

(1)

GAUHATI UNIVERSITY

Institute of Distance and Open Learning

First Semester

(under CBCS)

M.Sc.-IT

Paper: INF-1036

OPERATING SYSTEM

Contents:

BLOCK I: REVIEW OF COMPUTER ORGANIZATION,

MEMORY ARCHITECTURE, CONCURRENT

PROCESS AND SCHEDULING

Unit 1 : Computer System Review

Unit 2 : Operating System Overview

Unit 3 : Introduction to Linux

Unit 4 : Process Management

Unit 5 : System Calls

Unit 6 : Process Scheduling Algorithms I

Unit 7 : Process Scheduling Algorithms II

Unit 8 : Concurrent Process Management

BLOCK II: MEMORY AND I/O MANAGEMENT, SYSTEM

DEADLOCK AND MULTIPROGRAMMING

SYSTEM

Unit 1 : Memory Management

Unit 2 : Input-Output Organization

Unit 3 : Introduction to Deadlock

Unit 4 : Deadlock Prevention, Detection and Avoidance

Unit 5 : Multiprogramming System

Unit 6 : Secondary Storage Management

Unit 7 : Security

Unit 8 : Distributed Operating Systems

M.Sc.-IT-19-I-1036

(2)

Contributors:
Dr. Mirzanur Rahman (Block I : Unit- 1)
Asstt. Prof., Dept. of IT
Gauhati University
Dr. Sruti Sruba Bharali (Block I : Unit- 2)
Asstt. Prof., HCB School of
Science and Technology. KKHSOU
Dr. Khurshid Alam Borbora (Block I : Units- 3 & 5)
Asstt. Prof., GUIDOL
Gauhati University
Dr. Kshirod Sarmah (Block I : Unit- 4)
Asstt. Prof., Dept. of Computer Science
PDUAM, Goalpara, Assam
Dr. Sisir Kumar Rajbongshi (Block I : Unit- 6)
Asstt. Prof., Dept. of Computer Science
PDUAM, Goalpara, Assam
Mr. Hem Chandra Das (Block I : Unit- 7)
Asstt. Prof., Dept. of
Computer Science & Technology
Bodoland University
Kokrajhar(BTAD), Assam
Dr. Irani Hazarika (Block I : Unit- 8/ Block II: Units: 3 & 4)
Asstt. Prof., Dept. of Computer Science
Gauhati University, Assam
Dr. Pranab Das (Block II : Unit- 1)
Asstt. Prof. (Sr.), Dept. of Computer Applications
Assam Don Bosco University
Mr. Dipankar Dutta (Block II : Unit- 2)
Asstt. Prof., Dept. of Computer Science
NERIM, Guwahati, Assam
Mrs. Pinky Saikia Dutta (Block II : Unit- 5)
Asstt. Prof., Dept. of Computer Science
& Engineering, GIMT, Guwahati
Dr. Utpal Barman (Block II : Unit- 6)
Asstt. Prof., Dept. of Computer Science
& Engineering, GIMT, Guwahati
Ms. Mala Ahmed (Block II : Unit- 7)
Asstt. Prof., Dept. of Computer Science
& Engineering, GIMT, Guwahati
Dr. Manoj Kumar Deka (Block II : Unit- 8)
Asstt. Prof., Dept. of
Computer Science & Technology
Bodoland University, Kokrajhar(BTAD)

Content Editor:

Dr. Ridip Dev Choudhury

Associate Professor and Director(i/c),

Hiranya Chandra Bhuyan School of Science and Technology,

KKHSOU, Guwahati

Course Coordination:
Prof. Dandadhar Sarma Director, IDOL, Gauhati University
Prof. Anjana Kakoti Mahanta Prof., Dept. Computer Science, G.U.

Cover Page Designing:
Bhaskar Jyoti Goswami IDOL, Gauhati University

May, 2022

© Copyright by IDOL, Gauhati University. All rights reserved. No part of this
work may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, or otherwise.
Published on behalf of Institute of Distance and Open Learning, Gauhati
University by the Director, and printed at Gauhati University Press, Guwahati-
781014.

BLOCK I:

REVIEW OF COMPUTER

ORGANIZATION,

MEMORY ARCHITECTURE,

CONCURRENT PROCESS

AND SCHEDULING

1 | P a g e

Space for learners: UNIT 1: COMPUTER SYSTEM REVIEW

Unit Structure:

1.1 Introduction

1.2 Unit Objectives

1.3 Components of a Computer

1.3.1 Functional Units of a Computer

1.3.1.1 Input Unit

1.3.1.2 Output Unit

1.3.1.3 Central Processing Unit (CPU)

1.3.1.4 Memory Units

1.3.1.5 Units of Memory

1.4 Basic Instruction Sets of Computer

1.4.1 Instruction Set Architectures

1.4.1.1 RISC (Reduced Instruction Set Computer)

1.4.1.2 CISC (Complex Instruction Set Computer)

1.4.1.3 MISC (Minimal Instruction Set Computers)

1.4.1.4 VLIW (Very Long Instruction Word)

1.4.1.5 EPIC (Explicitly Parallel Instruction

Computing)

1.4.1.6 OISC (One Instruction Set Computer)

1.4.1.7 ZISC (Zero Instruction Set Computer)

1.4.2 Instruction Set

1.4.3 Addressing Mode

1.5 Summing Up

1.6 Answers to Check Your Progress

1.7 Possible Questions

1.8 References & Further Readings

2 | P a g e

Space for learners: 1.1 INTRODUCTION

In this unit you will learn about different functional units or sub

systems of a computer. A computer system is said to be functional

if all the major subsystems works properly. This unit introduces a

number of hardware units presents in a computer and give a broad

overview and functional aspects of the same. Instruction set is

another aspect of a computer systems to be discussed here, where

we will learn about different addressing modes and Instruction set

architecture of a computer.

1.2 UNIT OBJECTIVES

After going through this unit, you will be able to

 understand the major hardware units of Computer

System

 learn about the instruction set architectures

 learn about the various types of addressing modes

1.3 COMPONENTS OF A COMPUTER

An electronic calculating machine that takes digitized information

as input, processes the input according to internally stored one or

more instructions and produces the output information can be

termed as computer.

Digital computer consists of five functionally independent

main units

a) Input units

b) Output units

c) Central processing unit

i. Arithmetic and logic units

ii. Control Units

iii. Registers

d) Memory units

3 | P a g e

Space for learners:

Data Flow

Control Flow

Figure 1: Block Diagram of a Computer

Figure 1 shows the block diagram of a computer introduced by

John Von Neumann based on a stored-program concept. In this

stored-program concept, programs and data or information are

stored in a separate storage unit called memories and are treated

the same.

Instructions are the commands that move the information within

computer or between different computers and its Input and output

(I/O) devices and performs arithmetic and logic operations.

A set of instructions that performs a task is called a program. The

processor fetches the instructions from memory, one at a time and

performs the desired operations unless there is some interrupt

signal occurs.

Secondary

Storage

Primary

Storage

Control Unit

Arithmetic

and Logic Unit

Input Unit Output Unit

4 | P a g e

Space for learners: 1.3.1 Functional Units of a Computer

1.3.1.1 Input Unit

Input unit or device is hardware equipment through which data

and control signals are transferred to computer. Input unit converts

data and command to computer understandable form. Examples of

input devices: keyboards, mouse, scanners, digital cameras,

joysticks, digital pen, digitizers, Touch Panel etc.

Figure: Keyboard, Mouse, Scanner, Joystick, Digital Pen

1.3.1.2 Output Unit

An output unit or device is a hardware equipment which converts

digital information into human readable or understandable form.

Example of output device: Monitor, Printer, Plotters, Speakers etc.

Figure: Monitor, Printer, Plotters, Speaker

CHECK YOUR PROGRESS

1. State TRUE or FALSE:

(a) Input device takes inputs from computer

(b) Joysticks is an input device

(c) Printer is used to display Output (True/False)

(d) Through Instruction we can move information within a

computer

2. Fill in the Blanks:

(a) Computer use _________Unit to store information.

(b) Computer use _________Unit to do all arithmetic

operations.

(c) Instruction are _________used in computer.

(d) Speaker is a ________ Device

5 | P a g e

Space for learners: 1.3.1.3 Central Processing Unit (CPU)

Central processing Unit; in short CPU is the brain of a computer

system. All calculations are made inside the CPU. CPU is

responsible for controlling all the devices and maintain

communication between them. Arithmetic and logic unit, Control

Unit and Registers together referred as central processing unit or

processor.

i. Arithmetic and Logic Unit (ALU): The arithmetic logic

unit is that part of the CPU that handles all the

calculations the CPU may need, e.g. Addition,

Subtraction, Comparisons. It performs Logical

Operations, Bit Shifting Operations, and Arithmetic

Operations.

ii. Control Unit: The control unit manages and co-

ordinates all the operations of computer system

through signals. It transfers all input and output flow,

fetches instructions and controls data moves around

the system.

iii. Registers: Registers are small amounts of high-speed

memory contained within the CPU used as a

temporary storage area. They are used by the processor

to store small amounts of data that are needed during

processing, such as:

 Stores the address of the next executing

instruction

 The current instruction being executed

 The results of calculations

Different processors have different numbers of registers for

different purposes, but most have some, or all, of the following:

 Program Counter: Program Counter (PC) is used to keep

the track of execution of the program. After successful

completion of an instruction, PC points to the address of

the next instruction to be fetched from the main memory.

 Memory Data Register (MDR): Memory Data Register

contains data to be read or write from an addressed

location.

6 | P a g e

Space for learners: Memory Address Register (MAR): Memory Address

Register is used to hold address of the location to be

accessed from memory. The communication between

the CPU and the main memory is handled by MAR and

MDR.

 Instruction Register (IR): The Instruction Register holds

the instruction which is just about to be executed. The

instruction from PC is fetched and stored in IR. As soon

as the instruction in placed in IR, the CPU starts

executing the instruction and the PC points to the next

instruction to be executed.

 Accumulator (Acc) : Accumulator is the frequently used

register for storing data taken from memory. It is

commonly used as a temporary location for storing data.

 General Purpose Register: These are numbered as R0,

R1, R2….Rn-1, and used to store temporary data during

any ongoing operation.

All the components of CPU are connected to the computer through

buses. A bus is a high-speed internal connection. It can be

assuming as an electrical wire for connecting and communicating

between the units of CPU. Buses are used to send control signals

and data between the processor and other components.

Three types of bus are used:

 Address bus - carries memory addresses from the processor

to other components such as primary memory and

input/output devices.

 Data bus - carries the actual data between the processor

and other components.

 Control bus - carries control signals from the processor to

other components. The control bus also carries the clock's

pulses.

STOP TO CONSIDER

Program Counter always points to the address of the next

instruction to be fetched from the main memory.

Accumulator is the frequently used register for storing data taken

from memory.

7 | P a g e

Space for learners:

1.3.1.4 Memory Units

Memory Units are the storage space for storing program and data.

Memory units are used for storing intermediate results and for

final results. It has two broad categories.

i. Main Memory or Primary Memory

ii. Secondary Memory

Main Memory or Primary Memory

All computer uses primary memory for storing program and data

when computing is running. Primary memory can operate at

electronic speeds. When programs are being executed, it must be

residing in the main memory. In main memory, a distinct address

is mapped with each data location for accessing or manipulating

data. Addresses are the numbers that identify successive location

Types of Primary Memory:

 Read Only Memory (ROM)

 Random Access Memory (RAM)

 Cache Memory

Read Only Memory (ROM): ROM is a memory device or

storage medium that stores information permanently. It is called

read only memory as we can only read the programs and data

stored on it but cannot write on it. The manufacturer of ROM fills

CHECK YOUR PROGRESS

3. State TRUE or FALSE:

(a) Control Unit Controls Only Arithmetic and Logic Unit

(b) Registers re used as Temporary Storage

(c) Adress bus is a register

(d) Data bus carries actual data

4. Fill in the Blanks:

(a) Program counter points____________

(b) Memory Data Register contains ____________

(c) Memory Address Register is used to hold _____________

(d) The Instruction Register holds__________

(e) Control Signal is transferred through ______ bus

8 | P a g e

Space for learners: the programs into the ROM at the time of manufacturing the

ROM. After this, the content of the ROM can't be altered, which

means you cannot reprogram, rewrite, or erase its content later.

Various types of ROMs:

Programmable Read only Memory (PROM) is a programmable

read only memory to store information only once by a user.

PROM data cannot be erased.

Erasable Programmable Read Only Memory (EPROM) also a

programmable read only memory to store information by a user.

Stored information can be erased exposing it to strong ultraviolet

light source

Electrically Erasable Programmable Read Only Memory

(EEPROM) is a read only memory that can be programmed and

can be erased electrically.

Random Access Memory (RAM): RAM provides operating

memory for computer, when a program and data is being

executed. CPU can access contents from RAM randomly from any

location and any order. It is also called as read/write memory,

since the information can be written to it as well as read from it.

The more processes a computer needs to run at a single time, the

more RAM it needs. RAM is as volatile memory. Volatile means

information will be lost as soon as the power supply goes off.

Cache Memory: Cache memory is a type of fast, relatively small

memory, which computer microprocessors can access more

quickly than regular RAM. It is typically directly integrated with

the CPU chip, or is placed on a separate chip that can connect

CPU and RAM. The main purpose of this type memory is to store

program instructions that are frequently used by software during

its general operations, this is why fast access is needed as it helps

to keep the program running quickly.

STOP TO CONSIDER

Before executing any data or instruction in a processor, it

should be residing in RAM.

RAM termed as Random access because any location can be

reached randomly with a same amount of time.

9 | P a g e

Space for learners: Secondary Memory

Secondary memory is a non-volatile and persistent computer

memory. It enables a user to store data that can be retrieved,

transmitted, and utilized by applications and services in real time.

Secondary memory is used to store large amount of data or

programs permanently.

Some basic characteristics of Secondary Memory

a) It is non-volatile, i.e. it retains data when power is switched

off

b) It is large capacities to the tune of terabytes

c) It is cheaper as compared to primary memory. Secondary

storage can be broadly divided into three category

 Magnetic Storage

 Optical Storage

 Solid state storage

 Magnetic Storage: Magnetic devices use magnetic fields to

magnetise tiny individual sections of a metal spinning disk.

Each tiny section represents one bit. A magnetised section

represents a binary '1' and a demagnetised section represents

a binary '0'. As the disk is spinning, a read/write head moves

across its surface. To write data, the head magnetises or

demagnetises a section of the disk that is spinning under it.

To read data, the head makes a note of whether the section is

magnetised or not. Magnetic devices are fairly cheap, high

in capacity and durable. Example of Magnetic storage

device: Hard Disks, Floppy Disk, magnetic tape

 Optical storage: Optical devices use a laser to store and

read the stored data from an optical spinning disc made from

metal and plastic. The disc surface is divided into tracks,

with each track containing many flat areas and hollows. The

flat areas are known as lands and the hollows as pits. When

the laser shines on the disc surface, lands reflect the light

back, whereas pits scatter the laser beam. A sensor looks for

the reflected light. Reflected light - land - represents a binary

'1', and no reflection - pits - represents a binary '0'. Example

of Optical storage : CD-ROM(Compact Disc -Read only

10 | P a g e

Space for learners: Memory), DVD-ROM (Digital Versatile Disc-Read Only

Memory), Blue Ray Disc

 Solid state storage: Solid state storage is a special type of

storage made from silicon microchips. It can be written to

and overwritten like RAM but it is non-volatile. Solid state

is also used as external secondary storage. One of the major

benefits of solid state storage is that is has no moving parts.

Because of this, it is more portable, and produces less heat

compared to traditional magnetic storage devices. Example

of Solid State Storage: USB memory sticks and solid state

drives (SSD)

CHECK YOUR PROGRESS

5. State TRUE or FALSE:

(a) Secondary memory is also known as Main Memory

(b) ROM is volatile Memory

(c) RAM is a volatile Memory

(d) DVD is an Optical Media

6. Fill in the Blanks:

(a) ______ provides operating memory for computer

(b) Cache Memory Stores the instruction that are

_________used

(c) Magnetic devices use _______ fields to store data

(d) SSD is mode from _________Microchips

STOP TO CONSIDER

 ROM is non-volatile memory

 RAM is volatile memory

 Cache is a volatile memory

 Magnetic Storage device like hard disk is non-volatile

memory

 Optical Storage device like CD DVD is non-volatile memory

 Solid state storage device like SSD Hard Disk, pen drive is

non-volatile Memory

11 | P a g e

Space for learners: 1.3.1.5 Units of Memory

The storage capacity of the memory is expressed in various units

of memory. Bit (Binary Digit) is the primary or smallest unit of

memory. A microprocessor uses binary digits 0 and 1 to decide the

OFF and ON state respectively. The following table shows

memory units

Sl Units Description

1 Bit A binary digit is a logical 0 or 1 that

indicates whether a component in an

electric circuit is in the passive or

active state.

2 Nibble A group of 4 bits is called nibble.

3 Byte A byte is a collection of 8 bits. The

smallest unit that can represent a data

item or a character is a byte.

4 Kilobyte (KB) 1 KB = 1024 Bytes

5 Megabyte (MB) 1 MB = 1024 KB

6 GigaByte (GB) 1 GB = 1024 MB

7 TeraByte (TB) 1 TB = 1024 GB

8 PetaByte (PB) 1 PB = 1024 TB

1.4 BASIC INSTRUCTION SETS OF COMPUTER

 As mentioned in the previous section Instructions are the

commands that move the information within computer or between

CHECK YOUR PROGRESS

7. Calculate the followings:

(a) 4 Nibble = ________bit

(b) 1 byte = ________bit

(c) 1kilobyte = ________bit

(d) 1024 MB = ________byte

12 | P a g e

Space for learners: different computers and its Input and output (I/O) devices and

performs arithmetic and logic operations

An instruction set is a collection of machine language commands

for a CPU. The term can apply to all of a CPU's potential

instructions or a subset of instructions designed to improve

performance in specific scenarios.

The instruction set consists of addressing modes, instructions,

native data types, registers, memory architecture, interrupt, and

exception handling, and external I/O

Machine language is the language, through which computer can

understand and communicate. Machine language is made up of

instructions and data that are all binary numbers.

An instruction set architecture (ISA), also called computer

architecture, is an abstract model of a computer. There are various

types of instruction set architecture available and each one has its

own usage and advantages. The ISA serves as the boundary

between software and hardware.

1.4.1 Instruction Set Architecture

 Following are the instruction set architectures based on

microprocessor architecture:

 RISC(Reduced Instruction Set Computer)

 CISC(Complex Instruction Set Computer)

 MISC(Minimal Instruction Set Computers)

 VLIW(Very Long Instruction Word)

 EPIC(Explicitly Parallel Instruction Computing)

 OISC(One Instruction Set Computer)

 ZISC(Zero Instruction Set Computer)

1.4.1.1 Reduced Instruction Set Computer (RISC)

Reduced Instruction Set Computer is an instruction set

architecture (ISA) with less number of cycles per instruction (CPI)

with extremely optimized set of Instruction

1.4.1.2 Complex Instruction Set Computer (CISC)

13 | P a g e

Space for learners: Complex Instruction Set Computer is an instruction set

architecture (ISA) with fewer instructions per program than RISC.

In CISC, single instructions can execute multiple low-level

operations (like an arithmetic operation, load from memory and a

memory store) or are capable of multi-step operations

1.4.1.3 Minimal instruction set computers (MISC)

Minimal instruction set computers is a processor architecture

which has a very small number of primary instruction operations

and corresponding opcodes. So MISC has smaller instruction set, a

smaller and faster instruction set decode unit, and faster operation

of individual instructions.

1.4.1.4 Very long instruction word (VLIW)

Very long instruction word is an instruction set architectures

designed to achieve instruction level parallelism (ILP). Central

processing units commonly allow programs to specify instructions

to execute in sequence only. A VLIW processor allows

programmes to explicitly define concurrent execution of

instructions. This design aims to provide higher performance

without the complexity inherent in some other designs.

Instruction-level parallelism (ILP) is the parallel or simultaneous

execution of a sequence of instructions in a computer program

1.4.1.5 Explicitly parallel instruction computing

(EPIC)

Hewlett Packard and Intel collaboratively defined and designed

64-bit microprocessor instruction set, for Explicitly Parallel

Instruction Computing. EPIC is an instruction set that allows

microprocessors to execute software instructions to control

parallel instruction execution using compiler

1.4.1.6 One instruction set computer (OISC)

One instruction set computer is an abstract machine that uses only

one instruction where no machine language opcode is used. OISC

also well-known as ultimate reduced instruction set computer

(URISC). OISCs have been used as computational models in

14 | P a g e

Space for learners: structural computing research and guides in teaching computer

architecture.

1.4.1.7 Zero instruction set computer (ZISC)

A computer architecture based on pattern matching and the

absence of micro-instructions is known as a zero instruction set

computer (ZISC).

1.4.2 Instruction Set

The instruction set consists of a limited set of unique codes or

commands that let the processor know what to do next, along with

some basic rules of how to express them.

Instruction of a computer can be express with the followings

 Instruction length (Length may vary): Instruction length

can range from as little as four bits in certain

microcontrollers to hundreds of bits in some very long

instruction word systems.

 Opcodes: An opcode (operation code) also known as

instruction machine code is a command to the central

processing unit

 Operands: An operand is the part of a computer instruction

that specifies data that is to be operating on or

manipulated. Basically, a computer instruction describes

an operation (add, subtract, and so forth) and the operand

or operands on which the operation is to be performed

 Registers: A processor register is a quickly accessible

location available to a computer's processor.

 Memory: It is an external storage for larger and more

versatile number of locations, with slower to access

An instruction can vary in length depending on the architecture. In

x86 systems, the length of the instruction is normally 1 to 3 bytes

(for the opcode), and a number of bytes needed for the operands,

depending on the addressing mode.

15 | P a g e

Space for learners:

1.4.3 Addressing Mode

An addressing mode provides the way to calculate the effective

memory address of an operand by using the information stored in

registers and/or constants contained within a machine instruction.

The different ways for specifying the locations of instruction

operands are known as addressing modes.

In an instruction; the operation field specifies the operation to be

performed. The executed operation may have executed on some

data that is given explicitly on the instruction or stored in

computer registers or memory words. The addressing mode of the

instruction decides how the operands to be chosen during program

execution. The addressing mode specifies a rule for interpreting or

modifying the address field of the instruction before the operand is

actually referenced.

High-level language like C, C++, Java etc uses local and global

variables, arrays, constants and pointers. For translating a high-

level language program with human understandable code into

assembly language or machine Language, the compiler must be

able to implement or use these constructs using the facilities

provided in the instruction set of the computer in which the

program will be executed.

The ways through which the location of an operand can be found

is known as addressing modes. Variables and constants are the

CHECK YOUR PROGRESS

8. State TRUE or FALSE:

(a) One Instruction set uses only one instruction.

(b) An operand is the part of a computer instruction.

(c) Instruction-level parallelism is the parallel or

simultaneous execution of a sequence of instructions in a

computer program.

(d) zero instruction set computer uses only one instruction.

9. Fill in the Blanks:

(a) Full form of RISC _________

(b) Full Form of CISC ________

(c) An opcode is a _____ to the central processing unit.

16 | P a g e

Space for learners: simplest data types and are found in almost every computer

program. In assembly language, registers or memory locations are

used to represent the variable to hold values.

Followings are the different types of Addressing Modes:

Register mode:

CPU register contains the operand and the name of the register is

given in the instruction.

Example: Add R2, R3

Absolute mode (Direct Mode):

Here the operand is stored in memory location and the address of

the location is given explicitly in the instruction.

Example: Add LOC, R3

Immediate mode:

In this mode, the operand is explicitly given in the instruction

without any register or memory location.

Say we want to store value 200 in register R0. Then, using the

following immediate instruction we can do that

Move #200, R0

Immediate mode is commonly used to specify the source operand

values.

The number sign (#) is used in front of the value to represent as an

immediate operand.

Constant values are used frequently in high-level language

programs. For example, if we evaluate the expression A = B + 8,

where the expression contains the constant value 8. With the

assumption that A and B variables have been declared earlier.

Memory locations A and B may be accessed using the Absolute

mode. The expression A = B + 8 can be expressed in assembly

language as follows

Move B, R1

Add #8, R1

Move R1, A

17 | P a g e

Space for learners: Indirect mode:

In the addressing mode operand or its address is not explicitly

specified in the instruction. Instead, it provides information from

which the memory address of the operand can be determined. This

address can be referred as effective address (EA) of the operand.

So in this mode, the effective address of the operand is the

contents of a register or memory location whose address specifies

in the instruction. The indirection mode is denoted by placing the

name of the register or the memory address in the instruction in

parentheses.

For example, consider the instruction, Add (R1), R0. For

executing the above Add instruction, the processor fetches the

value in register R1 and use as the effective address of the

operand. Then the processor starts a read operation from the

memory to read the contents of the specified location. The value

fetches after read operation is the required operand, which the

processor adds to the contents of register R0. The register or

memory location that contains the address of an operand is called

a pointer. Indirection and the use of pointers are important and

powerful concepts in programming.

Index mode:

In this mode, a constant value (displacement) is added to the

contents of a register to generate the effective address of the

operand. The register used may be any one of the general-purpose

registers or a special register for this purpose. In each case, it is

referred to as an index register. Index mode is symbolically

identified as

18 | P a g e

Space for learners: X(Ri)

Where Ri is the name of the register involved and X is the

constant value contained in the instruction. The effective address

of the operand can be calculated by

EA = X + [Ri].

Square bracket [] indicates the address of that location. Here [Ri]

means, address of Ri. During the process of generating effective

address, the contents of the index register are not changed.

In an assembly language program, the constant X may be given

either as an explicit number or as a symbolic name representing a

numerical value. When the instruction is translated into machine

language, the constant X is given as a part of the instruction and is

usually represented by fewer bits than the word length of the

computer.

In the above figure, R1 is the index register that contains the

address of a memory location. The value X defines an offset or

displacement from the address in index register to the location

where the operand is found. According to the above figure; R1

contains address 1000. Program statement is Add 20(R1), R2. So

20 displacements will be added to memory address 1000. So the

operand will be found in memory location 1020. Result of the

expression will be the addition of the content of operand stored in

memory location 1020 and the Register R2.

There are two other variants of index mode;

 Here two register is used for index content. This type of

index mode can in write as

(Ri,Rj)

The effective address can be calculated by adding the

contents of registers Ri and Rj.

19 | P a g e

Space for learners: This type of Index mode uses a constant along with two

registers. This mode can be denoted as

X(Ri,Rj)

The effective address is the sum of the constant X and the

contents of registers Ri and Rj.

Relative mode:

Relative mode is same as index mode. The only difference is that

instead of general purpose register, here program counter (PC) for

different execution.

Auto increment mode:

In this mode, contents of a register is used as Effective Address of

the operand. After accessing the operand, the contents of this

register is automatically incremented to point to the next

instruction in the list.

Example: (Ri)+

In the above example Ri contains address of the operand. After

execution of the instruction, the address contains in Ri will be

incremented to point to the next instruction.

Autodecrement mode:

In this mode, contents of a register are used as Effective Address

of the operand. After accessing the operand, the contents of this

register is automatically decremented to point to the next

instruction. Autodecrement mode is be denoted by putting the

specified register in parentheses, preceded by a minus sign to

indicate that the contents of the register are to be decremented

before being used as the effective address

Example : - (Ri)

In the above example Ri contains address of the operand. After

execution of the instruction, the address contains in Ri will be

decremented to point to the next instruction.

20 | P a g e

Space for learners:

1.5 SUMMING UP

 A computer a fast calculating electronic machine. It has five

main functional units; Input, output, Central processing and

memory units

 CPU is a combination of these other units called ALU, Control

unit and registers

 Program Counter (PC) registers point to the next instruction to

be executed next.

 All the components of CPU are connected to the computer

through buses. In an ideal computer system three types of bus

used; address bus, data bus and control bus

 Before executing a program or instruction it should be stored

in main or primary memory. From main memory CPU will

fetch and executed the instruction

 RAM (Random access memory) is termed as Random access

because any location can be reached randomly in a short and

fixed amount of time after specifying its address.

 Cache memory is faster than RAM. And it is placed between

RAM and Processor to synchronize the speed of processor and

other slow speed devices

CHECK YOUR PROGRESS

10. State TRUE or FALSE:

(a) Absolute mode is also known as indirect mode.

(b) In Immediate mode, the operand is explicitly given in the

instruction without any register or memory location

(c) Constant value in Index Mode is also known as

displacement.

(d) Relative mode used General Purpose Register.

11. Fill the Blanks:

(a) The ways through which the location of an operand can be

found is known as_________

(b) In Register Mode, Operand is stored in ______________

(c) After accessing the operand, the contents of this register is

automatically decremented in ________ Addressing mode.

21 | P a g e

Space for learners: An instruction set is a group of commands for a CPU in

machine language

 Machine language is the language, through which computer

can understand and communicate.

 An instruction set architecture (ISA), also called computer

architecture, is an abstract model of a computer. The ISA

serves as the boundary between software and hardware.

 An addressing mode specifies how to calculate the effective

memory address of an operand by using information held in

registers and/or constants contained within a machine

instruction.

1.6 ANSWERS TO CHECK YOUR PROGRESS

1.

1) False

2) True

3) False

4) True

2.

(a) Memory

(b) Arithmetic and Logic Unit

(c) Commands

(d) Output

3.

(a) False

(b) True

(c) False

(d) True

4.

(a) Next Instruction

(b) Data

(c) Address

(d) Instruction

(e) Control

5.

(a) False

(b) False

(c) True

(d) True

6.

(a) RAM

(b) Frequently

22 | P a g e

Space for learners: (c) Magnetic

(d) Silicon

7.

(a) 16

(b) 8

(c) 8192

(d) 1073741824

8.

(a) True

(b) True

(c) True

(d) False

9.

(a) Reduced Instruction Set Computer

(b) Complex Instruction Set Computer

(c) Command

10.

(a) False

(b) True

(c) True

(d) False

11.

(e) Addressing modes

(f) CPU register

(g) Autodecrement

1.7 POSSIBLE QUESTIONS

 Short answer questions:

1. What is a computer?

2. Give two examples of pointing device?

3. Why we use secondary memory?

4. What is the role of Control Unit?

5. What is the functions of Arithmetic and logic Unit?

6. What is a program?

7. What is an instruction?

8. What do you understand by computer memory?

9. Why RAM is called as Random Access Memory

10. What is a registers?

23 | P a g e

Space for learners: 11. What is a Program counter?

12. What is Memory Data Registers?

13. What is Memory Address Register?

14. What is the use of Instruction register?

15. What are the different types of Primary memory?

16. Convert the followings

a. 1024 MB to bytes

b. 1TB to Kilobytes

c. 1 GB to Megabytes

17. What is addressing modes?

18. What is an opcode?

19. What is an operand?

Long answer questions

1. Mention four features of a computer system

2. Briefly describe the different units of computers.

3. Draw the block diagram of a computer and describe each

unit.

4. Write difference between the followings

a. Input unit and Output Unit

b. RAM and ROM

c. Primary Memory and Secondary Memory

5. What is bus? Discuss the different types of bus used in

computer

6. What is Optical Storage media? Discuss how Optical

media stores data in media.

7. What is Instruction set Architecture (ISA)? Discuss

different types of ISA briefly.

8. Discuss different addressing modes use in computer

Architecture.

9. What is index addressing modes? Discuss different index

addressing modes with example.

24 | P a g e

Space for learners: 10. Discuss the advantages and disadvantages of secondary

memory.

1.8 REFERENCES AND SUGGESTED READINGS

 V. Carl Hamacher, Zvonko G. Vranesic, Safwat G. Zaky,

Computer Organization , McGraw-hill International Editions

25 | P a g e

Space for learners: UNIT 2: OPERATING SYSTEM OVERVIEW

Unit Structure:

2.1 Introduction

2.2 Unit Objectives

2.3 Operating System (OS)

 2.3.1 Operating Systems Goals

2.4 History of Operating Systems and Computers

2.5 Types of Operating Systems

2.6 Functions of Operating Systems

2.7 Summing Up

2.8 Answers to Check Your Progress

2.9 Possible Questions

2.10 References & Suggested Readings

2.1 INTRODUCTION

We have often come across the term “operating system” and have

used different kinds of operating system in our day to day life. For

example, we use an operating system when we use a computer, a

laptop or a mobile. Operating System can be defined as an interface

between the user and the computer hardware. The goal of operating

system is to improve the efficiency of a computer system. Different

kinds of operating systems have been developed over the decades

depending on their uses and new technical advances. Operating

system performs various functions in the computer system like

program execution, I/O operation, error detection etc.

2.2 UNIT OBJECTIVES

After going through this unit, you will be able to

 define operating system

 describe the history of operating system

 explain the different types of operating systems

 describe the various functions of operating systems

26 | P a g e

Space for learners: 2.3 OPERATING SYSTEM

The operating system controls and performs a lot of the functions in

the computer system. Depending on the function it performs, there

are various ways in which the operating system can be defined.

However, the operating system can be defined in the following

ways:

“Operating system is a program that manages the computer

hardware. It also provides a basis for application programs and

acts as an intermediary between the computer user and the

computer hardware.” – [Ref 1]

Basically, the operation system has two main purposes. The first

purpose is to provide a platform that is easier and convenient for the

user to access and use the computer hardware. And the second

purpose is to efficiently manage the different resources in the

computer system.

2.3.1 Operating Systems Goals

The operating system has primarily two main goals. These goals are:

 Efficiency

 Convenience

Any operating system needs to be efficient in managing the various

resources of the computer system. The optimum of the resources like

CPU, memory, input/output devices etc. has to be made. The

computer user does not directly communicate with the computer

hardware. The computer user communicates with the hardware with

the use of an operating system. Hence the operating system needs to

be convenient for use to the user. Most of the operating systems are

designed to be either efficient or convenient and some are designed

for both. In addition to these two goals, the operating system should

also be able to evolve over the years. Over the years, the user would

require newer services and features and these need to be provided to

the user. A good operating system should evolve by upgrading to

newer versions that have better convenience and efficiency along

with updated features.

27 | P a g e

Space for learners:

2.4 HISTORY OF OPERATING SYSTEMS AND

COMPUTERS

Computers have been in use for many decades now. The first digital

computer was developed by Charles Baggage and named the

“analytical engine”, but it did not have an operating system.

Operating systems have evolved a lot over the ages and there is no

perfect mapping of operating systems with the different generations

of computers. Still, let us look at the history of operating systems

that have been developed and in use over the different generations of

computers.

First Generation of Computer (1945-55): Vacuum Tubes

The technological advancement in the first generation of computers

was the development of vacuum tubes. The machines used in this

generation were mostly calculating engines which used mechanical

relays. These mechanical relays were replaced by vacuum tubes.

Programming was done using machines language in these machines.

Assembly and high level programming languages were not used in

this generation. Operating systems were also not used in this

generation of computers. However, punched cards were introduced

in this generation.

Second Generation of Computer (1956-65): Transistors and

Batch Systems

The technological advancement in the second generation of

computers was the development of transistors. There were now

customers for the large sized computers used in this generation that

took large rooms and are called as “mainframes”. To run a job in

these machines, a programmer would write the code and hand it over

to the operator present in the input room. Depending on the language

used in writing the programming code, the operator would load the

compiler for that programming language. For example, if the code

was written in FORTRAN, then the operator would search for the

CHECK YOUR PROGRESS

Q1: Define operating system?

Q2. What are the goals of operating system?

28 | P a g e

Space for learners: FORTRAN compiler and load it to the computer for execution of

that code. If the next job was written in a different programming

language, then it required to unload the FORTRAN compiler and

load the compiler for that specific language. This caused a lot of

wastage of time. Hence, batch operating systems were introduced to

reduce this wastage of time. A batch of similar jobs was collected

together and then read and loaded one after another. For example, a

batch of jobs using written in FORTRAN language. After the

completion of one job, the operating system read and loaded the next

job run immediately. This process saved the time required for

loading and unloading of the compilers of different jobs.

Third Generation of Computer (1965-1980): ICs and

Multiprogramming

The technological advancement in the third generation of computers

was the development of integrated circuits (ICs). The integrated

circuits replaced the transistors of the second generation computers.

The concept of multiprogramming was also developed in this third

generation of computers. The CPU till now worked on the one job at

hand and executed the CPU burst of instructions for that job. But

when there was an I/O set of instructions, the CPU would remain

idle since it had to wait for the I/O operation to be completed and

this was a major loss of time and resource. The solution to this

problem was to partition the computer memory and then have

different jobs in these different partitions. The basic idea was that

when one job was waiting for I/O operations to be complete, the

CPU could be allocated to another job in one of these partitions.

This would keep the CPU busy and waste the resource. The concept

of time sharing operating system also introduced in this generation

used multiprogramming to provide each user with a small portion of

a time-shared computer. In the time sharing systems, each user had a

terminal and the computer provided fast interactive service to

multiple users such that it seemed like many users were using the

computer at the same time. The first general-purpose timesharing

system was CTSS (Compatible Time Sharing System) and its

success led to the development of the MULTICS (MULTiplexed

Information and Computing Service) system which was developed

to support hundreds of simultaneous users. The MULTICS had an

influence in the development of other operating systems like UNIX

and Linux.

29 | P a g e

Space for learners: Fourth Generation of Computer (1980- Present): Personal

Computers

The technological advancement in the fourth generation of

computers was the development of large scale integrated circuits

(LSI). With LSIs in use now the size of the computer became small

now as thousands of transistors could now be fitted into a square

centimetre of silicon and thus gave rise to the development of

personal computers. Disk Operating System (DOS) was one of the

operating systems used in these times. Microsoft developed a new

revised system called MS-DOS (MicroSoft Disk Operating System)

which was hugely popular. The Apple Macintosh system was also

developed during these times and was a success because of the

cheap cost and user friendly GUI. Following the success of

Macintosh, Microsoft developed their own graphical interface

Windows, which was first used as a graphical environment on top of

MS-DOS. But in 1995, Windows 95 was launched as a freestanding

operating system with MS-DOS as an underlying component for

booting and running MS-DOS programs. Over the years many

newer versions of Windows were launched like Windows 98,

Windows XP, Windows NT, Windows Me and Windows Vista.

Windows 7 was one of the prominent operating system launched by

Microsoft that had widespread popularity and demand. Later on,

other newer versions of Windows were also launched like Windows

8, Windows 10 and Windows 11. UNIX is another popular operating

system. LINUX is another alternative operating system that is

popular for personal computers. In addition, network operating

systems and distributed operating systems were also being

developed in this generation of computers.

Fifth Generation of Computer (1990-Present): Mobile

Computers

There are many operating systems specially developed for mobiles

and smartphones. Symbian operating system was widely used in the

early days of smartphones. It was the operating system that was used

by major companies like Samsung, Motorola and Nokia. But soon

other newly developed operating systems like Blackberry OS and

iOS also gave competition to the existing operating systems. In

2011, Nokia introduced their smartphones with Windows platform.

After the launch of Android operating system, it has quickly become

one of the most popular operating system that is currently used in

30 | P a g e

Space for learners: smartphones. Android is a Linux-based operating system and has the

advantage that it is open source and available under a permissive

license to evolve and adapt its operating system to cater to today’s

users’ needs and demands. Apple’s iOS is another operating system

that is widely popular nowadays for smartphones.

2.5 TYPES OF OPERATING SYSTEMS

Operating systems can be classified into different types. Let us look

at some of the different types of operating systems:

 Mainframe Operating Systems: The mainframe operating

systems are used in heavy processing oriented jobs where

huge amounts of data and I/O are processed. There are

typically three kinds of services for mainframe systems:

batch, transaction processing and timesharing. Batch systems

are used in jobs like sales reporting where interactive user

are not required. Transaction processing systems are used in

jobs that handle a large number of small requests in a short

span of time. For example, in airline or train ticket

reservation systems. Timesharing systems allow multiple

remote users to execute jobs on the computer at the same

time. Some mainframe computers perform all of the three

functions. OS/390 is an example of mainframe operating

system.

 Server Operating Systems: Server operating systems have

servers which may be large personal computers, workstations

or even mainframes. They serve multiple users who are

connected over a network. The users can share different

hardware and software resources among themselves like

printer services, web services etc. Websites use these servers

to store web pages and to handle the requests of clients.

Some of the server operating systems are Solaris, Linux and

Windows Server 201x.

 Multiprocessor Operating System: Multiprocessor

operating systems are used to increase the computing power

of a computer system by connecting multiple CPUs in a

single system. Depending on the way these CPUs are

connected the can be classified as parallel computers,

31 | P a g e

Space for learners: multicomputer or multiprocessors. With the introduction of

multicore chips in personal computers, the number of cores

in personal computers like desktop and notebooks are only

going to increase further more. Windows and Linux

operating systems run on multiprocessors.

 Personal Computer Operating System: Modern personal

computer operating systems use multiprogramming to run

multiple programs and are designed to support a single user.

These are mostly used for simple applications like word

processing, games and to access the Internet. Many versions

from Linux, Windows and Apple OS are examples for

personal computer operating system making these operating

systems the most popular in the world.

 Handheld Computer Operating Systems: Handled

computers or PDA (Personal Digital Assistant) are small

computers that can be held in our hand. Smartphones and

tablets are some of the examples of handheld devices. Some

of the popular operating systems used in these devices are

Google’s Android and Apple’s iOS. These devices have

multicore CPUs, camera and other sensors. Third party

applications acan also be installed and used in these

operating systems.

 Embedded Operating System: Embedded operating

systems are used in devices like washing machines,

microwave ovens etc. These devices are generally not

thought of as computers. They differ from handheld devices

like smartphones in the way that no third party applications

can be installed or run in these machines as all the software

is pre-installed in the ROM. This makes these devices safe

from malicious software and in turn leads to a much less

complicated design. Embedded Linux and VxWorks are two

examples of embedded operating systems.

 Sensor - Node Operating System: Sensor – node operating

systems are used in wireless sensor nodes. These sensors are

small computers with CPU, RAM, ROM and one or more

environmental sensors. It has a small operating system that is

used to respond to events like for example detection of fire in

32 | P a g e

Space for learners: a building. Like embedded systems here too the programs are

pre-installed and third party applications cannot be installed

which makes these devices safe and simpler to design. One

of the most popular operating system for sensor node is the

TinyOS.

 Real – Time Operating System: In real time operating

systems, time is a major factor. Depending on the way

deadlines are met, real time systems can be divided either

into hard real - time systems or soft real – time systems. The

hard real – time system must meet the deadlines and the

actions need to happen at the exact precise time or else

catastrophic events may occur. For example if a welding

robot welds the car at wrong time then the car will get

ruined. Soft real time systems on the other hand allow small

flexibilities in meeting the deadlines provided there is no

permanent damage. eCos is an example of a real time

operating system. There is often an overlap between the

handheld, embedded and real time operating systems.

2.6 FUNCTIONS OF OPERATING SYSTEM

An operating system provides an environment to the user to run

application programs and to communicate with the computer

hardware. The operating system also needs to perform the jobs

requested by the user in an efficient manner and in optimum time.

This requires management of a lot of services and collaboration

between the different parts of the computer system.

Some of the main functions of the operating system are described

below:

 User interface: All operating systems have a user interface.

This user interface can be a command based interface or a

graphical user interface (GUI). In the command-line based

CHECK YOUR PROGRESS

Q3: Name two devices where embedded operating systems are

used?

Q4: What are hard and soft real time operating systems?

33 | P a g e

Space for learners: interface, the user uses text commands to issue orders to the

computer system. In the graphical user interface, instead of

commands the user uses a pointing device to choose options

from a menu, direct I/O and use a keyboard to enter text.

Some systems also provide a combination of both the user

interfaces.

 Program execution: The operating system must be able to

control the execution of the program. The operating system

must be able to load the program into the computer memory

and then execute it. The program must be able to end either

normally or abnormally i.e. with errors.

 I/O operations: While a program is running, it may require

I/O, which may involve a file or an I/O device. The device

requested by the program may be for a printer or scanner or

some other specific devices. Some of the I/O devices may

require special functions for the use of I/O. Users cannot

control the I/O directly and hence the operating systems are

used to act as an interface between the user and I/O.

 File – system manipulation: Managing file system is an

important function of the operating system. Programs need to

read and write to files and directories while in executed.

There are also other functions to be done on files like

creating, deleting and appending a file. File permissions also

need to be strictly maintained so that users can only access

those files for which they have the required permission and

access rights.

 Communications: Communications need to be maintained

between processes for exchanging of information. These

communications can be done through either message passing

or through shared memory. The communication can be

between processes that are on the same computer and even

on different computers that are linked by a computer

network.

 Error detection: One of the primary functions of operating

system is to detect errors and take necessary action. These

errors may happen in any part of the computer system like

34 | P a g e

Space for learners: the CPU, the memory, the I/O devices or in the program

itself. Once the error is detected the operating system should

take action to ensure correct computing.

 Resource allocation: The operating system needs to have an

efficient way to deal with resource allocation for multiple

users and their resource needs. Different types of resources

are managed in different ways by the operating system based

on the type of resource. For example, to allocate a resource

like CPU between different processes, CPU-scheduling

algorithms may be used based on different strategies like first

come first serve or priority based. Similarly, operating

system uses different handling and managing mechanisms

for other resources also.

 Protection and security: Protection and security are

important aspects to be considered for operating systems in

today’s world. Several processes are executed concurrently

in the computer system and it should not be possible for one

process to interfere with another process. Protection means

that all access to system resources should be controlled.

Security means that outsider’s access to system resources is

not allowed. This can be done by authenticating users by

means of a password or other tools. The protection and

security is maintained for all users and for all resources in the

computer system.

2.7 SUMMING UP

 The operating system controls and performs a lot of the

functions in the computer system.

 The operating system has primarily two main goals:

efficiency and convenience.

CHECK YOUR PROGRESS

Q5: What are the different types of user interface provided by

 operating systems?

Q6: Give an example on how operating system does resource

 allocation.

35 | P a g e

Space for learners: The technological advancement in the first generation of

computers was the development of vacuum tubes.

 The technological advancement in the second generation of

computers was the development of transistors.

 The technological advancement in the third generation of

computers was the development of integrated circuits (ICs)

and the concept of multiprogramming.

 The concept of time sharing operating system also

introduced in this generation used multiprogramming to

provide each user with a small portion of a time-shared

computer.

 The technological advancement in the fourth generation of

computers was the development of large scale integrated

circuits (LSI).

 There are different types of operating systems like

mainframe operating system, server operating system,

personal computer operating system, multiprocessor

operating systems, handheld computer operating system,

embedded operating systems, sensor node operating system,

real time operating system etc.

 The main functions of the operating system includes

providing user interface, program execution, I/O operations,

file system manipulation, communication, error detection,

resource allocation and to look after the protection and

security of the computer systems.

2.8 ANSWERS TO CHECK YOUR PROGRESS

Q1: Operating system is a program that manages the computer

hardware. It also provides a basis for application programs and acts

as an intermediary between the computer user and the computer

hardware

Q2: The operating system has primarily two main goals: efficiency

and convenience

Q3: Two devices where embedded operating systems are used are

washing machines and microwave ovens.

Q4: The hard real time system must meet the deadlines and the

actions need to happen at the exact precise time or else catastrophic

36 | P a g e

Space for learners: events may occur. Soft real time systems on the other hand allow

small flexibilities in meeting the deadlines provided there is no

permanent damage

Q5: This user interface can be a command based interface or a

graphical user interface (GUI). In the command-line based interface,

the user uses text commands to issue orders to the computer system.

In the graphical user interface, instead of commands the user uses a

pointing device to choose options from a menu, direct I/O and use a

keyboard to enter text. Some systems also provide a combination of

both the user interfaces.

Q6: To allocate a resource like CPU between different processes,

the operating system uses CPU-scheduling algorithms that are based

on different strategies like first come first serve or priority based

methods.

2.9 POSSIBLE QUESTIONS

1. What is an operating system?

2. What are the goals of operating system?

3. What are handheld operating systems and personal computer

operating systems?

4. What are sensor node operating systems? Give two

applications where sensor node operating systems are used.

5. Describe in brief the concept behind batch operating systems.

6. Describe the concept behind multiprogramming and time

sharing operating systems.

7. Write a brief note on the different operating systems used in

smartphones.

8. Discuss the history of operating system in relation to the

different generations of computers.

9. Describe the different types of operating system.

10. Describe the functions of operating system.

37 | P a g e

Space for learners: 2.10 REFERENCES AND SUGGESTED READINGS

1. Silberschatz, Abraham, Peter Baer Galvin, and Greg

Gagne. Operating system principles. John Wiley & Sons, 2006.

2. Tanenbaum, Andrew S., and Herbert Bos. Modern operating

systems. Pearson, 2015.

3. Tanenbaum, Andrew S., and Albert S. Woodhull. Operating

systems: design and implementation. Vol. 68. Englewood Cliffs:

Prentice Hall, 1997.

38 | P a g e

Space for learners: UNIT 3: INTRODUCTION TO LINUX

Unit Structure:

3.1 Introduction

3.2 Unit Objectives

3.3 History of Linux

3.4 Linux Distributions

3.5 Linux Architecture

3.6 Linux Shells

3.7 Linux Commands for File and Directory

3.8 Linux Commands for Process Management

3.9 Linux Commands for File Content and User Management

3.10 Summing Up

3.11 Answers to Check Your Progress

3.12 Possible Questions

3.13 References and Suggested Readings

3.1 INTRODUCTION

Like Window and Mac, Linux is also an Operating System. It is
Free and Open Source. As of now, Linux is the largest Open-
Source Software Projects in the world.

3.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 know the history of linux,

 understand the Architecture and File System of Linux,

 know different Linux commands.

39 | P a g e

Space for learners: 3.3 HISTORY OF LINUX

Linux is a free open-source secure community used operating

system. The operating system is based on Linux Kernel which was

released on September 17, 1991, by Linus Torvalds. The source

code of the operating system can be modified and distributed to

anyone by the Linux community under the GNU General Public

License. Earlier, it was used for personal computers and gradually,

used in servers, mainframe computers, supercomputers, etc. It is

also used in embedded systems, robotic automation, smartwatches,

etc. The Androids (operating system) running on a smartphone,

smartwatch, and tablets are based on the Linux kernel and are the

key success of Linux in the current time. It is generally packaged

and distributed in a Linux distribution under GNU.

3.4 LINUX DISTRIBUTIONS

From the very beginning of the development of Linux, the idea

followed regarding its distribution were:

 user can have it for free,

 user has the source code also for free,

 user can modify the code and redistribute it for free or priced

along with the source code.

The above ideas were then termed copyleft. This term was

originated from Free Software Foundation. The Free Software

Foundation is a non-profit organization and was founded by

Richard Stallman in the year 1985.

The distribution of the Linux operating system is made up of

Linux kernel software or libraries. The distribution of Linux

systems is distributed in different embedding systems or devices,

or the personnel computers. A few of the Linux distributions are

mentioned below.

i) MX Linux: It is one of the popular OSs which is based

on the Debian Linux OS. The OS is more friendly for

beginners and intermediates.

ii) Linux Mint: The Linux Mint OS is working as a

windows OS more simply and any newcomers can use

this OS as like Windows OS.

40 | P a g e

Space for learners: iii) Ubuntu: The Ubuntu OS is very simple and easy to use

as Mac OS. This OS is based on the Debian OS and

hence, it is a stable OS.

iv) Debian: The Debian Linux OS is very stable. It is more

complex than other Linux OS and hence, it is not

recommended to a new user.

v) Solus: This Linux distribution is developed

independently for 64-bit architecture. It is intentionally

developed for personal computers where enterprise and

server environment-based software are not included.

vi) Fedora: This Linux distribution was developed by the

Fedora project, which is similar to RedHat. It is easy to

use on laptop and desktop systems. It includes the latest

data center technologies.

vii) openSUSE: This Linux OS is a project Linux

distribution that serves to promote the use of Free and

Open-Source Software(FOSS).

viii) RedHat: This Linux OS is commercial, and its products

are freely available. The OS kept their trademark for not

distributing their software for being redistributed.

ix) CentOS: CentOS provides an upstream open-source

computing platform to the developer to contribute

continuously with its upstream source, i.e., Red Hat

Linux.

x) Arch Linux: The arch Linux OS is an independent Linus

OS that has been developed for 64-bit OS. It provides

the latest stable version of the software.

