

(1)

M.Sc.-IT-19-I-1026GAUHATI UNIVERSITY

Institute of Distance and Open Learning

Semester- I

M.Sc.IT

Paper: INF 1026

ADVANCED COMPUTER ORGANIZATION

AND ARCHITECTURE

CONTENTS:

BLOCK I: INSTRUCTION SET ARCHITECTURE

 AND PROCESSOR DESIGN

Unit 1 : Instruction Set Design and Architecture

Unit 2 : Combinational Circuits and its Applications

Unit 3 : Computer Arithmetic

Unit 4 : Register Transfer Language and Processor Logic Design

BLOCK II: MEMORY AND INPUT OUTPUT ORGANIZATIONS

Unit 1 : Memory Organization

Unit 2 : Cache Memory

Unit 3 : Virtual Memory and Paging

Unit 4 : Basic Input Output System-I

Unit 5 : Basic Input Output System-II

BLOCK III: ADVANCED CONCEPTS OF PARALLEL

 ARCHITECTURES

Unit 1 : Basic Parallel Architecture and Instruction Pipeline

Unit 2 : Vector Processing

Unit 3 : Advanced Concepts of Computer Architecture Implicit Parallelism

Unit 4 : Advanced Concepts of Pipelining Schedule

Unit 5 : Advanced CPU Architecture

(2)

Contributors:

Mr. Kalyanbrat Medhi (Block I : Unit- 1)
Faculty, Dept. of Computer Science
Bhattadev University, Bajali, Assam
Dr. Manash Protim Bhuyan (Block I : Unit- 2)
Asstt. Prof., Dept. of Computer Science and Engineering
Golaghat Engineering College, Golaghat, Assam
Mrs. Manjula Kalita (Block I : Unit- 3)
Asstt. Prof., Dept. of Computer Science and Engineering
GIMT, Guwahati, Assam
Mr. Rahul Lahkar (Block I : Unit- 4)
Asstt. Prof., Dept. of Computer Science
Pub Kamrup College, Assam
Mr. Dipankar Dutta (Block II : Units- 1 & 2)
Asstt. Prof., Dept. of Computer Science
NERIM, Guwahati, Assam
Dr. Pranab Das (Block II : Unit- 3, Block III: Unit 1)
Asstt. Prof.(Sr.), Dept. of Computer Applications
Assam Don Bosco University, Guwahati, Assam
Mrs. Manasi Hazarika (Block II : Units- 4 & 5)
Asstt. Prof.(Sr.), Dept. of of Computer Science and Engineering
Assam Don Bosco University, Guwahati, Assam
Dr. Kshirod Sarmah (Block III : Unit- 2)
Asstt. Prof., Dept. of Computer Science
PDUAM, Bajali, Assam
Mr. Deepjyoti Saikia (Block III : Unit- 3)
Asstt. Prof., Dept. of Computer Science
Mangaldai College, Darrang, Assam
Mrs. Epsita Medhi (Block III : Unit- 4)
Research Assistant, Dept. of Information Technology
Gauhati University, Assam
Mr. Subhomoy Dey (Block III : Unit- 5)
Asstt. Prof., Dept. of Computer Science
PDUAM, Goalpara, Assam

Content Editor:

Prof. Kandarpa Kumar Sarma
Dept. of Electronics and Communication Engineering,
Gauhati University

Course Coordination:

Prof. Dandadhar Sarma Director, IDOL, Gauhati University
Prof. Anjana Kakoti Mahanta Prof., Dept. Computer Science, G.U.

Cover Page Designing:

Bhaskar Jyoti Goswami IDOL, Gauhati University

May, 2022

© Copyright by IDOL, Gauhati University. All rights reserved. No part of this
work may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, or otherwise.
Published on behalf of Institute of Distance and Open Learning, Gauhati
University by the Director, and printed at Gauhati University Press, Guwahati-
781014.

BLOCK I:

INSTRUCTION SET ARCHITECTURE AND

PROCESSOR DESIGN

1 | P a g e

Space for learners:
UNIT 1: INSTRUCTION SET DESIGN AND

 ARCHITECTURE

Unit Structure:

1.1 Introduction

1.2 Unit Objectives

1.3 Instruction Set Design

1.3.1. How many addresses

1.3.1.1. 3-address machines

1.3.1.2. 2-address machines

1.3.1.3. 1-address machines

1.3.1.4. 0-address machines

1.3.2. Types of Instructions

1.3.2.1. Data Transfer Instructions

1.3.2.2. Arithmetic Instructions

1.3.2.3. Bit Manipulation Instructions

1.3.2.4. Program Execution Transfer Instructions

1.3.2.5. Processor Control Instructions

1.3.2.6. Iteration Control Instructions

1.3.2.7. Interrupt Instructions

1.4. Addressing Modes

1.4.1. Immediate Addressing

1.4.2. Direct Addressing

1.4.3. Indirect Addressing

1.4.4. Register Addressing

1.4.5. Register indirect Addressing

1.4.6. Displacement Addressing

1.4.7. Stack Addressing

1.5. Processor Organisation

1.6. Register Organisation

1.6.1. User visible registers

1.6.2. Control and status registers

1.7. Instruction Cycle

1.7.1. The Indirect Cycle

1.7.2. Data Flow

1.8. Data Representation

1.8.1. Number Representation

1.8.1.1. Complements

1.8.2. Fixed point representation

1.8.3. Floating point representation

2 | P a g e

Space for learners:
1.8.4. Character representation

1.9. Summing up

1.10. Answers to Check Your Progress

1.11. Possible Questions

1.12. References and Suggested Readings

1.1 INTRODUCTION

In this unit, we will discuss addressing types, addressing modes and

representation of characters. The organization of computer

processor as well various registers is explained in brief. Here,

machine languages program using different addressing type is

elaborated. We will also know about the instruction cycle. At the

end of the chapter integer, fixed point representation, floating point

representation and character representation inside computer are

discussed.

1.2 UNIT OBJECTIVES

The objective of the unit is:

• To know the addressing type

• To know the addressing mode

• Overview of processor

• Overview of registers

• To know about instruction cycle

• Data representation in computer

1. 3 INSTRUCTION SET DESIGN

An instruction set is collection of machine language or assembly

language instructions that are understood by central processing unit

(CPU). The following issues are considered in instruction set

design:

• Whether operands are to be stored in registers, memory,

stack or accumulator

3 | P a g e

Space for learners:
• How many operands are present in instructions 0, 1, 2, or

3

• Whether access mode of operand are register, immediate,

indirect and so on.

• What are the operations that are supported in instruction

add, sub, mul etc.

1.3.1 How many addresses

Let us assume the statement in a high level programming language

given bellow

a = a + b + a * c

It is clear that the value of a multiply with c is added with a, b and

the final result is stored in the variable a. You know the precedence

and associativity rules of high level languages. However, you cannot

expect the computer hardware to directly understand these rules.

It requires operations to be performed in small steps. The desired

result will be produced after going through sequence of simple

steps. Hence, it eliminates the necessity for the machine to

understand about these rules. In most of the cases operands name

i.e. address is used rather than value. The machine may be

following types depending on addresses:

• 3-address machines

• 2-address machines

• 1-address machines

• 0-address machines

Here number 0, 1, 2, 3 indicates maximum number of

address/operand the machine can have.

Here we will use the convention that ‘first operand is

destination’ in an instruction. This means we will consider that the

result of operation will be stored in first operand of the instruction.

STEP TO CONSIDER

 The address may be either memory or computer registers. In a

particular machine final result of operation may be stored in first,

or last operand. Here, we consider that the first operand will hold

the result of the operation.

4 | P a g e

Space for learners:
1.3.1.1 3-address machines

The general format of a 3-address machine instruction is:

operation dst, op1, op2

Here, operation indicates opcode of the operation to be performed,

the first operand dst represent destination operand i.e. where the

result of operation will be stored, op1 and op2 indicates two source

operands between which operation is to be performed. Thus the

following instruction means:

ADD R2, R1, R0

Add the values stored in register R1 and R0, and store result in the

register R2.

When all operands of instructions are only in register then we call it

a register-register machine or a load-store machine. Instead of that

if all operands of instructions are only in memory then we call it a

memory-memory machine. The following is such an example:

ADD X, Y, Z

Add the value of variable y to the value of variable z and then store

the result in the memory location x. In a memory-memory machine

the CPU has to get the operands from memory prior to execution of

the operation. After that it has to store the result back in memory.

There are several ways to specify the address of an operand. We will

discuss this topic in addressing mode section.

Let us now see how to implement a3-address instruction for the

statement

a = a + b + a * c

Answer:

MUL R4, a, c # store a*c in R4

ADD R1, a, b # store a + b in R1

ADD R1, R1, R4 # Store result in R1

The final result of the expression can be found in register R1.

5 | P a g e

Space for learners:
1.3.1.2 2-address machines

The general format of 2-address machine instruction is:

operation dst, op

where, operation is opcode of the operation, dst represent the source

operand as well as destination, op represent the second source

operand. Let us see the following instruction

ADD R1, R2

The meaning of this instruction is to add the values stored in

registers R1 and R2, and then store the result back in register R1.

The advantage of 2-address instructions over three-address

instructions is that it helps in preserving memory, since they are

shorter. Moreover shorter instructions take less time for fetching.

The drawback having two-address instructions is that one of the

source operands is destroyed. It requires extra moves to retain the

operand as sometimes operand may be needed later.

Let us now see how to implement a 2-address instruction for the

statement

a = a + b + a * c

Answer:

MUL c, a # multiply a, b and store in c

MOV R1,c # move content of c to R1

ADD b,a # add a, b and store in b

MOV R2,b # move content of b to R2

ADD R1, R2 #add R1, R2 and store in R1

The final result of the expression can be found in register R1.

1.3.1.3 1-address machines

In a 1-address machine accumulator has a source operand and result

of operation is put back implicitly in the accumulator. The

instruction needs to indicate the second source operand. The format

of a 1-address instruction is as follows:

6 | P a g e

Space for learners:
operation op

The opcode ‘operation’ is the name of the operation to be done, op

indicates either source or destination operand. Here the instruction:

ADD a

It means addition of value of variable a with the content of

accumulator. The result of addition is put in the accumulator. The

accumulator is a special purpose register.

Let us now see how to implement a 2-address instruction for the

statement.

a = a + b + a * c

Answer:

LOAD a # load content of a in accumulator

MUL c # multiply accumulator i.e. a and c

ADD b # add b to previous contents of the

accumulator i.e. a * c + b

ADD a # a * c + b + a

STO a # store the final result in location a

The final result of the expression can be found in the memory

location a.

1.3.1.4 Zero-address machines

The zero-address machines are implemented using stack. A stack is

last in first out (LIFO) data structure that is operated by using PUSH

and POP. PUSH moves an operand from computer

memory into top of stack, on the other hand POP gets out the last

item from top of the stack. Only PUSH and POP indicates an

operand. No other opcode specify any operand. This is the reason

why it is called a zero address machine. The question is how then

operands are handled by the machine for the operation. It is done by

STOP TO CONSIDER

 As the number of address reduced the number of instruction

increases to do the same task.

7 | P a g e

Space for learners:
extraction top two elements of stack and putting the result back into

stack.

Let us see how to implement a zero-address instruction for the

statement

a = a + b + a * c

Answer:

PUSH a # push the value of a

PUSH c # push the value of c

MUL # multiply top two value a * c

PUSH b # push the value of b;

ADD # add top two value b + a * c

PUSH a # push the value of a

ADD # add top two value a + b + a * c

POP a # store in top of stack in a

The final result of the expression can be found in the memory

location a.

1.3.2 Types of Instructions

The computer supports the following types of instructions:

• Data Transfer Instructions

• Arithmetic Instructions

• Bit Manipulation Instructions

• Program Execution Transfer Instructions

• Processor Control Instructions

• Iteration Control Instructions

• Interrupt Instructions

1.3.2.1 Data Transfer Instructions

These instructions transfer data from the source to the destination

location inside the computer. The common data transfers are

among registers or between registers and memory or between the

register (s) and the input/output devices. Different computer uses

various mnemonics for the same instruction. The following are

some of the data transfer mnemonics with their meaning.

8 | P a g e

Space for learners:
• MOV: Transfer data from register to resister or resister to

memory.

• ST: Store from register (accumulator) to memory

• LD: Load data from memory to register

• PUSH: Transfer data from CPU register to top of the stack.

• POP: Transfer data from top of stack to CPU register

• XCHG: Exchange data between two given locations.

• IN: Read data from an input port to accumulator.

• OUT: Transfer data from accumulator to particular output

port.

1.3.2.2 Arithmetic Instructions

The basic arithmetic operations are addition, subtraction,

multiplication and division between two numbers. These arithmetic

operations are performed between two operands. Some of the

arithmetic operations may be performed on a single operand too.

Following a few arithmetic instructions:

• ADD: Add the contents of two source locations.

• MUL: Multiply the contents of two source locations.

• DIV: Divide content of one source locations with the other.

• SUB: Subtract content of one source locations from the

other.

• ADC: Add the contents of two source locations with carry.

• INC: Increment the content of source location by 1.

1.3.2.3 Bit Manipulation Instructions

These instructions manipulates data in bit level i.e. operations like

shift or logical. Below is a few instructions of this group with

meaning are given:

• NOT: This invert each bit of source bit pattern.

9 | P a g e

Space for learners:
• AND: Logical AND operation between each corresponding

bit of both source operand.

• OR: Logical OR operation between each corresponding bit

of both source operand.

• XOR – Perform logical Exclusive-OR operation between

each corresponding bit of both source operand.

• SHL: Perform bits shift towards left and fill zero in LSBs.

• SHR: Perform bits shift towards left and fill zero in MSBs.

1.3.2.4 Program Execution Transfer Instructions

These instructions transfer the control during an execution of

instructions. The transfer of control during execution of instruction

may be conditional or unconditional. A few such examples are

listed below:

• CALL: It calls a subprogram and saves the return address

on top stack.

• RET: Returns from subprogram/function to the main

program.

• JMP: Jumps to the given address and process the next

instruction.

• JC: Jumps when value of carry flag is 1

• JNC: Jumps when value of carry flag is 0

1.3.2.5 Processor Control Instructions

These instructions set or reset the flag values and thus control the

actions of the processor. Following are the instructions under this

group:

• STC: Set the carry flag (CF) to 1

• CLC: Reset the carry flag i.e. CF = 0

• CMC: Complement state of carry flag.

• STI: Set the interrupt flag to 1.

• CLI: Reset the interrupt flag to 0.

10 | P a g e

Space for learners:
1.3.2.6 Iteration Control Instructions

These instructions can execute a group of instructions repeatedly.

A few list of iteration control instructions are:

• LOOP: Execute a group of instructions repeatedly until the

condition is true.

• JCXZ: Jump to a given address if CX = 0

•

1.3.2.7 Interrupt Instructions

These instructions call an interrupt during execution of

instructions.

• INT: Interrupt the process and call service routine.

• INTO: Interrupt the process if OF = 1

• IRET: Return to main program from interrupt service.

Check Your Progress-1

1. When all operands of instructions are only in register then

we call it a ____________machine.

2. If all operands of instructions are only in memory then we

call it a ____________ machine.

3. The drawback having two-address instructions is that one of

the source operands is ____________.

4. In a one-address machine the result of operation is put back

implicitly in the _____________.

5. The zero-address machines are implemented using ______.

State TRUE or FALSE:

6.The processor has three types of organization.

7. The advantage of two-address instructions over three-

address instructions is that it helps in preserving memory.

8. The accumulator is a special purpose register.

9. MOV is control transfer instruction.

10. POP insert an operand from computer memory into top of

stack.

11 | P a g e

Space for learners:
1.4 ADDRESSING MODES

In a typical instruction, we see the address fields are relatively

small. The purpose of addressing mode is to reference main memory

locations as large as possible. This is the reason why a variety of

addressing modes have been implemented. The most commonly

used addressing modes are:

• Immediate

• Direct

• Indirect

• Register

• Register indirect

• Displacement

• Stack

Mode Algorithm Advantage Disadvantage

Immediate Operand=A No memory

reference

Limited operand

magnitude

Direct EA=A Simple Limited address

space

Indirect EA=(A) Large

address place

Multiple memory

reference

Register EA=R No memory

reference

Limited address

space

Register

indirect

EA=(R) Large

address place

Extra memory

reference

Displacement EA=A+(R) Flexibility Complexity

Displacement EA= top of

stack

No memory

reference

Limited

applicability

Table 1.1Basic Addressing Modes

The Table 1.1depicts the address calculation procedure for each

addressing mode. Each of the addressing modes will be represented

with different opcodes. The opcode may be one or more bits in the

instruction format.

STOP TO CONSIDER

 The effective address of operand is calculated after decoding

the opcode.

12 | P a g e

Space for learners:
1.4.1 Immediate Addressing

The immediate addressing holds the operand value in the

instruction.

Operand = A

This addressing mode is generally used to set initial values of

variables or constants. The primary advantage is that there is no

need of memory reference. Thus it saves one memory or cache cycle

in the instruction cycle. The disadvantage of immediate addressing

mode is that size of the number is limited to size of the address field.

1.4.2 Direct Addressing

In direct addressing mode the address field holds the effective

address of the operand:

EA = A

The advantage of direct addressing mode is that it needs only one

memory reference. The disadvantage this addressing mode is limited

address space accessibility.

1.4.3 Indirect Addressing

In direct addressing mode usually length of the address field is less

than word length. It causes limitation in address range. If the address

field refers to address of a word in memory, it can access a full-

length address of the operand. This way of accessing memory word

is known as indirect addressing. In indirect addressing mode the

address field contains address of another memory location where the

value of actual operand remains.

EA = (A)

The parenthesis interpreted as contents of ‘A’ is another address.

The disadvantage of indirect addressing is that it requires two

13 | P a g e

Space for learners:
memory references to fetch actual operand value, first to get its

address and next to get its value.

1.4.4 Register Addressing

The register addressing mode has similarity to direct addressing.

The difference here is that address field indicates a register instead

of main memory address:

EA = R

The register R specifies the address where the operand value

contains. The advantages of this mode are that a small address field

is needed and no memory references needed means less time

required for fetching instruction. The disadvantage of this mode is

that the available address space is limited to registers only.

1.4.5 Register Indirect Addressing

The register indirect addressing mode is similar to indirect

addressing mode. The only difference is that address field refers to a

register instead of memory location. Let us see the register indirect

address.

EA = (R)

The advantages and disadvantages of register indirect addressing

mode are similar to indirect addressing mode. But, register indirect

addressing mode has one more advantage since it uses one less

memory reference it save one cycle time when it is executed.

1.4.6 Displacement Addressing

The displacement addressing mode combines the direct addressing

with register indirect addressing. The effective address in this mode

looks like as:

EA = A + (R)

14 | P a g e

Space for learners:
This addressing mode the instruction contains two address fields,

out of which at least one of it is explicit. The value stored in one of

the addresses field (i.e. A) is used directly. The contents of second

address field i.e. register is added to A to obtain the effective

address. We will discuss three most commonly used displacement

addressing:

• Relative addressing

• Base-register addressing

• Indexing

RELATIVE ADDRESSING: The relative addressing is also

known as PC-relative addressing. In this mode of addressing the

register that implicitly referenced is program counter (PC). As

we know PC contains the address next instruction to be

executed. Hence, it is added to the address field in order to

produce the EA. This is how the effective address in this

addressing mode is a displacement relative to the address of the

instruction.

EA= PC + address field value

BASE-REGISTER ADDRESSING: In the base-register

addressing mode, the referenced register contains a main

memory address. The address field indicates a displacement

from that address, which is usually an unsigned integer.

EA=base register + address field value

INDEXING: In this addressing mode, the effective address of

the operand is calculated by adding content of index register

with address field value.

EA= IR+ address field value

The indexing mechanism is extensively used for implementing

iterative operations. Suppose a list of numbers present in

memory location starting from A and we want to add 1 to each

number on that list. Here, we have to fetch each number and

after adding 1 to it, store it back to that location. The effective

addresses that requires are A, A + 1, A + 2, . . ., and so on to last

location. It can be done easily with indexing. The value of A is

15 | P a g e

Space for learners:
stored in the instruction’s address field value, and the index

register is initialized to 0. At the end of each operation, index

register is incremented by 1.

1.4.7 Stack Addressing

The stack addressing is also referred to as a last-in-first-out or queue

pushdown list. In this addressing mode items are placed to the top of

the stack so that. Hence, the stack is partially filled at any given

time.

The stack is associated with a pointer called stack pointer (SP)

whose value refers to the top address of the stack. If the top two

item of the stack is in processor registers, the SP references the third

item of the stack. The stack pointer is a dedicated special purpose

register. It is a form of implied addressing. The instructions do not

require a memory reference; it always implicitly indicates the top of

the stack.

Check Your Progress-2

11. The purpose of addressing mode is to reference

______________ as large as possible.

12. The immediate addressing mode generally used to set

initial values of _________ or ________.

13. In direct addressing mode address field holds

__________address of the operand.

14. In indirect addressing mode the address field contains

________ of another memory location.

15. The displacement addressing mode combines the direct

addressing with _____________ addressing.

State TRUE or FALSE:

16.The advantage of direct addressing mode is that it needs

only one memory reference.

17. In register addressing mode one memory references

needed.

18. The stack is associated with a pointer called stack pointer.

19. Effective address is calculated after decoding an

instruction.

20. In stack addressing two memory references needed.

16 | P a g e

1.5 PROCESSOR OR

The computer processor need

an instruction:

• Fetch instruction: The p

memory i.e. from register, ca

• Interpret instruction: Af

to know what action to be pe

• Fetch data: During the ex

read data from computer mem

• Process data: In execution

perform either arithmetic or l

• Write data: At the end of

need to write data to

In order to do these, it clears

store intermediate data. H

internal memory.

Figure 1.1 is a block diagram

to the rest of the system thr

of the central processing unit

• Arithmetic and logic

• Control unit (CU).

• Registers

Figure1.1: Th

R ORGANISATION

or needs to do the following things to execute

The processor has to read instructions from

ter, cache or main memory.

After reading an instruction it is decoded

 be performed.

the execution of an instruction it may need to

er memory or input/output (I/O) module.

ecution time of an instruction, it may have to

tic or logical operation on data.

nd of an instruction execution, the results may

 to main memory or an I/O module.

t clears that the processors sometimes have to

ta. Hence, the processor requires a small

iagram of a processor depicting its connection

m through system bus. The vital components

g unit are

 logic unit (ALU)

.1: The block diagram of CPU

Space for learners:

17 | P a g e

Space for learners:
The ALU performs the actual processing of data. The CU controls

the data and instructions movement in the processor. It also controls

the operations of the ALU. The figure also depicts internal memory

of processor, called registers.

In general, CPU or processor organization has three categories

depending on the number of address fields:

• Single Accumulator organization

• General register organization

• Stack organization

In accumulator based organization, a special purpose register

called accumulator is used for performing the operations. In

general, register organization involves different registers in the

computation tasks. In the stack organization the calculations

performed on top of the stack. The instruction of stack

organization does not contain any address field. In general, a

combination of different organizations is mostly used.

1.6 REGISTER ORGANISATION

The computer system consists of memory in different level called

hierarchy. At top levels of the hierarchy means memory is faster

than the bellow level. In this level it is smaller as well as more

expensive. The register inside the processor is top level memory

followed by cache memory and main memory respectively. The

registers have two categories:

• User-visible registers

• Control and status registers

STOP TO CONSIDER

 The address bus, data bus and control bus are together called

system bus. Operand address bits can travel through address bus,

data bits travel trough data bus and CPU generated signal travel

through control bus. The processor interaction with main memory

is done through these buses.

18 | P a g e

Space for learners:
1.6.1 User-Visible Registers

The user-visible registers are used by assembly language

programmer in order to minimize main memory references. It can be

in the following types:

• General purpose register

• Data

• Address

• Condition codes

General-purpose registers are used to store temporary data during

execution of instruction. For a given opcode the general-purpose

register can holds the operand. This is true use of general purpose

registers. The general-purpose registers sometimes can be used for

addressing purpose (e.g., register indirect, displacement).

Data registers can be used to hold data only. It cannot be used for

calculating of operand address.

Address registers may either general purpose or devoted to an

individual addressing mode. The following are examples of it:

• Segment pointers: The segment register is used to hold the

address of the base of the segment.

• Index registers: These registers are used for auto indexing in

indexed addressing.

• Stack pointer: In stack addressing a dedicated register is used

called stack pointer.

Condition codes (flags): These are bits set by the processor

depending on result of an operation. As we know, result of

arithmetic operation may be positive, negative, zero, or overflow. In

this case a condition code (flag) is set and result is stored in memory

or register. Subsequently the code may be tested during execution of

conditional branch operation.

19 | P a g e

Space for learners:
1.6.2 Control and Status Registers

The operations of processor are controlled by variety of internal

registers. In general, these registers are not visible to programmer or

user. Here, we will discuss four such essential registers.

• Program counter (PC): It holds the address of the next

instruction to be executed.

• Instruction register (IR): It holds the address of currently

executed instruction.

• Memory address registers (MAR): It holds the address of an

instruction to be fetched.

• Memory buffer registers (MBR): Holds data that needs the

current instruction or result produced by the instruction.

Another of register that includes in a processor is called the program

status word (PSW). It contains condition code and other status

information. The followings are status flags:

• Sign: It holds sign bit of the recent arithmetic operation.

• Zero: It is set when the result of operation is 0.

• Carry: It is set if addition operation produce a carry or borrow

(for subtraction) from lower order bit.

• Equal: Set if a logical comparison of two operands is equal.

• Overflow: When arithmetic operation produces overflow it is set.

• Interrupt Enable/Disable: This flag is used to enable or disable

the interrupts.

• Supervisor: It indicates the execution mode of processor

(supervisor or user). Some of the privileged instructions are

executed only in supervisor mode. Similarly, certain memory

location can be accessed through supervisor mode only.

1.7 INSTRUCTION CYCLE

An instruction cycle goes through the following stages:

•Fetch: The processor reads the next instruction from PC

20 | P a g e

Space for learners:
•Execute: Decode the opcode and perform the required operation.

• Interrupt: If interrupt occurs, pause the current process, save

status of it and go to the interrupt.

Before elaborating instruction cycle it’s important to know one

additional stage called indirect cycle.

1.7.1 The Indirect Cycle

During instruction execution it may have one or more operands that

need memory access. In case of indirect addressing additional

memory accesses are needed. The Figure 1.2 depicts instruction

cycle.

After fetching the instruction it is checked to see if it involves any

indirect addressing. If indirect addressing involves the operands are

fetched according to indirect addressing. After execution, an

interrupt will process if occurs before fetching the next instruction.

Check Your Progress-3

21. The _______ performs the actual processing of data.

22. The CPU organization has _______ categories.

23. The computer system consists of memory in different level

called _______.

24. __________registers are used to store temporary data

during execution of instruction.

25. The execution mode of processor either _______or _____.

State TRUE or FALSE:

26.The CU controls the data and instructions movement in the

processor.

27. The segment register is used to hold the address of the base

of the segment.

28. PC holds the address of current instruction executing.

29. MBR holds the address of an instruction to be fetched.

30. Carry flag is set if addition operation produce a carry.

21 | P a g e

Space for learners:

Figure 1.2 Instruction Cycle

After fetching the instruction the operand are fetched from memory.

If the operand are in register then fetching is not required. Once

execution of instruction is completed the result may be needed to

store in main memory.

1.7.2 Data Flow

In an instruction cycle sequence of events occurs according to the

design of processor. Suppose, a processor consist of a program

counter (PC), a memory address register (MAR), a memory buffer

register (MBR), and an instruction register (IR).

Figure 1.3 Data Flow, Fetch cycle

Figure 1.3 depicts the data flow during fetch cycle. The PC holds

the address of the next instruction to be fetched. This address is

placed on the address bus through the MAR.

22 | P a g e

The CU requests a main me

instruction. The requested re

to the MBR and finally reac

incremented for fetching the

cycle, the CU checks the

operand specifier using indir

found, indirect cycle is pe

depicts this simple cycle. Th

transferred to the MAR. A

request. Then desired addre

through address bus.

Figure 1.4 D

The fetch and indirect cycl

may have various stages. It

transfer of data, read/write o

other hand the interrupt cy

cycle. It is depicted in figur

status of the PC must be in o

interrupt. So, the contents of

written to memory. For thi

reserved and it is loaded int

memory may be a stack poin

interrupt routine. Hencefort

the desired instruction.

in memory read to fetch the required for the

sted result is placed on the data bus and goes

y reached the IR. In the mean time, the PC is

ing the next instruction. At the end of fetch

s the IR to know whether it’s holding an

g indirect addressing. If indirect addressing is

is performed after fetch cycle. Figure 1.4

le. The address reference bits of the MBR are

R. After that the CU place a memory read

 address of the operand is placed in MBR

 1.4 Data Flow, Indirect cycle

t cycles are very simple. The execute cycle

es. It many involve ALU operation, register

write operation from memory or I/O. On the

t cycle is as simple as fetch and indirect

 figure 1.5. Before going to interrupt current

in order to resume normal activity after the

ents of the PC is transferred to the MBR and

or this purpose special memory location is

ded into the MAR from the CU. The special

k pointer. The PC is filled with the address of

ceforth, the next instruction cycle will fetch

Space for learners:

23 | P a g e

Figure 1.5 Da

1.8 DATA REPRESE

A digital computer represen

number system due to follow

• In digital computers all el

mode.

• Computers use binary syste

• Whatever can be done usi

done using a binary number s

1.8.1 Number represen

The numbers in computer

system. An r base number sy

number has 10 digits. So,

system. The binary numbers

called base 2 number system

digits 0, 1, 2, 3, 4, 5, 6 and

written as follows with powe

STOP TO

The instruction cycle has dif

opcode, effective address calcu

data and writing data in memor

1.5 Data Flow, Interrupt Cycle

RESENTATION

epresents all types of information in binary

following reasons:

 all electronic components operate in binary

y system where only two digits present.

ne using decimal number system can also be

mber system.

resentation

puter are represented using binary number

ber system uses r distinct digits. The decimal

. So, decimal numbers are 10-base number

mbers system has two digits ‘0’ and ‘1’. It is

 system. The octal numbers system has eight

 6 and 7. The decimal number 831.6 can be

 power of base 10.

P TO CONSIDER

as different stages fetching, decoding

s calculation, execution of operation on

emory that are executed in sequence.

Space for learners:

24 | P a g e

Space for learners:
8 x 10

2
 + 3 x 10

1
 + 1x 10

0
 + 6 x 10

-1

When a binary number 101101 is written in this way with power of

base 2, it provides decimal equivalent.

1 x 2
5
 + 0 x 2

4
 + 1 x 2

3
 + 1 x 2

2
 + 0 x 2

1
 + 1 x 2

0
 = 45

The decimal number can be converted to r base number system by

using the steps:

• At first the number is separated into its integer and fraction

parts and then each part converted separately.

• The integer part is converted to r base by dividing it

successively with r until it becomes zero.

• The remainders in reverse order give the r base equivalent.

• The fraction part is converted to r base by multiply it

repeatedly by r until its fraction part becomes zero.

Suppose, decimal number 112.8125 has to convert into binary. Here

integer part is 112 and fraction part is 0.8125. At first, we will

convert integer part 112 into binary then fraction part according to

above rules. Since binary number system is 2 base we will divide

112 by 2 until it become zero. The following table depicts the

process.

Division Remainder

112 / 2 = 56 0

56 / 2 = 28 0

28 / 2 = 14 0

14 / 2 = 7 0

7 / 2 = 3 1

3 / 2 = 1 1

1 / 2 = 0 1

Now write down the remainder in reverse order i.e. 1110000 which

is binary equivalent number of decimal integer 112. Next, the

fraction part 0.81252 is multiplied by 2. The fraction of that result is

again multiplied by 2until fraction part become zero.

STOP TO CONSIDER

The hexadecimal numbers system has 16 digits 0, 1, 2, 3, 4, 5, 6,

7, 8, 9, A, B, C, D, E and F.

25 | P a g e

Space for learners:
Multiplication Resultant integer part (R)

0.81252 x 2= 1.625 1

0.6252 x 2= 1.25 1

0.252 x 2= 0.50 0

0.50 x 2= 1.0 1

0 x 2 = 0 0

The binary equivalent of fraction will be 0.11010. Using the same

rules we can convert a decimal number to any base system.

1.8.1.1 Complements

Complements simplify the subtraction and logical manipulation in

digital computer. There are two types of complements present in r

base system namely r’s and (r – 1)’s complement. If a number N in r

base contains n digits, the (r – 1)’s complement of N is calculated as

(r
n
 – 1) – N. For a decimal number, the 9’s complement of N is (10

n

– 1) – N. Thus, 9’s complement of 545700 is 999999 – 545700 =

454299. In case of binary number, the 1’s complement of N is

calculated as (2
n
 – 1) – N. Thus, 1’s complement of 1011000 is

1111111 – 1011000 = 0100111. Simply, 1’s complement is obtained

by just toggling all bits. The r’s complement of a number N with n-

digit is calculated as n – N. This is like adding 1 to the (r – 1)’s

complement of the number. Thus, 10’s complement of 2389 is 7610

+ 1 = 7611. Similarly, 2’s complement of 101100 is 010011 + 1 =

010100.

Check Your Progress-4

31. Computers use ________ system where only two digits

present.

32. The octal numbers system has _______ digits.

33. The hexadecimal numbers system has _______ digits.

34. Complements simplify the ___________ operation.

State TRUE or FALSE:

35. The decimal integer part is converted to r base by dividing

it successively with r until it becomes zero.

36. There are two types of complements present in r base

system namely r’s and (r + 1)’s complement

37. 1’s complement is obtained by just toggling all bits.

38. The binary number system has base 2.

26 | P a g e

1.8.2 Fixed-Point Repr

All positive integer numbers

number. In order to represen

numbers must be used. Beca

these sign are represented by

bit of signed number is 0 for

point number representation

• Sign field

• Integer field

• Fractional field.

Figure 1.6: F

The 2’s complementation r

due to easier for arithmetic o

In a 32 bit register 1 bit res

reserved for the integer part

number -43.625 can be repre

1.7.

Figure 1.7: R

The sign bit 1 represent -

equivalent for decimal 43 an

binary equivalent for fraction

1.8.3 Floating-Point Re

The floating number consists

fixed point number that is ca

 Representation

mbers and zero can be considered as unsigned

present negative numbers in computer signed

. Because + and – signs are not present, rather

ted by either ‘0’ or ‘1’. The most significant

s 0 for positive and 1 for negative. The fixed-

tation has three parts as depicts in figure 1.6.

Fixed-point number representation

tion representation is common in computer

etic operations.

bit reserved for the sign. Assume 15 bits are

r part and 16 bits for the fractional part. The

represented in register as depicted in figure

1.7: Representation of -43.625

 and 000000000101011 is 15 bit binary

l 43 and 1010000000000000 represent 16 bit

raction 0.625.

int Representation

onsists of two parts. The first part is a signed

t is called mantissa. The second part exponent

Space for learners:

27 | P a g e

represents the position of th

point mantissa is either fr

number always represent in t

Figure 1.8: Floating

The mantissa M and the expo

sign as depicted in figure 1.8

base 10 for the exponent a

exponent. A floating-point n

significant bit (MSB) of the

MSB, or sign bit, is 0 a

magnitude. On the other h

sign bit, is 1. The rest of th

three ways

Signed-magnitude representa

Signed-1’s complement repre

Signed-2’s complement repre

Using floating point repres

represented in the normalize

use as sign bit, 8 bits use for

represents fractional part.

represented as depicted in fig

is (-110101.1)2 and normalize

Figure 1.9: Floatin

1.8.4 Character Repres

Different character codes

characters in bits 0 and 1. T

 of the decimal (or binary) point. The fixed

her fraction or integer. The floating point

nt in the form M x r
e
.

oating point representation in register

e exponent e present in the register with their

ure 1.8. A floating-point decimal number use

nent and binary number use base 2 for the

oint number is called normalized if the most

of the mantissa is 1. For positive integer, the

s 0 and the remaining bits represent the

ther hand for negative number, the MSB, or

t of the number can be represented in one of

resentation

t representation

t representation

representation any non-zero number can be

alized form. Suppose, in 32-bit register 1 bit

se for signed exponent, and remaining 23 bits

part. Now the decimal number −53.5 can

d in figure 1.9. The binary equivalent of -53.5

rmalized representation is (-1.101011)x2
5

loating point representation of -53.5

epresentation

odes are used to represent alphanumeric

d 1. The most commonly used character code

Space for learners:

28 | P a g e

Space for learners:
is American standard Code for Information Interchange (ASCII).

ASCII uses 7-bits that provides 128 bit-patterns. In ASCII there are

26 lowercase and uppercase letters, 10 digits, and 32 punctuation

marks. The remaining represents whitespace characters and special

control characters. The uppercase A-Z, lowercase a-z and the digits

0-9 are in continuous series.

Bit positions 654

Bit

positions

000 001 010 011 100 101 110 111 3210

NUL DLE SP 0 @ P ‘ p 0000

SOH DC1 ! 1 A Q a q 0001

STX DC2 “ 2 B R b r 0010

ETX DC3 # 3 C S c s 0011

EOT DC4 $ 4 D T d t 0100

ENQ NAK % 5 E U e u 0101

ACK SYN & 6 F V f v 0110

BEL ETB ‘ 7 G W g w 0111

BS CAN (8 H X h x 1000

HT EM) 9 I Y i y 1001

LF SUB * : J Z j z 1010

VT ESC + ; K [k { 1011

FF FS , < L \ l | 1100

CR GS - = M] m } 1101

SO RS . > N ^ n ~ 1110

SI US / ? O _ o DEL 1111

1.9 SUMMING UP

• An instruction set is collection of machine language or

assembly language instructions that are understood by

central processing unit (CPU).

29 | P a g e

Space for learners:
• The machine may be 3-address machines, 2-address

machines, 1-address machines and 0-address machines

• The computer supported instructions types are Data Transfer

Instructions, Arithmetic, Bit Manipulation, Program

Execution Transfer, Processor Control, Iteration Control and

Interrupt Instructions.

• The most commonly used addressing modes are Immediate,

Direct, Indirect, Register, Register indirect, Displacement

and Stack addressing.

• CPU or processor organization has three categories: Single

Accumulator organization, General register

organization and Stack organization.

• The register inside the processor is in top level memory

hierarchy followed by cache memory and main memory

respectively.

• The registers have two categories: user-visible registers and

control and status registers

• General-purpose registers are used to store temporary data

during execution of instruction.

• Data registers can be used to hold data only. It cannot be

used for calculating of operand address.

• Address registers may either general purpose or devoted to

an individual addressing mode.

• PC holds the address of the next instruction to be executed.

• IR holds the address of currently executed instruction.

• MAR holds the address of an instruction to be fetched.

• MBR holds data that needs the current instruction or the

result produced by the instruction.

• The use of status flags:

Sign: It holds sign bit of the recent arithmetic operation.

Zero: It is set when the result of operation is 0.

Carry: It is set if addition operation produce a carry or

borrow (for subtraction) from lower order bit.

• The numbers in computer are represented using binary

number system.

• The floating number consists of two parts. The first part is a

signed fixed point number that is called mantissa. The

second part exponent represents the position of the decimal

(or binary) point.

30 | P a g e

Space for learners:
• In ASCII there are 26 lowercase and uppercase letters, 10

digits, and 32 punctuation marks. The remaining represents

whitespace characters and special control characters.

1.10 ANSWERS TO CHECK YOUR PROGRESS

1. Register-register

2. Memory-memory

3. Destroyed

4. Accumulator

5. Stack

6. True

7. True

8. True

9. False

10. False

11. Memory location

12. Variable, constant

13. Effective

14. Address

15. Register indirect

16. True

17. False

18. True

19. True

20. False

21. ALU

22. Three

23. hierarchy

24. General

25. Supervisor, user

26. True

27. True

28. False

29. False

30. True

31. Binary

32. Eight

33. Sixteen

34. Subtraction

35. True

36. False

37. True

38. True

1.11 POSSIBLE QUESTIONS

Short answer type questions:

1. What is an instruction set?

2. Write the type of instruction for the following:

JUMP, ADD

3. What are the types of CPU organization?

4. Arrange the followings in ascending order of access time:

Secondary memory, Register, Main Memory, Cache

Memory

5. What type of buses the system bus has?

6. What is the use of immediate addressing?

7. What is the Indirect Addressing? Give examples.

31 | P a g e

Space for learners:

8. What is an accumulator?

9. Write assembly language code to evaluate

X = (A-B) + (C-D) for stack based CPU

10. What are the categories of registers?

11. What happens to PC when interrupt occurs?

12. What is floating point representation?

13. What is 1’s complement of 10011010?

14. What is 2’s complement of 11000111?

15. Convert the decimal number 26.578 into binary number.

Long answer type questions:

1. Briefly explain the various addressing modes.

2. Briefly explain the instruction cycle.

3. List any five instruction types with adequate examples.

4. Convert decimal number 56.789 into binary, octal and

hexadecimal number.

5. Briefly explain the data flow process with block diagram.

1.12 REFERENCES AND SUGGESTED

 READINGS

• Computer Architecture and Organization by B.

Govindarajalu.; TMH publication.

• Advanced Computer Architecture A systems Design

Approach by Richard Y. Kain; PHI Publication

• Computer Organization and Architecture Designing for

Performance by William Stallings; Pearson Education

• Computer System Architecture by M. Morris Mano, PHI

Publication.

---×---

Space for learners:

32 | P a g e

UNIT 2: COMBINATIONAL CIRCUITS AND ITS

 APPLICATIONS

Unit Structure

2.1 Introduction

2.2 Unit Objectives

2.3 AND-OR logic combinational circuit

2.4 AND-OR-Invert logic combinational circuit

2.5 Exclusive-OR logic

2.6 Exclusive-NOR logic

2.7 Implementing Combinational logic

2.7.1 Logic circuit design from boolean expression

2.7.2 Logic circuit design from truth table

2.8 The universal property of NAND and NOR gates

 2.8.1 The NAND gate as a universal logic element

 2.8.2 The NOR gate as a universal logic element

 2.8.3 Combinational circuit using NAND gate

 2.8.4 Combinational circuit using NOR gate

2.9 Combinational logic circuit Functionalities

 2.9.1 The comparison function

 2.9.2 The Arithmetic function

 2.9.3 Basic Adders

 2.9.3.1 The Half-Adder

 2.9.3.2 The Full-Adder

 2.9.3.3 Parallel Binary Adders

 2.9.3.4 Truth table for 4-bit parallel adder

 2.9.4 Binary Subtractor

 2.9.4.1 The Half-Subtractor

 2.9.4.2 The Full-Subtractor

 2.9.5 Comparators

 2.9.5.1 Equality

 2.9.5.2 Inequality

 2.9.6 Decoders

 2.9.6.1 The Basic Binary Decoder

 2.9.6.2 3-to-8 line Decoder

 2.9.7 Encoders

 2.9.7.1 Decimal to BCD Encoder

 2.9.8 Multiplexers

 2.9.9 Demultiplexers

2.10 Summing up

Space for learners:

33 | P a g e

2.11 Key terms

2.12 Answers to check your progress

2.13 Possible Questions

2.14 References and Suggested Readings

2.1 INTRODUCTION

This chapter describes the combinational circuits and the

applications of combinational circuits. Sum of Product (SOP) and

Product of Sum (POS) forms are the basic building blocks of the

combinational circuits. When the logic gates are connected together

to produce some specific output the resulting electronic circuit is

known as combinational circuits, the combinational circuits

don’tpossess any memory capacity. The output of the circuit always

depends on the combination of the input variables.

2.2 UNIT OBJECTIVES

The unit is describing the designing and applications of

combinational logic circuits. After completing the unit students′ will

able to:

● Analyze and apply different combinations of the

logic gates.

● Design combinational circuits from the Boolean

expressions.

● Design combinational circuits from the truth table.

● Describe the universal behaviour of NAND and NOR

logic gates.

● Explain and describe adder circuits.

● Analyze the comparator circuits.

● Describe decoders and encoders

● Describe multiplexers and demultiplexers

●

2.3 AND-OR LOGIC COMBINATIONAL CIRCUIT:

The Figure 2.1 shows an AND-OR circuit consisting of two input

AND gates and one two input OR gate. The Boolean expression for

34 | P a g e

the AND gate outputs and

output Y are shown on the

can have any number of AND

Figure 2.1 A

The truth table for the abo

Table-2.1. The outputs of the

INPUTS

P Q R

0 0 0

0 0 0

0 0 1

0 0 1

0 1 0

0 1 0

0 1 1

0 1 1

1 0 0

1 0 0

1 0 1

1 0 1

1 1 0

1 1 0

1 1 1

1 1 1

Table 2.1 Truth table

2.4 AND-OR-INVERT LO

If the output of the AND-OR

the resultant circuit is called

s and the resulting SOP expression for the

the circuit diagram. The AND-OR circuit

f AND and OR with any number of inputs.

e 2.1 AND-OR logic diagram

he above combinational circuit is shown in

 of the AND gates are also shown in the table.

PQ

RS

OUTPUT

Y
 S

 0 0 0 0

 1 0 0 0

 0 0 0 0

 1 0 1 1

 0 0 0 0

 1 0 0 0

 0 0 0 0

 1 0 1 1

 0 0 0 0

 1 0 0 0

 0 0 0 0

 1 0 1 1

 0 1 0 1

 1 1 0 1

 0 1 0 1

 1 1 1 1

 table for the logic circuit of Figure 2.1

T LOGIC COMBINATIONAL CIRCUIT

OR circuit is complemented i.e. inverted,

 called AND-OR-Inverted circuit. The AND-

Space for learners:

35 | P a g e

OR logic implements the S

POS expressions can be obta

The logic circuit diagram F

circuit and development of th

Y = (P′+Q′)(R′+S′) = (PQ

+((RS)′))′)′ = (PQ + RS)′

Figure 2.2

In general, an AND-OR-Inve

gates each with any numb

developed from the AND-

changing all 1s to 0s and all 0

STOP

● The AND-OR logic

other words, the SO

AND-OR logic.

● The AND-OR-Invert

in other words, the P

AND-OR-Inverted lo

2.5 EXCLUSIVE-OR L

The exclusive-OR gate is c

own unique symbol; it is act

one OR gate, and two invert

The output is 1 only if the tw

 the SOP expression and the corresponding

e obtained using the AND-OR-Inverted logic.

ram Figure 2.2 shows an AND-OR-Inverted

nt of the POS output expression.

= (PQ)′(RS)′ = (((PQ)′(RS)′)′)′ = (((PQ)′)′

re 2.2 AND-OR Invert logic

Invert circuit can have any number of AND

 number of inputs. A truth table can be

-OR truth table in Table 2.1 by simply

nd all 0s to 1s in the output column.

TOP TO CONSIDER

 logic implements the SOP expressions, in

he SOP expressions are implemented using

Inverted logic implements POS expressions,

, the POS expressions are implemented using

rted logic

OR LOGIC:

e is considered a type of logic gate with its

actually a combination of two AND gates,

 inverters (NOT gate) as shown in Figure 2.3.

 the two inputs are at opposite levels.

Space for learners:

36 | P a g e

Figure 2.3

The output expression for the

i.e. Y = A ⊕ B

 The truth table for exclusive

A

0

0

1

1

Table 2.2: Tru

2.6 EXCLUSIVE-NOR

The complement of exclus

which is derived as follows:

Y = (AB′+A′B)′ = (AB′)′(

The output Y is 1 only if th

level. The exclusive-NOR ca

the output of an exclusive-

ure 2.3 Exclusive-OR logic

 for the circuit in Figure 2.3 is Y = AB′ + A′B

lusive-OR is shown in Table 2.2.

 B Y

0 0

1 1

0 1

1 0

.2: Truth table of exclusive-OR

NOR LOGIC

exclusive-OR is known as exclusive-NOR,

lows:

AB′)′(A′B)′ = (A′ + B)(A+B′) = A′B′ + AB

ly if the two inputs A and B are at the same

OR can be implemented by simply inverting

-OR. The following Figure 2.4 (a) shows

Space for learners:

37 | P a g e

the exclusive-NOR and

implementation of the expres

Figure 2.4

Figure 2.

STOP

● Exclusive-OR (XOR)

gates, one OR gate, and

● Exclusive-NOR (XNO

gates, one OR gate, an

is obtained by applying

2.7 IMPLEMENTING

This section will describe t

circuits. The first method d

and Figure 2.4(b) shows the direct

 expression A′B′+AB.

ure 2.4(a) Y = (AB′+A′B)′

ure 2.4(b) Y = A′B′ + AB

TOP TO CONSIDER

XOR) logic is a combination of two AND

te, and two inverters (NOT gate)

(XNOR) logic is a combination of two AND

ate, and three inverters (NOT gate) or XNOR

plying an inverter at the output of XOR.

ING COMBINATIONAL LOGIC

ribe the methods of implementing the logic

thod describes the implementation from the

Space for learners:

38 | P a g e

Boolean expression and

implementation from the trut

2.7.1 Logic circuit design fr

 Let us consider the fo

 Y = (A+B)(C+

A closer observation shows t

two terms.

The first term is formed by

and the second term is forme

and E. The two terms are th

output Y. The OR operation

operation.

To design the combinational

form the term A+B and a 3

term C+D+E. A 2-input AN

two OR terms. The resulting

Figure 2.5. Logic circuit fo

Let us implement the followi

Y = (

Like the previous example, l

The terms A+B and (C′D′+

term C′D′+EF is first formed

and F and then performs O

Before getting the expression

EF, before these two terms

operation must be perform

and the second method describes the

he truth table.

sign from Boolean expression

 the following Boolean expression:

+B)(C+D+E)

hows that the above expression ′Y′ consists of

ed by doing OR operation between A and B,

rmed by doing OR operation among C, D,

 are then AND together to produce the final

erations must be performed before the AND

tional circuit, a 2-input OR gate is required to

nd a 3-input OR gate is required to form the

ut AND gate is then required to combine the

ulting logic circuit is shown in Figure 2.5.

rcuit for the expression Y =(A+B)(C+D+E)

ollowing expression as another example.

Y = (A+B)(C′D′+EF)

ple, let′s have a closer look at the expression.

′D′+EF) are AND together to form Y. The

formed by doing AND between C′ and D′, E

rms OR operation between these two terms.

ression C′D′ +EF, you must have the C′D′ and

terms you must have C′ and D′. So, the logic

erformed in proper order. The logic gates

Space for learners:

39 | P a g e

required to implement the e

follows:

a. Two NOT gates to ge

b. Two 2-input AND ga

c. Two 2-input OR gate

d. One 2-input AND gat

The logic circuit of this expre

Figure 2.6. Logic diagram f

2.7.2. Logic circuit design f

Instead of using the SOP e

circuit you can use the truth

can deriveusing the SOP exp

of such an implementation.

Inputs

A B C

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Table 2.3: Tru

t the expression Y = (A+B)(C′D′+EF) are as

s to get C′ and D′

ND gates to form C′D′ and EF

R gates to form A+B and C′D′+EF

D gate to form Y.

s expression is shown in Figure 2.6

ram for the expression Y = (A+B)(C′D′+EF)

sign from truth table

SOP expression to design the combinational

e truth table and from the truth table thatyou

OP expression. Table 2.3 shows one example

tion.

Output

Y

Product Terms

C

 0

 0

 1 A′BC′

 0

 1 AB′C′

 0

 0

 1 ABC

3: Truth table for logic function

Space for learners:

40 | P a g e

The Boolean expression obta

Y = A

The expression Y is obtaine

product terms for which the

are formed by doing AND op

and (A, B, C) respectively.

the circuit are as follows:

a. Three NOT gates.

b. Three 3-input AND g

c. One 2-input OR gate.

Figure 2.7 Log

Reduce the combinational l

minimum form.

Figure 2.8 Comb

The expression for

(A′B′C′)′C+(A′B′C′)′+

n obtained for the Table 2.3 is given below:

 = A′BC′+AB′C′+ABC

obtained by doing OR operations among the

ch the output is 1. The first, second, and third

ND operations among (A′, B, C′), (A, B′, C′),

ively. The logic gates required to implement

ND gates.

 gate.

.7 Logic diagram for the expression Y =

A′BC′+AB′C′+ABC

ional logic circuit shown in Figure 2.8 to a

 Combinational logic circuit to be reduced

n for the output of the circuit is Y =

′B′C′)′+D

Space for learners:

41 | P a g e

Applying D′ Morgan′

Y = ((A′)′+(B′)′+(C′)′

 = AC+BC+CC+A+

 =C(A+B+1)+A+B+

 Y=A+B+C+D

The simplified circuit is a 4

2.9

Figure 2.9 Reduce

Note: Before implementing

reduce the algebraic express

number of gates required to

leads to reduction of propag

number of gates, the more t

produced by the circuit will i

STOP

● The implementation

from the Boolean exp

● The expression shou

identify the number o

● Before implementing

reduce the expression

● If the number of gat

circuit then the propa

CHECK Y

1. POS stands for _____

2. SOP stands for _____

3. An Exclusive-OR can

4. The number of AND

boolean expression A

organ′s theorem and Boolean algebra,

′+(C′)′)C+(A′)′+(B′)′+(C′)′+D

C+A+B+C+D

A+B+C+D

 is a 4-input OR gate as shown in the Figure

educed form the logic circuit of Figure 2.7

nting the logic circuit directly it is better to

xpressions to its minimized form so that the

red to implement the circuit is minimum. This

propagation delay among the gates. More the

more the propagation delay and also the heat

t will increase.

TOP TO CONSIDER

tation of combinational logic circuits is either

expression or truth table.

n should be carefully observed and has to

mber of AND, OR, inverters required.

enting the logic circuit, it is advisable to

ression by applying the boolean algebra

of gates are less in the final combinational

 propagation delay will also be minimal.

ECK YOUR PROGRESS

R can be represented as ______

 AND gates required to implement the

sion ABC is ____

Space for learners:

42 | P a g e

2.8 THE UNIVERSAL PRO

 GATES

Till now, you have studied

AND and OR, and NOT

universal property of NAND

NAND means it can be used

NAND gates can be used t

operations. Similarly, the N

inverter, AND, OR, and NAN

2.8.1 The NAND gate as a u

The NAND gate is a univ

produce the NOT, the AND

inverter can be made from

inputs together and creating,

Figure 2.10(a) for a 2-inp

generated by the use of NA

2.10(b). An OR function c

gates, as shown in Figure 2.

also be produced as shown in

Figure 2.10(a) NA

Figure 2.10(b) Two NAND

L PROPERTY OF NAND AND NOR

tudied combinational circuits designing with

NOT gates. This section will describe the

NAND and NOR gates. The universality of

e used as an inverter and the combinations of

used to implement the AND, OR, and NOR

the NOR gate can be used to implement the

d NAND operations.

 as a universal logic element

a universal gate because it can be used to

 AND, the OR, and the NOR functions. An

from a NAND gate by connecting all of the

ating, in effect, a single input as shown in the

input gate. An AND function can be

 of NAND gates alone as shown in Figure

tion can be implemented with only NAND

ure 2.10(c). Similarly, the NOR function can

own in Figure 2.10(d).

(a) NAND gate as inverter or NOT

NAND gates are combined to produce AND

operation

Space for learners:

43 | P a g e

Figure 2.10(c) Three NAN

Figure 2.10(d) Four NAND

In Figure 2.10(b), a NAND g

form the AND function whic

 Y = ((AB)′)′ = AB

In Figure 2.10(c), NAND ga

the two input variables befo

The OR gate output is derive

theorem:

 Y = ((A′B′)′ = A + B

In Figure 2.10(d), NAND ga

to the circuit of part (c) to pro

Finally, we can conclude tha

implement any logic function

2.8.2 The NOR gate as a Un

The NOR gate can also be us

NAND functions. A NOT c

NOR gate by connecting al

create a single input, as sh

example. Also, an OR gate

shown in Figure 2.11(b). An

e NAND gates are combined to produce OR

operation

 NAND gates are combine to produce NOR

operation

AND gate is used to invert a NAND output to

n which is given below:

ND gates G1 and G2 are combined to invert

s before they are applied to NAND gate G3.

 derived as follows by applying DeMorgans′s

A + B

ND gate G4 is used as an inverter connected

) to produce the NOR operation (A+B)′.

de that using the NAND gate it is possible to

nction.

s a Universal logic element

o be used to produce the NOT, AND, OR, and

NOT circuit, or inverter, can be made from

ting all of the inputs together to effectively

 as shown in Figure 2.11(a) with a 2-input

 gate can be produced from NOR gates as

b). An AND gate can be produced using the

Space for learners:

44 | P a g e

NOR gates as shown in the

G2 are used as inverters and

DeMorgan′s theorem as follo

Y = (A′+B′)′ = AB

Figure 2.11(d) shows the im

NOR gates. Hence we can

work as a universal gate like

Figure 2.11(a)

Figure 2.11(b) NOR gates a

Figure 2.11(c) NOR gates ar

Figure 2.11(d) NOR gat

2.8.3 Combinational circuit

NAND gates can work as eit

DeMorgan′s theorem.

