognition approaches, Parametric representation of speech, Evaluating the similarity of speech patterns, Isolated digit Recognition System, Continuous digit Recognition System. Vector quantization, speech coding 	10	12
 UNIT-VIII: HIDDEN MARKOV model for speech recognition Introduction to Hidden Markov Model (HMM), Types of HMM, Hidden Markov Model (HMM) for speech recognition, Viterbi algorithm, Training and testing using HMMs, Adapting to variability in speech (DTW), Language models. Example of speech recognition project. 	10	10
Total:	90	100

- L. Rabiner and B.-H. Juang, Fundamentals of Speech Recognition, Prentice Hall, 1995, ISBN 0-13-015157-2
- L. R. Rabiner and R. W. Schafer, Digital Processing of Speech Signals, Prentice-Hall, 1978, ISBN 0-13-213603-1.
- J.L Flanagan : Speech Analysis Synthesis and Perception 2nd Edition Sprenger Vertag, 1972.

- I.H.Witten : Principles of Computer Speech , Academic press, 1983.
- Speech Communications: Human & Machine Douglas O'Shaughnessy, 2nd ed., IEEE Press.
- Discrete Time Speech Signal Processing: Principles and Practice Thomas F. Quateri 1st ed., PE.
- Speech & Audio Signal Processing- Ben Gold & Nelson Morgan, 1 ed., Wiley.
- Speech Recognition Claudio Becchetti and Lucio Prina Ricotti, Wiley

COURSE ASSESSMENT DETAILS:

Internal assessment: Class tests, Assignments, Laboratory tests, Seminar

COURSE CODE: INF4066	L-T-P: 4-1-0
COURSE NAME: AGENT TECHNOLOGIES	CONTACT HOURS/WEEK: 6
COURSE TYPE: ELECTIVE	TOTAL MARKS: 100 (INTERNAL: 60, EXTERNAL: 40)
NUMBER OF CREDITS: 6	NATURE: GRADED

- 4. To familiarize students with the working of software agents, its attributes and classes
- 5. To provide students the knowledge of user's interactions and direct manipulation with agents.
- 6. To introduce students to agent oriented programming, agent communication languages and frameworks
- 7. To provide knowledge of JAVA based programming environments- ABLE

COURSE PREREQUISITE:

• Basic knowledge of C programming, Operating system

COURSE OUTCOMES:

At the end of the course, students will be able to:

- Able to discuss the attributes, different classes of software agents, uses of agents
- Able to analyze the agent oriented programming and agent based frameworks
- Able to illustrate different Inter-agent Interaction Protocols
- Able to implement Java based programming environments such as ABLE, AgentBuilder, Aglets, FIPA-OS, Gossip etc.

Unit No & Name	Components of the Unit	No of contact hours	Marks
UNIT-I: Introduction to software agents	 definition, attributes different classes of software agents uses of agents 	8	10
UNIT-II: Agents and the user experience	 user's interaction with agents agents from direct manipulation to delegation, interface agents designing agents, direct manipulation versus agents. 	14	15
UNIT-III: Agents for learning and intelligent assistance	 agents for information sharing and coordination, agents that reduce work and information 	12	13

	overload,		
	• agents for cooperative learning, the M System.		
UNIT-IV: Agent	• agent oriented programming,	15	18
communication, collaboration	• Agent Communication Languages,		
and mobility	• agent based frameworks		
	• Communicative actions for artificial agents,		
	Mobile agents.		
UNIT-V: Multivalent systems	objectives and objections	13	16
	multiagent interactions communication		
	• Agent security issues, Black Box Security		
UNIT-VI: The FIPA model for software agents	• Agent Lifecycle Management, Message Transport	13	16
	• Message Structure, Inter-agent Interaction Protocols,		
	• Ontologies, Security.		
UNIT-VII: Agent Programming	• overview of Java based programming environments- ABLE,	15	12
	• AgentBuilder, Aglets, FIPA-OS, Gossip, JADE, JATLite, Jess, Voyager, ZEUS etc;		
	• Other non-java environments; Programming static and mobile agents in any one such environment.		
	Total :	90	100

- Bradshaw J. M. (edited by), Software Agents AAAI Press/ The MIT Press, 2000.
- WoolDridge M, An Introduction to MultiAgent Systems, John Willey and Sons Ltd
- Bigash J. P. and Bigus J., Constricting Intelligent Agents Using Java, Wiley 2001
- Murch R. and Johnson T., Intelligent Software Agents, Prentice Hall, 2000.
- Online Documentations from WWW.