41 | P a g e

Space for learners: 3.5 LINUX ARCHITECTURE

The Linux Architecture depicted in Fig. 3.1.

Fig. 3.1: Architecture of Linux

Let’s discuss the components, mentioned in fig. 3.1 one by one.

Hardware: This layer, as all of you know, consists of different

computer peripherals like ROM, RAM, CPU, Keyboard, Monitor,

etc.

Kernel: It is the core/heart of the Linux O/S. The kernel is the

core software interface between a computer system’s hardware

and its processes. It also prevents and mitigates conflicts between

different processes. The kernel code is mostly written in C

language. When a system boots (in UNIX/Linux), the kernel is

loaded into the memory. The types of kernels are:

 Monolithic Kernels

 Hybrid Kernels

 Exo Kernels

 Micro Kernels

The jobs of the kernel are:

 Process Management (and System Calls)

 Memory Management

 Device Drivers

Shell: Shell is a software layer between the Kernel and User

Processes like Application, Utilities, and Commands, etc. It is

commonly known as Command Interpreter. Thus, whenever a user

Hardware

Kernel

Shell

Applications

Utilities

42 | P a g e

Space for learners: gives instructions to execute an application or command, the shell

interprets them first and then executes them.

Apart from being a Command Interpreter, it is also a scripting

language with components like variables, loops, conditional

statements, functions, and many more.

Utilities and Applications: Linux OS has System Libraries that
are used for different services such as process management,
concurrency, memory management, etc. These libraries are
implemented for several OS functionalities and need to access the
code for the same.

Utilities are the programs that provide almost all the
functionalities of an O/S to the users. These perform the
specialized level and individual activities of the OS.

The applications, as we all know, are programs that are for
different purposes.

3.6 LINUX SHELLS

As discussed above, a shell is a program that acts as an interface

between a user and the kernel. It allows a user to give commands

to the kernel and receive responses from it. Through a shell, we

can execute programs and utilities on the kernel.

There are different types of shells that exist in Linux. Let’s know

about some commonly used shells.

Bourne Shell: It was developed by Steve Bourne in AT&T Bell

Labs and is denoted by “sh”. In UNIX, the Bourne shell is

CHECK YOUR PROGRESS - I

1. What is a Linux operating system?

2. What do you mean by Linux Mint?

3. What is a debian Linux?

4. What is fedora Linux?

5. What is Linux kernel and library?

6. True or false?

a. The core part of linux is kernel.

b. Shell provides the command line interpreter.

43 | P a g e

Space for learners: regarded as the first shell. Due to its compactness and speed, this

shell gained tremendous popularity.

Path to the shell: /bin/sh and /sbin/sh

root User Prompt: #

Non root User Prompt: $

C Shell: It was developed by Bill Joy at the University of

California and is denoted by “bash”. This shell has the support for

arithmetic operations with syntax similar to C Programming

Language.

Path to the shell: /bin/csh

root User Prompt: #

Non root User Prompt: %

Korn Shell: It was developed by David Korn in AT&T Bell Labs

and is denoted by “ksh”. It supports all the features of Bourne

Shell and also the arithmetic programming features like C shell.

Path to the shell: /bin/ksh

root User Prompt: #

Non root User Prompt: $

GNU Bourne-Again Shell: This shell was developed not only to

match with the Bourne shell but also to incorporate the features of

C and Korn shells. It is the default shell in Linux.

Path to the shell: /bin/bash

root User Prompt: bash-versionNumber#

Non root User Prompt: bash-versionNumber$

The computer which is designed to run the UNIX shell is known

as a shell script. It is a list of commands, which are listed in the

order of execution. A good shell script will have comments,

preceded by the # sign, describing the steps.

Lets, you are writing a shell script. A shell script can be saved as a

.sh extension. Before you add anything, you need to start your

shell script as follows.

#!/bin/sh

44 | P a g e

Space for learners: This tells the system that the commands that follow are to be

executed by the Bourne shell. One can put comments in the script

as follows –

#!/bin/bash
University: Gauhati University
Branch: IDOL
pwd
ls
Now, Save the above content and make the script executable form.

Before that save your shell as the filename.sh. lets the file of the

shell is test.sh

$chmod +x test.sh

Now, the shell script is ready to be executed and for that type,

$./test.sh

3.7 LINUX COMMANDS FOR FILE AND

DIRECTORY

In the Linux OS, the command is considered a Linux utility, and

all the basic and advanced tasks are executed using the Linux

commands. The commands are executed in the Linux

terminal. Commands in Linux are case-sensitive. To open a

terminal, one needs to press the "CTRL + ALT + T" keys together

and execute the command by pressing ENTER. Few of the Linux

commands are defined as follows.

i) pwd :

The pwd directory denotes the current directory of the user. The

command gives the absolute path which starts from the root. The

root is the base of any Linux system. The path is denoted by the

slash(/) and the current user directory is as like below

"/home/username"

ii) ls :

45 | P a g e

Space for learners: The ls command is used to know what files are in the directory

you are in. The user can see all the hidden files by using the

command “ls -a”.

iii) cd:

The cd directory command is used to go to a directory. For

example, if the user want o move another directory from the home

directory, then the user can type the following

cd directory_name

The command is case-sensitive, so the user needs to type the

directory exactly the correct one.

iv) mkdir & rmdir:

The mkdir command is used to create a new folder or a directory.

For example, if a user wants to make a directory IDOL, then the

user should type “mkdir IDOL”. If the user wants to make a

directory in a specific position or under a specific directory, then

the user should go to these directories before the creation of a new

directory by using the command cd.

The rmdir is used to delete an empty directory. But to delete a

directory with files, the user should use the rm.

v) rm :

The rm command is used to delete files and directories. The user

should type "rm -r" to delete just the directory. It deletes both the

folder and the files it contains when using only the rm command.

vi) touch:

The touch command is used to create a file in the Linux system.

The command can be used for anything, from an empty text file to

an empty zip file. For example, “touch idol.txt”.

vii) man & --help:

The man command is used to know more about command and

how to use it. For example, “man cd” shows the manual pages of

46 | P a g e

Space for learners:

STOP TO CONSIDER

Under a directory (in Linux), apart from the entries for files and
sub-directories two more entries exists and these are “.” and “..”.

“.” refers to the current working directory and

“..” refers to the parent directory of the current working directory

the cd command. Typing in the command name and the argument

helps it show which ways the command can be used (e.g., cd –

help).

viii) cp:

The cp command is used to copy files through the command line

by considering two arguments: The first is the location of the file

to be copied, the second is where to copy.

ix) mv:

The mv command is used to rename a file. For example, if a user

wants to rename the file “idol1” to “idol2”, we can use “mv idol1

idol2”.

x) locate:

The locate command is used to locate a file in a Linux system, just

like the search command in Windows. This command is useful

when you don't know where a file is saved or the actual name of

the file. If you want a file that has the word “idol”, it gives the list

of all the files in your Linux system containing the word "hello"

when you type in “locate -I idol”.

3.8 LINUX COMMANDS FOR PROCESS

MANAGEMENT

A process is an instance of a running program. When a user

executes a program or executes a command in Linux, it means

that the OS creates a process. The Linux operating system creates

the five-digit ID for each process which is known as Process ID

(PID). Each process has a unique ID. The OS tracks the process

through the PID. Pids eventually repeat because all the possible

numbers are used up and the next PID rolls or starts over. At any

47 | P a g e

Space for learners: point in time, no two processes with the same PID exist in the

system because it is the PID that Unix uses to track each process.

The user can start the UNIX process in two ways:

i) Foreground Processes:

Every process that a user runs are in the foreground. The

process gets the input from the keyboard and sends the

output to the screen. It can be shown using the ls command.

The foreground process is also known as the interactive

process. These processes are initiated by the user but not by

the system. While these processes are running we can not

directly initiate a new process from the same terminal.

The process runs in the foreground, the output is directed to

the user screen, and if the ls command wants any input

(which it does not), it waits for it from the keyboard.

ii) Background Processes

A background process runs without being connected to the

user keyboard. If the background process requires any

keyboard input, it waits. That’s why such kinds of processes

are known as non-interactive processes. These processes are

initiated by the system itself or by users, though they can be

managed by users. These processes have a unique PID or

process. The system can initiate other processes also with

different PIDs.

The different terms related to the Linux process are presented

below.

48 | P a g e

Space for learners: i) Listing Running Processes

It is easy to see the processes by running the ps (process

status) command.

The –f flag is used more commonly along with the ps

command for more information such as UID, PID, PPID, C,

STIME, TTY, TIM, and CMD. The UID denotes the User ID

that this process belongs to. The PID denotes the process ID.

The PPID denotes the parent process ID. C is the CPU

utilization process. STIME is process time. TTY is the

terminal type associated with the process. Time denotes the

CPU time taken by the process. CMD denotes the command

that started this process.

ii) Stopping Processes

The ending of the process can be done in several different

ways. The CTRL + C keystroke will exit the command. This

works when the process is running in the foreground mode.

If a process is running in the background, the user should get

its Job ID using the ps command and then use

the kill command to kill the process as follows.

 kill job_ID.

iii) Parent and Child Processes

The process of UNIX has two numbers. The first number

represents the Process ID (PID) and the second number

represents the parent process ID (PID). The user can use the

ps –f command for the process ID and the parent process ID.

iv) Zombie and Orphan Processes

Whenever the parent process is killed before its child, then

this process is called an orphan process. In this case, the

"parent of all processes," the init process, becomes the new

PPID (parent process ID).

A Zombie is a process that has completed its task but still, it

shows an entry in a process table. Zombie process states

always indicated by Z. The zombie process treated as dead

they are not used for system processing.

49 | P a g e

Space for learners: v) Daemon Processes

The system-related process which is running in the

background is known as Daemon Process. The daemon

process does not have controlling terminals. If a program runs

for a long time, then this process is a daemon process.

vi) The top Command:

The top command is a very useful command in Linux OS

which is used to display the Linux process. The real-time

view of the Linux system can be viewed by using the top

command. The running operation of the system along with

the process running in the OS can be viewed using the top

command.

3.9 LINUX COMMANDS FOR FILE CONTENT

AND USER MANAGEMENT

The operations in Linux OS have been performed on files. The

files are handled using directories that are organized in a tree

structure. The files of a Linux OS can be divided into 3 categories.

i) Regular Files:

Regular files are the common types of files that include text

files, images, binary files, etc. These files can be created using

the touch command. The regular file contains ASCII or

Human Readable text, executable program binaries, program

data, etc.

ii) Directories:

The windows OS represents the directories as folders. But in

the Linux operating system, it is known as directories. The

directories store the list of file names and the related

information. The root directory(/) is the base of the system,

/home/ is the default location for the user’s home directories,

/bin for Essential User Binaries, /boot – Static Boot Files, etc.

One can create new directories with the mkdir command

iii) Special Files:

50 | P a g e

Space for learners: The real physical devices in the Linux system can be used as

special files. The user can use these file systems as ordinary

files.

In the Linux operating system, a user is an entity that can

manipulate the files and perform different operations in the OS.

An ID is assigned to each user in the operating system. The root

user ID is 0 whereas the other ID varies from 1 to 999 are assigned

for the system user. The other local user IDs start from 1000.

The following commands are used for the user management

i) Using the id command of the Linux OS, one can get the

ID of the username.

ii) The command useradd adds a new user to the directory.

The user is given the ID automatically depending on

which category it falls in.

iii) The password command is used to assign a password to

the user. After using this command, the user can update a

new password.

iv) To access user configuration file cat /etc/passwd

command is used. This command prints the data of the

configuration file.

v) The usermod -u new_id username command is used to

change the user id.

vi) The command usermod -g new_group_id username is

used to modify the group id of the user.

vii) Using the command sudo usermod -l new_login_name

old_login_name, one can change the login name.

viii) The command usermod -d new_home_directory_path

username is used to change the home directory.

ix) Using the command, userdel -r username, anyone can

delete the user information.

51 | P a g e

Space for learners:

3.10 SUMMING UP

 Linux is a free open-source secure community used operating

system.

 The source code of the operating system can be modified and

distributed to anyone by the Linux community under the GNU

General Public License.

 MX Linux is one of the popular OSs which is based on the

Debian Linux OS.

 The Linux Mint OS is working as windows OS more simply

and any newcomers can use this OS as like Windows OS.

 The Ubuntu OS is very simple and easy to use as Mac OS. This

OS is based on the Debian OS and hence, it is a stable OS.

 The Debian Linux OS is very stable. It is more complex than

other Linux OS.

 Solus Linux distribution is developed independently for 64-bit

architecture.

 Fedora Linux distribution was developed by the Fedora project,

which is similar to RedHat. It is easy to use on laptop and

desktop systems.

 openSUSE Linux OS is a project Linux distribution that serves

to promote the use of Free and Open-Source Software(FOSS).

 RedHat Linux OS is commercial, and its products are freely

available.

CHECK YOUR PROGRESS - II

7. What is a shell and types of shell?

8. What is command prompt in Linux?

9. How does a shell script start?

10. Give five examples of command.

11. What is Linux process and types?

12. What is daemon process?

52 | P a g e

Space for learners: CentOS provides an upstream open-source computing platform

to the developer to contribute continuously with its upstream

source, i.e., Red Hat Linux.

 A Shell is an interface that acts as the interface between kernel

and user. It collects the input from the user and executes the

program based on the user input and displays that output.

 For shell prompt, the Linux user should type prompt, $, i.e

called as command prompt.

 In the Unix system, the following shells are available in UNIX.

 Bourne Shell

 C Shell

 The pwd directory denotes the current directory of the user.

 cd command is used the change the directory of the linux

system.

 The ls command is used to display the contents of the directory.

 The cat command is used to list the contents of a file. For

example, cat idol.txt.

 The mv command is used to move the files from one place to

another.

 To rename a file, the Linux system also uses the mv command.

 The mkdir command is used to create a new directory. The

rmdir command is used to remove an empty directory.

 The rm is used to delete directories and their contents. For

example, rm –r idol. It means that the command deletes all the

files and directories recursively.

3.11 ANSWER TO CHECK YOUR PROGRESS

1) Linux is a free open-source secure community used operating
system.

2) The Linux Mint OS is working as windows OS more simply
and any newcomers can use this OS as like Windows OS.

3) The Debian Linux OS is very stable. It is more complex than
other Linux OS.

53 | P a g e

Space for learners: 4) Fedora Linux distribution was developed by the Fedora
project, which is similar to RedHat. It is easy to use on laptop
and desktop systems.

5) The Linux kernel is the core part of the Linux operating
system. The kernel acts as the core interface between
computer hardware and its process, manages the resources
between them.

A library is a collection of pre-compiled pieces of code called
functions. The library contains common functions and
together, they form a package called — a library

6) a) True; b) True

7) A Shell is an interface that acts as the interface between
kernel and user. It collects the input from the user and
executes the program based on the user input and displays that
output.

8) For shell prompt, the Linux user should type prompt, $, i.e.,
called as command prompt.

9) A shell script starts with #!/bin/sh

10) The following 5 are the commands in the Linux.

a. The cat command is used to list the contents of a file.
For example, cat idol.txt. The command will display the
contents of the idol.txt file.

b. The cp command is used to copy files from one
directory to another directory. For example, cp idol.txt
/home/username/idolfile.

c. The mv command is used to move the files from one
place to another. For example: mv idol.txt
/home/username/idolfile.

d. To rename a file, the Linux system also uses the mv
command. For example, mv idol.txt idol1.txt

e. The mkdir command is used to create a new directory.
For example, mkdir idol

11) A process is an instance of a running program. When a user
executes a program or executes a command in Linux, it means
that the OS creates a process. The types of the Linux process
are

a. Foreground processes,

b. Background process.

12) The system-related process which is running in the
background is known as Daemon Process.

54 | P a g e

Space for learners: 3.12 POSSIBLE QUESTIONS

1. What are basic elements or components of Linux?

2. What is Kernel? Explain its functions.

3. What are two types of Linux User Mode?

4. What do you mean by a Process States in Linux?

5. What is Linux Shell? What types of Shells are there in

Linux?

6. What is a Zombie Process?

7. What do you mean by Shell Script? Give example.

8. Why /etc/resolv.conf and /etc/hosts files are used?

9. Name some Linux variants.

10. Give some examples of Linux command

11. Difference between Zombie and Orphan Processes.

12. What is Linux file system? Explain the types of Linux file

system.

3.13 REFERENCES AND SUGGESTED

READINGS

 Linux: The Complete Reference, Sixth Edition - Richard

Petersen

55 | P a g e

Space for learners:
UNIT 4: PROCESS MANAGEMENT

Unit Structure:

4.1 Introduction

4.2 Unit Objectives

4.3 Process

4.3.1 Process Control Block (PCB)

4.4 Process States

4.5 Thread

4.5.1 Difference between Process and Thread

4.5.2 Advantages of thread

4.5.3 User Level Threads

4.5.4 Kernel Level Threads

4.6 Operations on the Process

4.6.1 Process Creation

4.6.2 Process Termination

4.7 Process Schedulers

4.7.1 Scheduling Objectives

4.7.2 Difference among Schedulers Long-Term Vs. Short

Term Vs. Medium-Term

4.8 Process Queues

4.9 Various Times Related to the Process

4.10 Process Scheduling Queues

4.10.1 Types of CPU Scheduling

4.10.2 Non-Preemptive Scheduling

4.10.3 Preemptive Scheduling

4.11 Scheduling Criteria

4.12 The Concepts of Context Switch

4.13 Interrupt Mechanism

 4.13.1 Hardware Interrupts

4.13.2 Software Interrupts

4.14 Virtual Processor

4.15 Summing Up

4.16 Answers to Check Your Progress

4.17 Possible Questions

4.18 References and Suggested Readings

56 | P a g e

Space for learners: 4.1 INTRODUCTION

We know that a program is a set of instructions given to the

computer system to do some specific task. A program does nothing

unless its instructions are executed by a CPU. A program in

execution is called a process. In order to accomplish its task, process

needs the computer resources like memory and processor. There

may exist more than one process in the system which may require

the same resource at the same time. Therefore, the operating system

has to manage all the processes and the resources in a convenient

and efficient way. Some resources may need to be executed by one

process at one time to maintain the consistency otherwise the system

can become inconsistent and deadlock may occur.

The operating system is responsible for the following activities in

connection with Process Management

 Scheduling processes and threads on the CPUs.

 Creating and deleting both user and system processes.

 Suspending and resuming processes.

 Providing mechanisms for process synchronization.

 Providing mechanisms for process communication.

A process operates in either user mode or kernel mode. In user

mode, a process executes application code with the machine in a

non-privileged protection mode. When a process requests services

from the operating system with a system call, it switches into the

machine’s privileged protection mode via a protected mechanism

and then operates in kernel mode.

The resources used by a process are similarly split into two parts.

The resources needed for execution in user mode are defined by the

CPU architecture and typically include the CPU’s general-purpose

registers, the program counter, the processor-status register, and the

stack-related registers, as well as the contents of the memory

segments that constitute the FreeBSD notion of a program (the text,

data, shared library, and stack segments). Kernel-mode resources

include those required by the underlying hardware— such as

registers, program counter, and stack pointer—and also by the state

required for the FreeBSD kernel to provide system services for a

process. This kernel state includes parameters to the current system

call, the current process’s user identity, scheduling information, and

so on.

57 | P a g e

Space for learners: 4.2 UNIT OBJECTIVES

 After going through this unit you will be able to:

 understand the basic concepts of process management of

operating system

 know about the process and its different attributes.

 understand various states of a process

 give the basic concept of a thread and how it differ from a

process

 know about concept of process scheduling concepts

 define what is virtual processor

 understand about interrupt mechanism of processes.

4.3 PROCESS

A process is basically a program in execution. The execution of a

process must progress in a sequential fashion. A process is defined

as an entity which represents the basic unit of work to be

implemented in the system. To put it in simple terms, we write our

computer programs in a text file and when we execute this program,

it becomes a process which performs all the tasks mentioned in the

program. When a program is loaded into the memory and it becomes

a process, it can be divided into four sections ─ stack, heap, text and

data.

Stack: The process stack contains the temporary data such as

method/function parameters, return address, and local variables.

Heap: Heap is a dynamically allocated memory to a process during

its runtime.

Text : Text section of a process includes the current activity

represented by the value of Program Counter and the contents of the

processor's registers.

Data: Data section of any process contains the global and static

variables.

58 | P a g e

Space for learners: Stack

Heap

Data

Text

Fig.4.1. The simplified layout of a process in main memory

4.1.1 Process Control Block (PCB)

A Process Control Block is a data structure maintained by the

Operating System for every process. The attributes of the process are

used by the Operating System to create the process control block

(PCB) for each of them. This is also called context of the process. A

PCB keeps all the information needed to keep track of a process

with following some important attributes: Process State, Process

ID(PID), Process privileges, Pointer, Program Counter, CPU

registers, CPU Scheduling Information, Memory management

information, Accounting information and IO status information.

Process State: The Process, from its creation to the completion,

goes through various states which are new, ready, running and

waiting. The current state of the process i.e., whether it is ready,

running, waiting, or whatever.

Process ID: The PCB is identified by an integer process ID (PID)

which is the unique identification for each of the process in the

operating system.

Process privileges This is required to allow/disallow access to

system resources.

Pointer A pointer to parent process.

Program Counter: Program Counter is a pointer to the address of

the next instruction to be executed for this process. A program

counter stores the address of the last instruction of the process on

59 | P a g e

Space for learners: which the process was suspended. The CPU uses this address when

the execution of this process is resumed.

CPU registers: Various CPU registers where process need to be

stored for execution for running state.

CPU Scheduling Information: Process priority and other

scheduling information which is required to schedule the process.

Memory management information: This includes the information

of page table, memory limits, Segment table depending on memory

used by the operating system.

Accounting information: This includes the amount of CPU used

for process execution, time limits, execution ID etc.

IO status information: This includes a list of I/O devices allocated

to the process.

Process ID

Process states

Pointer

Program Counter

Priority

CPU Register

I/O status information

Accounting information

Etc.

Fig.4.2. The Simplified Diagram of a PCB.

The architecture of a PCB is completely dependent on Operating

System and may contain different information in different operating

systems. The PCB is maintained for a process throughout its

lifetime, and is deleted once the process terminates.

60 | P a g e

Space for learners: 4.4 PROCESS STATES

Fig.4.3. States diagram of a process

The process, from its creation to completion, passes through various

states. The minimum number of states is five which are New, Ready,

Running, Block or Wait, and Termination. Sometimes there are two

more states namely suspend ready and suspend wait have been seen

for some particular cases of process.

The names of the states are not standardized although the process

may be in one of the following states during execution.

(i) New

A program which is going to be picked up by the OS into the main

memory is called a new process.

(ii) Ready

Whenever a process is created, it directly enters in the ready state, in

which, it waits for the CPU to be assigned. The OS picks the new

processes from the secondary memory and put all of them in the

main memory.

The processes which are ready for the execution and reside in the

main memory are called ready state processes. There can be many

processes present in the ready state.

(iii) Running

61 | P a g e

Space for learners: One of the processes from the ready state will be chosen by the OS

depending upon the scheduling algorithm. Hence, if we have only

one CPU in our system, the number of running processes for a

particular time will always be one. If we have n processors in the

system then we can have n processes running simultaneously.

(iv) Block or wait

From the Running state, a process can make the transition to the

block or wait state depending upon the scheduling algorithm or the

intrinsic behaviour of the process.

When a process waits for a certain resource to be assigned or for the

input from the user then the OS move this process to the block or

wait state and assigns the CPU to the other processes.

(v) Completion or termination

When a process finishes its execution, it comes in the termination

state. All the context of the process (Process Control Block) will

also be deleted the process will be terminated by the Operating

system.

(vi) Ready Suspended

A process in the ready state, which is moved to secondary memory

from the main memory due to lack of the resources (mainly primary

memory) is called in the suspend ready state.

If the main memory is full and a higher priority process comes for

the execution then the OS have to make the room for the process in

the main memory by throwing the lower priority process out into the

secondary memory. The suspend ready processes remain in the

secondary memory until the main memory gets available.

(vii) Block Suspended

Instead of removing the process from the ready queue, it's better to

remove the blocked process which is waiting for some resources in

the main memory. Since it is already waiting for some resource to

get available hence it is better if it waits in the secondary memory

and make room for the higher priority process. These processes

62 | P a g e

Space for learners: complete their execution once the main memory gets available and

their wait is finished.

4.5 THREAD

A thread is a flow of execution through the process code, with its

own program counter that keeps track of which instruction to

execute next, system registers which hold its current working

variables, and a stack which contains the execution history.

A thread shares with its peer threads few information like code

segment, data segment and open files. When one thread alters a code

segment memory item, all other threads see that.

A thread is also called a lightweight process. Threads provide a way

to improve application performance through parallelism. Threads

represent a software approach to improving performance of

operating system by reducing the overhead thread is equivalent to a

classical process.

Each thread belongs to exactly one process and no thread can exist

outside a process. Each thread represents a separate flow of control.

Threads have been successfully used in implementing network

servers and web server. They also provide a suitable foundation for

parallel execution of applications on shared memory

multiprocessors. The following figure shows the working of a

single-threaded and a multithreaded process.

4.5.1. Difference Between Process and Thread

Followings are the differences between processes and threads:

(i) Process is heavy weight or resource intensive. On the

other hand thread is lightweight, taking lesser resources

than a process.

(ii) Process switching needs interaction with operating

system but thread switching does not need to interact

with operating system.

(iii) In multiple processing environments, each process

executes the same code but has its own memory and file

63 | P a g e

Space for learners: resources. But all threads can share same set of open

files, child processes.

(iv) If one process is blocked, then no other process can

execute until the first process is unblocked. While one

thread is blocked and waiting, a second thread in the

same task can run.

(v) Multiple processes without using threads use more

resources. On the other hand multiple threaded processes

use fewer resources.

(vi) In multiple processes each process operates

independently of the others. But in case of thread, one

thread can read, write or change another thread's data.

Fig.4.4. Block Diagram for the Single-Threaded and Multithreaded

Process Model

4.5.2 Advantages of Thread

(i) Threads minimize the context switching time.

(ii) Use of threads provides concurrency within a process.

(iii) Threads provide efficient communication.

64 | P a g e

Space for learners: (iv) It is more economical to create and context switch

threads.

(v) Threads allow utilization of multiprocessor architectures

to a greater scale and efficiency.

Threads are implemented in following two ways:

(i) User Level Threads – These types of threads are user

managed threads.

(ii) Kernel Level Threads -- These types of threads are

operating system managed threads acting on kernel, an

operating system core.

4.5.3 User Level Threads

In this case, the thread management kernel is not aware of the

existence of threads. The thread library contains code for creating

and destroying threads, for passing message and data between

threads, for scheduling thread execution and for saving and restoring

thread contexts. The application starts with a single thread.

Advantages:

(i) Thread switching does not require Kernel mode

privileges.

(ii) User level thread can run on any operating system.

(iii) Scheduling can be application specific in the user level

thread.

(iv) User level threads are fast to create and manage.

Disadvantages:

(i) In a typical operating system, most system calls are

blocking.

(ii) Multithreaded application cannot take advantage of

multiprocessing.

4.5.4 Kernel Level Threads

In this case, thread management is done by the Kernel. There is no

thread management code in the application area. Kernel threads are

65 | P a g e

Space for learners: supported directly by the operating system. Any application can be

programmed to be multithreaded. All of the threads within an

application are supported within a single process.

The Kernel maintains context information for the process as a whole

and for individual threads within the process. Scheduling by the

Kernel is done on a thread basis. The Kernel performs thread

creation, scheduling and management in Kernel space. Kernel

threads are generally slower to create and manage than the user

threads.

Advantages:

(i) Kernel can simultaneously schedule multiple threads

from the same process on multiple processes.

(ii) If one thread in a process is blocked, the Kernel can

schedule another thread of the same process.

(iii) Kernel routines themselves can be multithreaded.

Disadvantages:

(i) Kernel threads are generally slower to create and manage

than the user threads.

(ii) Transfer of control from one thread to another within the

same process requires a mode switch to the Kernel.

4.6 OPERATIONS ON THE PROCESS

The following operations are done with a process:

(i) Creation

Once the process is created, it will be ready and come into the ready

queue (main memory) and will be ready for the execution.

(ii) Scheduling

Out of the many processes present in the ready queue, the Operating

system chooses one process and start executing it. Selecting the

process which is to be executed next, is known as scheduling.

(iii) Execution

66 | P a g e

Space for learners: Once the process is scheduled for the execution, the processor starts

executing it. Process may come to the blocked or wait state during

the execution then in that case the processor starts executing the

other processes.

(iv) Deletion/killing

Once the purpose of the process gets over then the OS will kill the

process. The Context of the process (PCB) will be deleted and the

process gets terminated by the Operating system.

4.6.1 Process Creation

Through appropriate system calls, such as fork or spawn, processes

may create other processes. The process which creates other process,

is termed the parent process of the other process, while the created

sub-process is termed its child process.

Each process is given an integer identifier, termed as process

identifier, or PID. The parent PID (PPID) is also stored for each

process.

On a typical UNIX system the process scheduler is termed as sched,

and is given PID 0. The first thing done by it at system start-up time

is to launch init, which gives that process PID 1. Further Init

launches all the system daemons and user logins, and becomes the

ultimate parent of all other processes.

A child process may receive some amount of shared resources with

its parent depending on system implementation. To prevent runaway

children from consuming all of a certain system resource, child

processes may or may not be limited to a subset of the resources

originally allocated to the parent.

There are two options for the parent process after creating the child:

 Wait for the child process to terminate before proceeding.

Parent process makes a wait() system call, for either a

specific child process or for any particular child process,

which causes the parent process to block until

the wait() returns. UNIX shells normally wait for their

children to complete before issuing a new prompt.

67 | P a g e

Space for learners: Run concurrently with the child, continuing to process

without waiting. When a UNIX shell runs a process as a

background task, this is the operation seen. It is also possible

for the parent to run for a while, and then wait for the child

later, which might occur in a sort of a parallel processing

operation.

There are also two possibilities in terms of the address space of the

new process:

1. The child process is a duplicate of the parent process.

2. The child process has a program loaded into it.

To illustrate these different implementations, let us consider

the UNIX operating system. In UNIX, each process is identified by

its process identifier, which is a unique integer. A new process is

created by the fork system call. The new process consists of a copy

of the address space of the original process. This mechanism allows

the parent process to communicate easily with its child process. Both

processes (the parent and the child) continue execution at the

instruction after the fork system call, with one difference: The return

code for the fork system call is zero for the new (child) process,

whereas the(non zero) process identifier of the child is returned to

the parent.

Typically, the execlp system call is used after the fork system call

by one of the two processes to replace the process memory space

with a new program. The execlp system call loads a binary file into

memory - destroying the memory image of the program containing

the execlp system call – and starts its execution. In this manner the

two processes are able to communicate, and then to go their separate

ways.

Below is a C program to illustrate forking a separate process using

UNIX (using Ubuntu):

#include<stdio.h>

void main(int argc,char *argv[])

 {

68 | P a g e

Space for learners: int pid=fork(); // fork another process

 if(pid<0)

 {

 fprintf(stderr, “fork failed”); \\Error occurs

 exit(-1);

 }

 If(pid==0)

 {

 execlp(“/bin/ls”,”ls”,NULL); //child process

 }

 else

 {

 wait(NULL); //parent process

 printf(“Child Complete”);

 exit(0);

 }

 }

4.6.2 Process Termination

By making the exit (system call), typically returning an int,

processes may request their own termination. This int is passed

along to the parent if it is doing a wait(), and is typically zero on

successful completion and some non-zero code in the event of any

problem.

69 | P a g e

Space for learners: Processes may also be terminated by the system for a variety of

reasons, including :

 The inability of the system to deliver the necessary system

resources.

 In response to a kill command or other unhandled process

interrupts.

 A parent may kill its children if the task assigned to them is

no longer needed i.e. if the need of having a child terminates.

 If the parent exits, the system may or may not allow the child

to continue without a parent (In UNIX systems, orphaned

processes are generally inherited by init, which then proceeds

to kill them.)

When a process ends, all of its system resources are freed up, open

files flushed and closed, etc. The process termination status and

execution times are returned to the parent if the parent is waiting for

the child to terminate, or eventually returned to init if the process

already became an orphan.

The processes which are trying to terminate but cannot do so

because their parent is not waiting for them are termed zombies.

These are eventually inherited by init as orphans and killed off.

CPU scheduling is a process that allows one process to use the CPU

while the execution of another process is on hold (in waiting state)

due to unavailability of any resource like I/O etc, thereby making

full use of CPU. The aim of CPU scheduling is to make the system

efficient, fast, and fair.

Whenever the CPU becomes idle, the operating system must select

one of the processes in the ready queue to be executed. The

selection process is carried out by the short-term scheduler (or CPU

scheduler). The scheduler selects from among the processes in

memory that are ready to execute and allocates the CPU to one of

them.

70 | P a g e

Space for learners: 4.7 PROCESS SCHEDULERS

Process Scheduling is an operating system task that schedules

processes of different states like ready, waiting, and running.

Process scheduling allows OS to allocate a time interval of CPU

execution for each process. Another important reason for using a

process scheduling system is that it keeps the CPU busy all the time.

This allows you to get the minimum response time for programs.

Operating system uses various schedulers for the process scheduling.

4.7.1 Scheduling Objectives

There are some important objectives of Process scheduling

(i) Maximize the number of interactive users within acceptable

response times.

(ii) Achieve a balance between response and utilization.

(iii) Avoid indefinite postponement and enforce priorities.

(iv) It also should give reference to the processes holding the key

resources.

There are three types of process schedulers we have namely (i) long

term scheduler, (ii) short term scheduler and (iii) medium term

scheduler.

(i) Long term scheduler

Long term scheduler is also known as job scheduler. It chooses the

processes from the pool (secondary memory) and keeps them in the

ready queue maintained in the primary memory.

Long Term scheduler mainly controls the degree of

Multiprogramming. The purpose of long term scheduler is to choose

a perfect mix of IO bound and CPU bound processes among the jobs

present in the pool.

If the job scheduler chooses more IO bound processes then all of the

jobs may reside in the blocked state all the time and the CPU will

remain idle most of the time. This will reduce the degree of

Multiprogramming. Therefore, the Job of long term scheduler is

very critical and may affect the system for a very long time.

71 | P a g e

Space for learners: (ii) Short term scheduler

Short term scheduler is also known as CPU scheduler. It selects one

of the Jobs from the ready queue and dispatch to the CPU for the

execution.

A scheduling algorithm is used to select which job is going to be

dispatched for the execution. The Job of the short term scheduler can

be very critical in the sense that if it selects job whose CPU burst

time is very high then all the jobs after that, will have to wait in the

ready queue for a very long time.

This problem is called starvation which may arise if the short term

scheduler makes some mistakes while selecting the job.

(iii)Medium term scheduler

Medium term scheduler takes care of the swapped out processes.If

the running state processes needs some IO time for the completion

then there is a need to change its state from running to waiting.

Medium term scheduler is used for this purpose. It removes the

process from the running state to make room for the other processes.

Such processes are the swapped out processes and this procedure is

called swapping. The medium term scheduler is responsible for

suspending and resuming the processes.

It reduces the degree of multiprogramming. The swapping is

necessary to have a perfect mix of processes in the ready queue.

4.7.2 Difference among Schedulers Long-Term Vs.

Short Term Vs. Medium-Term

Sl

No
Long-Term Short-Term Medium-Term

1 Long term is also known as a

job scheduler

Short term is also known as

CPU scheduler

Medium-term is also called

swapping scheduler.

2 It is either absent or minimal in

a time-sharing system.

It is insignificant in the time-

sharing order.

This scheduler is an element

of Time-sharing systems.

72 | P a g e

Space for learners: Sl

No
Long-Term Short-Term Medium-Term

3 Speed of long-term schedulers

is less compared to the short

term scheduler.

Speed is the fastest compared to

the short-term and medium-

term scheduler.

It offers medium speed.

4 It allows us to select processes

from the loads and pool back

into the memory

It only selects processes that are

in a ready state of the

execution.

It helps you to send process

back to memory.

5
It offers full control It offers less control

It reduces the level of

multiprogramming.

4.8 PROCESS QUEUES

The Operating system manages various types of queues for each of

the process states. The PCB related to the process is also stored in

the queue of the same state. If the Process is moved from one state to

another state then its PCB is also unlinked from the corresponding

queue and added to the other state queue in which the transition is

made.

There are the following process queues maintained by the Operating

system.

(i) Job Queue

In starting, all the processes get stored in the job queue. It is

maintained in the secondary memory. The long term scheduler (Job

scheduler) picks some of the jobs and put them in the primary

memory.

(i) Ready Queue

Ready queue is maintained in primary memory. The short term

scheduler picks the job from the ready queue and dispatch to the

CPU for the execution.

(ii) Waiting Queue

When the process needs some IO operation in order to complete its

execution, OS changes the state of the process from running to

waiting. The context (PCB) associated with the process gets stored

73 | P a g e

Space for learners: on the waiting queue which will be used by the Processor when the

process finishes the IO.

4.9 VARIOUS TIMES RELATED TO THE PROCESS

(i). Arrival Time

The time at which the process enters into the ready queue is called

the arrival time.

(ii). Burst Time

The total amount of time required by the CPU to execute the whole

process is called the Burst Time. This does not include the waiting

time. It is confusing to calculate the execution time for a process

even before executing it hence the scheduling problems based on the

burst time cannot be implemented in reality.

(iii). Completion Time

The time at which the process enters into the completion state or the

time at which the process completes its execution, is called

completion time.

(iv). Turnaround time

The total amount of time spent by the process from its arrival to its

completion, is called Turnaround time.

(v). Response Time

The difference between the arrival time and the time at which the

process first gets the CPU is called Response Time.

4.10 PROCESS SCHEDULING QUEUES

Process Scheduling Queues help us to maintain a distinct queue for

each and every process states and PCBs. All the process of the same

execution state is placed in the same queue. Therefore, whenever the

state of a process is modified, its PCB needs to be unlinked from its

existing queue, which moves back to the new state queue.

74 | P a g e

Space for learners: Three types of operating system queues are:

I. Job queue – All processes, upon entering into the system,

are stored in the Job Queue. It helps us to store all the

processes in the system.

II. Ready queue – This type of queue helps us to set every

process residing in the main memory, which is ready and

waiting to execute. Processes in the ready state are placed in

the Ready Queue.

III. Device queues – It is a process that is blocked because of the

absence of an I/O device. Processes waiting for a device to

become available are placed in Device Queues. There are

unique device queues available for each I/O device.

Fig.4.5. Block Diagram of Process Scheduling Queues

Here in the above-given block Diagram of process scheduling

queues, we use the rectangle that represents a queue, circle denotes

the resource and arrow indicates the flow of the process. Here we

discuss the every step from 1 to 7 as follows:

1. Every new process first put in the Ready queue .It waits in

the ready queue until it is finally processed for execution.

75 | P a g e

Space for learners: Here, the new process is put in the ready queue and wait until

it is selected for execution or it is dispatched.

2. One of the processes is allocated the CPU and it is executing

3. The process should issue an I/O request

4. Then, it should be placed in the I/O queue.

5. The process should create a new subprocess

6. The process should be waiting for its termination.

7. It should remove forcefully from the CPU, as a result

interrupt. Once interrupt is completed, it should be sent back

to ready queue.

The act of determining which process is in the ready state, and

should be moved to the running state is known as Process

Scheduling.

The prime aim of the process scheduling system is to keep the CPU

busy all the time and to deliver minimum response time for all

programs. For achieving this, the scheduler must apply appropriate

rules for swapping processes IN and OUT of CPU.

4.10.1 Types of CPU Scheduling

Here we observed that CPU scheduling decisions may take place

under the following four circumstances:

1. When a process switches from the running state to

the waiting state(for I/O request or invocation of wait for the

termination of one of the child processes).

2. When a process switches from the running state to

the ready state (for example, when an interrupt occurs).

3. When a process switches from the waiting state to

the ready state(for example, completion of I/O).

4. When a process terminates.

In circumstances 1 and 4, there is no choice in terms of scheduling.

A new process(if one exists in the ready queue) must be selected for

execution. There is a choice, however in circumstances 2 and 3.

When Scheduling takes place only under circumstances 1 and 4, we

say the scheduling scheme is non-preemptive; otherwise, the

scheduling scheme is preemptive.

76 | P a g e

Space for learners: 4.10.2 Non-Preemptive Scheduling

In non-preemptive scheduling, once the CPU has been allocated to a

process, the process keeps the CPU until it releases the CPU either

by terminating or by switching to the waiting state.

It is the only method that can be used on certain hardware platforms

because It does not require the special hardware needed for

preemptive scheduling.

This scheduling method is used by the Microsoft Windows 3.1 and

by the Apple Macintosh operating systems.

In non-preemptive scheduling, it does not interrupt a process

running CPU in the middle of the execution. Instead, it waits till the

process completes its CPU burst time, and then after that it can

allocate the CPU to any other process.

Some Algorithms based on non-preemptive scheduling are: Shortest

Job First (SJF basically non-preemptive) Scheduling and Priority

(non- preemptive version) Scheduling, etc.

4.10.3 Preemptive Scheduling

In this type of process scheduling, the tasks are usually assigned

with priorities. At times it is necessary to run a certain task that has a

higher priority before another task although it is running. Therefore,

the running task is interrupted for some time and resumed later when

the priority task has finished its execution.

Thus this type of scheduling is used mainly when a process switches

either from running state to ready state or from waiting state to ready

state. The resources (like CPU cycles) are mainly allocated to the

process for a limited amount of time and then are taken away, and

after that, the process is again placed back in the ready queue in the

case if that process still has a CPU burst time remaining. That

process stays in the ready queue until it gets the next chance to

execute.

77 | P a g e

Space for learners: Some Algorithms that are based on preemptive scheduling are

Round Robin Scheduling (RR), Shortest Remaining Time First

(SRTF), Priority (preemptive version) Scheduling, etc.

4.11 SCHEDULING CRITERIA

There are many different criteria to check the best scheduling

algorithm, they are respectively:

CPU Utilization

To make out the best use of the CPU and not to waste any CPU

cycle, the CPU would be working most of the time (Ideally 100% of

the time). Considering a real system, CPU usage should range from

40% (lightly loaded) to 90% (heavily loaded.)

Throughput

It is the total number of processes completed per unit of time or

rather says the total amount of work done in a unit of time. This may

range from 10/second to 1/hour depending on the specific processes.

Turnaround Time

It is the amount of time taken to execute a particular process, i.e.

The interval from the time of submission of the process to the time

of completion of the process(Wall clock time).

Waiting Time

The sum of the periods spent waiting in the ready queue amount of

time a process has been waiting in the ready queue to acquire get

control on the CPU.

Load Average

It is the average number of processes residing in the ready queue

waiting for their turn to get into the CPU.

Response Time

Amount of time it takes from when a request was submitted until the

first response is produced. Remember, it is the time till the first

response and not the completion of process execution (final

response).

78 | P a g e

Space for learners: In general CPU utilization and Throughput are maximized and other

factors are reduced for proper optimization.

4.12 THE CONCEPTS OF CONTEXT SWITCH

Context switch means switching the CPU to another process

requires saving the state of the old process and loading the saved

state for the new process. The context of a process is represented in

the Process Control Block (PCB) of a process which includes the

value of the CPU registers, the process state and memory-

management information. When a context switch occurs, the Kernel

saves the context of the old process in its PCB and loads the saved

context of the new process scheduled to run.

Context switch time is pure overhead, because the system does no

useful work while switching. Its speed varies from machine to

machine, depending on the memory speed, the number of registers

that must be copied, and the existence of special instructions (such

as a single instruction to load or store all registers). Typical speeds

range from 1 to 1000 microseconds.

4.13 INTERRUPT MECHANISM

An interrupt refers to an external event that needs immediate

attention from the processor. An interrupt signals the processor,

indicating the need of attention, and requires interruption of the

current code the processor is executing. As a response, the processor

suspends its current activities, saves its state and executes a

particular function to service the event that has caused the

interruption. Such function is often called an interrupt handler or an

interrupt service routine. Once the processor has responded to the

interrupt, i.e. after the processor has executed the interrupt handler,

the processor resumes its previously saved state and resumes the

execution of the same program it was executing before the interrupt

occurred. The interrupts are often caused by external devices that

communicate with the processor (Interrupt-driven I/O). Whenever

these devices require the processor to execute a particular task, they

generate interrupts and wait until the processor has acknowledged

that the task has been performed. To be able to receive and respond

to interrupts a processor is equipped with an interrupt port. Through

79 | P a g e

Space for learners: the interrupt port the processor can receive the interrupt request

signals and can respond to these requests through the interrupt

acknowledge signals.

Interrupts are important because they give the user better control

over the computer. Without interrupts, a user may have to wait for a

given application to have a higher priority over the CPU to be run.

This ensures that the CPU will deal with the process immediately.

An interrupt is also referred to as an input signal that has the highest

priority for hardware or software events that requires immediate

processing of an event. During the early days of computing,

the processor had to wait for the signal to process any events. The

processor should check every hardware and software program to

understand if there is any signal to be processed. This method would

consume a number of clock cycles and makes the processor busy.

Just in case, if any signal was generated, the processor would again

take some time to process the event, leading to poor system

performance.

A new mechanism was introduced to overcome this complicated

process. In this mechanism, hardware or software will send the

signal to a processor, rather than a processor checking for any signal

from hardware or software. The signal alerts the processor with the

highest priority and suspends the current activities by saving its

present state and function, and processes the interrupt immediately,

this is known as ISR. As it doesn’t last long, the processor restarts

normal activities as soon as it is processed. Interrupts are classified

into two main types.

4.13.1 Hardware Interrupts

An electronic signal sent from an external device or hardware to

communicate with the processor indicating that it requires

immediate attention. For example, strokes from a keyboard or an

action from a mouse invoke hardware interrupts causing the CPU to

read and process it. So it arrives asynchronously and during any

point of time while executing an instruction.

4.13.2 Software Interrupts

The processor itself requests a software interrupt after executing

certain instructions or if particular conditions are met. These can be

a specific instruction that triggers an interrupt such as subroutine

80 | P a g e

Space for learners: calls and can be triggered unexpectedly because of program

execution errors, known as exceptions or traps.

4.14 VIRTUAL PROCESSOR

A virtual processor is a representation of a physical processor core to

the operating system of a logical partition that uses shared

processors. This allows the operating system to calculate the number

of concurrent operations that it can perform.

A virtual processor is a representation of a physical processor core to

the operating system of a logical partition that uses shared

processors.

When you install and run an operating system on a server that is not

partitioned, the operating system calculates the number of operations

that it can perform concurrently by counting the number of

processors on the server. For example, if you install an operating

system on a server that has eight processors, and each processor can

perform two operations at a time, the operating system can perform

16 operations at a time. In the same way, when you install and run

an operating system on a logical partition that uses dedicated

processors, the operating system calculates the number of operations

that it can perform concurrently by counting the number of

dedicated processors that are assigned to the logical partition. In

both cases, the operating system can easily calculate how many

operations it can perform at a time by counting the whole number of

processors that are available to it.

However, when you install and run an operating system on a logical

partition that uses shared processors, the operating system cannot

calculate a whole number of operations from the fractional number

of processing units that are assigned to the logical partition. The

server firmware must therefore represent the processing power

available to the operating system as a whole number of processors.

This allows the operating system to calculate the number of

concurrent operations that it can perform. A virtual processor is a

representation of a physical processor to the operating system of a

logical partition that uses shared processors.

Advantages of virtual processors

 Virtual processors can share processing.

 Virtual processors save memory and resources.

81 | P a g e

Space for learners: Virtual processors can perform parallel processing.

 You can start additional virtual processors and terminate active

CPU virtual processors while the database server is running.

4.15 SUMMING UP

 A program is a set of instructions given to the computer system

to do some specific task. A program in execution is called a

process. In order to accomplish its task, process needs the

computer resources like memory and processor.

 A process operates in either user mode or kernel mode. In user

mode, a process executes application code with the machine in a

nonprivileged protection mode.

CHECK YOUR PROGRESS

Multiple Choice Questions:

1. A program in execution is called

(A) Process (B) Instruction (C) Procedure

 (D) Function

2. Which of the following is not a fundamental process state

(A) ready (B) terminated (C) executing

(D) blocked

3. A scheduler which selects processes from secondary storage device

is called

(A) Short term scheduler. (B) Long term scheduler.

(C) Medium term scheduler. (D) Process scheduler.

4. Program ‘preemption’ is

(A) forced de allocation of the CPU from a program which is

executing on the CPU.

(B) release of CPU by the program after completing its task.

(C) forced allotment of CPU by a program to itself.

(D) a program terminating itself due to detection of an error.

5. Interval between the time of submission and completion of the job

is

called

(A) Waiting time (B) Turnaround time

(C) Throughput (D) Response time

82 | P a g e

Space for learners: When a process requests services from the operating system

with a system call, it switches into the machine’s privileged

protection mode via a protected mechanism and then operates in

kernel mode.

 When a program is loaded into the memory and it becomes a

process, it can be divided into four sections ─ stack, heap, text

and data.

 A Process Control Block is a data structure maintained by the

Operating System for every process. The attributes of the

process are used by the Operating System to create the process

control block (PCB) for each of them. This is also called context

of the process.

 The process, from its creation to completion, passes through

various states. The minimum number of states is five which are

New, Ready, Running, Block or Wait, and Termination.

 A thread is a flow of execution through the process code, with

its own program counter that keeps track of which instruction to

execute next, system registers which hold its current working

variables, and a stack.

 A thread is also called a lightweight process. Threads provide a

way to improve application performance through parallelism.

 User Level Threads – These types of threads are user managed

threads.

 Kernel Level Threads -- These types of threads are operating

system managed threads acting on kernel, an operating system

core.

 Through appropriate system calls, such as fork or spawn,

processes may create other processes. The process which

creates other process, is termed the parent process of the other

process, while the created sub-process is termed its child

process.

 By making the exit (system call), typically returning an int,

processes may request their own termination.

 Process Scheduling is an operating system task that schedules

processes of different states like ready, waiting, and running.

Process scheduling allows OS to allocate a time interval of CPU

execution for each process.

83 | P a g e

Space for learners: Long term scheduler is also known as job scheduler. It chooses

the processes from the pool (secondary memory) and keeps

them in the ready queue maintained in the primary memory.

 Short term scheduler is also known as CPU scheduler. It selects

one of the Jobs from the ready queue and dispatch to the CPU

for the execution.

 Medium term scheduler takes care of the swapped out

processes. If the running state processes needs some IO time for

the completion then there is a need to change its state from

running to waiting.

 Process Scheduling Queues help us to maintain a distinct queue

for each and every process states and PCBs.

 In non-preemptive scheduling, once the CPU has been allocated

to a process, the process keeps the CPU until it releases the

CPU either by terminating or by switching to the waiting state.

 In premptive scheduling, the tasks are usually assigned with

priorities. At times it is necessary to run a certain task that has a

higher priority before another task although it is running.

 Context switch means switching the CPU to another process

requires saving the state of the old process and loading the

saved state for the new process.

 An interrupt refers to an external event that needs immediate

attention from the processor. An interrupt signals the processor,

indicating the need of attention, and requires interruption of the

current code the processor is executing.

 An electronic signal sent from an external device or hardware to

communicate with the processor indicating that it requires

immediate attention.

 The processor itself requests a software interrupt after executing

certain instructions or if particular conditions are met.

 A virtual processor is a representation of a physical processor

core to the operating system of a logical partition that uses

shared processors. This allows the operating system to calculate

the number of concurrent operations that it can perform.

84 | P a g e

Space for learners: 4.16 ANSWERS TO CHECK YOUR PROGRESS

 1(A), 2(D), 3(C), 4(A), 5(B)

4.17 POSSIBLE QUESTIONS

Short Type Questions:

1. What is process? How it differ from a program?

2. What do you mean by PCB in a process?

3. What are the different states of a process?

4. What is a thread? How it differ from a process?

5. What is process scheduler? What are its different categories?

Long Answer Type Questions:

1. Explain different attributes found in PCB in a process.

2. Explain the three types of process schedulers with its

functions.

3. Explain the different criteria of process scheduling.

4. What do you mean by interrupt? Explain its different

categories.

4.18 REFERENCES AND SUGGESTED READINGS

 Avi Silberschatz, Greg Gagne and Peter Baer Galvin,

OPERATING SYSTEM CONCEPTS, WILEY

PUBLICATION.