 (AB)′ = A′ + B′

in the Figure 2.11(c), the NOR gates G1 and

rs and the final output is derived by the use of

s follows:

the implementation of NAND function using

e can conclude that the NOR gate can also

te like the NAND gate.

.11(a) NOR gate used as inverter

gates are combined to produce OR operation

ates are combined to produce AND operation

R gates are combined to produce NAND

operation

circuit using NAND gate

 as either NAND or negative OR by applying

Space for learners:

45 | P a g e

Consider the NAND logic

expression is developed in th

 Y = ((AB′)(CD′))′

 = ((A′+B′)(C′+D′))′

 = (A′+B′)′+(C′+D′)

 = (A′)′(B′)′ + (C′)′(D

 = AB + CD

Figure 2.12 Implementation

usin

2.8.4 Combinational circuit

The NOR gate can work a

shown by DeMorgan′s theore

 (A+B)′ = A′B′

Consider the NOR logic in

developed as follows:

Y = ((A+B)′+(C+D)′)′ = ((A+

Figure 2.13 Implementa

(A+B)(C+

STO

● NAND and NOR gat

● NAND and NOR can

logic like AND, OR,

● NAND can produce N

NAND.

logic as shown in Figure 2.12. The output

d in the following steps:

′+D′))′

′+D′)′

 (C′)′(D′)′

tation of the Boolean expression Y= AB+CD

using NAND gate

circuit using NOR gate

ork as either a NOR or negative AND, as

 theorem.

gic in Figure 2.13. The output expression is

 = ((A+B)′)′((C+D)′)′ = (A+B)(C+D)

ementation of the boolean expression Y=

+B)(C+D) using NOR gate

STOP TO CONSIDER

R gates are called universal gates.

R can be used to implement all the primary

, OR, NOT(invert).

duce NOR and, similarly, NOR can produce

Space for learners:

46 | P a g e

CHECK

5. The number of NOR g

6. The number of NAND

is/are ____

7. The number of NAND

A′+B is/are _____

8. The number of NOR g

is/are _____

2.9 COMBINATIONAL LO

 FUNCTIONALITIES

In this section, many types

circuits are introduced, viz. A

code converters, multiplexer,

2.9.1 The comparison funct

The magnitude of compariso

a comparator. A comparison

whether or not they are equa

function, one number in bin

other number in binary for

indicate the relationship of t

proper output line. Suppose

applied to input A and a bi

applied to input B. A ′1′ (H

indicating the relationship be

Figure 2.14 Ba

ECK YOUR PROGRESS

OR gate(s) required to implement OR is/are

AND gates(s) required to implement AND

AND gates(s) required to implement Y =

OR gates(s) required to implement Y = A′+B

AL LOGIC CIRCUIT

 types of fixed functions of combinational

, viz. Adders, comparator, decoders, encoders,

plexer, demultiplexer etc.

 function

parison performed by a logic circuit is called

parison compares two quantities and indices

re equal. Figure 2.14 represents a comparison

in binary form is applied to input A, and the

ry form is applied to input B. The outputs

ip of the two numbers by producing 1 on the

ppose that the binary representation of 3 is

d a binary representation of the number 6 is

′1′ (HIGH) will appear on the A<B output,

ip between the two numbers.

.14 Basic magnitude comparator

Space for learners:

47 | P a g e

2.9.2 The Arithmetic functi

Addition is performed by a l

two binary numbers on inpu

generates a sum (Σ) and a

2.15.

Figure

Subtraction is also perfor

requires three inputs, viz.,t

and a borrow input. The tw

borrow output. The subtra

addition operation.

Multiplication: A multipl

multiplication. Because num

inputs are necessary. The

Multiplication can be achiev

other circuits since it is mere

positions of the partial produ

Division: Division can be

comparisons, and shifts, t

conjunction with other circu

and the quotient and remaind

Code conversion: The log

conversion. A code is a co

pattern and used to represen

type of coded data into ano

Conversion from binary to B

code.

Encode: The encoder is a l

function. The encoder turns d

functions

 by a logic circuit called adder. An adder adds

n inputs A and B with a carry input (Cin) and

nd a carry output (Cout) as shown in Figure

Figure 2.15 Basic Adder

performed by a logic circuit. A subtractor

,the two numbers that are to be subtracted

The two outputs are the difference and the

subtraction operation is a special case of

ultiplier is a logic circuit that performs

e numbers are always multiplied in twos, two

. The product is the multiplier′s output.

achieved using an adder in conjunction with

s merely a series of additions with shifts in the

 products.

n be achieved with a series of subtraction,

ifts, therefore an adder can be used in

r circuits. The division requires two inputs,

mainder are generated as outputs.

e logic circuits can also be used for code

s a collection of bits arranged in a specific

present data. A code converter converts one

to another type of coded data. For example,

ry to Binary Coded Decimal (BCD) or Gray

is a logic circuit that performs the encoding

 turns data into a coded representation, such as

Space for learners:

Space for learners:

48 | P a g e

a decimal number or an alphanumeric letter. One form of encoder,

for example, turns all of the decimal digits, 0 through 9, to binary

code.

Decoder: A logic circuit called a decoder performs the decoding

operation. The decoder translates coded data, such as binary

numbers, to uncoded data, such as decimal numbers. One form of

decoder, for example, translates a 4-bit binary code into the

appropriate decimal digits.

Data selection function: The multiplexer and the demultiplexer are

two types of circuits that select data in the data selection function. A

multiplexer, often known as a MUX, is a logic circuit that transfers

digital data from many input lines to a single output line in a

predetermined time sequence. A multiplexer can be thought of as an

electronic switch that links each of the input lines to the output line

in a sequential manner. A demultiplexer (DEMUX) is a logic circuit

that converts digital data from one input line to multiple output lines

in a predetermined order. The demux is a reverse mux. When data

from numerous sources needs to be sent across one line to a distant

place and then redistributed to multiple recipients, multiplexing and

demultiplexing are utilized.

STOP TO CONSIDER

● The AND, OR, and NOT can be used to design the

complex logic circuits to perform specific operations.

2.9.3 Basic Adders

Adders are essential not only in computers, but also in a wide range

of digital systems that process numerical data. The study of digital

systems requires a basic understanding of the adder action. The half-

adder and full-adder are described in this section.

2.9.3.1 The Half-Adder

Recall the basic rules for binary addition

0+0 = 0

0+1 = 0

49 | P a g e

1+0 = 1

1+1 = 10

A logic circuit known as a ha

The half-adder takes two bi

binary digits, a sum bit an

shows a half-adder represent

Figure 2.16 Log

Half-Adder Logic from the o

Table 2.3, expressions can be

carry as functions of the inpu

1 only when both A and B ar

the AND of the input variabl

Table 2.3

A

0

0

1

1

Now, observe that the sum (

and B, are not equal. The s

exclusive-OR of the input

implementation required f

developed using Σ and Cout

gate with A and B on the in

with an exclusive-OR (XO

Remember, the XOR is imp

and inverters.

as a half-adder performs the operations.

two binary digits as inputs and produces two

bit and a carry bit, as outputs. Figure 2.16

resented by the logic symbol.

16 Logic symbol for a half-adder

 the operation of the half-adder as stated in

 can be derived for the sum and the output

e inputs. Note that the output carry (Cout) is a

d B are 1s, therefore, Cout can be expressed as

ariables. Cout = AB.

le 2.3 Half-adder truth table

B Cout Σ

0 0 0

1 0 1

0 0 1

1 1 0

 sum (Σ) is a 1 only if the input variables, A

 The sum can therefore be expressed as the

 input variables. Σ = A ⊕B. The logic

ired for the half-adder function can be

out. The output carry is produced with AND

 the inputs, and the sum output is generated

R (XOR) gate, as shown in Figure 2.17.

is implemented with AND gates, an OR gate,

Space for learners:

50 | P a g e

Figure 2.17 H

2.9.3.2 The Full Adder

The second category of ad

accepts two input bits and an

and an output carry. The ba

half-adder is that the full

symbol for a full-adder is sh

in Table 2.4 shows the opera

Figure 2.18 Log

Table 2.4

A B

0 0

0 0

0 1

0 1

1 0

1 0

1 1

1 1

 2.17 Half-adder logic diagram

 of adder is the full-adder. The full-adder

and an input carry and generates a sum output

he basic difference between full-adder and a

 full-adder accepts an input carry. A logic

r is shown in Figure 2.18, and the truth table

 operation of a full-adder.

18 Logic symbol for a full-adder

le 2.4 Full-adder truth table

 Cin Cout Σ

 0 0 0

 1 0 1

 0 0 1

 1 1 0

 0 0 1

 1 1 0

 0 1 0

 1 1 1

Space for learners:

51 | P a g e

Full-Adder Logic The full

input carry. From the half-ad

bits A and B is exclusive

input carry (Cin) to be added

ORed with A⊕B, yielding

full-adder.

Σ = (A⊕B)⊕Cin. This mean

function, two 2-input exclu

must generate the term A⊕

output of the first XOR gate

2.19(a).

Figure 2.19(a) Logic req

Figure 2.19(b) Comp

The output carry is a 1 when

or when both inputs to the se

this fact by studying Table

therefore produced by the

e full-adder must add the two input bits and

adder you know that the sum of the input

usive-OR of those variables. A⊕B. For the

 added to the input bits, it must be exclusive-

lding the equation for the sum output of the

s means that to implement the full-adder sum

 exclusive-OR gates can be used. The first

⊕B, and the second has as its inputs the

 gate and the input carry, as shown in Figure

gic required to form the sum of three bits

 Complete logic circuit for a full-adder

 when both inputs to the first XOR gate are 1s

 the second XOR gate are 1s. You can verify

Table 2.4. The output carry of full-adder is

y the inputs A ANDed with B and A⊕B

Space for learners:

52 | P a g e

ANDed with Cin. These two

expression of Cout. This func

the sum logic to form a co

Figure 2.19(b). Notice that

adders, connected as shown

with their output carries OR

2.20(b) will normally be used

Figure 2.20(a) Arrangement

Figure 2.20(b)

2.9.3.3 Parallel Binary Add

Parallel binary adders are fo

adders. The basic operatio

associated input and output

A single full-adder can add t

carry. Additional full-adders

with more than one bit. As

one binary number is added

bit and a 1 or 0 carry bit to th

se two terms are ORed, as expressed in the

is function is implemented and combined with

 a complete full-adder circuit, as shown in

e that in Figure 2.19(b) there are two half-

hown in the block diagram of Figure 2.20(a),

es ORed. The logic symbol shown in Figure

be used to represent the full-adder.

ement of two half-adders to form a full-adder

.20(b) Full-adder logic symbol

y Adders

 are formed by connecting two or more full-

perations of such adders, as well as their

utput functions, are described in this section.

 add two one-bit numbers as well as an input

adders must be used to add binary numbers

it. As shown above with 2-bit integers, when

added to another, each column creates a sum

it to the next column to the left.

 10

 +10

 100

Space for learners:

53 | P a g e

In this case, the second c

column′s sum bit. A full add

numbers to be added. So two

four adders are required for

carry output is connected t

input, as shown in Figure 2.2

carry input to the least signif

the carry input of a full-adde

2.21 the least significant

represented by A1 and B1. Th

by A2 and B2. The three sum

output carry from the le

significant bit (MSB) in the s

Fig 2.

Four-bit Parallel Adders

A nibble is a collection of fo

a basic 4-bit parallel adder is

The LSBs (A1 and B1) of ea

the right-most full-adder; th

gradually higher-adders as il

each number are applied to th

of each adder is connected to

adder as indicated. These are

ond column′s carry bit becomes the third

ll adder is required for each bit in two binary

So two adders are required for 2-bit numbers,

ed for 4-bit values, and so on. Each adder′s

cted to the next higher-order adder′s carry

ure 2.21 for a 2-bit adder. Because there is no

t significant bit location, either a half-adder or

adder can be set to 0 (grounded). In Figure

icant bits (LSB) of the two numbers are

. The next higher-order bits are represented

ee sum bits are Σ1, Σ2, and Σ3. Notice that the

he left-most full-adder becomes the most

n the sum Σ3.

Fig 2.21. A 2-bit adder

n of four bits. As demonstrated in Figure 2.22,

dder is developed with four full-adder stages.

) of each number being added are applied to

der; the higher-order bits are applied to the

rs as illustrated; and the MSBs (A4 and B4) of

ed to the left-most full-adder. The carry output

cted to the carry input of the next higher-order

ese are called internal carries.

Space for learners:

54 | P a g e

In terms of the method use

there are two types: the rip

adder. A ripple carry adder i

full-adder is connected to th

stage (a stage is one full-ad

any stage cannotbe produc

causes a time delay in the a

delay for each full-adder is th

carry until the output carry o

are already present.

Figure 2

Look-ahead carry addition

addition process by elimina

ahead carry adder predicts e

using either carry generatio

input bits of each stage.

Carry generation occurs

(generated) internally by the

when both input bits are 1s.

the AND function of the two

Carry Propagation occurs w

the output carry. An input ca

when either or both of the i

Cp, is expressed as the OR fu

2.9.3.4 Truth table for 4-bit

Table 2.5 is the truth table f

truth tables may be called fu

The subscripts n represent th

d used to handle carries in a parallel adder,

ripple carry adder and carry look-ahead

adder is one in which the carry output of each

d to the carry input of the next higher-order

adder). The sum and the output carry of

duced until the input carry occurs. This

 the addition process. The carry propagation

er is the time from the application of the input

arry occurs, assuming that the A and B inputs

igure 2.22 A 4-bit Adders

dition is a technique for speeding up the

liminating the ripple carry delay. The look-

dicts each stage′s output carry and produces it

ration or carry propagation based on the

curs when an output carry is produced

by the full-adder. A carry is generated only

re 1s. The generated carry, Cg, is expressed as

he two input bits, A and B. Cg=AB.

curs when the input carry is rippled to become

put carry may be propagated by the full-adder

f the input bits are 1s. The propagated carry,

 OR function of the input bits. Cp = A + B.

bit parallel adder

table for a 4-bit adder. On Some data sheets,

function tables or functional truth tables.

sent the adder bits and can be 1, 2, 3, or 4 for

Space for learners:

Space for learners:

55 | P a g e

the 4-bit adder. Cn-1 is the carry from the previous adder. Carries C1,

C2, and C3 are generated internally. C0 is an external carry input and

C4 is an output.

Table 2.5 Truth table for 4-bit parallel adder

Cn-1 An Bn Σn Cn

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

STOP TO CONSIDER

● A half-adder has two inputs and two outputs.

● A full-adder has three inputs and two outputs.

● A 4-bit parallel adder can add two 4-bit binary numbers.

● Two half-adders can be used to design a full adder.

CHECK YOUR PROGRESS

State whether true or false

9. The sum expression for a half adder is A+B

10. The carry out Cout expression for a full adder is AB+Cin

11. A 4-bit parallel adder has four full adders.

12. There are two types of carry, they are ripple carry and look

ahead carry

13. Carry generation occurs when an output carry is produced.

2.9.4 Binary Subtractor

Binary subtractors are special circuits which subtract two binary

numbers from each other. Binary subtractor produced a difference

and borrow output after the completion of the subtraction operation.

Binary subtraction has two digits, subtracting a “0” from a “0” or a

“1” leaves the result unchanged as 0-0 = 0 and 1-0 = 1. Subtracting

56 | P a g e

a “1” from a “1” results in a

requires a borrow. In other w

borrow 1 then the minuend

becomes 10-1 which will giv

borrow bit 1. The half-subtr

below.

2.9.4.1 The Half-Subtractor

A half subtractor is a logic

operation on two binary d

difference (D) and a borrow

Figure 2.23 shows the logic s

Figure 2.23 Logi

Table 2.6: Truth

Inputs

A B Diffe

0 0

0 1

1 0

1 1

From the Table 2.6 of the ha

can be obtained by doing ex

Borrow (Bout) can be obtaine

and B. The Boolean expressi

lts in a “0”, but subtracting a “1” from a “0”

other words, 0-1 requires a borrow and if you

inuend 0 becomes 10 and the operation 0-1

ill give the output 1, this also leads to set the

subtractor and full-subtractor are discussed

ractor

a logical circuit that performs a subtraction

ary digits. The half subtractor produces a

borrow out (Bout) bit for the next stage. The

 logic symbol of a half-subtractor circuit.

3 Logic symbol of Half-Subtractor

: Truth Table of a Half-Subtractor

Outputs

Difference(D=A-B) Borrow (Bout)

0 0

1 1

1 0

0 0

 the half subtractor, the difference (D) output

ing exclusive-OR between A and B and the

btained by doing AND operation between A′

pression for a half subtractor is as follows.

D = A⊕B

Bout = A′B

Space for learners:

57 | P a g e

Figure 2.24 Logi

The Boolean expressions for

half-subtractor are exactly

output carry of the half-adde

circuit, difference between t

the minuend input A.

The disadvantage of the h

multiple bits there is no o

stages. So, we need a full su

borrow-in input from the ear

2.9.4.2 The Full-Subtractor

The full-subtractor has three

(minuend) and B (subtrahe

additional Borrow-in (Bin) in

the subtraction process from

2.25.

Figure 2.25 : Logi

4 Logic circuit for Half-subtractor

ns for ‘sum’ in half-adder and ‘difference’ in

actly the same. The only difference is the

adder and the borrow out of the subtractor

ween these two quantities is the inversion of

the half-subtractor is that if you subtract

 no option for ‘borrow-in’ from its earlier

full subtractor circuit to take into account this

he earlier stages.

ractor

 three inputs. The two single bit data inputs A

btrahend) are the same as before plus an

) input to receive the borrow generated by

s from a previous stage as shown in Figure

 : Logic symbol of a Full-Subtractor

Space for learners:

58 | P a g e

The “full subtractor” combin

operation on three binary bit

D and borrow Bout. Like the a

be thought of as two half su

first half subtractor passing

as shown in the Figure 2.26

full-subtractor is shown in th

Figure 2.26: Arrangement

Table 2.7: Tru

Input

A B

0 0

0 0

0 1

0 1

1 0

1 0

1 1

1 1

The truth table Table 2.7 sho

and B, the truth table operati

a. If A = 0, B = 0, and

are 0.

b. In the second set of i

so before performin

have to increment the

ombinational circuit performs the subtraction

ary bits resulting in outputs for the difference

e the adder circuit, the full subtractor can also

half subtractors connected together, with the

ssing its borrow to the second half subtractor

re 2.26 and the complete logic circuit of the

n in the Figure 2.27.

ement of two half-subtractors to form a full-

subtractor

7: Truth for the Full-Subtractor

Inputs Outputs

 Bin D Bout

 0 0 0

 1 1 1

 0 1 1

 1 0 1

 0 1 0

 1 0 0

 0 0 0

 1 1 1

.7 shows the subtraction operation between A

perations are explained below:

, and Bin= 0, then the output D and Bout both

et of inputs the A = 0, B = 0, but the Bin =1,

orming the subtraction operation, first, you

ent the B by 1 unit then the B will change to 1

Space for learners:

Space for learners:

59 | P a g e

(Bin=1 indicates there was a borrow in the previous step of

the series of operations here previous step is not referring the

first set of input operation of the Table 2.7), now if you

perform the A-B i.e. 0-1 you need a borrow then only the

operation will be possible, so, if you borrow 1 then the A

will change to 10 and the subtraction operation 10-1 will

give 1, i.e. D=1, since the operation was performed using

borrow, the Bout=1.

c. In the third set of inputs A=0, B=1, Bin= 0, since Bin= 0, so,

it is not necessary to increment the B, but A-B i.e. 0-1 in this

step needs a borrow, so you have to borrow 1 to A, the A

will change to 10 and the operation will change to 10-1=1,

so, D=1, Bout=1.

d. In the fourth set of inputs A=0, B=1, Bin= 1, this time Bin= 1,

so, you have to increment the B by one unit, then B will

change to 10, now, if you perform the subtraction operation

A-B, i.e. 0-10 then you need a borrow, if you borrow 1 the A

will change to 10 and the operation becomes 10-10=0,

therefore D=0, since the operation was completed using a

borrow so, Bout= 1.

e. In the fifth set of inputs A=1, B=0, Bin= 0, since Bin= 0, so

the B will not change and the A-B i.e. 1-0 does not need any

borrow therefore D=1 and Bout= 0.

f. In the sixth set of inputs A=1, B=0, Bin= 1, since Bin= 1, so,

B will be incremented by 1 unit and B becomes 1 i.e. B=1

and the operation A-B will be 1-1=0, hence D=0 and Bout= 0.

g. In the seventh set of inputs A=1, B=1, Bin= 0, since Bin= 0,

so, B will not change and the A-B i.e. 1-1 does not need any

borrow therefore D=0 and Bin= 0.

h. In the eighth set of inputs A=1, B=1, Bin= 1, since Bin= 1, so,

B will be incremented by 1 unit and the value of B becomes

10, now, the operation A-B becomes 1-10 which is not

possible therefore A needs borrow to complete the operation,

after 1 borrow to A the A becomes 11 and A-B = 11-10.

Hence D=1 and Bout= 1.

60 | P a g e

Figure 2.27: Complete

STOP

● Subtractor circuits ar

● Subtraction operation

that works in normal

● The difference expres

same as the sum expr

● The Full-subtractor su

stages.

● Bin= 1 indicates there

● If A<B+Binthen A ne

2.9.5 Comparators

A comparator′s primary role

binary quantities in order to i

comparator circuit, in its mos

are equal.

2.9.5.1 Equality

Because its output is 1 when

when they are equal, the exc

comparator. As a 2-bit c

exclusive-OR gate.

mplete logic circuit for a full-subtractor

TOP TO CONSIDER

uits are similar to the adder circuits.

eration in binary works in the same pattern

ormal mathematics.

 expression of the subtractor circuit is the

 expression of the adder circuit.

ctor supports borrow in from the previous

s there is a borrow in the previous step.

n A needs borrow from its

y role is to compare the magnitudes of two

er to identify their relationship. A

its most basic form, determines if two integers

 when the two input bits are not equal and 0

the exclusive-OR gate can be used as a basic

bit comparator, Figure 2.28 depicts the

Space for learners:

61 | P a g e

Figure 2.28 Ba

An additional exclusive-OR

values comprising two bit

numbers′ least significant bi

two most significant bits (M

numbers are equal, their corr

exclusive-OR gate′s output i

are not equal, the exclusive

Figure 2.29 2-bits

Two inverters and an AND

output representing the equ

shown in Figure 2.29. Each

and applied to the AND gate

input bits are identical. The

resulting in a 1 on both AN

When the two numbers a

corresponding bits are diffe

AND gate input, resulting i

result, the AND gate′s outpu

equal (1) or unequal (0).

.28 Basic comparator operation

OR gate is required to compare binary

o bits each. Gate G1 compares the two

ant bits (LSBs), while gate G2 compares the

its (MSBs), as seen in Figure 2.29. If the two

ir corresponding bits are also equal, and each

utput is a 0. If the corresponding sets of bits

sive-OR gate output is set to 1.

bits binary number comparison

 AND gate can be used to produce a single

he equality or inequality of two values, as

. Each exclusive-OR gate′s output is inverted

D gate′s input. When each exclusive-two OR′s

l. The numbers′ corresponding bits are equal,

oth AND gate inputs and a 1 on the output.

bers are not equal, one or both sets of

e different, and a 0 appears on at least one

lting in a 0 on the AND gate′s output. As a

 output indicates whether the two numbers are

Space for learners:

62 | P a g e

2.9.5.2 Inequality

Many IC comparators have

equality output that show w

compared is greater. As ind

comparator in Figure 2.30,

number A is larger than n

indicates when number A is s

Figure 2.30 Logic

To determine an inequality

examine the highest-order

conditions are possible:

1. If A3=1 and B3=0, nu

2. If A3=0 and B3=1, nu

3. If A3= B3, then you m

for an inequality.

These three operations are va

The general procedure use

inequality of the bit position

(MSB). When such an ineq

two numbers is established

order bit positions must be

opposite indication to occur;

precedence.

CHECK

State whether true or false

14. The exclusive-OR gate is

15. The HIGH output will ap

16. LSB stands for Least Sig

s have additional outputs in addition to the

how which of the two binary integers being

As indicated in the logic symbol for a 4-bit

30, there is an output that indicates when

than number B (A>B) and an output that

r A is smaller than number B (A<B).

Logic symbol for a 4-bit comparator

uality of binary numbers A and B, you first

order bit in each number. The following

=0, number A is greater than number B.

=1, number A is less than number B.

 you must examine the next lower bit position

 are valid for every bit position in the number.

re used in the comparator is to check the

osition, starting from the mostsignificant bit

n inequality is found, the relationship of the

lished, and any other inequalities in lower-

ust be ignored because it is possible for an

 occur; the highest-order indication must take

ECK YOUR PROGRESS

 false

gate is a basic comparator.

will appear if we compare 112 and 112.

st Significant Bit.

Space for learners:

63 | P a g e

2.9.6 Decoders

A decoder′s basic task is

combination of bits (code) o

with a specific output level

handle n bits and 1 to 2
n
 outp

more n-bit combinations in it

2.9.6.1 The Basic Binary De

Assume you need to figure

digital circuit′s inputs. Bec

when all of its inputs are HIG

basic decoding element. As

occurs, you must ensure that

this may be done by invertin

in Figure 2.31.

(a)

Figure 2

The logic equation for the de

illustrated in Figure 2.31(b).

except when A0=1, A1=0, A

A0 is the LSB and A3 is the

number, the LSB is the righ

and the top-most bit in a

otherwise. If the NAND gat

Figure 2.31, a LOW output

binary code, which is 1001 in

sk is to identify the presence of a specific

ode) on its inputs and to signify that presence

t level. A decoder contains n input lines to

output lines to signal the presence of one or

ns in its most basic form.

ary Decoder

figure out when a binary 1001 appears on a

. Because it provides a HIGH output only

are HIGH, an AND gate can be utilized as the

t. As a result, when the binary number 1001

re that all of the AND gate′s inputs are HIGH;

verting the two middle bits (the 0s) as shown

 (b)

igure 2.31 Binary decoder

 the decoder of Figure 2.31(a) is developed as

.31(b). You should verify that the output is 0

=0, A2=0, and A3=1 are applied to the inputs.

is the MSB. In the representation of a binary

he right-most bit in a horizontal arrangement

 in a vertical arrangement, unless specified

D gate is used in place of the AND gate in

utput will indicate the presence of the proper

001 in this case.

Space for learners:

64 | P a g e

2.9.6.2 3 to 8 line Decoder

Figure 2.32 shows a decode

outputs. It uses all AND gat

note that for a given input co

output corresponding to the

code (for example, only whe

become HIGH). The decode

can be called a 3-8 line dec

output lines. It can also be ca

because it takes a 3-digit bin

eight (octal) outputs correspo

of 8 decoder because only 1

Figure 2.3

Table 2.8: 3-to-8-line Deco

Inputs Decoding

Function
C B A O0

0 0 0 C′B′A′ 1

0 0 1 C′B′A 0

0 1 0 C′BA′ 0

0 1 1 C′BA 0

oder

decoder circuit with three inputs and 2
3
 = 8

D gates, so the output is active high. Please

put code, the only valid output (HIGH) is the

to the decimal equivalent of the binary input

ly when CBA = 1012 = 510, the O5 output will

ecoder can be referenced in various ways. It

ne decoder because it has 3 input lines and 8

o be called a binary octal decoder or converter

git binary input code and activates one of the

orresponding to that code. It is also called a 1

nly 1 of the 8 outputs is activated at a time.

ure 2.32 3-to-8-line decoder

e Decoder truth table with decoding function

Outputs

O1 O2 O3 O4 O5 O6 O7

0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

Space for learners:

65 | P a g e

1 0 0 CB′A′ 0

1 0 1 CB′A 0

1 1 0 CBA′ 0

1 1 1 CBA 0

CHECK Y

17. An n-bit decoder can hav

18. Determine the logic expr

HIGH level on the output

2.9.7 Encoders

An encoder is essentially a c

opposite of a decoder. An en

of its inputs representing a

converts it to a coded outp

devise an encoder for encod

process of converting the

coded form is called encodin

2.9.7.1 Decimal to BCD En

As shown in Figure 2.33, thi

each decimal digit, and fou

code. This is a simple ten-to

Figure 2.33 Logic sym

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

ECK YOUR PROGRESS

an have ____ output lines

c expression for the input 0111 by producing

lly a combinatorial logic circuit that does the

 An encoder accepts an active level from one

ting a number such as decimal or octal and

d output such as BCD and binary. You can

 encoding various symbols or characters. The

 the familiar symbols and numbers into a

ncoding.

D Encoder

33, this form of encoder has 10 inputs, one for

nd four outputs that correspond to the BCD

to-four line encoder.

ic symbol for a decimal to BCD encoder

Space for learners:

Space for learners:

66 | P a g e

Table 2.7 lists the BCD (8421) code. To evaluate the logic, you can

use this table to explore the relationship between each BCD bit and

the decimal digits. For instance, the most significant bit of the BCD

code, A3, is always a 1 for decimal digit 8 or 9. An OR expression

for bit A3 in terms of the decimal digits can therefore be written as

A3 =8+9. Bit A2 is always a 1 for decimal digit 4, 5, 6 or 7 can be

expressed as an OR function as follows:

A2 = 4+5+6+7

Bit A1 is always 1 for decimal digit 2, 3, 6, or 7 and can be

expressed as

A1 = 2+3+6+7

Finally, A0 is always a 1 for decimal digits 1, 3, 5, 7, or 9. The

expression for A0 is

A0 = 1+3+5+7+9

Table 2.9: Decimal to BCD encoder truth table

Decimal

Digit

BCD code

A3 A2 A1 A0

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

Let us now use the logic expression we just generated to implement

the logic circuitry required for encoding each decimal digit to a

BCD code. Each BCD output is easily formed by ORing the

relevant decimal digit input lines. Figure 2.34 depicts the basic

encoder logic that results from these expressions. The circuit in

Figure 2.34 has the following fundamental operation: The

appropriate levels are displayed on the four BCD output lines when

HIGH occurs on one of the decimal digit input lines. If input line 9

is HIGH (and all other input lines are LOW), for instance, this

67 | P a g e

condition will result in HIG

outputs A1 and A2, which is t

Figure 2.34 B

STOP

● Encoders perform the

● Encoders convert fam

forms.

● An encoder having

output lines in the ou

2.9.8 Multiplexers

The multiplexer (MUX) is a

from multiple sources to be

over that line to a common

several data input lines and o

input, allowing you to chang

out. The multiplexer is also c

Figure 2.35 shows a logic sy

Because there are two data

input lines can be picked wit

n HIGH on outputs A0 and A3 and LOW on

ich is the BCD code (1001) for decimal 9.

2.34 BCD encoder logic circuit

TOP TO CONSIDER

rm the reverse operation of the decoders

ert familiar symbols or numbers to coded

2
n
 input lines in the input will have n

the output.

X) is a device that allows digital information

 to be routed to a single line for transmission

mmon destination. The basic multiplexer has

s and one output line. It also has a data select

 change digital data from any input to the line

 also called a data selector.

gic symbol for a 4-input multiplexer (MUX).

o data select lines, any one of the four data

ed with two select bits.

Space for learners:

68 | P a g e

Figure 2.35 Logic s

In Figure 2.35, a 2-bit code

the data on the selected data

If a binary 0 (S1=0 and S0=0

data on input D0 appear on t

and S0=1) is applied to the

appear on the data output. If

the data on D2 appear on the

applied, the data on D3 are s

of this operation is shown in

Table 2.10: 4 to 1

Data select in

S1

0

0

1

1

Let′s have a look at the logi

requires. The status of the

data output. As a result, you

output from the data input an

The data output is equal to D

The data output is equal to D

The data output is equal to D

The data output is equal to D

When these terms are ORed,

is

ogic symbol of a 4-input multiplexer

 code on the data-select (S) inputs will allow

d data input to pass through to the data output.

=0) is applied to the data-select lines, the

n the data-output line. If a binary 1 (S1=0

to the data-select lines, the data on input D1

tput. If a binary 2 (S1=1 and S0=0) is applied,

on the output. If a binary 3 (S1=1 and S0=1) is

are switched to the output line. A summary

wn in Table 2.8.

: 4 to 1 line multiplexer truth table

lect inputs

Input selected
S0

0 D0

1 D1

0 D2

1 D3

e logic circuits that this multiplexing process

f the selected data input is replicated in the

lt, you can construct a logic expression for the

put and the inputs you choose.

al to D0 only if S1=0 and S0=0; Y= D0S′1S′0

al to D1 only if S1=0 and S0=1; Y= D1S′1S0

al to D2 only if S1=1 and S0=0; Y= D2S1S′0

al to D3 only if S1=1 and S0=1; Y= D3S1S0

ORed, the total expression for the data output

Space for learners:

69 | P a g e

Y = D0S′1S′0 + D1S′1S0 +D2

The implementation of this

gates, a 4-input OR gate,

complements of S1 and S0

can be selected from any on

referred to as a dataselector

Figure 2.36 Circuit

STOP

● Multiplexers are also

● A 4-input data lines m

● A 8-input data lines m

● A 2
n
 input data lines m

● The output depends o

2.9.9 Demultiplexer

The demultiplexer (DEMUX

function. It takes digital info

to a specified number of ou

is also called a data distribu

also be used as a demultiplex

2S1S′0 + D3S1S0

of this equation requires four 3-input AND

 gate, and two inverters to generate the

0 as shown in Figure 2.36. Because data

any one of the input lines, this circuit is also

tor.

ircuit diagram of 4-to-1 multiplexer

TOP TO CONSIDER

e also known as data selectors.

lines multiplexer has two select lines.

lines multiplexer has three select lines.

 lines multiplexer has n select lines.

ends on the input data and select lines bits.

EMUX) basically reverses the multiplexing

al information from one line and distributes it

 of output lines. Therefore, the demultiplexer

istributor. As you will learn, the decoder can

ltiplexer.

Space for learners:

70 | P a g e

A 1-to-4-line demultiplexer

2.37. The data-input line is

gate is enabled at a time by t

data-input line passes via th

output line.

Figure 2.37 Circuit diag

Table 2.11: 1 to 4

Select code

S1 S0

0 0

0 1

1 0

1 1

The algebraic expressions fo

D0 = IS′1S′0

D1 = IS′1 S0

D2 = IS1S′0

D3 = I S1 S0

plexer (DEMUX) circuit is shown in Figure

ine is connected to all AND gates. Only one

e by the two data-select lines, and data on the

 via the selected gate to the associated data

it diagram of a 1-to-4 line demultiplexer

 1 to 4 line demultiplexer truth table

Outputs

D3 D2 D1 D0

0 0 0 I

0 0 I 0

0 I 0 0

I 0 0 0

ons for the functions shown in Table 2.9 are:

Space for learners:

Space for learners:

71 | P a g e

CHECK YOUR PROGRESS

19. Demultiplexer basically ______ the multiplexing function.

20. In demultiplexer only _____ gate is enabled at a time by the

data-select lines.

21. Data on the data-input line passes via the selected gate to the

associated data _____ line.

2.10 SUMMING UP

● AND-OR logic produces an output expression in SOP form

● AND-OR-Invert logic produces a complemented SOP form,

which is actually a POS form.

● Combinational circuits are designed either using Boolean

expression or truth tables.

● The operational symbol for exclusive-OR is ⊕. An

exclusive-OR expression can be stated in two equivalent

ways: AB′+A′B=A⊕B

● To do an analysis of a logic circuit, start with the logic

circuit, and develop the Boolean output expression or the

truth table or both.

● Implementation of a logic circuit is the process in which you

start with the Boolean output expressions or the truth table

develop a logic circuit that produces the output function.

● Minimization of Boolean expressions should be tried before

implementing a logic circuit.

● NAND and NOR gates are called universal logic gates.

● All NAND or NOR logic diagrams should be drawn using

appropriate dual symbols so that bubble outputs are

connected to bubble inputs and non-bubbleoutputs are

connected to non-bubbleinputs.

● When two negation indicators (bubbles) are connected, they

effectively cancel each other.

● The basic logic functions are comparison, arithmetic, code

conversion, decoding, encoding, data selection, storage, and

counting.

● Addition, subtraction, multiplication, division, encoding,

decoding, multiplexing, demultiplexing, etc. are the

functionalities of the combinational logic circuits.

Space for learners:

72 | P a g e

● To perform the addition operation half-adder, full-adders,

parallel adders are used.

● Half-adders can be combined to design the full-adders.

● Ripple carry and look-ahead carry are the examples of

carries seen in the adder circuits.

● Comparator circuits are used to compare any two binary

numbers and MSB are given more precedence while

comparing two binary numbers.

● Subtractor circuits also have a similar design like the adder

circuits.

● Encoder and decoder are the code converter circuits, they

perform reverse operation with each other.

● Multiplexer and demultiplexer are data selector and data

distributor, they also perform reverse operation with each

other.

2.11 KEY TERMS

● SOP: Sum of Product expressions

● POS: Product of Sum expressions

● Half-adders: add two binary numbers and produce sum and

carry in the output.

● Full-adders: add two binary numbers with input carry and

produce sum and carry in the output.

● Half-subtractor: subtract binary numbers and produce

difference and borrow out.

● Full-subtractor: subtract two binary numbers with borrow

in and produce difference and borrow out.

● Comparators: Compare two binary numbers

● Decoders: Detect the specific combination of bits in the

input.

● Encoders: An encoder converts understandable alphabet to

numbers into the coded forms.

● Multiplexers: Multiplexers are the data selectors.

Multiplexers transmit data coming from different sources

over a single line.

● Demultiplexers: Demultiplexers show the reverse operation

of multiplexers. It takes digital data from a single line and

distributes them in several lines.

Space for learners:

73 | P a g e

2.12 ANSWERS TO CHECK YOUR PROGRESS

1. Product of Sum

2. Sum of Product

3. A′B+AB′

4. One (one 3-input AND gate)

5. Two

6. Two

7. Four

8. Three

9. False

10. False

11. True

12. True

13. True

14. True

15. True

16. True

17. 2n

18. I′3I2I1I0

19. Reverses

20. One

21. Output

2.13 POSSIBLE QUESTIONS

Short answers type questions

1. Determine the output (1or 0) of a 4-variable AND-OR-

Invert circuit for each of the following input conditions:

a. A=1, B=0, C=1, D=0

b. A=1, B=1, C=0, D=1

c. A=0, B=1, C=1, D=1

2. Draw the logic diagram for an exclusive-NOR circuit.

3. Determine the output of an exclusive-OR gate for each of the

following input conditions:

a. A=1, B=0

b. A=1, B=1

c. A=0, B=1

d. A=0, B=0

4. Implement the following boolean expressions:

a. Y = ABC+AB+AC

b. Y = AB(C+DE)

5. Reduce Question 4 to minimum SOP form.

Space for learners:

74 | P a g e

6. Use NAND and NOR gates or combination of both to

implement the following logic expressions:

a. Y = A′B+CD+(A+B)′(ACD+(BE)′)

b. Y = ABC′D′+DE′F+(AF)′

7. Find out the full adders input for the following set of

outputs:

a. Σ =0 , Cout=0

b. Σ =1 , Cout=0

c. Σ =1 , Cout=1

8. Implement the expression Y = ((A′+B′+C′)DE)′ using

NAND logic.

9. Implement the expression Y = ((A′B′C′)+(D+E))′ using

NOR logic.

10. Develop a logic circuit that produces a 1 on its output only

when all three inputs are 1s or when all three inputs are 0s.

Long answers type questions:

1. Define combinational logic circuits. Explain the various

components used to design the combinational logic circuits.

2. Design combinational logic circuit for the following

expression

Y = AB(C+DEF)+CE(A+B+F)

3. Develop the truth table for a certain 3-input logic circuit with

the output expression

Y = AB′C+A′BC+A′B′C′+ABC′+ABC

4. Develop truth for the following expressions and draw the

circuits:

a. A′B+ABC′+(AC)′+AB′C

b. P′+QR′+ SR+PQ′R

5. From the following truth table draw the logic circuit in

minimized form

Inputs Output

Y
A B C

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

Space for learners:

75 | P a g e

1 1 0 0

1 1 1 1

6. Design a 6-bit parallel adder.

7. Design a 4-to-2 line encoder using logic gates.

8. Design a 8-to-1 line multiplexer using logic gates

9. Design a 4-to-16 line decoder using logic gates

10. Design a 1-to-8 line demultiplexer using logic gates

11. Design an adder-subtractor circuit.

2.14 REFERENCES AND SUGGESTED READINGS

1. Mano, M. Morris, Digital Logic and Computer Design,

Pearson Education.

2. Mano, M. Morris, Computer System Architecture, Pearson

Education.

3. Jain, R. P., Modern Digital Electronics, Mc Graw Hill India.

---×---

76 | P a g e

Space for learners: UNIT-3: COMPUTER ARITHMETIC

Unit Structure:

3.1 Introduction

3.2 Unit Objectives

3.3 Multiplication of Numbers

3.3.1 Multiplication of Unsigned Numbers

3.3.2 Multiplication of Signed Numbers

3.3.3 Hardware Implementation of Multiplication Operation

3.3.4 Booth’s Multiplication Algorithm

3.4 Division Operation

3.5 Floating Point Arithmetic Operations

3.5.1 Addition/Subtraction of two Floating point numbers

3.5.2 Multiplicationof two Floating point numbers

3.6 Summing Up

3.7 Answer to check your progress

3.8 Possible Questions

3.9 References and Suggested Readings

3.1 INTRODUCTION

A separate section in central processing unit used to execute

arithmetic operations is called arithmetic processing unit. The

arithmetic instructions are performed generally on binary or decimal

data. Fixed-point numbers are used to represent integers or fractions.

We can have signed or unsigned negative numbers. Fixed-point

addition is the simplest arithmetic operation. In digital computers

data is manipulated by using arithmetic instructions. Data is

manipulated to produce results necessary to give solution for the

computation problems. The addition, subtraction, multiplication and

division are the four basic arithmetic operations. We can derive

some other operations by using these four operations.

77 | P a g e

Space for learners: 3.2 UNIT OBJECTIVES

This unit is an attempt to give an idea of multiplication and division

of numbers in digital computer. After going through this unit you

will be able to-

• understand the multiplication operation

• understand the division operation

• explain the floating-point arithmetic operation

3.3 MULTIPLICATION OF NUMBERS

Multiplication of two fixed point unsigned binary numbers can be

done by a process of successive shift and add operations. But the

multiplication of two fixed point signed binary numbers in 2’s

complement representation requires special consideration.

3.3.1 Multiplication of Unsigned Numbers

Multiplying unsigned numbers in binary is quite easy. We already

know that with 4 bit numbers we can represent numbers from 0 to

15.

For Multiplication of binary numbers only we have to remember the

number facts: 0*1=0 and 1*1=1 (this is the same as a logical

"and").

Multiplication is different than addition. Multiplication of an n bit

number by an m bit number results in an n+m bit number. Let's

discuss with an example where n=m=4 and the result of

multiplication is 8 bits:

78 | P a g e

Space for learners: Example 1:

Decimal Binary

 10

x 6

60

1010 (Multiplicand)

x 0110(Multiplier)

0000

1010 Partial Product

1010

+0000

 0111100 (Product)

In this case of binary multiplication the result is 7 bit, which can be

extended to 8 bits by adding a 0 at the left.

Example 2:

Decimal Binary

7

x 6

42

0111

x 0110

0000

 0111

0111

 +0000___

0101010

3.3.2 Multiplication of Signed Numbers

For multiplying binary integers in signed 2’s complement

representation requires special consideration.

Example 3:

Decimal Binary

7

 x -6

-42

 0111

 x 1010 (2’s complement)

 0000

 0111

0000

+0111___

1000110 (The result is incorrect)

So, there is an error

79 | P a g e

Space for learners: Solution: We must sign extend to the product bit width. The

additional values out to the MSB position are called sign extension.

Decimal

Number

3 bits 4 bits 8 bits 16 bits

6 110 0110 0000 0110 0000 0000

0110

-6 110 1110 1111 1110 1111 1111

1110

7 111 0111 0000 0111 0000 0000

0111

-7 111 1111 1111 1111 1111 1111

1111

As we know that multiplication of two 4 bit numbers results in8 bits.

So for signed multiplication of two 4 bit numbers we must sign

extent the numbers to the product bit width i.e, 8 bits.

Example 4:

Decimal Binary

7

x -6

 -42

0111

x 1010

After Sign extension

00000111

x 11111010

00000000

00000111

00000000

00000111

10000111

00000111

00000111

+00000111_______

 |11010110 (2’s complement of 42)

Stop after 8 bits

So the result is correct

80 | P a g e

Space for learners:

3.3.3 Hardware Implementation of Multiplication Operation

The multiplier and multiplicand are stored in two registers Q and M.

A third register A is initially set to 0. A 1-bit register C is used to

store the carry bit resulting from addition. Control logic reads the bit

of the multiplier one at a time. The multiplicand is added to the

register A if Q0 is 1 and then stored the result back to register A with

C bit is used to store carry. Then all the bits of CAQ are shifted one

position right. No addition is performed if Q0 is 0. The process is

repeated for each bit of the multiplier. The resulting 2n bit product is

the contain of QA register

Figure 1: Hardware for Multiplication Operation

3.3.4 Booth’s Multiplication Algorithm

Booth’s algorithm gives a procedure for multiplying binary integers

in signed 2’s complement representation.

CHECK YOUR PROGRESS

1. Do the binary multiplication of (-7) and (-6)

2. Do the binary multiplication of (-7) and (-6)

81 | P a g e

Space for learners: Figure 2: Flow chart of Booth’s Algorithm for multiplication of

signed numbers

Example 5:

Here, number of bits (n) required for this calculation is 4 bits (1 bit

to represent the sign and 3 bits to represent the numbers). Since 6

can be represented using 3 bits and negative sign is represented

using 1 bit.

Decimal

 -6 (Multiplicand)

 x 3 (Multiplier)

 -18 (Product)

82 | P a g e

Space for learners: So, the size of registers M, Q, A(Accumulator) is 4 bits and register

q0 is 1 bit.

M=(-6)10

= 2’s complement of (0110)2

= (1010)2

-M = (0110)2

Q = (3)10 =(0110)2 = Q (q4q3q2 q1)

Operations:

(i) If q1q0 bits are 1 0 then then do A = A – M = A + (-M)

(ii) If q1 q0 bits are 0 1 then then do A = A + M

(iii) Otherwise Arithmetic Shift Right of (A Q q0) is done.

Suppose (A Q q0) = (0 1 1 0 0 0 1 1 0)

Then ASR will yield the result = (0 0 1 1 0 0 0 1 1).

Here sign bit(MSB) is restored and all bits (including the

sign bit) is shifted one position right.

TABLE 1: Multiplication of Example 5 using Booth’s Algorithm

n A Q

(q4 q3 q2

q1)

q0 Action/Comment

4

3

2

1

0

0 0 0 0

0 1 1 0

0 0 1 1

0 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

0 0 1 1

0 0 1 1

0 0 0 1

1 0 0 0

1 0 0 0

1 1 0 0

1 1 1 0

0

0

1

1

1

0

0

Initialization

A = A – M

ASR of (A Q q0)

ASR of (A Q q0)

A = A + M

ASR of (A Q q0)

ASR of (A Q q0)

Result is content of AQ i.e, 1 1 1 0 1 1 1 0

Here, LSB (Sign bit) is 1 so the result is –ve.

83 | P a g e

Space for learners: Therefore result: - (2’s complement of 1 1 1 0 1 1 1 0) = - (0 0 0 0 1

0 0 1 0)= - (18)10

3.4 DIVISION OPERATION

The division operation involves repetitive shifting and addition or

subtraction.

First, the bits of the dividend are examined from left to right to

search a number greater than or equal to the divisor. Until this event

occurs, 0s are placed in the quotient from left to right. When such a

number is found and the divisor divides the number, a 1 is placed in

the quotient and the divisor is subtracted from the partial dividend.

The result is referred to as a partial remainder. In the subsequent

cycle, additional bits from the dividend are appended to the partial

remainder until the result is greater than or equal to the divisor. The

divisor is subtracted from this number to produce a new partial

remainder. The process continues until all the bits of the dividend

are exhausted.

3.5 FLOATING-POINT ARITHMETIC OPERATIONS

Arithmetic operations on floating point numbers are addition,

subtraction, multiplication and division.

A floating point number can be represented as m x r
e
, where m is

called mantissa, r is called radix and e is called exponent part. In

computer memory two registers: mantisa and exponent is used to

represent a floating point number.

SAQ

1. Do the binary multiplication of -7 and 3 using Booth’s

Algorithm.

CHECK YOUR PROGRESS

1. Divide 1001 by 11

2. Divide 111000 by 111

84 | P a g e

Space for learners: For example, the decimal number 423.75 can be represented in a

register with m=42375 and e=3 and is interpreted to represent the

floating point number

. 42375 x 10
3

3.5.1 Addition/Subtraction of two Floating point numbers:

Steps to add/subtract two floating point numbers are as discussed

below:

(i) Alignment: Compare the magnitudes of two exponents

and align the number with smaller magnitude of

exponents

(ii) Addition/Subtraction: Addition or subtraction is done

following the addition or subtraction rules.

(i) Normalize the result: If MSB of mantissa part of the

product is 1, the product is already normalized. If it is 0

underflow occurs and the mantissa of the product is

shifted left and decrement the exponent value. If

overflow occurs, mantissa is shifted right and exponent is

incremented

Example 6: Add 1.1010 x 2
4
and 1.101x 2

2

Solution:

Step (i), Here 1.101 x 2
2

is aligned to 0.01101 x 2
4
.

Step (ii), Add the two numbers 1.1010 x 2
4

and 0.01101 x 2
4

to get

10.00001 x 2
4

Step (iii), Result = 10.00001 x 2
4
. So, overflow in the result.

After normalization the result is 0.1000001 x 2
6

SAQ

1. Add 1.1100 x 2
4
and1.100 x 2

2
.

85 | P a g e

Space for learners:

3.5.2 Multiplication of two Floating point numbers:

(ii) Add the exponents: Exponents of two numbers are

added to get the exponent of the product.

(iii) Multiply the mantissas: Multiplication of mantissas are

done following multiplication rule.

(iv) Normalize and round the result: Overflow cannot

occur during multiplication. If MSB of mantissa part of

the product is 1, the product is already normalized. If it is

0, then the mantissa of the product is shifted left and

decrement the exponent value.

Example 7: Multiply 1.000 x 2
-2

and 1.010x 2
-1

Solution:

Step (i), (-2) + (-1)=-3, this is the exponent value of the product.

Step (ii), Multiply the mantissas: 1.000 x (1.010) = 1.010000

Step (iii), Result = 1.010000 x 2
-3

Under flow in the result. So after normalization result is = 0.10000 x

2
-2

3.6 SUMMING UP

STOP TO CONSIDER

In floating point multiplication if either operand is equal to zero,

the product is set to zero and operation is terminated. Procedure

for arithmetic operations on floating point numbers is different

than integers.

86 | P a g e

Space for learners: • Procedure to do multiplication of signed and unsigned

number is different.

• Multiplication of two fixed point unsigned binary numbers

can be done by a process of successive shift and add

operations.

• Multiplication of signed numbers can be done using Booth’s

Algorithm.

• The multiplier and multiplicand are stored in two registers Q

and M.

• The division operation involves repetitive shifting and

addition or subtraction.

• Arithmetic operations on floating point numbers is done in a

different way.

3.7 ANSWER TO CHECK YOUR PROGRESS

1. State the Booth's algorithm for multiplication of two

numbers, Draw a block diagram for the implementation of

the Booth's algorithm for determining the product of

two 8−bit signed numbers.

2. Multiply 1.1100 x 2
-3

and 1.01 x 2
2

3.8 POSSIBLE QUESTIONS

1. Perform binary multiplication of -8 and -3 using sign

extension method

2. Perform binary multiplication of 9 and -4 using Booth’s

Algorithm.

3. Write the steps of Booth’s Algorithm.

4. Discuss the hardware implementation of multiplication

operation.

5. Write the steps of division operation.

6. How the alignment and normalization is done in addition of

two floating point numbers?

3.9 REFERENCES AND SUGGESTED READINGS

1. Computer System Architecture, M. Morries Mano

---×---

87 | P a g e

Space for learners: UNIT4: REGISTERTRANSFER LANGUAGE AND

 PROCESSOR LOGIC DESIGN

Unit Structure:

4.1Introduction

4.2 Unit Objectives

4.3 Register Transfer Language

 4.3.1 Representation of Registers

 4.3.2 Register Transfer Representation

 4.3.3 RTL Representation of Memory Transfers

4.4Datapath

 4.4.1 One-Bus Data path

 4.4.2 Two-Bus Data path

 4.4.3 Three-Bus Data path

4.5 ALU Design

 4.5.1 Arithmetic Circuit

 4.5.2 Various Arithmetic Micro operations

 4.5.3 Logic Circuit

 4.5.4 Some Applications of Logic Micro operations

 4.5.5 Shift Micro operations

4.6 Control Unit

 4.6.1 General Model of the CU

 4.6.2 Hardwired Control Unit

 4.6.3Microprogrammed Control Unit

4.7Summing Up

4.8 Answers to Check Your Progress

4.9 Possible Questions

4.10References and Suggested Readings

4.1 INTRODUCTION

As you know, all the operations or instructions in a digital computer

are carried out by a processor with the help of various other

interconnected modules. The elementary operations are also called

as micro operations that are performed on the data stored on the

processor registers. This unit contents the fundamentals of micro

operations and the language used to represent various micro

operations which is known as Register Transfer Language (RTL),

88 | P a g e

Space for learners: the concept of Data paths and other significant parts of the Central

Processing Unit (CPU) such as the Arithmetic and Logic Unit

(ALU) where you will be able to understand the functioning of the

Arithmetic Circuit and Logic Circuit and lastly in the Control Unit

(CU) part you will be able learn the design of CU and its

functionalities and also about alternative designs of the CU -

hardwired and micro programmed control unit.

4.2 UNIT OBJECTIVES

After completing this unit, you will be able to learn:

� The concepts Micro operation and representation of Register

and uses of Register Transfer Language (RTL)

� Concepts of one-bus, two-bus and three-bus organization

� Concepts related to ALU (basic design of Arithmetic Circuit

and Logic Circuit)

� Concept of the Control Unit (Micro programmed and

Hardwired Control Unit)

4.3 REGISTER TRANSFER LANGUAGE

The internal hardware organization of a digital computer exhibits an

interconnection of digital modules such as registers, decoders,

arithmetic logic, and control logic etc. The complete digital system

is interconnected with data and control paths commonly known as

bus. The elementary operations performed by the CPU on the data

stored in one or more registers are termed as micro operations. clear,

count, load and shift are some examples of such micro operations.

Various categories of micro operations:

The most commonly used micro operations in a digital computer are

listed below-

� Register transfer micro operations: The micro operations

that are used to transfer binary information among various

registers.

89 | P a g e

Space for learners: � Arithmetic micro operations: The micro operations that are

used to perform various arithmetic operations (add, subtract,

increment, decrement) on arithmetic data stored in the

registers.

� Logic micro operations: The micro operations that are

used to perform logical operations (AND, OR, NOT) on the

data stored in the registers.

� Shift micro operations: The micro operations that are used

to perform either left or right shift operations (logical,

arithmetic, circular) on the data stored in the registers.

The Register Transfer Language (RTL) is the representation

system used to describe the sequence of micro operations in a

symbolic form. The term register transfer refers to the transfer of

binary information among the registers via a common path or bus.