COURSE ASSESSMENT DETAILS:

Internal assessment: Class tests, Assignments, Laboratory tests, Seminar

COURSE CODE: INF4076	L-T-P: 4-2-0
COURSE NAME: SYSTEM ADMINISTRATION	CONTACT HOURS/WEEK: 6
AND NETWORKING	TOTAL MARKS: 100 (INTERNAL: 60, EXTERNAL: 40)
COURSE TYPE: ELECTIVE	NATURE: GRADED
NUMBER OF CREDITS: 6	

- 1. To teach the basics of Linux operating system, such as file handling, different file types, file ownership, process concepts, Linux kernel etc.
- 2. To teach system handling using shell programs and Linux commands.
- 3. To provide different ways of client-server communication, such as NFS, NIS, telnet, ssh, ftp etc.
- 4. To introduce the basics of internet such as, different classes of IP addresses, DNS etc.
- 5. To discuss recent network security issues and the remedies for those issues.

COURSE PREREQUISITE:

• Basics of OS, any programming language.

COURSE OUTCOMES:

At the end of the course, students will be able to:

- Explain the basic concepts of Linux OS such as file system, file hierarchy, processes, distributions, disk partitions
- Perform various basic commands in Linux for setting user and group ownerships of files and directories, access permissions; commands related to process, system monitoring and logging, file system handling and network configurations.
- Configure network systems, the resolver library to arrange TCP/IP services, set up IP-address, network masks, configure inet daemon etc.
- Explain the use and configure DNS, NFS, NIS, telnet, send mail etc.

Unit No & Name	Components of the Unit	No of contact	Marks
UNIT-I: Introduction on Linux File System	 Major components of the Linux operating systems. File system, setting user and group ownership of files and directories and access permissions. Basic commands for starting and stopping processes. Basic process attributes and their role in access 	hours 12	15
	control.		

	• Mounting and un-mounting file systems and partitions.		
UNIT-II: Linux Kernel	 Linux kernel program, starting and stopping a Linux system. Setting up user and group accounts on single machines. The basics of backup and restore procedures. 	12	15
UNIT-III: Process management in Linux	 Linux system monitoring and logging. Examining the list of running processes on the system and understand the data presented there. Monitoring memory usage and disk space usage on the system. Customizing system log configuration. 	8	10
UNIT-IV: Basics of Networking	 The rules of governing IP address classes and netmasks. Configuring the resolver library to arrange for TCP/IP name service Bringing interfaces up and down, and set their IP addresses and netmasks Setting the default route in the kernel routing table. Understanding the significance of the /etc/services file and well-known port numbers, Configuring the inet daemon, Using telnet to contact servers directly, using the ping command to test network connectivity, netstat command to examine kernel tables pertaining to networking, traceroute command to discover network paths, tcpdump to examine all network traffic. Methods used to bring interfaces up and down. 	18	20
UNIT-V: Network Configuration	 Basics of configuring and using the Domain Name Service, sendmail The Network Information System, Network File System: Structure and function of the Domain Name Service (DNS) Setting up a Linux machine to function as a DNS server, Configuring and using sendmail, Setting up an NIS domain with an NIS master server and NIS clients. 	15	15
UNIT-VI: Network Security	Basic network security issues and solutions.	5	7
UNIT-VII: Configuration of NFS Client/Server	• Setting up a Linux machine to act as an NFS server	12	12

	• Setting up a Linux machine to act as an NFS client		
UNIT-VIII: Backup in Linux	• Incremental back up. Monthly back. Mail server setup	8	6
	Total:	90	100

- Proffitt B., Red Hat Linux, PHI
- Richard Stevens, W., UNIX Network Programming- Vol-I and Vol-II, PHI
- IBM series , Introduction to System Administration, PHI

COURSE ASSESSMENT DETAILS:

Internal assessment: Class tests, Assignments, Laboratory tests, Seminar

COURSE CODE: INF4086	L-T-P: 4-2-0
COURSE NAME: WIRELESS COMMUNICATION	CONTACT HOURS/WEEK: 6
AND NETWORKS	TOTAL MARKS: 100 (INTERNAL: 60, EXTERNAL: 40)
COURSE TYPE: ELECTIVE	NATURE: GRADED
NUMBER OF CREDITS: 6	

- 1. To provide students the concepts of basic components of wireless communication systems
- 2. To give the familiarity of multiple access techniques of wireless communication technologies
- 3. To enable students the implement different wireless communication protocols

COURSE PREREQUISITE:

• Concepts of Data Communication and Computer Networks (CSC2016)

COURSE OUTCOMES:

At the end of the course, students will be able to:

- Distinguish different modulation techniques such AM, FM, BPSK, QPSK, QAM OFDM, FHSS, DSSS
- Explain the IEEE 802 protocol Architecture
- Analyze the concept of Mobility Management handoff and location management
- Explain different multiple access techniques for wireless communication such as FDMA, TDMA etc.