 William Stallings, OPERATING SYSTEMS, INTERNALS

AND DESIGN PRINCIPLES, SEVENTH

EDITION,PEARSON PUBLICATION.

85 | P a g e

Space for learners: UNIT 5: SYSTEM CALLS

Unit Structure:

5.1 Introduction

5.2 Unit Objectives

5.3 What is System Call?

5.4 System Calls for Process Management

5.5 System Calls for File Management

5.6 Summing Up

 5.7 Answers to Check Your Progress

5.8 Possible Questions

 5.9 References and Suggested Readings

5.1 INTRODUCTION

System call is a mechanism through which user programs are

offered the services of the operating system. It basically an

interface between a process and the Operating System (O/S).

5.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 know the basics of system call,

 understand the different system calls in Linux O/S.,

 gain a hands-on experience using system calls.

5.3 WHAT IS SYSTEM CALL?

System Calls are basically a set of extended instructions provided

by the O/S for communications between the user programs and the

O/S. These varies form O/S to O/S but the basic concepts are

almost similar. System Calls are low level functions of O/S and

are basically written in high level language C or C++. Here, in this

unit we will basically discuss the System Calls of Linux O/S.

86 | P a g e

Space for learners: When we call a library function (suppose in C++) to perform

certain task the underlying system call(s) is/are invoked and this is

illustrated in Fig. 5.1.

Fig. 5.1: Invocation of System Call

In the above illustration (Fig. 5.1), within the C++ program cin

(from C++ standard library) statement is used read data. And there

is a system call, read(), in linux for reading data from source.

When the cin statement is executed and in turn the read() system

call gets invoked.

System Calls are mostly used through an interface known as API

(Application Programming Interface) rather than direct use. Few

examples of API are:

 POSIX API for Unix, Linux, Mac OS

 Win32 API for Windows

Traditionally, the system calls are divided in to two broad

categories and they are:

 System Calls for Processes Management

 System Calls for File System Management

Let’s discuss the system calls related to the above two categories.

STOP TO CONSIDER

In Linux, there are about 60 system calls and most of them are

written in C language.

User Space

void main()
{
 int a;
 ………..
 ………..
 cin>>a;
 ………..
 ………..
}

Kernel Space

read()

System Call

C

+

+

L

i
b

r

a

r

y

87 | P a g e

Space for learners:

5.4 SYSTEM CALLS FOR PROCESS

MANAGEMENT

Before plunging into more detail, let’s understand few basic

concepts/terminologies which will be very much related to our

discussion taking Linux O/S as an example.

 A program in execution is termed as Process.

 Each process is assigned with a Process Id.

 A shell, also known as command interpreter, is basically a

process which reads the command issued to a linux terminal.

 A process can create other processes and these are termed as

Child Process. A child process is also assigned a process id.

Here, in this section we will discuss the few system calls related to

Process Management.

5.4.1 exit() System Call

exit() system call is used to end a process. The syntax for the

system call is:

 void exit(status);

The status is an integer between 0 to 255 which is returned to the

parent process. It is useful when one process requires to tell its

parent that how it ends. The status value ‘0’ means the process

have not encountered any problem. In general, the parent of all the

processes in linux is init() with Process Id 1.

Program-1: Example of exit() system call.

int main()
{
 printf(“Program Ends….”);
 exit (0); //End the Process
}

In the above program, the exit value is set to 0.

5.4.2 fork() System Call

88 | P a g e

Space for learners: fork() system call is used to create a new process. The process

from which the fork() system call is invoked is termed as Parent

and the new process is termed as Child. The syntax of the fork()

system call is:

 pid_t fork();

The header files for pid_t and fork() are “sys/types.h” and

“unistd.h” respectively. The points, which are important while

working with fork system call, are mentioned below:

 fork() creates an exact duplicate copy of the original process.

 The variables, declared before the execution fork(), are also

exist in child process.

 After the execution of fork(), different memory space is

allocated for the child and both of them are executed

simultaneously. Thus, the operations performed by both the

processes, in spite of having the same content, do not affect

each other.

 The return value of fork(), inside the parent, is the process id

of the child. But inside the child it is 0 (zero).

 Process ids for both the processes, parent and child, are

different.

Program-2: Write a C program which creates a child process and

then wait for the child to terminate.

#include<stdio.h>

#include<unistd.h>

#include<sys/types.h>

int main()

{

pid_t process_id;

process_id = fork();

if (process_id<0)

{

 printf(“Error in creating child process using fork system call…”);

 exit(-1);

}

else if (process_id == 0)

{

 printf(“Child Process is running…”);

}

else

89 | P a g e

Space for learners: {

 printf(“Parent Process is running…”);

wait();

printf(“Child Process terminates…”);

 exit(0);

}

}

Ideal Output (if fork() executes successfully):

Child Process is running…

Parent Process is running…

Child Process Terminates…

Ideal Output (if fork() does not execute successfully):

Error in creating child process using fork system call…

Explanation:

 The code within the dotted box is actually the child process’

code (if fork executes successfully).

 The other codes are for the parent process.

 The variable, process_id, declared before the fork also exists in

the child process.

 When fork executes,

o and if successful, it returns an integer greater than 0

(zero).

o and if unsuccessful, it returns and integer less than 0

(zero).

 After successful execution of fork, the values of process_id

inside the parent process is an integer and inside child process

is 0 (zero).

Now, the Program-2 is executed and suppose the fork executes

successfully and hence a child process is created.

 Considering the ideal situation after fork,

o the created child process start execution which displays

“Child Process is running…”.

STOP TO CONSIDER

The output of a program (consisting of both parent & child)

depends on the processes’ switching.

90 | P a g e

Space for learners: o Process switching occurs and parent continues its

execution, which displays “Parent Process is running…”.

o The wait() executes and parent suspended(blocks) itself

until the child terminates.

o Again, process switching occurs and child gets its turn

and since there is no other statements to execute, the child

exit.

o After receiving the termination signal by the child, the

parent resumes and displays “Child Process terminates…”

and then exit() function gets executed and parent is

terminated.

Now, the Program-2 is executed and suppose the fork executes

unsuccessfully and will display “Error in creating child process

using fork system call…” and the process gets terminated due to

the execution of the exit() function call.

5.4.3 wait() System Call

The wait() is a very important system call. As already mentioned

in the above explanation. It make the parent process to wait for a

process (child) to be terminated created by fork() system call.

The syntax of the wait() system call is:

 pid_t wait(int *status);

If we call wait() inside a program without a child then it returns -

1. But if the process has a child, it will wait for the child to exit

and when it happens it will return the child’s process id.

The argument, status is optional. This is a pointer to the integer

where the unix/linux stores the value returned by the child process.

Program-3: Write a C program which creates a child. The child

calculates the summation of all the even nos. between 1 and 100

and then displays it. The parent should wait till the child exit.

#include<stdio.h>

#include<unistd.h>

#include<sys/types.h>

int main()

{

pid_t process_id;

91 | P a g e

Space for learners: int i, sum;

process_id = fork();

if (process_id<0)

{

 printf(“Error in creating child process using fork system call…”);

 exit(-1);

}

else if (process_id == 0)

{

 for(i=1, sum=0; i<=100; i++)

 {

 if((i%2) == 0)

 sum = sum + i;

 }

 printf(“The summation = %d”, sum);

}

else

{

 printf(“Parent Process is running…”);

wait();

printf(“Child Process terminates…”);

 exit(0);

}

}

Ideal Output (if fork() executes successfully):

Parent Process is running…

The summation = 2550

Child Process Terminates…

But suppose, a process has more than one child then how will the

wait() work??? In this kind of situation, when wait() executes, it

will wait for any of the child processes to exit. Thus, when one of

the child processes exits the wait ends. And if this is so then what

will happen to the remaining child processes as the parent itself

dies after the termination of one of its childs??? In this kind of

situation, the remaining child processes, termed as Orphan

Processes, becomes the child of the init process (process ID 1).

5.4.4 System Calls for Process Identification: getpid(),

getppid()

The getpid() and getppid() system calls are used to get the process

ids. As we all know that Processes create Processes and thus every

process has their Process Id as well as their Parent Process Id.

92 | P a g e

Space for learners: getpid() system call is used to get the process id of the current

process and getppid() system call is used to get the process id of

the parent process of the currently running process.

Program-4: Write a C program which creates a child. Within the

child process itself print the process id of the child and its parent.

#include<stdio.h>

#include<unistd.h>

#include<sys/types.h>

int main()

{

pid_t process_id, c_pid, p_pid;

process_id = fork();

if (process_id<0)

{

 printf(“Error in creating child process using fork system call…”);

 exit(-1);

}

else if (process_id == 0)

{

 c_pid = getpid();

 p_pid = getppid();

 printf(“Child process id = %u”, c_pid);

 printf(“\nParent process id = %u”, p_pid);

}

else

{

 printf(“Parent Process is running…”);

wait();

printf(“Child Process terminates…”);

 exit(0);

}

}

5.4.5 The exec System Call

Basically, exec is family of system calls related to process

execution. These are basically used to run system commands as

separate processes. The library file for these system calls is

unistd.h.

The system calls fall under the family are:

int execl (const char *path, const char *arg, …, NULL);

int execlp (const char *file, const char *arg, …, NULL);

93 | P a g e

Space for learners: int execv (const char *path, char *const argv[]);

int execvp (const char *file, char *const argv[]);

int execle (const char *path, const char *arg, …, NULL, char *

const envp[]);

int execve (const char *file, char *const argv[], char *const

envp[]);

Let’s discuss few of the above system calls.

 “execl” System Call

This system call takes the path of the executable file as the 1st and

2nd argument. The arguments that follow the 1st two are also

related to the task. And the last argument should be NULL. It will

return -1 if any error occurs but otherwise will return nothing. For

example:

execl ("/bin/ls", "/bin/ls", “-al”, “/idol”, NULL);

When the above code executes, a detailed list of files and

directories under the directory “/idol” will be displayed.

 “execlp” System Call

This system call is almost like “execl” except it takes only the

name of the executable file since it uses the PATH environment

variable to get the path of the executable. The arguments that

follow the 1st two are also related to the task. And the last

argument should be NULL. For example:

execl ("ls", "ls", “-al”, “/idol”, NULL);

When the above code executes, a detailed list of files and

directories under the directory “/idol” will be displayed.

 “execv” System Call

This system call takes only two arguments. 1st argument is path of

the executable file and the 2nd argument is a list of parameters

terminated by NULL. For example:

char *arg[] = {“/bin/ls”, “-al”, “/idol”, NULL”};

execv ("/bin/ls", arg);

The output of the above code will be the same as above.

 “execvp” System Call

94 | P a g e

Space for learners: The arguments to this system call are same as “execv” but we

need to mention only the name of the executable file not the whole

path as it uses the PATH environment variable. For example:

char *arg[] = {“ls”, “-al”, “/idol”, NULL”};

execvp ("ls", arg);

The output of the above code will be the same as above.

 5.5 SYSTEM CALLS FOR FILE MANAGEMENT

These system calls are used for handling the tasks like creating a

file/directory, opening a file, reading a file, writing to a file etc.

The header files necessary to include are - sys/types.h, sys/stat.h,

fcntl.h and unistd.h.

5.5.1 open System Call

This system call is used to open or creating a file. The syntax is:

int open(const char *path, int flags,... /* mode_t mod */);

This will return a filed descriptor or will return -1 if fails. The 1st

argument is the path of the file to be opened. 2nd argument takes

how the file is to be opened such as read-only, write-only etc.

These flags are as follows:

O_RDONLY: means Open for reading only,

O_WRONLY: means Open for writing only,

O_RDWR: means Open for both reading and writing.

O_APPEND: means Open and writing will from the end of the

file.

O_CREAT: means if file does not exist then Create and then

Open.

These flags are defined in fcntl.h header file. The 3rd argument is

necessary while creating a new file. When file is opened a file

pointer is placed at 1st byte of the file except while opening with

O_APPEND flag where the file pointer is place at the end of the

file.

5.5.2 creat System Call

This system call is used to create a new file. The syntax is:

95 | P a g e

Space for learners: int creat (const char *path, mode_t mod);

This will return a filed descriptor or will return -1 if fails. The 1st

argument, path, indicates the name of the file and the 2nd

argument, mod, indicates the file access rights.

5.5.3 read System Call

Using this system call we can read data (no. of bytes) starting from

the current position, pointed by the file pointer, in a file. The

syntax is:

ssize_t read (int fd, void* buf, size_t noct);

This will return no. of bytes read or 0 for EOF (End of File) or -1

if error occurs. The 1st argument, fd, is the File Descriptor of the

file to be read. 2nd argument, buf, is the buffer (storage) where the

data after the read will be stored and 3rd argument, noct, is the no.

of bytes to be read from the file.

5.5.4 write System Call

Using this system call we can write data (no. of bytes) at the

current position, pointed by the file pointer, in to a file. The syntax

is:

ssize_t write (int fd, const void* buf, size_t noct);

This will return no. of bytes written or -1 if error occurs. The 1st

argument, fd, is the File Descriptor of the file where data are to be

written. 2nd argument, buf, is the buffer (storage) where the data

after the read will be stored and 3rd argument, noct, is the no. of

bytes to be written to the file.

5.5.5 close System Call

This system call is used to close an opened file. The syntax is:

int close (int fd);

The only argument to this system call is the descriptor of the file

which need to be closed. This returns 0 if successful or -1 if error

occurs and also frees the assigned file descriptor.

96 | P a g e

Space for learners: 5.5.6 lseek System Call

When reading/writing is to be done from/to a particular position in

an opened file, lseek system call should be used. In short, it is used

to position the file pointer. The syntax of this system call is:

off_t lseek (int fd, off_t offset, int ref);

This returns the current position of the file pointer or -1 if error

occurs. The file pointer positioning will be performed based on the

3rd argument, ref, which should be one from the following values:

SEEK_SET: positioning relative to the Beginning-of-File (BOF),

SEEK_CUR: positioning relative to the current file pointer
position,

SEEK_END: positioning relative to the End-of-File (EOF).

CHECK YOUR PROGRESS - I

1. What is System Call?

2. When a cin statement executed, what system call will be

invoked?

3. What is a Process?

4. What is Shell?

5. Write down the syntax of the fork() system call.

State TRUE or FALSE:

6. fork() system call is defined inside the unistd.h header file.

7. Win32 API is for Windows.

8. exit() system call is used to end a process.

9. fork() creates an exact duplicate copy of the original process.

10. The getpid() system call is used to get the process id of the

parent process of the current process.

97 | P a g e

Space for learners: 5.6 SUMMING UP

 System Calls are basically a set of extended instructions

provided by the O/S for communications between the user

programs and the O/S.

 System Calls are mostly used through an interface known as

API (Application Programming Interface) rather than direct

use. For example POSIX, Win32 etc.

 A program in execution is termed as Process and each process

is assigned with a Process Id.

 A process can create other processes and these are termed as

Child Process.

 exit() system call is used to end a process.

 The parent of all the processes in linux is init() with Process Id

1.

 fork() system call is used to create a new process. It creates an

exact duplicate copy of the original process.

 wait() system call makes the parent process to wait for a

process (child) to be terminated created by fork() system call.

 getpid() system call is used to get the process id of the current

process and getppid() system call is used to get the process id

of the parent process of the currently running process.

 The exec is family of system calls related to process execution.

They are – execl, execlp, execv, execp, execle, execve.

5.7 ANSWERS TO CHECK YOUR PROGRESS

1. System Calls are basically a set of extended instructions

provided by the O/S for communications between the user

programs and the O/S.

2. When the cin statement is executed and in turn the read()

system call gets invoked.

3. A program in execution is termed as Process.

4. A shell, also known as command interpreter, is basically a

process which reads the command issued to a linux terminal.

5. The syntax of the fork() system call is:

98 | P a g e

Space for learners: pid_t fork();

6. True

7. False

8. True

9. True

10. False

5.8 POSSIBLE QUESTIONS

1. What is a system call? How is it invoked indirectly?

Explain.

2. What is API?

3. Write down the basic difference between a program and a

process.

4. Write short notes on:

a. exit() system call

b. fork() system call

c. wait() system call

5. Write a program in C to create a child process which will

calculate the length the string “GUIDOL” and displays it.

The parent should only terminate when the child completes

its task.

6. Discuss the OPEN system call.

7. Write a program in C to illustrate the use of creat, open,

read, write and close system calls.

5.9 REFERENCES AND SUGGESTED READINGS

 Tanenbaum, A.S., BOS, H., Modern Operating Systems,

PEARSON Publications.

99 | P a g e

Space for learners: UNIT 6: PROCESS SCHEDULING

ALGORITHMS-I

Unit Structure:

6.1 Introduction

6.2 Unit Objective

6.3 CPU Scheduling

6.4 Process Scheduling Queues

6.5 Two State Process Model

6.6 Type of Process Schedulers

6.7 Scheduling Algorithms

 6.7.1 When Scheduling is Preemptive or non-Preemptive

 6.7.2 Important CPU scheduling Terminologies

 6.7.3 CPU Scheduling Criteria

 6.7.4 First Come First Serve (FCFS)

 6.7.5 Shortest Job Next (SJN) or Shortest Job First (SJF)

 6.7.6 Shortest Remaining Time First (SRTF)

6.8 Summing Up

6.9 Answers to Check Your Progress

6.10 Possible Questions

6.11 References & Suggested Readings

6.1 INTRODUCTION

In this unit you will learn the basic concept of process scheduling

which is the activity of the process manager that handles the removal

of the running process from the CPU and the selection of another

process on the basis of a particular strategy. Process scheduling is an

essential part of Multiprogramming operating systems. Such

operating systems allow more than one process to be loaded into the

executable memory at a time and the loaded process shares the CPU

using time multiplexing.

The unit will also familiarize you with key terms related to process

100 | P a g e

Space for learners: scheduling like turn-around time, burst time, waiting time etc. You

will also learn that scheduling algorithms are divided in to two

categories: preemptive and non-preemptive. The unit will

thoroughly discuss some important scheduling algorithms like:

FCFS, SJF, SRTF etc.

6.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 understand about CPU scheduling

 know various types of CPU Scheduling

 identify the important CPU scheduling Terminologies

 define CPU Scheduling Criteria

 understand various types of CPU scheduling Algorithm

In a system, there are a number of processes that are present in

different states at a particular time. Some processes may be in the

waiting state, others may be in the running state and so on. Have you

ever thought how CPU selects one process out of some many

processes for execution? Yes, you got it right. CPU uses some kind

of process scheduling algorithms to select one process for its

execution amongst so many processes. The process scheduling

algorithms are used to maximize CPU utilization by increasing

throughput. In this unit, we will learn about various process

scheduling algorithms used by CPU to schedule a process.

6.3 CPU SCHEDULING?

CPU Scheduling is a process of determining which process will

own CPU for execution while another process is on hold. The main

task of CPU scheduling is to make sure that whenever the CPU

remains idle, the OS at least select one of the processes available in

the ready queue for execution. The selection process will be carried

out by the CPU scheduler. It selects one of the processes in memory

that are ready for execution.

6.4 PROCESS SCHEDULING QUEUES

101 | P a g e

Space for learners: Process Scheduling Queues help you to maintain a distinct queue for

each and every process states and PCBs. All the processes of the

same execution state are placed in the same queue. Therefore,

whenever the state of a process is modified, its PCB needs to be

unlinked from its existing queue, which moves back to the new state

queue.

Three types of operating system queues are:

1. Job queue – It helps you to store all the processes in the

system.

2. Ready queue – This type of queue helps you to set every

process residing in the main memory, which is ready and

waiting to execute.

3. Device queues – It is a process that is blocked because of the

absence of an I/O device.

6.5 TWO STATE PROCESS MODEL

Two-state process models are:

Running

In the Operating system, whenever a new process is built, it is

entered into the system, which should be running.

Not Running

The processes that are not running are kept in a queue, which is

waiting for their turn to execute. Each entry in the queue is a point to

a specific process.

6.6 TYPE OF PROCESS SCHEDULERS

A scheduler is a type of system software that allows you to handle

process scheduling.

There are mainly three types of Process Schedulers:

1. Long Term

2. Short Term

3. Medium Term

Long Term Scheduler

102 | P a g e

Space for learners: Long term scheduler is also known as a job scheduler. This

scheduler regulates the program and selects process from the queue

and loads them into memory for execution. It also regulates the

degree of multi-programing.

However, the main goal of this type of scheduler is to offer a

balanced mix of jobs, like processor, I/O jobs that allow managing

multiprogramming.

Medium Term Scheduler

Medium-term scheduling is an important part of swapping. It

enables you to handle the swapped out-processes. In this scheduler,

a running process can become suspended, which makes an I/O

request.

Short Term Scheduler

Short term scheduling is also known as CPU scheduler. The main

goal of this scheduler is to boost the system performance according

to set criteria. This helps you to select from a group of processes that

are ready to execute and allocates CPU to one of them.

6.7 SCHEDULING ALGORITHMS

A Process Scheduler schedules different processes to be assigned to

the CPU based on particular scheduling algorithms. There are six

popular process scheduling algorithms which we are going to

discuss in this unit:

 First-Come, First-Served (FCFS) Scheduling

 Shortest-Job-Next (SJN) Scheduling

 Priority Scheduling

 Shortest Remaining Time

 Round Robin(RR) Scheduling

 Multiple-Level Queues Scheduling

These algorithms are either non-preemptive or preemptive. Non-

preemptive algorithms are designed so that once a process enters

the running state; it cannot be preempted until it completes its

allotted time, whereas the preemptive scheduling is based on

priority where a scheduler may preempt a low priority running

process anytime when a high priority process enters into a ready

state.

103 | P a g e

Space for learners: Preemptive Scheduling is a CPU scheduling technique that works

by dividing time slots of CPU to a given process. The time slot

given might be able to complete the whole process or might not be

able to it. When the burst time of the process is greater than CPU

cycle, it is placed back into the ready queue and will execute in the

next chance. This scheduling is used when the process switch to

ready state.

Algorithms that are backed by preemptive scheduling are round-

robin (RR), priority, SRTF (Shortest Remaining Time First).

Non-preemptive Scheduling is a CPU scheduling technique the

process takes the resource (CPU time) and holds it till the process

gets terminated or is pushed to the waiting state. No process is

interrupted until it is completed, and after that processor switches to

another process.

Algorithms that are based on non-preemptive Scheduling are non-

preemptive priority and Shortest Job First.

Preemptive Vs Non-Preemptive Scheduling

Preemptive Scheduling Non-Preemptive Scheduling

Resources are allocated according to the

cycles for a limited time.

Resources are used and then held by the

process until it gets terminated.

The process can be interrupted, even before

the completion.

The process is not interrupted until its life

cycle is complete.

Starvation may be caused, due to the

insertion of priority process in the queue.

Starvation can occur when a process with

large burst time occupies the system.

Maintaining queue and remaining time

needs storage overhead.

No such overheads are required.

104 | P a g e

Space for learners: 6.7.1 When Scheduling is Preemptive or Non-

Preemptive

To determine if scheduling is preemptive or non-preemptive,

consider these four parameters:

1. A process switches from the running to the waiting state.

2. Specific process switches from the running state to the ready

state.

3. Specific process switches from the waiting state to the ready

state.

4. Process finished its execution and terminated.

Only conditions 1 and 4 apply, the scheduling is called non-

preemptive.

All others scheduling are preemptive.

6.7.2 Important CPU scheduling Terminologies

Various times related to process are

1. Arrival time

2. Waiting time

3. Response time

4. Burst time

5. Completion time

6. Turn Around Time

7. Gant Chart

 1) Arrival Time (AT)

The time when the process arrives into the running state is called as

the Arrival time of the process. In simple words, the time at which

any process enters the CPU is known as the arrival time.

2) Waiting Time (WT)

It is the time for which a process waits for going into the running

state. It is the sum of the time spent by the process in the ready state

and the waiting state. Another way of calculating it is as follows:

 Waiting Time= Turn Around Time – Burst Time

 WT = TAT – BT

105 | P a g e

Space for learners: 3) Response Time

The time difference between the first time a process goes into the

running state and the arrival time of the process is called the

response time of the process.

4) Burst Time (BT)

The time for which the process needs to be in the running state is

known as the burst time of the process. We can also define it as the

time which a process requires for execution is the Burst time of the

process.

5) Completion Time (CT)

The time when the Process is done with all its execution and it enters

the termination state is called as the completion time of the process.

It can be also defined as the time when a process ends.

6) Turnaround Time (TAT)

Turn Around time can be defined as the total time the process

remains in the main memory of the system. The Ready state, waiting

for state and the Running State, together make up the main memory

of the system. So, the time for which the process remains in these

states is known as the turnaround time of the process. In simple

words, it is the time that a process spends after entering the ready

state and before entering the termination state.

It can be calculated as follows:

 Turn Around Time = Completion Time – Arrival Time

 TAT = CT - AT

7) Gant Chart

The Gant chart is used to represent the currently executing process at

every single unit of time. This time unit is the smallest unit of time

in the processor.

6.7.3 CPU Scheduling Criteria

A CPU scheduling algorithm tries to maximize and minimize the

following:

106 | P a g e

Space for learners:

Fig 6.1 Scheduling Criteria

Maximize:

CPU utilization: CPU utilization is the main task in which the

operating system needs to make sure that CPU remains as busy as

possible. It can range from 0 to 100 percent. However, for the

RTOS, it can be range from 40 percent for low-level and 90 percent

for the high-level system.

Throughput: The number of processes that finish their execution

per unit time is known Throughput. So, when the CPU is busy

executing the process, at that time, work is being done, and the work

completed per unit time is called Throughput.

Minimize:

Waiting time: Waiting time is an amount that specific process

needs to wait in the ready queue.

Response time: It is an amount to time in which the request was

submitted until the first response is produced.

Turnaround Time: Turnaround time is an amount of time to

execute a specific process. It is the calculation of the total time spent

waiting to get into the memory, waiting in the queue and, executing

on the CPU. The period between the time of process submission to

the completion time is the turnaround time.

6.7.4 First Come First Serve (FCFS)

First Come First Serve (FCFS) is an operating system scheduling

algorithm that automatically executes queued requests and processes

in order of their arrival. It is the easiest and simplest CPU scheduling

algorithm. In this type of algorithm, processes which request the

107 | P a g e

Space for learners: CPU first get the CPU allocation first. This is managed with a FIFO

queue. The full form of FCFS is First Come First Serve.

As the process enters the ready queue, its PCB (Process Control

Block) is linked with the tail of the queue and, when the CPU

becomes free, it should be assigned to the process at the beginning

of the queue. It supports both non-preemptive and pre-emptive

scheduling algorithm.

Example of FCFS scheduling

A real-life example of the FCFS method is buying a movie ticket on

the ticket counter. In this scheduling algorithm, a person is served

according to the queue manner. The person who arrives first in the

queue first buys the ticket and then the next one. This will continue

until the last person in the queue purchases the ticket. Using this

algorithm, the CPU process works in a similar manner.

Advantages-

 It is simple and easy to understand.

 It can be easily implemented using queue data structure.

 It does not lead to starvation.

 Disadvantages-

 It does not consider the priority or burst time of the

processes.

 It suffers from convoy effect.

How FCFS Works? Calculating Average Waiting Time

Problem-01: Consider the set of 5 processes whose arrival time and

burst time are given below-

Table 6.1

Process Id Arrival time Burst time

P1 3 4

P2 5 3

P3 0 2

P4 5 1

108 | P a g e

Space for learners: P5 4 3

If the CPU scheduling policy is FCFS, calculate the average waiting

time and average turnaround time.

Solution- Here, the Gantt Chart-

 0 2 3 7 10

 13 14

P3 P1 P5 P2 P4

Fig 6.2 Gannt chart

Here, black box represents the idle time of CPU.

Now, we know that-

Turn Around time = Exit time – Arrival time

Waiting time = Turn Around time – Burst time

Table 6.2

Process Id Exit time Turn Around time Waiting time

P1 7 7 – 3 = 4 4 – 4 = 0

P2 13 13 – 5 = 8 8 – 3 = 5

P3 2 2 – 0 = 2 2 – 2 = 0

P4 14 14 – 5 = 9 9 – 1 = 8

P5 10 10 – 4 = 6 6 – 3 = 3

Average Turn Around time = (4 + 8 + 2 + 9 + 6) / 5 = 29 / 5 = 5.8

unit

Average waiting time = (0 + 5 + 0 + 8 + 3) / 5 = 16 / 5 = 3.2 unit

6.7.5 Shortest Job Next (SJN) or Shortest Job First

(SJF)

Shortest Job First (SJF) is an algorithm in which the process having

the smallest execution time is chosen for the next execution. This

scheduling method can be preemptive or non-preemptive. It

109 | P a g e

Space for learners: significantly reduces the average waiting time for other processes

awaiting execution. The full form of SJF is Shortest Job First.

There are basically two types of SJF methods: Non-Preemptive SJF

and Preemptive SJF.

Characteristics of SJF Scheduling

 It is associated with each job as a unit of time to complete.

 This algorithm method is helpful for batch-type processing,

where waiting for jobs to complete is not critical.

 It can improve process throughput by making sure that

shorter jobs are executed first, hence possibly have a short

turnaround time.

 It improves job output by offering shorter jobs, which should

be executed first, which mostly have a shorter turnaround

time.

Advantages-

 Preemtive-SJF is optimal and guarantees the minimum average

waiting time.

 It provides a standard for other algorithms since no other

algorithm performs better than it.

 Disadvantages-

 It cannot be implemented practically since burst time of the

processes cannot be known in advance.

 It leads to starvation for processes with larger burst time.

 Priorities cannot be set for the processes.

 Processes with larger burst time have poor response time.

6.7.5.1. Non-Preemptive SJF

In non-preemptive SJF scheduling, once the CPU cycle is allocated

to process, the process holds it till it reaches a waiting state or

terminated.

Consider the following five processes each having its own unique

burst time and arrival time.

110 | P a g e

Space for learners: Table 6.3

Process Queue Burst time Arrival time

P1 6 2

P2 2 5

P3 8 1

P4 3 0

P5 4 4

Step 0) At time=0, P4 arrives and starts execution.

Step 1) At time= 1, Process P3 arrives. But, P4 still needs 2

execution units to complete. It will continue execution.

Step 2) At time =2, process P1 arrives and is added to the waiting

queue. P4 will continue execution.

Step 3) At time = 3, process P4 will finish its execution. The burst

time of P3 and P1 is compared. Process P1 is executed because its

burst time is less compared to P3.

Step 4) At time = 4, process P5 arrives and is added to the waiting

queue. P1 will continue execution.

Step 5) At time = 5, process P2 arrives and is added to the waiting

queue. P1 will continue execution.

Step 6) At time = 9, process P1 will finish its execution. The burst

time of P3, P5, and P2 is compared. Process P2 is executed because

its burst time is the lowest.

Step 7) At time=10, P2 is executing and P3 and P5 are in the waiting

queue.

Step 8) At time = 11, process P2 will finish its execution. The burst

time of P3 and P5 is compared. Process P5 is executed because its

burst time is lower.

Step 9) At time = 15, process P5 will finish its execution.

Step 10) At time = 23, process P3 will finish its execution.

Step 11) Let's calculate the average waiting time for above example.

Wait time of,

P4= 0-0=0

P1= 3-2=1

P2= 9-5=4

111 | P a g e

Space for learners: P5= 11-4=7

P3= 15-1=14

Average Waiting Time= 0+1+4+7+14/5 = 26/5 = 5.2

6.7.5.2 Preemptive SJF

In Preemptive SJF Scheduling, jobs are put into the ready queue as

they come. A process with shortest burst time begins execution.

Even, if a process with a shorter burst time arrives, the current

process is removed or preempted from execution, and the shorter job

is allocated CPU cycle.

Consider the table5.3 with the five processes.

Step 0) At time=0, P4 arrives and starts execution.

Step 1) At time= 1, Process P3 arrives. But, P4 has a shorter burst

time. It will continue execution.

Step 2) At time = 2, process P1 arrives with burst time = 6. The

burst time is more than that of P4. Hence, P4 will continue

execution.

Step 3) At time = 3, process P4 will finish its execution. The burst

time of P3 and P1 is compared. Process P1 is executed because its

burst time is lower.

Step 4) At time = 4, process P5 will arrive. The burst time of P3, P5,

and P1 is compared. Process P5 is executed because its burst time is

lowest. Process P1 is preempted.

Step 5) At time = 5, process P2 will arrive. The burst time of P1, P2,

P3, and P5 is compared. Process P2 is executed because its burst

time is least. Process P5 is preempted.

Step 6) At time =6, P2 is executing.

Step 7) At time =7, P2 finishes its execution. The burst time of P1,

P3, and P5 is compared. Process P5 is executed because its burst

time is lesser.

112 | P a g e

Space for learners: Step 8) At time =10, P5 will finish its execution. The burst time of

P1 and P3 is compared. Process P1 is executed because its burst time

is less.

Step 9) At time =15, P1 finishes its execution. P3 is the only process

left. It will start execution.

Step 10) At time =23, P3 finishes its execution.

Step 11) Let's calculate the average waiting time for above example.

Wait time

P4= 0-0=0

P1= (3-2) + 6 =7

P2= 5-5 = 0

P5= 4-4+2 =2

P3= 15-1 = 14

Average Waiting Time = 0+7+0+2+14/5 = 23/5 =4.6

6.7.6. Shortest Remaining Time First (SRTF)

This Algorithm is the preemptive version of SJF scheduling. In

SRTF, the execution of the process can be stopped after certain

amount of time. At the arrival of every process, the short term

scheduler schedules the process with the least remaining burst time

among the list of available processes and the running process.

Once all the processes are available in the ready queue, No

preemption will be done and the algorithm will work as SJF

scheduling. The context of the process is saved in the Process

Control Block when the process is removed from the execution and

the next process is scheduled. This PCB is accessed on the next

execution of this process.

Advantages:

SRTF algorithm makes the processing of the jobs faster than SJN

algorithm.

Disadvantages:

The context switch is done a lot more times in SRTF than in SJN,

and consumes CPU’s valuable time for processing.

113 | P a g e

Space for learners: Example: In this Example, there are five jobs P1, P2, P3. Their

arrival time and burst time are given below in the table.

Table 6.4

Process Burst Time Arrival Time

P1 7 0

P2 3 1

P3 4 3

Fig 6.2 Gantt Chart

Explanation

 At the 0th unit of the CPU, there is only one process that

is P1, so P1 gets executed for the 1 time unit.

 At the 1st unit of the CPU, Process P2 arrives. Now,

the P1 needs 6 more units more to be executed, and

the P2 needs only 3 units. So, P2 is executed first by

preempting P1.

 At the 3rd unit of time, the process P3 arrives, and the burst

time of P3 is 4 units which is more than the completion time

of P2 that is 1 unit, so P2 continues its execution.

 Now after the completion of P2, the burst time of P3 is 4

units that mean it needs only 4 units for completion while P1

needs 6 units for completion.

 So, this algorithm picks P3 above P1 due to the reason that

the completion time of P3 is less than that of P1

 P3 gets completed at time unit 8, there are no new process

arrived.

 So again, P1 is sent for execution, and it gets completed at

the 14th unit.

As Arrival Time and Burst time for three processes P1, P2, P3 are

given in the above diagram. Let us calculate Turnaround time,

completion time, and waiting time.

114 | P a g e

Space for learners:

Table 6.5

Average waiting time is calculated by adding the waiting time of all

processes and then dividing them by no. of processes.

average waiting time = waiting for time of all processes/ no.of

processes

average waiting time=7+1+1=9/3 = 3ms

CHECK YOUR PROGRESS

A. Multiple Choice Questions:

1. Which of the following scheduling algorithm is non-preemtive?

 a) SJF

 b) FCFS

 c) SRTF

 d) none of the mentioned

2. The processes that are residing in main memory and are ready and

waiting to execute are kept on a list called _____________

 a) job queue

 b) ready queue

 c) execution queue

 d) process queue

3. The interval from the time of submission of a process to the time

of completion is termed as ____________

 a) waiting time

 b) turnaround time

 c) response time

 d) throughput

Process
Arrival

Time

Burst

Time

Completion

Time

Turn Around

Time

Waiting

Time

P1 0 7 14 14-0=14 14-7=7

P2 1 3 5 5-1=4 4-3=1

P3 3 4 8 8-3=5 5-4=1

115 | P a g e

Space for learners: 4. Which scheduling algorithm allocates the CPU first to the process

that requests the CPU first?

 a) first-come, first-served scheduling

 b) shortest job scheduling

 c) priority scheduling

 d) none of the mentioned

5. Scheduling algorithms that work on complex:

 a). uses few resources

 b). uses most resources

 c). are suitable for large computers

 d). all of the mentioned

6. Scheduling algorithm which allocates the CPU first to the process

which requests the CPU first?

 a). FCFS scheduling

 b). priority scheduling

 c). shortest job scheduling

 d). none of the mentioned

7. In an operating system, the portion of the process scheduler that

forward processes is concerned with :

 a). running processes are assigning to blocked queue

 b). ready processes are assigning to CPU

 c). ready processes are assigning to the waiting queue

 d). all of the mentioned

8. CPU performance is measured through ________.

 a. Throughput

 b. MHz

 c. Flaps

 d. None of the above

9. FCFS maintains a __________

 a. Queue

 b. Stack

 c. Tree

 d. List

10. Full form of FCFS is-

 a). First Come First Save

116 | P a g e

Space for learners: b). Frequently Come First Save

 c). First Come First Serve

 d). First Come Final Serve

B. Fill in the Blanks:

1. Waiting Time=Turn Around Time - _________________.

2. _________ Chart is used to represent the currently

executing process at every single unit of time.

3. Turn Around Time= Completion Time- ______________.

4. The Time difference between the first time a process goes

into the running state and arrival time of the process is called

__________________.

5. The OS maintains all PCBs in process scheduling

_____________.

6. __________ scheduler determines which programs are

admitted to the system for processing.

7. ___________ scheduling method can be managed with a

FIFO queue.

8. ___________ is sometimes called SRTF scheduling.

9. __________ is the full of SJF algorithm.

10. __________ method selects the process with the shortest

execution time for execution next.

C. State whether TRUE or FALSE

1. CPU scheduling is a process of determining which process

will own CPU for execution while another process is on

hold.

2. In Preemptive Scheduling, the tasks are mostly assigned with

their shortest.

3. In the Non-preemptive scheduling method, the CPU has been

allocated to a specific process.

4. Burst time is a time required for the process to wait.

5. CPU utilization is the main task in which the operating

system needs to make sure that CPU remains as busy as

possible.

6. The number of processes that finish their execution per unit

time is known scheduler.

117 | P a g e

Space for learners: 7. Waiting time is an amount that specific process needs to wait

in the ready queue.

8. Waiting time is an amount to complete the execution.

9. Turnaround time is an amount of time to execute a specific

process.

10. The CPU uses scheduling not to improve its efficiency,

D. Match Column A with Column B

 Column A Column B

1. CPU performance is measured

through

A. First Come First

Serve

2. amount of time to execute a

specific process

B. Shortest job next

3. SNF C. turnaround time

4. SJF D. Shortest remaining

time first

5. FCFS E. preemtive

6. can be managed with a FIFO

queue

F. Grantt chart

7. smallest unit of time in the

processor

G. troughput

8. ______ method is the simplest

and Easy to understand

H. Shortest job first

9. SRTF I. Non-preemtive

10. No such overheads are required

in _______ scheduling

J. Waiting time

6.8 SUMMING UP

 CPU scheduling is a process of determining which process will

own CPU for execution while another process is on hold.

 In Preemptive Scheduling, the tasks are mostly assigned with

their priorities.

 In the Non-preemptive scheduling method, the CPU has been

allocated to a specific process.

 Burst time is a time required for the process to complete

execution. It is also called running time.

118 | P a g e

Space for learners: CPU utilization is the main task in which the operating system

needs to make sure that CPU remains as busy as possible

 The number of processes that finish their execution per unit

time is known Throughput.

 Waiting time is an amount that specific process needs to wait in

the ready queue.

 It is an amount to time in which the request was submitted until

the first response is produced.

 Turnaround time is an amount of time to execute a specific

process.

 Timer interruption is a method that is closely related to

preemption,

 A dispatcher is a module that provides control of the CPU to the

process.

 Some popular process scheduling algorithms are: 1) First Come

First Serve (FCFS), 2) Shortest-Job-First (SJF) Scheduling 3)

Shortest Remaining Time 4) Priority Scheduling etc.

 In the First Come First Serve method, the process which

requests the CPU gets the CPU allocation first.

 In the Shortest Remaining time, the process will be allocated to

the task, which is closest to its completion.

 In Shortest job first the shortest execution time should be

selected for execution next

 The CPU uses scheduling to improve its efficiency.

6.9 ANSWERS TO CHECK YOUR PROGRESS

A. Answers: 1. (b), 2.(b), 3.(b), 4(a), 5(c), 6(a), 7(b), 8(a), 9(a),

10(c)

B. Answers: 1. Burst time, 2. grantt, 3. arrival, 4. response, 5.

queue, 6. Job scheduler, 7. FCFS, 8. Preemtive SJF, 9.

Shortest Job First, 10. SJF

119 | P a g e

Space for learners: C. Answers: 1. True, 2. False, 3. True, 4. False, 5. True, 6. False, 7.

True, 8. False, 9. True, 10. false

D. Answers: 1. G, 2. C, 3. B, 4. H, 5. A, 6. A, 7. F, 8. A, 9. D, 10. E

6.10 POSSIBLE QUESTIONS

Short-Answer Questions:

1. What is process scheduling?

2. What is the need of process scheduling?

3. What is preemptive and non-preemptive scheduling?

4. What are the various scheduling criteria for CPU scheduling?

5. Define throughput.

6. What is turnaround time?

7. What is waiting time in CPU scheduling?

8. What is response time in CPU scheduling?

9. What is Gantt Chart?

10. What are the advantages of FCFS algorithm?

Long-Answer Questions:

1. Discuss the FCFS scheduling algorithm with illustration.

2. Explain SJF scheduling algorithm with illustration.

3. Explain shortest remaining time next scheduling algorithm

with illustration.

4. Consider the set of 5 processes whose arrival time and burst

time are given below:

Process No Arrival Time Burst Time

P1 3 1

P2 1 4

P3 4 2

P4 0 6

P5 2 3

If the CPU scheduling policy is SJF non-preemptive,

calculate the average waiting time and average turnaround

time.

5. Consider the set of 6 processes whose arrival time and burst

time are given below:

120 | P a g e

Space for learners: Process No Arrival Time Burst Time

P1 3 4

P2 5 3

P3 0 2

P4 5 1

P5 4 3

P6 7 5

If the CPU scheduling policy is STRF, calculate the average

waiting time and average turnaround time.

6. Discuss the various key terms used in process scheduling.

7. Discuss the criteria for a scheduling algorithm can be

preemptive or non-preemptive.

8. Discuss the importance of scheduling algorithms.

9. Explain the various scheduling criteria for CPU scheduling.

10. Compare the preemptive and non-preemptive scheduling

algorithms.

6.11 REFERENCES AND SUGGESTED READINGS

 lberschatz, Galvin, and Gagne's Operating System Concepts,

Seventh Edition.

121 | P a g e

Space for learners: UNIT 7: PROCESS SCHEDULING

ALGORITHM-II

Unit Structure:

7.1 Introduction

7.2 Unit Objectives

7.3 Round Robin Scheduling

7.4 Priority CPU Scheduling

7.4.1 Pre-emptive Priority Scheduling

7.4.2 Non-Preemptive Priority Scheduling

7.4.3 Problem with Priority Scheduling Algorithm

7.4.4 Using Aging Technique with Priority Scheduling

7.5 Multilevel Queue Scheduling

7.6 Implementation Of Concurrency Primitives

7.6.1 Problems In Concurrency

7.6.2 Advantages of Concurrency

7.6.3 Drawbacks of Concurrency

7.6.4 Issues Of Concurrency

7.6.5 Process Synchronization

7.6.6 Race Condition

7.6.7 Critical Section Problem

7.6.8 Semaphore

7.7 Scheduling In Real Time System

7.8 Summing Up

7.9 Answers to Check Your Progress

7.10 Possible Questions

7.11 References and Suggested Readings

122 | P a g e

Space for learners: 7.1 INTRODUCTION

CPU scheduling is a technique that allows one process to use the

CPU while another's execution is halted (in a waiting state) due to

the lack of a resource such as I/O, allowing the CPU to be fully

utilised. I/O and CPU time are both used in a typical procedure.

Time spent waiting for I/O in a uni-programming system like MS-

DOS is wasted, and CPU is free during this time. One process can

use the CPU while another waits for I/O in multiprogramming

systems. This is only possible with process scheduling. CPU

scheduling is the foundation of a multi-programmed operating

system. The OS can make a computer more productive by switching

the CPU among the processes. The operating system must choose

one of the processes in the ready queue to execute whenever the

CPU becomes idle. The short-term scheduler is in charge of the

selecting process (or CPU scheduler). The scheduler chooses from

among the ready-to-run processes in memory and assigns the CPU

to one of them. A multiprogramming system allows multiple

processes to run at the same time. When a process must wait, the OS

takes the CPU away from that process and assigns it to another. This

pattern persists. Multiprogramming's goal is to keep at least one

process running at all times in order to maximise CPU utilisation.

Only one process can execute at a time on a single processor system;

any other processes must wait until the CPU is free and can be

rescheduled. CPU scheduling is to make the system more efficient,

quick, and fair.

The introduction and objective portion of Process scheduling

algorithm were discussed in the previous Process scheduling

algorithm Unit VI with different scheduling algorithm. As a result,

another five scheduling algorithms, such as Round Robin

Scheduling, Priority CPU Scheduling, Multilevel Queue Scheduling,

Multilevel Queue Scheduling, and Scheduling in Real Time System,

have been discussed in this Unit VII.

7.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 understand about Round Robin scheduling

 understand about various types of priority CPU scheduling

123 | P a g e

Space for learners: know about Multilevel Queue Scheduling

 explain various issues related to the implementation of

concurrency primitives

 explain scheduling in real time system

7.3 ROUND ROBIN SCHEDULING

The RR scheduling algorithm was created with time-sharing systems

in mind. It's the same as FCFS scheduling, but with the addition of

pre-emption to switch between processes. Every process is given a

small unit of time called a quantum or time slice. The duration of a

time quantum is typically 10 to 100 milliseconds. When a process

has completed its execution for the specified amount of time, it is

pre-empted and another process executes for the specified amount of

time. The CPU scheduler goes around the ready queue, allocating

the CPU to every process for 1 time quantum intervals. A circular

queue is used to treat the ready queue.

The ready queue is kept as a FIFO queue of processes to execute RR

scheduling. New processes are added to the ready queue's tail. The

CPU scheduler selects the first process from the ready queue, sets

the timer to interrupt after one time quantum, and dispatches it. Then

two cases may arise; the process may have a CPU burst of less than

1 time quantum, in which case the process will surrender the CPU

voluntarily. After that, the scheduler will move on to the next

process in the ready queue. Another scenario is that if the current

operating process's CPU burst is longer than one time quantum, the

timer will go off, causing an OS interrupt. A context switch is

performed, and the process is pushed to the back of the ready queue.

The CPU scheduler will then choose the next available process from

the ready queue.

For example: suppose time quantum is 5ms and the process

P1,P2,P3 and P4 are scheduled by using RR scheduling

Process Burst Time

P1 20

P2 2

P3 6

P4 2

124 | P a g e

Space for learners: GANTT chart

P1 P2 P3 P4 P1 P3 P1 P1

Process P1 receives the first 5 milliseconds, but because it requires

another 15 milliseconds, it is pre-empted after the first time

quantum, and the CPU is given to process P2. P2 finishes its

execution before the 5ms time limit expires. The CPU is

subsequently allocated to the third process, P3. it is pre-empted after

first time quantum, and the CPU is given to the next process p4. P4

does not require 5ms and exits before reaching its time quantum.

The following process, P1, receives the CPU and it is pre-empted

after the second time quantum, and the CPU is given to process P3.

P3 finishes its execution before the 5ms time limit expires. The

following process, P1, receives the CPU.

Average waiting time is calculated by adding the waiting time of all

processes and then dividing them by no. of processes.

Average waiting time = waiting time of all processes/ no. of

processes

Processes
Burst

Time

Turn Around

Time

Turn Around

Time =

Completion Time

– Arrival Time

Waiting Time

Waiting Time

= Turn

Around Time

– Burst Time

P1 20 30-0=32 30-20=10

P2 2 7-0=7 7-2=5

P3 6 20-0=21 20-6=14

P4 2 14-0=15 14-2=12

0 5 7 12 14 19 20 25 30

125 | P a g e

Space for learners: Average waiting time= (10+5+14+12)/4 = 44/4= 10.25ms

If the ready queue has n processes and the time quantum is q, each

process receives 1/n of the CPU time in chunks of at most q time

units. Each process must wait (n-1) x q time units before proceeding

to the next time quantum.

The magnitude of the time quantum determines the RR policy; if the

time quantum is extremely big, the RR policy is the same as FCFS;

if the time quantum is extremely tiny, the RR technique is known as

processor sharing.

7.4 PRIORITY CPU SCHEDULING

A priority is associated with each process, and the CPU is allocated

to the process with the highest priority. Equal priority processes are

scheduled in FCFS order. The priority of a process in the Shortest

Job First scheduling technique is generally the inverse of the CPU

burst time, i.e. the larger the burst time the lower is the priority of

that process.

Assume that low numbers indicate high priority in this case.

GANTT chart

P2 P1 P4 P3

The average waiting time will be (0+2+22+24)/4=12 ms

Priorities can be established both internally and externally. Internally

specified priorities compute the priority of a process using some

measurable quantity or quantities. The priority of process, when

internally defined, can be decided based on memory requirements,

time limits, number of open files, ratio of I/O burst to CPU burst etc.

Process Burst Time Priority

P1 20 2

P2 2 1

P3 6 4

P4 2 3

0 2 22 30 24

126 | P a g e

Space for learners: External priorities, on the other hand, are determined by factors

outside of the operating system, such as the importance of the

process, the funds paid for the usage of computer resources, the

department sponsoring the activity, and other frequently political

concerns. Types of Priority Scheduling Algorithm

Priority scheduling can be of two types:

7.4.1 Pre-emptive Priority Scheduling

If a new process arrives at the ready queue with a higher priority

than the presently running process, the CPU is pre-empted, which

means the current process's processing is halted and the incoming

new process with the higher priority is given the CPU for execution.

7.4.2 Non-Preemptive Priority Scheduling

If a new process comes with a higher priority than the currently

running process in a non-preemptive priority scheduling algorithm,

the incoming process is placed at the front of the ready queue, which

means it will be executed after the current process has completed.

7.4.3 Problem with Priority Scheduling Algorithm

A major problem with priority scheduling algorithm is indefinite

blocking or starvation. A process is considered blocked when it is

ready to run but has to wait for the CPU as some other process is

running currently.

But in case of priority scheduling if new higher priority processes

keeps coming in the ready queue then the processes waiting in the

ready queue with lower priority may have to wait for long durations

before getting the CPU for execution.

7.4.4 Using Aging Technique with Priority Scheduling

Aging is a solution to the problem of low priority processes being

blocked indefinitely. Aging is a method of progressively boosting

the priority of processes that have been waiting for a long period in

the system.

For example, if we decide the aging factor to be 0.5 for each day of

waiting, then if a process with priority 10(which is comparatively

127 | P a g e

Space for learners: low priority) comes in the ready queue. After one day of waiting, its

priority is increased to 9.5 and so on.

7.5 MULTILEVEL QUEUE SCHEDULING

For circumstances when processes can be easily categorised into

separate groups, a new family of scheduling algorithms has been

developed.

Foreground (or interactive) processes are distinguished from

background (or batch) processes. These two processes have varying

response times and, as a result, may have different scheduling

requirements. Furthermore, foreground processes could take

precedence over background processes.

The ready queue is divided into numerous different queues using a

multi-level queue scheduling technique. The processes are assigned

to one queue indefinitely, usually depending on some property of the

process, such as memory size, priority, or kind. Each queue has its

own method for scheduling. Separate queues could be used for

foreground and background processes, for example. The Round

Robin algorithm may be used to schedule the foreground queue,

while an FCFS algorithm may be used to schedule the background

queue. In addition, the queues must be scheduled, which frequently

did using fixed-priority pre-emptive scheduling. The foreground

queue, for example, may have absolute precedence over the

background queue.