4.3.1 Representation of Registers

In a digital computer system the registers are represented using

upper case letters (and followed by a numeral sometimes). PC-

Program Counter, IR- Instruction Register etc. are examples of

special purpose registers and R1, R2, R3… etc. are examples of

general purpose registers. A register is represented by a rectangular

box containing the name inside and the bit numbers can be marked

at the top of the box starting from left to right as shown in figure 4.1

(a) & (b). Each bit of the data stored in the register can be

represented as shown in the figure where each individual bit is

assigned a letter along with a numeral subscript that indicates the

position of the bit. Considering a 16-bit register the bits numbered

from 0 to7 are termed as low byte (L) while the bits from 8 to 15 are

termed as high byte (H) of the register as shown in figure 4.1 (c) &

(d).

A7 A6 A5 A4 A3 A2 A1 A0

A7 A0 R1

A15 A0

(a)

(b)

90 | P a g e

Space for learners:

Fig4.1: Block diagram of Register

4.3.2 Register Transfer Representation

The transfer of contents from one register to another register can be

shown with the help of replacement operator (�). For example,

transfer of data from register R1 to register R2can be symbolically

expressed using the following statement in RTL.

 R2� R1

When this statement gets executed contents of R2 will be replaced

by contents of R1, but the contents of R1 remains unchanged. The

execution of this statement can be controlled by putting some

control condition also. That means when the control condition

satisfies then only the transfer takes place, otherwise not. This is

shown in the following expression:

 If (P = 1) then (R2� R1)

Here, P=1 is the control statement or control function which is a

Boolean variable.

The statement can also be written as

 P: R2� R1

 The colon (:) separates the control condition from the rest.

The hardware implementation of the statement P: R2� R1 is

shown below:

H L

R2

A15 A8A7 A0

(c)

(d)

91 | P a g e

Space for learners:

Fig4.2: Hardware implementation of P: R2� R1

4.3.3 RTL Representation of Memory Transfers

Data flow from memory to external environment is known as

memory read operation while data from external environment is

stored in memory is referred to as memory write operation. In RTL,

the memory word is symbolized by the letter M followed by square

brackets [] having the address of the memory word. For example,

transferring a data word M from memory whose address is stored in

Address Register (AR) to Data Register (DR) can be symbolized as:

 Read: DR ←M[AR]

Similarly, the write operation can be symbolized as:

 Write: M[AR] ← R1

which means transfer of data from register R1to the memory word M

whose address is stored in the Address Register (AR).

Check Your Progress

1. The operations executed on data stored on registers are

called _______________.

a) macro operations b) micro operations

c) Byte Operations d) Bit Operations

2. Which of the following register transfer statements is

correct?

a) P, R1←R2b) P : R1←R2 : R3←R4

c) P : R1←R2, R3←R4 d) None of the these

 3. What does the following transfer statement indicate?

 R2 ← M[R1]

a) Read a memory word at the address stored in R1

b) Read a memory word at the address stored in R2

c) Write a memory word at the address stored in R1

d) Write a memory word at the address stored in R2

92 | P a g e

Space for learners:

4.4 DATAPATH

The Central Processing Unit of a digital computer can be divided

into a data section and a control section. The data section, also

called as data path, contains the registers and the Arithmatic Logic

Unit (ALU) and the Buses. There are three types of buses- Address

bus, Data bus and Control bus. The data path is accomplished for

performing certain operations on data items stored in various

memory units. The control section is basically comprised of the

control unit, which issues various control signals to the data path.

Internal data (which may be data, instructions or addresses) transfers

are carried out via local buses. Externally, data transfer from

registers to memory and Input-Output devices, often carried out by a

system bus. The local bus organization to perform internal data

transfer among registers and the ALU may be of different

organizations like one-bus, two-bus, or three-bus organization.

4.4.1 One-Bus Data path

In this organization, the CPU registers and the ALU use a single bus

to transfer data. This bus organization is least expensive and

simplest in design, but it restricts the amount of data transfer that

can be done in the same clock cycle, which results in decrease of

overall performance of the system. Figure 4.3 shows a one-bus data

path organization comprising of a set of general-purpose registers, a

memory address register (MAR), a memory data register (MDR), an

instruction register (IR), a program counter (PC), and an ALU, all

are interconnected via a single data path.

4. State TRUE or FALSE:

a) Considering a 16-bit register the bits numbered

from 0 to7 are termed as low byte (L).

b) Shift micro operations are used to perform various

logical (AND, OR, NOT) operartions.

c) A register transfer can’t occur unless the specified

control condition becomes true.

93 | P a g e

Space for learners:

Fig4.3: One-bus data path

4.4.2 Two-Bus Data path

In two-bus organization, two buses are used which results a faster

performance than the one-bus organization. In this case, the general-

purpose registers are connected to both the buses. Data can be

transferred from two different registers to the input point of the

ALU at the same time. Therefore, an operation having two operands

can fetch both operands in the same clock cycle. There may be a

need of an additional buffer to hold the output of the ALU when the

two buses remain busy in carrying the two operands. Figure (4.4-a)

shows a two-bus organization. There may be another

implementation of two bus organization where one of the buses is

dedicatedly used for moving data into registers (in-bus), while the

other bus is dedicatedly used for transferring data out of the registers

(out-bus). For this purpose, the buffer register may be used

additionally, as one of the ALU inputs, to hold one of the operands.

The ALU output can be connected directly to the in-bus, which

transfers the result to one of the registers. A two-bus organization

with in-bus and out-bus is shown in Figure (4.4-b).

(a)

94 | P a g e

Space for learners:

(b)

Fig4.4 :(a) Two bus datapath(b) Two bus datapath with in-busand out-

bus

4.4.3 Three-Bus Datapath

In case of three-bus organization, two buses may be used as source

buses whereas the third bus is used as destination. The source buses

are used to transfer data out from registers (out-bus), and the

destination bus may be used to transfer data into a register (in-bus).

Each of the two out-buses is connected to an ALU input point and

the output of the ALU is connected directly to the in-bus. As we

have more buses in this organization, more data can be transferred

within a single clock cycle. However, increasing the number of

buses also increases the complexity as well as cost of the hardware.

Figure (4.5) shows the organization of a three-bus data path.

Fig 4.5 : Three-bus data path

95 | P a g e

Space for learners:

4.5 ALU DESIGN

The arithmetic and logic unit (ALU) is a combinational circuit in a

digital computer which performs the following operations-

� Arithmetic operations such as add, subtract, increment and

decrement etc.

� Logic operations such as AND, OR, XOR and compliment

etc.

� Bit Shifting operations such as logical left and right shift

used for multiplication purpose.

Therefore, we can say ALU is the combination of arithmetic unit,

logic unit and shift unit all the three circuits together. It is usually a

part of the central processing unit (CPU). Many CPUs have separate

units for arithmetic operations (Arithmetic Unit-AU) and for logic

operations (Logic Unit-LU).

4.5.1 Arithmetic Circuit

The 4-bit arithmetic circuit which is shown in Figure 4.6 is able to

perform different basic arithmetic operations such as add, subtract,

increment and decrement. It employs parallel full adders (FA) to

perform these operations depending on the inputs. The select inputs

S0 and S1 are used to provide different inputs to the multiplexers

(MUX) present in the circuit in order to obtain different arithmetic

operations as outputs.

Check Your Progress

5. The data section of the CPU is also known as ________.

6. In-bus, out-bus organization is related to ____________.

 a) one-bus data path b) two-bus data path

 c) three-bus data path d) None of these.

7. In __________ all the General Purpose Registers (GPR),

Special Purpose Registers (SPR) and the ALU are connected

via a single data path.

 a) one-bus data path b) two-bus data path

 c) three-bus datapath d) None of these.

8. Two-bus datapath is more efficient than Three-bus datapath.

(State TRUE or FALSE)

96 | P a g e

Space for learners: The output of the arithmetic circuit is calculated from the following

arithmetic expression-

 D = A + y + Cin

 Where A is the 4-bit number (A0,A1,A2,A3) to the x input

(X0,X1,X2,X3) of the full adders, y is the 4-bit number (the outputs

from the multiplexers) to the y inputs (Y0,Y1,Y2,Y3) to the full

adders and Cin is the input carry which is either 0 or 1.

Depending on the values of S0, S1and Cin, the arithmetic circuit

performs eight different micro operations as listed in the function

table shown in Table 4.1.

Let’s consider a few cases for better understanding the functioning

of the arithmetic circuit.

CASE I:S1= 0 andS0 = 0

In this situation, the input pins of multiplexers I0(i.e. the bits of B)

are chosen as the output and as a result B directly goes to they

inputs of the full adders (FA). i.e. y = B. Now, if Cin= 0 then the

output becomes D = A + B and if Cin= 1 then D = A + B +

1. This is how add micro operation is performed.

CASE II: S1= 0 andS0 = 1

In this situation, the input pins of multiplexers I1 (i.e. the

complimented bits of B) are chosen as the output and as a resultB�

goes to the y inputs of the full adders (FA). i.e. y = B�. Now, if

Cin= 0 then the output becomes D = A+B�which is equivalent to D

= A-B–1 and if Cin= 1 then D = A+B�+1 which is equivalent

to D = A-B. This is how subtract micro operation is performed.

CASE III:S1= 1 andS0 = 0

In this situation, the input pins of multiplexers I2 (connected to logic

0) are chosen as the output and as a result0 goes to the y inputs of

the full adders (FA). i.e. y = 0. Now, if Cin= 0 then the output

becomes D = A+0 i.e. D = A which means transfer operation is

done from A to Dand if Cin= 1 then D = A+1 which means

increment operation is performed.

97 | P a g e

Space for learners: CASE IV:S1= 1 andS0 = 1

In this situation, the input pins of multiplexers I3 (connected to logic

1) are chosen as the output and as a result 1 goes to the all y inputs

of the full adders (FA) and we know that if all bits of a number are 1

then it’s equivalent to -1. So, y =-1 here. Now, if Cin= 0 then the

output becomes D = A-1 which means decrement operation is

done and if Cin= 1 then D = A-1+1 i.e. D = A which means

which means transfer operation is done from A to D.

Fig 4.6 : A 4-bit Arithmetic Circuit

98 | P a g e

Space for learners: Table 4.1 Function Table of Arithmetic Circuit

Inputs Outputs Micro

operations S1 S0 Cin Y D = A + y + Cin

0 0 0 B A + B Add

0 0 1 B A + B + 1 Add with Carry

0 1 0 B� A + B�orA – B - 1
Subtract with

Borrow

0 1 1 B� A + B� + 1 or A - B Subtract

1 0 0 0 A Transfer A

1 0 1 0 A + 1 Increment A

1 1 0 1 A – 1 Decrement A

1 1 1 1 A Transfer A

4.5.2 Various Arithmetic Micro operations

Add, subtract, increment and decrement are the basic set of

arithmetic micro operations which are described below-

� Add: To add the contents of two or more registers and store

the resultant sum in either one of the registers or in a third

register, this micro operation is used. For example, to add

the contents of two registers R1 and R2 and store the result

in a third register R3, the micro operation can be

symbolized as:

 R3 = R1 + R2

� Subtract: When the contents of one register needs to be

subtracted from another register and store the result in

either one of the registers or in a third register, then this

micro operation is used. The subtraction operation is

implemented through complement and addition operation.

For example, to subtract the contents of register R2 from

register R1and store the result in a third register R3, the

micro operation can be symbolized as:

 R3 = R1 +R2 + 1 [Equivalent to R3=R1-R2]

Here, first we take the complement of R2, add 1 to it and

then the content of R1is added to it. In other words, the 2’s

complement ofR2is added with R1in order to carry out R1-

R2operation.

99 | P a g e

Space for learners: � Increment: This type of micro operation is used to increase

the contents of a register by 1. For example, to increase the

contents of register R1 by one the symbolic micro operation

will be:

 R1= R1 + 1

� Decrement: This type of micro operation is used to

decrease the contents of a register by 1. For example, to

decrease the contents of register R1 by one the symbolic

micro operation will be:

 R1= R1 – 1

4.5.3 Logic Circuit

The basic logic circuit of the ALU performs various logic micro

operations such as AND, OR, XOR and Compliment at bit-level.

Fig 4.7: Single stage of Logic Circuit with Function Table

Fig 4.7 shows the hardware implementation for four common logic

micro operations. The circuit is consisting of a 4×1 multiplexer with

four inputs (I0, I1, I2and I3) and two select pins (S0and S1)

to perform one of the four logic micro operations and direct it as the

output Ei as shown in the function table.

100 | P a g e

Space for learners:

4.5.4 Some Applications of Logic Micro operations

The basic logic operations (AND, OR, NOT, XOR) can be applied

to achieve various operations like set, clear, masking and inserting

new bits etc. Let’s discuss such common applications here-

� Selective-set: To set selected bits in register R1to 1 where

there are corresponding 1’s in register R2. The 0’s in are

not considered. For example, before operation if R1=0011

and R2=0101then after selective-set operation the contents

of R1will be 0111.This operation is achieved by the OR

logic micro operation, for above example this will be

symbolized as:R1← R1∨ R2

� Selective-clear: This operation clears those bits in register

R1to 0where there are corresponding 1’s in registerR2. For

example, before operation if R1=0011 and R2=0101then

after selective-clear operation the contents of R1will be

0010.This operation is achieved by the AND logic micro

operation with R1and complement of R2, for above example

this will be symbolized as: R1← R1∧ R2

� Selective-complement: This operation complements those

bits in register R1where there are corresponding 1’s in

register R2. For example, before operation if R1=0011 and

R2=0101then after selective-complement operation the

contents of R1will be 0110.This operation is achieved by

the XOR logic micro operation with R1andR2, for above

example this will be symbolized as: R1← R1⊕ R2

� Mask: This operation clears those bits to 0 in R1 where

there are corresponding 0’s in R2. For example, before

operation if R1=0011 and R2=0101then after mask

operation the contents of R1will be 0001.This operation

is achieved by the AND logic micro operation with

R1andR2, for above example this will be symbolized as:

R1← R1∧R2

� Clear: To compare the contents of two registers and results

in all 0’s if the contents of both the registers are same. For

example, before operation if R1=0011 and R2=0011then

after clear operation the contents of R1will be 0000.This

operation is achieved by the XOR logic micro operation

101 | P a g e

Space for learners: with R1andR2, for above example this will be symbolized

as: R1← R1⊕R2.Thus, XOR operation can be implemented

to determine whether two binary numbers are equal.

� Insert: This operation is used to insert new group of bits in

a register. To perform this operation, first the unwanted bits

of the register are masked and then OR operation is

performed with the desired value. For example, if

R1=00111100 and we want to insert 0110 in the

rightmost four bits. For this, first we mask the rightmost

four bits which is done by ANDing the contents of R1 with

the value 11110000. After this mask operation we get

R1=00110000. Now the contents of R1 are ORed with the

desired value (00000110) and after this operation we get

R1 = 00110110. Thus, the new bits (0110) are inserted

at the rightmost four bits.

4.5.5 Shift Micro operations

The shift micro operations move the contents (bits) of a register

either to the left or to the right. There are three types of shift micro

operations: arithmetic, logical and circular shifts. Let’s discuss

them one by one here.

� Arithmetic Shift: It shifts a signed binary number either to

left or right without changing the sign of the number. To

understand the arithmetic shift operation, let’s consider a n-

bit signed binary numberbn-1, bn-2,……, b1, b0 where

bn-1 denotes the sign bit and bn-2 denotes most significant

bit (MSB) and b0denotes the least significant bit (LSB).

 The arithmetic shift operations can be symbolized as:

 R1←ashr R1[1-bit arithmetic shift right R1]

102 | P a g e

Space for learners: R1←ashl R1[1-bit arithmetic shift left R1]

 In arithmetic shift right operation, as the sign bit

must be kept unchanged; all the bits including the sign bit

are shifted to the right. So, the rightmost bit is lost. The bn-1

remains the same, while bn-2is replaced by bn-1, bn-3 is

replaced by bn-2, and so on and at last b0 is lost.

 In arithmetic shift left operation, all the bits are

shifted to the left and a 0 is inserted in the previous b0 bit

position. The original value of bn-1 is lost as it is replaced by

bn-2;bn-2is replaced by bn-3 and so on. After this operation

if the value of bn-1 changes then a sign reversal occurs

which happens because of overflow which occurs if bn-

1≠bn-2 before the shift operation. The overflow condition

can be checked by XO Ring the bit bn-1 withbitbn-2. If the

XOR operation results in 1 then there is overflow; otherwise

not.

� Logical Shift: This micro operation moves the contents

(bits) of a register either to the left or to the right. After left

or right shift the empty/lost (the leftmost or the rightmost)

bit is replaced by a 0. Symbolically they are represented as:

 R1←shr R1[1-bit shift right R1]

 R1←shl R1[1-bit shift left R1]

� Circular Shift: This micro operation is almost same as the

logical shift, except there is no bit lost occurs here as the

leftmost or rightmost bit which is shifted out at one end is

circulated back to the other end. Symbolically they are

represented as:

 R1←cir R1[1-bit circular shift right R1]

 R1←cil R1[1-bit circular shift left R1]

103 | P a g e

Space for learners:

4.6 CONTROL UNIT

The main unit of the CPU is the control unit (CU) which generates

control signals to the data path to direct the entire system operations.

Data inside the CPU, memory unit and I/O devices are controlled by

Check Your Progress

9.The full form of ALU is ____________________

10.The ALU gives the output of the operations and the output

is stored in the ________.

 a) Memory Devices

 b) Registers

 c) Flags

 d) Output Unit

11. The content of an 8-bit register is initially is 10011100. The

content of the register after an arithmetic right shift opearation

will be _________.

 a) 11001110 b) 11001111

 c) 11001101 d) 01001110

12. In arithmetic left shift, overflow occurs when __________.

 a) bn-1=bn-2b)b0=bn-1

 c)bn-1≠bn-2d)b0 ≠bn

13. A digital computer performs which one of the following

micro operations to subtract R2 from R1?

 a) R3 = R1+R2+1 b)R3 = R1-R2

 c) R3 = R1+	2����+1 d)R2= R1-1

14. State TRUE or FALSE:

 a) The ALU performs logic operations only.

 b) XOR operation can be used to check whether the

 contents of two registers are same.

 c) In Circular Shift the bit in either end is circulated

 back to the other end.

104 | P a g e

these control signals issued

uses the control bus to carry

flow between the CPU and o

performed by the CU are:

� Sequencing: The CU

sequence for the micr

currently being execu

� Execution: The C

operations by gener

closing of gates to

performing ALU ope

4.6.1 General Model of the

The Control Unit (CU) has

state of the system and ou

function of the whole syste

must include the logic req

execution which are the main

a general model of a contro

clock, Instruction Register (

the control bus. The outputs

CPU and control signals to c

Fig 4.8: Ge

The inputs of the control unit

� Clock: The control u

and sequence of mic

issued by the control unit. The CU generally

o carry the control signals to control the data

 and other external units. The two basic tasks

he CU is responsible for generating a proper

e micro operations depending on the program

 executed by the CPU.

he CU causes the execution of micro-

generating control signals for opening and

tes to let the data pass through, while

U operations.

he CU

) has inputs that empower it to identify the

nd outputs that empower it to control the

 system. In addition to input and outputs it

ic required to perform the sequencing and

e main functions of the CU. Fig 4.8 illustrates

control unit consisting of four major inputs:

ister (IR), flags, and the control signals from

utputs from the CU are: control signals within

ls to control bus.

: General Model of the CU

ol unit are described below:

ntrol unit uses a clock to keep track the time

of micro operation execution. For each clock

Space for learners:

105 | P a g e

Space for learners: pulse the control unit executes one micro operation or a set

of concurrent micro operations which can be referred to as

clock cycle time or processor cycle time.

� Instruction Register (IR): Micro operations that are

fetched from the memory are stored in the IR. The opcode

part of the instruction used for decoding the type of

instruction to be executed.

� Flags: These are certain memory units capable of holding

just 1 bit of information that are used to indicate the CU the

current state of the processor and the results of recent ALU

operations.

� Control signals form control bus: Interrupt signals,

acknowledgement signals are such signals that are received

by the CU from the control bus.

The outputs from the CU are described below:

� Control signals within CPU: Two types of control signals

are generated by the CU within the CPU; one of these

causes the register transfers and the other one is used to

activate specific ALU functions.

� Control signals to control bus: Two types of control

signals are generated by the CU to the control bus; one goes

to the I/O modules and another goes to the memory.

The control unit of a digital computer can be implemented in two

alternate ways: hardwired and micro programmed implementation.

In hardwired implementation the control unit is comprised of logic

gates, decoders, flip-flops and other control signal generating digital

circuits etc. In micro programmed implementation, the control unit

is comprised of a control memory where the control information is

stored, which is programmed in such a way to initiate proper

sequence of micro operations as required. Let’s discuss both the

implementations one by one.

4.6.2 Hardwired Control Unit

If the control signals are generated by the hardware using

conventional logic design then control unit is said to be hardwired

controlled. Fig 4.9 depicts the block diagram of a hardwired control

unit consisting of a sequence counter (SC) and a number of logic

106 | P a g e

Space for learners: circuits which may include decoders, flip-flops and other control

logic gates.

Fig 4.9 : Hardwired Control Unit

The hardwired organization is very complicated if we have a large

control unit. In this organization, if the design has to be modified or

changed then it requires changes in the wiring among various

components. Thus the modification of all the combinational circuit

may be very difficult.

Advantages:

� It works fast because of the use of combinational circuits to

generate control signals.

� It can be optimized to operate in fast mode.

� It is faster than micro programmed control unit.

Disadvantages:

� Hardwired control unit is expensive.

� If the design has to be modified or changed then it demands

changes in the wiring among various components.

� The design becomes complex if the number of control points

in the CPU is large.

4.6.3 Micro programmed Control Unit

A micro programmed control unit’s design is based on the concepts

of microprogramming. Unlike the hardwired CU where the control

signals are generated via combinational circuits, here control signals

are generated using a sequence of microinstructions that specify the

internal control signals for executing the micro operations. Fig 4.10

depicts the organization of a micro programmed control unit.

107 | P a g e

Fig 4.10 :Micro

The micro programmed cont

which are described below:

� Control Address R

address of the micro

memory. It can also

(��).

� Control Data Reg

specified in the CA

microinstruction fetc

also be termed as mi

� Control Memory:

programmed CU has

memory to hold th

programs that canno

control memory ca

changes in the micro

is under operation.

� Next-address gener

micro operations g

required to find the

The next-address gen

address of the next m

why it can be termed

Advantages:

� The design of a m

complex.

� It is cheaper as numb

error prone to implem

� It can efficiently c

floating-point arithme

icro programmed Control Unit

d control unit comprises of four components,

low:

ess Register (CAR):The CAR specifies the

 microinstruction that is read from the control

n also be termed as the micro program counter

a Register: Depending upon the address

he CAR the control data register holds the

fetched from the control memory. It can

 as microinstruction register (���)

ory: In addition to the main memory, a miro

U has a separate memory called the control

old the microinstructions and fixed micro

 cannot be changed by a general user. The

ry can be read only memory (ROM) as

 micro programs are not required once the CU

tion.

 generator: After having executed all the

ons generated by a microinstruction, it is

nd the address of the next microinstruction.

ess generator is responsible for computing the

 next microinstruction to be executed. This is

termed as micro program sequencer.

 a micro programmed control unit is less

s number of hardware units is lesser and less

mplement.

ntly compute complex functions such as

rithmetic etc.

Space for learners:

108 | P a g e

Space for learners: � It offers more flexibility to modification or change; as the

modification can be brought just by changing the micro-

program residing in the control memory to specify a

different control sequence.

Disadvantages:

� It is slower than the hardwired control unit that means it

requires more time to execute an instruction.

� In case of limited hardware resources it costs more than the

hardwired control unit.

� For smaller CPU, the design duration of micro programmed

control unit is more than the hardwired control unit.

4.7SUMMING UP

� In a digital computer, the elementary operations are also

termed as micro operations which are performed on the data

stored on the processor registers.

Check Your Progress

15. Control Memory is associated with _____________.

a) Hardwired CU b) Micro programmed CU

 c) Both a) & b) d) None of these

16.Which one is not a function of a Control Unit?

 a) Control Signal b) Execution

 c) Sequencing d) Programming

17.Which one of the followings is also known as

 Microprogram Counter?

 a) Address Register b) Program Counter (PC)

 c) Control Address Register d) Data Register (DR)

 18. State TRUE or FALSE:

 a) Control Data Register is also known as

 Microinstruction Register (��).

 b) Micro programmed CU is faster than Hardwired CU.

 c) Control Signals are carried by Control Bus.

109 | P a g e

Space for learners: � The language used to specify the sequence of micro

operations is known as Register Transfer Language.

� Various types of micro operations are register transfer micro

operations, arithmetic micro operations, logical micro

operations and shift micro operations.

� The data section of the CPU is data path. There are three

types of Buses: address bus, data bus, control bus. One-bus,

two-bus and three-bus are the various types of data path

organization.

� The arithmetic logic unit (ALU) performs arithmetic, logical

and bit-shifting operations using various circuits. Arithmetic

circuit for various arithmetic operations and logic circuit for

logical operations. The shifting operation can be done with

the help of Arithmetic Logic Shift Unit.

� Another major part of the CPU which is the control unit

(CU) responsible for generating control and timing signals to

maintain the proper sequence of micro operation executions.

� The CU can be differentiated based on its design approach as

hardwired CU and mirco programmed CU.

4.8 ANSWERS TO CHECK YOUR PROGRESS

1. (a), 2 (c), 3 (a), 4.a True, 4.b False, 4.c True, 5. Data path, 6. (b),

7. (a), 8. False, 9.Arithmetic Logic Unit, 10. (b), 11. (a), 12. (c), 13.

(c), 14.a False, 14.b True, 14.c True, 15. (b), 16. (d), 17. (c), 18.a

True, 18.b False, 18.c True.

4.9 POSSIBLE QUESTIONS

Short answer type questions:

� What do you mean by RTL? Explain.

� What is control function of an RTL?

� How memory transfers are represented by RTL?

� What is datapath? What are its types?

� What are the operations performed by the ALU?

110 | P a g e

Space for learners: � How subtraction operation is performed by the arithmetic

circuit?

� How overflow occurs in arithmetic shift left operation?

� What operations can be performed by the logic circuit of the

ALU?

� What are the functions performed by the CU?

� What are various types of CU available?

� What are the components of a hardwired CU?

� What are the components of a micro programmed CU?

Long answer type questions:

� Explain the arithmetic circuit with its function table.

� Explain the logic circuit with its function table.

� Explain the general model of the Control Unit? What are the

various types of CU available?

� What is hardwired CU? Discuss its advantages and

disadvantages.

� What is micro programmed CU? Discuss its advantages and

disadvantages.

� List out various differences between Hardwired and micro

programmed Control Unit.

4.10 REFERENCES AND SUGGESTED READINGS

� M. Morris Mano, Computer System Architecture, Pearson

Education, Latest edition.

� Express Learning Series- Computer Organization and

Architecture, ITL Education Solutions Limited.

---×---

BLOCK II:

MEMORY AND INPUT OUTPUT

ORGANIZATIONS

111 | P a g e

Space for learners: UNIT 1: MEMORY ORGANIZATION

Unit Structure

1.1 Introduction

1.2 Unit Objectives

1.3 Memory Operations

1.4 Memory Chip

1.5 Memory Locations and Addresses

1.5.1 Byte addressability

 1.5.2 Big – Endian and Little – Endian assignments

1.6 Memory hierarchy

1.7 Secondary memory

1.8 Main memory

1.8.1 RAM

1.8.1.1 SRAM

1.8.1.2 DRAM

1.8.2 ROM

 1.8.2.1 PROM

 1.8.2.2 EPROM

 1.8.2.3 EEPROM

1.9 Cache memory

1.10 Virtual memory

1.11Classification of memory based on the access method

 1.11.1 Sequential access

 1.11.2 Random access

 1.11.3 Direct access

1.12 Memory management hardware

1.13. Solved examples

1.14 Summing Up

1.15 Answers to Check Your Progress

1.16 Possible Questions

1.17 References and Suggested Readings

1.1 INTRODUCTION

A computer consists of three primary building blocks as input

/output unit, control unit, and memory unit. It is used as a storage

device in a system to store programs or a set of instructions, data,

112 | P a g e

Space for learners: and the intermediate results of arithmetical and logical

computations. Depending on storing strategy the memories are

classified into two prime categories – main memory or primary

memory and auxiliary or secondary memory. Memory can be

classified into different categories based on some key characteristics

such as:

a. Depending on location memory are classify as CPU-based,

internal memory, and external memory.

b. Depending on media used for manufacturing memory i.e.

physical type memory is classified as semi-conductor based

and magnetic surface-based.

c. Depending on physical characteristics volatile / non-volatile

and erasable / non-erasable.

d. Depending on the access method memories are classified as

sequential access, direct access, and random access memory.

1.2 UNIT OBJECTIVES

After completing this unit, you will be able to learn:

• Learn about the functions of the memory unit.

• Memory operations

• Representation memory location in terms of byte

• Big-endian and little-endian assignment

• Composition of a memory chip.

• Learn about the memory hierarchy.

• Learn about the key factors that affect memory

performance.

• Know about the different types of RAM and ROM

• Mapping of a memory chip and required amount of

memory.

113 | P a g e

Space for learners: • Learn about the memory access methods.

• Learn about the concepts of cache and virtual memory.

• Learn about the hardware used in memory management.

• Concepts of secondary memory

• Functions of MMU.

1.3 MEMORY OPERATIONS

Computers memory is used to store both program instructions and

data operands. To execute an instruction the processor should load

or transfer the instruction or set of instructions into the processor

from the primary memory. During the processing of instructions, the

operands or the results are also transferred between the memory and

the CPU. Thus the basic operations involving in the memory can be

classified into two categories such as Load or Read / Fetch and store

or Write.

The READ operation transfers a copy of the contents from the

memory location specified by the CPU. During the transfer, the

memory contents remain unchanged. The READ operation is

initiated by the CPU sending a request to the memory with a

specific memory location in the address bus. The memory unit will

read the contents from the specified address by the CPU and send

them to the processor by loading the data into the databus.

The WRITE operation transfers data from the processor to a specific

memory location specified by the instruction. This operation will

overwrite the contents in that memory location. The processor sends

the data along with the memory location where it has to be store or

write. In a single operation, one word or 1 byte of data can transfer

between the memory and the processor.

114 | P a g e

Space for learners:

1.4 MEMORY CHIP

An integrated circuit (IC) consists of several capacitors and

transistors with the capacity of storing information can be defined as

a memory chip. Memory chips can be

used for process code also. Memory chips

can hold data either temporarily or

permanently through RAM and ROM

respectively. The size or shape and

storage capacity of the memory chip can vary.

A RAM chip is used to communicate with the CPU through control

lines. Through a bidirectional data bus, RAM chips are allowed to

communicate either from memory to CPU during a read operation

or from CPU to RAM during a write operation. Following figure

Fig.1.1 shows a typical block diagram of a RAM chip. The chip

capacity is 128 words of 8 bits per word. This 128 x 8 chip required

a 7-bit address and an 8-bit bidirectional data bus. The signal RD

and WR are used to specify memory operations Read/Write

respectively during communication. The chip select (CS) line is a

control line through which the microprocessor can select and enable

a particular chip. The functions of a RAM chip can be depicted as

shown in Table 1.

STOP TO CONSIDER

� The two main memory operations are READ and WRITE

� READ operation perform to fetch data from memory to

processor

� WRITE operation perform to store data from processor to

memory

115 | P a g e

Space for learners:

The RAM chip is in operation only when the value of CS1 = 1 and

��2�����= 0. The barin ��2����� indicates that the input is enabled for its

complements i.e. for the value 0. If the select controls are not

enabled or if it is enabled, but Read and Write lines are not enabled,

then the memory is inhibited and the data bus is in high impedance.

The high impedance is a state where it behaves like an open circuit

i.e. the output does not carry any signal.It leads to very high

resistance and hence no current flows. When the CS1 = 1 and ��2����� =

0 the memory can be in reading or write mode. When the WR input

line is enabled, then a byte of information will be transferred from

the data bus into the memory location specified by the address lines.

When the read input line is enabled, a byte of information from the

memory specified by the address line is transferred into the data bus.

The ROM chip is also organized the same as that of the RAM chip.

In the ROM chip there is no need for reading and write input control

because the unit can only read. Thus if the chip is selected the bytes

as specified by the address line will be appeared in the data bus.

Table 1: Functions table for RAM Chip

CS1 ��������� RD WR Memory function State of data bus

0 0 x x Inhibit High impedance

0 1 x x Inhibit High impedance

1 0 0 0 Inhibit High impedance

1 0 0 1 Write Input data to RAM

1 0 1 x Read Output data from RAM

1 1 x x Inhibit High impedance

116 | P a g e

Space for learners:

Generally, the size of RAM and ROM varies from machine to

machine. If a system required more memory storage than the

capacity of a chip then many chips are required to get the necessary

memory size. If the required size of memory is M x N and the chip

capacity is m x n then the required number of chips can be

calculated as

 k =
�∗

� ∗

1.5 MEMORY LOCATIONS AND ADDRESSES

Program instructions, operands, and results of arithmetical logical

operations are stored in computer memory. The computer memory

is composed of millions of storage cells. Each storage cell can store

STOP TO CONSIDER

� Memory chips hold data temporarily or permanently

through RAM and ROM.

� A RAM chip is used to communicate with CPU through

control lines

� Depending on the requirement of memory the number of

memory chip may vary.

CHECK YOUR PROGRESS

1. A. Calculate the number of memory chips of capacity 128

x 8 RAM needed to provide a memory capacity of 2048

bytes?

B. How many lines of the address bus must be used to

access 2048 bytes of memory? How many of these will be

common to all chips?

C. How many lines must be decoded for chip select?

Specify the size of the decoder.

117 | P a g e

Space for learners: one bit of information in the form of 0 or 1. To perform basic

memory operations the cells are grouped into a fixed number of

cells. Each group with n-bit is referred to as a “word” of

information and the “n” will be known as “word length”. It can be

depictedin figure 1.2. Now a day’s modern computers are typically

ranging between 16 – 64 bits of word length.

A computer with 64 bit means that the address bus can carry an

address of 64 bit for a specified memory location in computer

memory. The address of memory locations is represented by 64-bit

numbers. A computer with 32 bit can represent 2
32

 = 4294967296

Figure 1.2 Memory words

118 | P a g e

Space for learners: Thus the addressing scheme of a system determined the maximum

size of computer memory or address space. For example, a system

with a 16-bit computer i.e. with an addressing scheme of 16-bit

addresses can address up to 2
16

 = 64 K number of memory

locations. Similarly, a machine with 32-bit addresses can generate

2
32

 = 4GB memory locations. The memory location of a system

determines the address space. Thus the addresses of each memory

location are represented with k bits and using k address bit, 2
k
 nos.

of locations or addresses can be represented. The address bit and

number of locations is depictedin Table 2. Most computer systems

are byte-addressable and memory is usually designed to store or

access data in word-length quantities. For a computer, the word

length can be defined as the number of bits that store or are retrieved

in one access. The processor reads the memory data by loading the

address of the required memory location into the Memory Address

Register (MAR). Similarly, during a write operation, the processor

writes data into a memory location by loading the address of that

location into MAR. To perform the read/write operation on a set of

consecutive memory locations in the main memory, then a block

transfer operation may perform by sending the first address of the

memory locations.

Table 2: Address bit and number of locations

K Number of Locations

10 2
10

= 1024 = 1 K

16 2
16

= 65,536 = 64 K

20 2
20

= 1,048,576 = 1 M

24 2
24

= 16,777,216 = 16 M

119 | P a g e

Space for learners: 1.5.1 Byte addressability

A nibble is always 4 bits and a byte is 8 bits. The word length of a

computer system can range between 16 – 64 bits. To assign an

individual address for each of the bit locations in memory will

increase the complexity of memory organization. In modern

practices, each successive address refers to successive byte locations

in memory. For a computer system with 32 bits, successive words

will be located at addresses 0000, 0004, 0008,………. with each

word of four bytes.

1.5.2 Big – Endian and Little – Endian assignments

To assign the addresses across the words, there are two ways known

as big-endian and little-endian assignments. The big-endian is used

when the lower order byte addresses are used for the more

significant bytes (MSB) or the leftmost bytes as shown in Figure

1.3. The little-endian is used when the lower order byte addresses

are used for the less significant bytes (LSB) or rightmost bytes of

the word as shown in Figure 1.3. Commercial machines are used

both ways of assignment. To specify the address ordering of bytes

within a word it is mandatory to specify the labelling of bits within a

byte or a word as shown in Figure 1.4.

120 | P a g e

Space for learners:

Figure 1.4 labelling of bits within a byte or a word

Figure 1.3 Big-endian and little-endian assignment

STOP TO CONSIDER

� The processor reads the memory data by loading the address

of the required memory location into the Memory Address

Register (MAR).

� A computer with 64 bit means that the address bus can carry

an address of 64 bit for a specified memory location in

computer memory.

� To assign the addresses across the words, there are two

ways known as Big – endian and little – endian

assignments.

� In modern practices each successive addresses refers to

successive byte locations in memory.

CHECK YOUR PROGRESS

1. An address space is specified by 24 bits and the

corresponding memory space by 16 bits.

a. How many words are there in the word space?

b. How many words are there in the memory space?

2. If a page consists of 2K words, how many pages and blocks

are there in the system?

121 | P a g e

Space for learners:

1.6 MEMORY HIERARCHY

Memory performance mainly depends on some key parameters –

a. Memory access time –It is defined as the total time

requirement from submission of a request for the required

piece of information by the CPU for getting or availability of

the information in the CPU. CPU registers are local memory

for the CPU and the access time is few nanoseconds. Cache

memory takes small multiple access times of CPU registers.

Cache memory is portions of memory made up of very high-

speed static RAM (SRAM). Primary memory access time is

few tens of nano seconds. For secondary memory, the access

time is at least 10 msec. and it may measure in seconds if the

data is to be fetched/write from or to a drive.

b. Storage capacity: The storage capacity of memory has a

greater role in performance. As the capacity increase, the

access time of the memory is also increased. CPU registers

are good for almost 128bytes. Cache memory can be range

as for L1 cache – 8 KB to 64 KB, for L2 cache – 256 KB to

512 KB, and for L3 cache 8 MB to 32 MB. Primary memory

storage capacity ranges from 512 MB to 32 GB. The storage

capacity of Secondary memory can vary from few gigabytes

to terabytes or more than that.

122 | P a g e

Space for learners:

The memory hierarchy shows the organization of different

types of memories depending on their performance. It can

explain with a block diagram as shown in the following

figure Fig.1.5. At the top of the memory hierarchy, CPU

registers are located which are compact and accessible at full

CPU speed. The next high-speed and high-cost memory is

cache memory. CPU collects the required piece of

information from cache memory. From the peak to the

bottom of the hierarchy diagram, memory access time and

size of the memory are gradually increase and the costs of

memory decrease. The memory hierarch primarily depends

on some key parameters such as access time and storage

capacity of the memory.

STOP TO CONSIDER

� Depending on the key factors such as storage

capacity, accessibility, average access time memory

can be organized in a pyramid structure known as

memory hierarchy.

� Fastest and smallest memory lies on top or peak of

the pyramid structure.

� Slower and bigger storage capacity memories are lies

in bottom side of the pyramid.

123 | P a g e

Space for learners: 1.7 SECONDARY MEMORY

Memory devices where data are kept permanently for a long time

can call secondary memory. Secondary memories are non-volatile

i.e. can store data permanently during a power cut or off mode.

Some of the secondary memory devices are computer hard drive

disk, pen drive, floppy disk, CD, etc. In comparison to the main

memory size of the secondary or auxiliary memory is very large.

The memory access rate of auxiliary memory is comparatively very

less than main memory. Hence the cost is also relatively

inexpensive. Thus we can say that cost is directly proportional to the

storage capacity of the memory.

1.8 MAIN MEMORY

The CPU directly communicated with a memory unit known as the

main memory. The storage capacity of this type of memory is very

large in comparison to cache memory and very small in comparison

to secondary memory. The main memory can be classified into two

different categories such as RAM and ROM.

1.8.1 Random Access Memory (RAM)

RAM can be defined as a read/write memory. Users can read the

memory contents from RAM and also can write into RAM. It is

volatile, i.e. it loses all the data when the power goes down. As the

power supply goes down the memory contents or stored information

in RAM are lost. In RAM any memory location can be accessed

randomly without going through any other memory location. The

access time for each location is the same. RAM can be classified

124 | P a g e

Space for learners: into two categories as static or SRAM and Dynamic memory or

DRAM.

1.8.1.1 Static RAM (SRAM):

SRAM consists of CMOS technology and uses transistors. For

storing binary data it is used two cross-coupled inverters which is

similar to flip-flops along with two other transistors for access

control. The binary information exits in SRAM as long as the power

supply is on. Figure 1.6illustrates how an SRAM cell is

implemented. Two inverters are cross-coupled to form a latch. Two

transistors T1 and T2 are used to connect the latch with the two-bit

lines. Using the word line the transistors can be open or closed.

When the word line is at ground level, the transistors are turned off

and the latch retains its state.

To read the state of the SRAM cell, the word line is activated to

close the switches T1 and T2.The signal on bit line b will be high

and b
/
will be low for cell state 1. Similarly, for cell state 0, the

signal on bit line b is low and the signal in b
/
is high. Thus b and

b
/
are complements of each other. The state of the cell is set by

activating the word line and putting the appropriate value for the bit

line b and its complement b
/
. Required signals on the bit line are

generated by the sense/write circuit.

125 | P a g e

Space for learners:

Figure 1.6 a static RAM cell

1.8.1.2 Dynamic RAM (DRAM):

DRAM is constructed using capacitors and few transistors. The term

dynamic in DRAM indicates that the charges are continuously

discharging even in presence of an uninterrupted power supply and

hence the capacitors must refresh periodically through refreshing the

DRAM. DRAM is available in the market as it is less expensive.

SRAM is an on-chip memory with very little access time whereas

DRAM is off-chip memory with a large access time in comparison

to SRAM. So SRAM is faster than DRAM. The storage capacity of

SRAM is less than DRAM. Cache memories are comprised of

SRAM whereas the main memory is comprised of DRAM. Power

consumption in DRAM is more in comparison to SRAM.

STOP TO CONSIDER

� Memory can be volatile or non-volatile in nature.

� RAM is volatile and ROM is non-volatile memory.

� SRAM and DRAM are the two categories of random

access memory (RAM).

126 | P a g e

Space for learners: 1.8.2 Read Only Memory (ROM)

ROM is a non-volatile memory, i.e. contents of this type of memory

remain the same or permanently in the memory and not erased due

to power cut. Contents of ROM can be read or access during

operation and nothing can be writing into it by the user or

programmer. The manufacturing company decides and writes

permanently into the ROM during manufacture. Different types of

ROMs are PROM, EPROM, and EEPROM. Programs or sets of

instructions that are required for starting a computer i.e. bootstrap

programs are stores in ROM. ROM is used in some electronic

gadgets such as fridges, refrigerators, washing machines,

microwaves, etc.

1.8.2.1 Programmable read-only memory (PROM)

PROM was first developed in 1956 by Wen Tsing Chow. It is a

memory chip that can be programmed once after is created. Once

the memory chip is programmed, the information written on it

becomes permanent and cannot be erased or deleted. PROM was

used in computer BIOS in early day’s computers and now it is

replaced by EEPROM.

1.8.2.2Erasable Programmable Read-Only Memory (EPROM)

EPROM is a memory chip that can store data even after a power cut

also. Data from EPROM can be erased using ultraviolet light and

makes it re-writable or programmable. It was first developed by Dov

Frohman in 1971 at Intel. The contents of EPROM can be erased

limitedly. Too much deletion can make the memory unit unreliable

by destroying the silicon dioxide layer. It is not possible to erase the

127 | P a g e

Space for learners: EPROM contents partially. The whole data from EPROM is erased.

For erasing and reprogramming the EPROM, the chip has to remove

from the computer system and it consumes lots of time to erase data.

The process of programming on EPROM is known as Burning and it

is not a reversible process. It was developed to overcome the

drawbacks of ROM and PROM. EPROM is successfully used in

some microcontrollers such as Intel 8048, bootstrap loader, video-

game, personal computers, etc.

1.8.2.3Electrically Erasable Programmable Read-Only Memory

(EEPROM)

It is a memory chip that can be erased by exposing electrical charge.

Like other ROM, EEPROM retains its stored data even power is

turned off. In the year 1978, George Perlegos developed the concept

of EEPROM at INTEL. To erase the contents of EEPROM

consumes approximately 5 milliseconds. In EEPROM erasing and

reprogramming can be done without switching off the electrical

circuit of the system.

1.9 CACHE MEMORY

The processing speed of the CPU in comparison to the access time

of primary memory is very high. Due to this bottlenecking CPU

cannot be utilized at its utmost level and remains idle. To remove

this barrier a smaller memory is used in the system such that the

average access time got increases and makes the computer memory

more efficient. This chip-based smaller and faster memory is known

as cache memory. It is a temporary storage area from which the

CPU can retrieve data easily during processing. Sometimes it is

128 | P a g e

Space for learners: called the CPU Memory as it is typically integrated directly with the

CPU chip or placed on a separate chip that has a direct connection

with the CPU through a separate bus. As the cache memory is

smaller in size and faster access time in comparison to primary

memory, it increases the average access time and efficiency of the

processor. The access time of cache memory is 10 to 100 times

faster than the primary memory of a system. Cache consumes only a

few nanoseconds to respondto a CPU request. Cache memory built

with high-speed SRAM. It can be categorized into three different

levels such as L1, L2, and L3 cache. L1 cache is extremely fast and

usually embedded in the processor chip. L2 or secondary cache can

be implanted on the CPU with a system bus. L3 cache is used to

increase the performance of L1 and L2. The speed of L3 is

comparatively slower than L1 and L2 but two times faster than

DRAM.

1.10 VIRTUAL MEMORY

A computer has a limited amount of memory space in primary

memory or RAM. During programming, a user or developer has to

concern about the limited amount of free memory address in RAM

which increases the complexity of programming. To overcome this

difficulty a technique called virtual memory has arisen. Virtual

memory allows using more addresses than that the amount

physically exists in the system. The main advantage of this memory

is that the program may be larger than the size of the primary

memory that physically exists. Using the concept of virtual memory

the logical and the physical memory can be separated. This

separation allows using of a large virtual memory for the developers

over the actual physical memory in the system. It gives an illusion to

129 | P a g e

Space for learners: the programmer that large memory locations are available at their

end even though the system has a smaller main memory.

The address generated by the user program is called a virtual

address. A set of virtual addresses makes the virtual address space.

The set of main memory addresses or locations are called memory

space or physical address space. Usually, the virtual address space

is larger than the physical address space. To map between virtual

addresses with physical addresses, memory mapping techniques are

used by the memory controller of the system.

Consider a computer system with RAM of a storage capacity of 32K

words. To specify a location in RAM with 32K physical address

space (32K = 2
15

) 15 bit is required. Consider that the system has

2
20

= 1024K storage capacity auxiliary memory. Assume the

memory space is M and the P is the address space. Hence M=32K

and P=1024K. Thus the address bit of the instruction code will have

20bits whereas the memory address must be specified by 15bit only.

CPU will ask for reference instructions with the address of 20bit,

but at this point, the reference address must be taken from the

primary memory of the address with 15 bit rather than auxiliary

memory. Thus there is a requirement of mapping of virtual

addresses of 20 bit to physical 15 bit.

STOP TO CONSIDER

� Cache memory is typically integrated into CPU chip or

placed on a separate chip that has direct connection with

the CPU through a separate bus.

� To specify a location in RAM with 32K physical address

space (32K = 2
15

) 15 bit is required.

� Speed of CPU is very high then the average access rate of

primary memory. Cache is used to remove this bottleneck

between CPU and RAM.

� This bottlenecking problem can decrease the performance

of the computer system.

130 | P a g e

Space for learners: 1.11CLASSIFICATION OF MEMORY BASED ON

 THE ACCESS METHOD

There are three types of memory access methods as Sequential

access, Random access, and direct access.

1.11.1 Sequential access:

In this system, the stored data are accessed in afixed ordered manner

i.e. in a specific linear specific manner. Here the access time

depends on the location where the data exist. To go from memory

location 1001 to 1010 in sequential access, it has to pass through all

intervening memory locations. No one can jump from 1001 to 1010

directly as shown in figure 1.7. Examples of sequential media access

memory devices are magnetic tape, magnetic disk, optical

memories, DVDs, CDs, hard drives, etc.

Figure 1.7 Sequential and random access method

131 | P a g e

Space for learners: 1.11.2 Random access:

It refers to access data randomly from the storage device. In the

random access method, one can jump from memory location 1001 to

1010 directly without passing through all the intervening locations

i.e. 1002, 1003,…. etc. Examples of random access memory devices

are disk, RAM, ROM.

1.11.3 Direct access:

In this method, a unique address has been assigned for each block or

record based on physical location. It can be seen as a hybrid of

random and sequential access methods. The direct access method is

used in magnetic hard disks as it contains a huge number of rotating

storage tracks. Each track is associated with its own read/write head.

Magnetic tracks are accessed randomly, but within the track, the

data are accessed sequentially. Magnetic hard disk is a good

example of using a direct access method for accessing memory

contents.

STOP TO CONSIDER

� Data stored in memory can be access three different

ways.

� Sequential access READ or Write data sequentially

where as in Random access READ or WRITE operation

are performed randomly on memory locations.

� Magnetic hard disk is good example of using direct

access method for accessing memory contents.

132 | P a g e

Space for learners: 1.12 MEMORY MANAGEMENT HARDWARE

To manage the operations performed by memory dedicated

hardware is placed in between the processor and main memory

called Memory Management Unit (MMU). If the processor does not

have an on-chip MMU, then use an external MMU. The operations

done by MMU are performed by the operating system. But to reduce

the load on the operating system MMU is used. The logical address

can be defined as the memory address which is being used by a

program. A logical address represents or specifies the location of an

instruction or data in a program relative to the starting address of the

program. During the compilation of a program statement, the logical

addresses are represented by a memory pointer consisting of two

parts namely segment selector and offset. For a page-oriented

system, the memory pointer has a page address and page offset. The

physical address will be represented in terms of page number and

page offset. The virtual memory concept is also performed by the

MMU to provide a very large memory space to users. The concept

of virtual memory allows the users to use more memory than that a

system has in reality. A computer processor can access the data

from the main memory during the execution of an instruction. For

the execution of a program statement, it has to store or load into the

main memory. The MMU allows users to store the program

instructions into the secondary memory and it transfers a block of

instructions to the main memory which is currently required by the

processor. Similarly, the parts of the program statements are sending

back to the secondary memories which are not being used by the

processor currently. This to and fro data transferring process

between main memory and secondary memory is known as

swapping.

133 | P a g e

Space for learners: When a request for data or instruction sends by the processor to the

MMU by specifying a logical address, the MMU checks the

segment containing that logical address in the main memory. If it is

available in the physical memory then the MMU calculates the

physical address corresponding to the logical address specified by

the processor. If the required segment is not available in the physical

memory then MMU interrupts the CPU. On receiving an interrupt

signal from the MMU, the CPU access or read the desired segment

from the secondary memory.

1.13 SOLVED EXAMPLES

1. 16K x 8 RAM chips are used to construct 64K x 16 RAM.

Calculate the required number of chips for construction.

Solution: Number of chips required =
�� �∗��

�� �∗�
 = 8 chips

2. 1K x 4 RAM chips are used to construct 1K x 8 RAM.

Calculate the required number of chips for construction.

Solution: Number of chips required =
� �∗ �

� �∗ �
 = 2 chips

3. Direct Mapping Question: Assume a computer has 32-bit

addresses. Each block stores 16 words. A direct-mapped cache

has 256 blocks. In which block (line) of the cache would we

look for each of the following addresses? Addresses are given in

hexadecimal for convenience.

a. 1A2BC012

b. FFFF00FF

c. 12345678

d. C109D532

Solution: Of the 32-bit address, the last four bits denote the

word on the line. Since four bits are used for one hex digit, the

134 | P a g e

Space for learners: last digit of the address is the word on the line. With 256 blocks

in the cache, we need 8 bits to denote the block number. This

would be the third to last and second to last hex digit.

a. this would be blocking 01, which is block 1

b. this would be 0F which is block 15

c. this would be 67 which is block 103 (remember, 67 is a hex

value)

d. this would be 53 which is block 83.

CHECK YOUR PROGRESS:

1. Choose the correct options from the following: (Multiple choice

questions)

i. What is true about the memory unit?

A. Memory is the collection of storage units or devices

together.

B. The memory unit stores the binary information in the form

of bits.

C. Both A and B

D. None of the above

ii. When the power of a computer system shuts down, then which

type of memory loses its data?

A. Non-volatile memory

B. Volatile memory

C. Both A and B

D. None of the above

iii. The fastest data access is provided using______________

A. Cache memory

B. DRAM

C. SRAM

D. Registers

iv. The minimum time delay between two successive memory

read operations is_________.

A. Cycle time

B. Latency

C. Delay

D. None of the above

135 | P a g e

Space for learners: v. The effectiveness of the cache memory is based on the

property of____________.

A. Locality of reference

B. Memory localization

C. Memory size

D. None of the above

vi. The drawback of building a large memory with DRAM is

A. Large cost factor

B. Inefficient memory organization

C. Slow speed of operation

D. All of the above

vii. The memory which is used to store the copy of data or

instructions stored in larger memories, inside the CPU is

called ____________.

A. L1 cache

B. L2 cache

C. Registers

D. TLB

viii. Four memory chips of 16 x 4 sizes have their address bases

connected. The system will be of size

A. 64 x 64

B. 16 x 16

C. 32 x 16

D. 256 x 1

ix. In a virtual memory system, the address space specified by the

address lines of the CPU must be ____________ than the

physical memory size and __________ then the secondary

storage size.

A. Smaller, smaller

B. Smaller, larger

C. Larger, smaller

D. Larger, larger

x. For the synchronisation of the read head we make use of a

____________.

A. Framing bit

B. Synchronization bit

C. Clock

D. Dirty bit

xi. The BOOT sector files of the system are stored in

__________.

A. RAM

136 | P a g e

Space for learners: B. ROM

C. Hard disk

D. Fast solid-state chip in the motherboard.

xii. The technique where the controller is given complete access

to the main memory is

A. Cycle stealing

B. Memory stealing

C. Memory con

D. Burst mode

xiii. How many address bits are required to represent a 32K

memory?

A. 10bits

B. 12 bits

C. 14 bits

D. 16 bits

xiv. Which of the following memories stores the most number of

bits?

A. 64 K x 8 memory

B. 1 M x 8 memory

C. 32 M x 8 memory

D. 64 x 6 memory

xv. In a virtual memory system, the addresses used by the

programmer belongs to

A. Memory space

B. Physical address

C. Address space

D. Main memory address

1.14 SUMMING UP

1. The memory unit is a key part of a computer system.

2. Computer memory can be divided into two categories

namely primary and secondary memory.

3. The central processing unit of a system directly

communicates with the primary memory.

4. The processor can access the secondary memory through

primary memory.

137 | P a g e

Space for learners: 5. Primary memory can be categorized as RAM and ROM.

6. To increase the throughput of a system cache memory is

used in between the primary memory and CPU.

7. Different types of ROMS are available such as ROM,

PROM, EPROM, and EEPROM.

8. If the required chip size is M x N and if the chip capacity is

m x n, then the number of the required chip is k =
�∗�

� ∗ �

9. A set of physical addresses is known as memory space.

10. The address space can be divided into groups of equal size

known as a page.

11. The memory space is broken into groups of equal size called

blocks.

12. A computer processing speed can represent using the address

bit.

13. Big-endian and Little-endian assignments are used in byte

addressing.

14. MMU is used to control the communication between the

CPU and memory.

15. The concept of virtual memory allows users to use memory

space during programming which does not exist physically.

16. Lower order bytes are used to represent MSB in big-endian

assignments.

17. Lower order bytes are used to represent LSB in little-endian

assignments.

18. In modern practices, each successive address refers to

successive byte locations in memory

19. Cache memory can be categorized into three different levels

such as L1, L2, and L3 cache.

20. SRAM is an on-chip memory with very little access time

whereas DRAM is off-chip memory with a large access time

in comparison to SRAM.

138 | P a g e

Space for learners: 1.15 ANSWERS TO CHECK YOUR PROGRESS

Answers to question no. 1:

i. C ii. B iii. D iv. A v. A

 vi. C vii. A

viii. B ix. C x. C xi.B

 xii.D xiii.D xiv.C xv. C

1.16 POSSIBLE QUESTIONS

1) How many 128 x 8 RAM chips are needed to provide a

memory capacity of 2048 bytes?