Unit No & Name	Components of the Unit	No of contact hours	Marks
UNIT-I: WIRELESS COMMUNICATIONS AND SYSTEM FUNDAMENTALS	 Introduction to wireless communications systems, examples, comparisons & trends. Cellular concepts-frequency reuse, Cell splitting sectoring, repeaters, microcell concepts, strategies, interference & system capacity. Modulation techniques: AM, FM, BPSK, QPSK, QAM OFDM, FHSS, and DSSS. Spectrum allocation policy and scarcity of radio spectrum, capacity of cellular systems. Channel Assignment problem, Mobility Management - handoff and location 	12	13

	management. Software Defined Radio and		
	Cognitive Radio.		
UNIT-II: MULTIPLE ACCESS TECHNIQUES FOR WIRELESS COMMUNICATION	 FDMA, TDMA, SSMA (FHMA/CDMA/Hybrid techniques), SDMA technique (as applicable to wireless communications). Packet radio access-protocols, CSMA protocols, reservation protocols, capture effect in packet radio 	16	18
UNIT-III: WIRELESS NETWORKING	 Introduction, differences in wireless & fixed telephone networks, traffic routing in wireless networks –circuit switching, packet switching X.25 protocol. Wireless data services – cellular digital packet data (CDPD), advanced radio data information systems, RAM mobile data (RMD). Common channel signaling (CCS),ISDN-Broad band ISDN & ATM, Signaling System no .7(SS7)-protocols, network services part, user part, signaling traffic, services and performance 	18	20
UNIT-IV: WIRELESS LAN TECHNOLOGY	 Infrared LANs, Spread spectrum LANs, Narrow bank microwave LANs, IEEE 802 protocol Architecture, IEEE802 architecture and services, 802.11 medium access control, 802.11 physical layer. 802.16 WiMAX. Other wireless technologies: GSM, GPRS, 2.5G, 3G, 4G, WLL 	16	18
UNIT-V: 802.11	• 802.11 MAC, DCF and PCF. 802.11 framing in detail, WEP, Authentication, 802.1 management operations 802.11 in linux (nl80211). Handover-intra and inter BSS. QoS.	16	18
UNIT-VI: MOBILE IP AND WIRELESS APPLICATION PROTOCOL	 Mobile IP Operation of mobile IP, Co-located address, Registration, Tunneling WAP Architecture, overview, WML scripts, WAP service, WAP session protocol, wireless transaction, Wireless datagram protocol. 	12	13
	Total:	90	100

- Theodore, Rappaport S.; Wireless Communications, Principles, Practice;
- Matthew S Gast; 802.11 Wireless Networks;
- Stallings W.; Wireless Communication and Networking;
- Feher K. ; Wireless Digital Communications;
- Tse D. & Vishwanath P. ; Fundamentals of Wireless Communication; Cambridge University Press

COURSE ASSESSMENT DETAILS:

Internal assessment: Class tests, Assignments, Lab tests

ACTIVITY PLANNER Gauhati University Institute of Distance and Open Learning Guwahati- 781014, Assam

	ADMISSION	
SEMESTER	R (TRADITIONAL PROGRAM	MES)
А	July	August
	January	February
SEM	IESTER (IT PROGRAMMES)	
В	July	August
D	January	February
AS	SIGNMENT SUBMISSION	
С	October	October
C	April	April
EVA	LUATION OF ASSIGNMENT	
D	October	November
D	April	May
	EXAMINATION	
Г	January	February
E	July	August
DI	ECLARATION OF RESULT	
Г	March	April
F	September	October
	RE-REGISTRATION	
G	June	July
G	December	January
	DISTRIBUTION OF SLM	
Н	July	August
	January	February
C	ONTACT PROGRAMMES	
Ι	September	December
1	March	June

ENCLOSURE III

SLM COVERING SYLLABUS (1st and 2nd Semester, 1 year)

Programme Name: MSc.-IT

Semester I		
INF1016	Advanced Concepts in OOP	
INF1026	Advanced Computer Organization and Architecture	
INF1036	Operating System	
INF1046	Mathematical Foundations of Computer Science	
INF1056	Advanced DBMS	
	Semester II	
INF2016	Data Communication and Computer Networks	
INF2026	Algorithms and Complexity Theory	
INF2036	Software Engineering	
INF2046	Computer Graphics and Multimedia	
INF2056	Advanced Data Structure	