Consider the following example of a five-queue multilevel queue

scheduling algorithm:

 System Processes

 Interactive Processes

 Interactive Editing Processes

 Batch Processes

 Student Processes

Each queue has absolute precedence over ones with lower priority. If

the queues for system processes, interactive processes, and

interactive editing processes were all empty, no process in the batch

queue could run. The batch process will be pre-empted if an

128 | P a g e

Space for learners: interactive editing process enters the ready queue while a batch

process is running.

Only the processes on the lower priority queues will run if there are

no processes on the higher priority queue. Consider the following

Example: Once processes on the system queue, the Interactive

queue, and Interactive editing queue become empty, only then the

processes on the batch queue will run. The processes in the above

diagram are described as follows:

 System Process: The operating system has its own set of

processes to run, which are referred to as System Processes.

 Interactive Process: The Interactive Process is one in which

all participants should participate in the same way.

 Batch Processes: Batch processing is a mechanism in the

operating system that gathers programmes and data into a

batch before processing begins.

 Student Process: The system process is always given top

priority, whereas student processes are always given lowest

priority

System Processes

Interactive Processes

Interactive Editing Processes

Batch Processes

Student Processes

Highest Priority

Lowest Priority

129 | P a g e

Space for learners: There are numerous processes in an operating system, and we can't

put them all in a queue to get the desired outcome; consequently,

multilevel queue scheduling is used to overcome this problem. We

may use this scheduling to apply various types of scheduling to

various types of processes:

For System Processes: First Come First Serve (FCFS) Scheduling.

For Interactive Processes: Shortest Job First (SJF) Scheduling.

For Batch Processes: Round Robin (RR) Scheduling

The problem of starvation for lower-level processes is the

fundamental drawback of Multilevel Queue Scheduling. Lower-level

processes are either never executed or have to wait a long period due

to lower priority or higher priority processes requiring a long time

due to starvation.

Example:

Suppose there are three queues.

Q0- RR with a 10-millisecond time quantum

Q1- RR with a 20-millisecond time quantum

Q2-FCFS

Scheduling:

 A new job is added to queue Q0, which is handled by FCFS.

Job receives 10 milliseconds when it gains CPU. If it takes

longer than 10 milliseconds to complete, the job is pushed to

queue Q1.

 In Q1, the work is served FCFS for the second time and is

given an additional 20 milliseconds. It gets pre-empted and

pushed to queue Q2 if it still does not complete.

7.6 IMPLEMENTATION OF CONCURRENCY

PRIMITIVES

Multiple instruction sequences are executed at the same time, which

is known as concurrency. This occurs when numerous process

threads are running in parallel in the operating system. Message

passing or shared memory is used by the running process threads to

communicate with one another. Concurrency causes resource

sharing, which leads to issues like as deadlocks and resource

130 | P a g e

Space for learners: starvation. It aids with approaches such as coordinating execution of

processes, memory allocation, and execution scheduling in order to

maximise throughput.

7.6.1 Problems in Concurrency

 Sharing global resources – If two processes use the same global

variable and conduct read and write operations on it, the order

in which those operations are performed is critical.

 Optimal allocation of resources – It is difficult for the operating

system to manage the allocation of resources optimally.

 Locating programming errors – Because reports are rarely

reproducible, finding a programming error might be

challenging.

 Locking the channel – The operating system may find it

inefficient to simply lock the channel and prohibit other

processes from using it.

7.6.2 Advantages of Concurrency

 Running of multiple applications – It allows you to execute

many programmes at the same time.

 Better resource utilization – It allows resources that aren't being

used by one application to be used by other application.

 Better average response time – Without concurrency, one

application must be completed before moving on to the next.

 Better performance – When one application only utilises the

processor and another only uses the disc drive, the time it takes

to complete both applications concurrently is less than the time

it takes to complete each application sequentially.

7.6.3 Drawbacks of Concurrency

 Multiple applications must be protected from each other.

 Additional mechanism is necessary to coordinate various

applications.

131 | P a g e

Space for learners: Switching between programmes necessitates additional

performance overheads and complications in the operating

system.

 Sometimes running too many applications concurrently leads

to severely degraded performance.

7.6.4 Issues of Concurrency

 Non-atomic – Operations that are non-atomic but interruptible

by multiple processes can cause problems.

 Race conditions – A race condition occurs of the outcome

depends on which of several processes gets to a point first.

 Blocking – Processes can block waiting for resources. A

process could be blocked for long period of time waiting for

input from a terminal. If the process is required to periodically

update some data, this would be very undesirable.

 Starvation – It occurs when a process does not obtain service

to progress.

 Deadlock – It occurs when two processes are blocked and

hence neither can proceed to execute.

7.6.5 Process Synchronization

Processes are classified into one of two categories based on their

synchronisation:

 Independent Process: Execution of one process does not affect

the execution of other processes

 Cooperative Process: The execution of one process has an

impact on the execution of others.

Process synchronization problem arises in the case of Cooperative

process also because resources are shared in Cooperative processes.

7.6.6 Race Condition

A race condition is an undesirable scenario that arises when a device

or system seeks to perform two or more operations at the same time,

yet the activities must be performed in the correct sequence due to

132 | P a g e

Space for learners: the nature of the device or system. When several processes access

and process the same data at the same time, the outcome is

determined by the order in which the access takes place.

A race condition is an occurrence that can happen within a critical

section. This occurs, when the result of multiple thread execution in

the critical region varies depending on the sequence in which the

threads run.

If the critical section is regarded as an atomic instruction, race

situations in critical sections can be avoided. Race problems can also

be avoided by employing thread synchronisation techniques such as

locks or atomic variables.

7.6.7 Critical Section Problem

A critical section is a code segment that only one process can access

at a time. In a critical section, atomic action is required, which

means that only one process can run in that region at a time. All the

other processes have to wait to execute in their critical sections.

The critical section is given as follows:

 do {

 Entry Section

 Critical Section

 Exit Section

 Remainder Section

} while (TRUE);

In the above code, the entry section handles the entry into the critical

section. It obtains the resources required for the process's execution.

The exit section handles the exit from the critical section. It frees up

resources while also informing other processes that a critical section

is now available.

The process asks entrance into the Critical Section at the entry

section.

Any solution to the problem of the critical section must meet three

criteria:

133 | P a g e

Space for learners: Mutual Exclusion: If a process is running in its crucial

section, no other processes are permitted to run in that

section.

 Progress: If a process isn't using the critical section, it

shouldn't prevent other processes from using it.

 Bounded Waiting: Bounded waiting implies that each

process must have a set amount of time to wait. It should not

have to wait indefinitely to get to the critical section.

7.6.8 Semaphore

A semaphore is a signalling mechanism and a thread that is waiting

on a semaphore can be signalled by another thread. This is different

than a mutex as the mutex can be signalled only by the thread that

called the wait function.

A semaphore uses two atomic operations, wait and signal for process

synchronization.

The wait operation decrements the value of its argument S, if it is

positive. If S is negative or zero, then no operation is performed.

wait(S){

 while (S<=0);

 S--;

}

The signal operation increments the value of its argument S.

signal(S){

 S++;

}

There are two types of semaphores: Binary Semaphores and

Counting Semaphores

 Binary Semaphores: They can only be either 0 or 1. They are

also known as mutex locks, as the locks can provide mutual

exclusion. All the processes can share the same mutex

semaphore that is initialized to 1. Then, a process has to wait

until the lock becomes 0. Then, the process can make the

134 | P a g e

Space for learners: mutex semaphore 1 and start its critical section. When it

completes its critical section, it can reset the value of mutex

semaphore to 0 and some other process can enter its critical

section.

 Counting Semaphores: They can have any value and are not

restricted over a certain domain. They can be used to control

access to a resource that has a limitation on the number of

simultaneous accesses. The semaphore can be initialized to the

number of instances of the resource. Whenever a process

wants to use that resource, it checks if the number of

remaining instances is more than zero, i.e., the process has an

instance available. Then, the process can enter its critical

section thereby decreasing the value of the counting

semaphore by 1. After the process is over with the use of the

instance of the resource, it can leave the critical section

thereby adding 1 to the number of available instances of the

resource.

7.7 SCHEDULING IN REAL TIME SYSTEM

In real-time computing, scheduling analysis refers to the

examination and testing of the scheduler system and the algorithms

used in real-time applications. Real-time systems are those that do

tasks in real time. Real-time scheduling analysis is the examination,

testing, and verification of the scheduling system and algorithm used

in real-time activities in the field of computer science. A real-time

system's performance must be evaluated and certified before it can

be used in essential tasks.

The scheduler, clock, and processing hardware components make up

a real-time scheduling system. Hard real-time tasks and soft real-

time tasks are two types of real-time activities. A hard real-time task

must be completed within a certain amount of time, or massive

losses may occur. A defined deadline can be missed in soft real-time

jobs. This is due to the fact that the task can be rescheduled (or)

performed after the deadline.

The scheduler, which is often a short-term task scheduler, is the

most significant component in real-time systems. Instead of dealing

with the deadline, the main goal of this scheduler is to lower the

response time connected with each of the linked processes. If a pre-

135 | P a g e

Space for learners: emptive scheduler is employed, the real-time task must wait until the

time slice for its related task has finished. Even if the task is given

the highest priority, a non-preemptive scheduler must wait until the

current task is completed before moving on to the next one. This task

may be slow (or) of the low priority, resulting in a lengthier delay.

Combining pre-emptive and non-preemptive scheduling creates a

more effective strategy. This can be accomplished by incorporating

time-based interrupts into priority-based systems, which implies that

the presently operating process is interrupted on a time-based

interval, and if a higher priority process exists in a ready queue, it is

performed by pre-empting the current process.

Analysis of the algorithm execution times is used to undertake

performance verification and execution on a real-time scheduling

algorithm. Testing the scheduling algorithm under various test

situations, including the worst-case execution time, will be required

to verify the performance of a real-time Scheduler. To evaluate the

algorithm's performance, these testing scenarios encompass worst-

case and unfavourable circumstances.

In a real-time system, different ways can be used to test a scheduling

system. Input/output verifications and code analysis are two

examples of techniques. One way involves putting each input

condition to the test and observing the results. Depending on how

many inputs there are, this method could take a lot of effort. A risk-

based strategy, in which representative critical inputs are selected for

testing, is another faster and more cost-effective alternative. This

method is more cost-effective, but if the wrong approach is utilised,

it may result in less-than-optimal findings about the system's

validity. After changes to the scheduling system, retesting

requirements are considered on a case-by-case basis. Real-time

system testing and verification should not be restricted to

input/output and code verifications, but should also include testing

and verification of operating applications employing intrusive and

non-intrusive methods.

136 | P a g e

Space for learners: CHECK YOUR PROGRESS

Multiple Choice Questions:

Q1: On receiving an interrupt from an I/O device, the CPU

(A) Halts for predetermined time.

(B) Branches off to the interrupt service routine after

completion of the current instruction.

(C) Branches off to the interrupt service routine immediately.

(D) Hands over control of address bus and data bus to the

interrupting device.

Q2: The problem of indefinite blockage of low-priority jobs in

general priority scheduling algorithm can be solved using:

(A) Parity bit

(B) Aging

(C) Compaction

(D) Timer

Q3: Consider n processes sharing the CPU in round robin fashion.

Assuming that each process switch takes s seconds, what must be

the quantum size q such that the overhead resulting from process

switching is minimized but, at the same time each process is

guaranteed to get its turn at the CPU at least every t seconds?

(A) � ≤
����

���

(B) � ≥
����

���

(C) � ≤
����

�	�

(D) � ≥
����

�	�

Q4: A CPU generally handles an interrupt by executing an interrupt

service routine

(A) As soon as an interrupt is raised

(B) By checking the interrupt register at the end of fetch cycle

(C) By checking the interrupt register after finishing the

executing the current instruction

(D) By checking the interrupt register at fixed time intervals

Q5: Pre-emptive scheduling is the strategy of temporarily

suspending a gunning process

(A) Before the CPU time slice expires

137 | P a g e

Space for learners: (B) To allow starving processes to run

(C) When it requests I/O

(D) To avoid collision

Q6: In round robin CPU scheduling as time quantum is increased the

average turnaround time

(A) Increases

(B) Decreases

(C) remains constant

(D) Varies irregularly

Q7: Which of the following scheduling algorithm could result in

starvation?

(A) First-come, first-served

(B)Shortest job first

(C) Round robin

(D) Priority

Q8: Switching the CPU to another process requires performing a

state save of the current process and a state restore of a different

process. This task is known as a

(A) Swapping

(B) Context switch

(C) Demand paging

(D) Page fault

Q9: Consider the 3 processes, P1, P2 and P3 shown in the table.

Process Arrival time Time Units Required

 P1 0 5

 P2 1 7

 P3 3 4

The completion order of the 3 processes under the policies

FCFS and RR2 (round robin scheduling with CPU quantum

of 2 time units) are

(A) FCFS: P1, P2, P3 RR2: P1, P2, P3

(B) FCFS: P1, P3, P2 RR2: P1, P3, P2

(C) FCFS: P1, P2, P3 RR2: P1, P3, P2

(D) FCFS: P1, P3, P2 RR2: P1, P2, P3

138 | P a g e

Space for learners:

Q10: Consider the following set of processes, with the length of the

CPU burst given in milliseconds:

Process Burst Time Priority

P1 10 3

P2 1 1

P3 2 3

P4 1 4

P5 5 2

The processes are assumed to have arrived in order P1, P2, P3, P4,

P5 all at time 0.

a. Draw two Gantt chart that illustrates the execution of these

processes using the following scheduling algorithms: non-

primitive priority (a smaller priority number implies a higher

priority) and RR (quantum=1).

b. What is the turnaround time of each process for each of the

scheduling algorithms in part a?

c. What is the waiting time of each process for each of the

scheduling algorithm in part a?

d. What is the algorithm in part a results in the minimum

average waiting time (overall processes)?

Q11. Consider a system implementing multilevel queue scheduling.

What strategy can a computer user employ to maximize the amount

of CPU time allocated to the user’s process?

7.8 SUMMING UP

 Context Switching: The process of switching the CPU from one

process or task to another is known as context switching. The

kernel suspends the execution of the process that is in the

running state, and the CPU executes another process that is in

the ready state.

 Multiprogramming: A computer that can execute multiple

programmes at the same time (like running Excel and Firefox

simultaneously).

139 | P a g e

Space for learners: Multiprocessing: A computer that uses multiple CPUs at the

same time.

 Multitasking: Tasks sharing a common resource (like 1 CPU).

 Multithreading: It is an extension of multitasking.

 Pre-emptive Scheduling: Pre-emptive Scheduling is a style of

scheduling in which jobs are largely assigned according to their

priority. Even if the lower priority task is still running, it is

sometimes necessary to run a higher priority task before a lower

priority task. The lower priority task is put on hold for a while

and then resumes when the higher priority task is completed.

 Non-preemptive Scheduling: Once the CPU has been allocated

to a process in non-preemptive scheduling, the process holds the

CPU until it releases it, either by terminating or transitioning to

the waiting state. It does not interrupt a process executing on the

CPU in the middle of its execution while using non-preemptive

scheduling. Instead, it waits until the process has finished its

CPU burst period before allocating the CPU to another process.

 Starvation: Starvation is the problem that occurs when high

priority processes keep executing and low priority processes get

blocked for indefinite time.

 Aging: To prevent starvation of any process, we can use the

concept of aging where we keep on increasing the priority of

low-priority process based on the its waiting time.

 Round Robin Scheduling: Round Robin is the pre-emptive

process scheduling algorithm. Each process is provided a fix

time to execute, it is called a quantum. Once a process is

executed for a given time period, it is pre-empted and other

process executes for a given time period. Context switching is

used to save states of pre-empted processes.

 Priority CPU Scheduling: Priority scheduling is a non-

preemptive method that is one of the most widely used in batch

systems. A priority is assigned to each process. The process

with the highest priority will be carried out first, and so on. On a

first-come, first-served basis, processes of the same priority are

executed.

 Multilevel Queue Scheduling: The ready queue has been

separated into seven different queues by the multilevel queue

140 | P a g e

Space for learners: scheduling method. These processes are permanently assigned

to one queue based on their priority, such as memory size,

process priority, or process kind. Each queue has its own

method for scheduling. Some queues are utilised for the

foreground process, while others are used for the background

process.

 Scheduling in Real time system: Real-time systems are those

that do tasks in real time. Real-time scheduling analysis is the

examination, testing, and verification of the scheduling system

and algorithm used in real-time activities in the field of

computer science. A real-time system's performance must be

evaluated and certified before it can be used in essential tasks.

 Throughput: Throughput is the amount of work completed in a

unit of time. In other words throughput is the processes

executed to number of jobs completed in a unit of time. The

scheduling algorithm must look to maximize the number of jobs

processed per time unit.

 Turnaround time: The turnaround time is the period between

when a process is submitted and when it is completed. The total

time spent waiting in the ready queue, executing on the CPU,

and performing I/O is the turnaround time.

 Waiting time: The CPU scheduling technique has no effect on

the amount of time a process executes or performs I/O; it only

impacts the amount of time the ready queue is active. The total

amount of time spent waiting in the ready queue is referred to as

waiting.

 Response time: The time it takes from submitting a request to

receiving the first response. That is, reaction time refers to the

time it takes to initiate a response rather than the time it takes to

complete the response.

141 | P a g e

Space for learners: 7.9 ANSWERS TO CHECK YOUR PROGRESS

Q1.Ans: (B)

Q2.Ans: (B)

Q.3.Ans: (A)

Explanation: When the CPU is performing the same job while

also receiving an interrupt,

i. It will first complete the current task.

ii. It will branch off to the interrupt service function after the

current instruction is completed.

ISR stands for interrupt service routine or also known as an

interrupt handler. It is a software process invoked by an interrupt

request from a hardware device. It handles the request and sends it

to the CPU i.e. interrupting the active process. When the ISR is

complete, the process is resumed.

Aging is a solution to the problem of low-priority processes being

blocked indefinitely. Aging is a method of gradually raising the

priority of processes that have been waiting for a long time in the

system.

Explanation: Each process will get CPU for q seconds and each

process wants CPU again after t seconds.

Thus, there will be (n-1) processes once after current process gets

CPU again. Each process takes s seconds for context switch.

(P1)(s)(P2)(s)(P3)(s)(P1)

It can be seen that since P1 left and arrived again, there have been

n context switches and (n-1) processes. Thus, equation will be:

q*(n-1) + n*s <= t

q*(n-1) <= t - n*s

q <= (t-n.s) / (n-1)

142 | P a g e

Space for learners: Q.4.Ans: (C)

Q.5.Ans: (A)

Q.6.Ans. (D)

Explanation: A CPU handles interrupt by executing interrupt

service subroutine by checking interrupt register after execution of

each instruction.

In preemptive scheduling tasks are usually assigned with priorities.

At times it is necessary to run a certain task that has a higher

priority before another task although it is running. Therefore, the

running task is interrupted for some time and resumed later when

the priority task has finished its execution. This is called

preemptive scheduling.

In non-preemptive scheduling, a running task is executed till

completion. It cannot be interrupted.

Explanation:-There are few criteria are used for measuring the

performance of a particular scheduling algorithm.

The turnaround time is the interval of time between the submission

of a process and its completion.

The wait time is the amount of time a process has been waiting in

the ready queue.

The response time is the time taken between the process

submission and the first response produced.

In RR algorithm, the value of time quantum or the time slice, plays

a crucial role in deciding how effective the algorithm is. If the time

quantum is too small, there could be lot of context switching

happening which could slow down the performance. If the time

quantum is too high, then RR behaves like FCFS. If the time

quantum is increased, the average response time varies irregularly.

If you take any comprehensive material on operating system, you

will come across a graph which depicts this behavior. So the

answer is option D.

143 | P a g e

Space for learners: Q.7.Ans. (B)

Q.8.Ans. (B)

Q.9.Ans. (C)

7.10 POSSIBLE QUESTIONS

1. What is round robin scheduling? Explain with an example.

2. Explain Priority CPU scheduling with example.

3. Define Pre-emptive and non-pre-emptive Priority Scheduling.

4. Explain multilevel queue scheduling.

Shortest job first could cause starvation. Priority is always given to

the shortest job meaning that a job in queue which is long could

constantly be starved by arrival of jobs which are shorter than that

job.

In computing, a context switch is the process of storing the state of

a process or thread, so that it can be restored and resume execution

at a later point. ... In a multitasking context, it refers to the process

of storing the system state for one task, so that task can be paused

and another task resumed.

Explanation:

The GANTT chart for the FCFS scheduling algorithm is

P1 P2 P3

The completion order for FCFS is P1→P2→P3

The GANTT chart for the RR scheduling algorithm is

P1 P2 P1 P3 P2 P1 P2 P3 P1

The completion order for RR is:P1→P3→P2

0 5 12 16

0 2 4 6 8 10 11 13 15 16

144 | P a g e

Space for learners: 5. What is concurrency? What are problems associated with

concurrency. What are the advantages of concurrency? Explain.

6. Define process synchronisation.

7. Define race condition.

8. Explain critical section.

9. Define semaphore.

10. How scheduling is done in real time system. Explain.

7.11 REFERENCES AND SUGGESTED READINGS

 lberschatz, Galvin, and Gagne's Operating System Concepts,

Seventh Edition.

145 | P a g e

Space for learners: UNIT 8: CONCURRENT PROCESS

 MANAGEMENT

Unit Structure:

8.1 Introduction

8.2 Unit Objectives

8.3 Inter-process Communication Mechanism

 8.3.1 First issue in inter-process communication

 8.3.2 Second issue in inter-process communication

 8.3.3 Third issue in inter-process communication

 8.3.4 Design Issues for Message Passing Systems

8.4 Summing Up

 8.5 Answers to Check Your Progress

8.6 Possible Questions

 8.7 References and Suggested Readings

8.1 INTRODUCTION

In this unit you will learn about the mechanism of inter-process

communication. In inter-process communication two or more

processes communicating with each other using shared memory or

message passing system. There are many issues associated with a

shared memory system. When two processes use shared memory

simultaneously then race condition may occur. Mutual exclusion is

a way to avoid this race condition. The piece of code by using

which a process accesses the shared memory is known as critical

region. One can achieve mutual exclusion by restricting the use of

this critical region by a process. Different methods to achieve

mutual exclusion in shared memory environment have been

discussed here. Again, in message passing system processes

communicate with each other using two procedures called send()

and receive(). The design issues associated with message passing

system have been discussed here.

146 | P a g e

Space for learners: 8.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 understand the concept of inter-process communication

mechanism

 know about shared memory and message passing

methods

 learn about race condition, critical region and mutual

exclusion

 learn about different ways to achieve mutual exclusion

with and without busy waiting

 learn about the variable semaphore

8.3 INTER-PROCESS COMMUNICATION

MECHANISM

Inter Process Communication (IPC) is a mechanism that involves

communication of one process with another process. A process is

independent if it cannot be affected by the other processes

executing in the system. A process is cooperating if it can affect

or be affected by the other processes executing in the systems.

Any process that shares data with other processes is a cooperating

process. Cooperating processes need inter-process communication

(IPC) mechanism that will allow them to exchange data and

information.

In Interposes Communication or IPC, the system has to deals with

three issues-

8.3.1 First Issue in Inter-Process Communication

The first issue of inter-process commutation deals with how

information is passed between processes.

8.3.1.1 Shared Memory

It is a region of memory that is shared by cooperating processes.

Processes can change information by reading and writing data to

the shared region Shared memory allows multiple processes to

share virtual memory space. This is the fastest but not necessarily

147 | P a g e

Space for learners: the easiest way for processes to communicate with one another. In

general, one process creates or allocates the shared memory

segment. The size and access permissions for the segment are set

when it is created. The process then attaches the shared segment,

causing it to be mapped into its current data space. If needed, the

creating process then initializes the shared memory. Once created,

and if permissions permit, other processes can gain access to the

shared memory segment and map it into their data space. Each

process accesses the shared memory relative to its attachment

address. While the data that these processes are referencing is in

common, each process uses different attachment address values.

For each process involved, the mapped memory appears to be no

different from any other of its memory addresses.

8.3.1.2 Message Passing

In message passing system communication takes place by means

of messages exchanged between the cooperating processes. -

Message Passing is useful for exchanging smaller amounts of data

and easier to implement for inter-computer communication.

Message Passing provides a mechanism for processes to

communicate and to synchronize their actions without sharing the

same address space. This method of inter-process communication

uses two primitives, send and receive, which are system calls

rather than language constructs. As such, they can easily be put

into library procedures, such as

 send(destination, &message);

 receive(source, &message);

The former call sends a message to a given destination and the

latter one receives a message from a given source (or from ANY, if

the receiver does not care). If no message is available, the receiver

could block until one arrives. Alternatively, it could return

immediately with an error code.

8.3.2 Second Issue in Inter-Process Communication

The second issue is to proper sequencing of processes when

dependencies are present: if process A produces data and process

148 | P a g e

Space for learners: B prints it, B has to wait until A has produced some data before

starting to print.

8.3.2.1 Race Condition

In some operating systems, processes that are working together

may share some common storage that each one can read and write.

The shared storage may be in main memory (possibly in a kernel

data structure) or it may be a shared file; the location of the shared

memory does not change the nature of the communication or the

problems that arise.

Let us see how inter-process communication works. Suppose a

process wants to print a file in printer spooler. The process enters

the file names in a special spooler directory that has a large

number of slots, numbered 0, 1, 2, ..., etc to store the file names.

Another process printer daemon periodically checks and removes

the file name of next file to be printed from the spooler directory.

Suppose there are two shared variables, out, which points to the

next file to be printed, and in, which points to the next free slot in

the spooler directory. At a certain instant, slots 0 to 3 are empty

(the files have already been printed) and slots 4 to 6 are full (with

the names of files to be printed). More or less simultaneously,

processes A and B decide they want to queue a file for printing.

Process A reads in and stores the value, 7, in a local variable called

next_free_slot. Just then a clock interrupt occurs and the CPU

decides that process A has run long enough, so it switches to

process B. Process B also reads in, and also gets a 7, so it stores

the name of its file in slot 7 and updates in to be an 8. Then it goes

off and does other things. Eventually, process A runs again,

starting from the place it left off last time. It looks at

next_free_slot, finds a 7 there, and writes its file name in slot 7,

erasing the name that process B just put there. Then it computes

next_free_slot + 1, which is 8, and sets in to 8. The spooler

directory is now internally consistent, so the printer daemon will

not notice anything wrong, but process B will never receive any

output. User B will hang around the printer room for years,

wistfully hoping for output that never comes. Situations like this,

where two or more processes are reading or writing some shared

data and the final result depends on who runs precisely when, are

called race conditions.

149 | P a g e

Space for learners: 8.3.3. Third Issue in Inter-Process Communication

The third issue is to prevent two or more processes from accessing

the critical section simultaneously when shared memory is in used.

8.3.3.1 Mutual Exclusion

The key to avoid race condition is prohibiting more than one

process from reading and writing the shared data at the same time.

To achieve this, we need mutual exclusion mechanism. Mutual

exclusion is a way to make sure that if one process is using a

shared variable or file, the other processes will be excluded from

accessing that shared variable or file. That part of the program

where the shared memory is accessed is called the critical region

or critical section. Thus if no two processes were ever in their

critical regions at the same time, we could avoid race conditions.

Although this is a key to avoid race condition, but this is not

sufficient for having parallel processes cooperate correctly and

efficiently using shared data.

Hence, the necessary and sufficient conditions to hold to have a

good solution are-

1. No two processes may be simultaneously inside their critical

regions.

2. No assumptions may be made about speeds or the number of

CPUs.

3. No process running outside its critical region may block other

processes.

4. No process should have to wait forever to enter its critical

region.

8.3.3.2 Methods to Achieve Mutual Exclusion With

Busy Waiting

In this section we will discuss about various methods for

achieving mutual exclusion, so that while one process is updating

a shared variable in its critical region, no other processes will enter

its critical region.

150 | P a g e

Space for learners: Disabling Interrupts

Different kinds of interrupts are used to switch the CPU between

processes. Therefore, one solution to achieve mutual exclusion is

each process disables all interrupts just after entering its critical

region and re-enable them just before leaving it. With interrupts

turned off the CPU will not be able to switched between

processes. But it is not a good idea to give a user process

permission to turn off interrupts. Suppose that one of them did,

and then never turned them on again? If an interrupt occurred

while the list of ready processes, for example, was in an

inconsistent state, race conditions could occur. Again in

multiprocessor system disabling interrupts in one CPU will not

affect other CPUs. Thus disabling interrupt by user process is not

an appropriate way for mutual exclusion.

 Lock Variables

Consider a shared variable lock which can take the value either 0

or 1. The value of variable lock is 0 means no process is in its

critical region and a 1 means some process is in its critical region.

Initially the value of the variable lock is set to 0. Before entering

critical region, the process checks the value of lock and set it to 1

if it is already 0. Otherwise it will wait until the value of lock

becomes 0.

Now suppose one process reads the lock and sees that it is 0.

Before it can set the lock to 1, another process is scheduled, runs,

and sets the lock to 1. When the first process runs again, it will

also set the lock to 1, and two processes will be in their critical

regions at the same time.

Again the first process can be reading out the lock value, then

checking it again just before storing into it, but that really does not

help. The race now occurs if the second process modifies the lock

just after the first process has finished its second check.

 Strict Alternation

In this approach a spin lock called turn is used whose value

initially set to 0. A lock that uses busy waiting is called a spin lock

and continuously testing a variable until some value appears is

called busy waiting. The variable turn keeps track of whose turn it

is to enter the critical region. Initially the value of turn is set to 0.

Initially, process 0 examines turn, finds it to be 0, and enters its

151 | P a g e

Space for learners: critical region. At this time if Process 1 checks the value of turn

and finds it to be 0, it will continuously testing turn to see when it

becomes 1. When process 0 leaves the critical region, it sets turn

to 1, to allow process 1 to enter its critical region.

 while (TRUE) { while (TRUE) {

 while (turn != 0); while (turn != 1);

 critical_region(); critical_region();

 turn = 1; turn = 0;

 noncritical_region(); noncritical_region();

 } }

 (a) Process 0 (b) Process 1.

When one of the processes is much slower than the other then this

method may not work. Suppose that process 1 finishes its critical

region quickly, so both processes are in their noncritical regions,

with turn set to 0. Now process 0 executes its critical region and

leave it by setting turn to 1. At this point turn is 1 and both

processes are executing in their noncritical regions. Now suppose

process 0 finishes its noncritical region quickly and tries to enter

its critical region. Unfortunately, it is not permitted to enter its

critical region now, because turn is 1 and process 1 is busy with its

noncritical region. This situation violates condition 3 discussed

previously: process 0 is being blocked by a process not in its

critical region.

 Peterson’s Solution

Before using the shared variables (i.e., before entering its critical

region), each process calls enter_region with its own process

number, 0 or 1, as the parameter. This call will cause it to wait, if

need be, until it is safe to enter. After it has finished with the

shared variables, the process calls leave_region to indicate that it

is done and to allow the other process to enter, if it so desires.

#define FALSE 0

#define TRUE 1

#define N 2 /* number of processes */

int turn; /* whose turn is it? */

int interested[N]; /* all values initially 0 (FALSE) */

152 | P a g e

Space for learners:

void enter_region(int process) /* process is 0 or 1 */

{

 int other; /* number of the other process */

 other = 1 − process; /* the opposite of process */

 interested[process] = TRUE;

 turn = process;

 while (turn == process && interested[other] == TRUE);

 }

 void leave_region(int process) /* process: who is leaving */

 {

 interested[process] = FALSE;

 }

Initially, process 0 calls enter_region as neither process is in its

critical region. It indicates its interest by setting its array element

and sets turn to 0. Since process 1 is not interested, enter_region

returns immediately. If process 1 now calls enter_region, it will

hang there until interested [0] goes to FALSE. Now consider the

situation in which both processes call enter_region almost

simultaneously. Both processes will store their process number in

turn. Whichever store it last will reflect in turn; the first one will

lost. Suppose that process 1 stores last, so turn is 1. When both

processes come to the while statement, process 0 executes it zero

times and enters its critical region. Process 1 loops and does not

enter its critical region.

 The TSL (Test and Set Lock) Instruction

Many computers, especially those designed with multiple

processors in mind, have an instruction

153 | P a g e

Space for learners: TSL RX, LOCK

The above Test and Set Lock instruction will read the contents of

the memory word LOCK into register RX and then stores a

nonzero value at the memory address LOCK. This LOCK is a

shared variable. No interrupt will occur during the execution of

this instruction. When LOCK is 0, any process may set it to 1

using the TSL instruction and then read or write the shared

memory. When it is done, the process sets LOCK back to 0 using

an ordinary move instruction. Now, a process can enter and leave

critical region using the following instruction subroutine.

enter_region:

 TSL REGISTER, LOCK

 CMP REGISTER, #0 | was LOCK zero?

 JNE enter_region | if it was non zero, LOCK was set, so loop

 RET | return to caller; critical region entered

leave_region:

 MOVE LOCK, #0 | store a 0 in LOCK

 RET | return to caller

Before entering its critical region, a process calls enter_region. In

enter_region, the first instruction copies the old value of LOCK to

the register and then sets LOCK to 1. Then the old value of LOCK

is compared with 0. If it is nonzero, the lock was already set, so

the program just goes back to the beginning and tests it again.

When a process currently in its critical region is done with its

critical region it calls leave_region, which stores a 0 in LOCK and

the subroutine returns, with the lock set.

8.3.3.3 Methods to Achieve Mutual Exclusion

Without Busy Waiting

Both Peterson’s solution and the solution using TSL are correct,

but both have the defect of requiring busy waiting. Not only does

this approach waste CPU time, but it can also have unexpected

effects. Some other situation for achieving mutual exclusion

without busy waiting have been discussed below-

154 | P a g e

Space for learners:

 Solving Producer consumer problem using Sleep() and

Wakeup() system calls

Instead of wasting CPU time in busy waiting, a process can be

blocked when it is not allowed to enter its critical region. The

available system calls that can be used for this purpose are- sleep()

and wakeup(). The sleep() system call is used to block the caller

process and the wakeup() system call is used to wake up a blocked

process.

Let us consider the producer-consumer problem (also known as

the bounded buffer problem). Two processes share a common,

fixed-size buffer. One of them, the producer, puts information into

the buffer, and the other one, the consumer, takes it out.

Suppose the maximum number of items the buffer can hold is N

and a variable count keeps track of the number of items in the

buffer. Now what will happen when the producer wants to put a

new item in the buffer. The producer will first check if count is N.

If it is, the producer will go to sleep; if it is not, the producer will

add an item into the buffer using the procedure insert_item() and

increment count. Again if consumer wants to remove an item from

the buffer then it will first check the value of count. If it is 0 then

consumer will go to sleep. If it is nonzero then consumer will

remove an item from the buffer using the procedure

remove_item() and decrement the count. Each of the processes

also tests to see if the other should be sleeping, and if not, wakes it

up. But this method could lead to race condition, because access to

count is unconstrained.

#define N 100 /* number of slots in the buffer */

int count = 0; /* number of items in the buffer */

void producer(void)

{

int item;

while (TRUE) { /* repeat forever */

item = produce_item(); /* generate next item */

if (count == N) sleep(); /* if buffer is full, go to sleep

*/

insert_item(item); /* put item in buffer */

count = count + 1; /* increment count of items in buffer */

155 | P a g e

Space for learners: if (count == 1) wakeup(consumer); /* was buffer empty? */

}

}

void consumer(void)

{

int item;

while (TRUE) { /* repeat forever

*/

if (count == 0) sleep(); /* if buffer is empty, got to sleep

*/

item = remove_item(); /* take item out of buffer */

count = count −1; /* decrement count of items in buffer

*/

if (count == N −1)

wakeup(producer); /* was buffer full? */

consume_item(item); /* print item */

}

}

Suppose the buffer is empty and the consumer has just read count

to see if it is 0. At that instant, the scheduler decides to stop

running the consumer temporarily and start running the producer.

The producer enters an item in the buffer, increments count, and

notices that it is now 1. Reasoning that count was just 0, and thus

the consumer must be sleeping, the producer calls wakeup to wake

the consumer up. Unfortunately, the consumer is not yet logically

asleep, so the wakeup signal will have lost. When the consumer

next runs, it will test the value of count it previously read, find it

to be 0, and go to sleep. Sooner or later the producer will fill up

the buffer and also go to sleep. Both will sleep forever.

 Solving Producer consumer problem using Semaphores

Semaphores are integer variables that are used to solve the critical

section problem by using two operations, down and up that are

used for process synchronization. To solving synchronization

problems and avoiding race conditions all the actions happening

inside each of these down and up operations must be done as

single atomic action. Hence, once a semaphore operation has

started, no other process can access the semaphore until the

operation has completed or going to sleep. The operating system

briefly disables all interrupts while it is executing down or up

156 | P a g e

Space for learners: operation on a semaphore. If multiple CPUs are being used, each

semaphore should be protected by a lock variable, with the TSL

instruction used to make sure that only one CPU at a time

examines the semaphore.

There are two main types of semaphores-

i. Counting semaphores

ii. Mutexes or Binary semaphores

 Counting semaphores

These are integer value semaphores and have an unrestricted value

domain. In producer consumer problem a semaphore could have

the value 0, indicating that no wakeups were saved or some

positive value if one or more wakeups were pending.

The down operation on a counting semaphore (s) checks to see if

the value is greater than 0. If the value is greater than 0 then it

decrements the value and continues. If the value is 0, the process

is put to sleep or block without completing the down for the

moment.

The up operation on the counting semaphore increments the value

of the semaphore addressed. If one or more processes were

sleeping on that semaphore, unable to complete an earlier down

operation, one of them is chosen by the system randomly and is

allowed to complete its down.

 Mutexes or Binary semaphores

The mutexes or binary semaphores are like counting semaphores

but their value is restricted to 0 and 1. The down operation only

works when the semaphore is 1 and the up operation only works

when the semaphore is 0.

To solve produce consumer problem this solution uses three

semaphores-

full: This semaphore is used for counting the number of slots that

are full. Full is initially 0. It ensures that the producer stops

running when the buffer is full.

empty: This semaphore is used for counting the number of slots

that are empty. empty is initially equal to the number of slots in the

157 | P a g e

Space for learners: buffer. It ensures that the consumer stops running when the buffer

is empty.

mutex: The mutex semaphore is used for mutual exclusion. This

semaphore is used to make sure that the producer and consumer do

not access the buffer at the same time. mutex is initially 1.

If each process does a down just before entering its critical region

and an up just after leaving it, mutual exclusion is guaranteed.

#define N 100 /* number of slots in the buffer */

typedef int semaphore;

semaphore mutex = 1;

semaphore empty = N;

semaphore full = 0;

void producer(void)

{

int item;

while (TRUE)

 {

item = produce_item(); /* generate something to put in buffer */

down(&empty);

down(&mutex

insert_item(item);

up(&mutex);

up(&full);

}

}

void consumer(void)

{

int item;

while (TRUE) {

down(&full);

down(&mutex);

item = remove_item();

up(&mutex);

up(&empty);

consume_item(item);

}

}

 Monitors

158 | P a g e

Space for learners:

A monitor is a collection of procedures, variables, and data

structures that are all grouped together in a special kind of module

or package. Processes may call the procedures in a monitor

whenever they want to, but they cannot directly access the

monitor’s internal data structures from procedures declared

outside the monitor. Figure 2-15 illustrates a piece of code for a

monitor.

monitor example

integer i;

condition c;

procedure producer(x);

...

end;

procedure consumer(x);

...

end;

end monitor;

Monitors have a key property that makes them useful for

achieving mutual exclusion: only one process can be active in a

monitor at any instant. Monitors are a programming language

construct, so the compiler knows they are special and can handle

calls to monitor procedures differently from other procedure calls.

Typically, when a process calls a monitor procedure, the first few

instructions of the procedure will check to see if any other process

is currently active within the monitor. If so, the calling process

will be suspended until the other process has left the monitor. If no

other process is using the monitor, the calling process may enter.

8.3.4 Design Issues for Message Passing Systems

Message passing systems have many challenging problems and

design issues that do not arise with semaphores or monitors,

especially if the communicating processes are on different

machines connected by a network. For example, messages can be

lost by the network. To guard against lost messages, the sender

and receiver can agree that as soon as a message has been

received, the receiver will send back a special acknowledgement

159 | P a g e

Space for learners: message. If the sender has not received the acknowledgement

within a certain time interval, it retransmits the message.

Now consider what happens if the message itself is received

correctly, but the acknowledgement is lost. The sender will

retransmit the message, so the receiver will get it twice. It is

essential that the receiver can distinguish a new message from the

retransmission of an old one. Usually, this problem is solved by

putting consecutive sequence numbers in each original message. If

the receiver gets a message bearing the same sequence number as

the previous message, it knows that the message is a duplicate that

can be ignored. Message systems also have to deal with the

question of how processes are named, so that the process specified

in a send or receive call is unambiguous. Authentication is also

an issue in message systems: how can the client tell that he is

communicating with the real file server, and not with an imposter?

At the other end of the spectrum, there are also design issues that

are important when the sender and receiver are on the same

machine. One of these is performance. Copying messages from

one process to another is always slower than doing a semaphore

operation or entering a monitor. Much work has gone into making

message passing efficient.

CHECK YOUR PROGRESS - I

1. What is IPC?

2. What is race condition?

3. What is critical region?

4. What is semaphore?

5. What is monitor?

State TRUE or FALSE:

6. Mutual exclusion is a way to avoid race condition.

7. Counting semaphore is also known as mutex.

8. In producer consumer problem we can have N producer and

 N consumer.

9. Both the solutions Peterson’s and TSL are correct to achieve

 mutual exclusion without busy waiting.

10. The primitives of message passing system are-send () and

 receive ()

160 | P a g e

Space for learners: 8.4 SUMMING UP

 Inter-Process Communication (IPC) is a mechanism that

involves communication of one process with another process.

 In inter-process commutation information are passed between

processes using shared memory or message passing.

 Shared memory is a region of memory that is shared by

cooperating processes

 In message passing system communication takes place by

means of messages exchanged between the cooperating

processes. This method of inter-process communication uses

two primitives, send and receive.

 When two or more processes are reading or writing some

shared data and the final result depends on who runs precisely

are called race conditions.

 The key to avoid race condition is mutual exclusion.

 Mutual exclusion is a way to make sure that if one process is

using a shared variable or file, the other processes will be

excluded from accessing that shared variable or file.

 The part of the program where the shared memory is accessed

is called the critical region or critical section.

 The necessary and sufficient conditions to hold mutual

exclusion are-

1. No two processes may be simultaneously inside their

 critical regions.

2. No assumptions may be made about speeds or the

 number of CPUs.

3. No process running outside its critical region may block

 other processes.

4. No process should have to wait forever to enter its

 critical region.

 One solution to achieve mutual exclusion is each process

disables all interrupts just after entering its critical region and

re-enable them just before leaving it. But disabling interrupt

by user process is not an appropriate way for mutual

exclusion.

161 | P a g e

Space for learners: Another one solution for mutual exclusion is using a shared

lock variable. But this solution may sometimes lead to race

condition.

 Strict alternation is an another solution to achieve mutual

exclusion. It uses a spin lock called turn.

 In Peterson’s solution before using the shared variables each

process calls enter_region with its own process number, 0 or

1, as the parameter. This call will cause it to wait, if need be,

until it is safe to enter. After it has finished with the shared

variables, the process calls leave_region to indicate that it is

done and to allow the other process to enter, if it so desires.

 Test and Set Lock (TSL) is a hardware solution to achieve

mutual exclusion.

 All the above methods for mutual exclusion have

disadvantage of busy waiting. Instead of wasting CPU time

in busy waiting, a process can be blocked when it is not

allowed to enter its critical region. The available system

calls that can be used for this purpose are- sleep() and

wakeup().

 In producer-consumer problem (also known as the

bounded buffer problem), two processes share a common,

fixed-size buffer. One of them, the producer, puts

information into the buffer, and the other one, the consumer,

takes it out.

 To achieve mutual exclusion in the producer consumer

problem, we can use the system calls sleep() and wakeup().

But this solution may sometimes leads to race condition.

 Semaphores are integer variables that are used to solve the

critical section problem by using two operations, down and

up that are used for process synchronization.

 Another solution to achieve mutual exclusion in producer

consumer problem uses semaphore to process

synchronization.

 A monitor is a collection of procedures, variables, and data

structures that are all grouped together in a special kind of

module or package.

162 | P a g e

Space for learners: 8.5 ANSWERS TO CHECK YOUR PROGRESS

State TRUE or FALSE:

6. True.

7. False.

8. True.

9. False.

10. True

8.6 POSSIBLE QUESTIONS

Short answer type questions:

1. Give the differences between shared memory system verses

message passing system.

2. What is mutual exclusion? What are the necessary and

sufficient conditions to achieve mutual exclusion?

3. Why disabling interrupt is not a good solution for mutual

exclusion?

4. Mention how TSL instruction works.

5. What is producer consumer problem? How sleep() and

wakeup() system calls avoid busy waiting in mutual

exclusion?

6. What is semaphore? What are the operations that can be

applied on a semaphore? Briefly describe about counting

semaphore and binary semaphore.

7. Briefly describe about monitor.

Long answer type questions:

1. Briefly describe race condition with an example.

2. Briefly describe about how the following methods achieve

mutual exclusion

 a) Lock variable

 b) Strict alternation

 c) Peterson’s solution

 d) Test-and-Set Lock instruction

163 | P a g e

Space for learners: 3. Give a solution to producer consumer problem using

semaphore.

4. Briefly discussed on the design issues of message passing

system.

8.7 REFERENCES AND SUGGESTED READINGS

 “Operating System Concepts” by Avi Silberschatz and Peter

Galvin.

 “Operating Systems: Internals and Design Principles” by

William Stallings.

 “Operating Systems: A Concept-Based Approach” by D M

Dhamdhere.

 “Modern Operating Systems” by Andrew S Tanenbaum.

BLOCK II:

MEMORY AND I/O MANAGEMENT,

SYSTEM DEADLOCK AND

MULTIPROGRAMMING

SYSTEM

164 | P a g e

Space for learners: UNIT 1: MEMORY MANAGEMENT

Unit Structure:

1.1 Introduction

1.2 Unit Objectives

1.3 Hierarchy of Memory Types

1.4 Cache Memory

1.5 Associative Memory

1.6 Address Protection

1.7 Paging

1.7.1 Paging Hardware Support

1.8 Segmentation

1.8.1 Segmentation Hardware

1.9 Virtual memory

1.9.1 Demand Paging

1.10 Page Replacement Algorithms

1.10.1 FIFO Page Replacement

1.10.2 LRU Page Replacement

1.10.3 Optimal Page Replacement

1.11 Summing Up

1.12 Answers to Check Your Progress

1.13 Possible Questions

1.14 References and Suggested Readings

1.1 INTRODUCTION

The unit deals with management of main memory during process

execution. One of the most important functions of operating system is

memory management that includes the hardware support in processor

for paging, virtual memory and segmentation. Virtual memory allows a

program with memory space larger than the size of the main memory

available in the system. This is possible by allowing only that section of

the code that is active at that point of time without the need of having all

instructions and data of the process being present in main memory at the

same time. The concept of paging and segmentation eliminates the need

of allocating main memory to the process in contiguous manner. Also if

the overall memory requirement exceeds the physical memory limit,

165 | P a g e

Space for learners: pages from memory may need to be replaced to make room for new

pages. Various page replacement algorithms like FIFO, LRU and

Optimal are used in such case.

1.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 explain memory hierarchy, cache memory and associative

memory

 explain the working of memory address protection.

 explain the paging memory management scheme.

 analyze and solve problems on paging.

 explain the working of paging hardware.

 explain the concept of segmentation and solve problems on

segmentation.

 describe the benefits of Virtual memory management system

 explain and solve problems on different page replacement

algorithms.

1.3 HIERARCHY OF MEMORY TYPES

The memory in a computer system can be divided into a hierarchy as

shown in Figure 1.1. The hierarchy is based on access time, speed, cost

and capacity of the memory. The five memory types in the hierarchy are

registers at the top followed by the cache memory, main memory, hard

disk and magnetic tapes. The first three memory types register, cache

and main memory are volatile memories that is they lose their stored

data in absence of power supply. The last two memory types, hard disk

and magnetic tape keeps the stored data permanently even in the

absence of power.

In the Figure 1.1, capacity that is the volume of information the memory

can store increases as we move from top to bottom in the hierarchy.

166 | P a g e

Space for learners: Access time that is time required to perform read/write request increases

as we move from top to bottom in the hierarchy. Similarly, the speed

gap between CPU and memory decreases as we move from bottom to

top of the hierarchy and finally cost per bit increases going from bottom

to top of the hierarchy.

Figure 1.1: Memory Hierarchy

1.4 CACHE MEMORY

Cache Memory is a type of memory that operates at a very high speed.

It's used to boost performance and synchronize with a high-speed CPU.

Although cache memory is more expensive than main memory but it is

less expensive than CPU registers. Cache memory acts as a buffer

between the main memory and the CPU as shown in Figure 1.2. Cache

memory stores frequently requested instructions and data so that they

may be accessed quickly by the CPU. It smaller and faster memory that

reduces the average access time of main memory by storing copies of

most frequently used data.

Figure 1.2: Cache Memory acting as a buffer between CPU and

Main Memory.

167 | P a g e

Space for learners: 1.5 ASSOCIATIVE MEMORY

Associative memory is also known as Translation Lookaside Buffer

(TLB) is a special type of memory that is optimized to perform parallel

searches on data, in contrast to sequential search of data.

Operating system provides support for storing page table of a process.

Generally, a page table can be stored in following ways:

 Set of dedicated registers

 In main memory

 Associative Memory or Translation lookaside buffer (TLB)

The feasibility of the first approach using a set of dedicated registers is

that the page table should be reasonably smaller in size like 256 entries.

With the second approach page table can be very large like millions of

entries can be stored in the main memory with a pointer to the starting

address of the page table for referencing. However, in this case the time

required to access the page table is slower by a factor of two as it

involves first accessing memory for the page table to locate the frame

number which is combined with the displacement to get the physical

address and then a second memory access to read the byte.

The solution to the disadvantages of the first two approaches is resolved

using a fast lookup hardware support called Associative memory.

Associative memory or TLB is a small, expensive but very fast

associative memory. It can store entries in the range of 64 to 1024.

Associative memory has two parts: a tag and a value. When a page/key

needs to be searched the key is compared simultaneously with all the

tags of the in the associative memory.

1.6 ADDRESS PROTECTION

In a main memory there can be several user process and operating

system running at a time. To protect the address space of the operating

systems as well as user processes, so that they do not run into to each

other’s address space, the concept of hardware address protection is

introduced. Address protection is implemented with the help of two

registers, the base register and the limit register. The base register holds

168 | P a g e

Space for learners: the starting address of the process address and the limit register

specifies the range. For example, in Figure 1.3, the base register holds

the starting address 5500 of Process-2 in the main memory and the limit

register specifies range of 750 meaning that the range of legal address

of Process-2 is from 5500 to 6249 (inclusive).

15000

 8000

7000

Process 4

6250
Process 3

750

5500

Process 2

 Limit Register

5500

5000

Process 1

 Base Register

Operating

System

0

Figure 1.3: A logical address defined by base and limit register.

The Memory address protection is accomplished with the help of

hardware support as shown in Figure1.4. The hardware checks that the

CPU generated address is within the range specified by base register

and base + limit register. A memory access attempted outside the valid

range, results in trap or a fatal error.

169 | P a g e

Space for learners:

Figure 1.4: Memory address protection using base and limit

register [1].

1.7 PAGING

To understand the concept of Paging we have to go through the

following concepts:

 Process: It is a program in execution or a program placed in main

memory for execution.

 Logical Address: It is the address that is generated by the CPU for a

program while it is running. As the address does not exist physically

it is also called virtual address. The hardware unit of memory

known as memory management unit (MMU) maps logical address

to physical address.

 Physical Address: A physical address is the actual address in the

main memory.

Paging is a memory management scheme that is used to map CPU

generated logical address of a process to physical address in main

memory. A process consists of fixed size blocks; Figure 1.5 shows an

example of a process with 4 blocks each of size 1 kilobyte. Size of a

block depend upon architecture of the computer and varies between 512

bytes to 16 megabytes.

170 | P a g e

Space for learners:

Figure 1.5: A Process with 4 blocks each of size 1 kilobyte.