2) How many 128 x 8 RAM chips are needed to provide a

memory capacity of 4096 x 16?

3) What is the bit storage capacity of a ROM with a 1024 x

8 organization?

4) Find the total number of cells in a 64k x 8 memory chip.

5) What is virtual memory?

6) Differentiate between ROM and EEPROM.

7) What are the key factors for memory efficiency?

8) What is memory access time?

9) What is clock cycle and CPU burst time?

10) Differentiate between sequential and random access?

11) What are SRAM and DRAM?

12) What is a memory chip? How the number of chips is

calculated for the required number of memory?

13) What is memory hierarchy?

14) Why DRAM is slower than SRAM?

15) What is cache memory?

16) Explain the memory hierarchy with a block diagram.

17) What are the classifications of memory depending on

access method, Explain?

139 | P a g e

Space for learners: 18) Explain the organization of a RAM chip.

19) What are the different types of ROM? Explain the

differences between them.

20) Explain some data structures which are using sequential

access and random access.

21) How direct memory is different from random access

memory?

22) Discuss static and dynamic RAM.

23) Explain the functions of the memory management unit

(MMU) of a computer system.

1.17 REFERENCES AND SUGGESTED READINGS

• William Stallings, Computer Organization and Architecture

Designing for Performance, Pearson Education India.

• Carl Hamacher, ZvonkoVranesic, SafwatZaky, Computer

Organization, McGraw Hill Education.

• M. Morris Mano, Computer System Architecture, Pearson

Education India.

---×---

140 | P a g e

Space for learners: UNIT 2 : CACHE MEMORY

Unit Structure:

2.1 Introduction

2.2 Unit Objectives

2.3 Basic operations

2.4 Performance

2.5 Mapping process

2.5.1 Associative mapping

2.5.2 Direct mapping

2.5.3 Set associative mapping

2.6 Cache replacement policies

2.6.1 Least recently used (LRU) algorithm

2.6.2 Least frequently used (LFU) algorithm

2.6.3 First in first out (FIFO) algorithm

2.6.4 Segmented LRU (SLRU) algorithm

2.6.5 Optimal block replacement

 2.6.6 Random replacement (RR) algorithm

 2.6.7 Pseudo – least recently used (PLRU) algorithm

 2.6.8 Lowest latency first (LLF)

2.7 Cache optimization technique

2.8 Write Policies

2.8.1 Write through

2.8.2 Write back

2.8.3 Dirty bit

2.8.4 Write allocation

2.8.5 Write around

2.9 Cache coherence

2.9.1 sharing of variable data

2.9.2 process migration

2.9.3 I / O activity

2.10 Coherency mechanism

2.10.1 Directory-based

2.10.2 Snooping

2.10.3 Snarfing

2.11 Summing Up

2.12 Answers to Check Your Progress

2.13 Possible Questions

2.14 References and Suggested Readings

141 | P a g e

Space for learners: 2.1 INTRODUCTION

To compensate for the speed of primary memory access time and

CPU, a high speed memory is used called cache memory. Cache

memory increases the processing speed of the CPU by making the

required data available to it. Thus the cache memory has a great role

in increasing the throughput of a system. It is placed in between the

processor and main memory. The memory access time of cache

memory is very high in comparison to main memory and compatible

with the speed of the processor. The cache is used to store the

program segment currently executed by the CPU and the data used

by the CPU frequently. Since the memory space of the cache is

much smaller than the main memory, mapping is required to

identify the location in the main memory as specified by the CPU.

Using cache replacements algorithms the contents of the cache can

be changed by new program segments as required by the processor.

2.2 UNIT OBJECTIVES

The primary objectives of the chapter are

• to know about cache memory and its use

• to understand how to measure the performance of cache

memory

• to explore what are the operations of cache memory?

• to learn about the mapping process of cache memory.

• to find the different mapping processes

• to visualize cache replacement policies.

• to understand the cache optimization techniques.

• to know how to write into the cache.

• to discuss the different levels of cache memory.

• to learn about cache coherency

142 | P a g e

Space for learners: 2.3 BASIC OPERATIONS

When the processor needs a particular data during its execution, at

first it searches the data in cache memory. If it is found then the

content is extracted from the memory location of cache as specified

by the processor. If the word addressed by the CPU is not available

in the cache memory, the main memory is accessed to read the

word. The program segment or a block of the word containing the

desired one will be transferred from the main memory to the cache

memory. In multilevel cache, it can be categorized into two; internal

cache, typically located inside the CPU chip and external cache,

normally placed in the system board. Internal caches are known as

primary or L1 cache and the range may have within 1– 32 KB.

External caches are known as secondary or L2 cache and the range

may vary between the range 64 KB – 1 MB.

Figure 2.1 Cache

memory

143 | P a g e

Space for learners:

2.4 PERFORMANCE

The performance of cache memory can determine by the ratio of

finding the required data by the processor. If the required data is

available in cache memory then it can be defined as a HIT, if it is

not available in the cache then it is called a MISS. Three different

types of cache miss may exist namely – compulsory miss, conflict

miss and capacity miss. Compulsory miss may occur when a

memory location is accessed for the first time. Conflict miss can

occur due to insufficient space when two blocks are mapped on the

same location. Capacity miss may take place due to smaller space in

cache memory. The time taken to check the presence of data in the

cache is called hit latency. For every hit, the CPU accesses the data

from the cache directly but for a miss, the CPU has to wait for

responding from the main memory. The block of data will be

transferred from the main memory to cache memory and then the

required word will transfer from the cache to the CPU. The ratio

between the hit and the total number of references by the CPU (the

summation of hit and miss) can be defined as the hit ratio. The hit

ratio “h” always lies between the range 0 and 1. Let us consider that

the

STOP TO CONSIDER

• In multilevel cache, it can be categorized into two; internal

cache, typically located inside the CPU chip and external

cache, normally placed in the system board.

• Internal caches are known as primary or L1 cache and the

range may have within 1kb – 32kb.

• External caches are known as secondary or L2 cache and

the range may vary between the range 64kb – 1mb.

144 | P a g e

Space for learners: h is the hit ratio,tm is the memory access time, tc is the cache

access time

 �̅is the average access time.

Then the average access time �̅ can be calculated by the relation:

 �̅= htc+ (1 – h) (tc +tm) …………………………….. (1)

The relation (1) is derived using the fact that for a cache hit, the

main memory will not access by the processor. For a miss, both the

cache and main memory will be accessed by the CPU. Consider that

the ratio between cache and main memory access time is
t
m

t
c

γ =

then the efficiency (Λ) of a system using cache memory can be

derived as:

()

()()

()

()

()

()

c

c

c c m

c

m

c

c

t

t

t

ht h t t

t

t
t h h

t

h h

h h h

h

γ

γ

γ

Λ =

=
+ − +

=

+ − +

=
+ − +

=
+ − + −

=
+ −

1

1 1

1

1 1

1

1 1

1

1 1

For the value of h = 1, the efficiency Λ = 1, i.e. efficiency will be

maximum for h = 1 or all the CPU references are confined to the

cache.

145 | P a g e

Space for learners:

Example 2.1: Calculate average access time (t), the ratio between

main memory access time and cache access time (γ),and efficiency

(Λ) of a memory system whose parameters are indicated as:
c
t =150

ns,
m
t =950 ns, and h=0.90.

Solution: Since the average access time c c mt=ht +(1-h)(t +t)

=0.90*150+(1-0.90)(150+950)

=135+0.1(1100)

=245ns

 And since the .m

c

t

t
γ = = =

950
6 33

150

And efficiency
()hγ

Λ =
+ −

1

1 1

 .
. (.) . .

= = = =
+ − + +

1 1 1
0 612

1 6 33 1 0 9 1 0 633 1 0 633

Example 2.2: The access time of cache memory is 50 ns. And the

access time for the main memory is 500 ns. It is estimated that 80%

of the main memory requests are for reading operation and the

remaining are for the write operation. The hit ratio for reading

operation is 0.09 and a write-through policy is used.

STOP TO CONSIDER

• An INTEL motherboard of 100MHz consume 180ns to

retrieve information from main memory, whereas 45ns

from the cache memory.

• Static RAM (SRAM) is typically used to build cache

memory.

• Systems with Multi-core CPUs are generally used a

separate L1 and L2 cache for each core and L3 is shared

by each core.

146 | P a g e

Space for learners: a. Compute the average access time for the memory read

cycles only?

b. Calculate the average access time for both read and write

requests?

c. What is the hit ratio regarding the write cycle?

Solution:

a. Since the average access time c c mt=ht +(1-h)(t +t)

 =0.90*50+(1-0.90)(50+500)

 =45+55

 =100ns

b. For both read and write cycle

Average access time = Pr * average access time for read + (1

- Pr) * tm

 = 0.8 * 100 + 0.2 * 500

 = 80 + 100

 = 180 ns.

c. Hit ratio when write cycle is also considered is

 h = Pr * hr+ (1 - Pr) * hw [hw is the hit

ratio for write cycle]

 = 0.8 * 0.9 + 0.2 * 0

 = 0.72

2.5 MAPPING PROCESS

There are three different types of mapping techniques in

cache organization such as

a. Associative mapping

b. Direct mapping

c. Set – associative mapping

147 | P a g e

2.5.1 Associative mapping

In the case of the associative

memory contents is associa

execution of a program stat

referring to or specifying any

are searched by matching wi

the cache memory contains

address of the correspondin

address bit sent

by the CPU for

searching the

required data

in the cache

memory is

matched with

the stored

addresses in

the cache. If

any address is

matched, the

corresponding

word

ping

ciative mapping procedure, each of the cache

associated with an address. But during the

m statement, the data is not read or fetch by

ng any memory address. Instead of it, the data

ing with the contents. In associative mapping,

ntains the data along with the main memory

ponding data as shown in Figure 2.2. The

Space for learners:

148 | P a g e

Space for learners: from that memory location will be fetched by the CPU. For a miss

or if no match is found for the required word, then it will be

searched in the main memory. Then the word from the main

memory along with the address will be transferred into the cache

memory. If the cache is full, using any replacement technique must

make room for the new word.

Associative mapping is a very fast access method. But the

manufacturing difficulties and cost are more in comparison to other

mapping methods.

2.5.2 Direct mapping

Consider a computer system with the main memory storage capacity

is 4K, i.e. 4 x 1024 = 2
12

 bytes. Then the required number of bits to

address the main memory location will be 12. Consider a cache

memory of 1K

= 2
10

 bytes, i.e.

10 bits are

required to

address a cache

memory

location. Thus

the main

memory

required a 12-

bit address line

whereas the

cache memory required only 10 bits of the address. In the direct

mapping method, the address sent by the CPU is divided into two

parts namely tag field and index field. The index field contains an

equal number of bits that are required to address a word in cache

Figure 2.3 Block diagram

showing direct mapping

149 | P a g e

Space for learners: memory. The remaining bits are used in the tag field. If a system

contains the main memory of capacity 2
m

 and cache of capacity 2
n
,

then the bits in the index field will be n bits and in the tag field is an

(m-n) bit. In the example cited above, the index field and the tag

field are consist of 10 bits and 2 bits respectively.

In direct mapping, the cache memory stores the data as well as the

tag field as shown in Figure 2.3. In the cache, the words are stored

in a memory location as the index field defined. When an address is

requested by the CPU, the index part of the address is used to get the

location in the cache memory. If the tag of the cache is matched

with the tag of the requested address, the word will be fetched by

the CPU. Else there will be a miss and the data will be searched in

the main memory. For a miss, the block of data from the main

memory has to be transferred into the cache memory by dividing the

main memory address into index and tag fields. The main

disadvantage of direct mapping is that, if the index field is the same

for more than one word in cache memory with a different tag value,

the hit ratio may drop considerably.

CHECK YOUR PROGRESS

Question: A digital computer has a memory unit of 64k x 16

and a cache memory of 1K words. The cache uses direct

mapping with a block size of four words.

A. how many tags are there in the tag, index, block and words

fields of the address format.

B. how many bits are there in each word of cache, and how are

they divided into functions? Include a valid bit.

C. How many blocks can the cache accommodate?

150 | P a g e

Space for learners: 2.5.3 Set associative mapping

In direct mapping, two words or data of a similar index field cannot

be store at the same time. To overcome this drawback of direct

mapping, the third method of mapping is used which is known as

set-associative mapping. In this method, cache memories are

allowed to store more than one word with a similar index in the

same word location along with a different tag. The number of tags–

data pair in the one-word location of the cache is said to be as a set.

An example of set-associative mapping has been depicted in Figure

2.4. As shown in the figure, the word stored in the memory

addresses 001010011001 and 011010011001 of main memory is

stored in cache memory at index address 1010011001. Similarly, the

word stored at address 101010000111and 111010000111 of main

memory is stored in cache memory index address 1010000111.

Figure 2.5 Block diagram of set associative

mapping

STOP TO CONSIDER

• If a system contains main memory of capacity 2
m

and cache of capacity 2
n
, then the bits in index field

will be n bits and in tag field is an (m-n) bit.

• In direct mapping when an address is request by the

CPU, the index part of the address are used to get the

location in the cache memory.

151 | P a g e

Space for learners:

2.6 CACHE REPLACEMENT POLICIES

When the cache memory of a system is full, then cache replacement

policies are used to make a decision about which page or data has to

be replaced from the cache to make room for new data. The main

problem in cache is that how to identify the page or data to be

removed from cache memory. Lots of algorithms for cache

replacement are being developed. The efficiency of those algorithms

depends on the factors such as time, number of misses and

balancing cost, etc. An efficient algorithm takes less time, lower

number of miss rate and balancing cost. Some of the cache

replacement algorithms are discussed as follows.

2.6.1 Least recently used (LRU) algorithm

This algorithm discards the least recently used data from the cache

to make space for new data. A variable known as the aging bit is

used to keep the record of all data items such as which data is used

when or kept at what time in the cache. It is one of the most popular

algorithms among all others as it provides better performance. The

implementation policy of the LRU algorithm is also very simple and

time and space overhead are constant.

CHECK YOUR PROGRESS

Question: A block set associative cache consists of a

total of 64 blocks divided into 4 blocks sets. The main

memory contains 4096 blocks each consisting of 128

words.

1. How many bits are there in main memory address?

2. How many bits are there in each of the TAG, SET

and WORD fields?

152 | P a g e

Space for learners: Example 2.3: Let us consider a set of data items 7 0 1 2 0 3 0 4 2 3

0 3 2, which have to load into the cache memory of size 4 word.

How many misses will occur if the LRU technique is being used as

a cache replacement policy?

Solution: Initially the cache was empty, so for the first four data

items namely 7, 0, 1, and 2, there will be 4MISS as shown in figure

2.6.

For the 5
th

 element 0, does already exist in the cache so 0 MISS.

For the 6
th

 element 3, which does not exist in the cache, it will

replace the least recently used 7 from the cache – 1 MISS

For the 7
th

 element 0, does already exist in the cache so 0 MISS.

For the 8
th

 element 4, which does not exist in the cache, it will

replace the least recently used 1 from the cache – 1 MISS

For further referencing all the data exist in the cache, so no more

replacement is required for any one of them. The total number of

MISS is 6 and the number of hits is 7.

2.6.2 Least frequently used (LFU) algorithm

The LFU counts the number of uses of a particular data item or it

counts how frequently the data item has been used. The data which

Figure 2.6 Example of Cache least recently used replacements

153 | P a g e

Space for learners: is used very few will be identified and removed from the cache first.

If all the data items in the cache have the same count then randomly

any one of the items has been chosen and deleted. The min-heap

data structure is a suitable one to implement this algorithm.

2.6.3 First in first out (FIFO) algorithm

FIFO algorithm removes the data which has been come first into the

cache and has not been used for a long time. It is the simplest

algorithm to implement. Here the system keeps track of all the

blocks or words in memory in a queue. The oldest page is in the

front of the queue. When a replacement is required, the data from

the front of the queue will be selected for removal.

Belady’s anomaly – proves that it is possible to have more MISS

for an increasing number of frames while using the FIFO

replacement algorithm. For example consider a set of data items

such as 3, 2, 1, 0, 3, 2, 4, 3, 2, 1, 0, 4, and 3 and 3 slots frame. The

number of a miss for 3 slots frame will be 9, whereas the MISS is 10

for 4 numbers of slots in a frame.

Example 2.4: Let us consider a block referencing strings 1, 3, 0, 3,

5, 6, 3 with 4 block frames. Find the number of misses.

Solution: Initially the frame is empty, so for the first three elements

1, 3, and 0, there will be three miss consecutively. Further

referencing has been shown in the following figure 2.7.

Figure 2.7 Example of FIFO replacement algorithms

154 | P a g e

Space for learners: A third iteration when 3 comes, is already in the queue, so one hit

occurred. Again at the 7
th

 iteration when 3 come, one hit occurred.

At steps 5
th

 when 6 come, the data do not exist in the queue. The

element entered first into the queue i.e. 1 will be replaced by 6 as

shown in figure 2.7.

2.6.4 Segmented LRU (SLRU) algorithm

SLRU algorithm divided the cache memory into two parts as

protected and unprotected. The protected part is reserved for the

most used objects. One the first request for an object is done by the

CPU; it has been transferred into the unprotected section.The least

recently used technique is used to manage both the portion. A count

variable

2.6.5 Optimal block replacement

In this method that block will be replaced from the cache which

would not be used for a longer period in the future. Optimal page

replacement is theoretically perfect, but the operating systems could

not know or guess the future request.

Example 2.5 Consider a set of cache block references as 7, 0, 1, 2,

0, 3, 0, 4, 2, 3, 0, 3, 2, 3 with 4 slots frame. Find the number of

MISS that occurred during cache access.

Solution:Initially there will be four miss for the first four data items

7, 0, 1, and 2 as the slots were empty.

0 is already exit, 0 – MISS or HIT,

155 | P a g e

Space for learners: When 3 came, the algorithms identified 7 as the not-used item for

the longest period in the future and replace it by 3. – 1 MISS.

0 is already exit, 0 – MISS,

When 4 came, the algorithms identified 1 as the not-used item for

the longest period in the future and replace it by 4. – 1 MISS. Thus

there will be 6 misses.

2.6.6 Random replacement (RR) algorithm

The RR algorithm randomly selects any of the data items from the

cache memory and replaces it with the required one. It never keeps

track of the history of removable data items and does not follow any

data structure.

2.6.7 Pseudo – least recently used (PLRU) algorithm

It is one of the most popular and common block replacement

policies for the current generation’s cache memory. It is widely used

by the industry and a common policy for AMD and INTEL

products. It uses the data structure binary tree for saving the status

of cache memory and hence it is also known as Tree – LRU. The

tree structure is used to identify the block position which is to be

replaced in case of a miss.

Figure 2.8 Example of Cache optimal block replacements

156 | P a g e

Space for learners: 2.6.8 Lowest latency first (LLF)

 LLF algorithm keeps the average and minimum latency by

removing the objects with the lowest latency. It shows the best

performance during the execution of database queries in the

relational database.

 All the algorithms discussed above can be classified into

several classes such as –

a. Recency-based algorithms,

b. Frequency-based algorithms

c. Function-based algorithms

d. Randomized algorithm

2.7 CACHE OPTIMIZATION TECHNIQUE

Cache optimization can be achieved by reducing the miss penalty,

miss rate, and hit time and increasing the cache bandwidth. These

can be obtained using different optimization techniques.

To decrease the gap between CPU cycle and memory latency, a

multilevel cache can be used. Generally, the cache memory can be

categorized into three levels such as L1, L2, and L3 cache. L1 is

comparatively the smallest and fastest cache memory in comparison

to L2 and L3 levels. It is located within the CPU itself and hence it

is called on-chip memory. L2 is faster than L3 cache. L3 is larger

and slower in comparison to other levels of cache memory. In a

multiprocessor system, each processor hasownL1 and L2 cache

memories and the L3 cache is shared by all processor. Miss rate of

L1 cache can be reduced by introducing L2 cache.

User-level cache-control (ULCC) is another technique through

which space allocation in the cache can be controlled by the user.

157 | P a g e

Space for learners: Less hit rate and minimal cache pollution can be produced using this

technique. The implementation is very complex.

Cache memory optimization can be achieved by optimizing the loop

in compiler-level implementation. A set of compiler algorithms are

being used to predict the data to be reuse in near future. This will

help to achieve a better hit ratio in cache access.

 The performance of the cache can be improved by producing the

next data to be used by the cache. To produce the next data a

process called data perfecting can be used in advance.

2.8 WRITING INTO THE CACHE

The cache is a technique to keep a copy of one or more blocks of

data from the main memory into the fastest memory storage such

that the processor can access it easily. Cache mostly works as a

buffer in between the processor and RAM and increases the speed of

the processor by making the data available. Whenever the CPU

wants to write data or a word, at first it checks the address where the

word to be written is available in cache or not. If the address is

available in cache memory then it is known as a write-hit. During

the write operation, if the main memory is not updated

simultaneously, it may lead to inconsistency of data. That is the

content in cache and main memory may be different for the same

reference address. If the system memory is sharing with more than

one device then problems may arise due to this inconsistent data.

Hence the two methods write through and write back is come into

the picture to perform the write operation in cache effectively and

efficiently. If the referred address is not available in the cache

during a written request a write-miss will occur. For a write-miss,

two other processes are being used to maintain the data consistency

158 | P a g e

Space for learners: in cache and main memory namely write allocation and write

around.

2.8.1 Write through

When the number of the write operation in cache is less than this

process is used. It is comparatively simpler and reliable to perform

the write operation. In write-through, both the memory cache and

main memory are updated simultaneously. During a write operation,

a data or word has to write in both the memory locations and due to

this, the write-through process experienced delays in the write

operation. This process has been solved the problem of inconsistent

data but raisesa question about the use of cache memory during the

write operation. Because the access of main memory along with the

cache during writes operation increases the cost of the write

operation and decreases the CPU performance.

2.8.2 Write back

In this process, the cache is updated during the write operation and

the main memory is updated later.

2.8.3 Dirty bit

A status bit is used to indicate whether the data present in the cache

memory is modified or not during a write operation. It is known as

dirty bit. If the status bit is set to clean-bit, no need to update the

main memory later as the data is not modified in the cache. For a

dirty bit, the main memory has to be updated as it represents that the

cache has been updated during the write operation. But if power

fails due to any cause the modified data will be lost in the cache.

Lost data from the cache cannot be restored.

159 | P a g e

Space for learners: 2.8.4 Write allocation

In this process, data has to be loaded from the main memory into

cache memory and then updated. It works with both write-through

and write-back processes.

2.8.5 Write around

Write around process allows for writing or updating the main

memory without interrupting the cache memory.

2.9 CACHE COHERENCE

During the write operation of cache memory, data inconsistency

may occur among adjacent or within the same level of the memory

hierarchy. It is possible to have many copies of one instruction

operand in a shared memory multiprocessor system. If any operand

value is changed in one memory, then it should reflect in the main

memory as well as all the levels of cache memories simultaneously.

Consider a system with three processors P1, P2, and P3. The P1

reads the data X with the value 25 from the main memory and stores

it into the cache. The P2 also reads the same data X = 25 from the

main memory and stores it into the cache. In the next instruction

cycle, the P1 writes the X as 55 locally into cache but not updated

into the RAM. If the P3 reads the data from RAM, what value it will

get against X? For the main memory and P2, it will be 25, whereas

for P1 it will be 55. Thus in caches write operation can create

multiple copies of data in different levels of cache and main

memory which may lead to the cache coherence problem.

Cache coherence can be defined as a protocol or discipline which

ensures that the values of shared operands are propagated

throughout the system in a timely fashion.

160 | P a g e

Space for learners: Generally, cache coherence may occur from three different sources

of inconsistency problem –

i. Sharing of writable data

ii. Process migration

iii. Input / Output (I/O) activity.

2.9.1 Sharing of writable data

When two processors P1 and P2 read the same word X from shared

memory into their local cache and P1 writes to the word as X1 using

the write-through method, then the shared memory will be updated

from X to X1. Now when the P2 will read the data from its local

cache it will be X which is become outdated as shown in Figure 2.9.

Figure 2.9Sharing of writable data

161 | P a g e

Space for learners: 2.9.2 Process migration

Consider that the process P1 has a data operand X and P2 does not

hold any data in its cache. The process P2 first writes on data

operand X as X1 and then migrated to P1. Now the process P1 starts

reading outdated

data X. So P1 writes

the data operand X

onto the main

memory and

migrated to P2 as

shown in figure

2.10. After

migration P2 will

start reading the data element and found X in the main memory

which is outdated for P2.

2.9.3 I/O activity

As shown in Figure 2.11, an input/output device is added to the bus

in a multi-processor system. As shown in the figure initially both the

processor P1 and P2 holds the data operand X. If the I/O peripheral

write the data operand as X1 into the main memory, then the process

P1 and P2 will get outdated data in the successive read operation.

Then the process P1 will modify the operand as X into the main

memory as well in the local cache. Now if the I/O device wants to

transfer the data, it will get a copy of outdated data.

Figure 2.10Process migration

162 | P a g e

Space for learners:

2.10 COHERENCY MECHANISM

Coherency mechanisms are categorized into four categories –

2.10.1 Directory-based

In this method, the data which is to be shared is placed into a

common directory, which helps to maintain the cache coherency.

Before each read / writes operation by the processor from the main

memory into the local cache, the common directory have to be

checked once. Once the directory is changed by any processor,

immediately invalidates or updates the other cache with that entry.

2.10.2 Snooping

It is a process where the individual cache monitors the address lines

for checking the memory location where the cache is mapped. When

a write operation is observed at that location in the main memory,

the cache controller invalidates its copy of the snooped memory

location. It is known as the write invalidate protocol.

Figure 2.11I/O activity

163 | P a g e

Space for learners: 2.10.3 Snarfing

It is quite similar to snooping. This method is used to monitor both

the memory location that has been cached as well as the actual

information that is store in the main memory. During a memory

write operation, the cache can be updated by new data.

Check Your Progress:

1. Choose the correct options from the following for each

question:

a. Assume that there are 3-page frames that are initially

empty. If the page reference string is 1, 2, 3, 4, 2, 1, 5, 3, 2,

4, 6, the number of page faults using the optimal

replacement policy is__________.

(A) 5

(B) 6

(C) 7

(D) 8

b. Consider the virtual page reference string 1, 2, 3, 2, 4, 1, 3,

2, 4, 1 on a demand paged virtual memory system running

on a computer that main memory size of 3 pages frames

which are initially empty. Let LRU, FIFO, and OPTIMAL

denote the number of page faults under the corresponding

page replacements policy. Then

(A) OPTIMAL < LRU < FIFO

(B) OPTIMAL < FIFO < LRU

(C) OPTIMAL = LRU

(D) OPTIMAL = FIFO

c. A virtual memory system uses First in First out (FIFO)

block replacement policy and allocates a fixed number of

frames to a process. Consider the following statements:

P: Increasing the number of page frames allocated to a

process sometimes increases the page fault rate.

 Q: Some programs do not exhibit locality of reference.

164 | P a g e

Space for learners: Which one of the following is TRUE?

(A) Both P and Q are true, and Q is the reason for P

(B) Both P and Q are true, but Q is not the reason for P.

(C) P is false, but Q is true

(D) Both P and Q are false

d. A process has been allocated 3-page frames. Assume that

none of the pages of the process are available in the

memory initially. The process makes the following

sequence of page references (reference string): 1, 2, 1, 3, 7,

4, 5, 6, 3, and 1

If an optimal page replacement policy is used, how many

page faults occur for the above reference string?

(A) 7

(B) 8

(C) 9

(D) 10

e. A system uses 3-page frames for storing process pages in

the main memory. It uses the Least Recently Used (LRU)

page replacement policy. Assume that all the page frames

are initially empty. What is the total number of page faults

that will occur while processing the page reference string

given below?

4, 7, 6, 1, 7, 6, 1, 2, 7, 2

(A) 4

(B) 5

(C) 6

(D) 7

f. The optimal page replacement algorithm will select the

page that

(A) Has not been used for the longest time in the past.

(B) Will not be used for the longest time in the future.

(C) Has been used least number of times.

(D) Has been used most number of times.

g. Consider a virtual memory system with a FIFO page

replacement policy. For an arbitrary page access pattern,

increasing the number of page frames in main memory will

165 | P a g e

Space for learners: (A) always decrease the number of page faults

(B) always increase the number of page faults

(C) sometimes increase the number of page faults

(D) never affect the number of page faults

h. A system uses a FIFO policy for page replacement. It has

4-page frames with no pages loaded, to begin with. The

system first accesses 100 distinct pages in some order and

then accesses the same 100 pages but now in the reverse

order. How many page faults will occur?

(A) 196

(B) 192

(C) 197

(D) 195

i. Which of the following is not a written policy to avoid cache

coherence?

(A) Write through

(B) Write within

(C) Write back

(D) Buffered write

j. The transfer between CPU and cache is

____________________.

(A) Block transfer

(B) Word transfer

(C) Set transfer

(D) Associative transfer

k. Which of the following is a common cache?

(A) DIMM

(B) SIMM

(C) TLB

(D) Cache

l. How many possibilities of mapping does a direct-mapped

cache have?

(A) 1

(B) 2

(C) 3

(D) 4

166 | P a g e

Space for learners: m. In which writing scheme does all the data writes go through

to the main memory and update the system and cache?

(A) Write-through

(B) Write-back

(C) Write-buffering

(D) No caching of writing cycle

n. In which writing scheme does the cache is updated but the

main memory is not updated?

(A) Write-through

(B) Write-back

(C) Write-buffering

(D) None of these

o. What is the main idea of the writing scheme in the cache

memory?

(A) Debugging

(B) Accessing data

(C) Bus snooping

(D) Write allocate

2. Answer the following questions and fill up the bllanks:

(A) Which cache has a separate comparator for each entry?

(B) What is the disadvantage of a fully associative cache?

(C) Which mechanism splits the external memory storage

into memory pages?

(D) Which of the following cache mapping can prevent bus

thrashing?

(E) Which cache mapping has a sequential execution?

(F) Which address is used for a tag?

(G) What do you mean by locality of reference?

(H) The number of failed attempts to access memory, stated

in the form of a fraction is called as ______________.

(I) The extra time needed to bring the data into cache

memory in case of a miss is called as

__________________.

(J) The counter that keeps track of how many times a block

is most likely used is __________________.

167 | P a g e

Space for learners: 2.11 SUMMING UP

1. Cache memory is smaller in size and one of the faster

memory used in a computer system.

2. The cache is used to place in between CPU and RAM.

3. The memory access time of cache memory is very high in

comparison to the main memory

4. L1 cache and L2 cache may embed on the CPU chip, hence

it is known as an on-chip cache.

5. The cache is a very high-speed memory and is used to

increase the processing speed by making the data available

to the CPU at a rapid rate.

6. Cache works as a buffer between the CPU and the RAM.

7. Performance of cache memory is measured in terms of hit-

ratio.

8. If the CPU finds the referred address in the cache then it can

be defined as a hit.

9. If the CPU does not find the referred address in the cache

then it can be defined as a miss.

10. The ratio between the hit and the total amount of address

referred by the CPU can be defined as hit-ratio.

11. Through the mapping process, data can be transfer from

main memory to cache memory.

12. There are three different types of mapping processes in

cache memory such as – associative mapping, direct

mapping, and set-associative mapping.

13. In associative mapping, the cache memory contains the data

along with the address references of that data in the main

memory.

14. Direct mapping divides the main memory reference done by

the CPU into two fields – index and tag field.

168 | P a g e

Space for learners: 15. If a system contains the main memory of capacity 2
m

 and

cache of capacity 2
n
, then the bits in the index field will be n

bits and in the tag field is an (m-n) bit in the direct mapping.

16. Cache replacement policies are used to make room for the

new data in cache memory if it is full.

17. Some of the cache replacement policies are LRU, LFU,

FIFO, RR, etc.

18. Belady’s anomaly – proves that it is possible to have more

MISS for an increasing number of frames while using the

FIFO replacement algorithm.

19. User-level cache-control (ULCC) is one technique for block

replacement, through which space allocation in the cache can

be controlled by the user.

20. Cache optimization can be achieved by reducing the miss

penalty, miss rate, and hit time and increasing the cache

bandwidth.

21. Generally, the cache memory can be categorized into three

levels such as L1, L2, and L3 cache.

22. When the CPU wants to write into cache and the CPU

referred address is available in cache memory then it is

known as a write-hit.

23. When the CPU wants to write into cache and the CPU

referred address is not available in cache memory then it is

known as a write-miss.

24. To write into cache two methods are used – write through

and write back.

25. In the write-through process, both the memory cache and

RAM are writing simultaneously.

26. In the write-back process, the cache is used to write first and

the main memory is updated later with the help of dirty-bit.

169 | P a g e

Space for learners: 27. Two other processes write-allocation and write around are

used, when a write miss has occurred.

2.12 ANSWERS TO CHECK YOUR PROGRESS

Answers to the question number 1:

a) C

b) C

c) B

d) A

e) C

f) B

g) C

h) A

i) B

j) B

k) C

l) A

m) A

n) B

o) C

Answers to the question number 2:

(A) Fully associative cache.

(B) Hardware

(C) Index mechanism

(D) N-way set associative

(E) Burst fill

(F) Logical address

(G) The surroundings of the recently accessed block are called

the locality of reference.

170 | P a g e

Space for learners: (H) MISS rate

(I) MISS penalty

(J) Reference counter

2.13 POSSIBLE QUESTIONS

a. Consider block reference strings 1, 3, 0, 3, 5, 6, and a block

frame size 3 is used. Count the cache block miss when the

FIFO replacement algorithm is used.

b. Consider the reference string: 0, 2, 1, 6, 4, 0, 1, 0, 3, 1, 2, 1.

Count the number of miss using FIFO page replacement

algorithm.

c. Consider the page references 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3,

2, with 4 block frame. Find number of miss using optimal

block replacement technique.

d. Consider the page reference string 7, 0, 1, 2, 0, 3, 0, 4, 2, 3,

0, 3, 2 with 4 block frames. Find the number of misses

using the Least recently used method.

e. Consider page reference strings 1, 3, 0, 3, 5, 6 with the

frame size of 3. Find the number of misses using the FIFO

replacement technique.

f. What is cache memory? Explain the role of cache memory in

program statements execution.

g. Explain different cache mapping processes for example.

h. Why block replacement is necessary for cache memory?

What are the replacement policies; explain the pros and cons

of each.

i. Why cache optimization is required? Discuss any two cache

optimization techniques.

j. What types of problems may arise during cache write and

how it can be solved? Explain.

171 | P a g e

Space for learners: k. What is Belady’s anomaly? Explain with an example.

l. How the multilevel cache is implemented?

m. Discuss the factors on which the cache optimization

techniques are dependent.

n. How in compiler level cache memory can be optimized?

Explain.

o. Define the terms: cache access time, efficiency, average

access time, hit-ratio, miss, memory access time.

2.14 REFERENCES AND SUGGESTED READINGS

• William Stallings, Computer Organization and Architecture

Designing for Performance, Pearson Education India.

• Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Computer

Organization, McGraw Hill Education.

• M. Morris Mano, Computer System Architecture, Pearson

Education India.

---×---

172 | P a g e

Space for learners: UNIT 3: VIRTUAL MEMORY AND PAGING

Unit Structure:

3.1 Introduction

3.2 Unit Objectives

3.3 Paging

3.3.1 Paging Hardware Support

3.4 Segmentation

3.4.1 Segmentation Hardware

3.5 Virtual memory

3.5.1 Demand Paging

3.6 Summing Up

3.7 Answers to Check Your Progress

3.8 Possible Questions

3.9 References and Suggested Readings

3.1 INTRODUCTION

Even though the focus of the subject is computer hardware, there is

one area of software that needs to be addressed and that is the

operating system. An operating system is a software that acts as an

interface between a computer hardware and computer user. The

operating system manages computer hardware, software resources

and allocates resources and services, such as memory, processors

and devices. One of the most important function of operating system

is memory management that includes the hardware support in

processor for paging, virtual memory and segmentation. Virtual

memory allows a program with memory space larger than the size of

the main memory to be available in the system. This is possible by

allowing only that section of the code that is active at that point of

time without the need of having all instructions and data of the

process being present in main memory at the same time. The

173 | P a g e

Space for learners: concept of paging and segmentation eliminates the need of

allocating main memory to the process in contiguous manner.

3.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

• Explain the mapping of logical address to physical

address using paging memory management scheme.

• Analyze and solve problems on paging.

• Explain the working of paging hardware.

• Explain the mapping of logical address to physical

address using segmentation.

• Explain the working of segmentation hardware.

• Explain Virtual memory management scheme.

3.3 PAGING

To understand the concept of paging we have to go through the

following concepts:

• Process: It is a program in execution or a program placed in

main memory for execution.

• Logical Address: It is the address that is generated by the CPU

for a program while it is running. As the address does not exist

physically it is also called virtual address. The hardware unit of

memory known as memory management unit (MMU) maps

logical address to physical address.

• Physical Address: A physical address is the actual address in the

main memory.

Paging is a memory management scheme that is used to map CPU

generated logical address of a process to physical address in main

174 | P a g e

Space for learners: memory. A process consists of fixed size blocks; Figure 3.1 shows

an example of a process with 4 blocks each of size 1 kilobyte. Size

of a block depend upon architecture of the computer and varies

between 512 bytes to 16 megabytes.

Figure 3.1: A Process with 4 blocks each of size 1 kilobyte.

Page 1 1KB Frame 1 1KB

Page 2 1KB Frame 2 1KB

Page 3 1KB Frame 3 1KB

Page 4 1KB Frame 4 1KB

Logical

Memory

Physical

Memory

Figure 3.2: A Process with 1KB block size in logical and physical

memory.

The paging technique divides the logical memory to blocks of the

fixed size known as pagesand divides physical memory into blocks

of fixed-size known as Frames. Figure 3.2 shows an example of

pages and frames in logical and physical memory respectively.

Paging scheme allows a process to be stored in the main memory in

noncontiguous manner. It also solves the problem of searching and

fitting blocks of different sizes in main memory by having all block

of same size. One more advantage of the paging scheme is that it

prevents from external fragmentation that is if the main memory

P1KBlock 1

Block 2

Block 3

Block 4

1KB

1KB

1KB

175 | P a g e

Space for learners: blocks are of varying sizes and the size of the free blocks are smaller

than the size of the pages, then the operating will be required to

merge two or more blocks into a single block large enough to fit a

page. By keeping block of equal sizes for both pages and frames,

such problems are resolved.Figure 3.3shows paging model of

physical and logical memory. A page table is used for mapping

between logical addresses and physical addresses. A page table

resides in the main memory.Figure 3.3 shows noncontiguous

allocation of a process in main memory. The mapping of logical

address to physical address is achieved using the page table.

 Page Frame
Frame

Number

 Page 0 0 5 0

 Page 1 1 4 1 Page 3

 Page 2 2 7 2

 Page 3 3 1 3

Logical

memory
 Page Table 4 Page 1

 5 Page 0

 6

 7 Page 2

 8

Main

Memory

Figure 3.3: Paging model of physical and logical memory.

The hardware support for paging is demonstrated using an

example in Figure 3.4. The logical address generated by the

CPU is divided into two parts namely page number and

displacement within the page. The page number is used as an

index in the page table to search for the corresponding frame

number. The displacement is combined with frame number to

get the physical address. In the Figure 3.4, the logical address

176 | P a g e

Space for learners: having page number 3 is searched for the corresponding frame

number in the page table which is frame number 15. The frame

number 15 is combined with the displacement 7 to form the

physical address.

Figure 3.4: Paging hardware support

If the size of the logical address space is 2
m

 and size of a page is 2
n

bytes/words, then “m-n” bits of a logical address designate the page

number the “n” bits designate the displacement or offset. Therefor

the logical address is:

Page Number Displacement

p d

m - n n

Paging Example -1:

Assume a page size of 1K and a 15-bit logical address space. How

many pages are in the system?

Page Table of Process

 Page Number Displacement Frame Number Displacement

Logical Address Physical Address 3 7 15 7

1 13

2 18

3 15

4 14

Page 1 of

Process P

Page 4 of

Process P

Page 3 of

Process P

Page 2 of

Process P

Frame

Number

13

14

15

16

17

18

177 | P a g e

Space for learners: Solution:

Page size = 1K = 2
10

 i.e. displacement, n=10 bits

No. of bits in logical address = 15, i.e. m=15 bits.

Therefore, no. of bits used for page number is, m - n = 5 bits

Total no. of pages in the system is 2
5
 =32.

Paging Example -2:

Assume that a CPU has a 15-bit logical address space with 8 logical

pages. How large are the pages?

Solution:

There are 8 logical pages, that means3 bits are required to address 8

logical pages (2
3
 = 8).

Therefore, m - n=3 bits

Logical address is 15 bits, m=15 bits

Displacement = 15 -3 = 12 bits.

So, the pages are of size 2
12

= 4096 = 4K bytes

3.3.1 Paging Hardware Support

Operating system provides support for storing page table of a

process. Generally, a page table can be stored in following ways:

• Set of dedicated registers

• In main memory

• Translation lookaside buffer (TLB)

The feasibility of the first approach using a set of dedicated registers

is that the page table should be reasonably smaller in size like 256

entries. With the second approach page table can be very large like

millions of entries can be stored in the main memory with a pointer

to the starting address of the page table for referencing. However, in

this case the time required to access the page table is slower by a

factor of two as it involves first accessing memory for the page table

to locate the frame number which is combined with the

displacement to get the physical address and then a second memory

access to read the byte.

178 | P a g e

Space for learners: The solution to the disadvantages of the first two approaches is

resolved using a fast lookup hardware support called Translation

Look aside Buffer (TLB). TLB is a small, expensive but very fast

associative memory.

It can store entries in the range of 64 to 1024. Associative memory

has two parts: a tag and a value. When a page/key needs to be

searched the key is compared simultaneously with all the tags of the

in the associative memory.

There are possibly two cases for a page search in TLB. Figure 3.5

illustrates the paging hardware with TLBfor these two cases:

• If the search key/page is found it is called as a TLBhit and

corresponding value/frame is returned from the TLB.

Displacement is combined with frame number and the

physical address is accessed.

• If the search key/page is not found it is called as a TLB miss

and the page is searched in the page table stored in main

memory. The frame number corresponding to the search

page is combined with the displacement to access the

address in the physical memory. Also the page number and

frame number is added to the TLB so that if the same page is

referred next time it is found quickly. In case the TLB is full,

operating system selects a page replacement algorithm to

replace an existing page with the new entry.

The percentage of times that a particular page number is found

in the TLB is called the hit ratio. If the hit ratio is 60% that

means 60 times out of 100 references,the page will be found in

TLB and remaining 40 times the page is found in the page table.

179 | P a g e

Figure 3.5: Paging hardware

Paging Example -3:

If it takes 25 nanoseconds to

access memory. If the hit ra

access time.

Solution:

If the page is in the TLB, tim

 = Time taken to se

memory

 = 25 +75 =10

If the page is not in the T

address

 = Time taken

access page table

 = 25 +75 +75

 = 175 nanosec

Hit ratio is 70%, therefore

dware with Translation Look aside Buffer [1].

nds to search the TLB and 75 nanoseconds to

 hit ratio is 70%, calculate effective memory

B, time taken to access the physical address

 to search the TLB + Time taken to access

75 =100 nanoseconds

the TLB, time taken to access the physical

 taken to search the TLB + Time taken to

+ Time taken to access memory

5 +75

anoseconds

Space for learners:

180 | P a g e

Space for learners: Effective access time = 0.70 X 100 + 0.30 X 175 =122.5

nanoseconds.

3.4 SEGMENTATION

Segmentation is a memory management scheme similar to paging

that allows a process to be stored in the main memory in

noncontiguous manner. Unlike paging where all the pages or frames

are of fixed size, segmentation allows blocks or segments of

variable size. Segmentation maps the user’s view of a program onto

the physical memory. Looking at the user’s view in Figure 3.6, a

program contains several variable size segments, such as the main

program, subroutine, symbol table, methods etc. It also includes data

structures like arrays, objects, variables, stacks etc. These segments

and data structures are referred by their name without concerning

about the address these segments are stored in memory. Users are

not concerned about the order in which the segments are stored in

the memory.

Figure 3.6: User’s view of a program

181 | P a g e

The logical address space is

a name and a length.From

segments are numbered in

address is represented using

Segment-num

3.4.1 Segmentation Hardw

The mapping of the

displacement>to the physica

segment table and the segm

3.7. Each entry of the seg

segment base. The base r

segment in the main memory

segment. The segment table i

Figure 3.7: Se

The working of segmentation

segment number, s and the

The segment number is used

indexed on the segment num

address should be between

satisfied, it means that the

segment limit and a trap int

the operating system.

ace is a group of segments. Each segment has

h.From the implementation point of view,

instead of using name and the logical

using the two tuple:

umber Displacement

Hardware

the logical address <segment-number,

hysical address is achieved with the help of

 segmentation hardware as shown in Figure

he segment table has a segment limit and

ase represents the starting address of the

emory and the limit specifies the length of the

 table is indexed on the segment number.

: Segmentation Hardware[1].

ntation hardware starts by first identifying the

d the displacement, dof the logical address.

is used to search the segment table, which is

nt number. The displacement, dof the logical

tween 0 and limit. If the condition is not

at the logical address is going beyond the

rap interrupt is initiated which is handled by

Space for learners:

182 | P a g e

Space for learners: A segmentation example is shown in Figure 3.8. There are 5

segments numbered from 0 through 4. The segments are stored in

physical memory in noncontiguous manner. Also, no specific

ordering is followed for storing the segments as can be observed in

the example. The segment table has an entry for each of the

segment, the starting address of the segment mentioned as baseand

the length of the segment mentioned as limit. For example, segment

0 begins at address 5100 and length of the segment is limited to 500

bytes. Therefore, a reference to byte 17 of segment 0 is mapped to

5100 (base of segment 0) + 17 = 5117. Similarly, a reference to byte

88 of segment 4 is mapped to 7300 + 88 = 7388.A trap interrupt will

be called if byte 1700 of segment 4 is referenced as the limit is

1500.

Figure 3.8: Segmentation Example

3.5 VIRTUAL MEMORY

The memory management scheme discussed in previous section

requires the entire process to be in the main memory for execution.

Most of the times there can be a requirement of many processes to

be in the memory simultaneously for execution. This situation can

183 | P a g e

Space for learners: prevent simultaneous execution of multiple processes due to the size

of the main memory, which may not be large enough to hold all the

processes. So the concept of virtual memory was introduced.

A virtual memory management scheme allows execution of a

process even if it is not completely in memory. That is, it requires

only that section of the code of the process to be in the memory that

will be executed. Generally, a process contains several functions or

procedures and not all the functions are required to be in the

memory at the same time. So the function or the procedure that will

be executed needs to be in the main memory while the other

functions or procedures can be placed in the secondary memory and

wait for their turn of execution. So whenever a function is not

available in the main memory, it is brought from the secondary

memory to main memory for execution. The main advantage of this

scheme is that a program larger than main memory can still run on a

smaller physical memory. This is how a games like Need for speed

or Call of Dutywhich require respectively 30 GB and 90 GB of

memory can still run on a system having 6 GB RAM with sufficient

hard disk space. Also, as only a section of the process’s code needs

to be in memory so many process can be there in memory

simultaneously. Thereby increasing CPU utilization and throughput.

184 | P a g e

Figure 3.9: Example showin

Figure 3.9 shows an exam

physical memory. The prog

about the size of the main m

on the problem to be program

pages from the large virtual

secondary memory and the p

whenever a call to those pa

does not have any free s

replacement algorithms are

memory with the pages from

3.5.1 Demand Paging

Suppose a user wants to ru

loaded to main memory fro

the program runs only one

on the user input, it is impra

other cases my never be call

technique known as demand

showing virtual memory larger than physical

memory[1].

 example of a larger virtual memory than

e programmer thus need not have to worry

main memory available, thus can concentrate

rogrammed. As can be seen in the Figure 3.9,

virtual memory address space is stored in the

d the pages are brought back to main memory

ose pages are required. If the main memory

free slot for the pages, then some page

s are used to replace the pages in main

s from secondary memory.

 to run a program, so the entire program is

ry from the secondary memory. However, if

one option/case out of the several cases based

 impractical to load the code for all the cases,

be called for execution. So, a virtual memory

mand paging is used to load only those pages

Space for learners:

185 | P a g e

of the process when they are

for the page occurs during th

In Figure 3.10 shows and exa

5, 6 and 7 of Program A is sw

and 19 of Program B is mo

demand for the pages 17, 18

a pager program responsible

Figure 3.10: Examp

CHECK

i. Fixed-sized bloc

a) Block

b) Frame

c) Pages

d) Segment

ii. In paging CPU

_____________a

a) Page offset &

b) Page number

c) Frame offset

d) Frame numbe

ey are required or whenever there is a demand

ring the program execution.

nd example of demand paging where pages 4,

is swapped out of memory and pages 17, 18

 is moved in to the memory because of the

17, 18 and 19. The method is implemented by

nsible for demand paging.

xample showing Demand Paging [1].

ECK YOUR PROGRESS

 blocks in physical memory is called

CPU generated logical address has two parts

____and _____________.

fset & Frame bit

mber & Page offset

ffset&Displacement

umber& page offset

Space for learners:

186 | P a g e

Space for learners:

iii. Fixed-sized blocks in logical memory is called ________

a) Block

b) Frame

c) Pages

d) Segment

iv. Paging does not suffer from ________.

a) Internal Fragmentation

b) External Fragmentation

c) Both a) and b)

d) None of the above

v. If it takes 10 milliseconds to search the TLB and 80

milliseconds to access the physical memory. If the TLB

hit ratio is 0.6, the effective memory access time (in

milliseconds) is _________.

a) 120

b) 122

c) 134

d) 124

vi. The displacement ‘d’ in a logical address must be

a) Greater than segment limit

b) Greater than the segment number

c) Between 0 and the segment number

d) Between 0 and segment limit

vii. In segmentation, each address is specified by

a) A key and value

b) A displacement and value

c) A segment number & displacement

d) A value and segment number

viii. A CPU generated memory larger than main memory is

called as

a) Logical Memory

b) Secondary Memory

c) Virtual Memory

187 | P a g e

Space for learners: d) All of the above

ix. The virtual memory manager loads only those

component of a program during execution as a when

required is known as _____.

a) Segmentation

b) Swapping

c) Virtual memory

d) Demand Paging

x. Virtual memory can be implemented with

a) Swapping

b) Paging

c) Segmentation

d) Both b) and c)

3.6 SUMMING UP

• Logical address is the address that is generated by the CPU

for a running program.

• A physical address is the actual address in the main memory.

• Paging is a memory management scheme that is used to map

CPU generated logical address of a process to physical

address in main memory.

• The logical address generated by the CPU is divided into

two parts namely page number and displacement with the

page.

• Translation Lookaside Buffer is a small, expensive but very

fast associative memory.

• In a TLB, if the search page is found it is called as a TLB hit

if the page is not found it called as TLB miss.

• The percentage of times that a particular page number is

found in the TLB is called the hit ratio.

188 | P a g e

Space for learners: • Segmentation is a memory management scheme similar to

paging that allows a process to be stored in the main memory

in noncontiguous manner.

• The mapping of the logical address <segment-number,

displacement> to the physical address is achieved with the

help of segment table and the segmentation hardware.

• A virtual memory management scheme allows execution of

a process even if it is not completely in memory.

• A virtual memory technique known as demand paging is

used to load only those pages of the process when they are

required or whenever there is a demand for the page occurs

during the program execution.

3.7 ANSWERS TO CHECK YOUR PROGRESS

i, b ii, b iii, c iv, b v, b

vi, d vii, c viii, c ix, d x, d

3.8 POSSIBLE QUESTIONS

Q1 Differentiate betweenphysical and logical address space.

Q2 Explain paging memory management scheme.

Q3 Define a page table. Why it is needed in paging?

Q4 What is hit ratio? Why page should be replaced in the

memory?

Q5 Explain the working of a paging memory management

scheme.

Q6 Consider a logical address space of 16 pages of 512 words

each, mapped on to a physical memory of 64 frames. How

many bits are there in the logical address? How many bits

are there in the physical address?

189 | P a g e

Space for learners: Q7 If it takes 125 nanoseconds to search the TLB and 500

nanoseconds to access memory. If the hit ratio is 90%,

calculate effective memory access time.

Q8 Assume a page size of 4K and an 18-bit logical address

space. How many pages are in the system?

Q9 Assume that a CPU has a 16-bit logical address space with

4 logical pages. How large are the pages?

Q10 What is segmentation? Explain.

Q11 Define a virtual memory. With a neat diagram, explain the

working of a virtual memory. What are the benefits of a

virtual memory?

Q12 What is demand paging? Explain.

Q13 What is the benefit of demand paging?

Q14 Consider logical address 1025 and the followingpage table

for some process P0. Assume a 15-bit address space with a

page size of 1K. What is the physical address to which

logical address 1025 will be mapped?

6

2

3

Q15 Consider the following segment table:

Segment Base Length

34 100 100

21 2500 200

0 1200 50

90 1700 300

7 500 500

2 600 50

99 650 200

What are the physical address for the following logical

address?

i. 0,25

ii. 2,89

iii. 90,345

190 | P a g e

Space for learners: iv. 34,50

v. 99,201

3.9 REFERENCES AND SUGGESTED READINGS

• Computer Organization and Architecture, 10
th

 edition,

William Stallings, Pearson.

• Computer System Architecture Third Edition, M. Morris

Mano, Rajib Mall, Pearson

• Computer Organization, 5
th

 Edition, Carl Hamacher,

McGraw Hill

• Operating System Principles 8th edition by Abraham

Silberschatz, Greg Gagne, and Peter Baer Galvin,

Willey

---×---

191 | P a g e

Space for learners: UNIT 4: BASIC I/O SYSTEM-I

Unit Structure:

4.1 Introduction

4.2 Unit Objectives

4.3 Bus Interconnection

4.3.1 Structure of Bus

4.3.2 Aspects of Bus Design

4.4 I/O Devices

4.5 I/O Interfacing using I/O Modules

4.5.1 Functions of an I/O Module

4.5.2 Structureof I/O Module

4.6 I/O Addressing

4.7 Interrupts

4.7.1 Types of Interrupts

4.7.2 Interrupt Latency

4.8 Direct Memory Access

4.9 Summing Up

4.10 Answers to Check Your Progress

4.11 Possible Questions

4.12 References and Suggested Readings

4.1 INTRODUCTION

Input and Output (I/O) devices are integral parts of computer

systems. I/O devices and I/O modules are the functional units of a

computer along with the Central Processing Unit (CPU) and the

memory units. There exist a wide variety of I/O devices having

different characteristics. Thus I/O devices are not directly connected

to the CPU; rather they are connected via I/O modules. I/O modules

take the responsibility of establishing the communication between

the CPU and I/O devices by bridging the gap between an I/O device

and the CPU. Each I/O module connects with the system bus or to

the central switch. An I/O module can control more than one device.

192 | P a g e

Space for learners: This unit will provide an understanding of basics of I/O interfacing.

We begin this chapter with an overview of bus interconnection and

bus arbitration, and then we illustrate the functioning of I/O

operations via I/O module. At the end of the unit we present the

basics of interrupts and direct memory access (DMA).

4.2 UNIT OBJECTIVES

On completion of this unit students will be able to:

• Explain the basics ofbus structures, bus arbitration and roles

of different buses.

• Get familiarized with various input output devices.

• Comprehend various aspects of input outputinterfacing.

• Learn the functioning of input output modules

• Understand the significance of interrupts in

communicationwith input output.

• Learn the concept of data transfer using direct memory

access

4.3 BUS INTERCONNECTION

A bus is a pathway via which two or more devices can perform data

transfer. Buses are shared transmission media; multiple units can

use the same bus for the data transfer but at a time only one unit can

send data.A bus can be used to connect either the major components

of a computer or the internal components of a CPU or two different

computers.

Typically a bus is comprised of multiple lines. Each line can

transmit a single bit (0 or 1); thus it can transfer a group of bits in

parallel in a single transfer.The number of bits that can be

193 | P a g e

Space for learners: transferred in parallel is called as the bus width. For example, an 8-

bit wide bus can transmit 8 bits at a time.

Computer systems have different types of buses for different levels

of communications. The internal components of a CPU are

connected via internal CPU bus. The major components of a

computer system, i.e., the CPU, memory modules and I/O are

connected via a special type of bus called as system bus.

STOP TO CONSIDER

Buses are used by different modules of a computer to transfer data to

other modules. Via buses various forms of data are transferred.

4.3.1 Structure of Bus

As mentioned earlier, a system bus is a common bus shared by the

CPU, memory and the I/O. A typical system bus comprises of about

50 to hundreds of separate lines. The connected modules can send

different types of information such as data, address and control

signals over these lines. Thus lines are usually divided into three

groups: data, address and control lines. The schematic diagram of a

typical system bus structure is shown in Fig 4.1.

The data lines or data bus is used to transfer the data among the

components attached to it. The width of data bus of a contemporary

machine can be 32, 64 or even more. This width determines the

amount of data that can be transferred at a time. The width of the

data bus is a key parameter to determine the performance of the

system. For example, if the length of an instruction is of 64 bit, then

the processor would need to access memory only once if the data

bus if 64-bit wide; on the other hand if the data bus is of 16-bit, then

194 | P a g e

Space for learners: the processor would need to access the memory 4-times to fetch the

64-bit instruction. Thus wider the bus faster will be the data transfer.

The address lines, also known as address busidentifies the location

of the source or the destination of the data available on the data bus.

For example, if the processor has to read the data from memory

location X, then it places the address X onto the address bus. The

width of the address bus determines the system’s memory capacity.

For an instance, a system with 16-bit address bus can support a

memory of 2
16

 blocks. Moreover, the address bus is also used to

locate an I/O port. The higher order bits usually identify a particular

I/O module and the lower order bits identify the particular port of

the selected module.

The control lines or control bus are used to carry control signals

and timing information to the various computer components.

Control signals help in enabling a system to understand what has to

be done and timing information indicates the validity of the

information available in the data and the address bus. Typical

control signals are Memory Read, Memory Write, I/O Read, I/O

Write, Bus Request, Bus Grant, Interrupt etc.

195 | P a g e

Space for learners:

 Fig. 4.1Interconnection of Computer Modules via System Bus

STOP TO CONSIDER

A common bus structure is used to connect the major components of

a computer. Such a structure is called as system bus. System bus

allows a computer module to transmit data, address and control

signals to another module. Thus the bus lines are grouped into data,

address and control lines.

4.3.2 Aspects of Bus Design

There are a few aspects whichareneeded to be considered while

designing a bus structure. The key aspects are bus type, bus width,

method of arbitration, timing and data transfer type.

Bus Types:

Buses can be categorized into two broad types: dedicated and

multiplexed. Dedicated buses are used either for a specific function

(e.g., for data or address) or to connect specific physical

modules.The advantage of dedicated bus is higher throughput.

However, it increases the size as well as the cost of the system.

Data Bus

Address Bus

Control Bus

CPU Memory I/O Module I/O Module . . .

196 | P a g e

Space for learners: On the other hand, multiplexed buses are ones either for used

multiple functionalities or to be shared amongst multiple physical

modules. For example, a common bus can be used to share both data

and address information. The main advantage of having multiplexed

bus is that it uses of fewer lines which helps in making the system

compact as well as cost effective. A major disadvantage of it is that

it needed a more complex circuitry for each connecting module.

Bus Width:

We have already addressed the role of the bus width while

discussing different bus types. It determines the amount of data that

can be transferred at a time. Higher is the width of the data bus

higher is the transfer rate. Thus the width of the data bus has an

impact on the performance of a system while width of the address

bus determines the system’s capacity to address memory blocks.

Bus Arbitration:

In case of a shared bus system more than one module may require to

have the control of the buses. Typically, the CPU has the main

control of the buses; however when a module wishes to perform the

data transfer without CPU’s intervention then the device which

controls the data transfer may need to have the control of the buses.

In such a scenario, the CPU has to transfer the control of the buses

to the device managing the data transfer. The process of transferring

the control of the buses from one device to another is called as bus

arbitration. There are basically two types of bus arbitration methods:

centralized and distributed. In case of centralized arbitration, a

special hardware called as bus arbiter performs the allocation of the

buses to the module requiring the buses. This device can be a part of

the CPU or can be a standalone module.In distributed method, the

modules mutually share the control of the buses without relying on

any centralized arbiter.

197 | P a g e

Space for learners: Timing:

Timing is a very important criterion of bus design. It defines a way

to coordinate the events occurred on the bus. It can be synchronous

or asynchronous.

Fig. 4.2 Timing Diagram of Memory Read and Write Cycle

The occurrences of the events in synchronous timing are controlled

by the clock. A clock line is attached to the bus that transmits an

alternating sequence of 0s and 1s repetitively. One single transition

Clock

Status

lines

Address

lines

Address

Enable

Data

lines

Read

Write

Data

lines

Read

cycle

Write

cycle

t1 t2 t3

198 | P a g e

Space for learners: of 1-0 is termed as one clock cycle. A clock cycle defines a slot. All

the modules attached to the bus can access the clock line and

triggers all events at the beginning of a clock cycle. The Fig. 4.2

presents a sample the timing diagram of both memory read and

write cycles. In this example, a memory address is placed onto the

address bus at the beginning of a clock cycle. Once the entire

address is placed onto the bus, the processor asserts the address

enable signal. During read cycle, the processor enables the read

signal at the beginning of the second clock cycle; the system

identifies the address and places the data from the designated

memory address

(a) Memory Read Cycle

Acknowledgement

Data Valid

Status

lines

Address

lines

Data

lines

Read

199 | P a g e

Space for learners:

(b) Memory Write Cycle

Fig. 4.3 Timing Diagram of Asynchronous Bus Operations

onto the data bus at the start of the third cycle. The processor reads

the data from the bus and disables the read signal on completion of

the read operation. During the write cycle, the processor places the

data onto the data bus followed by activating the write command.

The memory reads the data from the bus during the third cycle.

In asynchronous timing no clock is used to coordinate the

occurrence of the events, rather the occurrence of one event depends

on a previous event. To coordinate the events, the processor asserts

special status signals. During read cycle, the processor first places

the address onto the address bus and asserts the status signals. The

read command is issued once the address is stabilized to indicate the

validity of the address. The memory module recognizes the address

and copies the data from the corresponding memory address onto

the data bus. The memory module confirms the accomplishment of

the transfer of data to the bus by asserting the acknowledgement

signal. The read signal is disabled once the data is read by the

processor. The memory module then drops the acknowledgement

Write

Acknowledgement

Status

lines

Address

lines

Data Valid Data

lines

200 | P a g e

Space for learners: signal and the processor desserts the read signal. Fig. 4.3(a)

demonstrates the sequence of events of the read cycle with

asynchronous bus.

During write cycle, the processor places the address, status and data

onto the respective buses at the same time. The write signal is

asserted by the processor to indicate data valid. The address is

recognized by the memory module and fetches the data from the

data bus to copy it to the address given. Once write is accomplished,

the memory module sends the acknowledgement signal. The write

signal is then dropped by the processor or the bus master after on

receiving the acknowledgement. The write cycle events with

asynchronous bus are shown in Fig. 4.3(b).

STOP TO CONSIDER

To design a bus structure, various criteria like bus type, bus width,

type of arbitration and timing are needed to be considered. Based on

different parameters chosen for different criteria, the bus has to be

designed.

4.4 I/O Devices

I/O devices are external devices which facilitate the exchange of

data between the processor and the external environment. Such

devices are also known as peripheral devices or simply peripherals.

An I/O device is connected with the processor via an I/O module

port. An I/O device can be used either for input or output or both.

Some of the input devices are keyboard, mouse, mic, scanner etc

while the output devices include monitor, speaker, printer etc.

I/O devices can be classified broadly into human readable, machine

readable and communication. Human readable devices used to

allow the users to interact with the computer. These enable the user

201 | P a g e

Space for learners: either to give input or to see the output. Keyboard, monitor and

printer are some examples of human readable I/O devices. The

machine readable I/O devices are used to establish the

communications between various devices or components of the

computer. The magnetic disks, tapes, sensors and actuators are some

examples of machine readable I/O devices. The communication

devices are used to transmit data to a remote device. Examples of

communication devices include modems, Infrared, Bluetooth and

network interface card (NIC). The remote devices can be a human

readable device like a terminal or can be a machine readable device

or can even be another computer. Fig. 4.4 demonstrates the generic

block diagram of I/O device.The control logic performs the

controlling of overall operations of the I/O device. It decodes the

task to be performed by the device based on the received control

signal. It is also responsible for error detection and status reporting

to the I/O module. The transducer’s job is to convert the data

received from the external environment to the format

understandable by the device during input operation and converts

the data from device understandable to the format which the

external environment understands.The data buffers stores data

temporarily to be exchanged between the external environment and

the I/O module.

202 | P a g e

Space for learners:

Fig. 4.4 Generic model of an I/O device

The most common I/O devices that almost every computer

possesses are keyboard, mouse, monitor and Disk drives. A brief

discussion on these four is presented below.

Keyboard

This is the universal input device for all computers. The keyboard

layout is identical to that of a standard QWERTY typewriter. It also

has several additional command and function keys. It has between

101 and 104 keys in total. Through this, a user can enter alphabets,

numbers and symbols called as characters. Each character is

associated with a unique 7 or 8 bit code. One of such code

representation is American Standard Code for Information

Interchange (ASCII). To enter data, you must press the precise

combination of keys. The transducer in the keyboard interprets the

electrical impulses generated by a keystroke and converts it into its

corresponding 7 or 8 bit binary code.

Mouse

Another input device which is used most commonly is the mouse. It

has two or three buttons on the top and rolls on a little ball. Different

buttons are used to perform different actions. The screen cursors of

the mouse move in the direction of mouse movement when you roll

it across a flat surface. With the mouse, the cursor moves quite

Control

Logic

Data Buffers

I/O Module

Control

Lines

Data to/from

Environment

Data Lines

Transducer

203 | P a g e

Space for learners: quickly, providing you more freedom to operate in any direction.

Moving using a mouse is easier and faster.

Monitor

It is the most common output device that is common in all the

computers. It is a unit that displays the characters entered through

the keyboard and to display any message. The message can be in the

form of text, image or video. So monitors are also called as video

display devices. In market various types of video display devices are

available. In earlier time Cathode Ray Tubes (CRT) were used to

design the monitors. Such monitors were either monochromatic or

colored. Although, CRT monitors are still present, however Liquid

Crystal Display (LCD) based monitors are more common in recent

time. These monitors have a flat panel display and consume less

power than the CRT monitors.

Disk Drive

It is a device used for data storage in the computer. It has

mechanisms to exchange data and control signals with an I/O

module. An I/O module can perform both read and write operations

on the disk drive. The transducer on a fixed-head disk can transform

magnetic patterns on the moving disk surface to bits in the device's

buffer. The disk arm of a moving-head disk must be able to move

radially in and out across the disk's surface.

STOP TO CONSIDER

I/O devices are external devices which enable exchange of data

between external environment and the computer. There exists a

variety of I/O devices for performing various tasks. Keyboard,

mouse, monitor and magnetic disks are the most common I/O

devices.

4.5 I/O Interfacing using I/O Modules

A computer is connected with a diverse set of I/O devices. The

devices differ largely in terms of data rates, data representations,

data formats, word lengths and error conditions. The data rates of

the devices differ from the main memory and the processor. Often

204 | P a g e

Space for learners: peripheral devices are slower than the processor and the memory.

But there are some devices faster than the memory and the

processor. So there is a big gap between the processor and any I/O.

In such a scenario direct communication between an I/O device and

the processor is not easy. To solve this, I/O modules are used as a

mediator between an I/O device and the processor. I/O modules

interface to the memory and the processor through the system bus,

which interface one or more I/O devices by the ports.

4.5.1 Functions of an I/O Module

As mentioned earlier I/O devices are connected with the processor

via the I/O modules. For this, an I/O module needs to interact with

both the processor and the I/O devices. Theprocessor initiates the

I/O operations and selects the I/O module that connects the target

peripheral. The I/O devicessend or receive the data to the I/O

module to besent to the processor. The major tasks performed by the

I/O module are as follows:

• Control and timing

• Communication between the device and the processor

• Data buffering

• Error Checking

Control and Timing

The processor may need to interact with multiple peripheral devices,

memory and buses as per the requirement of the program leading to

multiple data transfer among various units.So there must be a proper

coordination andsequencing of events in order to avoid any conflict.

The events generated by a peripheral device are monitored and

synchronized by the connected I/O module. The I/O module

controls the activities of the peripheral based on the signals received

from the processor.

Communication between the device and the processor

During an I/O transfer, the I/O module performs four major tasks,

namely command decoding, status reporting, data exchange and

address recognition.

205 | P a g e

Space for learners: Command decoding:The processor sends commands to the I/O

module in the form of control signal. The I/O module decodes the

command and instructsthe I/O device to perform the necessary task.

Status reporting:As there is a speed mismatch between an I/O

device and the processor, it is necessary for the processor toknow

the current status of the I/O device before and during any data

transfer. The processor requests the I/O module to checkstatus of the

I/O device. Typical status signals include ready and busy. The I/O

module reports back the status of the I/O device to the processor.

Data Exchange:When the I/O device is ready to send or receive the

data, the processor requests the I/O module to initiate the transfer. In

case of input operation, the I/O module gets the data from the I/O

device and forwards the same to the processor. And for output

operation, the I/O module gets the data from the processor and then

forwards them to the I/O device.

Address Recognition: To uniquely identify the I/O devices, each

device is assigned a unique address. During I/O transfer, the

processor refers the I/O devices using their unique address or

identifier. The I/O module recognizes the specific I/O device it

controlling based on the address received from the processor.

Data Buffering

The data buffering is an essential task that the I/O module has to

perform as the data rates of processor or memory is much higher

than most of the peripherals. The I/O devices cannot receive the data

at the speed of memory or processor. The I/O module buffers data

received from memory or processor till the I/O device gets ready to

receive the data. Similarly, if the data rates of I/O devices are faster

than the memory or the processor, the I/O module buffers data

received from I/O device to match the speed of processor and

memory.

Error Checking

Errors are inevitable while transferring data over any medium. The

error may be mechanical or electrical due to technical malfunctions

of the devices or may due to transmission. The transmission errors

alter the sequence of bit-pattern of the data. The I/O module

206 | P a g e

Space for learners: includes error detecting codes to detect any transmission error. The

module checks for error for each every data it receives.

4.5.2 Structure of I/O Module

The general structure of an I/O module is presented Fig. 4.5. It

contains has a register set for storing data, status and control

information. The data registers are used to store the buffered data.

The status registers stores the current status information. The control

information received from the processor is stored in the control

registers. The register set is connected with the processor via the

data bus. The processor uses the address lines and the control lines

to send the address information and command to the I/O modules

respectively. The control logic unit recognizes an I/O device based

on the address information received via the address lines. It decodes

the command received via the control lines. It also has logic to

interface with the I/O devices.

STOP TO CONSIDER

Direct exchange of data between the CPU and I/O devices are

difficult due to the difference in data transfer rates, data

representation and unit of transfer. I/O modules are thus used a third

party to establish the communication between CPU and I/O.

207 | P a g e

Space for learners:

Fig. 4.5 Block Diagram of an I/O Module

4.6 I/O ADDRESSING

The I/O devices are given unique identifiers using any of two

addressing modes: memory mapped I/O and isolated I/O. In memory

mapped I/O, the I/O devices and memory locations share the same

address space. For example, if a system has a 12-bit address bus

supporting 4096 unique addresses, then these addresses will be

shared among the memory locations and the I/O devices. That

means if there is a memory address X, then the address X cannot be

assigned to an I/O device. The processor treats I/O transfers exactly

same as the memory transfer. Thus, only a single pair of read write

lines is required for both memory read/write and I/O read/write. The

processor uses the same instructions to access both memory and I/O.

The advantage of memory mapped I/O is a large number of

instructions are available for I/O operations. However it limits the

address space for both memory and I/O.

Control

Lines

Address

Lines

Data Buffers

Status Registers

Control Register

I/Odevice

interface

logic

I/O device

interface

logic

I/O device

interface

logic

Control logic

Data

Lines

Data

Status

Control

Data

Status

Control

Data

Status

Control

System Bus

Interface

Device

Interface

208 | P a g e

Space for learners: In isolated I/O, memory locations and I/O devices do not share the

same address space. If there is a memory address X, then there can

be an I/O device with address X as memory locations and I/O have

different address space. Thus, a full range of address space is

available for both I/O and memory locations. The processor uses

different instructions for memory transfer and I/O transfer. It uses

separate lines for memory read and I/O read and same holds true for

I/O write and memory write. When the memory read/write line is

high then the address in the address bus is treated as a memory

address and when the I/O read/write line is high then the address in

address bus is treated as anI/O address.

4.7 INTERRUPTS

In computer system, an interrupt is a signal generated by hardware

to request the processor to give immediate service suspending the

current executions. Hardware interrupts are generally used for

handing I/O transfers. As most of the I/O devices are slower than the

processor and the memory, the processor does not wait for the I/O to

transfer the data. When the I/O is preparing to send or receive data,

the processor remains busy with other execution. The I/O device

sends interrupt signal to the processor via the I/O module when it

gets ready to send or receive data.

For each interrupt, the processor has a routine called as interrupt

service routine (ISR). This is a special routine that has the code to

accomplish the task requested via the interrupt. The processor

executes the ISR as a response to the interrupt suspending the

current execution. After giving the service to the interrupt, the

processor resumes it suspended work.

209 | P a g e

Space for learners: Apart from hardware interrupts, there are interrupts raised by

softwares. These are basically exceptions occurred during the

execution of a program. Divide by zero, not a number (NaN),

overflow and underflow are some examples of software interrupts.

4.7.1 Types of Interrupts

A computer system supports a variety of hardware interrupts.These

can be broadly classified into two categories: maskable and non-

maskable. Maskable interrupts are the ones that can be ignored.

There is a facility to disable such interrupts. These interrupts can be

ignored only if they are disabled. The non-maskable interrupts are

the highest priority interrupts and cannot be ignored at any cost.

Thus, there no option is available to disable such interrupts. TRAP

is the example of a non-maskable interrupt.

4.7.2 Interrupt Latency

When the processor suspends the current execution in order to

provide the service to interrupt request, it saves the necessary data

including the program return address to resume the program

execution. The program return address is usually saved onto the

processor’s stack memory. After saving these data, the program

counter is updated by assigning the routine address. This causes a

time delay to start the execution of ISR from the time interrupt

request has been received. This delay is called as interrupt latency.

STOP TO CONSIDER

When a process or event requires immediate attention, hardware or

software emits an interrupt signal.

210 | P a g e

Space for learners: 4.8 DIRECT MEMORY ACCESS

DMA is a feature of computer systems that allows certain hardware

subsystems to access primary system memory (random-access

memory) without the intervention of the CPU.

When employing programmed I/O or interrupt driven I/O, without

DMA the CPU is often totally engaged for the duration of the read

or write operation, leaving it unavailable to execute other tasks. The

CPU initiates the transfer via DMA, then does other tasks while the

transfer is ongoing, and ultimately receives an interrupt from the

DMA controller when the operation is completed.

When the CPU can't keep up with the rate of data transfer, or when

the CPU needs to do work while waiting for a relatively slow I/O

data transfer, this capability comes in handy. DMA is used by many

hardware systems, including disk controllers, graphics cards,

network interface cards, and sound devices. In multi-core CPUs,

DMA is also employed for intra-chip data transfer. DMA channels

allow computers to transport data to and from devices with

significantly less CPU overhead than computers without them. A

processing element inside a multi-core processor can also transmit

data to and from its local memory without consuming processor

time, permitting processing and data transfer to happen in parallel.

STOP TO CONSIDER

DMA is technique used to perform data transfer without actively

involving the CPU. During the DMA transfer the CPU remains free

and can perform some other operations which do not require the

system bus.

211 | P a g e

Space for learners: CHECK YOUR PROGRESS:

i. The key advantage of adopting a single bus structure is

that it ______

a. faster transfer

b. ease of access

c. cost effective

d. none of the above

ii. System bus is used to transmit

a. data

b. address

c. control signal

d. all of the above

iii. Width of ______ bus determines the performance of

the overall system.

a. data

b. address

c. control signal

d. all of the above

iv. Width of the address bus determines___________

a. the performance of the system

b. system’s memory capacity

c. both a and b

d. none of the above

v. Usual bus structure used to connect I/O devices follows

a. single bus structure

b. multiple bus structure

c. star bus structure

d. none of the above

vi. I/O modules are used to overcome difference in

________ between I/O and CPU.

a. speed of data transfer

b. data representation

c. units of data transfer

d. all of the above

vii. Memory mapped I/O has the following advantage over

Isolated I/O

a. fewer address lines

b. more instructions for I/O operations

c. bigger buffer space

d. all of the above

212 | P a g e

Space for learners: viii. Isolated I/O has the following advantage over Memory

mapped I/O

a. fewer address lines

b. more instructions for I/O operations

c. bigger buffer space

d. all of the above

ix. What is the mechanism for synchronizing the CPU

with the I/O device in which the device sends a signal

when it is ready?

a. DMA

b. interrupt

c. signal handling

d. exception

x. DMA transfer has the following advantage

a. faster data transfer

b. increased CPU throughput

c. both a and b

d. none of the above

4.9 SUMMING UP

• A bus is a pathway via which two or more devices can

perform data transfer. Buses are shared transmission media;

multiple units can use the same bus for the data transfer but

at a time only one unit can send data.

• The major components of a computer system, i.e., the CPU,

memory modules and I/O are connected via a special type of

bus called as system bus. The system bus has three groups of

lines for data, address and control.

• The key aspects of bus design are bus type, bus width,

method of arbitration, timing and data transfer type.

• I/O devices are external devices which facilitate exchange of

data between the processor and the external environment.

Such devices are also known as a peripheral device or

simply a peripheral. An I/O device is connected with the

processor via an I/O module port.

• I/O devices are not directly connected to the CPU; rather

they are connected via I/O modules. I/O modules take the

213 | P a g e

Space for learners: responsibility of establishing the communication between

the CPU and I/O devices by bridging the gap between an I/O

device and the CPU. Each I/O module connects with the

system bus or to the central switch. An I/O module can

control more than one device.

• The I/O devices are given unique identifiers using any of

two addressing modes: memory mapped I/O and isolated

I/O. In memory mapped I/O, the I/O devices and memory

locations share the same address space.

• In computer system, an interrupt is a signal generated by

hardware to request the processor to give immediate service

suspending the current executions.

• DMA is a feature of computer systems that allows certain

hardware subsystems to access primary system memory

(random-access memory) without the intervention of the

CPU.

4.10 ANSWERS TO CHECK YOUR PROGRESS

i, c ii, d iii, a iv, b v, a

vi, d vii, b viii, a ix, b x, c

4.11 POSSIBLE QUESTIONS

Q1. What is the role of a computer bus?

Q2. Differentiate between multiplexed and dedicated bus.

Q3. What are the various aspects of bus design?

Q4. Why is it not possible to connect an I/O device directly

to a computer?

Q5. Explain the tasks performed by an I/O module.

Q6. What are the signals shared by an I/O module?

214 | P a g e

Space for learners: Q7. What do you mean by an interrupt in terms of a computer

system?

Q8. What do you mean by DMA? What are the advantages of

using DMA?

Q9. Discuss various types of I/O devices.

Q10. Differentiate between maskable and non-maskable

interrupt.

4.12 REFERENCES AND SUGGESTED READINGS

• William Stallings, Computer Organization and Architecture

Designing for Performance, Pearson Education India.

• Carl Hamacher, ZvonkoVranesic, SafwatZaky, Computer

Organization, McGraw Hill Education.

• M. Morris Mano, Computer System Architecture, Pearson

Education India.

---×---

215 | P a g e

Space for learners UNIT 5: BASIC I/O SYSTEM-II

Unit Structure:

5.1 Introduction

5.2 Unit Objectives

5.3 Programmed I/O

5.4 Interrupt Driven I/O

5.5 Direct Memory Access

5.6 Summing Up

5.7 Answers To Check Your Progress

5.8 Possible Questions

5.9 References and Suggested Readings

5.1 INTRODUCTION

I/O operations are performed through a large variety of I/O devices.

These devices provide a way of interchanging data between the

external environment and the computer. Different I/O devices have

different data transfer rates, different data formats and different

word lengths. These variations make the direct interaction between

I/O devices and processor (or memory) very complex. Thus, the

processor or the memory does not interact with the I/O devices

rather I/O modules are used to establish the interactions between I/O

devices and the processor (or memory) as a mediator. For an

instance, if the processor wishes to send some data to an I/O device,

it sends it to the I/O module which forwards the same to the specific

I/O device. The I/O operations are performed using three

techniques: programmed I/O, interrupt driven I/O and direct

memory access.

This unit begins with a discussion on the three mentioned I/O

operation techniques. The unit also presents a discussion on various

way of handling multiple interrupts.

216 | P a g e

Space for learners 5.2 UNIT OBJECTIVES

On completion of this unit students will be able to:

• Explain the various aspects of I/O transfer based on

Programmed I/O, Interrupt Driven I/O and DMA

Transfer

• Compare Programmed I/O, Interrupt Driven I/O and

DMA Transfer

• Explain different ways of handling multiple interrupt

requests

5.3 PROGRAMMED I/O

In programmed I/O, the processor exchanges data with the I/O

module. The processor allows the I/O module to control the I/O

operations directly. The I/O module can read the device status, send

read or write command and transfer data. The processor sends a

command to the I/O module and waits for the I/O module to

complete the operation.

When the processor sees an instruction associated with I/O, it issues

necessary commands to the concerned I/O module. The I/O module

then loads the status register with appropriate values. The processor

checks the status of the I/O module periodically until the module is

ready for the transfer. The data transfer takes place only when the

I/O module is ready. Most of the I/O devices have much slower data

rates than the processor and the memory. So, the processor may

need to wait for a longer amount of time for the I/O to get ready.

This is the major disadvantage of programmed I/O as it reduces the

throughput of the processor.

217 | P a g e

Space for learners The processor issues some commands to the I/O module along with

an address referring an I/O module and an I/O device. There are four

types of commands: control, test, read and write.

The control command is used to specify the operation to be

performed by the external device. For example, it may send

commands like READ SECTOR, WRITE SECTOR,SCAN record

ID to a magnetic disk. The commands are made according to the

operations an I/O device performs.

Test commands are used to test various status signals of both the

I/O module and the I/O devices. Before any I/O transfer, the

processor needs to test the current status of the I/O module or the

device to check whether the module or the device is powered on,

ready or busy. It may also need to know if the last data transfer is

successful or any error has occurred.

The read signals are sent to the I/O modules when the processor

needs data from any I/O. The I/O module gets the data from the

particular I/O device and buffers it in its internal storage (data

buffers/ data registers) temporarily before sending back to the

processor. The I/O module sends back the data to the processor by

placing them onto the data bus on receiving request from the

processor.

With write signal, the processor requests the I/O module to send the

data available on the data bus to a specific I/O device. The I/O

module obtains the data from the bus and buffers it until the

corresponding I/O device is ready to accept the data.

Fig. 5.1 demonstrates the process of transferring blocks of data from

memory to I/O using programmed I/O. The processor first fetches a

memory word and tests the status of I/O. If the I/O module is ready

it transfers the data immediately otherwise it waits. During the

218 | P a g e

Space for learners waiting period, the processor keeps on sensing the I/O status

periodically.

Fig. 5.1 Flowchart showing transfer of data from the processor to

I/O using programmed I/O

STOP TO CONSIDER

Programmed I/O is an I/O transfer technique wherein the processor

continuously senses the status of I/O until the later gets ready for

data transfer. This reduces the performance of the processor.

Error

Ready

Processor

asserts

writecomma

nd to I/O

module

Processor

checksstatus

of I/O

Processorsen

dsdata to I/O

module

Status?

Done?

Processor

reads data

from

Yes

Not

ready

No

Fetch Next Instruction

219 | P a g e

Space for learners 5.4 INTERRUPT DRIVEN I/O

The main problem with programmed I/O is that the processor has to

wait for long time for the I/O module to be ready. During the

waiting time, the processor must check the status of the I/O

continuously. This adversely affects the performance of the overall

system. Consequently an alternative solution is required to enhance

the performance of the entire system. One best solution is the use of

interrupt signals. Instead the processor checking repetitively the

status of I/O, the I/O module can send interrupt to the processor

when it is ready. Such type of I/O transfer is called as interrupt

driven I/O.

Processor

reads data

from

Processor

asserts write

command to

I/O module

Processor

checks status

of I/O

Processor

sends data

to I/O

Status?

Done?

Error

Ready

Yes

No

Processor does something

else

I/O module interrupts

CPU

Fetch Next Instruction

220 | P a g e

Space for learners Fig. 5.2 Flowchart showing transfer of data from the processor to

I/O using interrupt driven I/O

Fig. 5.2 presents the flowchart of transfer of memory words to I/O

using interrupt driven I/O. The processor first reads the data from

memory and asserts the write signal to the I/O module to which the

concerned I/O device is connected. It specifies the I/O device by

placing its address on the address bus. The processor does not wait

for the I/O to get ready and continues its execution. In interrupt

driven I/O, the processor issues an command to an I/O module and

then gets busy in doing other processing. The I/O module will send

an interrupt request to the processor when it is available to perform

the data transfer. Every interrupt has a specific program or routine

called as interrupt service routine (ISR) to process the interrupt

request. On receiving the interrupt request, the processor finishes its

current instruction and then goes on to give the service to the

interrupt request by executing the corresponding ISR. The processor

stops the current execution temporarily while executing an ISR. It

goes back to its previous program immediately after finishing the

ISR.

The I/O module identifies the I/O device based on the address

available on the address bus. It checks the status of the

corresponding I/O device if it is ready. The I/O device sets the status

as ready to inform the I/O module when it is ready to send any data.

On receiving this information, the I/O module interrupts the

processor. The processor then transfers the data and checks if any

data is remaining to transfer. If not the processor continues with the

data transfer as shown in the diagram.

221 | P a g e

Space for learners

Fig. 5.3 Block Diagram of Interrupt Processing

Fig. 5.3 presents a block diagram of the sequence of events

occurred during the processing of a typical interrupt. The

following sequence of events occurs during an I/O transfer.

1. The I/O module sends an interrupt signal to the

processor.

2. The processor completes current instruction before

answering the interrupt.

3. The processor tests for the interrupt at the end of every

instruction cycle. When it sees any interrupt, it sends

acknowledgement to the I/O module. The I/O module

then disables the interrupt signal.

I/O module

interrupts CPU

CPU completes

current execution

CPU acknowledges

interrupt

CPU saves PSW and

PC onto stack

CPU loads interrupt

vector in PC

Save the processor

registers

Process interrupt

Restore processor

registers

Restore old PSW

and PC from stack

222 | P a g e

Space for learners 4. The processor prepares to start the execution of the

ISR. It saves the program return address (current value

of the program counter) and the ALU flags or program

status word (PSW) onto the stack.

5. The processor loads the routine address or the interrupt

vector onto the program counter (PC).

6. The processor then saves the current status of the

executing program, particularly the contents of the

ALU registers onto stack. This is very essential as the

ISR may need to use these registers.

7. The processor starts processing the interrupt by

executing the ISR. At this stage the processor begins

its next instruction cycle.

8. After completion of the execution of the ISR, the

processor restores ALU registers.

9. Finally it restores PSW and the old value of PC stored

from the stack.

STOP TO CONSIDER

Unlike in programmed I/O, in interrupt driven I/O the processor does not

continuously check the status of the I/O device. After initiating the I/O

transfer the processor gets involved in some important tasks without

waiting for the I/O. The I/O module sends an interrupt signal whenever

the I/O device is ready for the data transfers.

Design Issues

When it comes to interrupt driven I/O, there are two design

challenges to consider. First, how will the processor identify the

interrupting device if multiple devices are connected? Second,

which interrupt to process if multiple interrupts occur at some time?

To address the first issues, i.e., device identification four techniques

are used in common:

223 | P a g e

Space for learners • Multiple interrupt lines

• Software Poll

• Hardware Poll (Daisy Chain)

• Bus Arbitration

The simplestand straightforward solution to handle multiple

interrupt is the use of multiple interrupt lines for multiple I/O

devices.However, it is not a practical solution to have too many

lines for interrupts. Typically, interrupt lines not assignedtothe I/O

devices; instead they are assigned to the I/O modules. This method

helps the processor to identify easily the interrupted module. But an

I/O module can connect more than one device, so to identify the

specific device (the one which triggered the interrupt) from many

one of the remaining three methods can be used.

Instead of using multiple interrupt lines Software polling can be

used alternatively to handle multiple interrupts. In this, a common

ISR is executed when the processor sees an interrupt. The job of this

ISR is to detect the interrupted module by polling each module. The

polling can be done by using a dedicated command line (TESTI/O).

The processor sets the TESTI/Oand places the I/O address in the

address bus. An I/O module responds to this signal positively if the

interrupt is raised by it. Alternatively, each I/O module can possess

a status register which will be set when it raises the interrupt signal.

The processor will check the status register of each I/O module and

will determine the I/O module that caused the interrupt based the

status information. After identification of the interrupted module,

the processor executes the ISR of the interrupted device. The

advantage of software polling is that a single interrupt line is

sufficient for implementing interrupt driven I/O. However it is very

time consuming.

224 | P a g e

Space for learners Hardware polling is a very efficient alternative to software polling

for handling multiple interrupts. A technique called Daisy Chain

can be used to implement this. In this approach, a common interrupt

request line is shared among all I/O modules. The I/O modules are

connected in a serial order. The interrupt acknowledgement line is

shared with the I/O modules through a daisy chain as shown in Fig.

5.4. The processor sets the interrupt acknowledgement signal when

it sees any interrupt request. This signal is received by the I/O

module which is directly connected with the interrupt

acknowledgement line. If the interrupt request is raised by that

particular I/O module then it will respond by placing a vector in the

data lines; otherwise the module will forward the acknowledgement

signal to the next module in the sequence. The next module will

react to the signal exactly in the similar manner. Thus the interrupt

acknowledgment signal will be propagated through the I/O modules

until any response is received from the interrupted module. The

vector is usually an address that refers an I/O module. The processor

calls the device specific ISR based on the value of the vector.

Another alternative is bus arbitration. In this approach, only one

module can send interrupt request. To do so, the I/O module has to

obtain the control of the bus first. The processor responds to the

interrupt by sending an interrupt acknowledgement signal. The I/O

module responds to this signal by placing its interrupt vector onto

the data bus.

To solve the second issue, different levels of priorities can be

assigned to different modules. When more than one module

interrupts, the modules are given services according to their priority

levels. The module with the highest priority is given the service

first. The above mentioned techniques can also be used to handle

this priority interrupt. When there are multiple interrupt lines, the

225 | P a g e

Space for learners processor simply chooses the one with the highest priority. In

software polling, the module polling order is designed according to

their priority. In case of hardware polling, the modules in the daisy

chain are arranged according to their priority with the highest

priority first. In case of bus arbitration, the bus arbiter determines

which module should get the control of the bus depending on their

priority.

Fig. 5.4 Hardware Polling using Daisy Chaining

5.5 DIRECT MEMORY ACCESS

Both programmed I/O and interrupt driven I/O require the active

intervention of the processor to perform the data transfer between

memory and I/O. When there is a need to transfer a large amount of

data, the processor is often tied up with the I/O transfer. Also, the

data transfer speed is affected by lot of testing and condition

checking. To avoid these issues a more efficient technique called

Processor

INTR

INTACK

In Out In Out In Out Next Device

Device 1 Device 2 Device 3

Vector 1 Vector 2 Vector 3

226 | P a g e

Space for learners direct memory access (DMA)can be used while transferring a large

amount of data.

It is a data transfer technique in which transfer of data from memory

to I/O takes place without the active involvement of the processor.

To accomplish this, an additional module called a DMA controller is

required. A DMA controller shares the system bus along with

processor, memory and I/O. Its role is to control the entire data

transfer. For this, it has to acquire the control of the system bus. The

structure of a typical DMA controller is shown in Fig. 5.5.

When the processor needs to perform DMA transfer, it issues a

DMA request to the DMA controller and sends the following

information to the DMA controller:

• Depending on the operation type, the processor asserts read

or write signal to the DMA controller by raising the

corresponding control line between the processor and the

DMA controller.

• The address of the target I/O device.

• The address in the memory from/to where data transfer to

begin through the data lines. The DMA controller saves this

address in its address register.

• The number of words to be transferred. This value is then

stored in the data count register.

After initiating the transfer, the processor relinquishes the buses and

continues with other works while the DMA controller gains the

control of the buses and takes over the remaining transfer. The

DMA controller transfers the entire blocks of data one by one. Once

the DMA transfer is complete, the controller sends an interrupt to

the processor.

227 | P a g e

Space for learners There are basically two types of DMA transfers: burst mode and

cycle stealing. Burst mode transfers a whole block of data in a single

contiguous sequence. When the processor grants the DMA

controller the access to the system bus, it transfers entire bytes of

data in the data block before returning control of the system buses to

the processor; however this leaves the processor inactive for a long

time.

In systems where the processor should not be disabled for the length

of time required for burst transfer modes, the cycle stealing mode is

used. The DMA controller gains control the system bus in cycle

stealing mode in the same way as it does in burst mode, by using the

BR (Bus Request) and BG (Bus Grant) signals, which control the

interface between the processor and the DMA controller. In cycle

stealing mode, however the control of the system bus is delegated to

the processor via BG after one byte of data transfer. After a cycle,

the DMA controller again obtains the buses using BR and BG signal

for the next transfer. This switching of the buses between the

processor and the DMA controller continues until entire blocks of

data are transferred.

CHECK YOUR PROGRESS:

i. _________ is a way of accessing I/O devices by

continuously checking the status flags.

a. Programmed I/O

b. Interrupt driven I/O

c. DMA

d. None of the above

ii. The address of an ISR is termed as

a. interrupt location

b. interrupt vector

c. interrupt address

d. none of the above

iii. ______ is used to store the return address of ISR.

228 | P a g e

Space for learners a. Registers

b. Cache

c. System heap

d. Stack

iv. In case of interrupt driven I/O, I/O module sends

_________ signal to the processor when an I/O device is

ready for data transfer.

a. interrupt request

b. interrupt acknowledgement

c. read/write

d. none of the above

v. After receiving an interrupt, the signal delivered from the

processor to the device is

a. interrupt request

b. interrupt acknowledgement

c. read/write

d. none of the above

vi. _________ is a technique to handle multiple interrupt.

a. Software polling

b. Daisy Chaining

c. Multiple interrupt line

d. all of the above

vii. DMA transfer is initiated by the

a. DMA controller

b. processor

c. I/O device

d. none of the above

viii. _______ is responsible for controlling the transfer of data

during DMA.

a. DMA controller

b. processor

c. I/O device

d. none of the above

ix. During DMA transfer, ______ becomes the master of the

system bus.

a. DMA controller

b. processor

c. I/O device

d. none of the above

x. The method by which the DMA controller steals the

processor's access cycles is known as

229 | P a g e

Space for learners a. bust mode

b. cycle stealing

c. memory stealing

d. bus stealing

5.6 SUMMING UP

• I/O devices provide a way of interchanging data between the

external environment and the computer. Different I/O devices

have different data transfer rates, different data formats and

different word lengths.

• Due to the differences present, the processor or the memory does

not interact with the I/O devices rather I/O modules are used to

establish the interactions between I/O devices and the processor

(or memory) actsas a mediator.

• The I/O operations are performed using three techniques:

programmed I/O, interrupt driven I/O and direct memory access.

Fig. 5.5 Structure of a DMA controller

Address lines

Data

Counter

Data

Register

Address

Register

Control

logic

Data lines

DMA

Request

Acknowledg

e Interrupt

230 | P a g e

Space for learners • In programmed I/O, the processor exchanges data with the I/O

module. The processor allows the I/O module to control the I/O

operations directly. The processor senses the status of I/O

continuously until the device is ready. It transfers the data only

when the I/O is ready.

• In interrupt driven I/O, instead the processor checking

repetitively the status of I/O, the I/O module sends interrupts to

the processor when it is ready. The processor continues with

meaningful tasks after initiating the I/O transfer without waiting

for the I/O to get ready.

• DMA is a data transfer technique in which transfer of data from

memory to I/O takes place without the active involvement of the

processor. To accomplish this, an additional module called a

DMA controller is required. A DMA controller shares the

system bus along with processor, memory and I/O.

STOP TO CONSIDER

DMA is a technique by virtue of which data transfers take place

without involving the processor. To control the entire transfer a

special module is attached to the system bus called as DMA

controller. During a DMA transfer, the processor remains free to

perform other processing.

5.7 ANSWERS TO CHECK YOUR PROGRESS

i, a ii, b iii, c iv, a v, b

vi, d vii, b viii, a ix, a x, b

5.8 POSSIBLE QUESTIONS

Q1. What is meant by interrupt?

Q2. What is the difference between Programmed I/O and

Interrupt driven I/O?

231 | P a g e

Space for learners Q3. How does a computer handle multiple interrupt?

Q4. What is meant by interrupt priority? What are

techniques available to handle priority interrupt?

Q5. What is polling?

Q6. What is the difference between Software and Hardware

Polling?

Q7. What is the advantage of DMA transfer?

Q8. What are the different techniques used for DMA

transfer?

Q9. Differentiate between Cycle Stealing and Burst Mode.

Q10. What are the major components of a DMA controller?

5.9 REFERENCES AND SUGGESTED READINGS

• William Stallings, Computer Organization and

Architecture Designing for Performance, Pearson

Education India.

• Carl Hamacher, Zvonko Vranesic, Safwat Zaky,

Computer Organization, McGraw Hill Education.

• M. Morris Mano, Computer System Architecture,

Pearson Education India.

---×---

BLOCK III:

ADVANCED CONCEPTS OF PARALLEL

ARCHITECTURES

232 | P a g e

Space for learners: UNIT 1: BASIC PARALLEL ARCHITECTURE AND

 INSTRUCTION PIPELINE

Unit Structure:

1.1 Introduction

1.2 Unit Objectives

1.3 Flynn’s Classification of Computer Architecture

1.3.1 SISD

1.3.2 SIMD

1.3.3 MISD

1.3.4 MIMD

1.4 Type of Processors

1.4.1 Scalar Processor

1.4.2 Superscalar Processor

1.4.3 Pipelined Processor

1.4.4 Vector Processor

1.5 Pipelining

1.6 Instruction pipelining

1.7 Dependency in Pipelined Processors

1.7.1 Structural Dependency or Resource Conflict

1.7.2 Control Dependency or Branch Hazard

1.7.3 Data Dependency or Data Hazard

1.7.4 Pipeline Bubbles

1.8 Summing Up

1.9 Answers To Check Your Progress

1.10 Possible Questions

1.11 References and Suggested Readings

1.1 INTRODUCTION

The chapter reviews architectural evolution of computers starting

from uniprocessor systems to multiprocessor system through

Flynn’s classification of computer architecture. The chapter also

compares various processors types like scalar processor, superscalar

processor, pipelined processor and vector processor. The basic

concept of pipelining and the working of instruction pipeline is

233 | P a g e

Space for learners: discussed in detail. Finally, the chapter ends with discussion on the

types of dependencies that exists in pipelined processors which if

not taken care of will affect the overall performance of the system.

The three dependencies discussed are resource conflict, branch

hazard and data hazard.

1.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

• Classify computer architecture based on the notion of instruction

and data stream.

• Compare different types of processors and their characteristics.

• Explain the basic concept of pipelining and the types of

pipelining.

• Explainhow pipelining improvesthe performance of a system.

• Explain how multiple instructions are executed in an overlapped

fashion in instruction pipelining.

• Identify the types of dependencies in pipelined processors and

ways to resolve the dependencies.

1.3 FLYNN’S CLASSIFICATION OF COMPUTER

ARCHITECTURE

With the increase in the number of processing units and

segmentation of a job/program into multiple segments wherein each

of the segment is placed on a different processing unit for

concurrent execution has resulted in classification of systems.

Flynn's classification or Flynn’s taxonomy of computer

architectures is proposed by Michael J. Flynn in the year 1972. The

classification is based on the notion of instruction stream and data

stream. A stream refers to sequence of instruction or data operated

by the computer system. The flow of instruction from memory to

234 | P a g e

Space for learners: processor is called instruction stream and the flow of data between

processor and memory is called data stream.

Figure 1.1: Flynn’s classification of Computer Architecture

The Figure 1.1 shows four categories in which Flynn has classified

computer architecture based on instruction and data stream. A

conventional uniprocessor system is called SISD (Single instruction

stream Single data stream) computers. A vector /array of processors

is called SIMD (Single instruction stream Multiple data stream)

computers. In MISD (Multiple instruction stream Single data

stream) computers, different instructions work on the same data.

Finally, in MIMD (Multiple instruction stream Multiple data stream)

computers, multiple processors each working on different data

increases the overall performance of the system.

1.3.1 SISD

A Single instruction stream single data stream (SISD) system as

shown in Figure 1.2 is a uniprocessor system. Such systems work on

 Instruction Stream

D
a
ta

 S
tr

e
a
m

 Single Multiple

S
in

g
le

 SISD

Traditional Von Neumann Single

Processor Architecture

MISD

Systolic Arrays

M
u
lt
ip

le

SIMD

Vector processor/Array processor fine

grained parallel computer

MIMD

Multiprocessor Systems, Multi

Core systems

235 | P a g e

Space for learners: a single instruction stream and single data stream at a time.

Instructions in SISD systems are processed in a sequential order and

are therefore known as sequential computers. Conventional systems

were of SISD architecture. Processing in SISD systems involve

storing both instructions and data in primary memory. Processing

speed of such systems depends on internal data transfer rate.

However, performance of such systems can be improved with the

help of multiple functional units or pipelining. Example of SISD

systems includes CDC 6600, IBM PC.

Figure 1.2: SISD Architecture

1.3.2 SIMD

A single instruction stream multiple data stream (SIMD) system as

shown in Figure 1.3 are multiprocessor systems capable of working

on different data streams through a single instruction stream. SIMD

systems are used in scientific computation involving vector

operations. They are also known as vector processors or array

processors. There are n number of processing units each having its

own memory and stream of data. All the n processing units receive

the same instruction from the control unit. Example of SISD

systems includes CRAY vector computers.

I/O

IS

Control Unit Processing Unit Memory Unit

IS DS

236 | P a g e

Space for learners:

Figure 1.3: SIMD Architecture

1.3.3 MISD

A multiple instruction stream single data stream (MISD) system as

shown in Figure 1.4 is a multiprocessor system which executes

different instructions on different processing unit but data set is

same for all the instructions. MISD systems are not practical in the

majority of the application and therefore are not available

commercially. One such example of MISD system is systolic array.

Figure 1.4: MISD Architecture

I/O

IS

DS

IS IS

DS

IS IS Control Unit 1

Processing Unit 1

Memory

(Program &

Data)

Control Unit 2

Processing Unit 2

Control Unit n

Processing Unit n

IS

DS

DS

DS

DS

DS

DS

DS

Control Unit

Processing Unit 1 Memory Unit 1

Processing Unit 2 Memory Unit 2

Processing Unit n Memory Unit n

IS

IS

237 | P a g e

Space for learners: 1.3.4 MIMD

A multiple instruction stream multiple data stream (MIMD) system

is a multiprocessor system capable of executing different sets of

instructions each working on a different set of data simultaneously.

Figure 1.5 shows MIMD architecture. Multiple SIMD systems

connected together can be viewed as a MIMD system. MIMD

systems can be classified into shared-memory MIMD and

distributed-memory MIMD based on processing unit-main memory

connections.

The shared memory MIMD system also known as tightly coupled

multiprocessor system, are the one where all the processing units are

connected to a single shared memory. Any form of communication

between processing unit takes place with the help of shared

memory. Changes done to data in shared memory by one processing

unit is visible to all other processing units. In distributed memory

MIMD systems or loosely coupled multiprocessor systems, all

processing units have their own local memory. The communication

between processing units takes place through the interconnection.

 Figure 1.5: MIMD Architecture

IS

DS IS
I/O

I/O

IS DS

DS IS

Control Unit 1 Processing Unit 1

Shared

Memory

Control Unit 2 Processing Unit 2

Control Unit n Processing Unit n

IS

IS

238 | P a g e

Space for learners: 1.4 TYPE OF PROCESSORS

There are several types of processors. A brief description of each of

these are provided below.

1.4.1 Scalar processor

A scalar processor also known as Single Instruction Stream Single

Data Stream (SISD) can process a single data item at a time. Scalar

processor can process either integer or floating point operands. The

simplest scalar processor uses floating point unit to process integer

operands. However scalar processor may have separate integer and

floating point units for handling integer and floating point operands.

AMD 2900, Motorola 68040, Intel 386, Intel 486, M88100 are some

examples of scalar processor.

1.4.2 Superscalar Processor

Superscalar processors are found in parallel computing architecture

to improve the performance of the system by executing multiple

instructions in parallel. A superscalar processor manages multiple

instruction pipelines to execute multiple instructions concurrently in

a clock cycle. The performance of superscalar processor is highly

dependent on the instruction dependency quotient. If the instructions

to be executed are independent, then high performance is achieved.

Figure 1.6 shows a superscalar pipeline of degree 2 (i.e. Two

instructions can be executed in parallel). There are five stages in the

pipeline namely fetch, decode, operand fetch, execute and write. It

can be observed from the Figure 1.6 that the superscalar pipeline has

two units each of fetch, decode, operand fetch, execute and write,

therefore two instructions can be simultaneously executed. In the

first clock cycle instruction (1, 2) are fetched, in the second clock

cycle next two instructions i.e. (3, 4) are fetched and the process

239 | P a g e

Space for learners: continues. Pentium, DEC Alpha, PowerPC are some of the example

of superscalar processor computers.

 1 2 3 4 5 6 7 8

Instruction 1 F D OF E W

Instruction 2 F D OF E W

Instruction 3 F D OF E W

Instruction 4 F D OF E W

Instruction 5 F D OF E W

Instruction 6 F D OF E W

Instruction 7 F D OF E W

Instruction 8 F D OF E W

Figure 1.6: A superscalar pipeline of degree two.

1.4.3 Pipelined Processor

There are four types of pipelined processors namely Scalar Pipeline,

Superscalar Pipeline, Super pipeline, Super pipeline Superscalar as

shown in Figure 1.7 depending upon the following criterions. It is

assumed that all the pipelined processors are of k stages.

• Machine Pipeline Cycle (MPC): Time taken by each stage

to process an instruction.

• Instruction Issue Rate (ISR): Number of instruction that can

be issued simultaneously.

• Instruction Issue Latency (ISL): Time interval between issue

of two instructions.

• Instruction Level Parallelism (ILP): Number of instructions

that can be executed simultaneously in the pipeline.

240 | P a g e

Space for learners: Machine

Type

Scalar

Pipeline

Superscalar

Pipeline
Superpipeline

Superpipeline

Superscalar

MPC 1 1 1/n 1/n

ISR 1 m 1 m

ISL 1 1 1/n 1/n

ILP 1 m n mn

Figure 1.7: Parameters of Pipelined Processor.

1.4.4 Vector processor

Vector processors are found mainly in supercomputers combining

pipelining and interleaved memory unit. It is used mainly in

scientific and multimedia applications involving processing of huge

volume of data. It is capable of processing entire vector in single

instruction. The operands in the instructions are vectors instead of a

single element. One of the advantages of vector processors is less

number of fetch and decode instructions.

Vector processor uses many optimization schemes to improve

performance of the system such as use of memory banks to reduce

load/store latency, use of strip mining technique to adjust the size

mismatch between vector operands and vector registers, vector

chaining to resolve data dependency between vector instructions etc.

Advantages of Vector processing:

• Programs are smaller in size as the number of instructions is

quite less.

• As each data in registers is actually used by the vector

processor therefore wastage in memory access is

significantly less compared to cache memory.

• Requirement of power is limited to only functional unit and

register buses during vector operation.

241 | P a g e

Space for learners: Based on how operands are fetched in vector processors is

categorized into two types:

• Vector register Processor

• Memory-Memory Vector Processor

Vector-Register Processor

It requires that all the operations performed in the vector processor

use the source operands and destination operands as vector registers.

However, there is a small disadvantage initially that is vector data in

memory must be divided into fixed length segments so that can be

placed in vector register. But once the pipelining starts this

disadvantage is nullified.

Memory-Memory Vector Processor

Such processors allow source operand and destination operand to be

routed directly to the arithmetic logic unit (ALU). Once the

processing is completed in the ALU, the result is routed back to

memory. However due to memory latency the time between

initializing the first instruction and the getting the first output from

the pipeline is quite large.

1.5 PIPELINING

A pipeline is similar to an assembly line in a production factory. A

product has to go through multiple stages in the assembly line

before the final product is manufactured. At a time, all the stages

work simultaneously but on different phases of the product. This

process is referred to as pipelining. Pipelining is also referred to as

execution of multiple jobs/instructions parallelly in an overlapped

fashion.

242 | P a g e

Space for learners: Let us look at a real life example that works on the concept of

pipelining. Consider a packaged drinking water plant having the

following 3 stages and each stage takes 1 minute to complete its

operation.

• Filling (F)--- Stage 1

• Sealing (S) --- Stage 2

• Labeling (L) --- Stage 3

In a non-pipelined operation if we have to do the packaging of 4

bottles, it will take 12 min to complete the operation as shown in

Figure 1.8. Each bottle spending 1 min in each of the filling, sealing

and labeling stage respectively.

The bottle reaches stage-1 where it is filled and after 1 minute it

moves to the stage-2 where it is sealed. At this point stage-1 is in

idle state. Now after staying in stage-2 for 1 minute the bottle is

moved to stage-3 where it is labeled. At this point stage-1 and stage-

2 is in idle state as shown in the figure 1.8. This process of

packaging does not utilize the time as the stages remain in idle state

during the operation. To overcome the issue and to utilize the stages

to its maximum limit, pipelining is used.

Time in minute�

1 2 3 4 5 6 7 8 9 10 11 12

Bottle

1
F S L

Bottle

2
 F S L

Bottle

3
 F S L

Bottle

4
 F S L

Figure 1.8: Non Pipelined Operation

243 | P a g e

Space for learners: Now, in a pipelined operation if we have to do the packaging of 4

bottles, it will take 6 min to complete the operation as shown in

Figure 1.9. Compared to 12 minutes taken in non-pipelined

operation.

As it can be observed in Figure 1.9, when the first bottle is in stage-

2 (Sealing), the second bottle is placed in stage-1(Filling). Similarly,

when the first bottle is in stage-3(Labeling), second bottle is placed

in stage-2(Sealing) and third bottle is placed in stage-1(Filling).

Thus, none of the stages are idle at any moment. All the stages are

working on a different bottle at a time. This process of working in

an overlapped fashion to utilize the stages of a pipeline to its fullest

is called pipelining.

Time in minute�

1 2 3 4 5 6 7 8 9 10 11 12

Bottle

1
F S L

Bottle

2
 F S L

Bottle

3
 F S L

Bottle

4
 F S L

Figure 1.9: Pipelined Operation

1.6 INSTRUCTION PIPELINING

In a computer system the technique of executing multiple

instructions in an overlapped fashion is known pipelining. A

pipeline consists of many stages and these stages are connected to

one another in a pipe like structure. An instruction enters one end of

the pipeline, goes through several stages before exiting from another

end. Pipelining improves the overall throughput of the system.

244 | P a g e

Space for learners: In a pipeline system, each stage uses register to hold the output of

that stage. Output of one stage is applied as input to the next stage.

Figure 1.10: Five stage Instruction Pipeline

Figure 1.10 shows an example of five stage instruction pipeline

consisting of fetch, decode, operand fetch, execute and write stages.

Here streams of instructions are executed in overlapped fashion

thereby increasing the throughput of the computer system.

Figure 1.11 shows the timing diagram of an instruction pipeline.

While the instruction pipeline reads one instruction from the

memory, previous instructions is executed in other stage of the

pipeline. Thus, multiple instructions are executed simultaneously.

From the Figure 1.11, it can be observed that while the first

instruction started at time period one, the second instruction started

at time period two and so on. Up to time period four, not all stages

were working simultaneously but from time period five onwards all

the five stages are working simultaneously. Therefore, from

instruction number five onwards each stage is working on a

different instruction as:

Instruction 1: Write

Instruction 2: Execute

Instruction 3: Operand Fetch

Instruction 4: Decode

Instruction 5: Fetch

 Time �

 1 2 3 4 5 6 7 8 9 10 11

Instruction 1 F D OF E W

Instruction 2 F D OF E W

EXECUT WRITE FETCH DECO OPERAND
Inpu Outpu

245 | P a g e

Space for learners: Instruction 3 F D OF E W

Instruction 4 F D OF E W

Instruction 5 F D OF E W

Instruction 6 F D OF E W

Instruction 7 F D OF E W

Figure 1.11: Timing diagram for Instruction Pipeline Operation

If there are k number of stages and n number of instructions, then

total time T taken to execute n instructions can be given as T = k +

(n -1).