The paging technique divides the logical memory to blocks of the fixed

size known as Pages and divides physical memory into blocks of fixed-

size known as Frames. Figure 1.6 shows an example of pages and

frames in logical and physical memory respectively.

Page 1 1KB Frame 1 1KB

Page 2 1KB Frame 2 1KB

Page 3 1KB Frame 3 1KB

Page 4 1KB Frame 4 1KB

Logical

Memory

Physical

Memory

Figure 1.6: A Process with 1KB block size in logical and physical

memory.

 Page Frame
Frame

Number

 Page 0 0 5 0

 Page 1 1 4 1 Page 3

 Page 2 2 7 2

 Page 3 3 1 3

Logical

memory
 Page Table 4 Page 1

 5 Page 0

 6

 7 Page 2

 8

Main

Memory

Figure 1.7: Paging model of physical and logical memory.

PagBlock 1

Block 2

Block 3

Block 4

1KB

1KB

1KB

171 | P a g e

Space for learners: Paging scheme allows a process to be stored in the main memory in

noncontiguous manner. It also solves the problem of searching and

fitting blocks of different sizes in main memory by having all block

of same size. One more advantage of the paging scheme is that it

prevents from external fragmentation that is if the main memory

blocks are of varying sizes and the size of the free blocks are smaller

than the size of the pages, then the operating will be required to

merge two or more blocks into a single block large enough to fit a

page. By keeping block of equal sizes for both pages and frames,

such problems are resolved. The Figure 1.7 shows paging model of

physical and logical memory. A page table is used for mapping

between logical addresses and physical addresses. A page table

resides in the main memory. The Figure 1.7 shows noncontiguous

allocation of a process in main memory. The mapping of logical

address to physical address is achieved using the page table.

The hardware support for paging is demonstrated using an example

in Figure 1.8. The logical address generated by the CPU is divided

into two parts namely page number and displacement with the page.

The page number is used as an index in the page table to search for

the corresponding frame number. The displacement is combined

with frame number to get the physical address. In the Figure 1.8, the

logical address having page number 3 is searched for the

corresponding frame number in the page table which is frame

number 15. The frame number 15 is combined with the

displacement 7 to form the physical address.

172 | P a g e

Space for learners:

Figure 1.8: Paging hardware support.

If the size of the logical address space is 2m and size of a page is 2n

bytes/words, then “m-n” bits of a logical address designate the page

number the “n” bits designate the displacement or offset. Therefor the

logical address is:

Page Number Displacement

p d

m - n n

Paging Example -1:

Assume a page size of 1K and a 15-bit logical address space. How

many pages are in the system?

Solution:

Page size = 1K = 210 i.e. displacement, n=10 bits

No. of bits in logical address = 15, i.e. m=15 bits.

Therefore, no. of bits used for page number is, m - n = 5 bits

Total no. of pages in the system is 25 =32.

Paging Example -2:

Assume that a CPU has a 15-bit logical address space with 8 logical

pages. How large are the pages?

Solution:

173 | P a g e

Space for learners: There are 8 logical pages, that means 3 bits are required to address 8

logical pages (23 = 8).

Therefore, m - n=3 bits

Logical address is 15 bits, m=15 bits

Displacement = 15 -3 = 12 bits.

So, the pages are of size 212 = 4096 = 4K bytes

1.7.1 Paging Hardware Support

The operating system provides hardware support for quick search in the

form of Associative memory or TLB. There are possibly two cases for a

page search in TLB, Figure 1.9 illustrates the paging hardware with

Translation Look aside Buffer for these two cases:

 If the search key/page is found it is called as a TLB hit and

corresponding value/frame is returned from the TLB. Displacement

is combined with frame number and the physical address is

accessed.

 If the search key/page is not found it is called as a TLB miss and the

page is searched in the page table stored in main memory. The

frame number corresponding to the search page is combined with

the displacement to access the address in the physical memory.

Also the page number and frame number is added to the TLB so

that if the same page is referred next time it is found quickly. In

case the TLB is full, operating system selects a page replacement

algorithm to replace an existing page with the new entry.

The percentage of times that a particular page number is found in the

TLB is called the hit ratio. If the hit ratio is 60% that means 60 times

out of 100 references the page will be found in TLB and remaining 40

times the page is found in the page table.

174 | P a g e

Space for learners:

Figure 1.9: Paging hardware with Translation Look aside Buffer [1].

Paging Example -3:

If it takes 25 nanoseconds to search the TLB and 75 nanoseconds to

access memory. If the hit ratio is 70%, calculate effective memory

access time.

Solution:

If the page is in the TLB, time taken to access the physical address

 = Time taken to search the TLB + Time taken to access memory

= 25 +75 =100 nanoseconds

If the page is in not in the TLB, time taken the physical address

= Time taken to search the TLB + Time taken to access page

table + Time taken to access memory

 = 25 +75 +75

 = 175 nanoseconds

Hit ratio is 70%, therefore

Effective access time = 0.70 X 100 + 0.30 X 175 =122.5 nanoseconds.

175 | P a g e

Space for learners: 1.8 SEGMENTATION

Segmentation is a memory management scheme similar to paging that

allows a process to be stored in the main memory in noncontiguous

manner. Unlike paging where all the pages or frames are of fixed size,

segmentation allows blocks or segments of variable size. Segmentation

maps the user’s view of a program onto the physical memory. Looking

at the user’s view in Figure 1.10, a program contains several variable

size segments, such as the main program, subroutine, symbol table,

methods etc. It also includes data structures like arrays, objects,

variables, stacks etc. These segments and data structures are referred by

their name without concerning about the address these segments are

stored in memory. Users are not concerned about the order in which the

segments are stored in the memory.

Figure 1.10: User’s view of a program

The logical address space is a group of segments. Each segment has a

name and a length. From the implementation point of view, segments

are numbered instead of using name and the logical address is

represented using the two tuple:

Segment-number Displacement

176 | P a g e

Space for learners: 1.8.1 Segmentation Hardware

The mapping of the logical address <segment-number, displacement> to

the physical address is achieved with the help of segment table and the

segmentation hardware as shown in Figure 1.11. Each entry of the

segment table has a segment limit and segment base. The base

represents the starting address of the segment in the main memory and

the limit specifies the length of the segment. The segment table is

indexed on the segment number.

Figure 1.11: Segmentation Hardware [1].

The working of segmentation hardware starts by first identifying the

segment number, s and the displacement, d of the logical address. The

segment number is used to search the segment table, which is indexed

on the segment number. The displacement, d of the logical address

should be between 0 and limit. If the condition is not satisfied, it means

that the logical address is going beyond the segment limit and a trap

interrupt is initiated which is handled by the operating system.

A segmentation example is shown in Figure 1.12. There are 5 segments

numbered from 0 through 4. The segments are stored in physical

memory in noncontiguous manner. Also no specific ordering is

followed for storing the segments as can be observed in the example.

The segment table has an entry for each of the segment, the starting

177 | P a g e

Space for learners: address of the segment mentioned as base and the length of the segment

mentioned as limit. For example, segment 0 begins at address 5100 and

length of the segment is limited to 500 bytes. Therefore, a reference to

byte 17 of segment 0 is mapped to 5100 (base of segment 0) + 17 =

5117. Similarly, a reference to byte 88 of segment 4 is mapped to 7300

+ 88 = 7388. A trap interrupt will be called if byte 1700 of segment 4 is

referenced as the limit is 1500.

Figure 1.12: Example of Segmentation.

1.9 VIRTUAL MEMORY

The memory management scheme discussed in previous section

requires the entire process to be in the main memory for execution.

Most of the times there can be a requirement of many processes to be in

the memory simultaneously for execution. This situation can prevent

simultaneous execution of multiple processes due to the size of the main

memory, which may not be large enough to hold all the processes. So, a

concept of virtual memory was introduced.

A virtual memory management scheme allows execution of a process

even if it is not completely in memory. That is, it requires only that

178 | P a g e

Space for learners: section of the process’s code to be in the memory that will be executed.

Generally, a process contains several functions or procedures and not all

the functions are required to be in the memory at the same time. So the

function or the procedure that will be executed needs to be in the main

memory, while the other functions or procedures can be placed in the

secondary memory and wait for their turn of execution. So whenever a

function is not available in the main memory, it is brought from the

secondary memory to main memory for execution. The main advantage

of this scheme is that a program larger than main memory can still run

on a smaller physical memory. This is how a games like Need for speed

or Call of Duty which require respectively 30 GB and 90 GB of memory

can still run on a system having 6 GB RAM with sufficient hard disk

space. Also, as only a section of the code of a process needs to be in

memory so many process can be there in memory simultaneously.

Thereby increasing CPU utilization and throughput.

Figure 1.13: Example showing virtual memory larger than physical

memory [1].

Figure 1.13 shows an example of a larger virtual memory than physical

memory. The programmer thus need not have to worry about the size of

the main memory available, thus can concentrate on the problem to be

programmed. As can be seen in the Figure 1.13, pages from the large

virtual memory address space is stored in the secondary memory and

the pages are brought back to main memory whenever a call to those

179 | P a g e

Space for learners: pages are required. If the main memory does not have any free slot for

the pages, then some page replacement algorithms are used to replace

the pages in main memory with the pages from secondary memory.

Figure 1.14 shows dynamic memory allocation, where the stack grows

upward and the heap grows downward. The gap shown in the figure

between the heap and the stack is the part of virtual address space and

will require physical memory space only if either heap or stack grows or

both of them grows.

Figure 1.14: Virtual memory address space.

1.9.1 Demand Paging

Suppose a user wants to run a program, so the entire program is loaded

to main memory from the secondary memory. However, if the program

runs one option/case out of the several cases based on the user input, it

is impractical to load the code for all the cases, other cases my never be

called for execution. So a virtual memory technique known as demand

paging is used to load only those pages of the process when they are

required or whenever there is a demand for the page occurs during the

program execution.

180 | P a g e

Space for learners:

Figure 1.15: Example showing Demand Paging [1].

In Figure 1.15 shows and example of demand paging where pages 4, 5,

6 and 7 of Program A is swapped out of memory and pages 17, 18 and

19 of Program B is moved in to the memory because of the demand for

the pages 17, 18 and 19. The method is implemented by a pager

program responsible for demand paging.

1.10 PAGE REPLACEMENT ALGORITHMS

Since operating system allows virtual memory to be larger than the

main memory, as a result a page fault may occur. A page fault occurs

when a running process tries to accesses a memory page that is not

loaded in main memory. In the event of a page fault, the operating

system may have to replace an existing page with the new page. A page

replacement algorithm is required in an operating system that utilizes

paging for memory management. It determines which page has to be

replaced when a new page arrives. Different page replacement

algorithms offer various methods for determining which pages to

replace. All methods have the same goal: to decrease page faults.

181 | P a g e

Space for learners: 1.10.1 FIFO Page Replacement

This is the most basic algorithm for replacing pages. The operating

system uses this technique to maintain track of all memory pages in a

queue, with the oldest page at the top. When a page has to be replaced,

the first page in the queue is removed.

For example, consider the reference string 4, 0, 2, 5, 3, 5, 4, 0, 4, 5, 2 as

shown in Figure 1.16 that is the order in which the memory references

for the pages will be made. Assume that the memory which can

accommodate three frames/pages at a time. The replacement algorithm

uses the FIFO approach that is the first page moved to memory will be

the first one to be replaced, this is followed by replacing second page,

third page and so on with a new page. Initially, all the frames are empty

so first three references (4, 0, 2) will result in page fault and are brought

into the empty frames. The next reference 5 will replace the page 4 as it

was the first page moved to the memory. Similarly, reference 3 will

replace page 0 as it was the second page moved to memory. The next

reference 5 is already in memory so no page fault and hence no page

replacement. The process continues until all the page request in the

reference string are processed. The total number of page faults using

FIFO page replacement algorithm is 9.

Figure 1.16: FIFO page replacement algorithm.

1.10.2 LRU Page Replacement

Least Recently Used (LRU) page replacement algorithm is a Greedy

algorithm where the page to be replaced is the page which has not been

used for the longest duration of time in the past. LRU keeps track of

page usage over a period of time. It is based on the assumption that the

182 | P a g e

Space for learners: pages that have been extensively utilized in the past will also be heavily

used in the future.

For example, consider the reference string 4, 0, 2, 5, 3, 5, 4, 0, 4, 5, 2 as

shown in Figure 1.17 that is the order in which the memory references

for the pages will be made. Assume that the memory which can

accommodate three frames/pages at a time. Initially, all the frames are

empty so first three references (4, 0, 2) will result in page faults and are

brought into the empty frames. The next reference 5 will replace the

page 4 as on scanning left starting at reference 5, we find that among the

pages (4, 0, 2), page 4 is the least recently used page. Similarly, the next

reference 3 will replace page 0 as on scanning left starting at reference

3, we find that among the pages (5, 0, 2), page 0 is the least recently

used page. The next reference 5 is already in memory so no page fault

and hence no page replacement. The process continues until all the page

request in the reference string are processed. The total number of page

faults using LRU page replacement algorithm is 8.

Figure 1.17: LRU page replacement algorithm.

1.10.3 Optimal Page Replacement

The best page replacement algorithm is the Optimal Page Replacement

algorithm, which produces the fewest page faults. This method replaces

pages that will not be utilized for the longest period of time in the

future. The algorithm is difficult to implement because it requires future

knowledge of the pages referenced pages.

For example, consider the reference string 4, 0, 2, 5, 3, 5, 4, 0, 4, 5, 2 as

shown in Figure 1.18 that is the order in which the memory references

for the pages will be made. Assume that the memory which can

accommodate three frames/pages at a time. Initially, all the frames are

empty so first three references (4, 0, 2) will result in page faults and are

brought into the empty frames. The next reference 5 will replace the

183 | P a g e

Space for learners: page 2 as on scanning right starting at reference 5, we find that among

the pages (4, 0, 2), page 2 is not used for the longest duration of time.

Similarly, the next reference 3 will replace page 0 as on scanning right

starting at reference 3, we find that among the pages (4, 0, 5), page 0 is

not used for the longest duration of time. The next reference 5 is already

in memory so no page fault and hence no page replacement. The

process continues until all the page request in the reference string are

processed. The total number of page faults using LRU page replacement

algorithm is 7.

Figure 1.18: Optimal page replacement algorithm.

184 | P a g e

Space for learners: CHECK YOUR PROGRESS

1. A memory buffer used to minimize the speed difference

between CPU and Main memory is called ____________.

a) Main memory

b) Cache memory

c) register

d) disk buffer

2. Increasing the RAM improves performance because of

a) Increase in Virtual memory

b) Bigger RAMs are faster

c) Less page faults occur

d) All of the above

3. Page fault occurs when

a) Exception is thrown

b) Requested page is not in memory

c) Page is corrupted

d) Requested page is in memory

4. Each logical address must be _______ than the value in

limit register.

a) less than

b) equal to

c) Not equal to

d) greater than

5. Which one is the fastest memory

a) Cache Memory

b) Associative Memory

c) Main Memory

d) Secondary memory

6. Fixed-sized blocks in physical memory is called ________

a) Block

b) Frame

c) Pages

d) Segment

7. In paging CPU generated logical address has two parts

_____________and _____________.

a) Page offset & frame bit

185 | P a g e

Space for learners: b) Page number & Page offset

c) Frame offset & displacement

d) Frame number & page offset

8. Paging does not suffer from ________.

a) Internal Fragmentation

b) External Fragmentation

c) Both a) and b)

d) None of the above

9. If it takes 10 milliseconds to search the TLB and 80

milliseconds to access the physical memory. If the TLB hit

ratio is 0.6, the effective memory access time (in

milliseconds) is _________.

a) 120

b) 122

c) 134

d) 124

10. The displacement ‘d’ in a logical address must be

a) Greater than segment limit

b) Greater than the segment number

c) Between 0 and the segment number

d) Between 0 and segment limit

11. In segmentation, each address is specified by

a) A key and value

b) A displacement and value

c) A segment number & displacement

d) A value and segment number

12. The virtual memory manager loads only those component

of a program during execution as a when required is known

as

a) Segmentation

b) Swapping

186 | P a g e

Space for learners: c) Virtual memory

d) Demand Paging

1.11 SUMMING UP

 The five memory types in the hierarchy are register, cache, main

memory, hard disk and magnetic tapes based on access time, speed,

cost and capacity of the memory.

 Cache memory acts as a buffer between the main memory and the

CPU.

 Associative memory is also known as Translation look aside Buffer

(TLB) is a special type of memory that is optimized to perform

parallel searches on data.

 Address protection is implemented with the help of two registers,

the base register and the limit register.

 Paging is a memory management scheme that is used to map CPU

generated logical address of a process to physical address in main

memory.

 Logical Address is the address that is generated by the CPU for a

running program.

 A physical address is the actual address in the main memory.

 Paging is a memory management scheme that is used to map CPU

generated logical address of a process to physical address in main

memory.

 The logical address generated by the CPU is divided into two parts

namely page number and displacement with the page.

 Translation look aside Buffer is a small, expensive but very fast

associative memory.

 In a translation look aside buffer, if the search page is found it is

called as an TLB hit if the page is not found it called as TLB miss.

 The percentage of times that a particular page number is found in

the TLB is called the hit ratio.

187 | P a g e

Space for learners: Segmentation is a memory management scheme similar to paging

that allows a process to be stored in the main memory in

noncontiguous manner.

 The mapping of the logical address <segment-number,

displacement> to the physical address is achieved with the help of

segment table and the segmentation hardware.

 A virtual memory management scheme allows execution of a

process even if it is not completely in memory.

 A virtual memory technique known as demand paging is used to

load only those pages of the process when they are required or

whenever there is a demand for the page occurs during the program

execution.

 A page fault occurs when a running process tries to accesses a

memory page that is not loaded in main memory.

 A page replacement algorithm is required in an operating system

that utilizes paging for memory management. It determines which

page has to be replaced when a new page arrives.

1.12 ANSWERS TO CHECK YOUR PROGRESS

i. b ii. c iii. b iv. a v. b

vi. b vii. b viii. b ix. b x. d

xi. c xii. d

1.13 POSSIBLE QUESTIONS

1. What is an associative memory? Why it is used?

2. How does the operating system ensure that two or more processes

do not use the same address space?

3. Explain Paging memory management scheme.

4. What is hit ratio? Why page should be replaced in the memory?

5. Consider a logical address space of 16 pages of 512 words each,

mapped on to a physical memory of 64 frames. How many bits are

188 | P a g e

Space for learners: there in the logical address? How many bits are there in the

physical address?

6. If it takes 125 nanoseconds to search the TLB and 500 nanoseconds

to access memory. If the hit ratio is 90%, calculate effective

memory access time.

7. Assume a page size of 4K and an 18-bit logical address space. How

many pages are in the system?

8. Assume that a CPU has a 16-bit logical address space with 4 logical

pages. How large are the pages?

9. What is segmentation? Explain.

10. Define a virtual memory. With a neat diagram, explain the working

of a virtual memory. What are the benefits of a virtual memory?

11. What is demand paging? Explain.

12. Consider logical address 1025 and the following

13. page table for some process P0. Assume a 15-bit address space with

a page size of 1K. What is the physical address to which logical

address 1025 will be mapped?

6

2

3

14. Consider the following segment table:

Segment Base Length

34 100 100

21 2500 200

0 1200 50

90 1700 300

7 500 500

2 600 50

99 650 200

189 | P a g e

Space for learners: What are the physical address for the following logical address?

i. 0,25

ii. 2,89

iii. 90,345

iv. 34,50

v. 99,201

15. Consider the reference string 0, 3, 0, 4, 5, 3, 2, 0, 5, 4, 6, 7, 3, 4

Find the number of Page faults in each of the following cases

assuming that memory can accommodate 4 pages/frames at a time.

i. FIFO Page Replacement

ii. LRU Page Replacement

iii. Optimal Page Replacement

1.14 REFERENCES AND SUGGESTED READINGS

 Operating System Principles 8th edition by Abraham Silberschatz,

Greg Gagne, and Peter Baer Galvin, Willey

 Operating Systems: Internals and Design Principles 9th edition by

William Stallings, Pearson Education

 Madnik and Donovan, Operating systems, McGraw Hill.

 Andrew, S. Tannenbaum, Modern operating system, PHI.

190 | P a g e

Space for learners: UNIT 2: INPUT-OUTPUT ORGANIZATION

Unit Structure:

2.1 Introduction

2.2 Unit Objectives

2.3 Input/Output peripherals

2.4 Accessing I/O devices

2.5 Polling

2.6 Interrupts

2.6.1 Handling multiple devices

2.6.2 Polling scheme

2.6.3 Vectored interrupt

2.6.4 Priority interrupt

2.6.5 Daisy chain

2.7 Direct memory access

2.7.1 Bus arbitration

2.8 Buses

2.9 Application I/O interface

2.10 Kernel I/O subsystem

2.10.1 I/O scheduling

2.10.2 Buffering

2.10.3 Caching

2.10.4 Spooling

2.10.5 Error handling

2.11 Summing Up

2.12 Answers to Check Your Progress

2.13 Possible Questions

2.14 References and Suggested Readings

2.1 INTRODUCTION

Input and output peripherals are the key components of a computer

system. The main task of a computer system can be categorized as

Input/output and processing. In a computer system, the operating

system (OS) is used to manage and control the input/output devices

and perform operations on the data receives from I/O devices and

output it. In this chapter, we will discuss the basic input/output

hardware, Input/output services and interface provided by OS, how

191 | P a g e

Space for learners: OS bridges the gap between Input/output hardware interface and

Input/output application interface, interrupts handling, etc.

2.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 know about the I/O devices.

 understand different implementation issues related to I/O

devices.

 explain how the I/O interface manages the gap between I/O

devices and other units of a computer system.

 understand How to I/O devices are connected to a computer.

 learn about the I/O device controller.

 Learn how to access the I/O devices.

 explain how an OS handled interrupts and its different cases.

 understand how DMA is used to improve the throughput of a

system.

 learn about the bus organization of a computer system.

 know about the functionalities of the kernel of an OS.

2.3 INPUT/OUTPUT PERIPHERALS

A computer system consists of four basic building blocks such as

ALU, control unit, memory unit, and input/output unit. An input

device can be defined as a hardware unit used to provide inputs into

a system. The inputs may be a piece of data, information, control

instruction, control signal, etc. The data or information can be of a

different format – text, graphics, signals, etc., which is converted

into a machine-understandable format by the input devices. The

output hardware used in a computer system is keyboard, mouse,

joystick, scanner, electronic pen, microphone, sensor devices,

CCTV, light pen, trackball, graphic tablet, etc. The hardware

peripherals used to get the output from the processor, project them

or reproduce them in a human-understandable format can be defined

as an output device/hardware. Output hardware’s are monitor,

printer, headphones, speaker, sound card, video card, plotter, screen

192 | P a g e

Space for learners: projector, speech synthesizer, GPS, etc. input/output hardware are

may be wired or wireless.

To communicate with a machine, the I/O devices are connected with

connection points of a machine known as a port. The I/O devices

may use a common set of wires to transfer data/signals/addresses are

known as a bus. A bus system in a computer can have three different

types such as – to transfer data, data bus, control bus for transferring

control signals, and address bus for transferring addresses in

between processor and I/O devices or memory units.

A controller is used to control the I/O devices, system buses, and

ports. A processor can send data and commands to the controller for

performing I/O transfer. The controller has one or more registers to

hold the data and commands. To read and write the device control

registers the processor uses a set of standard data-transfer

instructions and thus executes the I/O requests. The I/O device ports

also have four registers namely – status, control, data in, and data

out registers. The bits contained in the status register are used to

depicting the states of completeness, availability of a byte of

information to be read from the data-in register and occurring of a

device error. To start a control command or to change the mode of a

device, the bits in the control register are used. Reading the contents

from the data-in register a host can access the inputs and by writing

into the data-out register, a host can send output. The I/O device port

registers are typically 1 – 4 bytes in size.

2.4 ACCESSING I/O DEVICES

The computer system uses a common line to connect all the I/O

devices with it called the bus. The bus system allows the I/O devices

to exchange information as shown in figure 2.1. The bus system

STOP TO CONSIDER

1. Certain bits in a control register of a serial port are used to

choose a communication between full-duplex and half-duplex.

2. Other bits are used to check the parity.

3. Third bits are used to set the word-length between 7-8 bits.

4. Fourth bit is used choose the supported speed of the serial

port.

193 | P a g e

Space for learners: typically consists of three different sets of lines: to transfer addresses

– address

Figure 2.1: Bus structure of a computer system

bus, data – data bus, and control signals – control bus. Each I/O

device has a unique set of specified addresses. When the processor

placed a request by placing an address into the address line, any one

of the connected devices will recognize it and respond to the

command issued on the control line. During execution the processor

request either a read or write command through the command line

and transferred over the data bus. If the I/O device and the memory

shared the same address space then the mechanism will be known as

memory-mapped I/O.

The accessing speed of the I/O devices is varied from device to

device and with the CPU also. The speed of the CPU is very high in

comparison to the I/O devices. The CPU can execute millions of

instructions when a user supplies input through an input device such

as the keyboard. The CPU can execute the input character received

from the keyboard, only after available in the input buffer of the

keyboard interface.

The I/O interface for each I/O device provides a platform to connect

between the buses and the devices such that it can communicate data

to and fro between the CPU and I/O devices. It has been depicted in

figure 2.2. The interfaces are consists of four different set of

registers – data in, data out, status and control registers.

194 | P a g e

Space for learners:

Figure 2.2: Communication of data between CPU and I/O devices

An input device interface for the keyboard sets the SIN bit of the

status register as 1 if it has to perform an input operation. If the data

is read by the processor for execution, it will be reset to 0. The SIN

bit is regularly checked and read the data register. When the

processor repeatedly checks for the status flag to get the required

synchronization between the I/O device and the processor, is known

as program-controlled I/O. Two other techniques to control the I/O

device are interrupt-driven I/O and Direct memory access (DMA).

Interrupt-driven I/O devices use to send an interrupt request over the

bus to indicate that the device is ready for transferring data. In

DMA, the I/O devices can directly communicate with the memory

without intervening with the CPU frequently.

2.5 POLLING

The controller can announce its status using the busy-bit in the

status register. The busy bit is set to 1 to state the status of the

controller as busy and set to 0 when it is ready to accept the next

command. The host machines announce the availability of

commands to be executed by setting the command-ready bit. To

place a command, a host repeatedly checks the busy bit until it

becomes clear. The host sets the write bit into the command register

and writes a byte into the data-out register. Then the host set the

command bit ready. When the controller gets the command-ready as

1, immediately it sets the busy bit. The controller will read the

command register and notice the write command. The controller

195 | P a g e

Space for learners: reads the data-out register to get the bytes of information and do the

input/output to the device. After completion, the controller clears the

command-ready bit, clears the error bit in the status register

indicating the successful completion of the I/O operation, and clears

the busy bit to indicate that the task is finished. When the host

checks for the busyness of the controller by checking the status

register repeatedly until the busy bit becomes clear or 0 is known as

busy-waiting or polling. If the duration of a wait is long, the host

may switch to another task. In many computer architectures, three

CPU instruction cycles such as read a device register, logical-and to

extract a status bit, and branch if not zero are sufficient to poll a

device. Polling may be inefficient if the host repeatedly attempted

for busy-bit but does not find any device ready for service due to the

involvement of the CPU with incomplete processing. To overcome

this problem, the hardware controller should inform the CPU, when

the device becomes ready for service, rather than require the CPU to

poll repeatedly for an I/O completion. The hardware mechanism that

enables a device to notify the CPU is called an interrupt.

2.6 INTERRUPTS

When an I/O device is busy performing a task for a long time, and

the processor repeatedly asks for the status of the device, the

processor may not execute any necessary computation within this

time and seat idle. But the CPU can perform some other necessary

computations while waiting for the I/O device to become ready. It is

possible by sending a signal called an interrupt to the processor.

Using the concept of interrupt the waiting cycle can be eliminated

and increase the throughput of the system.

Interrupts is a hardware mechanism where the CPU senses the

interrupt-request line after the execution of each instruction.

Interrupts can take place at any time. The I/O device controller sets

the interrupts-request line to get the CPU cycle at any time. If the

CPU detects an interrupt in the interrupts request line, it immediately

saves the current state on a processor stack and jumps to the

interrupts handler routine. Suppose the CPU executing the ith

instruction during execution while the interrupt request arrives as

shown in figure 2.3. The processor will complete the execution of

the instruction “i” and load the program counter by the first

instruction of the interrupt service routine. The address of the next

196 | P a g e

Space for learners: instruction i+1 will be stored onto the processor stack and after

completion of the interrupt service routine, the PC will load the

instruction i+1.

Figure 2.3: Execution of a program instruction by CPU

The interrupt handler routine determines the cause of the interrupt,

performs the required operations, and executes the return-from

operation to resume the CPU states before the interrupt. The

following figure 2.4 depicts a complete interrupts-driven

input/output cycle. Input/output operations can be classified as

synchronous and asynchronous.

Figure 2.4: Complete interrupt driven input/output cycle

197 | P a g e

Space for learners: In the case of a synchronous scheme, the CPU execution has to wait

when the I/O devices are proceeds. But in the case of the

asynchronous scheme, I/O operations can proceeds simultaneously

with the CPU execution. The basic interrupt mechanism of a system

allows the CPU to respond to an asynchronous event. To have an

efficient input/output, the interrupt-controller hardware provides

some more sophisticated features such as – ability to handle

interrupt during complex processing tasks, the need to know about

the interrupt initiating device without polling all the devices, and

should support multilevel interrupt.

Two request lines – maskable and non-maskable are used by the

CPU to identify the interrupt request type. In the case of a non-

maskable interrupt, the CPU has to respond immediately by

switching itself from its current execution. In case of a maskable

interrupt, the CPU can turn off it such that the current execution is

not interrupted.

2.6.1 Handling Multiple Devices

A computer system may be connected with several I/O devices.

There is no definite order in which I/O devices can request an

interrupt, as the I/O devices are operationally independent. More

than one device can activate the interrupt request line at the same

time. This can raise some difficulties or issues in the system:

i. How a processor can recognize the interrupt generating device.

ii. If more than one device generates interrupt and maintain

different interrupt service routine, then how the processor can

recognize the starting address of the appropriate routine.

iii. Is it necessary to allow another device to set the interrupt

request line, while one device is already being served its

interrupt service routine?

iv. How to handle more than one interrupt generated exactly at the

same time.

It is possible to handle more than one interrupt generated at the same

time by breaking the tie and select any one of the two for service.

After completion of the service routine of the selected device, the

second one can be served. Some of the ways to handle multiple

interrupts are:

198 | P a g e

Space for learners: 2.6.1.1 Polling Scheme

A device can indicate its interrupt request by placing 1 in one of the

bits of the status register. The particular bit in the status register is

known as IRQ. To identify the interrupt requested device, the

interrupt service routine has to poll all the I/O devices connected

with the bus system. For servicing, a dedicated subroutine will call a

device, which encountered its IRQ bit set at first and is being served.

It is easy to implement but wastes notable time during interrogating

the IRQ bits of all the devices which are not requesting any service.

To overcome this problem vectored interrupt mechanism has been

used.

2.6.1.2 Vectored Interrupt

To reduce the time used in interrogating IRQ bits of each device in

the polling scheme, vectored interrupt mechanism is used. Here the

I/O device itself has to inform the CPU directly about its interrupt

request. The interrupt requesting device sends the first address of its

interrupt service routine to the processor over the bus as an

indication of generating an interrupt. Then the processor can start the

execution of the corresponding interrupt service routine from the

specified starting address send by the device. This system enables

the processor to recognize the interrupt request if any I/O device

even activates a single interrupt request line. The location shared by

the device with the processor has to be considered as the starting

address of the interrupt service routine. The CPU loads the starting

address onto the program counter which is known as the interrupt

vector. Interrupt vector typically sends by the I/O devices over the

data bus and the address length ranges in between 4 – 8 bits.

The processor may not respond to the interrupt vector immediately

after requesting. The interrupts requesting devices have to wait to

get the acknowledgment from the processor until the completion of

the current execution. The interrupt requesting device can load its

interrupt vector onto the bus if the CPU is ready to read it. While the

processor is ready to read the interrupt vector, it enables the interrupt

acknowledgment (INTA) line. The I/O device responds to the CPU

by placing the interrupt vector onto the bus and turned off the INTR

signal.

199 | P a g e

Space for learners: 2.6.1.3 Priority Interrupt

When more than one device is involved in requesting an interrupt,

the processor may have an arrangement to not allow other devices

when one interrupt service routine is already is in process. Once an

interrupt service routine is started to serve by the processor, it

continues until completion of it and before the processor accepts an

interrupt request from a second device. i.e. the second device has to

wait until the completion of the current interrupt service routine

execution. Sometimes the delay of execution may lead to an

erroneous operation. Some of the waiting interrupt requests may

have more priority than the executing one. To overcome this

situation, the I/O devices have to arrange in a priority-based

structure. Here the processor will accept the higher priority device

request while servicing a device with lower priority.

Figure 2.5: priority interrupt

If the processor accepts interrupt requests from other devices during

the execution of an interrupt service routine; the accepting device

will be selected based on device priority. This type of arrangement

of I/O devices is known as a multiple-level priority organization.

During the execution of a device request, the processor can accept

interrupt requests from other devices which have a higher priority

level than the current one. Once the processor has started to serve an

interrupt service routine of a particular priority level, it disables

interrupts from devices that have the same or lower priority level.

The interrupt from higher priority devices may continue and be

accepted. A multiple priority scheme can be implemented easily by

using separate INTR and INTA lines for each device as shown in

figure 2.5. In the diagram, each INTR line is assigned a different

level of priority.

200 | P a g e

Space for learners: 2.6.1.4 Daisy Chain

If more than one device generates interrupts simultaneously, in a

multiple-level priority organization it is clear that the processor will

serve the device with the highest priority. But in the case of vectored

interrupt one device is select to send the interrupt request. Another

efficient mechanism to solve this problem is the daisy chain. In this

widely used scheme, all the I/O devices are shared a common

interrupt request line for sending interrupt requests. But the

processor uses only one interrupt acknowledgment (INTA) line to

acknowledge the devices. The INTA line is connected in a daisy

chain fashion, such as it passes through all the I/O devices as shown

in figure 2.6. When the several I/O devices are activated the INTR

line, the processor responds to it by enabling the INTA line. At first,

the CPU serves device 1. If device 1 has a pending request, it will

hold the INTA signal line until the operations have been completed.

In the daisy chain arrangement, the device which is electronically

closest to the processor has the highest priority. The second device

along the chain has the second-highest priority and so on. In daisy

chain arrangement the requirement of wires is less in comparison to

the priority base structure as shown in figure 2.6.

Figure 2.6: Daisy chain

201 | P a g e

Space for learners: Figure 2.7: Daisy chain with priority based structure

Combining both the priority interrupt and daisy chain mechanism, a

more general and useful interrupt handling mechanism can be

achieved. An example of such a hybrid structure is depicted in the

following diagram 2.7. Here the devices are combined to form a

group of a particular priority level. Within the group, devices are

connected in a daisy chain fashion.

2.8 DIRECT MEMORY ACCESS

It has been observed from the previous sections that the I/O

operations are mainly concentrated on the transfer of data between

the processor and I/O devices. The processor can perform this by

polling a device or the device itself can send an interrupt request to

the processor. During this process involvement of the processor is

very high. When the processor served an interrupt service routine,

several program instructions have to be executed for each data word

transfer. Additionally, the processor may be busy with polling the

status register of each device, instruction to increment the memory

address and keep a record of the word count. When an interrupt

occurred, the additional overhead associated with the saving of

currently executed instruction address into a stack, load the program

counter by starting address of the interrupt service routine and again

resume the previous execution. For transferring a large block of data

directly in between the I/O device and the main memory, a different

technique may use known as Direct Memory Access (DMA). In

DMA the continuous intervention of the CPU is reduced by allowing

the I/O devices to access the memory unit directly under the control

of a special control unit. The control unit is a part of the device

interface and performed the DMA transfer. This control circuit is

known as the DMA controller. In general, the I/O devices are

accessing the main memory through the processor. But in the case of

DMA, the role of the processor is replaced by the DMA controller.

The DMA controller is responsible for providing the required

memory addresses and control signals needed for data transfer.

The controller unit performs the data transfer operation without

interrupting the CPU, but the complete operation is under the control

of the main program executed by the processor. To start an

operation, the CPU sends the starting address, data words in the

202 | P a g e

Space for learners: block, and the data flow direction to the controller. Once the DMA

controller receives this information, it started to perform the

requested operation. After completion of the data transferring, the

CPU is informed by the DMA through an interrupt signal and the

processor removes the control from the DMA controller.

During the data transfer using DMA, if the current execution cannot

continue by the CPU, then CPU can switch the operation to some

other which is ready in the ready queue. After receiving the interrupt

signal from the DMA controller, the processor can return to the

process requested for data transfer.

The entire operations of input/output are always performed by the

operating system. OS is responsible for suspending a program

executed by the processor and starting another one. Initiation of a

DMA is also a task of the OS.

For example, to transfer a data block from the main memory to disk,

a dedicated program writes the starting address and the word count

of the data block into the corresponding registers of the disk

controller. The DMA controller performs this operation

independently without intervening in the CPU. After completion of

the transfer of the data block, the done bit of the status and the

control register are set. Simultaneously the controller sends an

interrupt request to the CPU and sets the IRQ bit. The status register

is used to store the information about proper transferring of the data

block or if there occurred any error during data transfer.

The priority of demanding the bus system by DMA devices is

always more than the processor. Among the DMA devices, the

highest speed devices are getting higher priority than the others.

Memory accesses by the processor and the DMA devices are

interwoven. In a computer system, most of the memory access

requests are generated by the processor itself. Thus it can be said

STOP TO CONSIDER

1. DMA transfers may have several attributes such as: Source

address, destination address, transfer length, transfer type, block

size, line stride, line length, etc.

2. DMA transfers can be categorized into two forms based on the

hardware design and the involved peripheral devices, such as –

single cycle DMA and burst transfer.

203 | P a g e

Space for learners: that the DMA devices are stealing the memory cycles from the CPU.

This mechanism is known as cycle stealing. It can be stated that the

DMA devices are allowed to access the memory of a computer

system exclusively to transfer a block of data without interruption

and it can be defined as block or burst mode. But if the processor

and the DMA controller or two DMA controllers request the main

memory at the same time, then a conflict may arise. As a remedy or

to resolve the conflict, a mechanism is used by the bus system to

coordinate among the memory accessing devices is known as bus

arbitration.

2.7.1 Bus Arbitration

A device known as a bus-master is used to control the initiation of

the data transfer through the bus system at any time. When the bus

master relinquishes control of the bus, another device may acquire it

immediately. But using the bus arbitration mechanism, the next

device which is going to be the bus master will be selected and the

bus mastership will be transferred. There are two arbitration

processes namely centralized and distributed arbitration. A single

bus arbiter is used to perform the required arbitration in centralized

arbitration. In the case of distributed bus arbitration, all the devices

participating in the selection process of the next bus master.

2.8 BUSES

The prime units of a computer system are interconnected through a

common bus system. The common bus is used to transfer data,

addresses, and control signals among the prime computer units such

as memory, processor, I/O devices, and the control unit. The line

required in bus arbitration and interrupt are also included in this

common bus system. During transferring information a set of rules

have to be followed by the buses known as protocols. A bus protocol

can be defined as a set of rules to govern the behaviour of

interconnected devices. There are three kinds of buses available in a

system. To transfer data – data bus, to transfer addresses – address

bus, and to transfer control signals – control bus.

In the control lines, a single R/W signal is used to indicate, either

read or write operation to be performed on memory. If the signal bit

is set to 1 means a read operation, and 0 indicates a write operation.

204 | P a g e

Space for learners: These lines are also used to carry time information, at what time a

device will perform the read/write operation i.e. at what time a

device will place data onto the bus or at what time receives data

from the bus. Based on the timing of data transfer over a bus, two

different categories can be obtained – synchronous and

asynchronous bus systems.

In an asynchronous bus system, all the devices derived the time from

a common clock. Equal time duration is assigned for each device in

the synchronous bus. Each of the time intervals of equal size is

known as the bus cycle. One word of data can transfer in a bus

cycle.

In an asynchronous bus system, the common clock is replaced by

two-time control lines such as Master–ready and Slave–ready. This

method is based on the use of a handshake between the master and

slave. Here at first, the master indicates about the data whether it is

ready for transmission or not, and second, the slave will respond to

it. According to the handshaking protocol – the master will place the

command information and addresses on the bus. It indicates the

activation of the master–ready line and it is received by all the

interconnected devices. At this point, all the devices have to decode

their addresses. The slave line performs the required operation and

informs the CPU by activating the slave–ready line. A full

handshaking method can provide the highest degree of flexibility

and reliability.

2.9 APPLICATION I/O INTERFACE

I/O interfaces are used to enable the I/O devices and treat them in a

standard and uniform manner. I/O interfaces can be customized with

a layer known as the device drivers. Device drivers are used to

hiding the differences between the device controllers from the I/O

subsystem of the kernel. The use of the driver application

encapsulates the behaviour of the devices in a few generic classes

that hide the hardware differences from applications. It makes the

operating system (OS) independent of the hardware and simplifies

the job of the OS developers. This process restricts the device

manufacturer either to manufacture a product that is compatible with

the existing host controller interface of the OS or write a device

driver to interface the new hardware to facilitate the OS. Thus a new

device can be added to a computer through an OS. For different OS

205 | P a g e

Space for learners: types, the device drivers may vary. For example, a graphics driver

for MS-DOS may not be supported by the OS, MS- Windows 2000,

or in MAC OS.

The devices can be categorized based on the data transfer style. The

character-stream device transfers the data byte by byte whereas the

block device transfers a block of bytes as a unit at a time. The

keyboard is an example of a character stream interface. In a

sequential device data transfer occurred in a fixed order determined

by the device, whereas a random access device can instruct the

device to search data on any available memory location randomly.

Some of the devices perform data transfer within a predictable

response time known as synchronous devices, whereas some of

them show irregularity or in-predictable response time known as an

asynchronous device. A sharable device can be accessed by several

processes or threads but a dedicated device cannot. Some of the

devices can perform both read/write operations, but some of them

can perform either read or write operations i.e. transfer of data in

only one direction.

The block device interface will collect all the related information for

accessing disk drivers and other block-oriented devices. These

devices are expecting commands like read() or write(). Random

access devices can expect to have a seek () command to locate the

address of the next block to be transferred. To interact with the

network devices, most of the OS including UNIX, Windows NT

have used a network socket interface.

The computer system has clock and timer hardware to provide some

basic functions such as current time, elapsed time, and a timer to

perform trigger operations. The hardware used to maintain the

STOP TO CONSIDER

1. The device drivers are always operated within the kernel of an

OS.

2. Kernel is the core part of an OS, which has direct access to the

computer hardwares.

3. Device drivers are splitted into two layers such as – logical

and physical layer.

4. Broad classification catrgories of device drivers are: kernel

device drivers and user mode device drivers.

206 | P a g e

Space for learners: trigger and the elapsed time is known as a programmable interval

timer. The OS provides an interface to the user to control the timer.

During the power cut or shut-down mode of a system, a CMOS cell

is used to supply power to the clock and timer.

2.10 KERNEL I/O SUBSYSTEM

The kernel of an OS provides lots of functionalities related to

input/output such as – scheduling, caching, buffering, spooling,

device reservation, error handling, etc. The kernel also protects the

system from malicious software and errant processes.

2.10.1 I/O Scheduling

The kernel subsystem scheduled the I/O request such that the

devices can perform their operations in an ordered manner. I/O

scheduling can improve the system performance by fairly

distributing the devices among the processes and thus improve the

average waiting time. To implement I/O scheduling a wait queue

containing I/O requests for the devices to be maintained. If an

application is issued a blocking I/O system call, then the I/O request

will be kept in the wait queue for that particular device. The I/O

scheduler may rearrange the contents of the wait queue to improve

the system performance and average access time experienced by the

applications. In the case of an asynchronous I/O, the I/O scheduling

has to keep track of many I/O requests simultaneously. The

efficiency of a computer system can be improved by using other

techniques that use storage in main memory or a disk via buffering,

caching, and spooling.

STOP TO CONSIDER

1. Different scheduling algorithms are used by an OS to

scheduled the operations of I/O devices.

2. First Come First Serve (FCFS), Shortest Job First (SJF),

Priority scheduling, Round robin etc. are the prime scheduling

algorithms.

207 | P a g e

Space for learners: 2.10.2 Buffering

Before transferring data from a device to another device or device to

application, maybe store it in a memory area temporarily known as a

buffer. Buffering is done due to three reasons. First, cope up with the

speed mismatch between the speed of the producer and the

consumer. The second, to provide adaptation for devices that have

different data transfer sizes. A third use of buffering is to copy

semantics for application I/O. Copying of data between kernel buffer

and application data space is common in the operating system

despite the overhead that this operation introduces, because of the

clean semantics.

2.10.3 Caching

Cache memory is a faster memory placed in between the processor

and the main memory. Caching is used to reduce the speed

compatibility of the processor and the memory access time. It stores

a block of data word into it which is being used by the processor

shortly. The difference between buffering and caching is that in

buffering an existing copy of data is hold whereas in cache a copy of

data items can be store that can remain elsewhere.

2.10.4 Spooling

The output stream of data has to store in a buffer before going to an

output device. It is known as spooling. A printer can be used to print

the output of a process at a time, but many applications can request

the printer at a time to print their output concurrently without mixing

the outputs. The OS allows this by intercepting all the outputs to the

printer. The output of each application is spooled into a separate disk

file. Once the current printing process is being over, spooling system

copied the next output to be print from the queue. It can copy one

output from the queue to the printer at a time.

2.10.5 Error Handling

Using protected memory, an OS can protect a system from loss of

data or information due to any errors that occurred in hardware or at

the application level. Thus a system can protect from small

mechanical faults. Devices and I/O data transfer may fail due to

208 | P a g e

Space for learners: several reasons. It may be either transient such as when a network

becomes overloaded or for permanent reasons such as when a disk

controller becomes defective. An OS can handle transient kinds of

failures effectively.

CHECK YOUR PROGRESS

A. Choose the correct options for the following questions:

1. Which of the following is a major part of the time taken when

accessing data on the disk?

A. Settle time

B. Rotational latency

C. Seek time

D. Waiting time

2. How does the hardware trigger an interrupt?

A. Sending signals to CPU through the system bus

B. Executing a special program called interrupt program

C. Executing a special program called system program

D. Executing a special operation called system call

3. Which operation is performed by an interrupt handler?

A. Saving the current state of the system

B. Loading the interrupt handling code and executing it

C. Once done handling, bringing back the system to the

original state it was before the interrupt occurred

D. All of these

4. Which of the following is an example of the spooled device?

A. A graphic display device

B. A line printer used to print the output of several jobs

C. A terminal used to enter input data to a running program

D. A secondary storage device in a virtual memory system

5. An application loads 100 libraries at start-up. Loading each

library requires exactly one disk access. The seek time of the disk to

a random location is given as 10 ms. The rotational speed of the disk

is 6000 rpm. If all 100 libraries are loaded from random locations on

the disk, how long does it take to load all libraries? (The time to

209 | P a g e

Space for learners: transfer data from the disk block once the head has been positioned

at the start of the block may be neglected)

A. 0.50 s

B. 1.50 s

C. 1.25 s

D. 1.00 s

6. Consider the following table of arrival time and burst time for

three processes P0, P1, and P2.

Process Arrival time Burst Time

P0 0 ms 9 ms

P1 1 ms 4 ms

P2 2 ms 9 ms

7. The pre-emptive shortest job first scheduling algorithm is used.

Scheduling is carried out only at the arrival or completion of

processes. What is the average waiting time for the three processes?

A. 5.0 ms

B. 4.33 ms

C. 6.33 ms

D. 7.33 ms

8. Let the time taken to switch between user and kernel modes of

execution be t1 while the time taken to switch between two

processes be t2. Which of the following is TRUE? (GATE CS 2011)

A. t1 > t2

B. t1 = t2

C. t1 < t2

D. Nothing can be said about the relation between t1 and t2

9. A set of wires and a rigidly defined protocol that specifies a set of

messages that can be sent on the wires.

A. Port

B. Node

C. Bus

D. None of these

210 | P a g e

Space for learners: 10. The _________ presents a uniform device-access interface to the

I/O subsystem, much as system calls provide a standard interface

between the application and the operating system.

A. Devices

B. Buses

C. Device drivers

D. I/O systems

11. The interrupt vector contains

A. The interrupts

B. the memory addresses of specialized interrupt handlers

C. the identifiers of interrupts

D. the device addresses

2.11 SUMMING UP

 An input device can be defined as a hardware unit used to

provide inputs into a system.

 The hardware peripherals used to get the output from the

processor, project them or reproduce them in a human-

understandable format can be defined as an output

device/hardware.

 To communicate with a machine, the I/O devices are connected

with connection points of a machine known as a port.

 A controller is used to control the I/O devices, system buses,

and ports.

 The controller has one or more registers to hold the data and

commands.

 The I/O device ports have four registers namely – status,

control, data in, and data out registers.

 The I/O device port registers are typically 1 – 4 bytes in size.

 The computer system uses a common line to connect all the I/O

devices with it called the bus.

 If the I/O device and the memory shared the same address space

then the mechanism will be known as memory-mapped I/O.

211 | P a g e

Space for learners: The CPU can execute the input character received from the

keyboard, only after available in the input buffer of the

keyboard interface.

 When the processor repeatedly checks for the status flag to get

the required synchronization between the I/O device and the

processor, is known as program-controlled I/O.

 The controller can announce its status using the busy-bit in the

status register.

 Using the concept of interrupt the waiting cycle can be

eliminated and increase the throughput of the system.

 In the case of a synchronous scheme, the CPU execution has to

wait when the I/O devices are proceeds.

 In the case of the asynchronous scheme, I/O operations can

proceeds simultaneously with the CPU execution.

 Two request lines – maskable and non-maskable are used by the

CPU to identify the interrupt request type.

 In the case of a non-maskable interrupt, the CPU has to respond

immediately by switching itself from its current execution.

 A device can indicate its interrupt request by placing 1 in one of

the bits of the status register.

 The CPU loads the starting address onto the program counter

which is known as the interrupt vector.

 In DMA the continuous intervention of the CPU is reduced by

allowing the I/O devices to access the memory unit directly

under the control of a special control unit.

 The controller unit performs the data transfer operation without

interrupting the CPU, but the complete operation is under the

control of the main program executed by the processor.

 The priority of demanding the bus system by DMA devices is

always more than the processor.

 A device known as a bus-master is used to control the initiation

of the data transfer through the bus system at any time.

 Before transferring data from a device to another device or

device to application, maybe store it in a memory area

temporarily known as a buffer.

212 | P a g e

Space for learners: 2.12 ANSWERS TO CHECK YOUR PROGRESS

A.

1. C

2. A

3. D

4. B

5.

Answer B

Explanation: Since transfer time can be neglected, the average

access time is the sums of average seek time and average rotational

latency. The average seeks time for a random location time is given

as 10 ms. The average rotational latency is half of the time needed

for a complete rotation. It is given that 6000 rotations need 1 minute.

So one rotation will take 60/6000 seconds which is 10 ms. Therefore

average rotational latency is half of 10 ms, which is 5ms.

Average disk access time = seek time + rotational latency

= 10 ms + 5 ms

= 15 ms

For 100 libraries, the average disk access time will be 15*100 ms

6.

Answer A

Explanation: Process P0 is allocated processor at 0 ms as there is

no other process in the ready queue. P0 is preempted after 1 ms as

P1 arrives at 1 ms and burst time for P1 is less than the remaining

time of P0. P1 runs for 4ms. P2 arrived at 2 ms but P1 continued as

the burst time of P2 is longer than P1. After P1 completes, P0 is

scheduled again as the remaining time for P0 is less than the burst

time of P2.

P0 waits for 4 ms, P1 waits for 0 ms, and P2 waits for 11 ms. So

average waiting time is (0+4+11)/3 = 5.

213 | P a g e

Space for learners: 7.

Answer C

Explanation: Process switching involves a mode switch. Context

switching can occur only in kernel mode.