1.7 DEPENDENCY IN PIPELINED

PROCESSOR

A pipelined processor may be affected due to the following

dependencies, which may also result in the stalls in the pipeline. A

stall is a pipeline cycle with no operation or no new input.

• Structural Dependency or Resource Conflict

• Control Dependency or Branch Difficulty

• Data Dependency or Data Hazard

1.7.1 Structural Dependency or Resource Conflict

Structural dependency is the result of resource conflict in the

pipeline. When several instructions in the same cycle try to access

the same resource, a resource conflict arises.A resource can be a

register, memory, or ALU.

 Time �

 1 2 3 4 5 6 7 8 9 10 11

Instruction 1 F D OF W

Instruction 2 F D OF W

Instruction 3 F D OF W

Instruction 4 F D OF W

Figure 1.12: Timing diagram of a 4-Stage Instruction Pipeline

246 | P a g e

Space for learners: In cycle 4 of the Figure 1.12, instruction1 is trying to do the write

operation on memory and instruction 4is trying to fetch from

memory. As both the instructions are trying to access same resource

i.e. memory at the same time, it introduces a resource conflict

between the two instructions. Such situation can be avoided by

keeping the instruction 2 in wait state until the required resource

becomes available.

1.7.2 Control Dependency or Branch Hazard

A pipeline achieves its maximum utilization if all the stages of the

pipeline take equal amount of time to process and there is no branch

instruction in the program. However, if the program contains branch

instruction, the pipeline suffers from branch penalty.

The timing diagram of a4 stage instruction pipeline containing

branch instruction is shown in Figure 1.13 where instruction 1,2,3

and 4 are non-branch instruction and instruction 5 is a branch

instruction.

 Time � |Branch

Penalty�|

 1 2 3 4 5 6 7 8 9 1

0

1

1

1

2

1

3

1

4

Instructio

n 1

F D O

F

E

Instructio

n 2

 F D O

F

E

Instructio

n 3

 F D O

F

E

Instructio

n 4

 F D O

F

E

Instructio

n 5

(branch

to

instructio

n 25)

 F D O

F

E

247 | P a g e

Space for learners: Instructio

n 6

 F D O

F

Instructio

n 7

 F D

Instructio

n 25

 F D O

F

E

Instructio

n 26

 F D O

F

E

Figure 1.13: Timing diagram for Instruction Pipeline Operation

The pipeline executes instruction 1, 2, 3 and 4 sequentially,

followed by instruction 5 (branch instruction). By the time

instruction 5 is decoded by the pipeline decode stage, instruction 6

and instruction 7 enters the pipeline. At this point, the pipeline

realized that it should have placed instruction 25 after the branch

instruction 5 instead of instruction 6.

So the pipeline discards the instructions 6 and 7, that is the pipeline

cycle at time period 6 and 7 are wasted. This is known as branch

penalty as the processor could not anticipate the branch. So

instruction 25is assumed to be the instruction to be executed on the

branch and starts at time period eight.

1.7.3 Data Dependency or Data Hazard

In a pipeline, there can be a situation where output of first

instruction acts as an input to the second instruction. Such situation

exhibits data dependency where the second instruction must wait in

the pipeline for the first instruction to complete its execution.

Otherwise the second instruction may be working on an invalid data.

This dependency between the instructions is known as data

dependency or data hazard. So the order of execution of the

instructions does matter.

248 | P a g e

Space for learners: There are mainly three types of data hazards:

• Read after Write (RAW) Hazard or Flow dependency

• Write after Read(WAR)Hazard or Anti-Data dependency

• Write after Write (WAW) Hazard or Output dependency

Read after Write (RAW) Hazard:

Instruction 1: R3 R4 + R5

Instruction 2: R6 R3 + R4

Here, the instruction 2 is reading a value in register R3 that is being

produced by instruction 1. So instruction 2 should execute after

instruction 1 completes its execution.

Write after Read(WAR) Hazard:

Instruction 1: R3 R4 + R5

Instruction 2: R4 R6 + R7

Here the instruction 2 is writing a value in register R4 that is being

read before by instruction 1. So instruction 2 should execute after

instruction 1 completes its execution.

Write after Write (WAW) Hazard:

Instruction 1: R1 R2 + R3

Instruction 2: R1 R4 + R5

Here the instruction 2 is overwriting the value in register R1 that is

being produced by instruction 1. So instruction 2 should execute

after instruction 1 completes its execution.

1.7.4 Pipeline bubbles

A bubble or a pipeline bubble represents a stage in the pipeline that

cannot perform any useful operation due to the lack of data from

previous stage of the pipeline. It is a method to prevent structural,

data and branch hazards. Pipeline control logic analyzes if a hazard

249 | P a g e

Space for learners: could arise while instructions are fetched. If this is the case, no

operations (NOPs) are added to the pipeline by the control logic. As

a result, before the next instruction runs, the previous one will have

had enough time to complete and avert the hazard.

CHECK YOUR PROGRESS:

i. CRAY systems are an example of______________.

a) SISD

b) SIMD

c) MISD

d) MIMD

ii. Pentium, DEC Alpha, PowerPC are some of the example of

_____________computers.

a) superscalar processor

b) Super pipeline

c) Scalar

d) Superscalar Super pipeline

iii. To _________data in between the pipeline stages, registers

are used.

a) Write

b) Process

c) Read

d) Hold

iv. Motorola 68040 is an example of ____________

a) Scalar processor

b) Superscalar processor

c) Super pipeline processor

d) Pipelined processor

v. A superscalar pipeline (5 stages) of degree 3 will need

__________ cycles to complete 9 instructions.

a) 6

b) 7

c) 8

d) 9

250 | P a g e

Space for learners:

vi. Instruction Issue Latency (ISL) in a pipelined processor

means___

a) Time interval between issuing of first and last

instruction.

b) Time interval between completion of first and second

instruction.

c) Time taken to complete execution of first instruction.

d) Time interval between issuing of two instructions.

vii. Instruction Level Parallelism in a pipelined processor

means____________

a) Number of instructions in the pipeline.

b) Number of instructions that can be completed

simultaneously in the pipeline.

c) Number of instructions that can be executed

simultaneously in the pipeline.

d) None of the above

viii. Vector processors or Array processors are also known

as__________ systems

a) SISD

b) MISD

c) SIMD

d) MIMD

ix. The time period when the pipeline unit remains idle is called

as _____

a) Hazards

b) Bubbles

c) Stalls

d) Both b) and c)

x. In pipelining, memory access speedup is achieved through

a) Cache

b) Buffers

c) Memory Registers

d) Special Registers

xi. In a pipeline branch instructions are handled by __________

251 | P a g e

Space for learners: a) Pipeline flush operation

b) Pipeline Freeze operation

c) Pipeline Depth operation

d) Both a) and b)

xii. If second instruction tries to do a write operation before the

first instruction can write on the same data, it is called as

_____________ dependency.

a) Data

b) Anti

c) Flow

d) Output

xiii. If second instruction tries to do a read operation after the

first instruction does a write on the same data, it is called as

_____________ hazard.

a) RAW

b) WAR

c) Data

d) Control

xiv. Time taken by a 7 stage instruction pipeline to complete

execution of 10 instructions is___________________.

a) 70

b) 32

c) 16

d) 17

xv. Time taken by a 3 stage superscalar pipeline of degree 2 to

execute 10 instructions is _______.

a) 10

b) 9

c) 8

d) 7

1.8 SUMMING UP

• Flynn has classified computer architecture based on

instruction and data stream and are SISD, SIMD, MISD, and

MIMD.

252 | P a g e

Space for learners: • SISD systems are processed in a sequential order and are

therefore known as sequential computers.

• SIMD systems are multiprocessor systems capable of

working on different data streams through a single

instruction stream.

• MISD system is a multiprocessor system which executes

different instructions on different processing unit but data set

is same for all the instructions.

• MIMD system is a multiprocessor system capable of

executing different sets of instructions each working on a

different set of data simultaneously.

• Superscalar processors are found in parallel computing

architecture to improve the performance of the system by

executing multiple instructions concurrently in a clock cycle.

• Pipelined processors namely Scalar Pipeline, Superscalar

Pipeline, Super pipeline, Super pipeline Superscalar.

• Vector processors are used mainly in scientific and

multimedia applications involving processing of huge

volume of data. It is capable of processing entire vector in

single instruction.

• Pipelining is also referred to as execution of multiple

instructions parallelly in an overlapped fashion.

• Structural dependency is the result of resource conflict in the

pipeline. When several instructions in the same cycle try to

access the same resource, a resource conflict arises.

• If the program contains branch instruction, the pipeline

suffers from branch penalty.

• Dependency between the instructions is known as data

dependency or data hazard. Order of execution of the

instructions does matter.

253 | P a g e

Space for learners: • There are mainly three types of data hazards Read after

Write (RAW), Write after Read (WAR), and Write after

Write (WAW).

• A bubble or a pipeline bubble represents a stage in the

pipeline that cannot perform any useful operation due to the

lack of data from previous stage of the pipeline.

1.9 ANSWERS TO CHECK YOUR PROGRESS

i. b ii. a iii. d iv. a v. b

vi. d vii. c viii. c ix. d x. a

xi. d xii. d xiii. a xiv.c xv.d

1.10 POSSIBLE QUESTIONS

Q1 Discuss Flynn’s classification of computer architecture.

Q2 According to Flynn's classification, the architecture which

is of theoretical interest but no real-world system has been

developed on it?

Q3 Differentiate between shared memory and distributed

memory MIMD systems.

Q4 Explain how pipelining can increase the performance of a

system compared to a single processor system.

Q5 Differentiate between superscalar processor and Super

pipeline processor.

Q6 Briefly describe the parameters on which different

pipelined processors are measured in terms of their

performance.

Q7 Discuss the types of processors that is helpful in parallel

processing.

Q8 Discuss the factors that affect the performance of a

pipeline.

254 | P a g e

Space for learners: Q9 Define instruction pipeline with the help of an example.

Q10 Discuss resource conflict in pipelining.

Q11 Discuss Data hazard in pipelining.

Q12 What is a pipeline bubble? In what situation a pipeline

bubble is used?

1.11 REFERENCES AND SUGGESTED READINGS

• Advanced Computer Architecture, 3e, Kai Hwang,

Naresh Jotwani; McGraw-Hill Education, 2016

• Computer Organization and Architecture: Designing for

Performance 10 Edition, by William Stallings, Pearson.

• Computer System Architecture Third Edition, M. Morris

Mano, Rajib Mall, Pearson

• Computer Organization Fifth Edition, Carl Hamacher,

McGraw Hill

---×---

255 | P a g e

Space for learners: UNIT 2: VECTOR PROCESSING

Unit Structure:

2.1 Introduction

2.2 Unit Objectives

2.3 Vector Computing

2.4 Vector Processor

 2.4.1 Some important facts on a vector processor

2.4.2 Advantages of Vector Processor

2.4.3 Applications of Vector Processors

2.4.4 Cost of Vector Processor

2.4.5 Classification of Vector Processor

2.4.5.1 Memory to memory architecture

2.4.5.2 Register to Register Architecture

2.5 Superscalar processor

2.6 Vector Computer

 2.6.1 Vector registers

2.6.2 Scalar registers

2.7 Array Processors

 2.7.1 Types of Array Processors

 2.7.1.1 Attached Array Processors

 2.7.1.2 SIMD Array Processors

 2.7.2 Advantages of Array Processor

2.8 Pipelining

 2.8.1 Types of Pipeline

 2.8.1.1 Arithmetic Pipeline

 2.8.1.2 Instruction Pipeline

 2.8.2 Pipeline Conflicts

 2.8.3 Advantages of Pipelining

 2.8.4 Disadvantages of Pipelining

2.9 Chaining Technique

2.10 Gather-scatter Operation

 2.10.1 The basic concepts of Gather-scatter

 2.10.2 Different Gather-scatter applications

2.11 Summing up

2.12 Answer to check your progress

2.13 Possible Questions

2.14References and Suggested Readings

256 | P a g e

Space for learners: 2.1 INTRODUCTION

A normal processor sometimes called scalar processor, which works

on simple instruction at a time, which operates on single data items.

Standard von Neumann machine is based on the instruction and data

are stored in memory, that has one operation at a time, maximum

speed of the system is limited by the memory bandwidth(bits/sec or

bytes/sec). It means normal processing having limitation on memory

bandwidth also memory is shared by CPU and I/O. But in today's

world, this technique will prove to be highly inefficient, as the

overall processing of instructions will be very slow.

There is a class of computational problems that are beyond the

capabilities of a conventional computer. These problems require

vast number of computations on multiple data items that will take a

conventional computer(with scalar processor) days or even weeks to

complete.

Such complex instruction, which operates on multiple data at the

same time, requires a better way of instruction execution, which was

achieved by vector computing technique using vector processors.

Scalar CPUs can manipulate one or two data items at a time, which

is not very efficient.

2.2 UNIT OBJECTIVES

After going through this unit you will be able to:

• Understand the basic concepts of vector computing and

working principle of vector processor.

• Know about the pipelining techniques applied in vector

computing.

257 | P a g e

Space for learners: • Understand how arithmetic pipelining works.

• Give the basic concept of array processor and its different

categories.

• Know about the vector and scalar registers used in vector

processing.

• Define what is a chaining and scatter-gather operation.

• Understand about register-register and memory-memory

vector processors.

2.3 VECTOR COMPUTING

There is a class of computational problems that are beyond the

capabilities of a conventional computer. These problems require

vast number of computations on multiple data items that will take a

conventional computer (with scalar processor) days or even weeks

to complete.

Such complex instructions, which operates on multiple data at the

same time, requires a better way of instruction execution, which has

been achieved by the vector computing technique that done by

vector processors.

Vector processor is basically a central processing unit that has the

ability to execute the complete vector input in a single instruction.

So, we can say vector processing allows operation on multiple data

elements by the help of single instruction.

Scalar CPUs can manipulate one or two data items at a time, which

is not very efficient. Also, simple instructions like ADD A to B, and

store into C are not practically efficient.

258 | P a g e

Space for learners: Addresses are used to point to the memory location where the data

to be operated will be found, which leads to added overhead of data

lookup. So until the data is found, the CPU would be sitting ideal,

which is a big performance issue.

Hence, the concept of Instruction Pipeline comes into picture, in

which the instruction passes through several sub-units in turn. These

sub-units perform various independent functions, for example:

the first one decodes the instruction, the second sub-unit fetches the

data and the third sub-unit performs the math itself. Therefore, while

the data is fetched for one instruction, CPU does not sit idle; it

rather works on decoding the next instruction set, ending up

working like an assembly line.

Vector computing technique, not only use Instruction pipeline, but it

also pipelines the data, working on multiple data at the same time.

A normal scalar processor instruction would be ADD A, B, which

leads to addition of two operands, but what if we can instruct the

processor to ADD a group of numbers (from 0 to n memory

location) to another group of numbers (let’s say, n to k memory

location) then a scalar processor cannot able to add of these set

values. This can be achieved by vector processors.

In vector processor a single instruction, can ask for multiple data

operations, which saves time, as instruction is decoded once, and

then it keeps on operating on different data items.

2.4 VECTOR PROCESSOR

Vector processor is basically a central processing unit that has the

ability to execute the complete vector input in a single instruction.

More specifically we can say, it is a complete unit of hardware

resources that executes a sequential set of similar data items in the

memory using a single instruction.

259 | P a g e

Space for learners: Vector processors are co-processor to general-purpose

microprocessor. Vector processors are generally register-register or

memory-memory. A vector instruction is fetched and decoded and

then a certain operation is performed for each element of the

operand vectors, whereas in a normal processor a vector operation

needs a loop structure in the code. To make it more efficient, vector

processors chain several vector operations together, i.e., the result

from one vector operation are forwarded to another as operand.

We know elements of the vector are ordered properly so as to have

successive addressing format of the memory. This is the reason why

we have mentioned that it implements the data sequentially. It holds

a single control unit but has multiple execution units that perform

the same operation on different data elements of the vector.

Unlike scalar processors that operate on only a single pair of data, a

vector processor operates on multiple pair of data. However, one

can convert a scalar code into vector code. This conversion process

is known as vectorization. So, we can say vector processing allows

operation on multiple data elements by the help of single instruction.

These instructions are said to be single instruction multiple data

(SIMD) or vector instructions. The CPU used in recent time makes

use of vector processing as it is advantageous than scalar processing.

A vector processor is a processor that can operate on an entire

vector in one instruction. The operand to the instructions are

complete vectors instead of one element. Vector processors reduce

the fetch and decode bandwidth as the number of instructions

fetched are less. They also exploit data parallelism in large scientific

and multimedia applications. Based on how the operands are

fetched, vector processors can be divided into two categories - in

memory-memory architecture operands are directly streamed to the

260 | P a g e

Space for learners: functional units from the memory and results are written back to

memory as the vector operation proceeds. In vector-register

architecture, operands are read into vector registers from which they

are fed to the functional units and results of operations are written to

vector registers. Many performance optimization schemes are used

in vector processors. Memory banks are used to reduce load/store

latency. Strip mining is used to generate code so that vector

operation is possible for vector operands whose size is less than or

greater than the size of vector registers. Vector chaining - the

equivalent of forwarding in vector processors - is used in case of

data dependency among vector instructions. Special scatter and

gather instructions are provided to efficiently operate on sparse

matrices.

Instruction set has been designed with the property that all vector

arithmetic instructions only allow element N of one vector register

to take part in operations with element N from other vector registers.

This dramatically simplifies the construction of a highly parallel

vector unit, which can be structured as multiple parallel lanes. As

with a traffic highway, we can increase the peak throughput of a

vector unit by adding more lanes.

2.4.1 Some Important Facts on a Vector Processor

• A vector processor is an ensemble of hardware resources,

including vector registers, functional pipelines, processing

elements and register counters for performing register

operations.

• Vector processing occurs when arithmetic or logical

operations are applied to vectors. It is distinguished from

scalar processing which operates on one or one pair of data.

261 | P a g e

Space for learners: The conversion from scalar code to vector code is called

vectorization.

• Both pipelined processors and SIMD computers can perform

vector operations.

• Vector processing reduces software overhead incurred in the

maintenance of looping control, reduces memory access

conflicts and above all matches nicely with pipelining and

segmentation concept to generate one result per each clock

cycle continuously.

2.4.2 Advantages of Vector Processor

Some advantages of vector processors are given below:

• Programs size is small as it requires less number of

instructions. Vector instructions also hide many branches by

executing a loop in one instruction.

• Vector memory access has no wastage like cache access.

Every data item requested by the processor is actually used.

• Once a vector instruction starts operating, only the functional

unit (FU) and the register buses feeding it need to be

powered. Fetch unit, decode unit, ROB etc can be powered

off. This reduces the power usage.

2.4.3 Applications of Vector Processors

Computer with vector processing capabilities are in demand in

specialized applications. The following are some areas where vector

processing is used:

1. Petroleum exploration.

2. Medical diagnosis.

262 | P a g e

Space for learners: 3. Data analysis.

4. Weather forecasting.

5. Aerodynamics and space flight simulations.

6. Image processing.

7. Artificial intelligence.

2.4.4 Cost of Vector Processor

The reason behind the declining popularity of vector processors are

their cost as compared to multiprocessors and superscalar

processors. The reasons behind high cost of vector processors are

• Vector processors do not use commodity parts. Since they sell very

few copies, design cost dominates overall cost.

• Vector processors need high speed on-chip memory which are

expensive.

• It is difficult to package the processors with such high speed. In

the past, vector manufactures have employed expensive designs for

this.

• There have been few architectural innovations compared to

superscalar processors to improve performance keeping the cost

low.

2.4.5 Classification of Vector Processor

The classification of vector processor relies on the ability of vector

formation as well as the presence of vector instruction for

processing. So, depending on these criteria, vector processing is

classified as follows:

263 | P a g e

Space for learners: (i) Register to Register Architecture (Vector register

processors)and

(ii) Memory to Memory Architecture(Memory-memory

vector processors)

According to from where the operands are retrieved in a vector

processor, pipe lined vector computers are classified into two

architectural configurations:

2.4.5.1 Memory to memory architecture

In memory to memory architecture, source operands, intermediate

and final results are retrieved (read) directly from the main

memory. For memory to memory vector instructions, the

information of the base address, the offset, the increment, and the

vector length must be specified in order to enable streams of data

transfers between the main memory and pipelines. The processors

like TI-ASC, CDC STAR-100, and Cyber-205 have vector

instructions in memory to memory formats. The main points about

memory to memory architecture are:

• There is no limitation of size

• Speed is comparatively slow in this architecture

2.4.5.2 Register to Register Architecture

This architecture is highly used in vector computers. As in this

architecture, the fetching of the operand or previous results

indirectly takes place through the main memory by the use of

registers. The several vector pipelines present in the vector

computer help in retrieving the data from the registers and also

storing the results in the desired register. These vector registers are

user instruction programmable. In a vector-register processor, all

vector operations—except load and store—are among the vector

264 | P a g e

Space for learners: registers. These architectures are the vector counterpart of a load-

store architecture.

All major vector computers shipped since the late 1980s use a

vector-register architecture, including the Cray Research processors

(Cray-1, Cray-2, X-MP,YMP, C90, T90, SV1, and X1), the

Japanese supercomputers (NEC SX/2 through SX/8, Fujitsu VP200

through VPP5000, and the Hitachi S820 and S-8300), and the mini-

supercomputers (Convex C-1 through C-4).

In register to register architecture, operands and results are

retrieved indirectly from the main memory through the use of large

number of vector registers or scalar registers. The processors

like Cray-1 and the Fujitsu VP-200 use vector instructions in

register to register formats. The main points about register to

register architecture are:

(i) Register to register architecture has limited size.

(ii) Speed is very high as compared to the memory

to memory architecture.

(iii) The hardware cost is high in this architecture.

2.5 SUPERSCALAR PROCESSOR

It was first invented in 1987. It is a machine which is designed to

improve the performance of the scalar processor. In most

applications, most of the operations are on scalar quantities.

Superscalar approach produces the high performance general

purpose processors.

A scalar processor works on one or two data items, it is a normal

processor, which works on simple instruction at a time, which

operates on single data items, while the vector processor works with

multiple data items. A superscalar processor is a combination of

265 | P a g e

Space for learners: both. Each instruction processes one data item, but there are

multiple execution units within each CPU thus multiple instructions

can be processing separate data items concurrently.

The main principle of superscalar approach is that it executes

instructions independently in different pipelines. As we already

know, that Instruction pipelining leads to parallel processing thereby

speeding up the processing of instructions. In Superscalar processor,

multiple such pipelines are introduced for different operations,

which further improves parallel processing.

There are multiple functional units each of which is implemented as

a pipeline. Each pipeline consists of multiple stages to handle

multiple instructions at a time which support parallel execution of

instructions.

It increases the throughput because the CPU can execute multiple

instructions per clock cycle. Thus, superscalar processors are much

faster than scalar processors.

While a superscalar CPU is also pipelined, there are two different

performance enhancement techniques. It is possible to have a non-

pipelined superscalar CPU or pipelined non-superscalar CPU. The

superscalar technique is associated with some characteristics, these

are given below:

• Instructions are issued from a sequential instruction stream.

• CPU must dynamically check for data dependencies.

• Should accept multiple instructions per clock cycle.

266 | P a g e

Space for learners: 2.6 VECTOR COMPUTER

The functional units of a vector computer are as follows:

(i) IPU or instruction processing unit

(ii) Vector register

(iii)Scalar register

(iv) Scalar processor

(v) Vector instruction controller

(vi) Vector access controller

(vii) Vector processor

Let us now understand the overall operation performed by the vector

computer.

As it has several functional pipes thus it can execute the instructions

over the operands. We know that both data and instructions are

present in the memory at the desired memory location. So, the

instruction processing unit i.e., IPU fetches the instruction from the

memory.

Once the instruction is fetched then IPU determines either the

fetched instruction is scalar or vector in nature. If it is scalar in

nature, then the instruction is transferred to the scalar register and

then further scalar processing is performed.

While, when the instruction is a vector in nature then it is fed to the

vector instruction controller. This vector instruction controller first

decodes the vector instruction then accordingly determines the

address of the vector operand present in the memory.

Then it gives a signal to the vector access controller about the

demand of the respective operand. This vector access controller then

fetches the desired operand from the memory. Once the operand is

267 | P a g e

Space for learners: fetched then it is provided to the instruction register so that it can be

processed at the vector processor.

At times when multiple vector instructions are present, then the

vector instruction controller provides the multiple vector

instructions to the task system. And in case the task system shows

that the vector task is very long then the processor divides the task

into sub-vectors.

These sub-vectors are fed to the vector processor that makes use of

several pipelines in order to execute the instruction over the operand

fetched from the memory at the same time. The various vector

instructions are scheduled by the vector instruction controller.

A block diagram of a modern multiple pipeline vector computer is

shown below:

Fig.2.1 A block diagram of a modern multiple pipeline vector

computer

2.6.1 Vector registers

Vector registers are the storage areas in a CPU core that contain the

operands for vector computations, as well as the results. The size of

268 | P a g e

Space for learners: the vector registers determines the level of SIMD instructions that

can be supported by a given processor's CPUs.

Each vector register is a fixed-length bank holding a single vector.

VMIPS has eight vector registers, and each vector register holds

64elements. Each vector register must have at least two read ports

and one write port in VMIPS. This will allow a high degree of

overlap among vector operations to different vector registers. The

read and write ports, which total at least 16 read ports and 8write

ports, are connected to the functional unit inputs or outputs by a pair

of crossbars. Real machines make use of the regular access pattern

within a vector instruction to reduce the costs of the vector-register

file circuitry. For example, the Cray-1 manages to implement the

register file with only a single port per register.

2.6.2 Scalar registers

Scalar processors represent a class of computer processors. A scalar

processor processes only one data item at a time, with typical data

items being integers or floating point numbers. A scalar processor is

classified as a single instruction, single data (SISD) processor in

Flynn's taxonomy.

Scalar registers can also provide data as input to the vector

functional units, as well as compute addresses to pass to the vector

load-store unit. These are the normal 32 general-purpose registers

and 32 floating-point registers of MIPS. Scalar values are read out

of the scalar register file, then latched at one input of the vector

functional units.

269 | P a g e

Space for learners: 2.7 ARRAY PROCESSORS

Array processors are also known as multiprocessors or vector

processors. An array processor is a processor that performs

computations on large arrays of data. Thus, they are used to improve

the performance of the computer.

In other words, an array processor is a CPU which implements an

instruction set that are designed to operate efficiently and effectively

on large one-dimensional arrays of data called vectors.

Vector and array processing are essentially the same because, with

slight and rare differences, a vector processor and an array processor

are the same type of processor. A vector processor is in contrast of

the simpler scalar processor, which handles only one piece of

information at a time.

2.7.1Types of Array Processors

There are basically two types of array processors:

1. Attached Array Processors

2. SIMD Array Processors

2.7.1.1 Attached Array Processors

An attached array processor is a processor which is attached to a

general purpose computer and its purpose is to enhance and improve

the performance of that computer in numerical computational tasks.

It achieves high performance by means of parallel processing with

multiple functional units. The objective of the attached array

processor is to provide vector manipulation capabilities to a

conventional computer at a fraction of the cost of supercomputer.

270 | P a g e

Space for learners:

Fig.2.2 Block diagram of Attached Array Processors

2.7.1.2 SIMD Array Processors

Single-instruction, multiple data (SIMD) is the organization of a

single computer containing multiple processors operating in parallel.

The processing units are made to operate under the control of a

common control unit, thus providing a single instruction stream and

multiple data streams.

A general block diagram of an array processor is shown below. It

contains a set of identical processing elements (PE's), each of which

is having a local memory M. Each processor element includes

an ALU and registers. The master control unit controls all the

operations of the processor elements. It also decodes the instructions

and determines how the instruction is to be executed.

The main memory is used for storing the program. The control unit

is responsible for fetching the instructions. Vector instructions are

send to all PE's simultaneously and results are returned to the

memory.

271 | P a g e

Space for learners: The best known SIMD array processor is the ILLIAC IV computer

developed by the Burroughs corps. SIMD processors are highly

specialized computers. They are only suitable for numerical

problems that can be expressed in vector or matrix form and they

are not suitable for other types of computations.

Fig.2.3A general block diagram of an array processor

2.7.2 Advantages of Array Processor

• An array processor increases the overall instruction

processing speed.

• As most of the Array processors operate asynchronously

from the host CPU, hence it improves the overall capacity of

the system.

• Array Processors has its own local memory, hence providing

extra memory for systems with low memory.

2.8 PIPELINING

Pipelining is the process of accumulating instruction from the

processor through a pipeline. It allows storing and executing

instructions in an orderly process. It is also known as pipeline

processing.

272 | P a g e

Space for learners: Pipelining is a technique where multiple instructions are overlapped

during execution. Pipeline is divided into stages and these stages are

connected with one another to form a pipe like structure.

Instructions enter from one end and exit from another end.

Pipelining increases the overall instruction throughput.

In pipeline system, each segment consists of an input register

followed by a combinational circuit. The register is used to hold

data and combinational circuit performs operations on it. The output

of combinational circuit is applied to the input register of the next

segment.

Fig.2.4 A general block diagram of a pipeline system

Pipeline system is like the modern day assembly line setup in

factories. For example in a car manufacturing industry, huge

assembly lines are setup and at each point, there are robotic arms to

perform a certain task, and then the car moves on ahead to the next

arm.

In summary, we can say Pipelining is a technique of

• Decomposing a sequential process into sub-operations

(segments).

273 | P a g e

Space for learners: • Divide the processor into segment processors each one is

dedicated to a particular segment.

• Each segment is executed in a dedicated segment processor

operates concurrently with all other segments.

• Information flows through these multiple hardware

segments.

• The overlapping of computation is made possible by

associating a register with each segment in the pipeline.

• The registers provide isolation between each segment so that

each can operate on distinct data simultaneously.

2.8.1 Types of Pipeline

It is divided into two categories:

1. Arithmetic Pipeline

2. Instruction Pipeline

2.8.1.1 Arithmetic Pipeline

Arithmetic pipelines are usually found in most of the computers.

They are used for floating point operations, multiplication of fixed

point numbers etc. For example: The input to the Floating Point

Adder pipeline is:

Suppose X=A*2^a and Y=B*2^b

Here A and B are mantissas (significant digit of floating point

numbers), while a and b are exponents.

The floating point addition and subtraction is done in 4 parts:

1. Compare the exponents.

2. Align the mantissas.

3. Add or subtract mantissas

4. Produce the result.

274 | P a g e

Space for learners: Registers are used for storing the intermediate results between the

above operations.

An arithmetic pipeline divides an arithmetic problem into various

sub problems for execution in various pipeline segments. It is used

for floating point operations, multiplication and various other

computations. The process or flowchart arithmetic pipeline for

floating point addition is shown in the below diagram.

Fig 2.5 Pipelining for floating point addition and subtraction.

Floating point addition using arithmetic pipeline

The following sub operations are performed in this case:

1. Compare the exponents.

2. Align the mantissas.

3. Add or subtract the mantissas.

4. Normalise the result

275 | P a g e

Space for learners: First of all the two exponents are compared and the larger of two

exponents is chosen as the result exponent. The difference in the

exponents then decides how many times we must shift the smaller

exponent to the right. Then after shifting of exponent, both the

mantissas get aligned. Finally the addition of both numbers take

place followed by normalisation of the result in the last segment.

Example:

Let us consider two numbers,

X=0.3214*10^3 and Y=0.4500*10^2

Explanation:

First of all the two exponents are subtracted to give 3-2=1. Thus 3

becomes the exponent of result and the smaller exponent is shifted 1

times to the right to give

Y=0.0450*10^3

Finally the two numbers are added to produce

Z=0.3664*10^3

As the result is already normalized the result remains the same.

2.8.1.2 Instruction Pipeline

In this a stream of instructions can be executed by

overlapping fetch, decode and execute phases of an instruction

cycle. This type of technique is used to increase the throughput of

the computer system.

An instruction pipeline reads instruction from the memory while

previous instructions are being executed in other segments of the

pipeline. Thus we can execute multiple instructions simultaneously.

The pipeline will be more efficient if the instruction cycle is divided

into segments of equal duration.

276 | P a g e

Space for learners: In this a stream of instructions can be executed by overlapping

fetch, decode and execute phases of an instruction cycle. This type

of technique is used to increase the throughput of the computer

system. An instruction pipeline reads instruction from the memory

while previous instructions are being executed in other segments of

the pipeline. Thus we can execute multiple instructions

simultaneously. The pipeline will be more efficient if the instruction

cycle is divided into segments of equal duration.

In the most general case computer needs to process each instruction

in following sequence of steps:

1. Fetch the instruction from memory (FI)

2. Decode the instruction (DA)

3. Calculate the effective address

4. Fetch the operands from memory (FO)

5. Execute the instruction (EX)

6. Store the result in the proper place

The flowchart for instruction pipeline is shown below.

277 | P a g e

Space for learners:

Fig 2.6 Flowchart for instruction Pipelining.

Let us see an example of instruction pipeline.

Example:

Here the instruction is fetched on first clock cycle in segment 1.

Now it is decoded in next clock cycle, then operands are fetched and

finally the instruction is executed. We can see that here the fetch and

decode phase overlap due to pipelining. By the time the first

instruction is being decoded, next instruction is fetched by the

pipeline.

278 | P a g e

Space for learners: In case of third instruction we see that it is a branched instruction.

Here when it is being decoded 4th instruction is fetched

simultaneously. But as it is a branched instruction it may point to

some other instruction when it is decoded. Thus fourth instruction is

kept on hold until the branched instruction is executed. When it gets

executed then the fourth instruction is copied back and the other

phases continue as usual.

2.8.2 Pipeline Conflicts

There are some factors that cause the pipeline to deviate its normal

performance. Some of these factors are given below:

(i) Timing Variations

All stages cannot take same amount of time. This problem generally

occurs in instruction processing where different instructions have

different operand requirements and thus different processing time.

(ii) Data Hazards

When several instructions are in partial execution, and if they

reference same data then the problem arises. We must ensure that

next instruction does not attempt to access data before the current

instruction, because this will lead to incorrect results.

(iii) Branching

In order to fetch and execute the next instruction, we must know

what that instruction is. If the present instruction is a conditional

branch, and its result will lead us to the next instruction, then the

next instruction may not be known until the current one is

processed.

279 | P a g e

Space for learners: (iv) Interrupts

Interrupts set unwanted instruction into the instruction stream.

Interrupts effect the execution of instruction.

(v) Data Dependency

It arises when an instruction depends upon the result of a previous

instruction but this result is not yet available.

2.8.3 Advantages of Pipelining

1. The cycle time of the processor is reduced.

2. It increases the throughput of the system

3. It makes the system reliable.

2.8.4 Disadvantages of Pipelining

1. The design of pipelined processor is complex and costly to

manufacture.

2. The instruction latency is more.

2.9 CHAINING TECHNIQUE

In computing, chaining is a technique used in computer architecture

in which scalar and vector registers generate interim results which

can be used immediately, without additional memory references

which reduce computational speed.

Chaining allows the results of one vector operation to be directly

used as input to another vector operation. A convoy is a set of vector

instructions that can potentially execute together. Only structural

hazards cause separate convoys as true dependences are handled via

chaining in the same convoy.

280 | P a g e

Space for learners: 2.10 GATHER-SCATTER OPERATION

Gather and scatter are two fundamental data-parallel operations,

where a large number of data items are read (gathered) from or are

written (scattered) to given locations.

Gather-scatter is also a type of memory addressing operation that

often arises when addressing vectors in sparse linear

algebra operations. It is the vector-equivalent of register indirect

addressing, with gather involving indexed reads and scatter indexed

writes. Vector processors (and some SIMD units in CPUs)

have hardware support for gather-scatter operations, providing

instructions such as Load Vector Indexed for gather and Store

Vector Indexed for scatter.

2.10.1 The basic concepts of Gather-scatter

We are generally used to organizing our memories by row. Caches

are built from rows so if we want one piece of data, we get the

whole row. If we want to manage our performance tightly, then we

try to have as many related variables as possible on the same row so

that we get more bangs for our caching buck and reduce our cache

misses.

The nice thing about a row of memory is that, especially with vector

structures like SIMD (single-instruction, multiple data), we can

operate on multiple pieces of data at the same time, in parallel. At

the very least, if we can’t do it in parallel, then we can loop along

the row for the operation without further fetching hassles.

But there are several contexts where the world doesn’t cooperate

with this row-by-row structure. What if we want to be able to do is

exactly that same thing, but without the requirement that addresses

be contiguous?

281 | P a g e

Space for learners: This isn’t so easy to do, since we need lots of fetches to populate a

vector; we can’t just copy over a chunk of memory and get busy

operating on it. The idea is to find a way to “gather” data from far-

flung locations, work with them as a single vector, and then, if we

desired, take the results and “scatter” them back out into their

original far-flung locations.

2.10.2 Different gather-scatter applications

Some application of gather-scatter operations are given below:

• A single block of in-memory data may represent data from a file

that has been fractured into various sectors across the storage

medium.

• A single in-memory buffer, if too large, may cause problems due

to memory fragmentation. It can be more easily managed if it is

stored in smaller fragments, but this requires management to

make them look contiguous.

• Network traffic streams may be split up as they arrive, with

various buckets in memory. This is referred to as “Scatter/gather

I/O.” In a way, this is the reverse of other applications. In other

applications, scattered data is brought together in the processor.

With this streaming version, it’s a unified stream that then gets

scattered about as it arrives at the processor.

• Embedded systems may require low-level access to data that’s

scattered throughout DRAM, treating it as contiguous. The

illustrations above reflect this application. As we’ll see, vision is

a major driver of this usage.

282 | P a g e

Space for learners: CHECK YOUR PROGRESS:

Multiple Choice Questions:

1. A processor, which works on simple instruction at a time, which

operates on single data items is known as

(A) Scalar (B) Vector (C) Array

 (D) Superscalar

2.A processor that has the ability to execute the complete vector

input in a single instruction is called

(A) Scalar (B) Vector (C) Normal

 (D) Superscalar

3.In memory to memory architecture, source operands,

intermediate and final results are retrieved (read) directly from

(A) Main memory (B) Register

(C)Cache (D) Secondary memory

4. SIMD means

(A) Single Instruction Many Data

(B) Simple Instruction Multiple Data

(C) Single-Instruction, Multiple Data

(D) None of above

5.A technique where multiple instructions are overlapped during

execution is known as

(A)Gathering (B) Scattering

(C) Chaining (D) Pipelining

2.11 SUMMING UP

• Vector processor is basically a central processing unit that

has the ability to execute the complete vector input in a

single instruction. So, we can say vector processing allows

operation on multiple data elements by the help of single

instruction.

• Scalar CPUs can manipulate one or two data items at a time,

which is not very efficient. Also, simple instructions

283 | P a g e

Space for learners: like ADD A to B, and store into C are not practically

efficient.

• Vector computing technique, not only use instruction

pipeline, but it also pipelines the data, working on multiple

data at the same time.

• Vector processor is basically a central processing unit that

has the ability to execute the complete vector input in a

single instruction. More specifically we can say, it is a

complete unit of hardware resources that executes a

sequential set of similar data items in the memory using a

single instruction.

• Vector processing occurs when arithmetic or logical

operations are applied to vectors. It is distinguished from

scalar processing which operates on one or one pair of data.

The conversion from scalar code to vector code is called

vectorization.

• Programs size is small as it requires less number of

instructions. Vector instructions also hide many branches by

executing a loop in one instruction.

• Vector processors need high speed on-chip memory which

are expensive.

• It is difficult to package the processors with such high

speed. In the past, vector manufactures have employed

expensive designs for this.

• The classification of vector processor relies on the ability of

vector formation as well as the presence of vector instruction

for processing. So, depending on these criteria, vector

processing is classified as follows:

(iii) Register to Register Architecture (Vector register

processors)and

284 | P a g e

Space for learners: (iv) Memory to Memory Architecture(Memory-memory

vector processors)

• In memory to memory architecture, source operands,

intermediate and final results are retrieved (read) directly

from the main memory.

• Register to register architecture is highly used in vector

computers. As in this architecture, the fetching of the

operand or previous results indirectly takes place through the

main memory by the use of registers.

• In Superscalar processor, multiple such pipelines are

introduced for different operations, which further improves

parallel processing.

• Vector registers are the storage areas in a CPU core that

contain the operands for vector computations, as well as the

results. The size of the vector registers determines the level

of SIMD instructions that can be supported by a given

processor's CPUs.

• Scalar registers can also provide data as input to the vector

functional units, as well as compute addresses to pass to the

vector load-store unit.

• An array processor is a CPU which implements an

instruction set that are designed to operate efficiently and

effectively on large one-dimensional arrays of data called

vectors.

• An attached array processor is a processor which is attached

to a general purpose computer and its purpose is to enhance

and improve the performance of that computer in numerical

computational tasks.

• The objective of the attached array processor is to provide

vector manipulation capabilities to a conventional computer

at a fraction of the cost of supercomputer.

285 | P a g e

Space for learners: • Single-instruction, multiple data (SIMD) is the organization

of a single computer containing multiple processors

operating in parallel.

• Pipelining is the process of accumulating instruction from

the processor through a pipeline. It allows storing and

executing instructions in an orderly process. It is also known

as pipeline processing.

• Pipelining is a technique where multiple instructions are

overlapped during execution.

• Arithmetic pipelines are usually found in most of the

computers. They are used for floating point operations,

multiplication of fixed point numbers etc.

• An instruction pipeline reads instruction from the memory

while previous instructions are being executed in other

segments of the pipeline.

• In computing, chaining is a technique used in computer

architecture in which scalar and vector registers generate

interim results which can be used immediately, without

additional memory references which reduce computational

speed.

• Gather and scatter are two fundamental data-

parallel operations, where a large number of data items are

read (gathered) from or are written (scattered) to given

locations.

2.12 ANSWER TO CHECK YOUR PROGRESS

Answer: 1 (A), 2 (B), 3 (A), 4 (C), 5 (D).

286 | P a g e

Space for learners: 2.13 POSSIBLE QUESTIONS

Short Type Questions:

1. What is vector computing? How it differ from scalar

computing?

2. What do you mean vector processor?

3. What are the advantages of vector processor?

4. What is array processor? What are its different

categories?

5. What do you mean by pipelining in vector

processing?

Long Answer Type Questions:

1. Explain about the arithmetic pipeline and instruction pipeline

techniques.

2. Explain how vector-register processor differs from memory

vector processor.

3. Explain about the working principle of array processor.

4. What do you mean by chaining? Explain about the scatter-

gather techniques.

2.14 REFERENCES AND SUGGESTED READINGS

• M. Morris Mano, “Computer System Architecture”, 3nd

Edition, Pearson,2006.

• William Stalling, ”Computer Organization and

Architecture”, 8th Edition, Pearson, 2010.

• John P. Hayes, “Computer Architecture and Organization”,

2nd Edition, McGraw-Hill International Edition, 1988.

---×---

287 | P a g e

Space for learners: UNIT 3: ADVANCE CONCEPT OF COMPUTER

 ARCHITECTURE PLICITPARALLELISM

Unit Structure:
3.1 Introduction
3.2 Unit Objectives

3.3 Introduction of pipeline

 3.3.1 Register File

 3.3.2 Datapath

3.4 Super Pipeline

3.5 Performance of a pipelined processor

3.6 Superscalar architecture

3.6.1 Structure superscalar architecture

3.6.2 Advantages of superscalar architecture

3.6.3 Disadvantages of superscalar architecture

3.7 Branch prediction

 3.7.1 Types of branch prediction

3.8 Static branch scheme

3.9 Dynamic branch scheme

 3.9.1 1-bit branch prediction technique

 3.9.2 2-bit branch prediction technique and

 3.9.3 Correlating branch prediction technique

3.10 Hazards in pipeliningand its types

3.11 Delay slot

3.12 Out-of-order execution

3.13 Register renaming

 3.13.1 Advantages of registerrenaming

3.14 Summing up

3.15 Key Terms

3.16 Answers to Check Your Progress

3.17 Possible Questions

3.18 References and Suggested readings

288 | P a g e

Space for learners: 3.1 INTRODUCTION

Implicit parallelism allows programmers to write down their

programs without any worry about parallelism exploitation. The

exploitation of parallelism is instead automatically performed by the

compiler and the runtime system. Thus, the parallelism

is transparent to the programmer, maintaining the complication of

software development at the same level as standard sequential

programming. Implicit parallelism generally facilitates the design of

parallel programs and therefore substantially improves programmer

efficiency and productivity. Different applications utilize different

aspects of parallelism - e.g., data-intensive applications utilize high

aggregate throughput, server applications utilize high aggregate

network bandwidth, and scientific applications typically utilize high

processing and memory system performance. It is important to

realize each of these performance bottlenecks and their interacting

effect.

In this unit, you will learn about the pipelining technique, and the

comparison/ discussion of super pipeline and super scalar pipeline

will describe in this unit. Various classes of superscalar architecture

will be discussed in this unit. You will learn the measurement of the

performance of pipeline architecture. Some of the benefits and

drawbacks of the superscalar pipeline will be pointed out in this

unit. You will learn the need for Branch prediction in the pipeline.

Different branch prediction techniques (static and dynamic

prediction) will be discussed with the proper example and diagram

in this unit. You will learn various hazards (structural hazards,

control hazards, and data hazards)that occur in the pipelining. Some

of the delay slots will be discussed in this unit. You also learn the

out-of-order execution and register renaming concept with an

example at the last of the unit.

3.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

• understand the needs of implicit parallelism techniques.

• describe the basic structure of the pipeline

289 | P a g e

Space for learners: • know different stages of instruction in the pipeline

• understand the design concept of super pipeline and

superscalar pipeline

• understand the branch prediction logic

• understand the various Hazards in the pipeline

• know the idea of delay slots

• Describe out-of-order execution and Register Renaming

3.3 INTRODUCTION OF PIPELINING

Pipelining is the practice of accumulating instruction from the

processor through a pipeline. In pipelining, storing and executing of

the instructions allows being in an orderly process. It is also known

as pipeline processing. Multiple instructions are overlapped during

execution in pipelining that's why process microprocessor begins

executing a second instruction before the first instruction has been

completed. A pipeline is separated into stages, and these stages are

attached to one another to form a pipe like structure. Instructions

enter from one end and exit from another end. Pipelining improved

the overall instruction throughput.

In the pipeline system, each segment consists of an input register

followed by a combinational circuit. The register is used to hold

data and a combinational circuit performs operations on it. The

output of the combinational circuit is applied to the input register of

the next segment.

A processing circuit of a given stage is connected to the input latch

of the next stage (Figure 3.1). A clock signal is connected to each

input latch. Every stage transfers its intermediate result to the input

latch of the next stage on every clock pulse. This way, the final

outcome is produced after the input data have passed through the

whole Pipeline, finishing one stage for every clock pulse. The clock

pulse period should be large enough to grant sufficient time for a

290 | P a g e

signal to go across throug

extended amount of time to

there should be sufficient tim

 If the clock's period, P, is ex

bigger than the utmost delay

sufficient for storing data int

Figure 3.1: Basic structure o

The instruction in pipelining

1. Instruction Fetch (IF): In t

2. Instruction Decode(ID): H

3. Operand Fetch (OF): In t

instruction.

4. Instruction Execute (IE)

operations are performed on

5.Operand Store (OS): The r

memory.

through the slowest stage where the most

me to need complete (bottleneck stage). Also,

ent time for a latch to store its input signals.

, is expressed as P = tb + tl, then tb should be

 delay of the bottleneck stage, and tl should be

ata into a latch.

cture of a pipeline. adapted from [1]

lining is divided into five subtasks likely

): In this subtask, the instruction is fetched.

ID): Here, the fetched instruction is decoded.

): In this stage, the operand is fetched of the

e (IE): In this stage,arithmetic and logical

ed on the operands to execute the instruction.

: The result of the earlier stage is stored in the

Space for learners:

291 | P a g e

Space for learners: Let us visualize how pipelining is done for N numbers of

instructions. In the Figure 3.2given below four instructions are

pipelined. The instruction-1 gets completed in 5 clock cycles. After

the first instruction is completed in every new clock, the proceeding

instruction(i.e., Instruction 2, 3 & 4) completes its execution.

Pipeline system is like some assembly line set up in different

factories. For example, in an automobile manufacturing industry,

huge assembly lines are arranged and at each point, there are robotic

arms to perform a particular task, and then the product moves on

ahead to the next arm. Pipeline techniques are categories into 2

types. One is arithmetic pipeline, and the other is instruction

pipeline.

� Arithmetic pipelinedesigned to act upon high-speed floating-

point addition, multiplication and division. Multiple

arithmetic logic units (ALUs) are built to perform the

parallel arithmetic computation in various data formats in

this Pipeline. Examples of arithmetic pipelined processors

are Cray-1, Cyber-205, Star-100, TI-ASC.The floating point

addition and subtraction is done in 4 parts: Compare the

exponents, align the mantissas, add or subtract mantissas and

produce the result.

� In instruction Pipeline, the number of instructions are

pipelined, and the subsequent instruction execution overlaps

the execution of current instruction. It is also known as

instruction lookahead.

292 | P a g e

Space for learners:

Figure 3.2: Pipelining of four Instructions

3.3.1 Register File

The register file is a hardware device with two read ports and one

write port (corresponding to the two inputs and one output of the

ALU). The register file and the ALU together comprise the two

elements required to compute MIPS R-format ALU instructions.

The register file is included of a set of registers that can be read or

written by supplying a register number to be accessed, as well (in

the case of write operations) as a write authorization bit. A block

diagram of the register file is shown in Figure 3.3

Since reading of a register-stored value does not change the register

state, no "safety mechanism" is needed to prevent inadvertent

overwriting of stored data, and we need only supply the register

number to obtain the data stored in that register. However, when

writing to a register, we need:

1. A register number.

2. An authorization bit for safety (because the write operation

overwrites the previous contents of the register selected for

writing).

3. A clock pulse that controls the writing of data into the

register.

293 | P a g e

Space for learners:

Figure 3.3. Register with two read ports and one write port,adapted

from [2].

3.3.2 Datapath Design

The datapath is the "brawn" of a processor, since it implements the

fetch-decode-execute cycle. The general discipline for datapath

design is to

a. Determine the instruction classes and formats in the

ISA,

b. Design datapath components and interconnections for

each instruction class or format, and

c. Compose the datapath segments designed in Step 2)

to yield a composite datapath.

Simple datapath components include memory (stores the current

instruction), PC or program counter (stores the address of current

instruction), and ALU (executes current instruction). The

interconnection of these simple components to form a basic datapath

is illustrated in Figure 3.4.

294 | P a g e

Space for learners:

Figure 3.4: Schematic high-level diagram of MIPS datapath

from an implementation perspective, adapted from [2].

3.4. SUPER PIPELINING

Super pipelining is another approach to reach better (faster)

performance. Super-pipelining is the breaking of stages of a given

pipeline into more miniature stages(thus making the pipeline deeper)

to shorten the clock period and thus to enhance the instruction

throughput by keeping more and more instruction in flight at a time.

For example, if we divide each stage into two, the clock cycle

period t will be reduced to half, t/2; hence, at the maximum

capacity, the pipeline produces a result every t/2 s.

For a given architecture and the subsequent instruction set, there is

an optimal number of pipeline stages; increasing the number of

stages over this boundary decrease the overall performance.

Superscalar architecture is a solution to further improve speed.

Given a

pipeline stage time T, it may be possible to execute at a higher rate

by starting operations at intervals of T/n. This can be accomplished

in two ways:

295 | P a g e

Space for learners:

 1. Further divide each of the pipeline stages into n sub stages.

This approach requires faster logic and the capability to subdivide

the stages into segments with consistent latency. Here also Complex

inter-stage interlocking and stall-restart logic required.

2. Make available n pipelines that are overlapped.

In this approach could be viewed in a sense as staggered superscalar

operation, and has associated with it all of the same requirements

except that instructions and data can be fetched with a slight offset

in time.

Unavoidably, super pipelining is controlled by the speed of logic,

and the frequency of unpredictable branches. The Stage time cannot

effectively grow shorter than the interstage latch time, and

accordingly this is a limit for the number of stages. The MIPS

R4000 is sometimes called a super pipelined machine, although its 8

stages really only split the I-fetch and D-fetch stages of the pipe and

add a tag check stage. Nevertheless, the further stages enable it to

operate with higher throughput. The UltraSPARC's 9-stage pipe

definitely qualifies it as a super pipelined machine, and in fact it is a

Super-Super design because of its superscalar issue. The Pentium 4

splits the pipeline into 20 stages to enable increased clock rate. The

benefit of such extensive pipelining is really only gained for very

regular applications such as graphics. On more irregular

applications, there is little performance advantage.

296 | P a g e

Space for learners:

Figure 3.5: Comparison of normal pipeline and Super pipeline.

3.5 PERFORMANCE OF A PIPELINED PROCESSOR

Consider a K segment pipeline with clock cycle time as Tp and N

tasks to be completed in the pipelined processor.

Here, the first instruction is about to take K cycles to come out of

the Pipeline but the other N–1 instructions will take only one cycle

each, i.e., a total of N-1 cycles. So, time is taken to N instructions in

a pipelined processor:

ETP = K + N – 1 cycles

= (K + N – 1) TP

In the same case, the Execution time of N instructions in a non-

pipelined processor, will be:

ETNP= N * K * TP.

Here ETPstand for estimate time taken in pipeline processor and

ETNPstand for estimate time taken in non- pipeline processor.

therefore, speedup(S) of the pipelined processor over the non-

pipelined processor, when N tasks are executed on the same

processor is:

297 | P a g e

Space for learners:

S=
���������	� �� �������� ���	�����

���������	� �� ������������ ���	�����

Since the performance of a processor is inversely proportional to the

execution time, we have,

 S = ETNP / ETP

 => S =
 � ∗ � ∗��

(� � � – �) ��

 S =
 � ∗ �

(� � � – �)

We can ignore (K-1) When the number of tasks N are considerably

larger than K, that is, N >> K

S =
 �∗�

 �

S = K, where K is the number of stages in the Pipeline.

Theoretically, maximum speedup ratio will be k where k are the

total number of segments in which process is divided.

Again,

Efficiency = Given speed up Max speed up ⁄ = S / SMax

 We already know that SMax = K

as a result, Efficiency =
(

�

Throughput =
�)�*�� �� ���+�)	+����

��+� +��� +� 	����+� +,� ���+�)	+����

hence, Throughput = N / (K + N – 1) * TP =N/TP

In ideal case as N -> 1 the throughout is equal to 1/ TP that is equal

to frequency. Thus

maximum throughput is obtained is there is one output per clock

pulse.

Problem 1: A non-pipeline system takes 60 ns to process a task.

The same task can be processed in six segment pipeline with a clock

cycle of 10 ns. Determine the speedup ratio of the pipeline for 100

tasks. What is the maximum speed up that can be achieved?

298 | P a g e

Space for learners: Solution:

Total time taken by for non pipeline to complete 100 task is

= 100 * 60 = 6000 ns

Total time taken by pipeline configuration to complete 100 task is

= (100 + 6 –1) *10 = 1050 ns

Thus speed up ratio will be = 6000 / 1050 = 4.76

The maximum speedup that can be achieved for this process is = 60

/ 10 = 6

Thus, if total speed of non pipeline process is same as that of total

time taken to complete a

process with pipeline than maximum speed up ratio is equal to

number of segments.

3.6 SUPERSCALAR ARCHITECTURE

Superscalar architecture is a system of parallel computing used in

many processors together. In a superscalar computer, the central

processing unit manages multiple instruction pipelines to execute

several instructions concurrently during a clock cycle. It is achieved

by feeding the different pipelines through several execution units

within the processor. To successfully implement a superscalar

architecture, the CPU's instruction fetching mechanism must

intelligently retrieve and allot instructions. Otherwise, pipeline stalls

may occur, resulting in execution units that are often inactive.

With each instruction that a superscalar processor issues, it must

check the instruction's operands get in the way with the operands of

any other instruction in flight. Once an instruction is independent of

all other ones in flight, the hardware must also decide precisely

when and on which available functional unit to execute the

instruction. To fully utilize a superscalar processor of degree N must

issue N instructions per cycle to execute in parallel at all times. This

situation may not be accurate in every clock cycle. In that case,

some of the pipelines may be stalling in a wait state. The simple

operation latency should require only one cycle in a superscalar

299 | P a g e

Space for learners: processor, as in the base scalar processor. The superscalar processor

depends more on an optimizing compiler to exploit parallelism to

achieve a higher degree of instruction-level parallelism in program.

Figure 3.6: Pipeline structure of superscalar processor of degree-3

3.6.1 Structure Superscalar Architecture

Consider a machine organization capable of issuing more than one

instruction per cycle depicted in Figure 3.7. Assume that the

instruction set executed by the processor is I = (I1, I2,.....IN) and

that at most k instructions can be issued per cycle described by the

k-tuple P = (i1, i2.... ik), with ijє I, j = 1,2,....k. Furthermore,

assume that at least k instructions are fetched into an instruction

buffer and that a decision is reached on whether or not a k-

instruction tuple can be issued and executed in parallel. This

decision-making process is performed by the “Decode & Issue”

logic. It is usually based on: the opcodes of the instructions, on

availability of resources, and the structural and data dependencies.

300 | P a g e

Figure 3.7: Ba

We can classify superscalar

complexity.

 1. Static Superscala

instructions in program ord

machine, it is possible to

simultaneously: given instru

issue all, or only i1 (depend

may not just issue i2 or i3

because the hardware has

However, as the actual execu

that scheduling is static.

 2. Dynamic Supersc

out-of-order program

still issue instructions in prog

order the execution, so we no

3. Dynamic with Sp

capability to speculate beyon

Basic Superscalar Architecture

scalar processors into some classes of varying

rscalar — In this processor issue and execute

m order. So, for example, in a degree 3

le to issue and execute three instructions

 instructions i1,i2 and i3, we may choose to

depending on the presence of hazards). We

or i3. The instruction issues look dynamic

e has a choice about issuing instructions.

l execution of instructions is in order, we state

perscalar — These types of machines permit

am execution, but they usually

in program order. Since we can potentially re-

 we now state scheduling is dynamic.

ith Speculation — These machines add the

 beyond branches, using different techniques.

Space for learners:

301 | P a g e

Space for learners: 3.6.2 Advantages of Superscalar Architecture

• The compiler can keep away from many hazards through

well-judged choice and order of instructions.

• The compiler should make every effort to interleave floating-

point instructions and integer instructions. This would

facilitate the dispatch unit to maintain both the integer units

and floating-point units active most of the time.

• On the whole, high performance is achieved if the compiler

can arrange program instructions to take maximum assistance

of the available hardware units.

3.6.3 Disadvantages of Superscalar Architecture

• In a Superscalar processor, the unfavorable effect on the

performance of various hazards becomes even more

pronounced.

• The problem in scheduling can occur because of this complex

architecture.

3.7 BRANCH PREDICTION

The existence of program transfer instructions, e.g., JMP, RET,

CALL, etc., can reduce the gain produced by Pipelining. These

instructions change the sequence causing all the other instructions

that entered the Pipeline after program transfer instructions are

CHECK YOUR PROGRESS-I

1. What is pipelining?

2. What are the 5 pipeline stages?

3. What is meant by ILP?

4. Define Superscalar processor.

302 | P a g e

Space for learners: worthless. Thus no effort is done as the pipeline stages are

reloaded.

 keep away from this trouble, Pentium uses a scheme called

Dynamic Branch Prediction. In this process, a prediction is

prepared for the branch instruction currently within the Pipeline.

The prediction will either be taken or not taken. If the prediction

became true, then the Pipeline will not be flushed, and no clock

cycles will be gone astray. If the prediction is false, then the

Pipeline is flushed and starts over with the present instruction.

Mainly Branch Prediction predicts two problems one is Direction

predicting and other one is calculating the target address.

3.7.1 Types of Branch Prediction

Basically there are two types of Branch prediction schemes :

1. Static branch schemes and

2. Dynamic branch schemes.

3.8. STATIC BRANCH SCHEME

A static branch scheme is a software-based technique which very

simple and easy. This scheme assembles the more significant part of

the data/information earlier to the program's execution or during the

compile time and it does not need any hardware. In the Static branch

prediction technique, underlying hardware assumes that either the

branch is not always taken or the branch is always taken.

Let us understand branch prediction with an example code:

303 | P a g e

Space for learners:

Output:

Let us consider that underlying hardware has assumed that branch is

taken constantly. The output predicted through underlying hardware,

and actual output is shown in figure3.8.

Figure 3.8: Prediction result of static branch prediction

3.9 DYNAMIC BRANCH SCHEME

A dynamic branch scheme is hardware-based technique based on the

hardware and assembles the information during the program's run-

time. Dynamic schemes are more assorted as they keep track during

run-time of the program execution. In Dynamic branch prediction

technique, prediction by underlying hardware is not rigid, rather it

304 | P a g e

Space for learners: changes dynamically. The accuracy of this technique has high than

the static technique.

Some of the dynamic branch prediction techniques are listed below:

a. 1-bit branch prediction technique

b. 2-bit branch prediction technique and

c. Correlating branch prediction technique

3.9.1 1-Bitbranch prediction technique

In this technique hardware changes its assumption immediately after

one false assumption. For instance if hardware assumes branch to be

taken but in reality, branch is not taken, then after that step,

hardware assumes branch to be not taken. Similarly, if hardware

assumes branch not to be taken but in reality, branch is taken, then

after that step, hardware assumes branch to be taken.

1-bit branch prediction Technique is shown in the Fig 3.8 below:

Figure3.9: Transition diagram of 1-bit prediction technique

Explanation –

In the beginning, let us declare hardware assume branch to be taken

and so at number=0, branch is taken.

At number=1, hardware assumes branch to be taken but branch is

not taken.

305 | P a g e

Space for learners: So now at number=2 hardware assumes branch not to be taken and

also branch is not taken.

At number =3 hardware assumes branch not to be taken but branch

is taken.

At number=4 hardware assumes branch to be taken but branch is not

taken.

At number=5 hardware assumes branch not to be taken and branch

is not taken.

In this way, the prediction is made till number=9.

The output predicted through underlying hardware, and actual

output is shown in Figure 3.9:

3.9.2 2-bit branch prediction technique

This predictor changes its earlier prediction only on two successive

mispredictions occur and vice-versa. Two bits called as history Bit

are maintained in the prediction buffer and there are 4-different

states where Two states related to a taken state and two related to

not taken state.

2-bit branch prediction technique is shown in the figure:

Figure 3.10: Transition diagram of 1-bit prediction technique

306 | P a g e

Space for learners: Explanation –

1. Let's assume that when number=0, everything is reset(00), so

hardware assumes branch strongly not to be taken and the

real branch is taken. As a result, the current state is (01).

2. When number =1, hardware assumes branch weakly not

taken and in the real branch is not taken. Therefore the

current state is (00).

3. When number =2, hardware assumes branch strongly not to

be taken and branch is not taken in real. As a result, the

current state remains (00).

4. When number =3, hardware assumes branch strongly not to

be taken and in the real, branch is taken. As a result, the

current state is (01).

5. When number =4, hardware assumes branch weakly not

taken and in the real branch is not taken. So the current state

is (00)

6. When number =5, hardware assumes branch strongly not to

be taken and in the real branch is not taken. So the current

state is (00). In this way, the prediction is done till

number=9.

The comparison of the performance of Branch prediction schemes

are given in the fig below:

Figure 3.11: Comparison of performance of static,1-bit and 2-bit

prediction scheme.

307 | P a g e

Space for learners: 3.9.3 Correlating Branch Prediction Technique

Due to interference with other branches, it is impossible to get

significant accuracy from the 2-bit branch predictor. So correlating

branch prediction comes into the picture which prediction accuracy

is enhanced as it considers the recent activities of other branches. It

uses k least significant bits of branch target addresswhich is fetched

before. Also, it uses local history table (LHT), a table of shift

registers where shift register refers to the last effect of m branches

having similar k least significant bits. It also uses local prediction

table(LPT) to predict the result depending on its present state.

3.10 HAZARDS IN PIPELINING AND ITS TYPES

The situation that prevents the next instruction in the instruction

stream from executing during its selected clock cycle is Hazard.

Hazards decrease the performance from the ideal speedup gained by

pipelining.

• Structural Hazards: Structural Hazards arises from resource

conflicts when the hardware cannot support all possible

combinations of instructions in the Pipeline requiring the same

resource Due to some functional unit not being fully pipelined. Then

the sequence of instructions using that un-pipelined unit cannot

proceed at one per clock cycle rate. This generally isn't a problem

with simple pipelines, but if some instructions take longer than

CHECK YOUR PROGRESS-II

5. Define Branch prediction.

6. Define register file.

7. Define static branch prediction.

8. Define Dynamic branch prediction.

308 | P a g e

Space for learners: others, this can become a problem. Another common way that it

may appear is when some resources are not duplicated enough to

allow all combinations of instructions in the Pipeline to execute. So

by fully pipelining the stages and duplicating resources will avoid a

structural Pipeline.

• Data hazards: Data hazards occur when instructions that show

signs of data dependence modify data in different stages of a

pipeline. This Hazard cause delays in the Pipeline., Data hazards

occur when the Pipeline changes the order of read/write accesses to

operands so that the order differs from the order seen by

sequentially executing instructions on an un-pipelined processor. It

can be minimized by a simple hardware technique called forwarding

or by adding stalls.

There are generally three types of data hazards:

1) Read after Write (RAW)

2) Write after Read (WAR)

3) Write after Write (WAW)

Let , there be two instructions I1 and I2, such that I2 follow I1.

Then,

• RAW Hazard occurs when instruction I2 tries to read data

before instruction I1 writes it.

E.g.,:

I1: R2 ← R1 + R3

I2: R4 ← R2 + R3

• WAR hazard occurs when instruction I2 tries to write data

before instruction I1 reads it.

E.g.:

I1: R2 ← R1 + R3

I2: R3 ← R4 + R5

• WAW hazard occurs when instruction I2 tries to write output

before instruction I1 writes it.

E.g.:

309 | P a g e

Space for learners: I1: R2 ← R1 + R3

I2: R2 ← R4 + R5

WAR and WAW hazards occur during the out-of-order execution

of the instructions.

Control hazards: It is caused by a delay between the fetching of

instructions and decisions about changes in control flow (branches

and jumps). Here instruction depends on the results of previous

instruction in a way exposed by the overlapping of instructions in

the Pipeline. Control Hazards are also known as Branch Hazards.

The simplest method to handle branches hazard is to freeze or flush

the Pipeline, holding or deleting any instructions after the branch

until the branch destination is identified. In this case branch penalty

is fixed and cannot be reduced by software. The other scheme is the

predicted-not-taken or predicted-untaken and delayed branch. The

number of stalls introduced during the branch operations in the

pipelined processor is known as branch penalty.

3.11 DELAY SLOT

An instruction slot being executed devoid of the effects of a

preceding instruction is known as a delay slot. The most familiar

form is a particular arbitrary instruction located without delay after

a branch instruction on a DSP or RISC architecture; this instruction

will execute even if the prior branch is taken. In that way, by design,

the instructions appear to execute in an incorrect or illogical order. It

is usual for assemblers to automatically rearrange instructions by

default, hiding the unease from assembly developers and

compilers.[3]

310 | P a g e

Space for learners: Load Delay Slot

In pipelined architecture, the load word instruction loads a word

from memory to the specified register. The next instruction executes

concurrently with the current instruction; if the following instruction

uses the LW destination register as one of its source registers, it

cannot continue before the LW data is fetched from memory and

written back to the destination register; otherwise, it will read

invalid data.

Branch Delay Slot

The branch delay slot is also a consequence of the branch hazard. A

simple design would insert stalls into the Pipeline after a branch

instruction until the new branch target address is computed and

loaded into the program counter. Each cycle where a stall is inserted

is considered one branch delay slot. A more sophisticated design

would execute program instructions that are not dependent on the

branch instruction. This optimization can be performed

in software at compile time by moving instructions into branch

delay slots in the in-memory instruction stream if the hardware

supports this. Another side effect is that special handling is needed

when managing breakpoints on instructions and stepping

while debugging within branch delay slot[3].

3.12 OUT-OF-ORDER EXECUTION

A processor that executes the instructions one after the other may

use the resources inefficiently, leading to poor performance of the

processor. To improve the performance of the processor, this can be

done in two ways. One is by executing different sub-steps of

sequential instructions simultaneously, and others execute the

instructions entirely simultaneously. Additionally, improvement in

the processor can be achieved through out-of-order execution by

311 | P a g e

Space for learners: executing the instruction in a diverse from the original order they

appear out-of-order execution can be achieved. The approach of an

out-of-orderexecution,used in high-performance microprocessors.

Here in this approach efficiently uses instruction cycles and

minimized costly delay. As an alternative of the original order of the

instructions, a processor will execute the instructions in an order of

accessibility of data or operands. The processor will avoid being idle

while data is retrieved for the next instruction in a program. In other

words, a processor that uses multiple execution units completes the

processing of instructions in the wrong order. For example, I1 and I2

are the two instructions where I1 comes first, then I2. In the out-of-

order execution, a processor can execute I2 instruction before I1

instruction has been executed. This flexibility of allowing execution

with less waiting time will improve the performance of the

processor. The main benefit of the out-of-order processor is it avoids

instruction waits when the data needs to perform an operation is

unavailable.

STOP TO CONSIDER

Differentiate in-Order Execution from Out-of-Order execution.

Out-of-order execution is a situation in pipelined execution when

an instruction is blocked from executing does not cause the

following instructions to wait. It preserves the data flow order of

the program.

In-order execution requires the instruction fetch and decode unit

to issue instructions in order, which allows dependences to be

tracked, and requires the commit unit to write results to registers

and memory in program fetch order. This conservative mode is

called in-order commit.

312 | P a g e

Space for learners:

3.13 REGISTER RENAMING

To deals with data dependences in pipelining between instructions

by renaming their register operands is known as register renaming.

Renaming replaces architectural register names by, in effect, value

names with a new value name for each instruction destination

operand. This process eliminates the name dependences (anti-

dependences and output dependences) between instructions and

automatically recognizes true dependences. An assembly language

programmer or a compiler specifies these operands using

architectural registers - the registers are explicit in the instruction

set architecture.

The identification of true data dependences between instructions

allows a more flexible life cycle for instructions. Maintaining a

status bit for each value indicating whether or not it has been

computed yet allows the execution phase of two instruction

operations to be performed out of order when there are no true data

dependences between them.

Being more explicit about the action precise by an instruction data

dependences can be realized. The action specified by an instruction

is more apparent if we illustrate instructions in terms of values

rather than registers. We have to name the values in a manner that

captures changes in register contents over time.

CHECK YOUR PROGRESS-III

9. Define hazard and its types.

10. Define data hazard.

11. What is meant by delayed branch?

12. What is pipeline stall?

313 | P a g e

Space for learners: By replacing register names in all operands with value names, we

can confine the intent of a sequence of instructions. For this, we use

a table that records the value names assigned to each register name.

Then we apply the following algorithm.

i. Replace each source operand with the most recent value

name in the designated register column.

ii. Replace the destination operand with a new name and place

the new name in the designated register column.

It is essential that step i is done first. Otherwise, when the same

register is used both as a source operand and a destination operand,

we indicate that the instruction execution phase cannot begin until

its result is ready. This makes it impossible for the execution phase

to begin.[4]

For an Example:

We will start with the following instructions.

MUL R6, R0, R2

DIV R4, R2, R0

ADD R0, R6, R2

Instruction R0 R2 R4 R6 Renamed

Instruction

Initial values P0 P1 P2 P3 -----

MUL R6, R0,

R2

 P4 MUL P4, P0, P1

DIV R4, R2,

R0

 P5 DIV P5, P1, P0

ADD R0, R6,

R2

P6 ADD P6,P4,P1

314 | P a g e

Space for learners: 3.13.1 Advantages of register renaming

The instructions with value names capture the intent of a sequence

of instructions by specifying relationships between register values

rather than just registers. This simplifies determining when the

execution of an instruction can begin. We only need to check if its

source operand values have been computed. The name dependencies

no longer complicate the picture.

To determine when source operands have been computed, the value

registers contain a status bit in addition to a data value. The status

bit is initialized to 0 (not ready) when the value register is allocated

for an instruction. It is set to 1 when a functional unit writes a

result.[4]

3.14 SUMMING UP

In this unit, efforts have been made to acquaint you with the

advanced concept of computer architecture implicit parallelism.

Here in this unit, you learn the basic pipeline structure. Pipeline

techniques are categories into two types. One is arithmetic pipeline,

and the other is instruction pipeline. Super-pipelining is the breaking

of stages of a given pipeline into more miniature stages to shorten the

clock period and thus to enhance the instruction throughput by

keeping more and more instruction in flight at a time. Superscalar

architecture is a system of parallel computing used in many

processors together. Here the central processing unit manages

multiple instruction pipelines to execute several instructions

concurrently during a clock cycle. Here in this unit you learned the

different branch prediction techniques. In the static branch

prediction technique, underlying hardware assumes that either the

branch is not always taken or the branch is always taken. A dynamic

315 | P a g e

Space for learners: branch scheme is hardware-based technique based on the hardware

and assembles the information during the program's run-time. The

comparison of static prediction,1- bit branch prediction and 2-bit

branchprediction also elaborate with an example. Hazard is the

situation that prevents the next instruction in the instruction stream

from executing during its selected clock cycle. An instruction slot

being executed devoid of the effects of a preceding instruction is

known as a delay slot. Here we discuss the out-of-order execution

that avoids instruction waits when the data needs to perform an

unavailable operation. At the last of the unit you learned the register

renamingprocess, which deals with data dependences.

3.15 KEY TERM

PIPELINING: Pipelining is the practice of accumulating

instruction from the processor through a pipeline. In Pipelining,

Storing and executing of the instructions allows being in an orderly

process.

SUPER PIPELINING :Super pipelining is another approach to

reach better performance. Super-pipelining is the breaking of stages

of a given pipeline into more miniature stages to shorten the clock

period and thus to enhance the instruction throughput by keeping

more and more instruction in flight at a time.

SUPERSCALAR ARCHITECTURE : Superscalar architecture is

a system of parallel computing used in many processors together. In

a superscalar computer, the central processing unit manages

multiple instruction pipelines to execute several instructions

concurrently during a clock cycle.

316 | P a g e

Space for learners: STATIC BRANCH PREDICTION : This is the simplest branch

prediction technique because it predicts the outcome of a branch

based solely on the branch instruction. It does not rely on

information about the dynamic history of code executing.

DYNAMIC BRANCH PREDICTION : This is hardware-based

technique based on the hardware and assembles the information

during the program's run-time.

HAZARD :The situation that prevents the next instruction in the

instruction stream from executing during its selected clock cycle is

Hazard.

STALL: It is a delay in execution of an instruction in order to

resolve a hazard.

BRANCH PENALTY: The number of stalls introduced during the

branch operations in the pipelined processor is known as branch

penalty.

DELAY SLOT: An instruction slot being executed devoid of the

effects of a preceding instruction.

REGISTER RENAMING:Register Renaming is a process to deals

with data dependences in pipelining between instructions by

renaming their register operands.

3.16 ANSWERS TO CHECK YOUR PROGRESS

1. "Pipelining, also known as "pipeline processing", is the process of

collecting instruction from the processor through a pipeline. It stores and

executes instructions in an orderly process."

2. The 5 stages of instruction execution in a pipelined processor are:

a. Instruction Fetch (IF)

b. Instruction Decode(ID)

c. Operand Fetch (OF)

317 | P a g e

Space for learners: d. Instruction Execute (IE)

e. Operand Store (OS)

3. Pipelining exploits the potential parallelism among instructions.

This parallelism is called instruction-level parallelism (ILP). There

are two primary methods for increasing the potential amount of

instruction-level parallelism. a. Increasing the depth of the pipeline

to overlap more instructions. b. Multiple issue.

4. There are processors which are capable of achieving an

instruction executing throughput of more than one instruction per

cycle. They are known superscalar processor.

5. It is a technique for reducing the branch penalty associated with

conditional branches is to attempt to predict whether or not a

particular branch will be taken.

6. The processor‘s 32 general-purpose registers are stored in a

structure called a register file. A register file is a collection of

registers in which any register can be read or written by specifying

the number of the register in the file. The register file contains the

register state of the computer.

7. The branch prediction decision is always the same every time a

given instruction is executed. Any approach that has this

characteristic is called static branch prediction.

8. The branch prediction where decision may change depending on

execution history is called Dynamic branch prediction.

9. Any condition that causes the pipeline to stall is called a hazard.

Its types are:

 a. Data hazard

 b. Instruction hazard

 c. Structural hazard

318 | P a g e

Space for learners: 10. A data hazard is any condition in which either the source or the

destination operands of an instruction are not available at the time

expected in the pipeline. A data hazard is a situation in which the

pipeline is stalled because the data to be operated on are delayed for

some reason.

11. Delayed branch is a type of branch where the instruction

immediately following the branch is always executed, independent

of whether the branch condition is true or false.

12. Pipeline stall, also called bubble, is a stall initiated in order to

resolve a hazard. They can be seen elsewhere in the pipeline.

3.17 POSSIBLE QUESTIONS

Multiple Choice Questions:

1. Arithmetic Pipeline is used for

a. floating point operations

b. integer operations

c. character operations

d. None of the above

2. Which of the following is not a Pipeline Conflicts

a. Timing Variations

b. Branching

c. Load Balancing

d. Data Dependency

3. How many types of Pipelining exist

a. 2

b. 3

c. 4

d. 5

4. Which of the following is disadvantage of Pipelining

a. cycle time of the processor is reduced.

b. The design of pipelined processor is complex and costly to

manufacture.

319 | P a g e

Space for learners: c. The instruction latency is more.

d. Both b and c

5. Which of the following is an advantage of pipelining

a. Instruction throughput increases.

b. Faster ALU can be designed when pipelining is used.

c. Pipelining increases the overall performance of the CPU.

d. All of the above

6. In arithmetic pipeline, the floating point addition and

subtraction is done in ____________ parts.

a. 2

b. 3

c. 4

d. 5

7. ______ have been developed specifically for pipelined

systems.

a. Utility software

b. Speed up utilities

c. Optimizing compilers

d. None of the above

8. The pipelining process is also called as ______

a. Assembly line operation

b. Von Neumann cycle

c. Superscalar operation

d. None of the above

9. Each stage in pipelining should be completed within

___________ cycle.

a. 1

b. 2

c. 3

d. 4

10. The periods of time when the unit is idle is called as _____

a) Stalls

b) Bubbles

c) Hazards

d) Both Stalls and Bubbles

Answers (1. a, 2. c, 3. a, 4. d, 5.d, 6. c, 7.c, 8.a, 9.a, 10.d)

320 | P a g e

Space for learners: Fill in the blanks:

1. The situation wherein the data of operands are not available is

called ______.

2. The contention for the usage of a hardware device is called

3. Each stage in pipelining should be completed within

___________ .

4. The fetch and execution cycles are interleaved with the help

of ________.

5. The pipelining process is also called as ______ .

6. A pipeline ______ is a delay in execution of an instruction

in order to resolve a hazard.

7. The number of stalls introduced during the branch

operations in the pipelined processor is known as ______ .

Answers:

1. Data hazard 2. Structural hazard 3. 1 cycle 4. clock 5.

Assembly line operation 6. Stall 7. branch penalty

Short answer type questions:

1. What do you mean by implicit parallelism?

2. Write a brief note on pipelining.

3. Explain Basic structure of pipelining technique.

4. Write short notes on arithmetic pipeline and instruction

pipeline.

5. How do you calculate performance of a pipeline.

6. Short note on super pipelining techniques.

7. Differentiate between normal pipeline and super pipeline.

8. Compare super pipeline with superscalar architecture.

9. What are the advantages and disadvantages of superscalar

architecture?

10. write down different type of superscalar processor.

11. Why do we require branch prediction?

321 | P a g e

Space for learners: 12. What are the types of branch prediction scheme?

13. What is static branch prediction?

14. What is dynamic branch prediction?

15. What are the different types of dynamic branch prediction?

16. Write a short note on correlating branch prediction.

17. What do you mean by hazards in pipeline ?

18. What are the different types of hazard in the pipeline?

19. What do you mean by delay slot.

20. What is the need of register renaming?

Long answer type questions:

1. Explain pipeline structure with diagram.

2. How many sub-tasks of instruction are there in pipeline.

Explain.

3. Explain super pipeline technique. What are the benefit over

normal pipeline.

4. Explain basic structure of superscalar architecture.

5. Explain 1-bit branch and 2-bit branch prediction technique

with example.

6. Explain different type of hazards occurs in pipeline.

7. Explain data hazard with their types.

8. Explain different delay slots in pipeline.

9. Describe out-of-order execution.

10. What is register renaming? Explain how register renaming is

done.

3.18 REFERENCES AND SUHHESTED READINGS

[1]Pipelining. cs.siu.edu/~cs401/Textbook/ch3.pdf

[2]Course Notes, Mafla, E. CDA3101, at cise.ufl.edu/~emafla/

[3] Delay slot - WikiMili, The Best Wikipedia Reader.

wikimili.com/en/Delay_slot

322 | P a g e

Space for learners: [4] Register Renaming ,University of Minnesota,

d.umn.edu/~gshute/arch/register-renaming.html

[5] "Advanced Computer Architecture" Hwang ,Publisher Tata

McGraw-Hill Education, 2003 ISBN:007053070X, 9780070530706

[6] "Computer Organization and Design – The Hardware / Software

Interface", David A. Patterson and John L. Hennessy, 4th.Edition,

Morgan Kaufmann, Elsevier, 2009.

[7] "Computer system Architecture", Mano, M. Morish, 3rd Edition,

Pearson Education,1993

---×---

323 | P a g e

Space for learners: UNIT 4: ADVANCED CONCEPTS OF PIPELINING

 SCHEDULE

Unit Structure:

4.1 Introduction

4.2 Unit Objectives

4.3 Pipelining

 4.3.1 Types of Pipeline

 4.3.1.1 Arithmetic Pipelining

 4.3.1.2 Instruction Pipelining

4.4 Pipelining Processor

 4.4.1 Scalar Processor

 4.4.2 Vector (Array) Processor

4.5 Advantages of Pipelining

4.6 Disadvantages of Pipelining

4.7 Pipelining Scheduling

 4.7.1 Data Dependency

4.8 Dynamic Scheduling

 4.8.1 Out-Of-Order Completion

 4.8.2 Dynamic Scheduling Algorithms

 4.8.2.1 Earliest Deadline First

 4.8.2.2 Least Slack Time First

 4.8.3 Advantages of Dynamic Scheduling

 4.8.4 Disadvantages of Dynamic Scheduling

4.9 Static Scheduling

 4.9.1 Static Scheduling Algorithms

 4.9.1.1 The Rate Monotonic

 4.9.1.2 The Shortest Job First

4.10 Tomasulo’s Algorithm

 4.10.1 Out-Of-Order Execution Implementation

 4.10.1.1 Reservation Stations

 4.10.1.2 Register Renaming

 4.10.1.3 Common Data Bus

 4.10.1.4 Score boarding

4.11 Reorder Buffer

324 | P a g e

Space for learners: 4.12 Summing Up

4.13 Key Terms

4.14 Answers to Check Your Progress

4.15 Possible Questions

4.16 References and Suggested Readings

4.1. INTRODUCTION

In this unit, you will get to learn in detail about pipelining scheduling

which is a very important concept of parallelism in computer

organization and architecture (COA). As you already know that in

pipelining, the instructions are accumulated through a pipeline from the

processor. Many instructions are overlapped with each other.

Performances of the CPU are improved due to the use of pilelines. So

we will discuss the main concepts of pipelining through the dynamic

scheduling approaches.

After going through the chapter, you will get to learn some of the

important concepts of pipelining scheduling such as

• DATA DEPENDENCY – Data dependency is a concept that is

applied to check whether a block works properly even if the

instructions present in that block are rearranged.

• SCOREBOARD – When the data dependencies are not present

and when sufficient resources are present in the system, the

score-boarding technique allows the execution of out-of-order

performances.

• SLACK TIME – When the time of a process gets delayed

without other processes getting delayed, is termed slack time.

325 | P a g e

Space for learners: • RATE MONOTONIC – Rate monotonic (RM)is a type of

static scheduling algorithm in which the instructions that have

the smallest job or rate are given more priority than the bigger

jobs.

4.2. UNIT OBJECTIVES

Studying this unit, you will be able to:

• Understand the concept of pipelining and pipelining scheduling.

• Discuss the different data structures related to pipelining

processes.

• Know the different dynamic and static scheduling algorithms.

4.3. PIPELINING

Pipelining is a technique where instruction overlapping occurs at the

time of execution. Instructions are accumulated from a processor into

the input registers through a pipeline, and therefore this process is

known as pipelining. The order in which the instructions are stored and

executed is defined as the pipelining processing [1]. Different stages are

linked together to form a single-stage pipeline and the instructions enter

through one end of the pipeline and come out through the other end.

Each stage of the pipeline consists of some input registers which hold

the instructions at every stage and are then operated by some

combinational circuit. When a combinational circuit works on a

register, the output of it is shifted to the next registers present in the

lined-up segments. All the instruction inside the pipeline works

concerning some clock time[1].

326 | P a g e

Space for learners: 4.3.1. Types of Pipeline

Since instructions encountered in the pipeline are of different types, so

to cope up with this situation, the pipeline is split into two types. They

are Arithmetic Pipelining and Instruction Pipelining, which are

explained as follows [1]:

4.3.1.1. Arithmetic Pipelining

When arithmetic operations come as instruction into the pipeline they

are then stored in the Arithmetic Pipeline. Arithmetic operations may

include addition, subtraction, operations on floating-point numbers, etc.

[1].

4.3.1.2. Instruction Pipelining

Instruction pipelining helps in increasing the throughput of the system.

Fetch, execute and decode instructions are overlapped in the instruction

cycle. When a new instruction is present in the memory then it is read

by an instruction pipeline, and the instructions that were already

existing are executed in the segments present in the pipeline. The

efficiency of the pipeline will increase if the instruction cycle is split

into the equal time clock. By doing this we execute multiple

instructions simultaneously. That is, we can say that parallel processing

occurs in the pipeline thus increasing the efficiency of the system along

with an increasing throughput [1].

CHECK YOUR PROGRESS

1) What do you understand by pipelining?

2) What do you mean by pipelining schedule?

3) What is arithmetic pipelining?

4) What is instruction pipelining?

5) Fill in the blanks:

 a) When the time of a process gets delayed without other

processes actually getting delayed, is termed as the

________________.

 b) Each stage of the pipeline consists of some _________ which

holds the instructions at every stage and then operated by some

____________ circuit.

327 | P a g e

Space for learners: 4.4. PIPELINING PROCESSOR

Depending upon the work it follows, the pipelining processors are

divided into two categories, one is the scalar processor and the other is

the vector(array) processor[1].

4.4.1. Scalar Processor

The simple processor which executes one instruction at a time and that

too simple instructions are known as the scalar processor. But as it

works on single instruction at a time therefore it proves to be an

inefficient processor. The speed of the processor is also very slow.

For example, we need to add two numbers and store the answer in the

third location which requires only simple calculation[1].

ADD B, D and store it in E.

4.4.2. Vector (Array) Processor

When complex instructions are executed on numerous data

synchronously, then a vector processor is used. This processor executes

the instructions very fast as compared to the scalar processor and has

much efficiency.

In the Instruction pipelining, at a particular time, different works are

performed by the processor on the different data. Vector processor uses

the instruction pipeline for data processing. Here the CPU remains busy

all the time[1].

4.5. ADVANTAGES OF PIPELINING [1]

• Using pipelining, the total time of the processor's instruction

cycle gets reduced thereby increasing the throughput of the

instruction. In an actual case, multiple instructions are executed

simultaneously and it looks like that the total time gets reduced.

328 | P a g e

Space for learners: • The time delay in between two instructions is greatly reduced

hence increasing the throughput.

• Nowadays for a faster and more complex design Arithmetic and

Logic Unit, the pipeline is developed into several stages.

• Performance of the pipeline increases, meaning the clock cycle

also increases.

• The speed at which the clock cycle of the RAM works is much

lower than the clock cycle of the pipelining processor hence

increasing the performance.

4.6. DISADVANTAGES OF PIPELINING [1]

• Branching delay can occur in a pipelined processor. For

reducing this branching delay address of the target branch need

to be pre-fetched at the stage of decoding. Doing this the delay

occurred may be reduced until 1 clock cycle.

• The flip-flops that are inserted between the data modules

increase the latency in the instructions.

• In pipelined processing, you may get some unexpected

performances.

• When there are many branches in the stages of the pipeline, then

the throughput gets reduced.

• Memory delay can occur in the pipelined processor. Cache miss

occurs when searched data or instructions are not present in the

cache memory and therefore searched in the main memory

which then consumes more number of the instruction cycle. This

is known as the Memory delay which becomes the reason for

the delay for the other data or instructions that are lined up.

• When the pipeline does not validate the assumptions of the

instructions, then incorrect behavior of the program might

occur, which leads to hazards.

329 | P a g e

Space for learners: 4.7. PIPELINING SCHEDULING

Pipelining scheduling is a type of mechanism where executions are

overlapped for different inputs and the computations are performed at

different stages. It improves the performances of the machine that have

parallel instructions usually termed as instruction pipelines. Let us

explain this pipelining scheduling with the help of the following

example. Suppose you have to manufacture a washing machine by

developing two models[2].

a) For model 1, suppose you have designed the washing machine

in such a way it washes (W), dries (D), and iron (I) one cloth at a time

(T). That is, for performing the mentioned operations on(n) number of

clothes, the time required would be (n.T).

Figure 1: Model 1 for pipelining example

b) For model 2, suppose you have split the work of one washing

machine into different machines that can wash (W), dry (D), and iron

(I) the clothes separately. For each separate machine, the mentioned

work is performed on more than one number of clothes in time (T).

Now the time, that is required by each machine to perform the above

task (for 1 cloth at a time) will be (T/3)[2]. And the time required for

performing the operations on (n) number of clothes will be

{T3= (2 + n). T/3}.

For a larger number of clothes, (2 + n) will become ‘n’. Then the time

required will be

{T3 = n. T/3}

WASH + DRY + IRON

T

330 | P a g e

Space for learners:

Figure 2: Model 2 for pipelining example

Here, model 2 explains the pipelining process. Let us explain this as

follows[2].

• For time T/3, the cloth is washed in the machine.

• After it finishes the process of washing, it enters the second

stage that is the dry stage, and works there for time T/3. When

the second cloth was in the dry stage another cloth has entered

the washing stage and took the same time T/3. It is being

pipelined.

• When the first cloth entered the iron stage for time T/3, the

second cloth is in the dry stage for time T/3 (it is being

pipelined) and the third cloth is in the washing stage for time

T/3 (it is being pipelined).

• Then cloth one finishes its task, cloth two is pipelined and enters

into the iron stage. Meanwhile, cloth 3 enters into the dry stage

and new cloth 4 enters into the washing stage.

• Simultaneously all the machines are working having each time

T/3.

• In this way, all the machines are working keeping themselves

busy without remaining idle.

• By keeping in mind the formula (T3 = (2 + n). T/3), where n is

several clothes.

• We can say that Cloth one took (for all the three stages) time

T = (2 + 1) T/3 = 3T/3

• Cloth two took time; T = (2 + 2) T/3 = 4T/3

• Cloth three took time; T = (2 + 3) T/3 = 5T/3and so

on.

This explains the pipelining process.

WASH DRY IRON

T/3 T/3 T/3

331 | P a g e

Space for learners: 4.7.1. Data Dependency

Data dependency is a concept that is applied to check whether a block

works properly even if the instructions present in that block are

rearranged. As said, there are three types of data dependencies[4].

• Read After Write (RAW) – At first, suppose Instruction 1

writes an instruction. That same instruction is read by

Instruction 2 later. After Instruction 1 writes the value, then

only Instruction 2 will read, therefore Instruction 1 must be

written first otherwise instead of reading the new value,

Instruction 2 will read the old value.

• Write After Read (WAR) – At first, the location of a value is

read by Instruction 1. After that Instruction 2 again rewrites the

value. Instruction 1 must be written first, otherwise, instead of

reading the new value, Instruction 2 will read the old value.

• Write After Write (WAW) – Both Instruction 1 and 2 when

write a value in the same location, then this dependency is

termed as write after write and it must be in the same order as

the original order.

4.8. DYNAMIC SCHEDULING

At the time of compilation, sometimes some dependencies occur in the

system and we are unable to recognize these dependencies. In this case,

handling of the dependencies is performed by the dynamic scheduler

and hence the process is termed dynamic scheduling. For instructions

having simple pipelining techniques, the major drawback is that all

instructions are scheduled in some order, and once the instructions are

CHECK YOUR PROGRESS

1) What is a scalar processor?

2) What is a vector processor?

3) State the advantages of pipelining.

4) State the disadvantages of pipelining.

5) What are the different data dependencies?

332 | P a g e

Space for learners: pipelined then no new instructions or instructions after the scheduled

instructions can be executed earlier than the pipelined instructions. If

two or more instructions are spaced closely and have the same

dependencies, then it might so happen that the instructions might come

to a halt or become idle[3]. When hardware is taken into account,

dynamic scheduling comes into force.

4.8.1. Out of Order Completion

The WAR and WAW hazards create the possibility of out-of-order

execution. For handling the exceptions, major complications are created

by the out-of-order completion. There are two possible cases where

non-precise exceptions might occur[3].

• Suppose there are many instructions in a pipeline and it may so

happen that one instruction present in the pipeline can cause

exceptions. The possibility of a non-precise exception might

occur when instructions that are present after the ‘exception

instruction’ have been executed first[3].

• Another possibility might occur where there are many

instructions present in a pipeline and it may so happen that one

instruction present in the pipeline can cause exceptions. The

possibility of a non-precise exception might occur when some

instructions present in the pipeline before the ‘exception

instruction’ are not executed at all[3].

Execution of out-of-order is allowed if the five stages pipeline is

transformed into two stages in the following ways[3].

• Issue – Instruction decoding and to check whether any structural

hazards are present in the pipeline or not.

• Read operands – The pipeline will wait till no data hazards are

encountered and then the operands will be read.

For the dynamic scheduling, the instruction in the pipeline should pass

in an ordered way through the Issue stage and then into the read

operands, which is the second stage.

333 | P a g e

Space for learners: 4.8.2. Dynamic Scheduling Algorithms

As the name suggests, a dynamic scheduler helps in making efficient

decisions during the runtime of the system. Therefore, the system that

works on dynamic scheduling is more flexible but at the same time

calculation overhead also occurs. It checks which instruction has the

most priority than the other and simultaneously works on that

instruction at first. As it takes instruction during the runtime therefore

the priority of executing the instruction might also change

accordingly[5]. There are many dynamic scheduling algorithms based

on different approaches, some of them are discussed below.

4.8.2.1. Earliest Deadline First (EDF)

EDF is a type of dynamic scheduling algorithm in which the

instructions that have the nearest deadline to complete are given the

task of highest priority and are executed first. When the current process

gets completed and new processes are scheduled then this algorithm is

worked upon. It is applicable for real-time systems. The CPU is utilized

fully making sure that all the tasks are completed. An optimal feasible

schedule is processed where all the tasks are executed within the

stipulated deadline. The task must mention its deadline once it is made

ready for execution and given a fixed CPU burst timing. Preemption

can occur in EDF, and any instances that are scheduled for later but are

engaged with an earlier deadline get ready for execution and becomes

active[5].

But there are some limitations of the Earliest Deadline First Algorithm

such as

• Overloading problems for the transient might occur.

• There might be some problems when resources are shared.

• Sometimes implementations are not done efficiently.

Let us explain the EDF algorithm with the help of an example by taking

a flowchart[5].

334 | P a g e

Space for learners:

Figure 3: Flowchart of the Earliest Deadline First Algorithm

4.8.2.2. Least Slack Time First (LST)

LST is a type of dynamic scheduling algorithm in which the

instructions that have the smallest slack time are given the task of

highest priority and are executed first. When the time of a process gets

delayed without other processes getting delayed, is termed as the slack

time. Like that of the EDF, when the current process that has the lowest

slack time gets completed and new processes are scheduled then this

algorithm is worked upon. For the slack time to be given as l, starting

time is given as t, deadline interval is given to be d, and the remaining

execution time is given to be c, the formula is given as (l = d – c – t)

[5]. The algorithm is somewhat complex therefore requires extra

information like the deadline and the execution timing. In real-time

systems, it is sometimes difficult to predict the burst time. If the

processes have the same slack time, then first cum first serve (FCFS)

algorithm is applied together with LST.

IS THE READY

QUEUE FILLED?

NEW PROCESS

YES

WAI

THE LISTS OF THE PROCESSES ARE BEING

PREPARED AND PRIORITY HAS BEEN

ASSIGNED GIVING THEM SOME DEADLINE

THE PROCESSES HAVING THE SMALLEST

DEADLINE ARE EXECUTED FIRST WITH THE

HIGHEST PRIORITY

NO

335 | P a g e

Space for learners: Let us explain the LST algorithm with the help of an example by taking

a flowchart [5]

Figure 4: Flowchart of the Least Slack Time Algorithm.

4.8.3. Advantages of Dynamic Scheduling[6]

• Unknown dependencies during compile time are handled by

dynamic scheduling because memory references are included.

• It simplifies the performance of the compiler.

• Codes on a pipeline are compiled so efficiently that they can run

on different pipelines.

• Hardware speculations are often built on dynamic scheduling.

IS THE READY

QUEUE FILLED?

NEW

YES

WAI

THE LISTS OF THE PROCESSES ARE

BEING PREPARED AND PRIORITY HAS

BEEN ASSIGNED by USING (l = d – c – t)

THE PROCESSES HAVING THE

SMALLEST SLACK TIME ARE

EXECUTED FIRST UNTIL NEW

NO

336 | P a g e

Space for learners: 4.8.4. Disadvantages of Dynamic Scheduling[7]

• The complexities of the hardware increase substantially.

• Dynamic scheduling surely complicates exception handling.

• WAW and the WAR dependencies are created for out-of-order

execution as well as out-of-order completion.

4.9. STATIC SCHEDULING

In static scheduling, all the processes are fixed for a particular stage in

the pipeline. Before the execution takes place, the processes are given

the tasks. They are usually processor non-preemptive. The overall time

of the execution is minimized by the static algorithm. It tries to indicate

the behavior of the execution of the program such as the execution time,

process, and communication delays during the compile time. The

smaller tasks are partitioned for reducing the communication costs.

Processes are allocated to the processors. Static scheduling has a more

efficient execution time environment as compared to the dynamic

scheduling algorithm [5].

4.9.1. Static Scheduling Algorithms

Just like the dynamic scheduler, the priority scheduler works on the

tasks that have more priority than the other but the value of the priority

does not change. The static scheduler can make an efficient decision

before runtime as well. There are many static scheduling algorithms,

some of them are discussed below[5].

4.9.1.1. The Rate Monotonic (RM)

RM is a type of static scheduling algorithm in which the instructions

that have the smallest job or rate are given more priority than the bigger

jobs. The size or rate of the job is already scheduled in the RTOS.

When the current process that has the smallest job gets completed and

new processes are scheduled then this algorithm is worked upon[5]. The

priorities are assigned just before the execution and remain the same

throughout its execution period. Rate monotonic works based on the

preemption, that is, during the execution time, if a shorter job is

337 | P a g e

Space for learners: encountered by the system, then that job is given more priority for the

execution. A job that has more time period has less priority and a job

that has a lesser time period have more priority. The implementation of

it is very much easy.

Let us explain the rate monotonic algorithm with the help of an

example by taking a flowchart [5]

Figure 5: Flowchart of the Rate Monotonic algorithm

4.9.1.2. The Shortest Job First (SJF)

SJF is a type of static algorithm in which the instructions that have the

smallest execution time are executed first. The time of the job is already

scheduled in the RTOS. It is kept as the CPU time. When the current

process that has the smallest job time gets completed and new processes

IS THE READY

QUEUE FILLED?

NEW

YES

WAI

THE LISTS OF THE PROCESSES ARE

BEING PREPARED AND THE PROCESS

WITH THE LOWEST TIME PERIOD IS

THE PROCESSES HAVING THE SMALLEST

PERIOD TIME ARE EXECUTED FIRST

UNTIL NEW PROCESSES ARRIVE

NO

338 | P a g e

Space for learners: are scheduled then this algorithm is worked upon[5]. This algorithm is

suitable for a processor having batch-type processing and the waiting

time for the jobs is not critical. SJF can be applied in both preemptive

and non-preemptive scheduling algorithms. Starvation of the processes

might occur if the processes have a larger burst time.

Let us explain the SJF algorithm with the help of an example by taking

a flowchart [5].

Figure 6: Flowchart of the Shortest Job First algorithm

IS THE READY

QUEUE

NEW

YE
WAI

THE LISTS OF THE PROCESSES ARE

BEING PREPARED AND THE PROCESS

WITH THE LOWEST EXECUTION TIME

THE PROCESSES HAVING THE

LOWEST EXECUTION TIME ARE

EXECUTED FIRST UNTIL NEW

NO

CHECK YOUR PROGRESS

1) What is out of order completion?

2) Describe the different dynamic scheduling algorithms.

3) Describe the different static scheduling algorithms.

4) What are the advantages of dynamic scheduling?

5) What are the disadvantages of dynamic scheduling?

339 | P a g e

Space for learners: 4.10. TOMASULO’S ALGORITHM

A scientist named Robert Tomasulo invented the Tomasulo Algorithm

to be used in IBM 360/91.Tomasulo’s algorithm is a type of hardware

algorithm in computer architecture that isused for implementing

dynamic scheduling allowing out-of-order execution and enabling

multiple execution units. The hardware includes the reservation

stations, the register renaming, and a common data bus (CDB) for

carrying the values towards the reservation stations. Because of the

presence of this hardware architecture, parallel processing is possible.

WAR and WAW hazards are removed using register renaming. And

this register renaming is done through reservation stations. Register

Renaming is implemented through reservation stations. Tomasulo’s

algorithm work in some stages which are discussed below [8]. Here

reservation station provides the register renaming.

1) The Issue stage – Instructions are present in a queue (FIFO

queue) in which all the instructions are given some space with

some deadline. When one instruction completes its job, the next

instruction remains at the head of the queue. The work of the

Issue stage is to call the instruction from the queue that is

present at the head of the queue. If the reservation station

matches the called instruction, then the instruction is issued

some operand values in the renaming register [3]. One

condition is that; the reservation station must remain free when

the instruction is called. If the reservation station is not free,

then the instruction stalls, and subsequently structural hazards

occur. If there is a problem in issuing one instruction, then the

instructions that are lined up in the queue will not get executed.

Another case may occur; the instruction waits in the reservation

stations if the values of the operands are not found from the

common data bus [9].

2) The Execution stage – If all the values of the operands are

available by the CDB into the reservation stations, then

execution of the processes takes place. Until and unless operand

values are not available, execution does not occur [3].With the

help of effective addressing, load and store are

340 | P a g e

Space for learners: maintained.Executions are not initiated by the instructions until

and unless the previous instructions are completed that were in

order [9].

3) The Write Result stage– Once the results are obtained through

execution, the result is written on the CDB and then transferred

into the registers and then into the reservation stations that

contain the store buffers. At this write result step, the data is

written into the memory. As soon as the data values and

addresses are present the data is transferred to the memory and

in this stage, the storage gets completed[3].

4.10.1. Out-of-Order Execution Implementation

For the complexities of the pipeline to be enhanced, the out-of-order

processor needs to be implemented. Now the WAR and WAW hazards

can be tackled because the system can reorder the instructions. The

following are some of the issues that have been tackled in the pipelining

structure and which are very important for Tomasulo’s algorithm.

4.10.1.1. Reservation Stations

Reservation stations are one of the features of the CPU which permits

the register renaming and Tomasulo's algorithm uses these reservation

stations for use in dynamic scheduling. Reservation stations work as the

data buffer that fetches and stores the instruction operand values as

soon as they are made available and it does not allow the data to get

stored in the register. One instruction specifies a single reservation

station and the operands once available are sent for its execution and

the completed instructions are stored in the buffer of the reservation

stations. When there are many instructions and when all of their needs

to write in the same register than by the terms, logically only the last

instruction can be written in that same register[10].

Sequential instructions are issued to the reservation stations in

Tomasulo's algorithm that helps in buffering the instructions.

Reservation stations checks the common data bus for the availability of

341 | P a g e

Space for learners: the data operand and if it is available in the buffer then only the

instructions get activated.

There are some fields of register present in the reservation stations

which are explained as follows[3]

• Op – Op is the operations that need to be performed on the

operand data. It is the functional unit of the associated

reservation station. The functional unit can be the arithmetic as

well as the logical interpretations such as {AND, OR, NOT,

ADD, SUBTRACT, etc.).

• Qj, Qk–In these fields of the reservation station, the source

operands are produced and the value of zero indicates that the

reservation station has delivered the value to its corresponding

source. It produces the source registers.

• Vj, Vk – The source operands have some actual values depicted

as Vj and Vk. The actual values will be only valid if the Qj and

Qk have the value zero which indicates that the value of the

source has arrived in the reservation station.

• A – The ‘A’ field holds the address of the memory information

for a load or a store. Until and unless effective address

computation occurs, instructions containing in the immediate

field only hold.

• Busy – It works in two Boolean conditions that are True or

False. If the condition is True that means the reservation station

is occupied or busy. And if the condition is False that means the

reservation station is not occupied. The value 1 indicates that the

station is busy and o indicates that the station is not busy.

• Qi –all the results of the reservation station are stored in this

register. If the value is 0 that means the value present in the

register is the actual value of that register. At this point, the

register is not renamed.

4.10.1.2. Register Renaming

Instruction results that are stored in the registers are particularly

renamed. There may be more than one type of name in the registers that

might be used in the system hardware. The reservation stations and the

registers are mapped after which the renaming is performed. For

342 | P a g e

Space for learners: correctly performing the out-of-order executions, the register renaming

is usually applied by Tomasulo's algorithm[11].

It is a pipelining technique that renames the register operands by

dealing with the dependences of the data. The operands are specified

with the help of a compiler using the architectural registers that are

explicit instructions. The renaming register restores the name of these

architectural registers by a new value name for the operands of each

instruction. It recognizes the true dependencies automatically. It

removes the WAR and WAW hazards by dynamically assigning values

to the registers [11].

4.10.1.3. Common Data Bus

The functional units and the reservation stations are connected directly

with the help of the common data bus (CDB). Tomasulo's algorithm

depicts that the CDB "preserves precedence while encouraging

concurrency". It can be in two different structures [11].

• Operation results can be accessed by the functional unit without

demanding any register with a floating-point and allow multiple

functional units to access the register file [11].

• In CDB, control execution and hazard detection are distributed

while controlling of the execution of the instruction are done by

the reservation stations rather than by a hazard unit [11].

4.10.1.4. Scoreboarding

The scoreboard also follows the dynamic scheduling technique or we

can say helps in implementing it so that the execution of the out-of-

order can be performed with the condition that no conflicts occur and

there is the availability of the hardware. During scoreboard, if data

dependencies occur then it is tracked, logged, and observed very often.

The scoreboard monitors the system every time to check whether any

instruction got stalled or not and tries to resolve the dependencies

before any instruction gets stalled[12]. It monitors every instruction that

waits for it to get dispatched.

The scoreboard keeps all the latest information into its registers and

also determines the time period when the instruction will begin and end.

343 | P a g e

Space for learners: The scoreboard contains some stages in which the instruction must pass

through it. The stages are given as follows[13].

a) Issue – In the issue stage, the scoreboard checks whether any

hazards such as the WAW hazards are available or not. If it ispresent,

then the instruction gets stalled[13].

b) Read operands – The scoreboard reads or finds whether any

source operands are available or not. If it is present, the functional units

are instructed by the scoreboard to check the register file and read the

operands so that it can start its execution. The RAW hazards are

corrected in this stage. If instructions do not write or use any operand,

then that operand is said to be free or available and is present in the

register file. If multiple instructions come to the register file, then

ambiguity might occur as to which instruction will get the preference to

write the operand[13].

c) Execution – The scoreboard gets notified here by the functional

unit as to when the execution gets over[13].

d) Write result – As soon as the scoreboard gets notified from the

execution stage that the execution has finished, the scoreboard

investigates whether any WAR hazards are present or not. If WAR

hazards are present, then the functional unit is instructed to get stall by

the scoreboard until the hazards are being cleared[13].

 The main difference between Tomasulo's algorithm and

scoreboarding is that there is no distribution system in scoreboarding.

Scoreboarding keeps the track of all instructions and information within

itself and is the sole control unit. Whereas Tomasulo's algorithm is a

distributed system. All the functional control is distributed among

different registers.

4.11. REORDER BUFFER (ROB)

The reorder buffer creates an apparition to the Users that their

instructions are working in order. When a system encounters an

344 | P a g e

Space for learners: instruction, the instruction gets renamed and decoded and then gets

transferred to the ROB as well as the issue queue and simultaneously

marked as busy. ROB receives the information once the instruction gets

executed and the ROB is marked as not busy. Not busy means that it is

now 'committed' and the architectural state gets visible. But if an

exceptional instruction remains at the head of the ROB then the

architectural changes are not visible[14].

The structure of the ROB is normally a circular buffer that keeps the

track of all instructions in order, while the commit head points to the

oldest instruction and simultaneously new instructions will be managed

within the ROB.

Like the other forms, reorder buffer has also some stages that help in

the smooth working of it. They are explained as follows[14]:

a) Exception State –The oldest instruction in the pipeline when

gets encountered by the ROB and is pointed to the head pointer then an

exception is thrown by the system. A single bit is used to depict the

instruction that has entered the ROB or not but the oldest exception

instruction is only tracked by the additional exception state. By doing

this saves space[14].

b) PC Storage – Branch and Jump instruction are used to access the

information into the ROB’s PC file at the time of register read[14].

c) Commit Stage – When the head of the ROB does not contain

any instruction then it can be committed which means that any changes

that occur in the system are made available. ROB releases single

instruction in the pipeline but does not check for multiple instructions to

get committed. The instruction gets stored into the memory only when

the commit is performed. After commit, the instruction physically

releases the register[14].

d) Exception and flushes – When ROB contains the instruction at

the commit head then only exceptions are handled. The ROB gets

emptied by flushing the pipeline. Reset of the rename map table must

be done. Control status register (CSR) receives the accepting instruction

if the instruction is an architectural exception and if it is a micro-

345 | P a g e

Space for learners: architectural exception re-fetching is done of the failing instructions and

execution can begin afresh[14].

e) Point of no return – For marking the instruction for which

exception might be generated, another pointer head runs just in front of

the ROB commit head which is known as the point-of-no-return. It

includes memory operations that are untranslated and branches that are

unresolved. RoCC instructions that do not tolerate miss peculationare

nowadays used by the PNR which means that instruction that has

passed the PNR head only gets issued by the ROB[14].

f)

CHECK YOUR PROGRESS

Fill in the following blanks.:

1. Pipelining is a technique where instruction overlapping occurs at the

time of its ____________.

2. The efficiency of the pipeline will ________ if the instruction cycle

is split into the equal time clock.

3. ____________ delay can occur in pipelined processor.

4. The flip-flops that are inserted between the data modules increases

the __________ in the instructions.

5. ______________ algorithm is a type of hardware algorithm in

computer architecture that is used for implementing dynamic

scheduling allowing out-of-order execution and enabling multiple

execution units.

6. If the reservation station matches the called instruction, then the

instruction is issued some operand values in the

____________________.

7. Reservation Stations checks the _________________ for the

availability of the data operand.

346 | P a g e

Space for learners: 8. The reservation stations and the registers are mapped after which the

___________________ is performed.

9. The structure of the _____________ is normally a circular buffer

that keeps the track of all instructions in order.

10. _________________ receives the excepting instruction if the

instruction is architectural exception.

4.12. SUMMING UP

• The order in which the instructions are stored and executed is

defined as pipelining processing.

• All the instruction inside the pipeline works concerning some

clock time.

• When arithmetic operations come as instruction into the pipeline

they are then stored in the arithmetic pipeline.

• When complex instructions are executed on numerous data

synchronously, then a vector processor is used. This processor

executes the instructions very fast as compared to the scalar

processor and has much efficiency.

• The time delay in between two instructions in a pipeline is

greatly reduced hence increasing the throughput.