8. C

9. C

10. B

2.13 POSSIBLE QUESTIONS

A. Answer the following questions:

1. What is an interrupt?

2. What is the use of the INTA line in a processor?

3. What is a device driver?

4. What is a socket?

5. What is the function of an interrupt handler?

6. What is the role of a scheduler in an OS?

7. What types of errors can detect and correct by an OS?

8. What is a vectored interrupt?

9. What do you mean by polling?

10. What is spooling?

B. Answer the following questions:

1. Explain different types of interrupts.

2. Explain the process how the CPU identifies an interrupt

requesting device.

3. Prepare a list of devices with its priority value for a particular

operating system.

4. Explain the working principle of daisy chain.

5. Explain at least two computer operations in details where

DMA transfer is required.

6. How DMA transfer can be used in storing data explain.

214 | P a g e

Space for learners: 7. How DMA transfers take place when transfer a large block of

data explain.

8. Explain different categories of device drivers with example.

9. How the device drivers work?

10. Explain the architectures of device drivers.

11. Explain the concept of virtual device driver.

12. Explain round robin and SJF scheduling algorithm with

example.

13. How buffering is used in printing process explain briefly.

14. What do you mean by bus arbitration? Explain distributed bus

arbitration with a block diagram.

15. Explain the bus structure of a computer system.

16. How daisy chain is used to handle interruptions? Explain the

procedure to make a priority base daisy chain with a block

diagram.

17. Explain how DMA is used in a system.

18. Explain the term memory-mapped I/O and program-controlled

I/O.

19. Explain the process of accessing I/O devices.

20. What is an interrupt? Explain how multiple I/O devices can be

handle by an OS?

21. Explain the concepts of bus arbitration.

22. Differentiate between polling and vectored interrupt.

2.14 REFERENCES AND SUGGESTED READINGS

 Operating System Principles 8th edition by Abraham

Silberschatz, Greg Gagne, and Peter Baer Galvin, Willey

 Operating Systems: Internals and Design Principles 9th edition

by William Stallings, Pearson Education

 Madnik and Donovan, Operating systems, McGraw Hill.

 Andrew, S. Tannenbaum, Modern operating system, PHI.

215 | P a g e

Space for learners: UNIT 3: INTRODUCTION TO DEADLOCK

Unit Structure:

3.1 Introduction

3.2 Unit Objectives

3.3 Definition of deadlock

3.4 Types of resources

3.5 Different types of deadlocks

 3.5.1 Resource deadlock

 3.5.2 Communication deadlock

 3.6 Conditions for resource deadlock

 3.7 Deadlock modelling

 3.8 Strategies to deal with deadlock

 3.9 Starvation

 3.10 Summing Up

 3.11 Answers to Check Your Progress

 3.12 Possible Questions

 3.13 References and Suggested Readings

3.1 INTRODUCTION

In this unit you will learn about basic of deadlock. Deadlock is a

situation where a set of processes are blocked because each

process is holding a resource and waiting for another resource

acquired by some other process. There are two types of resources

available preemtable and non-preemptable. Deadlock can be

resource deadlock or communication deadlock. There are four

conditions those must hold to occur deadlock. The resource

deadlock can be modelled using resource graphs. If the resource

graph contains a cycle, then it means that deadlock present. There

are different strategies to deal with deadlock which will be

discussed in next chapter. Starvation is another process closely

related to deadlock.

216 | P a g e

Space for learners: 3.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 Understand the concept of deadlock

 Know about different types of resources

 Learn about different types of deadlock

 Learn about the four condition those must be hold to

occur deadlock

 Learn about resource graph

 Learn how to modelled deadlock for single resource type

 Know about different strategies to deal with deadlock

 Learn about starvation

3.3 DEFINITION OF DEADLOCK

Computer systems are full of resources that can be used only by

one process at a time. Common examples include printers, tape

drives etc. If a set of processes, try to simultaneously access the

same resources then sometimes situation like deadlock may arise.

Deadlock is a situation where a set of processes are blocked

because each process is holding a resource and waiting for another

resource acquired by some other process. Because all the

processes are waiting, none of them will ever cause any event that

could wake up any of the other members of the set, and all the

processes continue to wait forever.

Deadlock can be defined formally as follows:

A set of processes is deadlocked if each process in the set is

waiting for an event that only another process in the set can cause.

Deadlocks can also occur across machines. For example, many

offices have a local area network with many computers connected

to it. Often devices such as scanners, Blu-ray/DVD recorders,

printers, and tape drives are connected to the network as shared

resources, available to any user on any machine. If these devices

can be reserved remotely, deadlocks can occur. Again for

example, in a database system a program may have to lock several

217 | P a g e

Space for learners:
records it is using, to avoid race conditions. If process A locks

record R1 and process B locks record R2 and then each process

tries to lock the other one’s record, then the system will be

deadlock. Thus, deadlocks can occur on hardware resources or on

software resources.

3.4 TYPES OF RESOURCES

A major class of deadlocks involves resources to which some

process has been granted exclusive access. A computer will

normally have many different resources that a process can acquire.

A resource can be a hardware device (e.g. a Blu-ray drive) or a

piece of information (e.g., a record in a database). A resource is

anything that must be request, used, and released over the course

of time.

If the resource is not available when it is requested, the requesting

process has to wait. The process may wait a little while and try

again or it may automatically have blocked and awakened when it

becomes available. Usually a request or open system calls are

provided to allow processes to explicitly ask for resources.

The resources mainly classified into two types-

 a) Preemptable resources

 b) Non-preemptable resources

A preemptable resource is the resource that can be taken away

from its current owner (and given back later) without causing any

effect. One preemptable resource is memory. For example, a

system has 1 GB of memory, one printer and two 1-GB processes

A and B. Each process A and B want to print something. At first

process A requests and gets the printer, then starts to print. But,

before it has finished the computation, it exceeds its time

quantum. Process B now runs and tries, unsuccessfully as it turns

out, to acquire the printer. Now this is a deadlock situation,

because A has the printer and B has the memory, and neither one

can proceed without the resource held by the other. But we can get

rid of this deadlock situation because it is possible to preempt

(take away) the memory from B by swapping it out and swapping

A in. Now A can run, do its printing, and then release the printer.

No deadlock occurs.

218 | P a g e

Space for learners:

A non-preemptable resource, in contrast, is one that cannot be

taken away from its current owner without causing any effect. If a

process has begun to burn a Blu-ray, suddenly taking the Blu-ray

recorder away from it and giving it to another process will result

in a garbled Blu-ray. Blu-ray recorders are not preemptable at an

arbitrary moment.

3.5 DIFFERENT TYPES OF DEADLOCK

3.5.1 Resource Deadlock

There are different types of deadlocks. The resource deadlock is

one of the common deadlock. As mentioned earlier if each

member of the set of deadlocked processes is waiting for a

resource (non-preemtable) that is owned by a deadlocked process

then none of the processes can run, none of them can release any

resources and none of them can be awakened. This kind of

deadlock is called a resource deadlock. Here the number of

processes, the number of resources possessed and requested,

hardware or software resources these things are unimportant.

3.5.2 Communication Deadlocks

Another kind of deadlock can occur in communication systems

(e.g. networks), in which two or more processes communicate by

sending messages. For example, consider a situation where

process A sends a request message to process B and then blocks

until B sends back a reply message. Suppose the request message

gets lost. Then A is blocked waiting for the reply and B is blocked

waiting for a request asking it to do something. This is a deadlock

situation. But as we see that there are no resources involve in the

above situation, so this is not classical resource deadlock. This

situation is called a communication deadlock. Since there are no

resources communication deadlocks cannot be prevented by

ordering the resources. Again since there are no moments when a

request could be postponed communication deadlocks cannot be

avoided by careful scheduling. Timeouts is a technique to break

communication deadlock. In most of the network communication

219 | P a g e

Space for learners:
systems, whenever a sender sends a message, it also starts a timer

for a specific time duration. If an acknowledgment is not received

from the receiving end before the timer timeouts, then the sender

has to retransmit the message again. In this way, the deadlock is

broken.

Resource deadlocks can also occur in communication network. As

we know that in a network when a packet comes into a router from

one of its hosts, it is put into a buffer for forwarding to another

router and then to another until it gets to the destination. These

buffers are resources and there are a finite number of them. Now

consider four routers A, B, C and D. Each one has equal numbers

of buffers. Suppose that all the packets at router A need to go to B

and all the packets at B need to go to C and all the packets at C

need to go to D and all the packets at D need to go to A. No packet

can move because there is no extra buffer at the other end and we

have a classical resource deadlock.

3.6 CONDITIONS FOR RESOURCE DEADLOCKS

Coffman et al. (1971) showed that four conditions must hold to

occur resource deadlock. If one of them is absent, no resource

deadlock is possible.

1. The first condition is mutual exclusion condition according to

which each resource is either currently assigned to exactly one

process or is available.

2. The second condition is hold-and-wait condition. According to

this condition processes currently holding resources that were

granted earlier can request new resources.

3. The third condition is no-preemption condition. This condition

holds when resources are non-preemptable i.e. resources

previously granted cannot be forcibly taken away from a process.

They must be explicitly released by the process holding them.

4. The fourth condition is circular wait condition. According to

this condition there must be a circular list of two or more

processes, each of which is waiting for a resource held by the next

member of the chain.

220 | P a g e

Space for learners:

3.7 DEADLOCK MODELLING

Holt (1972) showed how the four conditions of resource deadlock

can be modelled using a directed graph as follows-

 A circle represents a process.

 A square represents a resource.

 A directed arc from a resource (square) to a process (circle)

represents that the resource is currently held by that process.

In Figure 3.1(a) resource R is currently assigned to process A.

 A directed arc from a process to a resource means that the

process is currently blocked waiting for that resource. In

Figure 3.1(b) process B is waiting for resource S.

 A cycle in the graph means that there is a deadlock involving

the processes and resources in the cycle. In Figure 3.1(c),

process C is waiting for resource T, which is currently held by

process D. Process D is not about to release resource T

because it is waiting for resource U, held by C. Both

processes will wait forever.

This directed graph can be mentioned as resource allocation graph.

Resource allocation graphs are a tool using which we will be able

to see if a given request/release sequence leads to deadlock. The

requests and releases works are performed step by step and after

every step the resource allocation graph is checked to see if it

contains any cycles. If so, deadlock occur; if not, there is no

deadlock. Here we consider the resource allocation graphs for the

case of a single resource of each type. These resource allocation

graphs can also be generalized to handle multiple resources of the

same type (Holt, 1972).

Figure 3.1: Resource allocation graphs. (a) Holding a resource

(b) Requesting a resource (c) Deadlock

221 | P a g e

Space for learners:
(Reference: “Modern Operating Systems” by Andrew S

Tanenbaum)

Now, how these resource allocation graphs can be used? For

example, suppose there are three processes, A, B, C and three

resources R, S, T. All these processes do both I/O and computing.

The operating system is free to run any unblocked process at any

instant. Thus, it could decide to run A, B, C sequentially without

any pre-emption. Since all three processes are running

sequentially, so there is no competition for the resources. Hence

deadlock will not occur. When the processes are run sequentially,

there is no possibility that while one process is waiting for I/O,

another can use the CPU. Thus, running the processes strictly

sequentially may not be optimal in this situation.

Figure 3.2: An example of how deadlock occurs and how it can be

avoided.

(Reference: “Modern Operating Systems” by Andrew S

Tanenbaum)

Suppose the resource requests occur in the orders as shown in

Figure 3.2(d). For this order the six resulting resource allocation

graphs are as shown in Figure 3.2(e)–(j). From the Figure 3.2(j) it

can be conclude that this order leads to deadlock as there is a cycle

A→S→B→T→C→R→A present in the graph.

222 | P a g e

Space for learners:

However, if operating system knew that granting a particular

request might lead to deadlock then it can simply suspend the

process without granting the request until it is safe. In this

example, it could suspend B instead of granting it S as the orders

shown in Figure 2.2(k). This order sequence leads to the resource

allocation graphs of Figure 3.2(l)–(q), which do not lead to

deadlock. After step (q), process B can be granted S because A is

finished and C has everything it needs. Even if B blocks when

requesting T, no deadlock can occur. B will just wait until C is

finished.

3.8 STRATEGIES TO DEAL WITH DEADLOCKS

In general, there are four strategies to deal with deadlocks –

 Just ignore the problem. Maybe if you ignore it, it will

ignore you.

 Detection and recovery. Let them occur, detect them, and

take action.

 Dynamic avoidance by careful resource allocation.

 Prevention, by structurally negating one of the four

conditions.

3.9 STARVATION

A problem closely related to deadlock is starvation. Starvation

occurs if a process is indefinitely delayed. This may happen if the

process wants a resource for execution which is never provided to

the process or if the process is never provided the processor for

some reason.

Some of the common causes of starvation are as follows –

 If a process is never allotted the resources it wants for

execution.

 If high priority processes keep executing and low priority

processes get blocked for indefinite time

 If there are not enough resources to provide to every process as

required.

223 | P a g e

Space for learners:
 If processes are selected randomly for execution, then a

process may wait for a long time because of non-selection.

Some ways to handle starvation are as follows –

 An independent manager can be used for allocation of

resources. This resource manager distributes resources fairly

and tries to avoid starvation.

 Random selection of processes for resource allocation or

processor allocation should be avoided as they encourage

starvation.

 The priority scheme of resource allocation should include

concepts such as aging, where the priority of a process is

increased the longer it waits. This avoids starvation.

3.10 SUMMING UP

 A set of processes is deadlocked if each process in the set is

waiting for an event that only another process in the set can

cause.

CHECK YOUR PROGRESS

1. What is deadlock?

2. Mention the name of different resources.

3. What is the purpose of resource allocation graph?

4. Mention the technique used to break communication

deadlock.

5. What is starvation?

State TRUE or FALSE:

6. Deadlock occur when resources are pre-emptable.

7. In resource allocation graph a circle represents a process.

8. Resource allocation graphs are undirected.

9. Resource deadlock does not occur in network.

10. Starvation and deadlock are closely related.

11. A resource can be a hardware device or a piece of

information.

224 | P a g e

Space for learners:
 A resource can be a hardware device (e.g. a Blu-ray drive)

or a piece of information (e.g., a record in a database).

 A resource is anything that must be request, used, and

released over the course of time.

 If the resource is not available when it is requested, the

requesting process has to wait.

 Usually a request or open system calls are provided to allow

processes to explicitly ask for resources.

 The resources mainly classified into two types- Preemptable

and nonpreemptable.

 A preemptable resource is the resource that can be taken

away from its current owner (and given back later) without

causing any effect.

 A nonpreemptable resource, in contrast, is one that cannot

be taken away from its current owner without causing any

effect.

 If each member of the set of deadlocked processes is waiting

for a resource (non-preemtable) that is owned by a

deadlocked process then none of the processes can run, none

of them can release any resources and none of them can be

awakened. This kind of deadlock is called a resource

deadlock.

 Communication deadlock can occur in communication

systems (e.g. networks), in which two or more processes

communicate by sending messages.

 Timeouts is a technique to break communication deadlock.

 Four conditions must hold to occur resource deadlock-

mutual exclusion condition, hold-and-wait condition, no-

preemption condition, circular wait condition.

 Resource deadlock can be modelled using a directed graph

called resource graph.

 A cycle in the resource allocation graph means that there is a

deadlock involving the processes and resources in the cycle.

 Starvation occurs if a process is indefinitely delayed.

225 | P a g e

Space for learners: 3.11 ANSWERS TO CHECK YOUR PROGRESS

State TRUE or FALSE:

6. False.

7. True.

8. False.

9. False.

10. True.

11. True

3.12 POSSIBLE QUESTIONS

Short answer type questions:

1. Briefly explain about preemtable and nonpreemtable resources.

2. Briefly explain about different types of deadlock.

3. Mention about the four conditions which must be satisfied to

occur resource deadlock.

4. From a resource allocation graph how can we conclude whether

there occurs deadlock or not?

5. Mention four strategies to deal with deadlock.

Long answer type questions:

1. Briefly explain about the resource allocation graph used to

modelling deadlock for single resource type each.

2. Briefly explain with the help of an example how can we use the

resource graph?

3.13 REFERNCES AND SUGGESTED READINGS

o “Operating System Concepts” by Avi Silberschatz and Peter

Galvin

o “Operating Systems: Internals and Design Principles” by

William Stallings

o “Operating Systems: A Concept-Based Approach” by D M

Dhamdhere

o “Modern Operating Systems” by Andrew S Tanenbaum

226 | P a g e

Space for learners:
UNIT 4: DEADLOCK PREVENTION,

 DETECTION AND AVOIDANCE

Unit Structure:

4.1 Introduction

4.2 Unit Objectives

4.3 Strategies to deal with deadlock

 4.3.1 Ignore the Problem All Together

 4.3.2 Deadlock Detection and Recovery

 4.3.3 Deadlock Avoidance

 4.3.4 Deadlock Prevention

4.4 Summing Up

 4.5 Answers to Check Your Progress

4.6 Possible Questions

 4.7 References and Suggested Readings

4.1 INTRODUCTION

In this unit, you will learn about different strategies to deal with

deadlock in detail. The strategies are mainly divided into four

categories- simply ignore the deadlock, early detection and recovery

of deadlock, avoid deadlock and prevent deadlock. Both the

detection and avoidance methods consider the facts of single

resource type and multiple resource types.

4.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 Understand about different strategies to deal with deadlock

 Know about different methods to detect deadlock for both

single resource type and multiple resource types

 Learn about different ways to recover from deadlock

 Learn about different ways to avoid deadlock for both

single resource type and multiple resource types

 Learn about different methods to prevent deadlock

227 | P a g e

Space for learners:
4.3 STRATEGIES TO DEAL WITH DEADLOCK

4.3.1 Ignore the Problem all Together

The simplest approach is the ostrich algorithm: stick your head in

the sand and pretend there is no problem. If deadlocks only occur

once a year or so, it may be better to simply let them happen and

reboot as necessary than to suffer the constant overhead and system

performance penalties associated with deadlock prevention or

detection. This is the approach that both Windows and UNIX take.

4.3.2 Deadlock Detection and Recovery

The second technique is detection and recovery. In the technique the

system tries to detect the deadlock only when it is happening. After

detection it will take some action to recover.

4.3.2.1 Deadlock Detection with One Resource Of Each

Type

Suppose there is only one resource of each type. For example, one

scanner, one Blu-ray recorder, one plotter, and one tape drive, but no

more than one of each class of resource. As discussed in Unit 2, a

resource allocation graph can be construct to detect deadlock in such

a system.

Consider a system with seven processes A, B, C, D, E, F, G and six

resources R, S, U, T, V, W. The state of the system is as follows-

 Process A holds R and wants S.

 Process B holds nothing but wants T.

 Process C holds nothing but wants S.

 Process D holds U and wants S and T.

 Process E holds T and wants V.

 Process F holds W and wants S.

 Process G holds V and wants U.

The question is: ‘‘Is this system deadlocked, and if so, which

processes are involved?’’

228 | P a g e

Space for learners:
The resource allocation graph for this system will be as follows-

 Figure 4.1 (a) Resource allocation graph (b) Cycle from (a)

(Reference: “Modern Operating Systems” by Andrew S Tanenbaum)

We can see that the graph in Figure 4.1 (a) contains one cycle and

processes D, E and G are all deadlocked. But Processes A, C and F

are not deadlocked because S can be allocated to any one of them,

which then finishes and returns it. Then the other two can take it in

turn and also complete.

Now to detect deadlock using this resource allocation graph, it is

needed to detect cycle in a directed graph. The following algorithm

can detect cycles in a directed graph. The algorithm uses one

dynamic data structure L, a list of nodes, as well as a list of arcs. The

arcs are either marked or unmarked. Marked arc means it is already

visited and unmarked arc means it is not visited yet. The steps are as

follows-

Algorithm 4.1

Step 1: For each node N, in the graph, perform the following steps

 with N as the starting node.

Step 2: Initialize L to the empty list and all arcs remain unmarked.

Step 3: Add the current node to the end of L and check to see if

the node now appears in L two times. If it does, the graph

contains a cycle and the algorithm terminates.

Step 4: From the given node, see if there are any unmarked

outgoing arcs. If so, go to Step 5; if not, go to Step 6.

Step 5: Pick an unmarked outgoing arc at random and mark it.

Then follow it to the new current node and go to Step 3.

229 | P a g e

Space for learners:
Step 6: If this node is the initial node, the graph does not contain

any cycles and the algorithm terminates. Otherwise, we

have now reached a dead end. Remove it and go back to

the previous node, that is, the one that was current just

before this one, make that one the current node and go to

Step 3.

Working of Algorithm 4.1 on the resource allocation graph of

Figure 4.1(a)

Iteration 1:

Let us first start the algorithm from a randomly selected node R

(Step 1). After that successively consider A, B, C, S, D, T, E, F as

the starting node.

Initialize L as empty list (Step 2).

Add R to the L and move through the only unmarked outgoing arc to

node A. Add A to L. Thus L becomes L = [R, A] (Step 3, Step 4,

Step 5).

From A go to node S. L becomes L = [R, A, S] (Repeat Step 3, Step

4, Step 5).

S has no outgoing arcs, so it is a dead end. Thus backtrack to node A

(Repeat Step 3, Step 4, Step 6).

A has no unmarked outgoing arcs, so backtrack to R. Since R is the

starting node so inspection of R has been completed (Repeat Step 3,

Step 4, Step 6).

Iteration 2:

In second iteration start the algorithm from the randomly selected

node A (Step 1).

Initialize L as empty list (Step 2).

Add A to L. From A move through the only unmarked outgoing arc

to node S. L becomes L = [A, S] (Step 3, Step 4, Step 5).

230 | P a g e

Space for learners:
S has no outgoing arcs, so it is a dead end. Thus backtrack to node A.

A is the starting node so inspection of A has been completed (Repeat

Step 3, Step 4, Step 6).

Iteration 3:

In third iteration start the algorithm from the randomly selected node

B (Step 1).

Initialize L as empty list (Step 2).

Add B to L. From B move through the only unmarked outgoing arc

to node T. L becomes L = [B, T] (Step 3, Step 4, Step 5).

From T go to node E. L becomes L = [B, T, E] (Repeat Step 3, Step

4, Step 5).

From E go to node V. L becomes L = [B, T, E, V] (Repeat Step 3,

Step 4, Step 5).

From V go to node G. L becomes L = [B, T, E, V, G] (Repeat Step

3, Step 4, Step 5).

From G go to node U. L becomes L = [B, T, E, V, G, U] (Repeat

Step 3, Step 4, Step 5).

From U go to node D. L becomes L = [B, T, E, V, G, U, D] (Repeat

Step 3, Step 4, Step 5).

From D go to node T. L becomes L = [B, T, E, V, G, U, D, T] (

Repeat Step 3, Step 4, Step 5).

Now T is the current node and it appears two times in L. Thus, there

is a cycle in the graph. So the algorithm terminates here (Step 3).

4.3.2.2 Deadlock Detection with Multiple Resources of

each Type

Suppose there are multiple copies of some of the resources. For such

case the deadlock detection algorithm has been discussed below-

231 | P a g e

Space for learners:
Let, n is the numbers of processes and m is the number of resource

Classes. The ith process is denoted as Pi, the ith class resource is

denoted as Ei.

The processes are either marked or unmarked. Initially all processes

are unmarked. At the end of the algorithm if all processes are

marked, then it indicates that they are able to complete and are thus

not deadlocked. Other it indicates deadlock occurs.

At any instant of the algorithm some of the resources are assigned

and are not available. Ai denotes the number of instances of ith class

resource that are currently available (i.e. unassigned).

The existing resource vector E= (E1, E2, …., Em) gives the total

number of instances of each resource in existence. For example, if

class 1 is tape drives, then E1=2 means the system has two tape

drives.

The available resource vector A=(A1, A2, …, Am) gives the number

of instances of each resource class that are currently available. If

both of the two tape drives are assigned, A1 will be 0.

Let, C be the current allocation matrix and R be the request matrix.

Cij is the number of instances of resource Ej that are held by process

Pi. Similarly, Rij is the number of instances of resource Ej that Pi

wants.

Again, every resource is either allocated or is available.

 ∑ ����
��� +Aj =E j

Suppose A and B are two vectors. Then the relation A B means that

each element of A is less than or equal to the corresponding element

of B i.e. A B holds if and only if Ai Bi for 1 i m.

The steps of deadlock detection algorithm are as given below. Note

that initially all processes are unmarked.

Algorithm 3.2

232 | P a g e

Space for learners:
Step 1. Find an unmarked process Pi such that the ith row of R is less

 than or equal to A.

 Step 1.1. Add the ith row of C to A.

 Step 1.2 Mark the process and go back to step 1.

Step 2. If no such process exists, the algorithm terminates.

Working of Algorithm 3.2

Suppose we have 3 processes (P1, P2, P3) and 4 resource classes

(tape drives, plotters, scanners, and Blu-ray drives). Process P1 has

one scanner, Process P2 has two tape drives and a Blu-ray drive,

Process P3 has a plotter and two scanners. Each process needs

additional resources, as shown in the matrix R of Figure 4.2.

 Figure 4.2: An example of deadlock detection algorithm

(Reference: “Modern Operating Systems” by Andrew S Tanenbaum)

Iteration 1:

Suppose start the algorithm by picking the unmarked process P1.

Now, is (R1 A) true? No. (Step 1)

Pick another unmarked process P2 and check whether (R2 A) is

true. No. (Step 1)

Pick another unmarked process P3 and check whether (R3 A) is

true. Yes. (Step 1)

Add C3 to A and mark P3 and go to Step 1(Step 1.1).

Thus A becomes A= (2 2 2 0)

Iteration 2:

233 | P a g e

Space for learners:
Pick the unmarked process P2 and check whether (R2 A) is true.

Yes. (Step 1)

Add C2 to A and mark P2 and go to Step 1(Step 1.1).

Thus A becomes A= (4 2 2 1)

Iteration 3:

Pick the unmarked process P1 and check whether (R1 A) is true.

Yes. (Step 1)

Add C1 to A and mark P1 and go to Step 1(Step 1.1).

Thus A becomes A= (4 2 3 1)

Iteration 4:

No unmarked process found (Step 1).

So go to Step 2 and terminate.

At the end of the algorithm no unmarked processes remain. So there

is no deadlock in the system.

4.3.2.3 Recovery from Deadlock

After detect a deadlock the next work will be recover from deadlock.

Some ways to recover from deadlock are discussed below-

 Recovery through pre-emption

One way to recover from deadlock is pre-emption i.e. temporarily

take a resource away from its current owner and give it to another

process. Recovering this way is frequently difficult or impossible.

 Recovery through rollback

If the system designers and machine operators know that deadlocks

are likely, they can arrange to have processes checkpointed

periodically. Checkpointing a process means that its state is written

to a file so that it can be restarted later. The checkpoint contains not

only the memory image, but also the resource state, in other words,

which resources are currently assigned to the process. To be most

effective, new checkpoints should not overwrite old ones but should

be written to new files, so as the process executes, a whole sequence

234 | P a g e

Space for learners:
accumulates. When a deadlock is detected, it is easy to see which

resources are needed. To do the recovery, a process that owns a

needed resource is rolled back to a point in time before it acquired

that resource by starting at one of its earlier checkpoints. In effect,

the process is reset to an earlier moment when it did not have the

resource, which is now assigned to one of the deadlocked processes.

If the restarted process tries to acquire the resource again, it will

have to wait until it becomes available.

 Recovery through killing processes

The simplest way to break a deadlock is to kill one or more

processes. In this approach, the process to be killed is carefully

chosen because it is holding resources that some process in the cycle

needs.

4.3.3 Deadlock Avoidance

The deadlock detection methods assume that a process asks for all

the necessary resources at once. But in most of the system resources

are requested one at a time. In this situation the system should

decide whether granting a resource is safe or not. The deadlock

avoidance algorithms are designed based on the concept of safe

states.

A state is said to be safe if there is some scheduling order in which

every process can run to completion even if all of them suddenly

request their maximum number of resources immediately. Otherwise

the state is unsafe. A safe state can guarantee that all processes will

finish. In unsafe state, there is no sequence that guarantees

completion. An unsafe state is not a deadlocked state.

For example- Suppose we have 10 resources of same type. These 10

resources are used by three processes A, B, C as shown in Figure 4.3

(a). Process A has 3 resources and it may need as many as 9

resources to complete it. Similarly, B has 2 resources and may need

as many as 4 resources, C has 2 resources and may need as many as

7 resources to complete it. Now, the question is- “Is the state shown

in Figure 4.3 (a) safe?”

235 | P a g e

Space for learners:

Figure 4.3: Demonstration that the state in (a) is safe

(Reference: “Modern Operating Systems” by Andrew S Tanenbaum)

From Figure 4.3 (a) it is seen that all three processes already have 7

resources. So, number of available resources is 3. The maximum

number of resources needed by B is 4. Thus, scheduler can run B as

B needs 2 more resources to complete it (Figure 4.3 (b)). After

completion B will release the resources (Figure 4.3 (c)). At this point

number of available resources is 5 and A need 6 more resources to

complete, C need 5 more resources to complete. In this scenario

scheduler can run C (Figure 4.3 (d)). After Completion of C number

of available resources will be 7 (Figure 4.3 (e)). At this point

scheduler can run A. Hence the state shown in Figure 4.3 (a) is a

safe state as there is an execution order B, C, A for the processes.

4.3.3.1 The Banker’s Algorithm for a Single Resource

Type

The banker’s algorithm is a well-known deadlock avoidance

algorithm. Suppose a banker will grant loans to a group of

customers. The algorithm will check if granting the request leads to

an unsafe state. If so, the request is denied. Otherwise the request is

carried out.

For example- Suppose there are four customers A, B, C, D which

needs total 22 credit units (Figure 4.4 (a)). The bankers assume that

not all customers will need their maximum credit immediately, so he

reserves only 10 credit units out of 22 credit units. Now from these

10 credit units he granted each customer a certain number of credit

units as shown in Figure 4.4 (b). Thus a total of 8 units are granted

and 2 units remain free. This state is safe because there is an ordered

sequence like C, D, B, A to grant the credit units if all the customers

suddenly asked for their maximum credit units.

236 | P a g e

Space for learners:

Figure 4.4 Three resource allocation states: (a) Safe. (b) Safe. (c)

Unsafe

(Reference: “Modern Operating Systems” by Andrew S Tanenbaum)

Suppose at this point customer B request for one more unit and it is

granted (Figure 4.4 (c)). Thus a total of 9 units are granted and 1 unit

remain free. This state is an unsafe state as there is no sequence

available to grant the credit units if all the customers suddenly asked

for their maximum credit units.

The banker’s algorithm considers each request as it occurs, seeing

whether granting it leads to a safe state. If it does, the request is

granted; otherwise, it is postponed until later.

4.3.3.2 The Banker’s Algorithm for Multiple Resource

Types

The banker’s algorithm can be generalized to handle multiple

resources.

For example- Suppose there are 5 processes and 4 numbers of

resources (Tape drives, Plotters, Printers, Blu-rays) The first matrix

of Figure 3.5 is the current allocation matrix (C). It shows how many

of each resource are currently assigned to each of the five processes.

The second matrix is the request matrix (R) and it shows how many

resources each process still needs in order to complete. The three

vectors of the Figure 3.5 show the existing resources E, the assigned

resources P, and the available resources A respectively.

237 | P a g e

Space for learners:

Figure 4.5 The banker’s algorithm with multiple resources

(Reference: “Modern Operating Systems” by Andrew S Tanenbaum)

Steps of Banker’s algorithm for multiple resources-

Step 1. Assume that a process keeps its resources until it exits. Now

 search for a row in R which is less than or equal to A.

 Step 1.1 If no such row exists, the system will eventually

 deadlock since no process can run to completion.

 Step 1.2. If such a row exists, then assume that the process of

the chosen row requests all the resources it needs and

finishes. Mark that process as terminated and add all of

its resources to the A vector.

Step 2. Repeat Steps 1 until either all processes are marked

terminated (in which case the initial state was safe) or no

process is left whose resource needs can be met (in which

case the system was not safe).

Now, in Figure 4.5 the current state is safe. Suppose that process B

makes a request for the printer. This request can be granted because

the resulting state is still safe. After that process D can finish and

then processes A or E, followed by the rest. Now imagine that after

giving B one of the two remaining printers, E wants the last printer.

Granting that request would reduce the vector of available resources

to (1 0 0 0), which leads to deadlock, so E’s request must be

deferred for a while.

4.3.4 Deadlock Prevention

Deadlock is essentially impossible, because it requires information

about future requests, which is not known. Thus to avoid deadlock in

238 | P a g e

Space for learners:
real systems Coffman et al. (1971) provides four conditions. If we

can ensure that at least one of these conditions is never satisfied,

then deadlocks will be structurally impossible (Havender, 1968).

 Attacking the Mutual-Exclusion Condition

First let us attack the mutual exclusion condition. If no resource

were ever assigned exclusively to a single process, we would never

have deadlocks. Avoid assigning a resource unless absolutely

necessary, and try to make sure that as few processes as possible

may actually claim the resource.

 Attacking the Hold-and-Wait Condition

The second of the condition stated is that- if we can prevent

processes that hold resources from waiting for more resources, we

can eliminate deadlocks. One way to achieve this goal is to require

all processes to request all their resources before starting execution.

If everything is available, the process will be allocated whatever it

needs and can run to completion. If one or more resources are busy,

nothing will be allocated and the process will just wait. An

immediate problem with this approach is that many processes do not

know how many resources they will need until they have started

running. In fact, if they knew, the banker’s algorithm could be used.

 Attacking the No-Preemption Condition

If a process is holding some resources and requests another resource

that cannot be immediately allocated to it, then all resources

currently being held are pre-empted. The pre-empted resources are

added to the list of resources for which the process is waiting. The

process will be restarted only when the old resources are assigned to

it and as well as the new resources that it is requesting.

 Attacking the Circular Wait Condition

The circular wait is a scenario like there exists a set {P0, P1, …, Pn}

of waiting processes such that: P0 is waiting for a resource that is

held by P1, P1 is waiting for a resource that is held by P2, …, Pn-1 is

waiting for a resource that is held by Pn and Pn is waiting for a

resource that is held by P0.

The circular wait can be avoided in several ways. One way is to a

process is permitted only to a single resource at any moment. If it

needs a second one, it must release the first one.

239 | P a g e

Space for learners:
Another way to avoid the circular wait is to provide a global

numbering of all the resources, as shown in Figure 4.6. Now the rule

is- processes can request resources whenever they want to, but all

requests must be made in numerical order. A process may request

first a printer and then a tape drive, but it may not request first a

plotter and then a printer.

Figure 4.6 (a) Numerically ordered resources. (b) A resource graph.

(Reference: “Modern Operating Systems” by Andrew S Tanenbaum)

With this rule, the resource allocation graph can never have cycles.

In figure 4.6 it is seen that a deadlock will occur if and only if A

requests resource j and B requests resource i. Assuming i and j are

distinct resources, they will have different numbers. If i > j, then A is

not allowed to request j because that is lower than what it already

has. If i < j, then B is not allowed to request i because that is lower

than what it already has. Either way, deadlock is impossible.

CHECK YOUR PROGRESS

1. What is existing resource vector?

2. What is available resource vector?

3.What is resource allocation matrix?

4. What is request matrix?

5. Suppose A and B are two vectors. Then what does the

relation A B mean?

State TRUE or FALSE:

6. In safe state there is an order sequence to complete the

processes.

7. Unsafe state is a deadlock state.

8. Banker’s algorithm is a well-known deadlock avoidance

 algorithm.

9. To avoid circular wait one technique uses global numbering.

240 | P a g e

Space for learners:
4.4 SUMMING UP

 Using deadlock detection algorithm, the system tries to detect

deadlock detect the deadlock only when it is happening.

 A resource allocation graph can be construct to detect deadlock

in a system with single resource type each.

 To detect deadlock (single resource type each) using resource

allocation graph, it is needed to detect cycle in a directed graph

 Suppose there are multiple copies of some of the resources. For

such case the resource allocation graph cannot detect deadlock.

So, a different algorithm is needed to deadlock detection in such

situation.

 The deadlock detection algorithm (multiple copies of some of

the resources) considered all processes are either marked or

unmarked. Initially all processes are unmarked. At the end of

the algorithm if all processes are marked, then it indicates that

they are able to complete and are thus not deadlocked. Other it

indicates deadlock occurs.

 The existing resource vector gives the total number of instances

of each resource in existence.

 The available resource vector gives the number of instances of

each resource class that are currently available.

 Suppose A and B are two vectors. Then the relation A B means

that each element of A is less than or equal to the corresponding

element of B i.e. A B holds if and only if Ai Bi for 1 i

m.

 One way to recover from deadlock is pre-emption.

 The second way to recover from deadlock is rollback.

 The simplest way to break a deadlock is to kill one or more

processes.

 The deadlock detection methods assume that a process asks for

all the necessary resources at once. But in most of the system

resources are requested one at a time. In this situation the

system should decide whether granting a resource is safe or not.

241 | P a g e

Space for learners:
 A state is said to be safe if there is some scheduling order in

which every process can run to completion even if all of them

suddenly request their maximum number of resources

immediately. Otherwise the state is unsafe.

 A safe state can guarantee that all processes will finish.

 In unsafe state, there is no sequence that guarantees completion.

 An unsafe state is not a deadlocked state.

 The banker’s algorithm is a well-known deadlock avoidance

algorithm. Suppose a banker will grant loans to a group of

customers. The algorithm will check if granting the request

leads to an unsafe state. If so, the request is denied. Otherwise

the request is carried out.

 To avoid deadlock in real systems Coffman et al. (1971)

provides four conditions.

 The first condition statedprevent deadlock is attack the mutual

exclusion condition. If no resource were ever assigned

exclusively to a single process, we would never have deadlocks.

 The second of the condition stated is that- if we can prevent

processes that hold resources from waiting for more resources,

we can eliminate deadlocks.

 The third condition is if a process is holding some resources and

requests another resource that cannot be immediately allocated

to it, then all resources currently being held are pre-empted.

 The fourth condition to prevent deadlock is the circular wait. It

can be avoided in several ways. One way is to a process is

permitted only to a single resource at any moment. If it needs a

second one, it must release the first one.

 Another way to avoid the circular wait is to provide a global

numbering of all the resources.

4.5 ANSWERS TO CHECK YOUR PROGRESS

State TRUE or FALSE:

6. True

7. False.

242 | P a g e

Space for learners:
8. True.

9. True.

4.6 POSSIBLE QUESTIONS

Short answer type questions:

1. What is checkpointing a process mean?

2. What is safe and unsafe state?

3. What is circular wait of processes?

4. Briefly explain two techniques to avoid circular wait of

processes?

Long answer type questions:

1. Briefly explain the ways to detect deadlock with one resource of

each type.

2. Briefly explain the ways to detect deadlock with multiple

resource of each type.

3. Briefly explain the techniques to recovery from deadlock.

4. Briefly explain the Banker’s algorithm to avoid deadlock with

one resource of each type.

5. Briefly explain the Banker’s algorithm to avoid deadlock with

multiple resource of each type.

6. Briefly explain different ways to prevent deadlock.

7. For example- Suppose we have 12 resources of same type.

These 12 resources are used by three processes A, B, C, D as

shown in Figure 3.3 (a). Process A has 1 resources and it may

need as many as 8 resources to complete it. Similarly, B has 2

resources and may need as many as 4 resources, C has 3

resources and may need as many as 6 resources to complete it,

D has 4 resources and may need as many as 5 resources to

complete it Now, the question is- “Is the state safe?”

4.7 REFERENCES AND SUGGESTED READINGS

 “Operating System Concepts” by Avi Silberschatz and Peter

Galvin

243 | P a g e

Space for learners:
 “Operating Systems: Internals and Design Principles” by

William Stallings

 “Operating Systems: A Concept-Based Approach” by D M

Dhamdhere.

 “Modern Operating Systems” by Andrew S Tanenbaum

244 | P a g e

Space for learners: UNIT 5: MULTIPROGRAMMING SYSTEM

Unit Structure:

5.1 Introduction

5.2 Unit Objectives

5.3 Basic Concepts of Multiprogramming

5.4 I/O System

5.5 Memory Management

5.6 File System

5.7 Summing Up

5.8 Answer to Check Your Progress

5.9 Possible Questions

5.10 References and Suggested Reading

5.1 INTRODUCTION

As the name suggest, multiple process are in the main memory. In this

case, CPU utilization is increased. Two or more processes reside in

main memory are executed concurrently. This is done by switching the

CPU from one program to another program almost instantaneously. To

manage the entire resources of the system is the main motive of

multiprogramming. Command processor, file system, I/O control

system, and transient area are the primary components of

multiprogramming system.

5.2 UNIT OBJECTIVES

After going through this unit you will be able to

 Understand the concept of multiprogramming

 Learn different scheduling algorithm used in multiprogramming

 Know the structure and operations of I/O

 Learn about the data transfer using direct memory access

 Understand memory management in multiprogramming

 Understand the algorithm for memory allocation

 Explain about paging and segmentation.

245 | P a g e

Space for learners: Understand the file system Structure

 Understand the operations on File system

 Learn the file access methods

5.3 BASIC CONCEPTS OF MULTIPROGRAMMING

The concept of multiprogramming depends on the capability of a

computer to store instructions (programs) for long-term use. Multiple

programs are loaded in main memory. Operating system assigns CPU to

the first program. If that particular program needs some I/O operations

then CPU instead of waiting for that program, OS allocates the next

program to CPU. Once the I/O operation of the first program is

completed, CPU continues with that program. In this fashion, execution

takes place in multiprogramming system. The objective is to reduce

CPU idle time by allowing new jobs to take over the CPU whenever the

currently running job needed to wait (e.g. for user I/O).

Before multiprogramming was introduced, operating system working

was very simple- it executes only one program at a time via CPU.

With the introduction of multiprogramming, operating system now

executes multiple programs using different mechanism and several

options existed for allocating CPU time

For decision-making two types of scheduling were introduced - Job

scheduling and CPU scheduling. The selection of jobs to load into

memory is termed as Job Scheduling and the selection of a job existing

in memory to execute via the CPU is known as CPU scheduling. Both

these decisions of Job scheduling and selection of a job are made by the

operating system.

5.3.1 Process Scheduling

A process is a program which is in execution. The activity which

involve removal of running process from the CPU and selection of

another process based on some strategy is known as Process

Scheduling. The objective of multiprogramming is to have some

process running at all times, to maximize CPU utilization and the

246 | P a g e

Space for learners: objective of time sharing is to switch the CPU among processes so

frequently that users can interact with each program while it is running.

To meet these objectives, the process scheduler selects an available

process (possibly from set of several available processes) for program

execution on the CPU.

In Multiprogramming operating systems, process scheduling is an

essential function. Multiprogramming system allows a number of

process to load in main memory and scheduler decides which program

to remove and to execute next.

5.3.1.1 Process Scheduling Queues

All PCBs are maintained by operating system in Process Scheduling

Queues. PCB stands for Process Control Block. PCB is a data structure

created by operating system. When a process is created, operating

system maintains certain information in Process Control Block. A

separate queue for each of the process states and PCBs are maintained

by operating system. When the state of a process is changed, its PCB is

unlinked from its current queue and moved to its new state queue.

The Operating System maintains the following important process

scheduling queues −

 Job queue − This queue keeps all the processes in the system.

 Ready queue − This queue keeps a set of all processes residing

in main memory, ready and waiting to execute. A new process

is always put in this queue.

 Device queues − The processes which are blocked due to

unavailability of an I/O device constitute this queue.

5.3.1.2 Process State Transition Diagram

247 | P a g e

Space for learners:

1. Running: The process in execution by the CPU.

2. Waiting/Blocked: When a process needs some I/O operation or

waiting for some other event to happen, it goes into waiting/blocked

state.

3. Ready: A process that is waiting to be executed is placed in the

ready queue.

4. New: The process just being created is in new state. The process

will be in new state until long-term scheduler brings it to the ready

state.

5. Terminated/Exit: A process that is finished its execution or aborted

due to some reason.

STOP TO CONSIDER

Process Scheduling is mainly use to Schedule the process. Many

processes waiting in the ready queue are assigned to CPU one by one

according to scheduling algorithm. A PCB is also called Process

Descriptor. Whenever a new process is created, operating system

creates a PCB which contains information like Pointer, Process state,

Process state, list of open files, list of open devices, general purpose

registers, priority.

5.3.2 Types of Scheduler

Following are the various scheduler used for scheduling process by the

operating system.

248 | P a g e

Space for learners: 1. Long term scheduler

Long term scheduler is responsible for creating processes and to

bringing them into the system. It place processes from new state to

ready queue. Since it creates processes that are why it is known as Job

Scheduler also. It controls the degree of Multiprogramming. It chooses

a perfect mix of IO bound and CPU bound processes among the jobs

present in the pool. If maximum processes are I/O bound then CPU will

remain ideal as state most of the time. This will decrease the degree of

multiprogramming. So the job of long term scheduler is very critical

and it may affect the system for long time.

2. Short term scheduler

This CPU scheduler is responsible for scheduling one of the processes

from ready state to running state. In order to select which job is going to

assigned CPU, scheduling algorithm is used.

If the selected job by Short term scheduler is CPU burst time, then for a

long time processes have to wait in ready queue and a situation occur

which is known as starvation.

3. Medium term scheduler

This medium term scheduler is also known as swapper as it swaps

processes from main memory to secondary memory and vice versa.

Processes which are IO bound are removed from the running state and

placed in the waiting queue so that perfect mixes of processes are in the

ready queue. Suspending and resuming of the processes is responsible

of this scheduler. Various algorithms are used by operating system for

this purpose.

STOP TO CONSIDER

Long term scheduler brings process from Job POOL to the main

memory ready for execution. It has access to only job pool and ready

queue. Whereas Short term scheduler selects job from ready queue and

assigns CPU to that process. It has access to ready queue and CPU.

Medium term scheduler is used to keep the flow smooth. Sometimes

some process reserves memory in ready queue but may do nothing

except reserving memory space. Medium term scheduler takes this

process out of the memory.

249 | P a g e

Space for learners: 5.3.3 Scheduling Algorithm

The Purpose of a Scheduling algorithm is:

1. Maximum CPU utilization

2. Fare allocation of CPU

3. Maximum throughput

4. Minimum turnaround time

5. Minimum waiting time

6. Minimum response time

The following algorithms can be used to schedule the jobs:

1. First Come First Serve

It is the simplest algorithm to implement. The process with the minimal

arrival time will get the CPU first. The lesser the arrival time, the sooner

will the process gets the CPU. It is the non-preemptive type of

scheduling.

2. Round Robin

In the Round Robin scheduling algorithm, the OS defines a time

quantum (slice). All the processes will get executed in the cyclic way.

Each of the process will get the CPU for a small amount of time (called

time quantum) and then get back to the ready queue to wait for its next

turn. It is a preemptive type of scheduling.

3. Shortest Job First

The job with the shortest burst time will get the CPU first. The lesser

the burst time, the sooner will the process get the CPU. It is the non-

preemptive type of scheduling.

4. Shortest remaining time first

It is the preemptive form of SJF. In this algorithm, the OS schedules the

Job according to the remaining time of the execution.

250 | P a g e

Space for learners: STOP TO CONSIDER

A Scheduling Algorithm tells us how much each processes will get CPU

time. When a high priority process enters in the system, it preempts a

low priority process in between and executes the high priority process

first. These algorithms are either non-preemptive or preemptive. Non-

preemptive cannot be preempted until it completes its allotted time,

whereas preemptive process can be forcefully removed when a high

priority process comes for execution.

FCFS Scheduling

As the name implies, the processes which enters the ready queue will

get the CPU first. If the arrival time of the process is lesser then sooner

the job will get CPU. It may cause the problem of starvation if the burst

time of the currently running process is more and thus the process

waiting in the ready queue has to wait for longer time.

Advantages:

1. The logic of this algorithm is very simple; execution will be

based on first cum first serve. Very easy to understand and easy

to implement algorithm

2. Each and every process gets a chance to execute.

Disadvantages:

1. This algorithm is non-preemptive means the process once gets

the CPU will continue till its completion.

2. The problem of starvation may occur, due to non-preemptive

nature of this algorithm.

3. The average waiting time is higher as compare to other

scheduling algorithms, thus poor performance.

Example

Let’s consider 5 processes with process ID P0, P1, P2, P3 and P4.

Arrival time of P0 is 0, P1 arrives at 1, P2 arrives at time 2, P3 arrives at

time 3 and Process P4 arrival time is 4 in the ready queue. Arrival and

Burst time of the processes are given in the following table respectively.

The Turnaround time and the waiting time are as follows-

251 | P a g e

Space for learners: Turn Around Time = Completion Time - Arrival Time

 Waiting Time = Turnaround time - Burst Time

The average waiting Time is calculated by adding the respective

waiting time of all the processes and divided the sum by the total

number of processes.

GANTT CHART

STOP TO CONSIDER

FCFS simply allocates the process according to the arrival time. Process

which enters the ready queue first will be allocating the CPU. The

problem of starvation may occur if the first process has largest CPU

burst among all the process.

252 | P a g e

Space for learners: CHECK YOUR PROGRESS

1. Consider five processes with arrival and burst time given.

Calculate average waiting time and turnaround time

Round Robin Algorithm

In Round Robin algorithm, the processes are dispatched in first in first

out(FIFO) manner. Each processes are given limited amount of CPU

time for execution in round robin fashion. This limited amount of CPU

time is known as quantum time or time-slice or fixed time. If the

process does not complete before CPU time expires, the CPU is

preempted and given chance to next process waiting in queue.

ADVANTAGES:

1. All processes are given fair treatment.

2. Starvation does not takes place since each and every process

given CPU time.

3.Simple and widely used algorithm.

DISADVANTAGES:

1. Determination of time quantum is too critical.If it is too short,

it causes frequent context switching and lower CPU efficiency.

If it is too big, it causes poor response time for short interactive

process.

2. Process with long burst time may be starved.

Example of Round-robin Scheduling

Consider this following three processes P1,P2,P3

253 | P a g e

Space for learners:

Time slice =2

Step 1) The execution begins with process P1and it has burst time 4. As

time slice given is 2 so every process executes for 2 seconds. P2 and P3

are still in the waiting queue.

Step 2) At time =2, P2 starts executing and P1 is added to the end of the

Queue

Step 3) At time=4 , P2 is preempted as its burst time is 3 and given time

slice is 2 and added at the end of the queue. P3 starts executing.

254 | P a g e

Space for learners:

Step 4) At time=6 , P3 is preempted after time slice of 2 and add at the

end of the queue. P1 starts executing.

 Step 5) At time=8 , P1 has a burst time of 4. It has completed

execution. P2 starts execution

Step 6) P2 has a burst time of 3. P2 has already executed for 2

interval. P2 completes execution at time=9. Then, P3 starts

execution till it burst time completed.

Step 7) The average waiting time for above example is calculated as

255 | P a g e

Space for learners: Wait time

P1= 0+ 4= 4

P2= 2+4= 6

P3= 4+3= 7

CHECK YOUR PROGRESS

Q2. Consider five processes P1,P2,P3,P4,P5 with arrival and burst time.

Given time quantum=2 units. Calculate Average turnaround time and

average waiting time using Round Robin algorithm.

Shortest Job First Algorithm

Out of all available (waiting) processes,it selects the process with the

smallest burst time to execute next. If process with small waiting

time occurs frequently then problem of starvation occurs. This can be

solved with the concept of ageing. Two version of SJF exist-

preemptive or non-preemptive.

Advantages:

 Minimum average waiting time and minimum turnaround time.

 Maximum throughput provided.

 It provides a standard for other algorithms incase of average

waiting time.

Disadvantages:

 Processes having larger burst time may face starvation.

 It is difficult to know the length of the upcoming CPU request.

 Requires prior knowledge of how long a process or job will run.

Non-Preemptive SJF:

256 | P a g e

Space for learners: Once the CPU is executing a process then that process can be released

only after completing its execution. That is in the middle of execution

the process cannot be released.

1)At T=0,P4 arrives in ready state,so CPU will be allocated to it. And it

will continue till T=6 since forcefully cannot removed it.

Note that in ready queue all the processes(P1,P2,P3,P5) has arrived

within time period 6(which is burst time of P4).

2)At T=6, P1 arrives and it executes till T=7 since it has burst time of 1.

3)At T=7, P3 arrives and it executes till T=8,since it has burst time of

T=8

4)At T=8 ,P5 arrives and executes till T=11 since it has burst time T=3.

257 | P a g e

Space for learners:

5) At last T=11,P2 arrives and it executes till T=16 since it has burst

time T=5.

At T=16, no more processes are left for execution.

Now lets see Completion time(CT),turn around time(TAT), waiting

time(WT) and response time(RT).

Therefore from the above we can easily calculate average turnaround

time which is 39/5=7.8 and average waiting time which is 23/5=4.6.

Note: Response time is the time at which CPU responded for first time

minus arrival time. Eg for P2=11-1=10

STOP TO CONSIDER

Shortest Job First is a non preemptive algorithm. This algorithm

associates with each process the length of the processes next CPU burst.

The process having least next CPU burst will be one to get the CPU

first.If two processes having same length arrives and waiting for CPU

then FCFS scheduling takes place to break the tie.

258 | P a g e

Space for learners: CHECK YOUR PROGRESS

Q3. Consider five processes with arrival and burst time. Calculate

average waiting time. Apply Shortest job scheduling with non-

preemption.

PREEMPTIVE SHORTEST JOB FIRST(SJF WITH

PREEMPTION)

This algorithm is also known as Shortest remaining time

first(SRTF).Whenever new process arrives, there may be preemption of

the running process. The process can be removed while it is executing

before termination of that process. It happens if the newly arrived

process has shorter burst time then the currently running process. This

algorithm gives optimal solution compared to all other algorithm.

1)At time T=0,P4 arrived at ready state, so CPU is allocated to P4

259 | P a g e

Space for learners: 2) At time T=1,P2 arrived but since remaining burst time of P4=5 and

burst time of P2=5 is same so no context switching takes place and P4

will continue till next process comes.

3) At T=2, P1 and P5 has arrived but since burst time of P1=1 so CPU is

allocated to P1 .

4)At T=3, P5 is allocated since it is in ready queue.

5)At T=4, P3 has arrived and is allocated the CPU.

6) Till now all the processes are arrived in the ready queue, so from this

time SJRN will work as same as SJF with non preemption. So at T=5,

P5=2 (remaining burst time) is short of all remaing avaible process ,so

P5 allocated to CPU.

7)At T=7, burst time of P4 =4 and P2=5, since P4 burst time is short so

P4 is allocated to CPU.

8)At T=11 , only left process in the ready queue is P2 with burst time

P2=5 and is allocated CPU.

260 | P a g e

Space for learners:

Now lets see Completion time(CT),turn around time(TAT), waiting

time(WT) and response time(RT).

Therefore from the above we can easily calculate average turnaround

time which is 33/5=6.6 and average waiting time which is 17/5=3.4

STOP TO CONSIDER

In Pre-emptive Shortest Job First Scheduling., when a new process

arrives with shorter burst time then currently running process is pre-

empted or removed from CPU, and executed process with shorter

burst time. Once completes the previous suspended process is

executed.

261 | P a g e

Space for learners: CHECK YOUR PROGRESS

Q4. Consider five processes with arrival and burst time. Apply SJF

with preemption in order to calculate average waiting time.

5.4 I/O SUPERVISORS

5.4.1 I/O Structure

We know without I/O a computer system is useless. I/O is

gateway for the outside world. There are thousands of devices,

each slightly different from one another. How we

will standardize the interfaces to those devices? Some devices

provide single byte at a time (i.e. keyboard), other devices

provide whole blocks (i.e. disks, networks etc.). Some devices

must be accessed sequentially (i.e. tape), other can be accessed

randomly (i.e. disk, CD etc.). Some devices require continual

monitoring. Others generate the interrupts when they need

service. A large portion of operating system code is devoted to

managing I/O, both due to its importance to the reliability and

performance of a system and since of the varying nature of the

devices. A general purpose computer system consists of CPUs

and multiple device controllers that are connected through a

common bus. Typically, operating systems have a device driver

for each device controller. The device driver understands the

device controller and presents a uniform interface to the device

to the rest of the operating system.

262 | P a g e

Space for learners:

This figure depicts how different I/O devices are connected.

Processor is connected with cache memory which is required to

store frequently required data and instruction. Processor is

connected with bridge/memory controller. Data comes from

bridge to memory may be for some I/O devices. It is connected

with PCI bus. PCI stands for peripheral component interconnect.

This PCI bus is also known as I/O bus because it is dedicated to

established communication between the system and I/O devices.

Monitor is an output device and is connected via graphics

controller. SCSI is a small computer system interface. With SCSI

high speed hard disks are connected. SCSI provides SCSI bus

and with SCSI, disks are connected. Integrated device electronics

(IDE disk) where multiple disk are connected with local

dedicated disk buses. Also expansion bus interfaces are

available, which provides more port. Other peripheral devices

are connected with the help of port. Ports are categorized into

two-Serial port in which against each and every clock pulse, one

263 | P a g e

Space for learners: bit at a time is sent for communication. Parallel port where

multiple number of bits can be transferred against each clock.

5.4.2 Working of an I/O Operation

STOP TO CONSIDER

In modern PC, three out of four bus types commonly found are

1.PCI bus 2.Expansion Bus. 3. SCSI Bus. High speed bandwidth

devices connected to the memory subsystem (and the CPU) via

PCI Bus, Slower low-bandwidth devices which transfers one

character at a time are connected by expansion bus. SCSI

devices are connected to a common SCSI controller via SCSI

bus.

264 | P a g e

Space for learners: When any I/O operation has to be performing by any device,

the respective device driver loads appropriate registers within

the device controller.

 The device controller in turn examines the contents of these

registers because in that registers the information or data

about what is the exact I/O operation that has to perform is

available.

 Whatever has to perform that data transferred to the local

buffer of the device controller.

 Once the transfer of data is complete, the device controller

informs the device driver that it’s finished its operation via an

interrupt.

 The device then returns control to the operating system.

 This form of interrupt-driven I/O is good for transferring

small amount of data but its produce overhead when need to

transfer large amount of data. In that case Direct Memory

Access (DMA) is used. CPU is free to do other work while

DMA is used.

 After setting up pointers, buffers and counters for the I/O

device, the device controller transfer an entire block of data

directly to or from its own buffer storage to memory with no

intervention by the CPU.

 In DMA only one interrupt is generated per block to tell the

device driver that the operation has completed. CPU perform

other task while device controller is performing these

operation.

5.4.3 Direct Memory Access

We know if we involve our CPU to perform read/write operation

from the peripheral devices, then actually we are mis-utilising the

potentiality of the CPU. CPU performs best if we involves CPU for

the I/O device operation. But all the I/O devices are very slow; it

cannot get synchronized with CPU. So CPU will have long waiting

time. And CPU is not actually meant for this. So concept of DMA

265 | P a g e

Space for learners: controller has come. DMA controller does the needful data transfer

between I/O devices and the memory. DMA controller gets four

parameters-

1. Source address from where data is to be read.

2. Target address here this data is to be transferred.

3. Bytes count that is how many data is to be transferred.

4. Whether it is read or writes operation so that it can decide that

from which direction data is to be transferred.

So, after getting all this parameter the DMA controller will do the

needful data transfer in between I/O device and the memory and this

way CPU keeps busy in some other tasks. But it is suggested use of

CPU instead of DMA if device speed is fast or if CPU has nothing to do

as DMA cost is very high. There are six steps to perform data

transfer-

1. Device driver is told to transfer disk data to buffer at address x.

2. Device driver tells disk controller to transfer C bytes from disk

to buffer at address x

3. Disk controller initiates the DMA transfer.

4. Disk controller initiates the DMA transfer.

5. DMA controller transfers bytes to buffer x, increasing memory

address and decreasing c until c=0.

266 | P a g e

Space for learners:

6. When c=0, DMA interrupts CPU to signal transfer completion.

5.5 MEMORY MANAGEMENT

We know computer memory is a location of computer system used to

store information. It is a very important function of operating system. In

order to run any program, that program has to be load in computer

memory. So computer memory is important resources to execute a

program inside the computer. Therefore we should use this resource to

our fullest usage, we should not keep any program in memory which is

not executed or required in near future. So only those programs are to

be loaded in memory which is demanded in near future. Therefore the

concept of memory management comes here.

5.5.1 Binding

A) Address Binding:

1) Compile time binding: In this compilation, the absolute address will

get embedded in executable code. That means the program knows from

267 | P a g e

Space for learners: which address it is supposed to get loaded and where supposed to get

executed.

Advantage: It requires minimum set up time.

Disadvantage: If the memory space is occupied by another program,

collision takes place. The current program will overwrite the previous

existing program in memory.

2) Load time address binding: When the program gets compiled then

all the addresses will be in re-locatable address. It is the translation of

the logical addresses to physical addresses at the time of loading.

The relocating loader contains the base address in the main memory

from where the allocation would begin

3)Execution time address binding: The program has got loaded into

memory might be executing but during period of time if operating

system can move the program to one block of memory to another

memory block then it is said to be execution time address binding. The

new address will be allocated to the respective program.

B) Dynamic loading:

A program written is divided into number of modules. When the

program is in execution, the program must be in main memory. All the

modules at the same time are not required to bring in the main memory.

Dynamic loading says load the main module at first and load the other

module when they are required. That means all the module will not be

jumbled up in the main memory, which may or may not be required in

future.

C) Overlays:

Whenever assembly language program gets executed, assembler comes

into play. Assembles does this in two phase-pass 1 and pass 2. Both the

phase may not be required to be loaded in the main memory. In this

overlay comes into play. It decides which pass to reside in the memory

for execution.

5.5.2 Logical Address Versus Physical Address

The address generated by CPU is called logical address and the address

generated by the memory unit is called physical address. Memory

268 | P a g e

Space for learners: management unit converts logical address into physical address. Logical

address space is a set of all logical address generated by CPU and the

physical address space is the set of all physical address generated by the

program. Logical address is Virtual and physical address is real.

5.5.3 Contiguous Memory Allocation

In contiguous memory allocation, each process is contained in single

contiguous section of memory. All available memory resides at one

place which means unused memory are not scattered here and there

across the whole memory space.

Fixed Partitioning

Operating system uses various techniques to manage the memory. The

degree of multiprogramming says that keep more and more program in

main memory so that whenever CPU needs a process for execution, it is

easily available. Main memory must accommodate both operating

system and various user processes. The memory is divided into two

partitions. One for resident operating system and one for user processes.

We want several user processes to reside in memory at the same time.

 . In contiguous memory allocation, one of the simplest methods is

fixed size partitioning. In fixed size partitioning, memory is divided into

several fixed size partition. Each partition may contain exactly one

process. Degree of multiprogramming depends on the number of

partition.

Variable Size Partitioning

In variable size partitioning, initially all memory is available for user

processes and is considered one large block of available memory, a

hole. Eventually memory contains a set of holes of various sizes. The

operating system keeps a table initially which parts of memory are

available and which are occupied. The memory blocks available

comprise a set of holes of various sizes scattered throughout the main

memory.

So whenever new process arrives, the system searches for a hole large

enough for that process. If the hole is larger then what is required by the

process; in that case the hole is divided into two parts. One part is

269 | P a g e

Space for learners: allocated to arriving process and other is written to the set of holes.

Now when a process terminates, it releases its block of memory and

which is then placed back to set of holes. If the new hole is adjacent to

other hole, then these adjacent holes are merged to form a larger hole.

5.5.4 Partitioning Algorithm

Infixed partition, memory partition is fixed, once we allocate a process,

the leftover space is unused. For example P0 is assigned to the first hole

which is large enough for the process but the space leftover is left

unused. Since every partition is allocate to one process only so the

process left cannot be allocate to any other process. Thus causes internal

fragmentation. So it does not make sense to use various algorithms in

Fixed size partition.

The various algorithms for memory allocation for variable size

partitioning are:

Here also it creates many holes but the spaces left over can be used for

other process. That’s why it makes sense to use various algorithm in

variable size partition.

 1. First fit

 2. Next fit

 3. Best fit

 4. Worst fit

First fit: Allocate the first hole that is big enough. Scanning is done

from the beginning in order to find the hole which is big enough to size

of the process need to allocate.

Next fit: Here it allocates the first hole that is big enough. It is similar to

first fit but scanning is done from the location at which previous search

ended. Example say there are two processes. P0 is allocated first hole

which is big enough, after that scanning is performed for P1 where last

search ended.

Best fit: Allocate the smallest hole that is big enough thus it produces

smallest leftover hole. While scanning many holes may be bigger than

270 | P a g e

Space for learners: the size of process which we are going to load. So minimum of these

holes which fits better will be taken.

Worst fit: Allocate the largest hole which is big enough. It produces

largest leftover hole which may be more useful than a leftover hole

from a best fit approach. After scanning one having the maximum size

hole will be taken for loading the correct process.

First Fit:

 Fig 1 Fig 2 Fig 3

The figure shows memory layout. Consider A, C and E memory space

is occupied by some process. B,D are empty and is consider as available

memory hole. Now we have four process arriving. First P1 having

memory requirement 300, second P2 having requirement 25, third P3

having 125 and fourth P4 having 50. Now we have to check whether the

first fit able to satisfy the entire four requests or not.

So for first process with memory requirement 300, first fit checks the

first hole empty from the beginning whether hole is greater than the

arriving process size. Starting available space is 150 which is smaller

then 300, so it searches for next available space i.e. 350(D) in fig 1.

Since 350 is larger than 300, process P1 will be allocated to that

memory and thus 350-300=50 (F)is new leftover hole(fig 2). Next

process size is 25 and starting available hole is 150. Since it is satisfied

so P2 is allocate to memory hole i.e. B and thus 150-25=125(G) hole is

left in fig 3. Next third arriving process size is 125 and available space

271 | P a g e

Space for learners: is also 125(G) in fig 3. Thus this memory is occupied. Last process size

is 50 and also available hole is of size 50(F) in fig 3. Thus memory is

occupied by P4. In this way, first fit works.

Next Fit:

We have to check whether the next fit able to satisfy all the four request

or not. First P1 having memory requirement 300, second P2 having

requirement 25,third P3 having 125 and fourth P4 having 50.

 Fig 4 Fig 5 Fig 6

Consider figure 1 , Since hole D is satisfying the size of Process P1 i.e

300,so D will be occupied by Process P1,leaving 350-300=50(F) as

leftover hole shown in fig 4. Now next Process is P2 with size 25. Next

fit searches from where last searches took place i.e from D. Since F

satisfies the process P2 memory size i.e 25.So F will be allocate to

process P2 and thus 50-25=25(G) leftover hole available shown in fig 5.

Next arriving process is P3 with 125 memory requirement. G is smaller

so next fit searches next larger hole. B is satisfying thus P3 will be

allocate to hole B and thus 150-125=25(H) leftover hole available as

shown in fig 6. For the next process P4 with size 50, available hole is H

(25) which is not sufficient and also G(25) which is not sufficient. Thus

the last process P4 is not allocated memory by next fit algorithm.

BEST FIT:

272 | P a g e

Space for learners:

 Fig 7 Fig 8 Fig 9

Initially we have two free memory hole B with 150 and D with 350 in

fig 1. Consider four same process P1 with 300, P2 with 25,P3 with 125

and P4 with 150. Among this memory hole P1 occupies memory hole D

leaving 350-300=50 say F hole as shown in Figure 7. Now the available

memory holes are B with 150 and F with 50. Next process P2 has size

25 which both memory holes B and F satisfy. But since best fit searches

smallest best hole that satisfies that process so P2 occupies space F

leaving 50-25=25 say G as shown in figure 8. Now memory hole B of

size 150 and G of size 25 available. Process P3 require 125 memory

which is provided by B hole thus 150-125=25 left over hole say H in fig

9. Now, available memory hole are H and G of size 25 each. Process P4

with size 50 arrives but none of the holes satisfies P4 request. Two

holes if we sum up it gives 50 but since they are not contiguous it is not

satisfying P4 request. This is known as External fragmentation. So

Process P4 is not allocated with memory space.

Worst Fit:

273 | P a g e

Space for learners:

Fig 10 Fig 11

Initially holes of size 150 that is B and D of size 350 available as in fig

1. Process P1 size 300 is satisfied by hole D leaving 350-300=50 say F

as shown in fig 10. Next process P2 of size 25 arrives, both hole B and

F satisfies the requirement. But worst fit choose the largest hole that

satisfies the process. Thus B is occupied by process P2, leaving 150-

25=125 say G as shown in fig 11. Process P3 arrives with size 125 and

is satisfied by G. Process P4 of size 50 is satisfied by F. Thus the entire

requests are satisfied by this algorithm.

STOP TO CONSIDER

First fit scans from beginning and chooses first available block which is

large enough. Best fit chooses among the free memory partition, the

smallest sufficient partition among for a process. Worst fit is just the

opposite of best fit, allocates the process in the largest sufficient

partition among freely available partition. Next fit search for the first

sufficient partition from the last allocation point.

274 | P a g e

Space for learners: CHECK YOUR PROGRESS

Q5. 100 KB, 500 KB, 200 KB, 450 KB and 600 KB are five memory

partitions in the same order. If requests for blocks of size 212 KB, 417

KB, 112 KB and 426 KB in same order comes sequentially; then which

of the following algorithm makes the efficient use of memory?

A. Best fit algorithm

B. First fit algorithm

C. Next fit algorithm

D. Both next fit and best fit results in same

5.5.5 Paging

Paging is a physical mapping. It avoids external fragmentation. The

need of compaction is also reduced here. This is physical mapping in

which physical memory is divided into fixed size called frames. The

size of each frame is same. The logical memory is divided into fixed

size block called pages. The size of each page is same in logical

memory. Whenever a process to be executed, the pages are to be loaded

into the frames. That means size of page is equal to size of frames. Size

of pages and frames are same but number may be different. The logical

address space is generated by CPU is divided into parts page number

and page offset. By using page number we identify the corresponding

frame in physical memory using Page table. The page table contains

base address of page in the physical memory. That means in which

location Page is loaded in physical memory. The page table contain

frame number at which address location the base address of the page

resides. Frame number is added to offset by adding simply location of

physical memory.

275 | P a g e

Space for learners:

For example, suppose we have logical memory with four pages say

page 0,1,2,3. Page table contain page number 0,1,2,3. Again physical

memory is supposed divided into 7 frames. In the page table page 0

contains 3,page 1 contain 4,page 2 contain 2 and page 3 contain 5

simultaneously. Page 0 contains 3 means it is the frame number where

page 0 will be loaded in physical memory. Page 1 is loaded in frame 4

and so on. This is how paging works. See the diagram below for

understanding of above explanation.

Advantages:

1.No external fragmentation takes place

2.Efficient use of memory

3.User’s view of memory and actual physical memory are separate.

The user view memory as a simple contiguous memory that

contains only one process.But the user process is non-contigous in

physical memory.

276 | P a g e

Space for learners: Disadvantages:

0 It suffers from internal fragmentation.

1 Page table requires extra memory. So it may not be good for a

system having small RAM.

STOP TO CONSIDER

It is a fixed-size partitioning scheme. The secondary memory and

main memory are divided into equal fixed-size partitions in Paging. It

helps to avoid external fragmentation. The paging technique divides

the main memory also called physical memory into fixed-size blocks

that are known as Frames and divides the secondary memory also

called logical memory into blocks of the same size that are known

as Pages.

5.5.6 Segmentation

Here CPU generates logical address. Logical address is divided into two

parts-segment number(s) and offset (d).

Segment number (s): It is the number of bits required to represent

the segment.

277 | P a g e

Space for learners: Segment offset (d): It is the number of bits required to represent the

size of the segment.

Each segment number and offset is stored in the form of segment table.

Limit is the length of each segment and base is the starting physical

address where segments reside. Each limits and base and each segment

is checking whether it is less than equal to limit or not. If it is yes, the

physical address will be base address added with the offset. If it is

greater than segment table length register then addressing error will

occur. This is how hardware implementation for the segmentation takes

place

Advantages of Segmentation –

 No Internal fragmentation takes place.

 Segment Table consumes less space in comparison to Page table

in paging.

Disadvantage of Segmentation –

 External fragmentation takes place when the processes are loaded

and removed from the memory; the free memory space is broken

into little pieces.

STOP TO CONSIDER

External fragmentation occurs when sufficient quantity of memory

is available for a process but that available memory is not

contiguous. Internal fragmentation occurs when memory block

assigned to process is bigger than process. Some portion of memory

is left unused, as it cannot be used by another process. Thus results

in internal fragmentation.

5.6 FILE SYSTEM

A file is a named collection of related information recorded on a

secondary storage device. File can be anything. It can be document file,

audio, video etc. Secondary storage can be anything magnetic tape,

278 | P a g e

Space for learners: optical device, hard disk etc. In the computer, file is the basic logical

storage unit. According to user perspective everything is kept on a file

and the file is stored at a single place on secondary storage device. But

in secondary storage device, these files are stored as blocks. These files

may occupy a block or may occupy more than a single block and these

blocks may not be contagious. Consider an example, user kept file1,

file2, file 3 in a folder named A. From user point of view, all the three

files are in the same folder but actually these files may occupy different

blocks as shown in figure. All the information is maintained in a

directory structure which is stored at the beginning of secondary storage

device. This directory structure keeps all the information about the files

that is where the file exactly located, its address and so on. These

collections of files on secondary storage device together with directory

structure to manage, organize and to provide all the information

together form the file system or file management system task of

operating system.

Organization of files in secondary memory

5.6.1 File System Structure

File system is stored generally in secondary storage device such as hard

disk. To perform different operations file system is organized into

different layers. So the layers are

279 | P a g e

Space for learners:

The top layer is application program and the bottom layer is devices. In

between logical file system, file organization module, basic file system,

I/O control.

Application Program-The program which is developed by user is called

application program. That application program is given as input to the

logical file system.

Logical file system-It accepts the file name as input and checks whether

that file is available in directory structure. If the file is available in

directory structure then it finds location of the file as well as logical

block member of that file.

File organization module-That logical block member will be given as

input to the file organization module and it performs a mapping in order

to find physical block member in which location file is stored in hard

disk. The task of this module is to find physical member block of the

corresponding logical member.

Basic file system-Physical block member will be input to the basic file

system. Basic file system issues a command to I/O control with the help

of block member.

I/O control-I/O control accepts the command given by basic file system.

Every I/O control contains device drivers. It is duty of device drivers to

work with device. Device driver takes responsibility of interacting with

280 | P a g e

Space for learners: devices so that corresponding operation takes place. This is how the

layered structure of file system works.

5.6.2 Operations on File

The various operations which can be implemented on a file such as

read, write, open and close etc. are called file operations. Some common

operations are as follows:

1. Creating a file-

 Space for newly created file must be found in the file system.

 After that directory must have entry for the newly created

file.

2. Open operation-

 Once file is created,it has to open in order to perform any

operations.

3. Writing a file-

 Make a system call specifying both the name and the info to be

written to the file.

 A write pointer must be maintained by the system to the

location where next write should take place.

4. Reading a file-

 Use a system call that specifies the name of the file and where

in memory the next block of the file should put.

 The read pointer is updated, once the read operation taken

place.

5. Repositioning or Seek operation –

 The seek system call reposition the file pointer to particular

position in the file. Movement may be forward or backward

depending on requirement of the user.

6. Delete operation-

281 | P a g e

Space for learners: Delete operation not only remove contents of file but also

remove the file from disk inorder to freed memory space

occupied by it.

7. Truncate operation-

 This operation no doubt deleted the contents of a file but the

file is not deleted completely.

8. Close operation-

 After performing all operation ,it is suggested to close the file

so that the changes made are saved permanently and also

resources used by the file releases.

9. Append operations-

 This operation add data to the end of the file.

10. Rename operation-

 This operation is used to rename the existing file.

5.6.3 Access Methods

There are three methods to access the files

1. Sequential access

2. Direct access or relative access or random access

3. Indexed sequential access

Sequential access:

It is the simplest method of all the three method. As the name implies

information of the file are accessed one by one sequentially. For

example let’s say a file contains 100 records and the file pointer is in

50th record and we need 75th record to access. Here the file pointer

moves one by one from 50th record sequentially in order to read 75th

record. Thus it is not possible to access the 75th record directly.

Magnetic tape is an example where files are accessed sequentially.

Operations are:

Read next// It reads the next instruction pointed by pointer

282 | P a g e

Space for learners: Write next// It writes the instruction in the next position

Reset (or) rewind//moves the pointer to the beginning

Advantage: Simplest of all the three method.

Disadvantage: Time consuming since need to access each record

sequentially.

Direct access or relative access or random access:

By using this technique we can access the record directly. For the

previous example, using this technique it is possible to access the 75th

record directly without accessing one by one record sequentially.

Example Hard disk, magnetic are random access device.

Let’s see the operation of random access

Read n// read the instruction at position n pointed by pointer

Write n //write content in the location n pointed by pointer.

Position to n //file pointer can be move to any location say n here

Advantages: Pointer can be move directly to particular position in order

to access.

Disadvantage: Implementation of direct-access systems is often

difficult because of the complexity and the high level of programming

(software) support that such systems need. In addition, the cost of

developing and maintaining is greater than the expense of a sequential

processing system.

3. Indexed sequential access:

It is used mainly in order to remove drawback of sequential access.

Indexing is a data structure technique which is used to quickly locate

283 | P a g e

Space for learners: and access the data in database. From the name itself it is saying that

index are used in sequential order to access the data from the database.

It is a static index structure in order for creating, maintain and

manipulating files of data. Here records can be retrieved sequentially or

randomly by one or more keys. It is an advanced sequential file

organization.

Advantage: Searching a data in large database is very easy and quick

using this technique.

Disadvantage: Extra space in the memory is required in order to store

the index value.

STOP TO CONSIDER

Sequential access allows file to read/write sequentially up to the

location where it is attempting to read or write. In direct access the

records does not need to be in sequence because they are updated

directly and rewritten back in the same location directly. In Index

sequential index are used in sequential order to access the data from

database.

5.7 SUMMING UP

 Scheduling algorithm is use in order to schedule the process.

 Four types of scheduling algorithm are mainly discussed here. They

are round robin algorithm , First cum first serve algorithm , Shortest

job first ,shortest remaining time first.

 How memory is allocated to different process are explained using

the concept of paging and segmentation.

 Different memory partition algorithm like first fit, next fit, best fit

and worst fit are explained using example .

 Concept of file along with file structure, file access methods are

explained very clearly.

284 | P a g e

Space for learners: 5.8 ANSWER TO CHECK YOUR PROGRESS

1. Average turnaround time=8 units

 Average waiting time=4.4 units

2. Average turnaround time=8.6 units

 Average waiting time=5.8 units

3. Average waiting time(non-preemption)=5.2 units

4. Average waiting time(preemption)=4.6 units

5. D

5.9 POSSIBLE QUESTIONS

1. Among all memory management techniques …………….. is simple

to implement little operating system overhead.

2. Write difference between fixed and variable partition.

3. What is contiguous and non-contiguous memory allocation. Explain

with example.

4. What is the function of DMA? Explain with diagram.

5. Why DMA data transfer is necessary?

6. What are job queues, ready queues and device queues?

8. What are the benefits of multiprogramming?

9. What is PCB? What are the information associate with it?

10. Explain FCFS, SJF with example.

11. Explain the concept of pages, frames. What is physical and logical

memory?

12. Define swapping.

13. What do you mean by compaction?

14. Process Burst time P1 10, P2 29, P3 3, P4 7, and P5 12 given for

five different processes in milliseconds. Consider the First come First

serve (FCFS), Non Preemptive Shortest Job First (SJF), Round Robin

(RR) (quantum=10ms) scheduling algorithms. Calculate average

285 | P a g e

Space for learners: waiting time and turnaround time. Illustrate the scheduling using Gantt

chart.

15. Write about various scheduling algorithm.

5.10 REFERENCES AND SUGGESTED READINGS

 Operating System Concept by Abraham Silberschatz, Peter Baer

Galvin, Greg Gagne

 Operating System Principles (Internal and design principles) by

William Stallings

 Modern Operating Systems by Andrew S Tanenbaum/ Herbert

BOS

 Operating System Concept by Willey

286 | P a g e

Space for learners: UNIT 6: SECONDARY STORAGE

MANAGEMENT

Unit Structure:

6.1 Introduction

6.2 Unit Objectives

6.3 Mass Storage Structure

6.4 Disk Structure

6.5 Disk Scheduling Algorithm

6.6 Swap Space Management

6.7 RAID Structure

6.8. Stable Storage

6.9 Tertiary Storage Structure.

6.10 Summing Up

 6.11 Answers to Check Your Progress

6.12 Possible Questions

 6.13 References and Suggested Readings

6.1 INTRODUCTION

This unit gives an overview of secondary storage management. The

secondary storage means non-volatile memory management. The

unit explains the disk structure along with the different disk

scheduling algorithms. The swap space management is also

discussed in the unit. The Redundant Arrays of Independent Disks

(RAID) architectures are also discussed in the unit. The stable-

storage implementation is also highlighted in the unit along with the

outcomes of the disk. The tertiary storage consists of high-capacity

data achieves and it is discussed nicely in the unit.

6.2 UNIT OBJECTIVES

After going through this unit, you will be able to

 Understand about the mass storage structure.

 Learn about the disk Structure

287 | P a g e

Space for learners: Learn about the different disk scheduling algorithm

 Understand about the swap space management

 Understand about the RAID structure

 Explain the stable storage and tertiary storage

6.3 MASS STORAGE STRUCTURE

The secondary storage is those where the memory is non-volatile. It

means that the data will be intact with the device even if the device

or system turns off. The secondary storage structure is auxiliary

storage and is less expensive but has less speed than primary

storage. Non-frequent data are saved in the secondary storage.

Examples of secondary steerages are magnetic disk, pen drive,

HDD, etc.

Mass storage refers to the storage of large amounts of data. The data

are stored in persisting and machine-readable form. The mass

storage device includes tape, RAID system, HDD, magnetic tape,

optical disk, memory cards, and SSD, etc. The mass storage doesn’t

include the RAM. There are two types of the mass storage structure.

The first one is local data storage which is a Smartphone or local

computer. The other one is global data storage which includes

servers, data centres, cloud, etc.

The mass storage device is characterized by:

i) Sustainable speed of the device

ii) Seek time of the device

iii) Cost of the device

iv) The capacity of the device.

6.4 DISK STRUCTURE

The modern disk structure contains tracks and each sector contains

multiple sectors. The disks are arranged in a 1-D array of blocks.

These blocks are the storage unit of the disk structure which is

known as the sector. For each surface, a read-write desk is available

in the disk structure. The tracks on the surfaces are known as a

cylinder. The disk has the basic following structure.

288 | P a g e

Space for learners: i) The disks are in the form of platters that are covered with

magnetic media. The hard disk platters are metal whereas the

floppy disk platter is plastics.

ii) Every platter has two working surfaces and each working

surface has some rings called tracks. The tracks which are in the

same distance from the edge of the platter is known as a

cylinder.

iii) Each track is further divided into sectors. The sector contains

512 bytes of data. Some sector uses larger sector size. Each

sector contains a header and trailer.

iv) The data on a hard drive is read by read-write heads. In

standard, one head is reserved per surface, each on a separate

arm., controlled by arm assembly.

v) The storage capacity of a disk is equal to the number of heads or

number of bytes per sector.

Fig.6.1 Disk Structure

CHECK YOUR PROGRESS

1. True or False

i) Pen drive is a mass storage device

ii) Track of disk surface is known as cylinder.

iii) Hard disk platters are plastics.

2. What is a sector?

3. What is the data size of a sector?

4. What do you mean by the storage capacity of disk

structure?

289 | P a g e

Space for learners: 6.5 DISK SCHEDULING ALGORITHM

Disk scheduling is a process where the operating system schedules

the I/O requests and it is also known as I/O scheduling. Disk

scheduling is important because to manage the multiple I/O requests,

this may arrive from a different process. But only one I/O request

can be served at a time by the disk controller. In this situation, other

I/O request needs to wait in the waiting queue.

The types of disk scheduling algorithms are:

i) First Come First Serve (FCFS) Algorithm

ii) Shortest Seek Time First Scheduling

iii) SCAN Scheduling Algorithm

iv) C-Scan Scheduling Algorithm

Before discussing disk scheduling, you should learn the following

parameters.

i) Seek Time: It is time to locate the disk arm to read or write

data.

ii) Rotational Latency: It is the time taken by the sector to rotate

itself into a position to access the read and write heads.

iii) Transfer Time: It is the time to transfer the information

depending on the speed of the disk.

iv) Disk Access Time: It is the combination of seek time +

rotational latency + transfer time.

v) Disk Response Time: It is the average request waiting time to

perform its I/O operation.

6.5.1 FCFS Disk Scheduling Algorithm

The First Come First Serve (FCFS) is the simplest disk scheduling

among all. In this algorithm, the first request is always served first in

the disk queue. Though there is no starvation in the algorithm it does

not provide the fastest service. Let understand the FCFS disk

scheduling algorithm with the following examples. Let’s you have

following order of request. Request = {70, 3, 2, 40,4,6,90} and the

position of the read and write head is 5 and the total number of the

track is 100.

290 | P a g e

Space for learners:

Fig. 6.2 FCFS Disk Scheduling

The current position of the read and write head is 5. So, we start at 5.

As the algorithm is FCFS, the first move is towards 70. Then 3, 2,

40, 4, 6, and finally 90. So, the total cylinder move (seek time) is:

seek time = (70-5) + (70-3) + (3-2) + (40-2) + (40-4) + (6-4) + (90-

6) = 303

In this algorithm, every request gets a reasonable chance. But it does

not have any technique for optimization of seek time.

6.5.3 SSTF Disk Scheduling Algorithm

In Shortest Seek Time First (SSTF) algorithm, the request which has

less seek time execute first. So, the average response time is

decreased in SSTF. It increases the throughput of the scheduling.

But there is a chance of starvation in SSTF. Let’s understand the

algorithm by taking the following examples. Let’s you have a disk

that contains 100 tracks (0-100). The requests are with the track

numbers 70, 3, 2, 40, 4, 90, respectively. The current position of the

read/write head is 5. As we need the seek time for this algorithm, so

the seek times of the heads are as follows.

i) If you will from 5 to 4, then it will give you the shortest seek

time among all the requests and that is (5-4) = 1.

ii) Then from 4, the head will move 3.

iii) Then it will move to 2. From 2, it will move to 40, 70, and

finally 90.

291 | P a g e

Space for learners:

Fig. 6.3 SSTF Disk Scheduling

So, seek time = (5-2) + (90-2) = 91

6.5.3 SCAN Disk Scheduling Algorithm

In the SCAN disk scheduling algorithm, we move the head either to

the smaller value or to the larger value. In the moving path, each

request is addressed. When the disk arm reaches to end, it will move

towards reverse and all the requests are addressed. Let’s you have a

disk that contains 100 tracks (0-100). The requests are with the track

numbers 70, 3, 2, 40, 4, 90, respectively. The current position of the

read/write head is 5. Let’s the head will move towards the larger end

and it will execute as follows.

i) As head movement is towards the larger value, so it will

move in the right direction from 5. From 5 it will reach

40, 70, and then 90.

ii) From 90, it will move to 4, 3, and finally 2.

Fig. 6.4 SCAN Disk Scheduling

So, seek time = (90-5) + (90-2) = 173

292 | P a g e

Space for learners: 6.5.4 C- SCAN Disk Scheduling Algorithm

In the C-SCAN algorithm, the disk moves in a particular direction

serving the requests to the end of the direction, and then comes back

to the reverse direction until the end. From that end, only the arm

starts moving with serving the remaining requests. Let’s you have a

disk that contains 100 tracks (0-100). The requests are with the track

numbers 70, 3, 2, 40, 4, 90, respectively. The current position of the

read/write head is 5. Let’s the head will move towards the larger end

and it will execute as follows.

i) Let’s the arm move in the right direction. So its first move from

5 to 40, 70, the, 90 and finally it will go to 99.

ii) From 99, it will directly come to the reverse end, i.e. to the left

side end 0.

iii) From 0 it will go to 2, 3, and 4.

Fig. 6.5 C – SCAN Disk Scheduling

So, seek time = (99-5) + (99-0) + (4-0) = 19

CHECK YOUR PROGRESS

5. What is a FCFS disk scheduling?

6. Assuming that the disk head is located initially at 32, Find

the number of disk moves required with FCFS if the disk

queue of I/O block requests are 98, 37, 14, 124, 65, 67 .

7. Fill in the blanks

i) The set of tracks that are at one arm position make up a

___________.

ii) The time taken to move the disk arm to the desired

cylinder is called the ____________

293 | P a g e

Space for learners: 6.6 SWAP SPACE MANAGEMENT

Swapping in memory management means swapping of the process

so that the maximum number of processes sharing the CPU. It is

used multiprogramming. It is a memory management technique used

to remove a process from the main memory to secondary memory

and then bring it back to the main memory. These are known as

swap out and swap in. The area on the disk where the swapped-out

processes are stored is called swap space.

Fig. 6.6: Example of Swap space management

In Fig. 6.1, the process p1 is swapped out from the main memory to

swap space, and process p2 is swap in the main memory. So this

process is Swap in and out.

Swap space management is another low-level task of the operating

system because it deals with disk space. As mentioned above, the

process is out from main memory to secondary memory, i.e., disk

space. So, disk space is required in swap space management. But the

disk space is slower than the memory access. So it will reduce

system performance. So, the goal of swap space management is to

introduce virtual memory for better throughput.

Swap spaces are variously used by different operating systems. The

swap space may contain the entire system or process images that are

currently not in use or loaded in RAM. So it is using paging

techniques to manage the space. The size of swap space may vary

from megabytes to gigabytes. The amount of swap space needed on

a system can vary depending on the amount of physical memory, the

294 | P a g e

Space for learners: amount of virtual memory it is backing, and how the virtual memory

is used.

Swap space can reside in two ways.

i) Normal File system

ii) Separate Disk Partition

In the Normal File system, swap space may create by using the

normal file system routine. In this process, external fragmentation

can increase the swapping times. Otherwise, swap space may create

by using a raw partition. No presence of a file system is found here.

Here, algorithms are used to increase the speed of the swapping

rather than storage. So, it may increase the internal fragmentation of

the system.

6.7 RAID STRUCTURE

The performance of a single disk is less as compared to the multiple

disks. The Redundant Arrays of Independent Disks (RAID) is a

technique where multiple disks are combined to form a single disk

that increases the performance of the system along with the data

redundancy. Though the data redundancy takes extra space it

increases the reliability of the system. If a disk fails and the data is

backed up in another disk, then at the time of disk failure, the

information will not lose. You can perform the disk operation. A

RAID system is evaluated using the following parameters.

i) Reliability: It denotes the number of disk failures, but the

RAID performance will not reduce.

ii) Availability: It denotes the available time, the system for

actual use.

iii) Performance: It denotes the response time and throughput of

the RAID system.

iv) Capacity: It denotes the overall capacity of the RAID in terms

of the number of disks per block.

A RAID structure is transparent. It appears as a big disk for the user.

It has the following levels.

i) RAID 0: In this type, the blocks are “striped” across disks

without any mirror and parity. Minimum two blocks are present

in the RAID 0. As blocks are stripped, the performance of the

295 | P a g e

Space for learners: RAID in increasing as compared to the normal disk. As the

system is very simple, it can not be used for a complex system.

 Fig. 6.7: RAID 0.

ii) RAID 1: In this level of RAID, the blocks are mirrors without

stripe and parity. Here also, a minimum of two blocks are

required for the implementation. Due to no striping and parity,

the performance of the RAID 1 is more than the RAID 0. As

blocks are mirrored, excellent redundancy is achieved in

RAID 1.

Fig. 6.8 RAID 1

iii) RAID 5: In this level of RAID, the blocks are striped and

distributed parity is used in the RAID 5. Minimum 3 blocks

are used in RAID 5. As the blocks are stripped, the

performance of the RAID level 5 is increasing. The RAID 5

achieved good redundancy due to the distributed parity. In

RAID 5, the best cost-effective option is provided using both

performance and redundancy.

296 | P a g e

Space for learners:

Fig. 6.9: RAID 5

iv) RAID 10: In this level of RAID, the blocks are striped and

mirrored. This is also called a strip of the mirror. Minimum 4

blocks are used in RAID 5. Excellent performance and

redundancy are observed in RAID 10 due to the stripped and

mirror.

Fig. 6.10: RAID 10

CHECK YOUR PROGRESS

8. What are the level of RAID?

9. Can we use RAID 0 for complex system?

10. What is RAID 10?

11. Which RAID type doesn’t use parity for data protection?

12. What is the minimum number of disks required for

RAID1?

297 | P a g e

Space for learners: 6.8 STABLE STORAGE

Stable storage means no data loss even if the disk of the computer

system fails. It is a computer data storage technology that guarantees

atomicity for any read-write operation. To implement stable storage,

replication of data on different devices is required. It will help to

recover a copy of the data even if the data is removed from some

devices.

The causes of the system or device failure are defined below.

i) System Crashes

ii) User Error

iii) Carelessness

iv) Sabotage (intentional corruption of data)

v) Statement Failure

vi) Application software errors

vii) Network Failure

viii) Media Failure

ix) Natural Physical Disasters

6.9 TERTIARY STORAGE STRUCTURE

Tertiary storage consists of high-capacity data archives using vast

numbers of removable media, such as tapes or optical discs. Tertiary

storage or tertiary memory is a level below secondary storage. It

involves a robotic mechanism that will mount (insert) and dismount

removable mass storage media into a storage device according to the

system's demands; such data are often copied to secondary storage

before use.

298 | P a g e

Space for learners: Figure 6.11: Tertiary storage platforms: (A) Quantum tape library,

(B) BluRay optical jukebox [Image Source:

https://www.sciencedirect.com/topics/computer-science/tertiary-

storage]

The main objective of tertiary storage is to provide hug storage at a

low cost in terms of magnetic tapes, optical disks, and optical tapes.

They are consisting of fixed storage drives and removable media

units. The storage drives are fixed to the computer system but the

removable media can be removed to increase the storage capacity by

increasing the media units. When data on a media are accessed, the

media unit is accessed from its normal location and one storage

drive is chosen from the local computer. If there is a media unit in

the storage system, the old storage system is unloaded and ejected so

that the new media unit can load in the drive. Each storage drive

handles the driver and unit efficiently.

6.10 SUMMING UP

 The secondary storage is those where the memory is non-

volatile. It means that the data will be intact with the device

even if the device or system turns off.

 The secondary storage structure is auxiliary storage and is less

expensive but has less speed than primary storage.

 The mass storage device is characterized by:

 Sustainable speed of the device

 Seek time of the device

 Cost of the device

 The capacity of the device.

 The disks are arranged in a 1-D array of blocks. These blocks

are the storage unit of the disk structure which is known as the

sector.

 The disks are in the form of platters that are covered with

magnetic media.

 The hard disk platters are metal whereas the floppy disk platter

is plastics.

299 | P a g e

Space for learners: Every platter has two working surfaces and each working

surface has some rings called tracks. The tracks which are in the

same distance from the edge of the platter is known as a

cylinder.

 Each track is further divided into sectors. The sector contains

512 bytes of data. Some sector uses larger sector size. Each

sector contains a header and trailer.

 Disk scheduling is a process where the operating system

schedules the I/O requests and it is also known as I/O

scheduling.

 Disk scheduling is important because to manage the

multipleI/O requests, this may arrive from a different process.

 The types of disk scheduling algorithms are:

o First Come First Serve (FCFS) Algorithm

o Shortest Seek Time First Scheduling

o SCAN Scheduling Algorithm

o C-Scan Scheduling Algorithm

 The First Come First Serve (FCFS) is the simplest disk

scheduling among all. In this algorithm, the first request is

always served first in the disk queue.

 In Shortest Seek Time First (SSTF) algorithm, the request

which has less seek time execute first.

 In the SCAN disk scheduling algorithm, we move the head

either to the smaller value or to the larger value. In the moving

path, each request is addressed. When the disk arm reaches to

end, it will move towards reverse and all the requests are

addressed.

 In the C-SCAN algorithm, the disk moves in a particular

direction serving the requests to the end of the direction, and

then comes back to the reverse direction until the end. From that

end, only the arm starts moving with serving the remaining

requests.

 Swapping in memory management means swapping of the

process so that the maximum number of processes sharing the

CPU.

300 | P a g e

Space for learners: Swap space can reside in two ways.

o Normal File system

o Separate Disk Partition

 The Redundant Arrays of Independent Disks (RAID) is a

technique where multiple disks are combined to form a single

disk that increases the performance of the system along with the

data redundancy.

 The RAID has the following levels, RAID 0, RAID 1, RAID 5,

and RAID 10.

 Stable storage means no data loss even if the disk of the

computer system fails. It is a computer data storage technology

that guarantees atomicity for any read-write operation.

 Tertiary storage consists of high-capacity data archives using

vast numbers of removable media, such as tapes or optical discs.

6.11 ANSWERS TO CHECK YOUR PROGRESS

1. i) True ii) True iii) False

2. The modern disk structure contains tracks and each sector

contains multiple sectors. The disks are arranged in a 1-D array

of blocks. These blocks are the storage unit of the disk structure

which is known as the sector.

3. The data size of a sector is 512 bytes.

4. The storage capacity of a disk is equal to the number of heads or

number of bytes per sector.

5. The First Come First Serve (FCFS) is the simplest disk

scheduling among all. In this algorithm, the first request is

always served first in the disk queue. Though there is no

starvation in the algorithm it does not provide the fastest

service.

6. 321.

7. i) Cylinder ii) Seek Time

8. The levels of RAID are RAID 0, RAID 1, RAID 5, and RAID

10.

9. No

301 | P a g e

Space for learners: 10. In RAID 10, the blocks are striped and mirrored. This is

also called a strip of the mirror. Minimum 4 blocks are used in

RAID 5. Excellent performance and redundancy are observed in

RAID 10 due to the stripped and mirror.

11. RAID 1.

12. 2.

6.12 POSSIBLE QUESTIONS

Short answer type questions:

1. What do you mean by mass storage?

2. What are the characteristics of mass storage?

3. Define the term cylinder and sector of disk structure.

4. Explain the term seek time and rotational latency.

5. Difference between FCFS and SSTF disk scheduling algorithm.

6. Consider a disk queue with request for input/output to block on

cylinders 98, 183, 37, 122, 14, 124, 65, 67cin that order.

Assume that the disk head is initially positioned at cylinder 53

and moving towards cylinder number 0. What is the total

number of head movements using Shortest Seek Time First

(SSTF) and SCAN algorithms?

7. What is swap space?

8. Why is the necessity of RAID structure?

9. What is stable storage?

10. What is a tertiary storage structure?

Long answer type questions

1. Explain the Disk scheduling algorithms with examples.

2. If the disk head is located initially at 32, find the number of disk

moves required with FCFS, SSTF, SCAN, and C-SCAN if the

disk queue of I/O blocks requests are 98, 37, 14, 124, 65, 67.

3. Explain about different RAID structure.

302 | P a g e

Space for learners: 6.13 REFERENCES & FURTHER READINGS

 Schaum's Outline of Operating Systems.

 Operating system concept 9E by Silberschatz, Publisher:

Wiley.

303 | P a g e

Space for learners: UNIT 7: SECURITY

Unit Structure:

7.1 Introduction

7.2 Unit Objectives

7.3 Security

7.3.1 Security Goals

7.3.2 Security Issues and Measures

7.4 Threats

7.4.1 Programs Threats

7.4.2 System Threats

7.4.3 Network Threats

7.4.4 Attack and Its Types

7.5 Cryptography

7.5.1 Types of Cryptography

7.6 User Authentication

7.7 Security Defense Mechanisms

7.8 Protect Systems and Networks with Firewalling

7.9 Computer Security Classification

7.10 Summing Up

7.11 Sample Questions

7.12 References and Suggested Readings

7.1 INTRODUCTION

Security is the state of being free from threat. One of the major

mechanisms of ensuring security is encryption. Basically security is

concerned with the unauthorized access of information. Security

ensures safe sharing of software and hardware resources of a system.

Authentication is very important in this regard. Security attacks

mainly focus on the illegal use of confidential resources such as data

files.

7.2 UNIT OBJECTIVES

After going through this unit, you will be able to

• explain the basic concepts of security, threat, attack

• discuss the various security goals

304 | P a g e

Space for learners: • explain the concept of user authentication

• discuss about cryptography, computer security classification

7.3 SECURITY

Security is a mechanism which provides protection to the system

resources. System resources can be both software and hardware like

CPU, disk, memory, data etc. stored in the system. Basically security

is used to prevent unauthorized access of these resources. It deals

with the threats that are external to the systems.

Some of the basic incidents which can be termed as security

violation are given below:

i) Theft of Data: If an unauthorized user tries to steal information

then this can be termed as theft of data.

ii) Unauthorized Modification of Data: If an unauthorized user

tries to alter the data then it is termed as unauthorized

modification of data.

iii) Unauthorized Destruction of Data: If an unauthorized user

tries to delete the data then it is termed as unauthorized

destruction of data.

7.3.1 Security Goals

Security between intended sender and receiver can be achieved

through following major security goals:

i) Confidentiality:

It is a service through which only the intended sender and the

receiver will know the actual data.

ii) Data Integrity:

It is service through which only the authorized user can access

or modify the actual data.

iii) Nonrepudiation:

It is a service through which no user can refuse the previous

commitment after doing so.

iv) Authentication:

305 | P a g e

Space for learners: It is a service through which only the authorized user can

access the system resources.

v) Availability:

The system resources need to be available for the authorized

user when needed.

7.3.2 Security Issues and Measures

Security of a system can be violated by threats and attacks. If a

system is hacked by unauthorized user then there will be loss of

confidentiality, integrity of the system resources.

Some of the important security issues are:

i) Loss of data

ii) Modification of data

iii) Misuse of data

 To protect the system from these security issues following measures

need to be taken:

i) Protection mechanisms to prevent modification and loss

of data.

ii) Control system resource sharing among the users.

iii) Authentication of the valid user needs to be done before

accessing the system resources.

iv) Cryptographic techniques need to be used to ensure

secure communication between sender and receiver.

v) Security policies need to be introduced among the

users.

vi) The site containing computer system should be

physically secured from attacker.

vii) The operating system must protect itself from

malicious attacks.

viii) Secure network communication must be established

among the systems.

ix) Anti-Malware programs need to be used to protect the

system.

306 | P a g e

Space for learners: x) To protect the system from network threats firewall is

used.

7.4 THREATS

Threat can potentially harm the system resources. This means

alteration or hiding or destroying the actual content of a message,

occupying hard drive space and illegal use of passwords.

Fig. 7.1: Types of Threats

7.4.1 Program Threats

When a program is created by a user is used by another user then

misuse of the program may occur. If misuse of the program is

happened then this event is termed as program threat. Some of the

examples of program threats are Trojan horse, Trap door, Buffer

overflow and Logic bomb.

i) Trojan horse: This program sits ideally and transmits all

the information to the attacker. Suppose if you login to a

site using browser and if the Trojan horse is attached with

the browser then the user id and password will be stored

by the Trojan horse and it sends the user id and password

to the attacker.

ii) Trap door: It is a program which is installed in a system

and has some security hole in the code and due to this if

the program performs illegal actions without the

knowledge of the user then it is called to have a Trap

Door.

CHECK YOUR PROGRESS

1. What are the major security goals?

2. What are the different security issues a system can have?

3. How security can be achieved?

Threats

Program Threats Network Threats System Threats

307 | P a g e

Space for learners:

iii) Buffer overflow: Suppose a program is created by a user

and that program is installed in another system, and this

program consumes all the resources of the system where it

is being installed. In this situation Buffer Overflow may

occur.

iv) Logic Bomb: This situation is very hard to detect. Here,

an installed program misbehaves when certain conditions

met otherwise it works as a genuine program.

7.4.2 System Threats

The misuse of Operating System (OS) and user files is termed as

system threats. For example, mostly we install OS in C drive. There

are many hidden folders in program files and few of the files we

cannot even access. But these files can be accessed by the attackers

by launching worms or viruses. Some of the examples of System

Threats are Worms, Virus etc.

i) Worms: Worms create duplicate copies which contain

malicious code that simply consume system resources and deny

service of the user. This slows down the system.

ii) Virus: This can delete or alter the information available in a

system. It contains small section of code embedded in a program.

When this program is accessed by the user, the virus starts getting

embedded in other files.

7.4.3 Network Threats

The misuse of user’s confidential information while accessing the

network without the knowledge of the user leads to network threats.

Some of the examples of network threats are Port Scanning, Denial

of Service etc.

i) Port Scanning: It is a mechanism through which

unauthorized user can detect the system vulnerabilities to attack

the system.

308 | P a g e

Space for learners: ii) Denial of Service: This prevents authorized access of a user.