• Branching delay can occur in a pipelined processor.

• Data dependency is a concept that is applied to check whether a

block works properly even if the instructions present in that

block are rearranged.

• If two or more instructions are spaced closely and have the same

dependencies, then it might so happen that the instructions

might come to a halt or become idle.

• The WAR and WAW hazards create the possibility of out-of-

order execution.

347 | P a g e

Space for learners: • If the processes have the same slack time, then first cum first

serve (FCFS) algorithm is applied together with LST.

4.13. KEY TERMS

• PIPELINING - It is a technique where instruction overlapping

occurs at the time of execution. Instructions are accumulated

from a processor into the input registers through a pipeline, and

therefore this process is known as pipelining.

• PIPELINING SCHEDULE – Pipeliningscheduling is a type of

mechanism where executions are overlapped for different inputs

and the computations are performed at different stages. It

improves the performances of the machine that have parallel

instructions usually termed as instruction pipelines.

• DATA DEPENDENCY – Data dependency is a concept that is

applied to check whether a block works properly even if the

instructions present in that block are rearranged.

• SCOREBOARD – When the data dependencies are not present

and when sufficient resources are present in the system, the

score-boarding technique allows the execution of out-of-order

performances.

• EARLIEST DEADLINE FIRST – EDF is a type of dynamic

scheduling algorithm in which the instructions that have the

nearest deadline to complete are given the task of highest

priority and are executed first.

• LEAST SLACK TIME FIRST – LST is a type of dynamic

scheduling algorithm in which the instructions that have the

smallest slack time are given the task of highest priority and are

executed first.

• SLACK TIME – When the time of a process gets delayed

without other processes getting delayed, is termed Slack time.

• RATE MONOTONIC – RM is a type of static scheduling

algorithm in which the instructions that have the smallest job or

rate are given more priority than the bigger jobs.

348 | P a g e

Space for learners: • SHORTEST JOB FIRST – SJFis a type of static algorithm in

which the instructions that have the smallest execution time are

executed first.

4.14. ANSWERS TO CHECK YOUR PROGRESS

1. Execution, 2. Increase, 3. Branching, 4. Latency, 5. Tomasulo, 6.

Renaming Register, 7. Common Data Bus, 8. Renaming, 9. Reorder

Buffer, 10. Control Status Register.

4.15. POSSIBLE QUESTIONS

Short Type Questions:

1) What do you mean by pipelining?

2) What is pipelining processing?

3) What are the two types of a pipeline?

4) Explain in brief the data dependency.

5) Explain in brief the dynamic scheduling.

6) What are the different types of dynamic scheduling and static

scheduling algorithms?

7) Write the function of the Issue stage in Tomasulo'salgorithm.

8) What is a reservation station?

9) How does the register renaming work in the pipelining

schedule?

10) What do you mean by reorder buffer?

11) What is the function of a common data bus?

12) What do you mean by scoreboarding? Explain in brief.

13) What are the different dependency hazards?

14) What do you understand by point of no return? Explain in brief.

Long Type Questions:

1) What do you mean by pipelining? Explain the different types of

pipelines.

349 | P a g e

Space for learners: 2) Discuss the advantages and disadvantages of pipelining.

3) Explain the pipelining scheduling with a relevant example.

4) What are the different types of data dependencies?

5) What are the advantages and disadvantages of dynamic

scheduling?

6) Explain the earliest deadline first algorithm.

7) Explain the least slack time first algorithm.

8) Explain the rate monotonic algorithm.

9) Explain the shortest job first algorithm.

10) Explain Tomasulo'salgorithm.

11) What do you mean by reservation station? Explain all its stages.

12) What do you mean by register renaming?

13) What do you understand by reorder buffer?

4.16. REFERENCES AND SUGGESTED READING

[1] https://www.lkouniv.ac.in/site/writereaddata/siteContent/20200

4221613338445rohit_engg_pipelining_and_hazzard.pdf

[2] https://www.quora.com/What-is-pipelining-scheduling-in-

computer-architecture

[3] https://www.brainkart.com/article/Dynamic-Scheduling_8832/

[4] https://en.wikipedia.org/wiki/Instruction_scheduling

[5] Teraiya, J., & Shah, A. (2020). Analysis of dynamic and static

scheduling algorithms in soft real-time system with its implementation.

In Soft Computing: Theories and Applications (pp. 757-768). Springer,

Singapore.

350 | P a g e

Space for learners: [6] https://www.cs.umd.edu/~meesh/411/CA-

online/chapter/advanced-concepts-of-ilp-dynamic-

scheduling/index.html

[7] COMPUTER ORGANIZATION AND ARCHITECTURE DESIGNING FOR

PERFORMANCE EIGHTH EDITION, BY WILLIAM STALLINGS, published

by Prentice Hall (an imprint of Pearson)

[8] https://www.cse.iitk.ac.in/users/biswap/CS422/L12-

Tomasulo.pdf

[9] http://www.cs.umd.edu/~meesh/411/CA-

online/chapter/dynamic-scheduling example/index.html

[10] https://www.cs.umd.edu/~meesh/cmsc411/website/projects/dyn

amic/tomasulo.html

[11] https://en.wikipedia.org/wiki/Tomasulo_algorithm

[12] https://en.wikipedia.org/wiki/Scoreboarding

[13] https://www.cs.umd.edu/~meesh/cmsc411/website/projects/dyn

amic/scoreboard.html

[14] https://docs.boom-core.org/en/latest/sections/reorder-buffer.html

---×---

351 | P a g e

Space for learners: UNIT 5 – ADVANCED CPU ARCHITECTURES

Unit Structure:

5.1 Introduction

5.2 Unit Objectives

5.3 Introduction to Advanced CPU architectures

5.3.1 Classification of Instruction Set Architectures:

5.4 VLIW Architecture

5.4.1 Example of VLIW code:

5.4.2 Examples of VLIW Processors:

5.4.3 Advantages of VLIW

5.4.4 Disadvantages of VLIW

5.4.5 Applications of VLIW Processors

5.5 EPIC Architecture:

5.5.1 EPIC vs VLIW

5.5.2 EPIC architectural details

5.6 Part 2: Introduction to Multiprocessor Systems:

5.6.1 Classification of Multiprocessors:

5.7 Interconnection Types:

5.8 Cache Memory: Uniprocessor vs Multiprocessor:

5.8.1 Cache Coherence Problem:

5.8.2. The “All-is-well” Solution:

5.8.3. Software-based solutions:

5.8.4. Hardware Solutions:

5.9 Summing Up

5.10 Answer to Check Your Progress

5.11 Possible Questions

5.12 References and Suggested Readings

5.1 INTRODUCTION

In last three decades, the architectures of CPU design have been

implemented on an unprecedented scale on a single chip due to the

advancement of Integrated Circuit fabrication technology. So, this

becomes very much relevant for you to learn about different

instruction set architectures. Moreover, it is also very important to

know about the interconnection between multiple processors &

cache memory and the cache coherence problem which may arise

with such interconnections.

352 | P a g e

Space for learners: This unit is divided into two parts. In the first part, we will take a

close took CPU architectures. Our primary focus is Very Large

Instruction Word (VLIW) architecture. You will get a brief

introduction to different instruction set architectures like CISC and

RISC, which are implemented in superscalar processors. The

detailed architecture of VLIW processors will be discussed in this

unit along with basic working, instruction format, advantages and

disadvantages. Additionally, the implementation details of

Explicitly Parallel Instruction Computing (EPIC) architecture will

also be discussed, which is a VLIW inspired architecture, developed

by HP and Intel. You will learn how EPIC differs from VLIW and

how EPIC overcomes certain limitations of VLIW.

The second part of the unit focusses on the concept of

Multiprocessor Systems, which is based on Multiple Instruction

stream, Multiple Data stream (MIMD)design scheme. We will

discuss about the different classification of multiprocessors –

namely tightly coupled and loosely coupled. You will also learn

about different interconnection structures between multiprocessors

along with pros and cons of each of the structure. We will also

discuss how cache memory is used in uniprocessor and

multiprocessor systems to increase the performance along with the

cache coherence problem. We will also look into different hardware

and software-based solutions to the cache coherence problem.

5.2 UNIT OBJECTIVES

The objective of this unit is to give an introduction to advanced

CPU architectures and multiprocessor systems. After completing

this unit, you will be able to

• Learnabout the VLIW architecture and how it differs from

the superscalars

• Know the EPIC architectures and how it differs from VLIW

• Learn the concept of multiprocessor systems and its types

• Understand the different interconnection structures in

multiprocessor systems with pros and cons.

• Define cache coherence problem and its solutions.

353 | P a g e

Space for learners: 5.3 INTRODUCTION TO ADVANCED CPU

ARCHITECTURES

In the field of Computer Science, an abstract model of a computer

system is defined by Instruction Set Architecture (ISA), also known

as Computer Architecture. Implementation of ISA corresponds to

the realization of ISA, such as CPU, registers, main memory, data

types to be supported, etc. An ISA is like a contract between the set

of microprocessor implementation of an architecture and the class of

programs that are written for that architecture. ISA defines a basic

set of operations that must be performed by the system and serves as

boundary between hardware and software. The set of operation may

include arithmetic, logical, branching and memory operations. The

ISA provides details about how a machine code over the

implementation of a particular instruction set architecture doesn’t

depend on the prime characteristics of that implementation. Thus, it

allows multiple implementations of ISA, which may differ in

physical size, overall performance and prices, but can run the same

machine code or software.

5.3.1 Classification of Instruction Set Architectures:

1. Complex Instruction Set Computer (CISC): In CISC

architecture, there are hundreds of instructions or commands

of variable lengths, that instructs the system to perform

addition of numbers, storing and displaying results. This

approach is carried out in order to save the memory since all

instructions of same length will contribute to wastage of

memory. Here, simple commands may require 8-bits and

complex commands may require 120 bits. An

implementation of CISC architecture is Intel x86, which was

introduced in 1978. CISC provides convenient addressing

modes and enables copying the block of instructions through

support for functions using CALL instructions. Thus, in

CISC, it is easy to expand the ISA.

2. Reduced Instruction Set Computer (RISC): In RISC

architecture, the computer system uses sets of instructions

which are highly optimized and CPU design focuses on raw

performance. In contrast to CISC, RISC uses relatively

simple, fixed length instructions of 32-bits. Although fixed

354 | P a g e

Space for learners: length instructions may mean more space wastage, however

the instructions are faster & easier to execute. Moreover, in

terms of CPU design perspective, RISC integrated chips

requires a smaller number of transistors as compared to

CISC, since RISC implementation deals with only handful

types of instructions and delivers high performance.

However, due to short instruction size, a greater number of

instructions are executed compared to CISC, in order to

accomplish a given function. Example of RISC architectures

includes Sun Microsystem’s SPARC, IBM/Motorola’s

PowerPC, Hewlett-Packard’s PA-RISC,SGI’s MIPS, ARM

architecture, etc. In recent times, almost all low-end portable

devices are based on ARM architecture, which includes most

Android-based systems, Apple’s iPhone and iPads,

Nintendo’s video gaming console Switch, Raspberry Pi and

many more.

Please note that the simplicity of RISC allows to easily design

superscalar processor tha tcan execute more than one command or

instruction at a time. This concept is known as Instruction-level

parallelism (ILP). In modern times, almost all CISC & RISC

processors are superscalar in nature, however, this has introduced

new levels of design complexity for CPU architects.

Fig. 1. Classification of ILP Processor Architecture

Now, there are two most significant types of ILP processors, namely

Superscalar processors and Very Long Instruction Word (VLIW)

processors. We have already come across superscalar processors, an

implementation for ILP processor architectures in which programs

CISC

ILP Processor

Architectures

Super Scaler Very Long Instruction Word

RISC EPIC VLIW

355 | P a g e

Space for learners: doesn’t have any explicit information about parallel execution of

instruction and it is the responsibility of the system hardware to

detect and construct action plans for any ILPs to be exploited for

parallelism. On the other hand, VLIW processors are built on an

architecture in which programs contain explicit information about

parallelism and it is the responsibility of the software, called

compiler to identify and communicate it to the hardware by

specifying all the independent operations. Thus, the hardware

doesn’t have to check further on the operations which can execute in

the same cycle, since the information is already provided by the

compiler. Let’s explore VLIW architecture in details in next section.

5.4 VLIW ARCHITECTURE

In the early 1980s, John Fisher, a faculty from Yale University,

invented the architectural concept and coined the term VLIW among

his research group. He later joined HP Labs. VLIW refers to a

processor architecture designed to take advantage of instruction-

level parallelism (ILP). It is less complex approach to allow higher

Check Your Progress

1. An abstract model of a computer system is defined by

2. What type of operations are defined by an instruction set

architecture?

3. What are the different class of Superscalars based on

Instruction Set Architecture?

4. RISC stands for _______________________________

5. Give one example each for implementation of CISC and RISC

architecture.

State TRUE or FALSE:

6. CISC uses simple, fixed length instructions.

7. In RISC, CPU design focuses on raw performance and the

instructions are highly optimized.

8. Instruction-level parallelism is the ability of a processor to

execute more than one instruction at a time.

356 | P a g e

Space for learners: performance i.e., multiple operations are performed simultaneously

or level of parallelism increases.

In VLIW Processor,

• Instruction consists of multiple independent operations

grouped together.

• There are multiple independent functional units.

• Each operation in the instruction is assigned to different

functional units.

• All functional units share the use of a common large register

file.

For example –

ADD R1, R2; SUB R5, R6; LD R7, data; STR R8, data;

In this example, there are four operations. ADD (Addition) and SUB

(Subtraction) are arithmetic operations, which corresponds to

Arithmetic & Logic Unit (ALU). Similarly, LD (Load) and STR

(Store) are memory operations, which corresponds to Memory Unit

(MU). Here, we can see that independent operations are grouped

together in a single instruction word. Now, the CPU will assign each

of these operations to different independent functional units to

execute the operations parallelly, thus to achieve instruction level

parallelism (ILP) and higher performance.

 Fig. 2(a). A typical VLIW Processor

Operation #1 Operation #2 Operation #n-1 Operation #n

Single multi-operation

 instruction

Register File

Load/

Store

Unit

(FU)

Floating

Point

Add Unit

(FU)

Integer

ALU

(FU)

Branch

Unit

(FU)

Instruction

Fetch Unit

Multi-operation

 instruction

(FU) Functional Unit

Data

Instruction/control

Memory

(Main/Cache)

357 | P a g e

Space for learners:

Fig. 2(b). A VLIW Instruction Format

In VLIW Processor, compiler is responsible for static scheduling of

instructions i.e., compiler finds out which operations can be

executed in parallel in the program. Compiler groups together these

independent operations in a single instruction (VLIW) which is the

VLIW. It also makes sure that before the operands are ready, an

operation is not issued.

VLIW instruction contains operands & operations to be performed

by the various functional units. One VLIW instruction encodes at

least one operation for each functional (or execution) unit on each

cycle. So, length of the instruction increases with the number of

functional (or execution) units. For example, as we have seen earlier

if we have two ALU and two Load/Store functional units in our

VLIW architecture, then VLIW instructions length will be four.

These operations are assigned to functional units by the position in

the given fields within the long instruction word. This is known as

slotting.

 Load / Store Floating-Point Floating-Point Branch Integer

 Addition Multiplication ALU

Stop to Consider

� The instructions within a VLIW instruction are issued and

executed in parallel.

� Since in VLIW processor, one VLIW instruction word

encodes multiple operations, which allows them to be

initiated in a single clock cycle.

� The start of execution of the operations is bound by the

VLIW instruction in which it appears, and all the

operations in a VLIW start executing together in parallel

� VLIW instructions are at least around 64 bits wide and

1024 wide in some architecture.

358 | P a g e

Space for learners: 5.4.1 Example of VLIW code:

RISC Code VLIW Code

MUL R1, R3, 3

LD R4, 0(R1)

ADD R2, R2, R4

SUB R3, R3, 1

BNEZ R3, -4

MUL R1, R3, 3

LD R4, 0(R1)

NOP

ADD R2, R2, R4

SUB R3, R3, 1

NOP

NOP

BNEZ R3, -4

In the above example for RISC Code, content of Register R3 is

multiplied by 3 and is stored in R1. The R4 is loaded with the data

stored in the address that R1 contains. Then the content of registers

R2 and R4 are added and stored in R2. The content is R3 acts as

counter and is decremented by 1. BNEZ instruction is a conditional

branch which checks if content of R3 is not equal zero and if the

condition satisfies, the control is passed back to -4 instructions from

the top i.e., to the MUL instruction at the beginning. In VLIW code,

this sequence is divided by the compiler in such a way that similar

task can be carried out parallelly on different execution or functional

units to achieve high performance.

5.4.2 Examples of VLIW Processors:

• VLIW Mini Supercomputers – Multiflow TRACE 7/300,

14/300 and 28/300

• Single Chip VLIW Processors – Philip’s LIFE Chips

• DSP Processors - Analog Devices’ SHARC DSP, Texas

Instruments’ C6000 DSP family

• Intel’s Itanium IA-64 EPIC (embedded & nonembedded)

• Tilera TILE Pro

5.4.3 Advantages of VLIW

1. Compiler determines data dependency checks and other

instruction issues; it becomes a lot simpler.

2. Reduces hardware complexity

3. Compiler is used to schedule according to functional units.

4. Compiler issues instructions corresponding to the position of

functional units.

359 | P a g e

Space for learners: 5. Ensures low power consumption due to reduction of

hardware complexity.

6. Increases potential clock rate.

5.4.4 Disadvantages of VLIW

1. Higher complexity of the compiler, which are hard to

design.’

2. VLIW processors cannot react on dynamic or unscheduled

events. It can work only on static instructions. Unscheduled

events, for example a cache miss could lead to a stall which

will stall the entire processor.

3. Large memory bandwidth & more registers for software

pipelining, etc.

4. Increased program code size.

5. The number of instructions in a VLIW instruction word is

usually fixed.

6. If issued bandwidth is not met, padding of VLIW instruction

word is needed, which results in increase in code size.

7. In case of un-filled opcodes in a VLIW, padding of VLIW

instructions with No-Ops (No Operations) is required, for

which there is waste of memory space and instruction

bandwidth.

5.4.5 Applications of VLIW Processors

• It is suitable for Digital Signal Processing Applications.

• It is used for tasks, which involves processing of media data,

like compression /decompression of image and speech data.

SAQ

1. Draw a typical VLIW processor and explain in brief about the

architecture

2. What is the role of a compiler in a VLIW processor

architecture?

3. State the advantages and disadvantages of VLIW architecture.

4. Explain in brief about the VLIW instructions format and

slotting.

5. State the applications of VLIW Processors.

360 | P a g e

Space for learners: 5.5 EPIC Architecture:

Explicitly Parallel Instruction Computing (EPIC)is a term proposed

by Hewlett Packard & Intel, which formed an alliance in early 90s

for the research and implementation of Intel Itanium architecture

(IA-64). In 2001, IA-64 was launched as a collection of 64-bit Intel

Itanium microprocessors. Though the original ISA specifications

were by HP, but it was later evolved and implement as a new

processor micro architecture by Intel.

5.5.1 EPIC vs VLIW

EPIC is inspired by VLIW architecture at roots, so it permits

execution of instructions in parallel using a compiler instead of

complex circuits, which were earlier used to control instruction level

parallelism (ILP). In contrast to VLIW, apart from identifying and

grouping the independent operation in a single instruction, the

compiler communicates this via explicit information in the

instruction set. That’s why EPIC is also known as “independence

architecture” (Fisher & Rau). Unlike VLIW, EPIC retains backward

compatibility across different implementations like superscalars, but

doesn’t need any hardware for dependency checks like superscalars.

EPIC is a mix of software & hardware, incorporating the advantages

of both superscalars and VLIW architectures, while fixing several

shortcomings of VLIW.

1. VLIW instructions had a backward compatibility issue

between wider and narrower implementations. Wider

implementation uses greater number of execution units (EU),

which also increases the size of an instruction since the

number of operations to run in parallel also increases. Such a

wider instruction set doesn’t work well with narrower

implementations with lesser number of execution units.

2. The static scheduling by the compiler for load instructions

became quite difficult since memory operations need to

work with several devices from memory hierarchy, like CPU

cache memory and DRAM, which doesn’t have any

deterministic delay for load responses. In other words, the

compiler couldn’t predict the delay in response time

efficiently for the load instructions using different memory

technologies.

361 | P a g e

Space for learners: So, although EPIC evolved from VLIW architecture, it tries to retain

some properties from superscalar architecture. There are several

additions to features of EPIC architecture in contrast of VLIW as

discussed in next section.

5.5.2 EPIC architectural details

In EPIC architecture, we have a “bundle” of multiple software

instructions. Each of these bundles includes a stop bit to indicate if

there is some interdependencies between two subsequent bundles.

The dependency information is calculated by the compiler. This

information could help in issuance of multiple bundles in future

implementations. Typically, a bundle is of 128 bits, with thee 41-bit

instructions per bundle and only two bundles can be issued at once.

For data prefetch, software prefetch instruction is used, which not

only increases cache hit for load operation, but also indicates the

requirements of temporal locality in different cache levels. For these

purpose, two types of load instructions, namely speculative load

instruction and check load instructions are used in EPIC to bypass

control and data dependencies.

Moreover, EPIC follows a fully predicated instruction set

architecture, that enables predicated execution, which decreases the

occurrence of branching and increase speculative execution of

instructions.

Stop to Consider

� Predication:

“In computer science, Predication is an architectural

feature that provides alternative to conditional transfer of

control, implemented by machine instructions such as

conditional jump, conditional call, conditional return and

branch tables. It means if a register condition bit is set, the

instruction is executed; if the bit is clear, it is not.” –

Predication (on Wikipedia)

362 | P a g e

Space for learners: � Speculation:

“Speculative execution is an optimization technique where a

computer system performs some tasks that may not be

needed. Work is done before it is known whether it is

actually needed, so as to prevent a delay that would have to

be incurred by doing the work after it is known that it is

needed. If it turns out the work was not needed after all,

most changes made by the work are reverted and the results

are ignored. The objective is to provide more concurrency if

extra resources are available. This approach is employed in a

variety of areas, including branch prediction in pipelined

processors, value prediction for exploiting value locality,

prefetching memory and files, etc.” – Speculation (on

Wikipedia)

� Register renaming:

Register renaming is a technique of managing data

dependencies between the instructions in the pipeline by

renaming the register operands.

In this architecture, the register files are very large and there are

wide range of registers at disposal to avoid register

renaming.Registers include 128 integer and floating-point registers,

128 additional registers for loop unrolling & optimization, 8 indirect

branch registers and other miscellaneous registers. Moreover,

predication (or multi-way branch instruction) improves the

prediction of branch instruction by combining branches as alternate

instruction in one bundle.

Lastly, let us revise the difference between Superscalars, EPIC &

VLIW.

 Grouping of

instructions

(Checking

dependencies

between

instructions to

find group able

instructions for

Assigning of

functional unit

(Assigning

instructions to

the functional

or execution

units of the

Initiation of

execution

(Determining

when the

execution starts

or instructions

are initiated)

363 | P a g e

Space for learners: parallel

execution)

hardware)

Superscalar Hardware Hardware Hardware

EPIC Compiler Hardware Hardware

VLIW Compiler Compiler Compiler

5.6 INTRODUCTION TO MULTIPROCESSOR

SYSTEMS

A multiprocessor system is a computer system with more than one

processor (typically two or more), where each processor is linked

with one another. The connection between these processors is

known interconnection network. The primary focus of a

multiprocessor system is to achieve parallel processing, which

enhances the overall performance. Apart from high performance, the

multiprocessor system focusses on –

1. Fault Tolerance and graceful degradation: These systems

have high fault tolerance since multiple processors are at

play. In case of system failure, the system can continue to

run in low power, until it stops completely.

Check Your Progress

9. EPIC stands for___________________________

10. The first implementation of EPIC architecture is ___________

family of processors.

11. In VLIW, _________issues instructions corresponding to the

position of functional units.

12. EPIC is developed as a joint collaboration between

13.EPIC follows a fully _____________ instruction set

architecture

State TRUE or FALSE:

14. VLIW is inspired by EPIC architecture

15. In EPIC, the functional units are assigned by compiler.

364 | P a g e

Space for learners: 2. Scalability and modular growth: The number of processors,

memory units, etc. can be added or removed at any point of

time. This modularity allows for scalable enhancements in

future.

Multiprocessor system falls under MIMD architecture. It is one of

the types of parallelism as per Flynn’s classification of computer

organization. The MIMD refers to multiple control units and

multiple execution units or processors. There are multiple

instruction and data steams as shown in figure below.

Fig. 3. MIMD with shared memory

The MIMD refers to multiple control units and multiple execution

units or processors. There are multiple instruction and data steams

as shown in figure 3.

Shared Memory

CU CU

PR PR

Instruction

Streams

Data Streams

Stop to Consider

� Please note that multiprocessor and multicomputer

systems may sound similar, but there exists an important

difference.

� Both of them support concurrent operations, but a

multicomputer system is a system with multiple

computers and a multiprocessor system is a system with

multiple processors.

365 | P a g e

Space for learners: � In multiprocessor systems, there is a single operating system,

which provides interaction between processors and all the

components of the system cooperate in the solution of a

problem.

� In multicomputer system, each computer has a separate

operating system, however these computers work together as

a single entity.

5.6.1 Classification of Multiprocessors

The following figure shows different types of multiprocessors. They

are primarily divided into two-types: tightly coupled system and

loosely coupled system.

Fig. 4. Classification of Multiprocessors

A tightly coupled multiprocessor, also known as shared memory

multiprocessor system, share information between multiple

processors via a shared or global memory. Here, all processors share

a single memory address space and communicate among themselves

through shared variable in memory. Each of the processors can

access any location in the shared memory. Apart from shared

Multiprocessor

Architecture

Tightly coupled Lightly coupled

Shared Memory Distributed Memory

UMA NUMA CLUSTER

366 | P a g e

Space for learners: memory, each processor can also have a dedicated local memory

which other processors cannot access. Please note that all the

processors in the multiprocessors system communicate to perform

tasks in a highly synchronized fashion.

Fig. 5. Tightly coupled multiprocessor system

In tightly-coupled multiprocessors, we have Uniform Memory

Access (UMA). In a UMA multi-processor system, the access time

of memory is equal for all the processors irrespective of which

processor accesses which portion of the common memory. Although

the access time of memory is almost equal, the memory access in

UMA is bit slow due to the use of a single memory controller. We

also have Symmetric Multiprocessor (SMP) system, which is an

UMA multi-processor system with identical, homogenous

processors, which are capable of performing similar functions and

utilizes a centralised shared main memory.

There is also another type of tightly-coupled multi-processor system

known as Non-Uniform Memory Access (NUMA) system. In

NUMA multi-processor systems, the memory area is virtually

divided into faster access area and slower access area. The faster

access areas are assigned to the processors and the slower common

area is used for the exchange of data. Several memory controllers

are used for this purpose for allowing local faster memories to be

used as actual main memories. This enables NUMA to manage

workloads to achieve higher performance than UMA multi-

Interconnection Network

PR1 PR2 PRn

MM MM

Global Main Memory

367 | P a g e

Space for learners: processor systems. These systems are also known as Distributed

Shared Memory (DSM). In DSM multiprocessor system, the

processors have a shared address space for all the memories.

A loosely coupled multiprocessor system, also known as the

distributed memory multi-processor system, doesn’t share

information between multiple processors via a shared memory, since

each processor has its local dedicated memory, which together

forms a distributed memory. Please note that all the processors in

the multiprocessors system do not communicate to perform tasks in

a highly synchronized fashion. Processors communicate and share

explicit information among each other using a common message

passing protocol via interconnection network, for which the

overhead of data exchange is high.

Fig. 6. Loosely coupled multiprocessor system

The loosely coupled multiprocessor system has physically

distributed memories like in the case of cluster. A cluster consists of

a set of computers connected over a local area network (LAN)

which function as a single large multiprocessor. In the cluster

system, there is no sharing of address space and each cluster node

works together, although it can also work independently. Since a

cluster act like a multiprocessor, it can provide the benefits of

multiprocessor system along with additional benefits like load

sharing and better fault tolerance.

Interconnection Network

PR1 PR2 PRn

MM1 MMn

Local Private Memory

MM2

368 | P a g e

Space for learners:

5.7 INTERCONNECTION TYPES

In multiprocessor systems, the components like CPU and I/O Ports

are connected to I/O devices and a memory unit, which can be

shared or distributed in nature. The interconnection between the

components be of different physical configurations, described as

follows:

a) Time-Shared Common Bus Structure:

Fig. 7. Time-shared common bus structure

In this structure, all the processors in the microprocessor system are

connected to shared memory and other common resources using a

System bus

controller
CPU Local

Memory
IOP

Local Bus

System bus

controller CPU Local

Memory
IOP

Local Bus

System bus

controller CPU Local

Memory
IOP

Local Bus

Common

Shared

Memory

System Bus System Bus

Stop to Consider

� Tightly-coupled multiprocessor systems use a shared memory

(can be a virtually distributed shared memory) and Loosely-

coupled multiprocessor systems use physically dedicated

distributed memory.

� In literature, the terms UMA and SMP are used

interchangeably, since access to shared memory is balanced

in both the cases.

� NUMA can be considered as a tightly coupled form of

cluster.

� Cluster is not same as a Computer Network. The primary

objective of a computer network is resource sharing but for

Cluster, it is parallel computing.

369 | P a g e

Space for learners: common interconnecting path, called as common system bus. In this

structure, only one processor out of others can communicate with

the shared memory or any other processor over the system bus at a

given time, thus time-shared. Each processor can also have a local

bus to communicate with its local memory and local I/O. The

benefit of this is while one processor is working on system bus,

other processors can communicate with local memory and local I/O

through local bus. Please note that a part of local memory can be

designed as cache and can be attached to CPU to reduce the average

access time of the local memory.

Pros

1. The design is simple due to the use of single common

system bus.

2. It is a cheap and affordable structure.

Cons

1. Since only one processor at a time can transfer or

communicate over the system bus, the communication is

quite slow. It means when one processor is accessing the

shared memory using the bus, others can’t perform any

other operation using the bus.

b) Multiport Memory Structure:

In this structure, the system has separate buses between each

memory module and the processors. For example, if we have

4 processors and 4 memory modules, then each memory

module will have 4 ports each connecting to each of the

processor bus. The processor bus consists of data, address

and control lines. Each of the memory module has an

internal control or priority logic to determine which

processor request will be granted i.e., which port will have

access to memory module at a given time, when there is a

conflict of simultaneous requests from multiple processors in

the system. Generally, a fixed priority is assigned to each

memory ports to avoid memory access conflicts. Moreover,

each processor is associated with a priority of the memory

access, which is determined by the physical position of the

port that the processor bus occupies in each module. So,

processor P1 will have the highest priority and priority of the

processor P4 will be the lowest.

370 | P a g e

Space for learners:

Fig. 8. Multiport memory structure

Pros

1. Due to multiple paths between the processors and

memory modules, multiple processors can

simultaneously access the memory, thus, high transfer

rate can be achieved through this organization.

Cons

1. It requires a huge number of interconnecting cables to

connect all the processors with memory modules. Thus,

it is suitable for systems with small number of

processors.

2. It also requires large hardware in memory modules in the

form of memory control logic, which is very expensive

in cost.

c) Crossbar Switch Structure:

In this structure, a number of crosspoints are placed at the

intersection of memory paths and processor buses. At each

crosspoint, there is a control logic to set the desired path

between a memory module and a processor. This control

logic is basically a switch, which is an electronic circuit. A

switch can also resolve the conflict of simultaneous requests

from multiple processors to access same memory module in

the system based on a fixed priority basis. The following

figure shows a crossbar switch interconnection for a system

with 4 processors and 4 memory modules with 16 switches

represented by small-squares marked by S1 to S16.

MM2 MM3 MM4

Memory Modules

MM1

P1

P1

P3

P4

Multi

ple

Proces

sors

371 | P a g e

Space for learners:

Fig. 9. Crossbar switch structure

Pros

1. Since there exists a separate path associated with each

memory module, simultaneous transfer from all memory

module is possible.

Cons

1. The entire connection here relies on switches. So, if large

number of processors are present, then the design &

implementation of switch requires large hardware and

becomes complex.

d) Multistage Switching Network Structure

In this structure, we use a switch which can interchange two-

inputs, two-outputs, in contrast to that of crossbar switches,

which allows one stage of electronic switches – either input

or output - to determine the path between multiple

processors and multiple memory modules. Hence the name,

multistage switching network since it allows to build

different possible stages for different combination of inputs

& outputs. Let us take the example of 2 x 2 interchange

switch, which has 2 inputs – X & Y and 2 outputs – 0 and 1.

X is connected to 0 X is connected

to 1

MM2 MM3 MM4

Memory Modules

MM1

P1

P1

P3

P4

Mul

tipl

e

Proc

esso

rs

S1 S2 S3 S4

S5 S6 S7 S8

S9 S10 S11 S12

S13 S14 S15 S16

X 0

Y 1

X 0

Y 1

X 0

Y 1

372 | P a g e

Space for learners:

Y is connected to 0 Y is connected

to 1

Fig. 10. Interchange switch states

You can see that how four different states are possible in a

single switch. Now, in place of X & Y, if we have two

processors connected say P1 and P2, then we can have

definite control to reach a particular memory module from a

processor. These interchange switches allow to connect a

source to a destination through multiple stages using a

control logic.

A very popular topology is called omega switching network

which allows exactly one path from each source to any

particular destination. Simultaneous connections by two

sources to two destinations connected to same switch is

prohibited.

Fig. 11. An 8 x 8 Omega Multistage Switching Network

Pros:

1. The structure is cost effective since we can connect

multiple sources to multiple destinations with less

amount of wiring compared to crossbar switch structure.

X 0

Y 1

P1

P2

P3

P4

P5

P6

P7

P8

MM1

MM2

MM3

MM4

MM5

MM6

MM7

MM8

Stage 1 Stage 2 Stage 3

373 | P a g e

Space for learners: Cons:

1. There is a restriction on the number of simultaneous

connections, since simultaneous connections by two

sources to two destinations connected to same switch is

prohibited.

e) Hypercube Network Structure

In this structure, a loosely coupled system is realized with

the help of a concept called hypercube. A hypercube

structure is comprised of N = 2
n

numbers of processors

interconnected to each other in a N-dimensional cube. This

structure is also known as a binary N-node multiprocessor

structure. A node of the cube is represented by a processor

and an edge of the cube is a communication path connection

two nodes. Moreover, there exists dedicated paths or edges

for a processor to communicate with the neighbouring nodes.

Fig. 12. Hypercube structures

Pros:

1. It is easy to scale the current network to higher

configurations simply by increasing the value of n which

is the dimension of the cube.

2. Since it is a loosely coupled system, intelligent

communication protocols could be easily implemented.

Cons:

1. The multiple paths between processors increases the

routing complexity.

P2

P1

P2 P4

P1 P3

P3 P6

P1 P5

P4 P8

P2 P7

n=1, N=2

Binary two-node

cube

(One Dimensional)

n=2, N=4

Binary four-node

cube

(Two Dimensional)

n=3, N=3

Binary 8-node cube

(Three Dimensional)

374 | P a g e

Space for learners:

5.8 CACHE MEMORY: UNIPROCESSOR VS

MULTIPROCESSOR

A cache memory is a faster memory which sits in between a

processor and main memory. Its primary role is to reduce the

average access time for a particular data. In a system without a

cache memory, the processor might have to higher access time given

that the access to a particular data is needed on consecutive

execution of instructions. The cache tends to hold those data in itself

which has high probability of being asked by processor in next

cycle. Also note that cache is also realised as a random-access

memory, so the time taken to access any part of cache is almost

same. Both this factor makes cache memory quite efficient solution

to reduce the average access time.

In a system with single processor, the read and write operation on

cache works as follows. During a read operation, a word from cache

line is sent to the processor, the main memory is not involved in the

transfer. During the write operation, two widely-used policies –

write back and write through – are used. In write back, the cache

memory is regularly updated after every write operation and all the

changes made in cache are marked and is updated on main memory

later. On the other hand, in write through, the cache and the main

memory are updated simultaneously.

Check Your Progress

16. MIMD stands for_____________________________

17. Uniform Memory Access corresponds to ______________

multiprocessors and Clusters corresponds to ______________

multiprocessors.

18. A hypercube contains ________ numbers of processors.

State TRUE or FALSE:

19. In multistage switching network, an interchange switch has

two-inputs, two-outputs.

20. In multiport memory structure with 3 processors, one

memory module will have 3 ports connecting to each processor.

375 | P a g e

Space for learners: However, in a multiprocessor system, we can have a common

shared main memory among all the processors. Each processor can

also have local cache memory in order to reduce the average access

time on an instruction cycle time. We already know for a processor

writes its cache memory during a write operation. During the

execution of an instruction, if any processor locally writes its cache,

the new values must be made available to the all the other

processors to maintain the consistency of the system. In case if the

new value is not updated in common shared memory, then the other

processors will receive and use the old values in their cache, which

should not be allowed. Thus, when any of the processor makes

modification in its cache,

a. All the other processors should either update their cache with

the new modified value, or

b. Mark the old data in their cache as invalid.

5.8.1 Cache Coherence Problem:

Cache coherence is a condition which states that all the cache lines

with a particular shared main memory block must contain same

information at any given point of time. This ensures that a

multiprocessor system can perform memory operation correctly, by

keeping identical multiple copies of information in the caches of the

processors involved in execution of a particular instruction. Cache

coherence problem occurs when cache coherence is not maintained,

i.e., a processor updates its cache and other processors doesn’t get

an updated copy of newly modified data in their cache. This

hampers the uniformity of data in all the caches of processors.

Cache coherence problem happens in a multiprocessor system, since

multiple processor access and works on non-identical multiple

Stop to Consider

� In a uniprocessor system, the main memory is for use by a

single processor. In multiprocessor, the main memory is

shared among all the processors.

� Each processor has its own cache memory and can

incorporate either write through or write back policy to

update its own cache.

376 | P a g e

Space for learners: copies of data. Now as the cache coherence problem has been

discussed, let’s see the solutions for this problem.

Fig. 13. Cache configuration after variable X = 10 is loaded from

Main Memory

Fig. 14. Write-through policy. Modified value X=50 in Cache &

Main Memory

Fig. 15. Write-back policy. Modified value X=50 only in Cache,

MM to be updated later.

X = 10

P1

X = 10

P2

X = 10

P3

X = 10 Main Memory

Caches

Processors

Bus

X = 50

P1

X = 10

P2

X = 10

P3

X = 50 Main Memory

Caches

Processors

Bus

X = 50

P1

X = 10

P2

X = 10

P3

X = 50 Main Memory

Caches

Processors

Bus

Caches are

incoherent

Caches are

incoherent

Caches are

coherent

377 | P a g e

Space for learners:

Stop to Consider

� The all-is-well approach is not a viable solution for cache

coherence solution, since a common cache memory in

multiprocessor system decreases performance.

� The software-based solutions for cache coherence problem

are cheap but slow.

� The hardware-based solutions for cache coherence

problems are costly but fast.

5.8.2. The “All-is-well” Solution:

One of simple scheme can be to restrict the association of local

caches for each processor and force them to use a shared cache

memory instead. However, this simply overshadows the idea of

having cache memory close to the processor, since a common cache

will increase the average access time as compared to local cache.

Thus, this scheme simply ignores cache coherence problem.

Considering the significance of performance, it is better to allow

local caches in each processor and move towards more practical

software & hardware solutions.

5.8.3. Software-based solutions:

The compiler is used to analyse the source code as the object code is

generated in order to identify the parts of the program which uses

shared items. These writable shared items are marked with a tag as

non-cacheable, i.e., processors cannot write non-cacheable data into

their local caches and have to access it directly from main memory

for both read and write operations. A shared item can be identified

by the processors using the tags associated with it. This is cheap to

implement and can be achieved during the compilation process.

However, it increases the average access time since during

execution of an instruction, the processors have to access the main

memory instead of their local caches. It is also an extra overhead on

the software which also affects the system’s performance. Please

note that the program also uses non-sharable and read-only items,

which are marked as cacheable i.e., these data are allowed to be

stored in the local cache of the processor. Only non-cacheable items

remain in main memory.

378 | P a g e

Space for learners: 5.8.4. Hardware Solutions:

1. Cache Snooping Protocol:

Here, a bus controller is assigned to each processor, which monitors

the write operations on the bus by other processors. This bus

controller is known as snoopy cache controller. The snoopy cache

controller is responsible to identify if a shared item is being

modified by any processor and ensures that all other cache

controllers have the most recent updated copy of the shared item to

avoid the usage of outdated information from their caches. There are

two methods as discussed below, which can either be followed as a

snooping cache protocol.

a) Write-update protocol (or Write-broadcast protocol):

In this protocol, whenever a processor writes to a shared

item in its cache, it broadcasts to all the other cache

controllers about the updated value of the shared item

through the system bus. All the cache controllers update

their local cache accordingly. This scheme makes the update

value readily available in caches of other processors, thus

consumes more bandwidth in terms of memory. A solution

to this over consumption of memory bandwidth is to keep

tracks of the shared items to avoid unnecessary re-

broadcasts. An example of write-update protocol is Firefly

Protocol, which is used by SPARC center 2000.

b) Write-invalidate protocol:

In this protocol, whenever a processor (let’s say P1) writes

into a shared item (word) in its cache, it informs all the other

cache controller about the location (let’s say 3000) of the

updated word in its cache. All the cache controllers’ snoops

on the bus for write operation. They will check if they have a

copy of the word which has been overwritten by P1. If yes,

then they mark the location of that word in their cache as

invalid for future reference and removes the word from their

caches. Afterwards, whenever another processor (let’s say

P2) tries to access the invalid word (which was a copy of the

word from location 3000), it will result in a cache miss and

any one of the following operations will

i. If the cache follows write-through policy, then the

updated item will be transferred to processor P2 from

379 | P a g e

Space for learners: the main memory. Here, the updated item will be

available in both - cache memory of processor P1 and

main memory, but main memory is the preferred

choice in an event of cache miss.

ii. If the cache follows write-back policy, then the

updated item will be transferred from the cache

memory of Processor P1 to Processor P2 via main

memory, since at any time, the latest value of the

word will only be available in cache of P1 and will

be updated in main memory later.

An example of write-invalidate protocol is MESIprotocol

(Modified Exclusive Shared Invalid), which is used byIntel

Pentium 4 and PowerPC.

Fig.16 Cache Snooping Protocol

2. Directory Protocol:

Here, a centralized approach is considered by maintaining

adirectory in the main memory. We define one directory per cache

to keep track of state (or information) of every block of main

memory present in that cache. In other words, the information in a

directory is about the cache memories of processors containing same

block from main memory and the state of the block - either valid or

Cache
Ta

gs

Processor

Sn

oo

p

H/

Cache
Ta

gs

Processor

Sn

oo

p

H/

Cache
Ta

gs

Processor

Sn

oo

p

H/

Memory

Dirty

Address/Data

380 | P a g e

Space for learners: invalid.In order to prevent bottleneck in a directory, the entries in

the directory can be distributed.

Whenever an information in the cache is modified by a processor, it

the responsibility of the directory controller to check the directory

and identify the affected processors. Then the affected processor

receives an explicit information from the directory controller about

the appropriate action to be taken in order to avoid any incoherency

in cache.

Fig 17. Distributed Directory Protocol

5.9 SUMMING UP

• Instruction Set Architecture (ISA) defines a basic set of

operations - like arithmetic, logical, branching and memory

operations, that must be performed by the system and also

SAQ

1. What is Cache Coherence? How does it differ from Cache

Coherence Problem?

2. State the working of Cache Snooping Protocol.

3. State the working of Directory Protocol.

Processors

Processors

Interconnection Network

Cache

P1

Directory Main Memory

Cache

P2

Directory Main Memory

Main Memory

Cache

P4

Directory Main Memory

Cache

P3

Directory

381 | P a g e

Space for learners: provides details about how a machine code doesn’t depend

on the prime characteristics of the implementation of a

particular ISA. Based on architectural complexity, ISA can

be classified into CISC and RISC.

• CISC stands for Complex Instruction Set Computer. This

approach attempts to reduce the number of instructions per

program. In order to do so, the number of cycles per

instruction increases. CISC takes several clock cycles to

execute instruction. In CISC architecture, the instructions are

of variable lengths (from 8-bits to 120-bits)

• RISC stands for Reduced Instruction Set Computer. This

approach is needed to minimize the cycles per instruction. In

order to do so, the number of instructions per program

increases. RISC takes single clock cycle to execute an

instruction In RISC architecture, the instructions are of fixed

lengths (32-bits)

• In modern times, almost all CISC & RISC processors are

superscalar in nature. Superscalar is an implementation for

ILP processor architectures in which programs doesn’t have

any explicit information about parallel execution of

instruction and it is the responsibility of the system hardware

to detect and construct action plans for any ILPs to be

exploited for parallelism.

• VLIW processors are built on an architecture in which

programs contain explicit information about parallelism and

it is the responsibility of the software, called compiler to

identify and communicate it to the hardware by specifying

all the independent operations.

• In VLIW Processor, Instruction consists of multiple

independent operations grouped together. There are multiple

independent functional units. Each operation in the

instruction is assigned to different functional units. All

functional units share the use of a common large register file.

• One VLIW instruction encodes at least one operation for

each functional unit on each cycle. So, length of the

instruction increases with the number of functional units.

These operations are assigned to functional units by the

position in the given fields within the long instruction word.

This is known as slotting.

• EPIC stands for Explicitly Parallel Instruction Computing

and is implemented by Hewlett Packard & Intel as Intel

382 | P a g e

Space for learners: Itanium architecture (IA-64). EPIC is a mix of software &

hardware, incorporating the advantages of both superscalars

and VLIW architectures.

• Like VLIW, EPIC it permits execution of instructions in

parallel using a compiler. However, in EPIC apart from

identifying and grouping the independent operation in a

single instruction, the compiler communicates this via

explicit information in the instruction set. That’s why EPIC

is also known as “independence architecture”.

• Unlike VLIW, EPIC retains backward compatibility across

different implementations like superscalars, but doesn’t need

any hardware for dependency checks like superscalars.

• A multiprocessor system is a computer system with more

than one processor (typically two or more), where each

processor is linked with one another via interconnection

network. The focus of a multiprocessor system is to achieve

parallel processing, Fault Tolerance, graceful degradation,

scalability and modular growth. Multiprocessor system falls

under MIMD architecture (Multiple Instruction stream,

Multiple Data stream). They are primarily divided into two-

types: tightly coupled system and loosely coupled system.

• A tightly coupled multiprocessor, also known as shared

memory multiprocessor system, share information between

multiple processors via a shared or global memory. Example

of tightly-coupled multiprocessor system - Unform Memory

Access (UMA) and Non-Uniform Memory Access (NUMA).

Symmetric Multiprocessor (SMP) system is an UMA multi-

processor system with identical, homogenous processors,

which are capable of performing similar functions and

utilizes a centralised shared main memory.

• A loosely coupled multiprocessor system, also known as the

distributed memory multi-processor system, doesn’t share

information between multiple processors via a shared

memory, since each processor has its local dedicated

memory, which together forms a distributed memory.

Example of loosely-coupled multiprocessor system -

Clusters. A cluster consists of a set of computers connected

over a local area network (LAN) which function as a single

large multiprocessor.

• In multiprocessor systems, the components like CPU and I/O

Ports are connected to I/O devices and a memory unit, which

383 | P a g e

Space for learners: can be shared or distributed in nature. The interconnection

between the components be of different physical

configurations - Time-Shared Common Bus, Multiport

Memory, Crossbar Switch, Multistage Switching Network,

Hypercube Network

• In time-shared common bus structure, all the processors in

the microprocessor system are connected to shared memory

and other common resources using a common

interconnecting path, called as common system bus. Only

one processor at a time can communicate over the bus. The

design is simple due to the use of single common system

bus. It is a cheap and affordable structure. Since only one

processor at a time can transfer or communicate over the

system bus, the communication is quite slow.

• In multiport memory structure, the system has separate buses

between each memory module and the processors. Each of

the memory module has an priority logic to resolve conflict

of simultaneous requests from multiple processors. A fixed

priority is assigned to each memory ports to avoid memory

access conflicts. Due to multiple paths between the

processors and memory modules, multiple processors can

simultaneously access the memory with high transfer rate.

But it is expensive in cost due to huge interconnecting cables

requirements.

• In crossbar switch structure, a number of crosspoints are

placed at the intersection of memory paths and processor

buses. At each crosspoint, there is a control logic to set the

desired path between a memory module and a processor.

This control logic is basically a switch, which is an

electronic circuit. A switch can also resolve the conflict of

simultaneous requests from multiple processors to access

same memory module in the system based on a fixed priority

basis.

• In multistage switching network structure, we use a switch

which can interchange two-inputs, two-outputs to determine

the path between multiple processors and multiple memory

modules. Hence the name, multistage switching network

since it allows to build different possible stages for different

combination of inputs & outputs. A very popular topology is

called omega switching network which allows exactly one

path from each source to any particular destination. The

384 | P a g e

Space for learners: structure is cost effective since we can connect multiple

sources to multiple destinations with less amount of wiring.

But there is a restriction on the number of simultaneous

connections to two destinations connected to same switch is

prohibited.

• In hypercube structure, a loosely coupled system comprised

of N = 2n numbers of processors are interconnected to each

other in a N-dimensional cube. A node of the cube is

represented by a processor and an edge of the cube is a

communication path connection two nodes. The advantage

of hypercube is that is easy to scale the current network to

higher configurations and intelligent communication

protocols could be easily implemented. However, the

multiple paths between processors increases the routing

complexity.

• Cache coherence is a condition which states that all the

cache lines with a particular shared main memory block

must contain same information at any given point of time.

This ensures that a multiprocessor system can perform

memory operation correctly, by keeping identical multiple

copies of information in the caches of the processors

involved in execution of a particular instruction.

• Cache coherence problem occurs when cache coherence is

not maintained, i.e., a processor updates its cache and other

processors doesn’t get an updated copy of newly modified

data in their cache. This hampers the uniformity of data in all

the caches of processors. Cache coherence problem happens

in a multiprocessor system, since multiple processor access

and works on non-identical multiple copies of data.

• All-is-well approach One of simple scheme can be to restrict

the association of local caches for each processor and force

them to use a shared cache memory. This scheme simply

ignores cache coherence problem and moreover increases

average access time.

• In software-based solution, the compiler is used to mark data

as cacheable and non-cacheable. The cacheable items are

allowed to be stored in the local cache of the processor but

the non-cacheable items can't be stored in cache and remain

in main memory. All the non-sharable & read-only items are

385 | P a g e

Space for learners: tagged as cacheable and the writable shared items are tagged

as non-cacheable.

• The cache snooping protocol is a hardware-based solution.

Here a bus controller is assigned to each processor, which

monitors the write operations on the bus by other processors.

This bus controller is known as snoopy cache controller. The

snoopy cache controller is responsible to identify if a shared

item is being modified by any processor and ensures that all

other cache controllers have the most recent updated copy of

the shared item to avoid the usage of outdated information

from their caches. There is two ways to implement this

protocol - write-update protocol (or Write-broadcast

protocol) and write-invalidate protocol.

• In write-update/write-broadcast protocol, whenever a

processor writes to a shared item in its cache, it broadcasts

all the other cache controllers about the updated value of the

shared item through the system bus. All the cache controllers

update their local cache accordingly.

• In write-invalidate protocol, whenever a processor writes

into a shared word in its cache, it informs all the other cache

controller about the location of the updated word in its

cache. All the cache controllers’ checks if they have a copy

of that old word. If yes, then they mark the location of that

word in their cache as invalid for future reference and

removes the word from their caches. Afterwards, whenever

another processor tries to access the invalid word, there will

be cache miss and actions will be taken depending on

whether write-back or write-through policy is followed.

• Directory Protocol is also a hardware solution for cache

coherence problem. Here, a centralized approach is

considered by maintaining a directory in the main memory.

We define one directory per cache to keep track of state

(either valid or invalid) of every block of main memory

present in that cache. The entries in the directory can be

distributed. A central memory controller checks the directory

to find affected processors in case of any modification of

shared data in its cache by a processor and sends explicit

instruction to the affected processors to avoid cache

incoherence.

386 | P a g e

Space for learners: 5.10 ANSWER TO CHECK YOUR PROGRESS

1. Instruction Set Architecture

2. The set of operation defined by instruction set architecture

may include arithmetic, logical, branching and memory

operations.

3. RISC & CISC

4. Reduced Instruction Set Computer

5. Example of CISC: Intel x86, Example of RISC: ARM

6. False

7. True

8. True

9. Explicitly Parallel Instruction Computing

10. Intel Itanium

11. Compiler

12. Hewlett Packard (HP) & Intel

13. Predicated

14. False

15. False

16. Multiple Instruction stream, Multiple Data stream

17. Tightly-coupled, Loosely-coupled

18. 2
n

19. True

20. True

5.11 POSSIBLE QUESTIONS

1. What is instruction-set architecture? Why is it important?

2. Explain the different types of ISAs.

3. Define Instruction-level parallelism (ILP). How VLIW takes

advantage of ILP?

4. Explain the VLIW architecture and the instruction format.

5. State the advantages, disadvantages and applications of

VLIW architecture.

6. What is EPIC? How does it differ from VLIW?

7. Write a short note of EPIC architecture.

8. Explain in brief about multiprocessor system. How does it

differ from multicomputer system?

9. Differentiate between tightly-coupled and loosely-coupled

microprocessor

387 | P a g e

Space for learners: 10. How does uniform memory access differ from non-uniform

memory access?

11. Explain in brief about different interconnection structures in

multiprocessor systems.

12. What is the difference between the cross-switch and

multistage-switch?

13. What are the two widely-used policies of cache write

operation?

14. What is the software-based approach to solve the cache

coherence problem?

15. Write a short note of hardware-based solutions for cache

coherence problem.

5.12 REFERENCES AND SUGGESTED READINGS

1. Mano, M. Morris. Computer System Architecture, 3E.

Pearson Education India, 2007.

2. Govindarajalu, B. Comp Arch and Org, 2E. Tata McGraw-

Hill Education, 2010.

3. Hamacher, V. Carl, Zvonko G. Vranesic, and Safwat G.

Zaky. Computer organization and Embedded Systems, 6E.

McGraw-Hill, Inc., 2012.

4. Al-Hothali, Samaher. "Snoopy and directory-based cache

coherence protocols: A critical analysis." Journal of

Information & Communication Technology (JICT) 4.1

(2010): 11.

5. Semiconductors, Philips. "An introduction to very-long

instruction word (VLIW) computer architecture." Philips

Semiconductors (1997).

6. Smotherman, Mark. "Understanding EPIC architectures and

implementations." 40th Annual Southeast ACM Conference.

2002.

7. Halfhill, Tom R. “VLIW Microprocessors” Computerworld

India, 14 Feb. 2000,

https://www.computerworld.com/article/2593626/vliw-

microprocessors.html.

8. “Instruction set architecture” Wikipedia,

https://en.wikipedia.org/wiki/Instruction_set_architecture.

Accessed 01 Aug. 2021.

388 | P a g e

Space for learners: 9. “Very long instruction word” Wikipedia,

https://en.wikipedia.org/wiki/Very_long_instruction_word.

Accessed 01 Aug. 2021.

10. “Explicitly Parallel Instruction Computing" Wikipedia,

https://en.wikipedia.org/wiki/Explicitly_parallel_instruction

_computing. Accessed 01 Aug. 2021.

11. Zaccone, Giancarlo. Python parallel programming

cookbook. Packt Publishing Ltd, 2015.

12. Beckmann, Nathan. “Static Scheduling & VLIW.” Carnegie

Mellon University,

https://www.cs.cmu.edu/afs/cs/academic/class/15740-

s17/www/lectures/13-static-scheduling.pdf. Accessed 02

Aug. 2021

13. Shanthi, A. P. “Multiple Issue Processors II” Univeristy of

Maryland,https://www.cs.umd.edu/~meesh/411/CA-

online/chapter/multiple-issue-processors-ii/index.html.

Accessed 01 Aug. 2021.

14. "VLIW Processors" Slideshare,

https://www.slideshare.net/shudhanshu29/vliw-processors.

Accessed 01 Aug. 2021.

15. Schlansker, Michael S., and B. Ramakrishna Rau. EPIC: An

architecture for instruction-level parallel processors.

Hewlett-Packard Laboratories, 2000.

---×---