For example, if denial of service attacks in the browser’s content

setting then user may not be able to use the internet.

7.4.4 Attack

Attack is a kind of threat to a system from malicious users. It is of

two types namely Active Attack and Passive Attack.

i) Active Attack: In this attack, the attacker tries to alter the

content of the message. This type of attack can be easily

detected so proper cure is needed. Here, attacker uses

information to launch attack on the target. Example of active

attack: Masquerade, Replay, Modification of Messages,

Denial of Service.

ii) Passive Attack: In this attack, the attacker learns and uses

information of the message and listens to the traffic to launch

attack on the target. It is difficult to detect so prevention is

better in case of passive attack. Example of passive attack:

Release of Message Content, Traffic Analysis.

7.5 CRYPTOGRAPHY

It is a technique to hide the actual content from unauthorized user. It

is the study and practice of different mechanisms for secure

communication in the presence of unauthorized user in between the

intended sender and receiver. Here we have two basic terminologies,

CHECK YOUR PROGRESS

4. State the examples of program threats, system threats and

network threats.

5. Differentiate between active attack and passive attack.

STOP TO CONSIDER

Program threat is concerned with the misuse of ones created

program. System threat is concerned with OS of the system and

network threat is concerned with the use of internet.

309 | P a g e

Space for learners: Encryption and Decryption. Secure communication is done between

sender and receiver with the help of cipher test.

Fig. 7.2: Concept of Cryptography

Explanation of Fig. 7.2:

As we already know that cryptography ensures secure transmission

of data between sender and receiver, so the sender will apply some

encryption technique on the plain text that is the actual content and

converts it to the cipher text. This cipher text will be sent to the

receiver and at the receiver side, it will convert the cipher text to the

plain text with the help of the encryption technique that has been

used by the sender. The conversion of cipher text to plain text is

termed as decryption.

Some of the important terminologies:

Cryptanalysis: The art of decoding the cipher text in order to hack

without knowing the encryption technique is referred to as

cryptanalysis. Cryptanalyst is the person who is always busy in

cryptanalysis.

Cryptology: It is the combination of both cryptography and

cryptanalysis.

Fig. 7.3: Types of Cryptography

i) Symmetric Key Cryptography:

Here the sender and receiver of a message use the same key for

both the encryption and decryption process respectively. Data

Cryptography

Symmetric Key

Cryptography

Asymmetric Key

Cryptography

310 | P a g e

Space for learners: Encryption System (DES) is one of the most popular symmetric

key cryptography techniques.

ii) Asymmetric Key Cryptography:

Here a pair of public and private key is used for both encryption

and decryption process respectively. RSA algorithm is a good

example of asymmetric key cryptography.

7.6 USER AUTHENTICATION

Authentication is a process of identification. User authentication

means identifying whether the user is a valid user or not. Suppose,

you login to e-commerce site using the user id and password. The

user id and password are the essential credentials to authenticate

your identification. Normally in our personal computer we use to

provide PIN or Fingerprint or Password to protect our system from

unauthorized access.

User of a system can be authenticated using the following

mechanisms:

i) Using password

Users normally have their own user id and password to

access the system resources. Password is a combination of

special characters, numbers, and alphabets. Now a days,

One Time Password (OTP) is also popularly used to

access resources. Normally OTP is sent to the registered

mobile number or email id.

ii) Using physical object

Users normally use to withdraw cash in Automated Teller

Machine (ATM) with the help of a unique card which is

registered with the user only with a secured PIN.

iii) Using biometric

User authentication using biometric method is the most

safeguard mechanism to protect the resources. Here

physical characteristics of user like fingerprint, voice, and

retina are used for authentication purpose as these are very

difficult to forge. Now a days, in most of the offices or

organizations punching machine is used to record the

employees attendance.

311 | P a g e

Space for learners:

7.7 SECURITY DEFENSE MECHANISMS

To ensure security of the system different defense mechanisms need

to be followed. Following are some of the efficient defense

mechanism normally used to protect the system against malicious

attacks:

i) Encryption: Plain text is converted to cipher text

(encrypted text) to hide the actual content of the

message to safeguard it from attacker.

ii) Digital Signature: User digitally or electronically

signs the data and sends it to the intended receiver.

And the receiver verifies the signature before

accessing it for security reasons.

iii) Data Integrity: There is a check value embedded with

the message and this check value is known by the

receiver and sender. Whenever sender sends message

to the receiver this check value is appended with the

message before sending it and after that the receiver

matches the check value after receiving the message

with the check value that receiver already has. If the

check value matches then receiver accepts the

message and if the check value does not match then

receiver assumes that modification has been made so

simply discards it.

iv) Access Control: This ensures that the user has the

right to access the system resources.

v) Authentication: Only the authorized users can

establish secure communication and share resources.

vi) Traffic Padding: Here some extra bits are added with

the actual content of the message for encryption.

CHECK YOUR PROGRESS

6. Define the process of user authentication.

7. What are the different ways using which authentication

of user is done?

312 | P a g e

Space for learners: 7.8 PROTECT SYSTEMS AND NETWORKS WITH

FIREWALLING

Firewall is a network security mechanism to protect the system from

network threat. Basically it monitors the incoming and outgoing

packets that consists data/information in the network and based on

the security rules it accepts or rejects the packets. It creates an

interface between internal network and incoming traffic from the

external network to protect the system from malicious threats. It can

be both software and hardware. A software firewall is a program

installed in the system. It regulates traffic through port numbers and

applications. On the other hand, hardware firewall is a equipment

installed between the network and gateway.

Some features of good firewall:

i) All the authorized incoming and outgoing packets must

pass through the firewall.

ii) Firewall must be strong enough to reject unauthorized

incoming packets.

Some limitations of firewall:

i) Inside a network if a malicious user tries to launch attack

then firewall cannot protect the network.

ii) There are some applications where we need to disable the

firewall. By doing so, there will be no control in the

incoming and outgoing traffic.

iii) Firewall does not analyze the content of the packet so if a

packet contains malicious content sent from an

authorized user then it cannot discard the packet. This

cause a threat to the system.

313 | P a g e

Space for learners: There are two types of firewall namely Host based firewall and

Network based firewall.

i) Host based firewalls: These are installed on the network,

which control incoming and outgoing packets. Host

based firewall is a software application and it comes with

the operating system. It provides protection to the

internal network. Host based firewall protects systems

from malicious attacks and unauthorized access.

ii) Network based firewalls: It operates on the network.

These firewalls filter all the incoming and outgoing

traffic across the network. It protects the internal network

from the unauthorized access of the third party. A

network based firewall might have two or more Network

Interface Cards (NICs).

Working of Firewall:

Internet is untrusted network where different computers or systems

are connected together to share resources/ information. Firewall

maintains access list where authorized and unauthorized system’s

details are stored.

Example 1: Suppose we have 3 users A, B and C. In the access list

of the firewall only user A and B have the access rights but user C

does not have the access right. When A wants to access information

through internet from B then B sends the information to A. Though

user C hacks the connection and sends another reply to user A, then

A simply discards it as C is not in the access list of the firewall. It

method is named as Packet Filtering.

Example 2: Suppose user A is currently visiting a specific site.

Firewall of user A has the record of the user name and the visiting

site in a conversation list. If an attacker hacks this connection and

sends unwanted data to the user A, then firewall rejects these data as

it already knows the visiting site from the conversation list. This

method of protection is termed as Stateful Inspection.

Example 3: Suppose user A is connected to the internet through a

different user B. And user A requests some information from the

internet via user B. User B passes the request to the internet. This

way user B is hiding user A from the attackers available in the

internet. This method of protection is termed as Proxy Firewall.

314 | P a g e

Space for learners: So, if you want to protect your system from malicious threat then

never disable the firewall.

7.9 COMPUTER SECURITY CLASSIFICATION

Computer security means protection of system resources from

unauthorized access. It prevents modification and deletion of data

from malicious users. It restricts unauthorized users. Computer

security is mainly concerned with three goals i.e. confidentiality,

integrity and availability. These points are already discussed above.

Computer security is important to safeguard the system resources

from virus and worms. It protects crucial information of users.

According to the U.S. Department of Defense Trusted Computer

System's Evaluation Criteria there are four security classifications

available for computer: A, B, C, and D[4]. In the following table

brief description of each classification is given.

Table 7.1: Security classes

Security

Classes

Description

A (Highest

Level)

This classification uses formal design specifications

and verification techniques to grant access to user

for secure communication or resource sharing.

B

This classification provides mandatory protection

system. It is of three types.

i) B1: This maintains the security label of

objects in the system. Label is used to make

decision to control the access.

ii) B2: This extends the sensitivity labels to

each system resource.

iii) B3: This allows creating user groups for

access control to grant access or restrict

CHECK YOUR PROGRESS

8. Define firewall.

9. How does firewall protect system from malicious user?

315 | P a g e

Space for learners: access to other object available in the

system.

C

This classification provides protection and user

accountability using audit capabilities. It is of two

types.

i) C1: This incorporates controls to protect

the user’s resources. Example: UNIX

versions are mostly Cl class.

ii) C2: This adds an individual-level access

control to the capabilities of a Cl level

system.

D (Lowest

Level)

This classification is used for systems that have

failed to meet the requirements of any of the other

security classes. For example, MS-DOS and

Windows 3.1 are in division D

7.10 SUMMING UP

 Security is concerned with the unauthorized access of the

system resources.

 Security mainly focuses on the confidentiality, integrity and

availability of the system resources.

 Threats like virus and worms are used by the attacker to hack a

system. To prevent this hacking we need to use some secure

communication strategies like encryption, digital signature etc.

 Threats are of three types: program threat, system threat and

network threat.

 There are two types of security attack namely active attack and

passive attack.

 Cryptography is a mechanism of secret writing. It is of two

types i.e. symmetric key cryptography and asymmetric key

cryptography.

 Firewall is one of the major mechanisms to establish security.

316 | P a g e

Space for learners: 7.11 SAMPLE QUESTIONS

1. What do you mean by security?

2. What is packet filtering?

3. Compare stateful inspection and proxy firewall.

4. What do you mean be cryptography? How it is used to secure

systems?

5. State the difference between virus and worms.

6. What are the classes of computer security? Explain.

7. Define attack. Explain the different types of attack.

8. Define threat.

9. Give some examples of program, system and network threats.

10. What are the major security goals?

11. Explain about firewall with a suitable diagram.

12. How firewall works?

13. Define access control.

14. How Trojan horse works?

7.12 REFERENCES AND SUGGESTED READINGS

• www.geeksforgeeks.org

• www.javatpoint.com

• www.tutorialspoint.com

• www.easyengineeringclasses.com

317 | P a g e

Space for learners: UNIT 8: DISTRIBUTED OPERATING

SYSTEM

Unit Structure:

8.1 Introduction

8.2 Unit Objectives

8.3 Advantages of Distributed Operating System

8.3.1 Sharing of Resources

8.3.2 Scalability

8.3.3 Computation Speedup

8.3.4 Reliability

8.3.5 Communication

8.4 Types of Network Based Operating System

8.4.1 Client Server Network

8.4.2 Peer to Peer Network

8.5 Network Structure

8.5.1 Local Area Networks

8.5.2 Wide Area Network (WAN)

8.6 Communication Structure

8.6.1 Name Resolution

8.6.2 Routing Strategies

8.6.3 Packet Strategies

8.6.4 Connection Strategies

8.6.5 Contention

8.7 Communication Protocols

8.8 Design Issues

8.9 Distributed File System

8.9.1 Naming and Transparency

8.9.2 Remote File Access

8.9.3 Stateful versus Stateless service

8.9.4 File Replication

8.9.5 Andrew File System (AFS)

8.9.6 Google File System (GFS)

8.10 Summing Up

8.11 Possible Questions

8.12 References and Suggested Readings

318 | P a g e

Space for learners: 8.1 INTRODUCTION

Distributed Operating Systems are the systems where the processors

are interdependent via some communication network in a loosely

coupled environment. Processors in a distributed system have

distinct names such as host, site, nodes, computers, system etc. Each

of the nodes has their own resources such as memory, system clock,

kernel etc. For a specific processor, the resources of all other

processors appear to be remote. They communicate with each other

with the help of different communication media such as telephone

lines or high speed buses.

The Structure of a Distributed System is as shown below:

Figure 8.1: A Distributed System

8.2 UNIT OBJECTIVES

After going through this unit you will be able to:

 Learn the basics of Distributed Operating System

 Architecture of the system

 Technologies used for setting up the system

 Protocols used for communication

 Issues in designing a DS

 A brief description about distributed file system

 Some popular DFS

Communication

Network File

Server
Resources

Clients Clients Clients

319 | P a g e

Space for learners: 8.3 ADVANTAGES OF DISTRIBUTED OPERATING

SYSTEM

Different objectives can be there for using a distributed operating

system: Sharing of Resources, Reliability, computation speed up and

communication are some of them.

8.3.1 Sharing of Resources

The nodes those are connected to a distributed network can take the

privilege of using resources from other nodes connected to the

network. Resource may be either hardware (such as printer, scanner

etc.) or software (such as text, audio or video files).If a node at site

A needs a scanner, it can access it from some other site B. In the

same way, a node at site C can access files remotely from some node

in site D. Information processing can also be done remotely with the

help of distributed database.

8.3.2 Scalability

Scalability of a system can be measured in different dimensions. It

can be in terms of size that means extension of number of users or

resources in the existing network. It can be administratively scalable,

where you can expand the number of organizations of the system. Or

the scalability can be in terms of geographical area where the

organizations connected to the system are far apart from one

another. A group of users can work on a project by geographical

scalability. They can share files of the project they are working.

They can make use of RPC (remote procedural call) and with the

help of remote login; they can edit the code written by some other

user.

8.3.3 Computation Speedup

If it is possible to split a computation into smaller parts then each of

these parts can be executed parallelly in different nodes of the

system and then recombine the sub-parts at the end of the execution.

This can speed up the computation to a great extent. Furthermore, if

a site is heavily loaded with processes, then some of the processes

can be transferred to moderately loaded sites in the network. This

technique is called load-sharing.

320 | P a g e

Space for learners: 8.3.4 Reliability

Reliability indicates the ability of the system being capable of

functioning perfectly even after the failure of one or more

components. For example, if a user has booked a railway ticket, and

before the changes are permanently stored in the database, the

system crashes, in such a scenario it is expected that changes made

by the user should persist.

If the system is build up with multiple general-purpose computers,

then working of the system will not be affected even when any of

the computers fails. But in case, each of the machines of a system is

responsible for performing some decisive task, then failure of one

machine may lead to shut down of the whole system. In general,

reliability depends upon redundancy. If one node shuts down

suddenly, then there should be some other node which is carrying all

the data and information of the previous one.

8.3.5 Communication

The sites that are connected in a distributed system can

communicate with one another with the help of message passing. In

a standalone system, message passing is done within the cooperating

processes. This idea has been expanded in distributed system to send

messages among users of different sites. Other functionalities such

as email, remote procedural calls, file transfer etc. can also be

incorporated in a distributed system. Communication can be of

different types such as unicast, multicast and broadcast. In case of

unicast communication one host will communicate with any other

host in the system, in case of multicast, one host communicates with

a number of hosts in the system and in broadcast communication,

one host communicates with every single host present in the system

at the same time.

Corporate sectors are also benefited from the distributed system. By

replacing the mainframe with a distributed system, they can get

ample number of resources from geographically dispersed areas,

enhanced functionality in a minimal cost, and better user interface

and less maintenance cost.

321 | P a g e

Space for learners:

8.4 TYPES OF NETWORK BASED OPERATING

SYSTEM

A network based operating system is a group of computers having

individual operating systems connected through a common network.

The network works as a boss for the whole system. It groups the

standalone computers and synchronizes their activities.

Network operating system can be broadly divided into two types:

Client server network and Peer to Peer network

8.4.1 Client Server Network

These types of networks are considered to be the most common type

of network operating system. The client-server concept changes

slightly depending on the context it is using. One of them is the thin

client computing, where the clients are light-weight computers

having a small amount of memory. Only the graphical user interface

is installed in the client machine and all other services are accessed

STOP TO CONSIDER

A distributed operating system is a set of loosely coupled systems

connected via some communication network. Each of the systems

has their own memory and processor. Resource sharing is possible

in a distributed system even for geographically separated systems.

A distributed system provides scalability in different aspects like

geographical area, size or administrative scalability. Computation

can be performed by dividing a problem into sub-problems.

Corporate sectors can replace mainframe with a distributed system

to reduce cost.

CHECK YOUR PROGRESS

Q1. What can be the reasons for setting up a Distributed Operating

System?

Q2. What are the attributes of the Processors of a DOS?

Q3. What is Load Sharing?

322 | P a g e

Space for learners: from the server. The client machine acts as a terminal to have access

on the operating system which is actually running on the Server.

One example of thin client computing is the 80486 system having

windows XP.

A wider sense of client server concept is used in Authentication

Server Based Network. Each of the machines in the system has an

account through which they authenticate themselves before using the

resources from the server. A server is a powerful computer that is

used for storing the information and resources to be accessed by the

systems of the network. There are different security groups for

different machines and depending on that, the user is given the

access. The server provides security to the entire network and acts

as resource manager. High cost software needs to be installed in the

server in order to ensure smooth performance of the network. This

type of network is termed as domain and the server is termed as

domain controller in the Microsoft Network (MSN)

Figure 8.2: A client-server network

This architecture is mostly used in Organizations like Universities,

colleges, banks and hospitals that need a dedicated server. It

provides the facility of combining different parts of the network and

gives concurrency transparency to its users, which means the same

file can be accessed concurrently by different users leaving the

database in a consistent state. These types of networks are useful for

large organizations because of centralized security and management.

Authentication

server

Client 1

Client 2

Client 3

Client 4

323 | P a g e

Space for learners: 8.4.2 Peer to Peer Network

There is no authentication server present in peer-to-peer network

but, the network may contain other type of servers like file server,

fax server, remote access server and so on. Each of the computers in

the network performs the services of both client and server. If any of

the systems want to access data from other system, security is

provided either by creating local account for the user or making the

resources password protected. This type of architecture is suitable

for small companies or in a home network. But if the network

becomes bigger, managing of resources and creating local account

becomes inconvenient. A user has to create hundreds of local

accounts or he may have to remember all the passwords of different

resources. On the other hand, in a client server network, user can

access the network just by entering the network password and can

avail the resources based on the permission given to him. The

administrator will assign permissions for different resources making

the task of the user much simpler.

Because of the absence of a dedicated server, compromised security

has become the main pitfall of this architecture. On the other hand,

absence of a server can reduce the cost of setting up a peer to peer

network to a great extent.

The workgroups are less expensive as compared to client-server

network for the following reasons:

 The operating system that runs on a server is costly as

compared to general operating systems.

 More complex hardware are required for the server software

 System administrator needs to take extra load for

maintenance of the tasks performed by the server.

324 | P a g e

Space for learners:

 Figure 8.3: Peer to Peer Network

8.5 NETWORK STRUCTURE

There are two types of networks LAN and WAN in a

communication network. They differ mainly in the geographical area

they cover. LAN (Local Area Network) as the name says, it covers a

small geographical area such as a department, an institution etc.

whereas, WAN(Wide Area Network) covers a large geographical

area such as a country. It combines two or more LANs by using

independent processors.

8.5.1 Local Area Networks

The Local Area Network has come into light in early 1970s. It has

been developed as a substitute for mainframe computer. Most of the

organizations prefer small computers each with its own application,

instead of having a mainframe computer. Such an environment is

more reasonable and user friendly as all the workstations have

access to both software and hardware resources. And it is quite

obvious that an organization needs to share a lot of information

among the workstations, thus bringing LAN into focus.

As the LAN is meant for a small geographical area, such as in

institutions, colleges, University Departments etc., the workstations

of a LAN are adjacent to each other as compared to those of WAN.

Because of this, the communication speed and rate of error are

comparatively low. High-priced cables such as coaxial cable or

Workstation

1

Workstation

2

Workstation

3

Workstation

4

325 | P a g e

Space for learners: fiber optic cables are used to achieve high speed and reliability. But

if the LAN is covering a long distance, the cost of the network may

increase with increasing cable length. Additionally, repeaters need to

be added to boost the signal.

Most common way to construct a LAN is Ethernet cables, defined

by IEEE standard 802.3. Speed of Ethernet cable ranges from

10mbps to 1gbps. The 802.3 standard defines the physical layer and

MAC (Medium Access Control) sub-layers of OSI protocol. It is

available in different versions.

 802.3a (10Base2) uses thick coaxial cable with a bandwidth of

10mbps and maximum possible segment length 200m. Another

variation of Ethernet cable IEEE 802.3i (10 Base T) uses Unshielded

Twisted Pair Cable as a transmission media with a maximum speed

of 10MBPS. Whereas the IEEE 802.3u (100BaseT) runs at a speed

of 100mbps. Another variation called FDDI(Fiber Distributed Data

Interface) is used by the LANs that extend up to 200kms. It uses

fiber optics cable and provides a maximum speed of 100MBPS.

STOP TO CONSIDER

A communication network is built up with two types of networks:

LAN and WAN. A LAN is preferred for small geographical areas.

The Characteristics of the transmission Media used to set up a LAN

are defined by IEEE standards. Variations in IEEE standard are

available to provide different communication Speed. A LAN can be

either wired or wireless. On the other hand, a WAN is preferred

over a large geographical area. Technologies used for WAN

connection are: leased line, dial-up connection, DSL, satellite

communication etc.

326 | P a g e

Space for learners:

Figure 8.4: A LAN Network

As shown in Figure 8.4, nodes in a LAN are of different

specifications from mainframe to personal digital assistant (PDA)

which are connected to each other by different topologies. The

network contain servers (File Server, Database Server, Application

Server, Proxy server), peripheral devices (Printer, database Files),

gateways to connect to different networks and Repeaters to amplify

the signal.

In addition to cable connection, Local Area Network comes with

wireless facility also. Wireless LANs use radio frequencies instead

of cable. It is based on IEEE standard 802.11 released in the year

1997 with a speed of 2Mbps. Different variations have evolved over

years, 802.11ax being the latest of all with a maximum possible data

rate of 1.8 Gpbs.

LAN

Node4 Node3 Node2

Node1

File

Server

Database

Server

Application

Server

Gateway

327 | P a g e

Space for learners:

8.5.2 Wide Area Network (WAN)

The Wide Area Network was emerged in late 1960s. Idea was to

connect workstations from a large geographical area, share

resources, and perform confidential task in an economic way. LANs

which are situated in different geographical area and are a part of

same organization for example SBI(State Bank of India), can easily

connect through WAN. Advanced Research Project Agency

Network (ARPANET) was the first wide area network based on

TCP/IP protocol and packet switching scheme. ARPANET initially

connected five educational institutions including University of

California and Los Angeles. With time, the researchers assembled

the “network of networks” to give birth to modern day Internet.

Internet is the largest WAN in today’s world that establishes

connections between LANs and MANs.

Some of the technologies used for setting up a WAN connection are:

Leased Line: These are dedicated lines that provide continuous data

flow and can connect two or more LANs and MANs. Leased lines

use fiber optic cable for high speed data and bandwidth.

Dial up Connection: Dial up connections use Public Switch

Telephone Network (PSTN) for establishing an Internet connection.

The telephone line is connected to a modem that converts the digital

signals of the computer to analog signals used by the telephone

lines. With times, this has become outdated because of its low data

transfer rate and dependency on telephone lines to use the internet.

That means the user is unable to use the telephone and the internet

service at the same time.

Digital Subscriber Line: Digital Subscriber Line uses twisted pair

cable for data transmission. These cables are generally used for

telephone lines. By splitting the frequency, an uninterrupted service

is provided to both phone calls and the internet. The technology

behind it is as such: a variation of OFDM (Orthogonal Frequency

CHECK YOUR PROGRESS

Q4. What are the IEEE standards used in a wired LAN network?

Q5. What is the Job of an authentication server?

Q6. Point out the differences between LAN and WAN

328 | P a g e

Space for learners: Division Multiplexing) called discrete multitone is used to divide the

bandwidth in parallel paths so that at the same time, both phone calls

and data transmission can be carried out. This is operated by the

DSL modem connected to the telephone lines.

Satellite Communication: Satellite communication has become

popular over the years for wireless internet accessibility. A satellite

communication comes in a range of Low Earth Orbit (LEO) and

Medium Earth Orbit (MEO). LEOs are mainly found in 1800 to

2100 miles above the earth and MEOs are found in 9000 to 10000

miles above the earth. Users can connect their laptops, cell phones

and personal digital assistants to wireless network using the satellite

communication.

Point to point link is used to connect the WAN with MANs and

LANs. The WAN contains a networking device called packet switch

that contains memory, Processor and input/output interfaces to

connect with another packet switch. The message is stored in the

memory, before being forwarded. Router is another networking

device that takes the decision on which path; the arrived packet

should be forwarded. There are two different routing mechanisms:

static and dynamic. The static protocols take the decision based on

the network topology, but it can’t detect a link failure and modify

the pre-defined route. On the other hand, dynamic protocols such as

OSPF and RIP are capable of detecting link failure and accordingly

update the route in the routing table dynamically.

Figure 8.5: A WAN network

ISP

Network 1

DSL

Network 3

Satellite

communication
Network 2

Satellite communication

Network 4

Lease

Line

329 | P a g e

Space for learners: 8.6 COMMUNICATION STRUCTURE

Communication Structure means the internal working of a

distributed system. Here five issues need to be dealt with.

8.6.1 Name Resolution

In a distributed system, if a process in host A wants to communicate

with a process in host B, they must know the address of each other.

Therefore every process is recognized by two parameters <host

name, id> where the host name is the unique name assigned to a

particular host and id is the process within that host. Here comes the

problem of Name resolution. Human beings communicate with the

help of names, whereas computers find it convenient to use numbers

for simplicity and better speed. Therefore, some mechanism needed

to be introduced to convert the host names into numbers or ids so

that the networking hardware can identify the receiver.

In the early days of Internet, each host used to maintain a data file

which contains the host name and corresponding address of all the

computers in the network. Whenever a system is added or removed

from the network, every host needs to update their data file. With the

growing number of networks, it has become cumbersome to update

the file every time. Here comes the concept of Domain Name

System (DNS). The protocols like TCP and IP convert the host

names to IP addresses using the procedure called name resolution.

The DNS is a distributed database system based on client/server

architecture that is used for converting Host Name to IP addresses.

A Domain Name (mostly called as Domain) is a name that is

associated with an IP address. There are various kinds of Domain

are available such as com for commercial sites, org for nonprofit

organizations, country specific domain such as .in .uk .un etc. All

these come under top level domain name where .org is a Generic

Top Level Domain (GTLD) and .uk .un are Country code Top Level

Domain (CcTLD).

When a host requests for an IP address, sayYahoo.com, the query is

resolved in reverse order. The operating system will search the IP

address in its local cache, in case it is not found, the query will be

sent to resolver server. If the IP is not present in the cache of

resolver server, then it will send it to the next level server i.e. the

root server. Root server will send the resolver server to Top Level

330 | P a g e

Space for learners: Domain Server for .com domain. The resolver server will then direct

the query to authoritative server for the second level domain i.e.

yahoo.com. The authoritative server will provide the resolver with

the IP address. The resolver will provide the host with the IP address

of Yahoo.com. The resolver server keeps the address in its cache so

that, next time when the request comes for yahoo.com, it can

directly provide with the IP address.

8.6.2 Routing Strategies

There may be different routing strategies for sending a message

from host A to another host B. Routing tables are maintained to send

packets through the most reliable path. Routing table contain the

information like network id, subnet mask, next hop and minimum

number of hops to reach the destination. Based on the network

condition, the best possible route can be updated time to time. Most

common routing strategies are: fix routing, virtual routing and

dynamic routing.

 Fixed Routing: Here the optimal path is chosen between two

hosts. The path is not updated later on, unless some hardware

failure damages it permanently. Therefore, even if the path

has a heavy traffic compared to the other paths, there is no

option to change the path and adopt some lightly loaded path.

 Virtual Routing: In virtual routing a dedicated path is given

for a particular session. Two hosts A and B can use different

routes for different session.

 Dynamic Routing: The route is assigned dynamically before

starting a communication between two sites. Messages may

be sent through different paths. Dynamic routing algorithms

such as RIP and OSPF permit the routers to share routing

information with nearby routers in order to get the optimal

path. Since the path is decided dynamically; out of order

packets may arrive at the destination. Therefore a sequence

number is added to each of the outgoing packets so that at

the receiver side, they can be reassembled. Though dynamic

routing is complex to set up, it is suitable for huge networks.

331 | P a g e

Space for learners:

It is possible to use both fixed and dynamic routing in the same

system. The sender may send a message to the gateway using a fixed

routing scheme whereas the gateway uses dynamic routing to

transfer the message to the destination network.

8.6.3 Packet Strategies

The data can be of variable length. To simplify the communication,

a message is divided into fixed length unit named as packet,

segment, frame etc. The transmission can be connectionless or

connection-oriented. In case of connectionless transmission (such as

in case of UDP), sender don’t get any information whether the

packet has reached the destination or not. If a message is divided

into multiple packets, a connection is established to ensure

reliability. In a connection oriented transmission, receiver sends an

acknowledgement to the sender for the packets received. An

acknowledgement can be either single or cumulative.

8.6.4 Connection Strategies

Three main strategies for establishing a connection are: packet

switching, message switching and circuit switching.

 Circuit Switching: If two nodes want to communicate, a

dedicated path is assigned to them. The Path cannot be used

by other processes for the entire duration of the

communication even if it is idle for some time. One of the

examples of circuit switching is telephone network. Once

user A calls another user B, others parties can’t use that line

until they hang up. Because of a dedicated communication

channel, data rate is guaranteed in a circuit switching

network but more bandwidth is needed to set up a circuit.

STOP TO CONSIDER

In order to reduce collision in the network, routing strategies are

introduced. They can help sending a packet from source to

destination through an optimal path. With advancement in

technologies, dynamic routing algorithms are introduced that can

update the path by collecting information from nearby routers.

332 | P a g e

Space for learners: Message Switching: There is no direct connection between

sender and receiver in a message switching network. Instead,

the intermediate nodes or switches receives the message and

transfers it to the next hop. Each message contains a header

that carries the information like source and destination

addresses, Error Checking code and expiry date. Each hop

needs to have sufficient resource to retransmit the message to

the next hop in the network. In case, enough resource is not

available the message is stored for an indefinite period. This

process is called store and forward. More than one message

from various senders can be sent over the same link. Though

message switching is better than packet switching strategy, it

is not suitable for real-time data transfer since the processing

takes place in each of the intermediate nodes, making the

overall process slow. Also each of the intermediate nodes

should have a large storage capacity to store the entire

message, since the message can be of various lengths.

 Packet Switching: The message is divided into variable

length data units called packets. Each of the packets contains

control information and payload. The packets are free to

follow different paths depending on the traffic of the

network. On receiving side, the packets that belong to the

same file are reassembled. Some of the advantages of this

network are: it ensures reliability as the receiver can detect

the missing packet. If a link is down, the packets can take

another link, thus making it fault tolerant. Transmission

latency is minimal. It makes best use of the network

bandwidth therefore packet switching is the most commonly

used connection strategy.

CHECK YOUR PROGRESS

Q7. What is the difference between fix routing and dynamic

routing?

Q8. How the conversion of Domain name and IP address is

performed?

333 | P a g e

Space for learners: 8.6.5 Contention

In a communication network, it is possible that more than two sites

are transmitting messages simultaneously over the same link (for

example in a mesh topology). If collision happens, there should be

some mechanism to discard the message and inform the sender, so

that the message can be retransmitted. If no mechanism is designed

to avoid collision, it may be repeated resulting degradation of the

system performance. Some of the techniques for collision detection

are discussed below:

 CSMA/CD (Carrier Sense Multiple Access/Collision

Detection): This is a media-access control (MAC) protocol

used mainly in Ethernet LANs. Each of the stations in a

network, sense the channel before starting the transmission.

In case, the channel is busy, it will abstain from transmitting

and continues to sense the channel. If the channel is free, the

station will start sending. Suppose station A and station B

starts transmitting at the same time, then both the signals will

collide. As the stations receive the collision signal, they will

stop transmitting. This is called collision detection. Each of

the stations will again try after some random amount of time.

If no collision is detected during the transmission, the sender

will complete the transmission.

As the number of nodes increases in a network, possibility of

collision also increases, resulting in performance

degradation. One solution to this problem is to limit the

number of hosts in a network. Adding more nodes in a

congested network may result in bad throughput.

 Token Passing: This is an access-control protocol

implemented in a Ring topology. A token is a small message

that contains a pre-defined bit pattern. The token is passed in

the network in either clock-wise or anti-clock wise direction.

When a node wants to transmit, it removes the token from

the network and start transmitting. No other node is allowed

to transmit without having the token. Once the node finishes

its transmission, it releases the token allowing other nodes in

the network to transmit data. If the token is lost, the system

adopts an election algorithm to select a specific site for

generating the token.

334 | P a g e

Space for learners: A token-passing protocol can give constant performance. As

the number of hops increase in the network, average waiting

time may increase but it will still perform better than that of

an Ethernet network. However, for a small network, LAN is

preferable.

8.7 COMMUNICATION PROTOCOLS

The communication network must have some set of rules for

establishing connections, transferring packets, error detection,

selecting the shortest path and so on. To deal with all these issues,

the whole process is divided into some layers. Each of the

underlying layers performs their assigned duties and sends the

message to the upper layer. A message sent by a host, passes

through all of the layers and then enters to the recipients system.

Each layer is bound to follow specific protocols while

communicating. The International Standards Organization (ISO) has

defined seven layers as described below:

 Physical Layer: This layer is responsible for transmitting the

message in the form of bits. Bit rate (the number of bits

transmitted per second) is also defined by physical layer. The

physical and logical structure of the network (known as

network topology) is defined in this layer. Along with that,

physical layer also defines the mode of transmission i.e.

duplex, half duplex and full duplex.

 Data-link Layer: Data link layer divides the bit streams sent

by the physical layer into some data units called frames. It is

responsible for detecting lost or damaged frames and adds

mechanisms for retransmission of the frames. If two or more

devices are connected to the same link, which device will get

access of the link is determined by data link layer. Flow

control is also performed in this layer.

 Network Layer: Network layer is responsible for source to

destination delivery of the packets along with assigning

logical address and selecting routes for outgoing packets.

 Transport Layer: Transport layer delivers the packet received

from network layer to the correct process within that host.

This is called process-to-process delivery. This layer

335 | P a g e

Space for learners: provides connections to the packets, performs end to end

flow and error control.

 Session Layer: This layer is responsible for identifying the

mode of communication (half duplex, duplex, full duplex) in

a particular session. This is called network dialog control.

The session layer adds check points or synchronization point

to a data stream so that in case of any failure, only the part of

the message after the check point can be retransmitted.

 Presentation Layer: The presentation layer is responsible for

translation of the messages from one format to another. As

different computers use different encoding systems, message

transferred in one format needs to be translated to some other

format. This task is performed in the presentation layer. It

also performs encryption and decryption of data. Another

responsibility of this layer is the compression of data stream

which is particularly important for multimedia data such as

video, audio etc.

 Application Layer: This layer is responsible for direct

interaction with the user. It allows a user for remote access to

a system, and controlling files in the remote system. It deals

with email and the organization of distributed databases.

Figure 8.6 explains the OSI protocol stack. In sender side, the

message travels from presentation layer to the physical layer, each of

the layers adding their own header with the message. Once the

message is converted to a bit stream, it is transferred to the receiver;

through some transmission media for example fiber optics or twisted

pair cable in case of wired medium and radio wave or microwave in

case of wireless media. On the receiving side, the message travels

from physical layer to application layer, removing the corresponding

headers in each layer. Logically each of the layers in sender side

communicates with each corresponding layer in the receiver side as

the protocols defined by a particular layer can be understood by that

specific layer only.

A message needs to cross one or more router before reaching the

intended destination. Each of the routers needs the IP address of that

message in order to direct it into the correct route and thus

unpacking the message upto the network layer. For this reason, the

physical, data link and network layers are known as hardware layers.

336 | P a g e

Space for learners:

Sender
Receiver

Router 1 Router 2

Presentation Layer

 Application Layer

 Session Layer

 Transport Layer

 Network Layer

Data link Layer

Physical Layer

Presentation Layer

Application Layer

Session Layer

Transport Layer

Network Layer

Data link Layer

Physical Layer

Transmission Media

Packet

Frame

Bit

Stream

337 | P a g e

Space for learners:

Figure 8.6: OSI protocol stack

The most widely used protocol stack is the TCP/IP protocol stack. It

has fewer layers as that of OSI model. This model is more reliable as

compared to OSI model. Application layer of TCP/IP model which

is a combination of session layer, presentation layer and application

layer, uses different protocols like HTTP, FTP, SMTP, SNMP etc.

Transport layer has two protocols UDP (User Datagram Protocol)

which is a connection less protocol and TCP (Transmission control

protocol) which is a connection-oriented protocol. Next lower layer

is the Internet Layer, the basis of which is the IP (Internet Protocol)

which routes the IP packets. There is no dedicated physical link in

TCP/IP model, allowing the data packets to travel in any physical

path.

8.8 DESIGN ISSUES

The users of a distributed system should feel like they are working

in a traditional centralized system. Transparency is one of the key

design issues in a distributed system. It can be measured in different

parameters. Location transparency hides the details of storage

location of the resources. Replication transparency hides the number

of copies present for the same data. Concurrent transparency allows

multiple users to access the same file concurrently without their

knowledge. Parallelism transparency allows parallel execution of the

activities without user’s knowledge. User mobility is another kind of

transparency where a user is allowed to login to the system from any

machine.

Fault tolerance is another important issue. A system should be able

to tolerate different kinds of failure like machine failure, crash of

storage devices, and link failure to some extent. However, the

performance of the system will reduce because of the failures. A

system is not fault tolerant if it stops working with the breakdown of

some of its components.

Another important aspect is the scalability. Scalability means how

well the system will work as it grows in terms of resources and

number of systems. Scalability can be measured in three dimensions

 Size scalability

338 | P a g e

Space for learners: Geographical scalability

 Administrative scalability.

A size scalable system should function properly when the number of

components increases. The system may experience high traffic in a

specific day. The existing database may not be able to handle the

traffic, which brings the need for adding more databases or more

servers to the system. If the system is truly scalable, adding more

resources should not reduce system’s performance and it should not

get slower. If the system is based on centralized data, centralized

service and algorithms, size scalability may have to deal with

different issues.

In case of centralized server, where a single server is responsible for

the implementation of different services, congestion may result with

growing number of users and applications. But it is unavoidable to

use centralized server in some confidential situations like banking,

medical, administration etc. where a single server is used to store all

the sensitive information and separating it by special networking

devices from the rest of the network. The problem persists in case

of centralized data also. If the Domain Name Service (DNS) is

implemented in a single database, each request over the internet

would be forwarded to that particular database causing a severe

congestion on the link. At last, the centralized algorithm is also a

bad idea. A large distributed system has tremendous number of

messages routed in different links. The idea here is to collect all the

routing information and redirect it to a single machine and the

algorithm computes the best suitable path. The information may

create heavy traffic in a part of the network. To deal with this issue,

decentralized idea has come up where no single machine stores all

the routing information and they make decision only based on local

information.

 Stop to Consider

Design issues of a distributed system bring the issue of scalability, fault

tolerance and transparency into focus. A scalable system should work

perfectly even it grows in terms of size, geographical area or administrative

organization. A fault tolerant system should not be able to tolerate faults to

some extent. The term transparency means the underlying protocols should

be hidden from the end-user.

339 | P a g e

Space for learners: Geographical scalability means whatever be the distance between

the user and the resources, the user should be able to access them

efficiently. Adding new nodes to the system should not slow down

the transmission rate. The synchronous communication approach is

suitable for small geographical area networks such as LANs. But in

case of WAN, where two processes are geographically far apart,

successful implementation of inter-process communication with

synchronous communication is not an easy task.

Administrative scalability means even if an organization spans in

many administratively independent domains, it should still be easily

manageable. Achieving an administrative scalability is the toughest

of all since it includes some non-technical issues such as policies of

an organization and cooperation of humans. Security issues are also

involved here. If a new domain is built up, all the other domains

need to protect themselves from the new domain. The new domain

may only have the read access to the files of other domains.

Similarly, in order to protect itself from malicious attacks, the new

domain may restrict its accessibility to the foreign code such as java

applets in a web browser.

8.9 DISTRIBUTED FILE SYSTEM

The nodes of a DFS (Distributed File System) can have remote

access to the files of the system; i.e. the clients and servers are

scattered over the network. Unlike the local file system, a distributed

file system has multiple copies of storage over different servers. The

DFS is implemented in a number of ways: in some systems servers

run on particular machines, while some machines work as both

client and server. The DFS may be implemented in the Operating

System itself or as distinct software that connects the traditional

operating systems with the file system.

Features of DFS are:

8.9.1 Naming and Transparency

Check Your Progress

Q9. What do you mean by size scalability? Discuss the issues that have to be faced

to ensure size scalability.

Q10. Why administrative scalability is hard to achieve?

340 | P a g e

Space for learners: The users of a computer system deal with a file with the help of file

name which is actually a logical representation. The operating

system then locates the particular data blocks (for the file) stored in

the disk. Once the file is referred by the user with a textual name,

that name is converted to some numerical value which in turn is

mapped to the blocks of disk. This mapping hides the storage details

of the file from the user. This is called abstraction. The DFS provide

file replication along with abstraction. Multiple copies of files are

stored in different systems in case of a DFS. When a file name is

referred, the mapping will come up with a set of the replicas of that

file. But the user is unaware of the existence of multiple copies.

8.9.1.1 Naming Structure

Two important aspects related to naming are location transparency

where the physical location of a file is hidden from the user and

location independence where the physical location of a file can be

changed without changing its name. Location independence is a

dynamic mapping property as the same file name is mapped into

more than one location at different times, whereas location

transparency is a static property. For these systems location

migration is not possible i.e the location of a file can’t be changed

automatically. However, manual changing of files within machines

is possible.

8.9.1.2Naming Schemes

Three naming schemes are there for a DFS. In the first scheme, a file

is identified by its host name and local name which differentiates it

from other files in the system.This scheme does not provide location

transparency or location independence. Local and remote files can

be accessed with the help of same file operation. In a DFS each of

the traditional file system is treated as one of its components. In the

first approach, some provisions are there for remote access of these

component units.

In the second approach; the remote directory can be attached with

local directories giving the appearance of a coherent directory tree.

An implementation of this approach is the Network File System

(NFS).

In the third approach, a global name structure spans all the

independent components. The file structure composed here is same

as that of a traditional file structure. But this approach is difficult to

341 | P a g e

Space for learners: implement because of some special machine specific files like

device files and binary directories that exist in UNIX environment.

The NFS directory scheme is the most difficult scheme to

implement. The reason being, any remote directory can be attached

by any machine in any of the local directories. If the server is facing

some issues, the directories added by some computer may not be

available in the global structure. An accreditation scheme is used to

decide which machine will add directories at what time. It may

happen so that the same client will be able to access a directory in

one machine while it will be denied access for that in some other

machine.

8.9.1.3 Implementation Techniques

In order to manage the mapping easily, sets of files are aggregated to

some component units and mapping is done on these components.

The textual files are mapped to low level file identifies that helps in

finding the component into which the file belongs. Structured names

are used to implement low level identifiers. They are string of bits

containing two parts: first part is for the component unit and second

part is for the file within the unit. To maintain the uniqueness of a

file, sufficient bits are used to ensure that the name used for the file

is not being used by any other file. Another way to maintain

uniqueness is to add a timestamp with the name.

8.9.2 Remote File Access

If a user wants remote access to a file, the server that is storing the

file is identified by the naming scheme. The data transfer procedure

for remote files is similar to that of traditional disk-access method.

In case of traditional disk-access method, caching is used to reduce

the input/output of disk, whereas in remote file access, caching helps

both in reducing disk input/output and network traffic. When a

request for a disk-access comes, it is first checked in the cache, if it’s

not present then it has to be brought from the server. A cache

mapping technique (least recently used) is applied to store the files

in the cache so that next time when an access request comes, there

would not be any need to go to the server, thus reducing the network

traffic. One master copy resides in the server and replicas of that

copy exists in different caches. As a file in cache is modified, that

342 | P a g e

Space for learners: modification should be reflected in the master copy to maintain the

consistency. The concept of demand paging is also implemented

exactly same as that of traditional file systems, except that the

backing store is a remote server rather than a local disk.

Consistency is another issue in file access. A client machine may

want to check whether the cached copy of data is same with the

master copy. For verifying the data, two approaches are used: in

client-initiated approach, the client will start a validity check by

contacting the server and checking whether the replica of the file is

consistent with the master copy. The validity check may be done on

every access or on first access of the file. In server initiated

approach, the server reacts to the inconsistencies. The server is

notified when the same file is opened in conflicting mode (Read-

write, write-write) by two different clients. It can disable caching for

that particular file to avoid inconsistency.

8.9.3 Stateful Versus Stateless Service

Stateful service is a connection-oriented service. Here a client first

gives open () command before accessing the file. The server stores

the file in its memory and sends a unique connection-identifier to the

file. The same identifier is used for all the file-access during a

particular session. An example of stateful service is AFS(Andrew

File System).In stateless services, each request can recognize the file

in the memory along with the read/write access of the file. There is

no need of establishing and terminating a connection here. There is

no concept of session and each file request is considered as

individual request. NFS (Network File System) is a stateless service.

Stop to Consider

Unlike the conventional file system, a distributed file system has

files from different geographical areas. The storage details of the

file are hidden from the end-user by a method called abstraction.

The DFS also ensures the features like location transparency and

location independence. For remote access of a file, caching is used

to reduce the network traffic and latency. Consistency is

maintained in a DFS with the help two approaches: client initiated

approach and server initiated approach.

343 | P a g e

Space for learners: The performance is better in case of a stateful service as it can store

the files in its cache memory thus reducing the disk access which

can’t be done by stateless service. Again a server in the stateful

service knows where a file is open, thus it can directly read the next

blocks of the file in case of sequential access. In case of a failure, the

server of a stateful protocol losses its states and a recovery protocol

is needed to restore the state. A stateless protocol does not face these

problems since all the requests are self-contained.

8.9.4 File Replication

Replication is the process of keeping multiple copies of the same

data in different nodes of a distributed system. The reasons behind

data replication are as follows: it provides better availability. The

system can work even if one or more nodes fail. Replication reduces

the latency of a file access, as the file is kept in a short distance from

the user. Since the file read operation is a non-conflicting one, the

read query request for multiple hops can be performed from

different replicas thus increasing the throughput of the overall

system.

One main problem associated with replication is consistency. Since

file replication is transparent to the user, changes made in one copy

should be reflected to all the other copies. Consistency models are

broadly divided into client centric consistency model and data-

centric consistency model. In client-centric consistency, data may

not be updated in all the servers parallelly rather; they are

propagated from one server to another. Therefore, some of the

processes may have to work with the old data which results in

compromising the consistency. But lower consistency may give

server availability and increased throughput. Some of the models

that come under client-centric consistency are: eventual consistency;

where data is updated at the end, leading to inconsistent data in some

servers. This model suffers from lost update problem. Next model is

the monotonic read; here, if a process reads a data item x, the

successive processes will get either the same value or the latest value

of x. Another model is monotonic write, where a sequence is

maintained for all the write operations of a process and value is

updated based on that sequence. Next to this model is the read your

write model, where the write operation performed by a process is

reflected in the server where a read operation is being performed on

344 | P a g e

Space for learners: the same file. Next comes the write follow read model where a

process reads the value before performing the write operation.

In data-centric consistency models an updated query is immediately

reflected in all the other servers. Therefore many update operation

are being performed at the same time. Different models are there in

data-centric consistency model. The strongest of all is the external

consistency. Any process that reads the value of a data-item x, will

get the last updated value of the write operation. Google Spanner

Distributed Database uses this consistency model. In situation-

dependent consistency, the execution order of two processes is

reflected in the same order into all the servers.

Some of the applications of distributed file systems are:

8.9.5 Andrew File System (AFS)

AFS was designed for the operating systems like BSD (Berkeley

Software Distribution), UNIX and Mach. An AFS is made up of the

structural elements called cells. Cells consist of servers and client

machines. Servers and clients belong to a particular cell. The users

can have accounts in more than one cell. The first cell, that a user

logs in, is called home cell and all the other cells are named as

foreign cells. Irrespective of the location of the user, the path of a

file in the AFS tree will always be same. File access permissions

such as read, write and update are set by the access control lists.

AFS follows stateless protocol, therefore servers and clients don’t

store the file access information. AFS runs on TCP/IP. The Remote

Procedural Call (RPC) that is designed for AFS performs the

communication between client and server irrespective of their

geographical area. Caching is applied to reduce the network load.

For each file access request, the respective file is searched in the

cache. If the file is not present then it will be accessed from the

server. In case there is any modification in the cached copy of the

file, the file is propagated back to the server. The frequently

CHECK YOUR PROGRESS

Q11. What are the advantages of DFS over traditional file

system?

Q12. What are the reasons for replicating a file?

Q13. What do you mean by stateful and stateless service?

345 | P a g e

Space for learners: accessed files are stored in “working set” of the cache, thus can be

accessed directly from the cache reducing the latency and network

load. Generally the size of cache memory is 100MB.

8.9.6 Google File System (GFS)

It was developed in the year 2003 to meet the growing demand of

data processing systems. The system is scalable and can support a

large number of clients without degradation of performance. It

supports fault tolerance while implemented in inexpensive hardware.

Like other Distributed File System, GFS ensures reliability

transparency and availability. In addition to these, some specific

design goals included in GFS are: a huge amount of data can be

stored redundantly in inexpensive computers. It is capable of

processing huge number of requests.

GFS is based on cluster based architecture. A cluster consists of one

master node that manages Meta data, a number of chunk-servers that

store the files in chunks and a number of clients. The Meta data

includes the information about who can have access to the file,

mapping the files to the memory chunks and determining the current

location of the chunks. GFS is a stateful system therefore it manages

the state information of all the clients. The client sends file access

request to the master node. In response to the request, the master

node sends Meta data to the clients. The client can then directly

contact the chunk server for the file. Fault tolerance feature is also

implemented in the system by keeping three replicas of the same

files. If a chunk server is down, then the master server can redirect

the client to one of the replicas. In case the master is down, any of

the chunk servers can act as a master by keeping a Meta data list.

8.10 SUMMING UP

 A Distributed System is a collection of independent computer

systems that have their own memory and processor.

 They may be of different specifications from single

microprocessor to general purpose computers connected

through some communication medium like twisted pair cables,

fiber optic cables and satellite communication.

346 | P a g e

Space for learners: They can be arranged either in client-server architecture or in a

peer to peer network.

 The internal working of a distributed systems deals with

different issues like name resolution, routing strategies,

collision avoidance techniques, connection strategies and it

should solve contention problem and ensure security.

 Each message travels through the layers of networking models

before reaching the destination. Implementation details of a

distributed system should be transparent to the user. S/he

should feel like working in a conventional system having no

difference between a remote file and a local file.

 The system should be scalable in different aspects like size,

administrative organization and geographical area. If some

part of the system fails, the performance of overall system

should not degrade.

 A DFS is a file system consisting of geographically dispersed

clients and servers. A user of a DFS is unaware of the location

of a file it wants to access. A local and remote file appears

same to the user.

 Different DFS have been designed based on technical needs.

Each of which have their own tradeoffs and advantages. Some

of them are useful in small networks while some are designed

for large distributed systems.

8.11 POSSIBLE QUESTIONS

1. What do you mean by a Distributed System? Explain the

advantages of a distributed system.

2. Describe the Architecture of Client-Server system and Peer-to-

Peer system

3. Briefly discuss the technologies used in LAN and WAN network

4. Describe the concept of Domain Name System. How does it

help in name resolution?

5. Describe the methods used for collision resolution

6. How does a Routing strategy help in transmitting a file in a

distributed system?

347 | P a g e

Space for learners: 7. Discuss some of the fundamental differences between Andrew

File System (AFS) and Google File System (GFS).

8.12 REFERENCES AND SUGGESTED READINGS

 Distributed Systems: Principles and Paradigms Second Edition

Andrew S Tanenbaum, Maarten Van Steen

 Operating System Concepts Seven Edition SILBERSCHATZ

GALVIN GANGE

